
Vignesh Sivaramakrishnan

Candidate

Electrical and Computer Engineering

Department

This dissertation is approved, and it is acceptable in quality and form for publication:

Approved by the Dissertation Committee:

Meeko M.K. Oishi , Chairperson

Rafael Fierro

Ali Bidram

Claus Danielson

Panagiotis Tsiotras

Sean Phillips

i

Theory and algorithms to learn, propagate,
and exploit uncertainty for stochastic
optimal control of dynamical systems

by

Vignesh Sivaramakrishnan

B.S. Mechanical Engineering, The University of Utah, 2017

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctorate of Philosophy

Engineering

The University of New Mexico

Albuquerque, NM

December 2024

ii

Dedication

In memory of my first guru and Appa (father),

Veda Acharya Agoram Sivaramakrishnan

(1968-2024)

iii

Acknowledgments

This excursion would have never started if my advisor, Meeko Oishi, was not willing

to take me on as her student. I am truly grateful for her support, enthusiasm, and

patience. There are countless number of mentors I must thank who made time for me

in their busy schedules. Their feedback is a cornerstone for making many contributions

possible. Professor Panagiotis Tsiotras, thank you for all the feedback that has made

this work possible. My deepest thanks goes to Professor Cristina Pereyra for solidifying

my appreciation for mathematics, especially Fourier and Harmonic Analysis.

To my lab-mates and collaborators, I could not have asked for a better cohort. I am

indebted to their insights and camaraderie. To list them all here would be disservice,

especially if I forget anyone. So, it is only right I thank everyone in person.

To my mentors at JPL, Dr. Jeffrey Umland, Dr. Stuart Shaklan, and Dr. K.

Balasubramanian: I am thankful for their early mentorship and steering me onto this

path. Without them this journey would not have even started.

Dr. Michael A. Kapamajian, thank you for treating me over the past four years. You

have been a contributing factor not only to my health but my success. I do not take my

eyesight for granted now.

To friends, thank you for being kind, understanding, and supportive. I am forever in

your debt for the countless conversations, shared meals, car rides, coffee runs, and doctor

visits. There are so many of you that have helped me and my family so it’s only right I

thank you in person and I do so countless times over.

iv

Paati, thank you for helping Appa while Karthik and I were studying or Amma was at

work. He was very thankful that you cooked food and had his things ready as he rushed

out the door. Karthik, you’re awesome...that’s all I can say. Amma, thank you for always

being there for Karthik, Appa, and me, no matter the hour, and for always listening.

Keerthika, I really don’t know where I’d be without you, but I hope you continue scolding

me, making me cry, and being my voice of reason.

Last but not least, Appa, I don’t know why you had to go so soon, but your endless

kindness and ability to solve most, if not all, of my problems is a debt I can never repay,

no matter how much I earn or how much I help others. You gave me the assurance that

things will get better. Sure enough, it always does, one way or another.

This material is based upon work supported by the National Science Foundation under

NSF Grant Number CNS-1836900, CMMI-2105631, by the Air Force Research Lab under

Grant No. FA9453-23-C-A025, and by NASA under the University Leadership Initiative

award #80NSSC20M0163. Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not necessarily reflect the views

of the National Science Foundation, the Air Force, or NASA.

v

Theory and algorithms to learn, propagate,
and exploit uncertainty for stochastic
optimal control of dynamical systems

by

Vignesh Sivaramakrishnan

B.S. Mechanical Engineering, The University of Utah, 2017

Ph.D Electrical Engineering, The University of New Mexico, 2024

Abstract

Non-Gaussian uncertainty frequently arises in learning and control problems involving

stochastic dynamical systems, particularly in autonomous vehicles, UAVs, satellites, and

robotics. In this dissertation, we propose a new framework that leverages characteris-

tic functions that provides a frequency-domain representation of random variables. The

dissertation is structured into three key areas. First, we address model-based stochastic

optimal control for linear systems with non-Gaussian noise, demonstrating that charac-

teristic functions can be used to enforce chance constraints and control systems toward

desired distributions. Second, we explore data-driven stochastic control, utilizing em-

pirical characteristic functions to handle systems with unknown disturbances. Addition-

ally, we derive several metrics of the cost distribution through characteristic functions,

facilitating further exploration in reinforcement learning. Finally, we utilize characteris-

tic functions in neural network verification by propagating by propagating distributions

through ReLU activation functions. While this analytical propagation shows promise, we

reveal its limitations in higher dimensions and propose a sampling-based approach to ver-

ification that maintains guarantees. The core novelty of this dissertation is the creation

vi

of a set of mathematical tools and methods that can be used to address difficult problems

in stochastic optimal control, neural net verification, and reinforcement learning. These

methods and tools are designed to facilitate learning, propagation, and exploitation of

uncertainty in autonomous dynamical system, well beyond state-of-the-art approaches.

vii

Contents

List of Figures xviii

List of Tables xx

1 Introduction 1

1.1 Motivation . 1

1.2 Summary of research contributions . 6

1.3 Summary of publications . 7

2 Preliminaries 10

2.1 Notation . 10

2.2 Probability . 11

2.2.1 Characteristic Functions . 11

2.3 Dynamical Systems . 14

2.3.1 Linear Dynamical System . 16

2.4 Control Policies . 17

2.4.1 Open-Loop Control for Linear Systems 20

2.4.2 Affine-Feedback Control for Linear Systems 20

2.5 Optimization . 22

2.5.1 Convex Optimization . 23

2.5.2 Non-Convex and Difference of Convex Optimization 23

viii

I Model-Based, Stochastic Optimal Control 25

3 Open-Loop Control of Linear Systems With Log-Concave Uncertainty 26

3.1 Introduction . 26

3.2 Related Work . 27

3.3 Main Contribution and Organization . 28

3.4 Problem statement . 29

3.5 Convexification of non-Gaussian joint chance constraints 31

3.5.1 Risk-allocation for log-concave disturbances 31

3.5.2 Enforcing chance constraints using characteristic functions 32

3.5.3 Conic reformulation of (3.7c) via piecewise affine approximation . 34

3.5.4 Solving (3.12) via difference of convex programming 36

3.6 Examples . 37

3.6.1 Constrained control of a stochastic double integrator 38

3.6.2 Quadrotor in the crosswinds of a harsh environment 41

3.7 Conclusion . 44

4 Closed-Loop Steering of Linear Systems With General Uncertainty 46

4.1 Introduction . 46

4.2 Related Work . 47

4.3 Main Contribution and Organization . 47

4.4 Problem formulation . 48

4.5 Chance Constraints with Affine Feedback via Characteristic Functions . . 49

4.5.1 Reformulation of Chance Constraints 49

4.5.2 Encoding Chance Constraints in the Presence of Affine Feedback . 50

4.6 Terminal Density Constraints . 52

4.6.1 Joint Characteristic Function Representation of the Terminal Density 53

4.6.2 Matching Densities . 54

ix

4.7 Resulting optimization problem . 55

4.8 Examples . 56

4.8.1 Double Integrator: Standard Gaussian Distribution 57

4.8.2 Double Integrator: Long Tail - Laplace Distribution 57

4.8.3 Double Integrator: Mixture Distributions - Normal Mixture . . . 58

4.9 Conclusion . 58

II Data-Driven, Stochastic Optimal Control 61

5 Open-Loop Control of Linear Systems With Unknown Uncertainty 62

5.1 Introduction . 62

5.2 Related Work . 62

5.3 Main Contribution and Organization . 63

5.4 Problem Statement . 64

5.5 Method . 66

5.5.1 Approximating the cumulative distribution function and moments

from the empirical characteristic function 67

5.5.2 Constructing a Convex Restriction for (5.5b) 67

5.5.3 Underapproximative, Conic Optimization Problem 69

5.5.4 Convergence and Confidence Intervals 69

5.6 Examples . 72

5.6.1 Double Integrator . 73

5.6.2 One-way Hypersonic Vehicle . 74

5.7 Conclusion . 76

6 Distributional Representation of Value Functions for Reinforcement

Learning 77

6.1 Introduction . 77

x

6.2 Related Work . 78

6.3 Main Contribution and Organization . 78

6.4 Reinforcement Learning Preliminaries and Problem Statements 79

6.4.1 Costs . 79

6.4.2 Optimal Costs and Policy . 83

6.4.3 Markov Decision Process Formalism 84

6.4.4 Reinforcement Learning . 84

6.4.5 Problem Statement . 86

6.5 Method . 87

6.5.1 Computational and Representation Considerations 90

6.6 Example . 90

6.7 Conclusion . 92

III Probabilistic Verification of Neural Networks 93

7 Analytic Distribution Propagation Through ReLUs 94

7.1 Introduction . 94

7.2 Related Work . 95

7.3 Main Contribution and Organization . 96

7.4 Preliminaries and Problem Statement . 97

7.5 Propagation of a Characteristic Function through a ReLU Network . . . 98

7.6 Complexity of Propagation . 100

7.6.1 Frequency Domain Gridding . 101

7.6.2 Affine Layer Propagation . 101

7.6.3 Max Layer Propagation . 102

7.7 Probabilistic Deep Neural Network Verification 104

7.8 Examples . 105

7.8.1 Small Toy Neural Network With Cauchy Noise Input 105

xi

7.8.2 Larger Toy Neural Network with Gaussian Input Noise 109

7.9 Conclusion . 110

8 Sample-based Verification of Neural Networks 111

8.1 Introduction . 111

8.2 Related Work . 114

8.3 Main Contribution and Organization . 114

8.4 Problem Statement . 115

8.5 Method . 117

8.6 Examples . 118

8.6.1 Toy Neural Network with Cauchy Input 118

8.6.2 TaxiNet: Pixels to Control Input 120

8.7 Conclusion . 122

IV Conclusion 124

9 Conclusion 125

9.1 Summary of Contributions . 125

9.2 Future Work . 127

References 128

xii

List of Figures

1.1 A pictorial representation of the neural network verification problem where

we provide a noisy esimtate of the state into a neural network controller

and we wish to determine with what probability the control output from

the neural network resides within a set. 5

3.1 Left: f(x, y) = x2 + y2 ≥ r2 within a unit box. Right: The epigraph

of f(x) = log(Φ(x)) of a log-concave cumulative distribution function.

Both functions are reverse convex, meaning that the complements of the

inequalities, i.e. x2 + y2 ≤ r2 and log(Φ(x)) ≥ t, respectively, are convex. 33

3.2 Top: Log of the cumulative distribution function of an affine transforma-

tion of a random vector a⊺wt, with wt = [w1 w2 w3]
⊺ ∈ R3 and scale

parameters λw = [0.5 0.25 0.1667]⊺. Bottom Left: A piecewise affine un-

derapproximation (blue) of the log of the cumulative distribution function

(yellow). Bottom Right: The difference f(x)−ℓf (x) as in (17), with η = 0.1. 34

3.3 Manipulations that result in a convexified reformulation of (5) that is

amenable to conic solvers. 37

3.4 Mean trajectories from the proposed approach, scenario approach [1, 2],

particle based approach [3], and moment based approach [4, 5]. For all

approaches, we presume a constraint violation threshold of ∆ = 0.1. Note

that all approaches track the reference trajectory. 39

xiii

3.5 Top: Stage cost (the cost incurred at each time step) and control effort

over time, for the double integrator. The stage cost of all approaches are

similar to highlight that reference tracking is possible for all approaches.

Bottom: The optimal input for each approach. 40

3.6 The cumulative distribution function (left) and the log of the cumula-

tive distribution function (right) for a negative affine transformation of

an exponential random variable with scale parameter λ = 1. Because the

empirical characteristic function approach requires a concave region of the

cumulative distribution function to exist [6, Sec. III.B.], it cannot be

used to solve the double integrator problem. In contrast, our approach is

feasible, since the log of the cumulative distribution function is log-linear. 40

3.7 The asymmetric Laplace distribution that affects the states representing

quadcopter position in x, y, z. The disturbances follow the magenta dis-

tributions (left) for the first half of the time horizon, and then follow the

red distributions (right) for the second half of the time horizon. The pa-

rameters of the distribution are noted above each plot. 41

3.8 Mean trajectories for the quadcopter example. Our approach has the

lowest cost, and a probabilistic constraint satisfaction, with a reasonable

overall solve time, that is closest (but still above) the desired threshold

(Table 3.2). This can be seen in the fact that the trajectory for our ap-

proach is close to the reference trajectory (middle plot) compared to the

scenario approach which overshoots before recovering to track the reference

trajectory. In essence, our approach enables a better trajectory because it

can effectively account for the risk of violating the constraint satisfaction

in the control optimization process. 42

xiv

3.9 The stage cost and input at each time step for all approaches compared in

the quadcopter example. Our proposed, moment, and ECF methods have

comparable inputs. However, note the scenario approach has differing

inputs for u1 and u3, and correspondingly higher cost (Table 3.2). The

input u2 and u4 are not shown because they are quite similar. 43

4.1 We seek to steer a stochastic system from an initial distribution to a desired

final distribution, subject to probabilistic constraints on the state and input. 47

4.2 Distribution steering from one Gaussian distribution to another Gaussian

distribution. 59

4.3 Distribution steering from a Laplace distribution to a Gaussian distribution. 60

4.4 Distribution steering from a Gaussian mixture to a Gaussian distribution. 60

5.1 (Left to Right) Algorithm 1 under-approximates the cumulative distri-

bution function, Φ̂y(x) (red), with Φ̂l
y(x) (green), for some user-defined

error, ϵ. We use 1000 samples of y = fy1 + (1 − f)y2, with Bernoulli

random variable f , y1 a Gaussian N (0, 0.2), and y2 a Weibull distribution

Weib(k = 4, θ = 2). The error Φ̂y(x) − Φ̂l
y(x) ≤ ϵ is depicted on the far

right. 68

5.2 (Top) Approximation Φ̂y(x) (yellow) of Φy(x) (red) with 80% confidence

interval bands (blue) for 10, 100, and 1000 samples. (Bottom) Convergence

of E[y] and E[y2]. We presume y = fy1+(1− f)y2 for a Bernoulli random

variable f , with y1, y2, drawn from a gamma distribution Gam(k = 2, θ =

5), and a uniform distribution Unif[0, 5], respectively. 70

xv

5.3 (Top) Mean trajectories for the double integrator. Algorithm 2 satisfies

the desired constraint satisfaction likelihood, while particle control [7] does

not. The reference trajectory is chosen to test constraint violation. (Bot-

tom) Mean stage cost and control input. Algorithm 2 has higher stage

cost due to constraint satisfaction. 73

5.4 (Top) Mean trajectories for the hypersonic vehicle. Constraint satisfaction

is above the desired likelihood with Algorithm 2, but not with particle

control [7]. (Bottom) Mean stage cost and input. The particle control

cost is low because constraints are not satisfied. 75

7.1 The characteristic function of the input data can be propagated through

a ReLU network analytically. This enables one to query the characteris-

tic function of the network to answer out-of-distribution questions at the

output. The use of characteristic functions also circumvents difficulties

in cases where the underlying distributions do not have any moments or

moment-generating functions (e.g., Cauchy distribution). 95

7.2 The characteristic function and cumulative distribution function for each

layer in the ReLU network. The cumulative distribution function com-

puted using the proposed method (black dot) using (2.3) closely resembles

the empirical cumulative distribution function computed from brute-force

propagation of 104 input samples (red line). 105

7.3 Comparison of ReLU network safety verification. 107

xvi

7.4 Comparison of empirical truth and estimated CDFs for each layer of the

ReLU network where only the cumulative distribution function of the first

three neurons are plotted before activation, φ−, and after activation, φ+.

The cumulative distribution function as calculated from the characteristic

function via (2.3) (circles) closely matches the empirically calculated cu-

mulative distribution function from the propagation of 104 samples (solid

lines) even for 50 neuron hidden layer deep networks. 109

8.1 The output samples of the toy neural network which is fed with a Cauchy

input. The original specification of the 2-Norm with value 10 (in red) fails

the probability of satisfaction, 1 −∆ = 0.99. Thus, we solve Problem 12

to find a modification of the specification which results in θ∗ = 241.37.

Thus, to ensure 1−∆ = 0.99 we get larger set, i.e. ||p||2 − 10− θ∗. . . . 119

8.2 The empirical cumulative distribution function of the neural network out-

put from 3800452 samples. We wish to satisfy (8.14) with 1 − ∆ = 0.99

probability. We do not satisfy the specification, thus we find the level set

scaling needed to satisfy 1−∆ by solving Problem 12 and obtain θ∗ = 241.37.120

8.3 The TaxiNet simulator consists of a Cessna 208B Grand Caravan where

the camera is placed under the right wing of the aircraft. The camera

image is downsampled, where we have added Gaussian noise, and fed into

a feedforward neural network, thereby causing deviations in the aircraft’s

crosstrack position down the runway. 120

8.4 Top down visual of the TaxiNet experiment. The Cessna 208B Grand

Caravan starts at the cross track position of 5 meters and attempts to get

centerline. However, because the downsampled image is corrupted, the

aircraft veers off. Solving Problem 12 to ensure 1−∆ = 0.99, results in a

larger set than the original specification dictates, i.e. |p| − 1 − θ∗, where

θ∗ = 1.1. 121

xvii

8.5 The empirical cumulative distribution function of the resulting TaxiNet

example computed from 381 samples. We wish to satisfy (8.16) with 1−

∆ = 0.99 probability. Since the specification is not satisfied, we can find

the level set scaling necessary to satisfy 1−∆ (green) by solving Problem 12

and obtain θ∗ = 3.6 (red). 122

xviii

List of Tables

3.1 Double Integrator example: Cost and constraint satisfaction (1 − ∆) for

computed values (Comp) and Monte Carlo (MC) simulation (105 sam-

ples) for all but the ECF method (See Figure 3.6). We list offline and

online computation for all methods where reasonable. Sampling/Particle

approaches use Ns = 91 samples. 41

3.2 Quadcopter example: Cost and constraint satisfaction (1 − ∆) for com-

puted (Comp) and Monte-Carlo (MC) simulation with 105 samples, for

all but the particle control method. Sampling and ECF approach use

Ns = 141 samples. 44

4.1 The largest deviation between the actual and desired pdfs (4.25), compared

to the L1 distance (4.26) for each scenario. The controller from (4.28)

yields an L1 distance that upper bounds the largest deviation in each case. 59

4.2 Cost and risk allocation (for the state and the input) when solving (4.28),

and averaged values from 104 Monte-Carlo (MC) samples for validation.

The MC average cost is consistent with the computed cost, and the MC

state and input constraint violations are lower than the computed violations. 59

5.1 Empirical evaluation of the constraint satisfaction likelihood and mean

computation time, based on 105 samples. 74

xix

6.1 The proposed characteristic function approach closely reflects the empiri-

cal result. While this example is simple, the proof of concept shows promise

for application to reinforcement learning. 91

7.1 Average verification times, approximation errors for different values of

Hilbert transform terms (h,M), and grid resolution (N). 108

xx

Chapter 1

Introduction

1.1 Motivation

The growing complexity of modern systems leads inevitably to increased uncertainty,

despite a concurrent, growing need for assurances of safe and effective operation. Con-

sider self-driving cars, autonomous satellite navigation, hypersonic vehicle guidance, UAV

swarms, and other scenarios, in which uncertainty in the environment is non-trivial. Un-

certainty can arise not only due to a lack of analytic characterization (such as in the

dynamics of hypersonic vehicles [8, 9]), but also due to poor sensing (i.e., navigation

in cislunar space [10]), unmodeled disturbances (pedestrian interaction with self-driving

cars), and human input, amongst many other sources. Irrespective of the source of the

uncertainty, there is a clear need for methodological approaches to accommodate uncer-

tainty in both analysis and controller design.

This thesis posits that it is imperative that we design algorithms to control stochastic

systems but not limit ourselves in the information we can extract from the underlying

uncertainty. However, numerous challenges exist in both theory and computation for

learning, propagating, and ultimately, exploiting uncertainty in dynamical systems. For

1

example, consider a typical stochastic optimal control problem,

minimize
θ

E

[
N−1∑

k=0

c(xk,uk) + g(xN ,uN)

]
cost on state and input, , (1.1a)

subject to xk+1 = f(xk,uk,wk) system dynamics, (1.1b)

uk = gθ(xk), k ∈ {0, · · · , N − 1} controller, (1.1c)

P

(
N⋂

k=1

xk ∈ Xk

)
≥ 1−∆x state constraints, (1.1d)

P

(
N−1⋂

k=0

uk ∈ Uk
)
≥ 1−∆u input constraints, (1.1e)

where we must minimize some cost (1.1a), subject to the system dynamics (1.1b) and be

mindful of constraints on the state (1.1d) and input (1.1e) of the system. One can achieve

this minimization by modifying the parameters, θ, of the controller (1.1c). The controller

can be a function of the state, a camera input [11], or remain open-loop. The key takeaway

is the number of quantities that the uncertainty in (1.1b) spawns. For example, both

(1.1d) and (1.1e) require enforcement and evaluation of probabilistic quantities of state

and input respectively. That is, does the probability of the state and input constraint

being satisfied exceed some tolerance 1−∆x and 1−∆u respectively. The cost in (1.1a)

requires one to minimize the average of the cost. To be successful in solving (1.1), we

must efficiently compute and optimize over the quantities the uncertainty spawns. A

major challenge in reasoning about uncertainty lies in the choice of representation. We

seek a representation which has the following properties:

• Always exists

• Tractable propagation of uncertainty through linear operations where x ∈ Rn, A ∈

Rm×n, y, b ∈ Rm:

y = Ax+ b

2

• Tractable computation of expectations (where ψx is a probability density function):

E[x] =
∫
xψx(x)dx

• Tractable computation of probabilities (where 1X(x) is an indicator function):

P(x ∈ X) =

∫
1X(x)ψx(x)dx

• Limit use of quadrature to one-dimensional problems.

Take probability density functions and moment generating functions, for example. Both

of these representations are problematic, in that they do not satisfy all of the above

properties. Consider a probability density function, ψx.

– Don’t always exist.

– Linear transformations involve convolution integrals.

x = x1 + x2 ⇔ ψx(x) =

∫
ψx1(y)ψx2(x− y)dy

+ Expression for probabilities are one dimensional integrals if z ∈ R.

P(z ≤ z) =

∫ z

−∞
ψz(z)dz

Now consider a moment generating functionMx(s), which can be rewritten as E[exp(s⊺x)] =
∫
exp(s⊺x)ψx(x)ds:

– don’t always exist either

+ Linear transformations are product operations, in contrast to needing convolution

3

integrals.

y = Ax+ b⇔ φy(t) =Mx(A
⊺t) exp(s⊺b)

+ We can compute Expectations from its derivatives via automatic differentiation []:

E[x] =
dMx

ds

∣∣∣
s=0

In short, the two primary existing methods of describing uncertainty are fraught

with respect to the properties necessary for efficient computation and therefore efficient

control. In order to make headway on the problems we seek to solve, a new representation

is necessary. We focus in particular on the characteristic function, which provides clear

advantages for each of the four desired properties. The characteristic function is a Fourier

transform of a probability density function,

φx(t) = E[exp(it⊺x)] =
∫

exp(it⊺x)ψx(x)dt. (1.2)

The characteristic function of a probability density function meets all of the criteria we

have specified:

+ It always exists.

+ Linear transformations are also product operations, in contrast to needing convo-

lution integrals.

y = Ax+ b⇔ φy(t) = φx(A
⊺t) exp(jt⊺b),

4

+ We can compute Expectations from its derivatives via automatic differentiation []:

E[x] =
dφx

dt

∣∣∣
t=0
,

+ Expressions for probabilities are one dimensional integrals [12].

P(z ≤ z) =
1

2
+

1

2π

∫ ∞

0

ejtzφz(−t)− e−jtzφz(t)

jt
dt.

However, beyond stochastic optimal control, we have found that these properties of

characteristic functions make them amenable solutions to other related problems. Specif-

ically, we consider 1) neural net verification, and 2) reinforcement learning via cost dis-

tributions. In neural net verification, we can conceive of the input to a neural net as

a distribution, instead of a single sample. Neural network verification (Figure 1.1) is



x1

x2

x3




State
+

Noise

Control Input

Figure 1.1: A pictorial representation of the neural network verification problem where
we provide a noisy esimtate of the state into a neural network controller and we wish
to determine with what probability the control output from the neural network resides
within a set.

then focused on the question of whether the output distribution of the neural net will fall

within some desirable set, with at least a desired likelihood. The advantage of such an ap-

proach is that it is computationally efficient, and does not rely upon brute-force methods,

such as sampling, which make trade-offs between fidelity of the result and computational

5

complexity. These same properties also make evaluation of cost functions in reinforce-

ment learning more responsive to the underlying uncertainty than existing approaches,

particularly when the cost function represents value-at-risk or conditional-value-at-risk

(metrics which involve more than the mean). In contrast to these approaches, the frame-

work posed in this thesis relies on the representation of uncertainty through characteristic

functions. Here, we show that we can compute and optimize the expressions necessary

for difficult problems in stochastic optimal control, Further, we demonstrate how these

same methods can be applied to timely and relevant problems in autonomous systems,

including neural net verification and distributional reinforcement learning.

1.2 Summary of research contributions

This dissertation has three parts. The first part focuses on model-based stochastic opti-

mal control, with a known system model, state, and control constraints.

• Chapter 3 presents a sampling-free approach to obtaining open-loop control so-

lutions for constrained, stochastic optimal control problems for linear dynamical

systems subject to log-concave, non-Gaussian noise.

• Chapter 4 presents a method for distributional steering of linear dynamical systems

subject to general additive noise in addition to state and input constraints.

The second part focuses on data-driven, stochastic control in which the disturbance or

the system even the entire dynamical is unknown.

• Chapter 5 presents a method for stochastic optimal control for linear dynamical

systems with state and input constraints when the disturbance is unknown, with

sample theoretic guarantees.

• Chapter 6 derives various performance metrics for reinforcement learning, utilizing

a distributional representation of the cost via characteristic functions. This chapter

6

derives not only the mean but also Value-at-Risk, Conditional-Value-at-Risk, and

expectiles.

The third part focuses on probabilistic verification of neural networks through analytical

and sample-based approaches.

• Chapter 7 presents results on analytically propagating distributions through a

ReLU activation function and applies the results to neural network verification

of feedforward neural network with ReLU activation functions.

• Chapter 8 overviews the curse of dimensionality with analytic approaches and pro-

poses a sample-based approach for verifying neural networks, determining the num-

ber of samples necessary to validate the probability of satisfying a specification.

1.3 Summary of publications

The content of Chapter 3, which I have contributed as a first author, appears in:

[13] V. Sivaramakrishnan, A. P. Vinod, and M. M. K. Oishi, “Convexified

open-loop stochastic optimal control for linear systems with log-concave

disturbances,” IEEE Transactions on Automatic Control, vol. 69, no. 2,

pp. 1249–1256, 2024

The content of Chapter 4, which I have contributed as a first author, appears in:

[14] V. Sivaramakrishnan, J. Pilipovsky, M. Oishi, and P. Tsiotras, “Distri-

bution steering for discrete-time linear systems with general disturbances

using characteristic functions,” in the Proceedings of the 2022 American

Control Conference (ACC), pp. 4183–4190, 2022

7

The content of Chapter 5, which I have contributed as a first author, appears in:

[15] V. Sivaramakrishnan and M. M. K. Oishi, “Fast, convexified stochastic

optimal open-loop control for linear systems using empirical characteristic

functions,” IEEE Control Systems Letters, vol. 4, no. 4, pp. 1048–1053,

2020

The content of Chapter 7, for which I was primarily responsible for the theoretical con-

tributions, appears in:

[16] J. Pilipovsky, V. Sivaramakrishnan, M. Oishi, and P. Tsiotras, “Prob-

abilistic verification of relu neural networks via characteristic functions,”

in Proceedings of The 5th Annual Learning for Dynamics and Control Con-

ference, vol. 211 of the Proceedings of Machine Learning Research, pp. 966–

979, PMLR, 15–16 Jun 2023

Other papers that I have co-authored during my graduate studies, but which are not

covered in this dissertation, include:

[17] V. Sivaramakrishnan, R. A. Devonport, M. Arcak, and M. M. K.

Oishi, “Forward reachability for discrete-time nonlinear stochastic systems

via mixed-monotonicity and stochastic order,” 2024. (To appear the Pro-

ceedings of the 2024 Conference on Decision and Control (CDC))

[18] K. Sivaramakrishnan, V. Sivaramakrishnan, R. A. Devonport, and

M. M. K. Oishi, “Stochastic reachability of uncontrolled systems via prob-

ability measures: Approximation via deep neural networks,” 2024. (To

appear the Proceedings of the 2024 Conference on Decision and Control

(CDC))

8

[19] I. Pacula, A. Vinod, V. Sivaramakrishnan, C. Petersen, and M. Oishi,

“Stochastic multi-satellite maneuvering with constraints in an elliptical

orbit,” in 2021 American Control Conference (ACC), pp. 4261–4268, 2021

[20] A. J. Thorpe, V. Sivaramakrishnan, and M. M. K. Oishi, “Approx-

imate stochastic reachability for high dimensional systems,” in the Pro-

ceedings of the 2021 American Control Conference (ACC), pp. 1287–1293,

2021

[21] V. Sivaramakrishnan, O. Thapliyal, A. Vinod, M. Oishi, and I. Hwang,

“Predicting mode confusion through mixed integer linear programming,” in

the Proceedings of the 2019 IEEE 58th Conference on Decision and Control

(CDC), pp. 2442–2448, 2019

[22] A. P. Vinod, V. Sivaramakrishnan, and M. M. Oishi, “Piecewise-affine

approximation-based stochastic optimal control with gaussian joint chance

constraints,” in the Proceedings of the 2019 American Control Conference

(ACC), pp. 2942–2949, 2019

[23] A. P. Vinod, V. Sivaramakrishnan, and M. M. K. Oishi, “Sampling-free

enforcement of non-gaussian chance constraints via fourier transforms,”

Proceedings of the Fifth International Workshop on Symbolic-Numeric

methods for Reasoning about CPS and IoT, p. 9–11, Association for Com-

puting Machinery, 2019

[24] A. Abate, H. Blom, N. Cauchi, S. Haesaert, A. Hartmanns, K. Lesser,

M. Oishi, V. Sivaramakrishnan, S. Soudjani, C.-I. Vasile, and A. P. Vinod,

“Arch-comp18 category report: Stochastic modelling,” in ARCH18. 5th

International Workshop on Applied Verification of Continuous and Hybrid

Systems, vol. 54 of EPiC Series in Computing, pp. 71–103, EasyChair, 2018

9

Chapter 2

Preliminaries

This chapter provides a broad overview of notation, probability theory, discrete-time

stochastic systems, and optimization. rIt also covers elements common across chapters,

such as characteristic functions from probability theory and convex, difference-of-convex,

and non-convex optimization from optimization theory. Each subsequent chapter includes

additional preliminaries as needed for further exposition.

2.1 Notation

Real-valued vectors are lowercase u ∈ Rm, matrices with uppercase V ∈ Rn×m, and

random vectors are in bold case w ∈ Rp. The n-dimension identity matrix is denoted

by In, and the m× n dimensional zero matrix is denoted by 0m,n. We define a diagonal

matrix as V = diag(u) and a block diagonal matrix as V = diag(V1, · · · , Vi · · · , Vn).

The imaginary unit is denoted by i; given a complex vector φ ∈ Cp, its conjugate

is denoted by φ. I denote intervals with N[a,b] where a, b ∈ N, a < b. The vector

ei,d = [0 · · · 1 · · · 0]⊺ ∈ Rd is a basis vector for Rd and isolates the ith component of a

vector ψ ∈ Rd by ψi = e⊺i,dψ.

10

2.2 Probability

Let (Ω,M(Ω), P) be a probability tuple. The set Ω is the set of all possible out-

comes, M(Ω) is the set of events, i.e. σ-algebra, where each event is a set of out-

comes, and a function P : M(Ω) → [0, 1] which assigns a probability to each set in

the σ-algebra. A measurable space is a tuple (X ,M(X)) consisting of a set and the

σ-algebra of that set. A random variable is a measurable function, s : Ω → X where

the probability that s will take on a value in S we represent by a probability measure,

Ps(S) = P ({ω ∈ Ω : s(ω) ∈ S}) for S ∈ M(X). We denote a conditional probability

measure as a mapping P : M(X) × X × U . The probability measure is P (S|s, a) for

S ∈ M(X) conditioned on s ∈ X and u ∈ U , where X and U are sets. An expectation

is the Lebesgue integral over the probability measure, i.e. E[g(s)] =
∫
X g(s)dPs(s). For

continuous random variables, w, with probability measure P ({w ∈ W}) =
∫
W ψw(z) dz

for X ∈ B(Ω), and probability density function (pdf) ψw that satisfies ψw ≥ 0 almost

everywhere (a.e.) and
∫
R ψw(z) dz = 1. For a random variable, e.g. y = a⊺w, a ∈ Rp, we

denote P{a⊺w ≤ α} by the cumulative distribution function (cdf) Φa⊺w : R → [0, 1] via

P{a⊺w ≤ α} = Φa⊺w(α), which follows by definition [25, Sec. 14]. We write w ∼ ψw or

w ∼ Pw to denote the fact that w is distributed according to the pdf, ψw, or probability

measure, w ∼ Pw, respectively. We define the Lebesgue space of measurable pdfs with

bounded d-norm by Ld(Rn) where 1 ≤ d < ∞. The Lebesgue norm of a probability

density function ψw is ∥ψw∥d =
(∫

Rp |ψw(z)|d dz
)1/d

. The space of all (continuous) prob-

ability density functions forms a subset of L1(Rp) since ψw ≥ 0 a.e. and
∫
Rp ψw dz = 1.

2.2.1 Characteristic Functions

One way to represent the underlying system stochasticity is via characteristic functions.

Definition 2.1. For a random vector w ∈ W such that w ∼ Pw or w ∼ ψw, the

11

characteristic function is defined by the Fourier transform F{ψw}(t) of its pdf,

φw(t) = Ew[exp(it
⊺w)] =

∫

W
eit

⊺zdPw(z), (2.1a)

=

∫

W
eit

⊺zψw(z) dz, (2.1b)

where t, z ∈ Rp.

The characteristic function has the following properties [26,27]:

• It is uniformly continuous.

• φw(0) = 1.

• It is bounded, i.e., |φw(t)| ≤ 1, for all t ∈ Rp.

• It is Hermitian, i.e., φw(−t) = φw(t).

Assumption 2.1. The characteristic function φw is absolutely integrable, that is, it is

an element of L1(Rp).

To recover the pdf from its characteristic function of a continuous random variable,

ψw, we use the following result.

Theorem 2.1 (Inversion Theorem for pdfs, [27, Theorem 1.2.6]). If the characteristic

function φw ∈ L1(Rp), then the probability density function can be recovered via the

inverse Fourier transform F−1{φw}(z),

ψw(z) =

(
1

2π

)p ∫

Rp

e−it⊺zφw(t) dt. (2.2)

Below, we summarize useful properties of characteristic functions. Let w1,w2,w, z

be random vectors of appropriate dimensions.

1. If z = w1 +w2, then ψz(z) =
(
ψw1 ∗ ψw2

)
(z) (i.e., convolution of their pdfs), and

φz(t) = φw1(t)φw2(t) [28, Sec. 21.11].

12

2. If z = Fw + g for F ∈ Rn×p, g ∈ Rn, then φz(t) = exp(it⊺g)φw(F
⊺t) [28, Sec.

22.6].

3. Given w1 and w2, then z = [w⊺
1,w

⊺
2]

⊺ has the pdf ψz(z) = ψw1(e
⊺
1z1)ψw2(e

⊺
2z2), z =

[z⊺1 , z
⊺
2]

⊺, and characteristic function φz(t) = φw1(e
⊺
1t)φw2(e

⊺
2t), t = [t⊺1, t

⊺
2]

⊺, where

e1 and e2 isolate the first and second component of the vector, respectively [28, Sec.

22.4].

4. If z = [z1 · · · zi · · · zp]⊺ ∈ Rp is a vector of scalar random variables zi with pdfs

ψzi , then the pdf of a⊺z, a ∈ Rp, is ψa⊺z(z) =
∏p

i=1 ψzi(e
⊺
i,paz), and the characteristic

function is φa⊺z(t) = φz(tz) =
∏p

i=1φzi(ti), for tz = at, and ti = e⊺i,ptz [28, Sec.

22.4].

Remark 2.1. The characteristic function of a distribution always exists, even when the

probability density function or moment-generating function do not exist.

We can also recover the cdf via the characteristic function using the following theorem.

Theorem 2.2 (Gil-Pelaez Inversion Theorem, [12,27]). Given a random variable y with

characteristic function φy and pdf ψy satisfying the property that
∫
R log(1+|x|)ψx(z)dz <

∞, then the cumulative distribution function of y, Φy, at each point y that is continuous,

can be evaluated by

Φy(y) =
1

2
− 1

π

∫ ∞

0

1

t
Im [exp (−ity)φy(t)] dt, (2.3)

where y, t ∈ R.

The inversion in (2.3) is computable using quadrature techniques which have well

defined error bounds [29].

Remark 2.2. The requirement
∫
R log(1 + |x|)ψx(z)dz <∞ is a mild condition which is

satisfied by many distributions [30].

13

Definition 2.2. The dth moment of y ∈ R can be written as

E[yd] = (−i)d∂
dφy(t)

∂td

∣∣∣
t=0
. (2.4)

which is extendable to random vectors and matrices but for sake of exposition, it is

not included here.

2.3 Dynamical Systems

Here, a system is something we wish to observe and interact with. We call x ∈ X a

state of a system where X is the set of states. We interact with a system via control

inputs u ∈ U where U is the set of control inputs. The measurable spaces (X ,M(X))

and (U ,M(U)) are the state space and input space respectively. Typically, the state or

input space is called discrete if the set of values the space takes is finite. On the other

hand, it is called continuous, if it takes values in a continuum. We codify continuous or

discrete state and input spaces in the following definitions.

Definition 2.3 (Continuous State and Input Spaces). We define a state and input space

as continuous when the sets X ⊆ Rn and U ⊆ Rm are continuous subsets of real numbers.

The σ-algebras in state and input spaces are respectively M(X) = B(X) and M(U) =

B(U), where B(·) is the Borel σ-algebras.

Definition 2.4 (Discrete State and Input Spaces). We define a state and action space

as discrete when the sets X and U are countably finite, i.e the cardinality of X and U

are finite. The σ-algebras in state and action spaces are respectively M(X) = 2X and

M(U) = 2U , where 2(·) is a power set.

We index observations of the state of a system and the actions one imposes by a

timestep k ∈ N, i.e. xk ∈ X and uk ∈ U respectively. Practically, given current state,

14

xk, and action, uk, we observe the state at the next time step, xk+1. This subsequent

observation, xk+1, is given through a stochastic system function [31, Sec. 1.4].

Definition 2.5 (Stochastic System Function). We define the stochastic system,

xk+1 = f(xk, uk,w(xk, uk)) = f(xk, uk,w) (2.5)

from the current state, action, and disturbance, to the next state.

The random disturbance variable w is a measurable mapping, conditioned on current

state and action, w : Ω×X ×U → W . The probability that w takes on a value in a set

W ∈M(W), given current state and action is,

Pw(W |xt, ut) = P ({ω ∈ Ω|w(ω|xt, ut) ∈ W} |xt, ut) . (2.6)

As shorthand, we treat w(xk, uk) = w(ω|xk, uk) as the same function. In addition,

the measurable space (W ,M(W)) we call the disturbance space. We now define the

probability that the next state, xk+1 takes on a value in a set X ∈M(X), given current

state, xk, action, uk, and disturbance, w.

Definition 2.6 (State Transition Kernel). The state transition kernel is a conditional

probability function, Pxk+1
:M(X)× X × U → [0, 1]. Specifically, we represent it by the

disturbance w,

Pxk+1
(X|xt, ut) = Pw({wt(xk, uk) ∈ W |f(xk, uk,w(xk, uk)) ∈ S}|xk, uk), (2.7)

X ∈M(X), W ∈M(W). This leads us to the definition of a discrete time stochastic

dynamical system.

Definition 2.7 (DTSS). A discrete time stochastic system is a tuple D = (X ,U ,Pxk+1
).

15

Note that there are two properties of a DTSS we need to be careful about and we

can extend to, but do not bother since they can be reduced down to a DTSS. The

first property, which we implicitly presume, is that the system is Markov. The Markov

property, Markov for short, presumes that describing the next state only depends on the

current state and action, i.e.

Pxk+1
(X|xk, uk) = Pxk+1

(X|xk, uk, xk−1, uk−1, . . . , x1, u1, x0, u0). (2.8)

The other property is that the system is stationary. The stationarity property of a system

largely depends on the treatment of the underlying state, action, and disturbance sets.

If we index the sets with time, i.e. Xt, Ut, and Wt, then there is a non-stationary analog

to Definition 2.7. Nonetheless, the stochastic optimal control literature typically recasts

a non-stationary problem into one that is stationary via state augmentation [32, Ch. 10].

These properties are typically realized from observations of the system’s trajectories, T .

Definition 2.8 (System Trajectory). A system trajectory is a set of tuples T =

{(x0, u0, x1), (x1, u1, x2), . . . , (xk, uk, xt+1), . . . , (xN−1, uN−1, xN)} where N ∈ N is a

time horizon, xk, xk+1 ∈ X , and uk ∈ U .

2.3.1 Linear Dynamical System

For chapters 3, 4, and 5 we consider the system as a discrete, linear time-varying system,

xk+1 = Akxk +Bkuk +Dkwk, k ∈ N[0,N−1], (2.9)

with state xk ∈ Xk ⊆ Rn, control input uk ∈ Uk ⊆ Rm, disturbance wk ∼ ψw,k, and

matrices Ak, Bk, Dk of appropriate dimensions. We assume that the system starts at

x0 ∼ ψx0 . Following the formulations in [33, 34], we can concatenate the dynamics (2.9)

16

as

X = Ax0 + BU+DW, (2.10)

whereX = [x⊺
0, . . . ,x

⊺
N]

⊺ ∈ R(N+1)n, U = [u⊺
0, . . . ,u

⊺
N−1]

⊺ ∈ RmN , W = [w⊺
0, . . . ,w

⊺
N−1]

⊺ ∈

RpN . The input can be stochastic, uk, or deterministic, uk. The concatenated distur-

bance follows the distribution W ∼ ψW =
∏N−1

k=0 ψwk
. The matrices A ∈ Rn(N+1)×n, B ∈

R(N+1)n×Nm, and D ∈ R(N+1)n×Np are structured as follows,

A =




A0
0

A1
0

A2
0

...

AN0




B =




0 0 · · · 0

A1
1B) 0 · · · 0

A2
1B0 A2

2B1 · · · 0

...
...

. . .
...

AN1 B0 AN2 B1 · · · ANT BN−1




D =




0 0 · · · 0

A1
1 0 · · · 0

A2
1 A2

2 · · · 0

...
...

. . .
...

AN1 AN2 · · · ATT




, (2.11)

(2.12)

Akτ = Ak−1Ak−2 · · ·Aτ , (2.13)

where A1
1 = I.

2.4 Control Policies

A control policy is a mapping that takes in information such as the state and outputs

an input which is fed into the system. It is what modifies the behavior of a system to,

for example, minimize fuel usage and avoid obstacles. We presume that a control policy

function is a mapping from current state to current input. There are two types of control

policy functions we consider: deterministic and stochastic.

17

Definition 2.9 (Deterministic Control Policy). A deterministic policy function is a map-

ping from the set of states to a set of actions π : X → U , i.e. a function uk = π(xk).

Definition 2.10 (Stochastic Control Policy). A stochastic policy function is a measurable

mapping π : X × V → U , i.e. a function

uk = π(xk,v(xk)) = π(xk,v), (2.14)

where v is a disturbance variable.

The random disturbance variable, v, takes similar form to w. It is a simpler measur-

able mapping than w, in that v : Ω× X → V , i.e. it is only conditioned on the current

state. The probability that v takes on a value in a set V ∈M(V), given current state is,

Pv(V |xk) = P ({ω ∈ Ω|v(ω|xk) ∈ V } |xk) . (2.15)

As shorthand, we treat v(xk) = v(ω|xk) as the same function. In addition, the measur-

able space (V ,M(V)) we also call a disturbance space. Similar to the stochastic system

function in Definition 2.5, we now define the probability that the action, at takes on an

action in U ∈M(U) given current state, xk, and disturbance, v.

Definition 2.11 (Control Transition Kernel). The action transition kernel is a condi-

tional probability function, Pπ :M(U) × X → [0, 1]. Specifically, we represent it by the

disturbance v,

Pπ(U |xk) = Pv({vk(xk) ∈ V |π(xk,v(xk)) ∈ U}|xk), U ∈M(U), V ∈M(V). (2.16)

Note that control transition kernel is typically called a stochastic policy as shorthand

but that terminology does not clearly define what it represents. There are three additional

properties of policies. First, a policy function and an action transition kernel, need not

18

follow the standard information pattern of depending on the current state. For example,

it can be depend on belief of the state, i.e. the system is partially observable [32, Ch.9]

which appears in Chapter 8 where we validate a pixels to control neural network in

Section 8.6.2. Second, similar to stochastic systems, our policy here is presumed Markov,

Pπ(X|xk) = Pπ(X|xk, uk, xk−1, uk−1, · · · , x1, u1, x0, u0). (2.17)

Third, the policy function we presume is implicitly stationary. Non-stationarity is depen-

dent on the definition of the policy function and the set of actions where the set of action

could be time or state dependent, e.g. Uk(xk). Both non-Markov and non-stationary

polices have careful treatment in the stochastic optimal control literature [32]. We can

determine these properties of a policy function or action transition kernel by observing

a sequence of actions over a time horizon.

Definition 2.12 (Policy). A policy is a set of actions inputs by time, k ∈ N, over a

horizon, N ∈ N, i.e. Π = {u0, u1, . . . , uk, . . . , uN−1} where actions uk come from a policy

function π, given current state, xk.

A control policy also allows us to define a closed-loop stochastic system function and

a closed loop state transition kernel, from which we can define a closed-loop stochastic

system trajectory.

Definition 2.13 (Closed Loop System Function). The next state, given current state

and a stochastic policy function is,

xk+1 = f(xk, π(xk,v(xk)),w(xk, π(xk,v(xk)))) = f(xk, π(xk,v),w)). (2.18)

Definition 2.14 (Closed Loop State Transition Kernel). The closed loop state transition

19

kernel is a conditional probability function

Pxk+1,π(X|xk) = E[Pxk+1
(X|xk,uk)|xk] =

∫

U
Pxk+1

(X|xk, uk)dPπ(uk|xk). (2.19)

Definition 2.15 (Closed Loop System Trajectory). A closed loop system trajectory is a

set of tuples T as in Definition 2.8 with actions from a policy as in Definition 2.12.

2.4.1 Open-Loop Control for Linear Systems

Chapters 3 and 5 utilize an open-loop control policy. An open-loop controller is a deter-

ministic controller does not observe the state and instead produces a deterministic set of

value through the time horizon, i.e. π = {u0, u1, . . . , uk, . . . , uN−2, uN−1} where uk ∈ U .

This bears resemblance to the deterministic controller in Definition 2.9 but without the

state as an input argument.

2.4.2 Affine-Feedback Control for Linear Systems

Chapter 4 utilizes an affine, linear feedback controller of the following form,

Definition 2.16 (Feedback law). The controller in (2.10) has an affine state feedback

structure, given by

uk =
k∑

i=0

Lk,ixi + gk. (2.20)

Concatenating these vectors yields u = Lx + g, where L ∈ RNm×(N+1)n is a lower block

triangular matrix and g = [g⊺0 , . . . , g
⊺
N−1]

⊺ ∈ RNm.

Note that this feedback law uses the full state history to determine the control input

at every time step k, as opposed to just using the current state xk.

Proposition 2.1 (Affine disturbance feedback [33]). The feedback law in (2.20) results

20

in the state and input sequences

x = (I − BL)−1(Ax0 +Dw + Bg), (2.21a)

u = L(I − BL)−1(Ax0 +Dw + Bg) + g. (2.21b)

Proof. Plugging (2.20) into (2.10) yields (2.21a). Similarly, plugging (2.21a) into (2.20)

yields (2.21b).

Corollary 2.1. Given the affine disturbance feedback terms,

K = L(I − BL)−1, (2.22a)

v = L(I − BL)−1Bg + g, (2.22b)

then the state and input sequences in (2.21) can be equivalently written as

X = (I + BK)(Ax0 +DW) + Bv, (2.23a)

U = K(Ax0 +DW) + v, (2.23b)

Proof. We substitute (2.22a) and (2.22b) into (2.21b), and substitute u into (2.10), to

obtain

X = Ax0 + B
(
L(I − BL)−1(Ax0 +DW + Bg) + g

)
+DW, (2.24a)

U = (I + BL(I − BL)−1)(Ax0 +DW) + L(I − BL)−1Bg + g. (2.24b)

Simplifying (2.24a) and (2.24b) yields the desired result (2.23a) and (2.23b).

An affine, linear controller is a stochastic controller that observes the state and pro-

vides a random input, uk. This bears resemblance to the stochastic policy in Defini-

tion 2.10, where the stochastic input, uk, at the current timestep arises not from an

arbitrary process v but through the state xk at the current timestep.

21

2.5 Optimization

Numerical optimization is the tool by which we obtain control polices to minimize ob-

jectives such as fuel usage or having a dynamical system track a desired trajectory while

satisfying constraints. A common objective we minimize, which appears throughout this

dissertation, is the expectation of quadratic functions over state and input,

J(U) = E [(X−Xd)
⊺Q(X−Xd) +U⊺RU] , (2.25)

with Q = diag (Q0, . . . , QN−1), R = diag (R0, . . . , RN−1), and Xd = [xd,0 · · · xd,N]⊺ ∈

R(N+1)n. Since Qk ⪰ 0 and Rk ≻ 0, ∀k ∈ N[0,N−1], it follows that Q ⪰ 0 and R ≻ 0.

Common constraints include probabilistic constraints are imposed on the state and input,

namely,

PX

({
X ∈ RnN :

N⋂

k=1

EkX ∈ Xk
})
≥ 1−∆X , (2.26a)

PU

({
U ∈ Rm(N−1) :

N−1⋂

k=0

FkU ∈ Uk
})
≥ 1−∆U , (2.26b)

where,

Xk = ∩NX
j=1{x ∈ Rn : α⊺

j,kx ≤ βj,k} (2.27a)

Uk = ∩NU
j=1{u : a⊺j,ku ≤ bj,k} (2.27b)

are polytopic sets defined as intersecting hyperplanes, and whereEk = [0n×nk, In, 0n(N−k)×n],

and Fk = [0m×mk, Im, 0m(N−k−1)×m] isolate the k
th element of the state and input, respec-

tively, and ∆X ,∆U ∈ (0, 1) are constraint violation thresholds.

22

2.5.1 Convex Optimization

Convex optimization problems are problems of the following form,

minimize
x∈Rn

f(x), (2.28a)

subject to g(x) ≤ 0, (2.28b)

Sx = s, (2.28c)

where f, g are convex and S ∈ Rl×n, s ∈ Rl denote linear equality constraints. Con-

vex optimization arises in stochastic optimal control in various contexts and is central

to linear quadratic Gaussian stochastic optimal control problems with and without con-

straints [35].

2.5.2 Non-Convex and Difference of Convex Optimization

Non-convex optimization problems are problems of the following form [35],

minimize
x∈Rn

h(x), (2.29a)

subject to p(x) ≤ 0, (2.29b)

(2.29c)

where h, p are non-convex and S ∈ Rl×n, s ∈ Rl denote linear equality constraints. Non-

convex optimization arises in equally in stride to the convex formulation of stochastic

optimal control problems in areas such as non-linear model predictive control.

23

Difference of Convex Optimization

Difference of convex programs are a subset of non-convex optimization problems of the

form,

minimize
x∈Rn

f(x)− g(x)

subject to fi(x)− gi(x) ≤ 0, ∀i ∈ N[1,M]

(2.30)

where f, g, fi, and gi are convex for i ∈ N[1,l], l ∈ N. However, it differs from standard

non-convex optimization problem as it can immediately utilize convex optimization tools

and solver off-the-shelf. Difference of convex programs can directly optimize non-convex

functions h, p as long as they are twice differentiable. The penalty based convex-concave

procedure [36] solves (2.30) via sequential convex optimization, and is agnostic to the

feasibility of the initial condition [36,37]. The solution is also guaranteed to converge to

a fixed point [38].

24

Part I

Model-Based, Stochastic Optimal

Control

25

Chapter 3

Open-Loop Control of Linear

Systems With Log-Concave

Uncertainty

3.1 Introduction

Stochastic optimal control requires enforcement of chance constraints, which permit vi-

olation of the state constraints with a probability below a specified threshold [39, 40].

However, in the presence of non-Gaussian disturbances, such constraints are hard to im-

plement in a computationally tractable manner analytically. Existing approaches to ac-

commodate non-Gaussian disturbances involve sampling or moment-based methods [39].

Sampling approaches often result in trade-offs between accuracy, feasibility, and compu-

tational complexity [1, 3], even with sample reduction techniques [2, 41]. Moment-based

approaches [4,5,42] can induce conservatism that significantly reduces the solution space,

as well as non-convexities associated with simultaneous risk allocation and controller syn-

thesis [42–44].

This chapter proposes a method for stochastic optimal control of linear systems

26

with log-concave disturbances, that results in a scalable solution, avoiding both moment

bounds and sampling. Our approach uses risk allocation, which is employed in moment

based methods. Risk allocation uses Boole’s inequality to decompose joint chance con-

straints into simpler, individual chance constraints [42–44]. The creation of new decision

variables needed to allocate risk across individual chance constraints yields a non-convex

problem. Such problems are typically solved via iterative, coordinate descent meth-

ods [42,44], yielding suboptimal solutions with additional conservatism.

Here, this chapter proposes risk allocation that results in a convex formulation, and

enables simultaneous (as opposed to iterative) risk allocation and controller synthesis.

The key to this is 1) the use of characteristic functions (the Fourier transform of the

probability density function) to enforce chance constraints, and 2) a reformulation of

risk allocation as a difference-of-convex program. The former enables straightforward

calculation of chance constraints, via simple one-dimensional integrals. The latter enables

local solutions via convex optimization with clear convergence guarantees [36], when the

disturbance is log-concave. Lastly, since convex constraints that arise may be non-conic,

we employ piecewise affine approximations, so that standard conic solvers may be used

to solve the stochastic optimal control problem.

3.2 Related Work

The primary limitations of our approach are that a) the difference-of-convex reformula-

tion is tractable only for controllers that are limited to open-loop policies, which are more

conservative than affine feedback policies, particularly over long time horizons [45, Ch.

2, Sec. 4], and b) open-loop controllers are notoriously resistant to stability guaran-

tees [45, 46]. Although, reference tracking can prove difficult with open-loop control in

the presence of uncertainty, it can be facilitated by adding an extra term in the cost

function [47,48] or employing a reference governor [49]. We addess this limitation by pre-

27

suming systems that are Schur stable, by using an linear quadratic regulator (LQR) based

pre-stabilizing controller that can satisfy input constraints, similarly to [50]. Other ap-

proaches to ensure stochastic stability involve augmenting the state vector [51], although

extension to non-Gaussian disturbances is unclear [46,52].

Further, open-loop control has advantages over feedback-based approaches: 1) it ad-

mits enforcement of hard input constraints without approximations or additional con-

servatism [50, 53, 54], 2) it can be used in problems where sensory feedback may be un-

available, such as hypersonic vehicles [8, 55], and 3) it is computationally less expensive

than constrained, feedback-based control. Thus, open-loop control synthesis is common-

place in stochastic model predictive control [39] for many of these reasons. In addition,

while alternative approaches such as robust control or saturated affine disturbance feed-

back may yield tractable, convex methodologies for affine controller synthesis, they often

require artificially bounding disturbances, or ignoring available information about the

stochasticity [42, 50, 53, 56–58]. These approaches are particularly ill-suited to systems

with long-tailed or heavy distributions which would truncate or saturate the true nature

of the uncertainty.

3.3 Main Contribution and Organization

The main contribution of this chapter is a convex solution for stochastic, open-loop opti-

mal control of linear dynamical systems with log-concave disturbances, that can be solved

via conic solvers. The approach is based on preliminary work I contributed to [59], in

which we propose a mixed-integer program to solve constrained, stochastic, open-loop

optimal control of linear Gaussian systems. This chapter extends the approach in [59]

to disturbances with log-concave probability distribution functions, by employing char-

acteristic functions to evaluate chance constraints. The log-concavity property is critical

for efficient computation, because it assures convexity of the chance constraints. Further,

28

we show that we can construct a difference-of-convex reformulation of the risk allocation

constraint, which, in combination with piecewise approximation, results in a conic pro-

gram. This approach is superior to [6, 59], as it does not incur additional conservatism

in the risk allocation caused by convex restriction.

The organization of the paper is as follows: We present the problem formulation in

Section 3.4. Section 3.5 describes the reformulation of the stochastic optimal control

problem using risk allocation, piecewise affine approximation, and difference-of-convex

programming. We demonstrate our approach on two motion planning examples, and

compare performance to state-of-the-art moment based and sampling approaches in Sec-

tion 3.6, and summarize our contribution in Section 3.7.

3.4 Problem statement

A function f : R≥0 → R is log-concave, if log(f) is concave [60, Sec. 3.5.1.]. This chapter

follows the convention that log(0) ≜ −∞.

Assumption 3.1. ψx0 and ψW are log-concave [61, Sec. 2.3].

Log-concave probability densities include Gaussian and exponential disturbances as

well as uniform disturbances over convex sets [62]. Since log-concavity is preserved under

products, log-concave ψwk
yields log-concave ψW . The affine transformation of random

vectors from log-concave distributions is log-concave [61, Lemma 2.1]. Due to the linearity

of (2.10), the mean and the covariance vector of X admit closed-form expressions,

µX,U = Aµx0 + BU +DµW (3.1a)

ΣX,U = AΣx0A⊺ +DΣWD⊺. (3.1b)

29

We are interested in solving the following stochastic optimal control problem,

minimize
U

E [(X−Xd)
⊺Q(X−Xd)] + U⊺RU (3.2a)

subject to (3.1), (2.26a)

N−1⋂

k=0

FkU ∈ Uk, (3.2b)

with positive semi-definite matrices as in (2.25), and polytopic state and input constraints

as in (2.27). The key difference between this problem and those in [43, 44, 59, 63] is that

we consider non-Gaussian, log-concave disturbances ψW.

For a Gaussian disturbance, risk allocation is an established approach to assure (5c).

However, under Assumption 3.1, evaluation of the resulting chance constraints is not

straightforward. We propose an approach based in characteristic functions, that is sample

and moment-bound free, to solve (3.2). In contrast to moment based approaches, which

employ lower order moments, our approach uses all moments of the distribution, and

does not require sampling. We propose to solve two problems:

Problem 1. Extend risk allocation to log-concave disturbances without moment-based

bounds or sampling.

Problem 2. Solve (3.2) under Assumption 1 using a convex reformulation that employs

the risk allocation technique from Problem 1, in a manner amenable to conic solvers.

We address problem 1 by using characteristic functions to enforce chance constraints.

We address problem 2 through piecewise affine approximations of a reverse convex con-

straint.

30

3.5 Convexification of non-Gaussian joint chance con-

straints

3.5.1 Risk-allocation for log-concave disturbances

The standard risk-allocation approach [43, 44, 59, 63], transforms the joint chance con-

straints (2.26a) into a set of individual chance constraints via Boole’s inequality. That

is, given Z = Āx(0) + D̄W,

PX

({
X ∈ RnN :

N⋂

k=1

EkX ∈ Xk
})
≥ 1−∆X (3.3)

⇔PZ

({
Z ∈ RnN :

N⋂

k=1

NX⋂

j=1

α⊺
j,kEkZ ≤ βj,k − α⊺

j,kEkBU
})
≥ 1−∆X

⇔PZ

({
Z ∈ RnN :

L⋂

i=1

p⊺iZ ≤ qi − p⊺iBU
})
≥ 1−∆X

⇔PZ

({
Z ∈ RnN :

L⋃

i=1

p⊺iZ > qi − p⊺i B̄U
})
≤ ∆X

⇐
L∑

i=1

PZ

({
Z ∈ RnN : p⊺iZ > qi − p⊺iBU

})
≤ ∆X

⇔





PZ

({
Z ∈ RnN : p⊺iZ ≤ qi − p⊺iBU

})
≥ 1− δX,i, ∀i ∈ N[1,L],

∑L
i=1, δX,i ≤ ∆, δX,i ∈ [0,∆], ∀i ∈ N[1,L],

(3.4)

where αj,k = pi for j ∈ N[1,NX], k ∈ N[1,N], i ∈ N[1,NL] and L = NX(N − 1). The risk

of violating the constraint p⊺iX ≤ qi, i ∈ N[1,L] is represented by the decision variable

δX,i ∈ [0, 1). We have δX,i ≤ ∆ since
∑L

i=1 δX,i ≤ ∆ and δX,i are non-negative.

Let Φp⊺iZ
: R → [0, 1] denote the cumulative distribution function of the random

variable p⊺iZ,

Φp⊺iZ
(q′) = PZ

({
Z ∈ RnN : p⊺iZ ≤ q′

})
, (3.5)

31

for any scalar q′ ∈ R. We use Φp⊺iZ
to rewrite the constraints (3.4) as

Φp⊺iZ
(
qi − p⊺i B̄U

)
≥ 1− δX,i ∀i ∈ N[1,L], (3.6a)

∑L

i=1
δX,i ≤ ∆, δX,i ∈ [0,∆], ∀i ∈ N[1,L], (3.6b)

Any feasible controller (3.2b) with a feasible risk allocation δ ≜ [δ1 · · · δL] ∈ [0, 1]L that

satisfies (3.6) also satisfies (2.26a).

3.5.2 Enforcing chance constraints using characteristic func-

tions

The main insight we use in this chapter is that the evaluation of the cumulative distri-

bution function in (3.6a) can be evaluated by the Gil-Pilaez inversion noted in (2.3) and

characteristic functions in Section 2.2.1. In doing so, we can enforce the chance constraint

in (3.6a) using only characteristic functions of Z.

Lemma 3.1 ([64, Thm. 4.2.1]). If ψp⊺iZ is log-concave, then Φp⊺iZ
is log-concave over R.

Using (3.6) and Lemma 3.1, we approximate (3.2) as follows,

minimize
U,t

(µX,U −Xd)
⊺Q(µX,U −Xd) + U⊺RU + tr(QΣX,U) (3.7a)

subject to (3.2b),

∀i ∈ N[1,L], p
⊺
i B̄U + Φ−1

p⊺iZ
(ϵ) ≤ qi (3.7b)

∀i ∈ N[1,L], log
(
Φp⊺iZ

(qi − p⊺i B̄U)
)
≥ ti (3.7c)

∀i ∈ N[1,L], ti ∈ [log(1−∆), 0] (3.7d)

∀i ∈ N[1,L], log

(
L∑

i=1

exp(ti)

)
≥ log(L−∆). (3.7e)

32

Figure 3.1: Left: f(x, y) = x2 + y2 ≥ r2 within a unit box. Right: The epigraph of
f(x) = log(Φ(x)) of a log-concave cumulative distribution function. Both functions are
reverse convex, meaning that the complements of the inequalities, i.e. x2 + y2 ≤ r2 and
log(Φ(x)) ≥ t, respectively, are convex.

for a small scalar ϵ > 0 and a change of variables

ti ≜ log(1− δX,i), ∀i ∈ N[1,L] (3.8)

with t = [t1 · · · tL]⊺ ∈ RL. We now establish the relationship between (3.2) and (3.7), and

show that (3.7) is a non-convex program with a reverse convex constraint. Recall that

reverse-convex constraints are optimization constraints of the form f(·) ≥ 0, where f(·)

is a convex function, as shown in Figure 3.1.

Theorem 3.1. Under Assumption 3.1, the following statements hold for any ∆ ∈ [0, 1)

and any ϵ > 0:

1. Every feasible solution of (3.7) is feasible for (3.2), and

2. The cost and the constraints (3.7b)–(3.7c) are convex. However, (3.7e) is a reverse

convex constraint.

Proof. 1) We need to show that satisfaction of (3.7b)–(3.7e) satisfies (2.26a). Recall that

the collection of constraints (3.6) tighten (2.26a). Therefore, it is sufficient to show that

the satisfaction of constraints (3.7b)–(3.7e) guarantee satisfaction of (3.6).

The constraint (3.7b) ensures that the constraint (3.7c) is well-defined, since the

satisfaction of (3.7b) ensures that Φp⊺iZ
(qi − p⊺i B̄U) is positive. Under (3.8), satisfaction

of (3.7c) and (3.7d) implies satisfaction of (3.6a) and δX,i ∈ [0,∆], respectively. Finally,

33

Figure 3.2: Top: Log of the cumulative distribution function of an affine transformation
of a random vector a⊺wt, with wt = [w1 w2 w3]

⊺ ∈ R3 and scale parameters λw =
[0.5 0.25 0.1667]⊺. Bottom Left: A piecewise affine underapproximation (blue) of the log
of the cumulative distribution function (yellow). Bottom Right: The difference f(x) −
ℓf (x) as in (17), with η = 0.1.

we show that (3.7e) and (3.6b) are equivalent via simple algebraic manipulations,

L∑

i=1

δX,i ≤ ∆⇔ L−
L∑

i=1

(1− δX,i) ≤ ∆ (3.9a)

⇔ log

(
L∑

i=1

exp(ti)

)
≥ log (L−∆) (3.9b)

In other words, every feasible solution (U, t) of (3.7) maps to a feasible solution to (3.6)

with U ∈ UN , and thereby is feasible for (3.2).

2) The cost (3.7a) is a convex quadratic function of U . By construction, the con-

straints (3.7b) and (3.7d) are linear constraints in U and t. The convexity of (3.7c) fol-

lows from Lemma 3.1 and the definition of log-concavity. Recall that log
(∑L

i=1 exp(ti)
)

is a convex function in t [60, Sec. 3.1.5], hence (3.7e) is a reverse-convex constraint.

3.5.3 Conic reformulation of (3.7c) via piecewise affine approx-

imation

We now focus on enforcing the convex constraint (3.7c). Although convex, the constraint

(3.7c) is not conic, which prevents the use of standard conic solvers. We present tight

34

conic reformulation of (3.7c) via piecewise affine approximations.

Given a concave function f : D → R for bounded intervals D,R ⊂ R, we define its

piecewise affine underapproximation as ℓf : R → R for some mj, cj ∈ R for j ∈ N[1,Nf]

and Nf ∈ N distinct affine elements,

ℓf (x) ≜ min
j∈N[1,Nf]

(mjx+ cj). (3.10)

For a user specified approximation error η > 0, we can find a ℓf for a concave f such

that

ℓf (x) ≤ f(x) ≤ ℓf (x) + η, (3.11)

with the sandwich algorithm [65]. The sandwich algorithm has convergence guarantees

that can be balanced between the user-defined error and the number of affine pieces [6,

59,65].

In (3.7), we use the piecewise affine underapproximation of the concave functions

fi = log
(
Φp⊺iZ

)
with Ni ∈ N distinct pieces for every i ∈ N[1,L] (as shown in Figure 3.2)

to enforce (3.7c). The functions fi have bounded domain and range in R due to (3.7b). We

evaluate fi using the one-dimensional numerical integration of characteristic functions,

as in (2.3). We obtain the following optimization problem,

minimize
U,t

(3.7a)

subject to (3.2b), (3.7b), (3.7d), (3.7e)

∀i∈N[1,L]

∀j∈N[1,Ni]
, mi,j

(
qi − p⊺i B̄U

)
+ ci,j ≥ ti (3.12a)

By Theorem 3.1 and the use of piecewise affine underapproximations of log(Φp⊺iZ
) in

(3.7c), every feasible solution of (3.12) is feasible for (3.7), and thereby (3.2).

35

3.5.4 Solving (3.12) via difference of convex programming

The optimization problem (3.12) has a quadratic cost (3.7a), and linear constraints (3.2b),

(3.7b), and (3.12a) in the decision variables U and t, and a reverse-convex constraint

(3.7e). We now discuss a tractable solution to (3.12) using difference of convex program-

ming [36].

Given the current estimate for the risk allocation r = [r1 · · · rL]⊺ ∈ [0, 1]L (i.e.,

the initialization for t), the penalty based convex-concave procedure solves the following

convex approximation of (3.12) at every iteration,

minimize
U,t,s

(3.7a) + τks (3.13a)

subject to (3.2b), (3.7b), (3.7d), (3.12a)

s ≥ 0 (3.13b)

log
(∑L

i=1 exp(ri)
)
+ 1∑L

i=1 exp(ri)

∑L
i=1 exp(ri)(ti − ri) + s ≥ log(L−∆)

(3.13c)

where τk ≥ 0 for k ∈ N are optimization hyperparameters. The constraint (3.13c) cor-

responds to the first-order approximation of the reverse-convex constraint (3.7e), which

is relaxed by a scalar slack variable s. We penalize the slack variable s in the objective

(3.13a). The problem (3.13) is convex, since (3.13c) is a linear constraint in t and s, and

all other constraints and the objective are convex (Theorem 3.1.b).

Starting with an arbitrary risk allocation δ0 ∈ [0, 1]L, we iteratively solve (3.13) with

monotonically increasing values of τk to promote feasibility. In the numerical experiments,

we chose a uniform risk allocation δ0 =
∆
L
IL, where IL is a L-dimensional vector of ones.

The corresponding initialization of r is therefore r0 = log(1 − δ0). The convex-concave

procedure converges to a local fixed-point when a pre-specified violation tolerance ηviol is

met and the difference in cost between iterations k is less than a pre-specified tolerance

ηdc [36]. However, the convergence to a local minima remains an open problem [38].

36

Stochastic
optimal control
problem (3.2)

Risk-allocation
problem (3.7)

Optimization prob-
lem (3.12) with

reverse convex con-
straints (Thm. 3.1.b)

Quadratic
program (3.13)

Boole’s in-
equality (3.6)

Penalty based
convex-concave

procedure

Piecewise affine
approximation
+ character-
istic function

Figure 3.3: Manipulations that result in a convexified reformulation of (5) that is
amenable to conic solvers.

In addition, the procedure may terminate prematurely if τk reaches a user specified

maximum number of iterations, τmax.

In summary, we have transformed the original stochastic optimal control problem

presented in (3.2) into a convex quadratic problem, via the steps shown in Figure 3.3.

We first employed risk allocation (3.7), then converted the non-conic convex constraints

in (3.7) into conic convex constraints using piecewise affine approximations, as well as the

characteristic function. Finally, we utilize difference-of-convex programming to address

the remaining reverse convex constraint (3.7e). Thus, our approach solves a convex

(quadratic) program (3.13) iteratively to compute a local optimum of (3.2).

3.6 Examples

We apply the proposed approach to two examples: 1) a double integrator, and 2) a

quadrotor flying in an environment with a crosswind. We compare the performance

of the controller produced by our approach to other open-loop methods: 1) a scenario

approach [2], 2) a particle based approach [3], and 3) a moment based approach [4, 5].

We presume that the system is pre-stabilized via LQR using MATLAB’s dlqr(·) function

[66, 67]. When feasible, we also compare performance with the empirical characteristic

function (ECF) approach in [15]. The number of samples for the scenario approach is

37

determined by first specifying ∆, as well as a confidence bound ξ = 1 × 10−16 of not

achieving ∆ [2]. To ensure a fair comparison, we use the same number of samples for

the particle and ECF approach. We measure the performance of the controllers based on

the computed cost, the probability of constraint satisfaction, and the computation time.

For methods which explicitly use samples in the constraints, performance is determined

from the average of three runs. For the double integrator, Ns = 91 samples were used,

and for the quadrotor, Ns = 143 samples were used. We used Monte-Carlo simulation

with 105 samples for validation.

All computations are done with MATLAB on an Intel Core i9-10900K CPU with

3.70GHz and 128GB RAM. We implemented our algorithm, the scenario approach, the

particle approach, and the empirical characteristic function approach in YALMIP [68]

with MOSEK [69]. We used fmincon for the moment approach. For implementation

of the proposed approach, we used τmax = 10000, τ0 = 0.1, and ηviol = 1.2. For the

stopping criteria, we used an error tolerance of ηdc = 0.1. For the sandwich algorithm that

generates the piecewise affine approximation for our approach and the ECF approach,

we chose an absolute error of η = 0.01 for both examples.

3.6.1 Constrained control of a stochastic double integrator

We first consider a double integrator system,

xk+1 =



1 Ts

0 1


xk +



T 2
s

2

Ts


uk +wk (3.14)

with state xk ∈ R2, input set Uk = [−4, 4], exponential disturbance wk with scale λwk
∈

R2
+, sampling time Ts = 0.25s, and initial position x0 = [−1 0]⊺.

We seek to solve a constrained optimal control problem subject to dynamics (3.14),

with quadratic cost (3.2a) that encodes our desire to track Xd ∈ RnN , penalize high

38

Figure 3.4: Mean trajectories from the proposed approach, scenario approach [1, 2],
particle based approach [3], and moment based approach [4, 5]. For all approaches,
we presume a constraint violation threshold of ∆ = 0.1. Note that all approaches track
the reference trajectory.

velocities, and minimize control effort. Specifically, we choose Q = diag([100 5]) ⊗

I(nN)×(nN), R = 0.5I(mN)×(mN), (Xd)k = [mrk + cr 0]
⊺, ∀k ∈ N[0,N], and problem parame-

ters m1,m2,mr, c1, c2, cr as 0.1,−0.1,−0.05,−5, 5, and 1 respectively. We define the time

varying state constraints as,

Xk =
{
(k, x) ∈ N[0,N] × R2 : m1k + c1 ≤ x1 ≤ m2k + c2

}

and maintain a constraint satisfaction of 95%, i.e. ∆ = 0.05.

We compute optimal control trajectories using our approach, the scenario approach,

the particle filter approach, and the moment based approach, over a time horizon N = 20

and with scale parameter λw = [10 100]⊺. The empirical characteristic function approach

cannot be used (Figure 3.6), since the approach requires a concave region of the cumula-

tive distribution function to exist [6, Sec. 3.B.]. Figure 3.4 shows the optimal trajectories

for all approaches, where each track the reference trajectory closely while ensuring con-

straint satisfaction in the presence of uncertainty. Figure 3.5 shows that the stage cost

39

Figure 3.5: Top: Stage cost (the cost incurred at each time step) and control effort over
time, for the double integrator. The stage cost of all approaches are similar to highlight
that reference tracking is possible for all approaches. Bottom: The optimal input for
each approach.

Figure 3.6: The cumulative distribution function (left) and the log of the cumulative dis-
tribution function (right) for a negative affine transformation of an exponential random
variable with scale parameter λ = 1. Because the empirical characteristic function ap-
proach requires a concave region of the cumulative distribution function to exist [6, Sec.
III.B.], it cannot be used to solve the double integrator problem. In contrast, our ap-
proach is feasible, since the log of the cumulative distribution function is log-linear.

(the cost at each time step) is similar amongst all approaches except the moment ap-

proach. Note that we cannot use the ECF approach here due to the absence of concavity

in cumulative distribution function (Figure 3.6).

All methods generate similar trajectories, which track the reference. They also have

similar costs and inputs, as shown in Table 3.1, which compares the cost and probability

of satisfaction to Monte Carlo estimates for 105 simulated trajectories. This example

shows that under nominal conditions with non-Gaussian stochasticity, i.e. minimal risk

allocation, all methods track the reference trajectory closely.

40

Table 3.1: Double Integrator example: Cost and constraint satisfaction (1 − ∆) for
computed values (Comp) and Monte Carlo (MC) simulation (105 samples) for all but the
ECF method (See Figure 3.6). We list offline and online computation for all methods
where reasonable. Sampling/Particle approaches use Ns = 91 samples.

Method
Cost 1−∆ Time (s)

Comp MC Comp MC Online Offline

Proposed 863.2 863.2 0.95 1 0.95 56.47
Scenario 862.4 863.2 0.95 1 0.30 N/A
Particle 865.2 863.2 0.95 1 3.50 N/A
Moment 863.2 863.2 0.95 1 3.98 N/A
ECF N/A N/A N/A N/A N/A N/A

Figure 3.7: The asymmetric Laplace distribution that affects the states representing
quadcopter position in x, y, z. The disturbances follow the magenta distributions (left)
for the first half of the time horizon, and then follow the red distributions (right) for the
second half of the time horizon. The parameters of the distribution are noted above each
plot.

3.6.2 Quadrotor in the crosswinds of a harsh environment

We consider a rigid-body quadcopter model [70]. The state is defined as a 12-dimensional

vector, x = [ϕ θ ψ ϕ̇ θ̇ ψ̇ ṗx ṗy ṗz px py pz]
⊺, that captures orientation, angular rotation,

speed, and position. The net thrust is described by u1, and the moments around the

px, py, and pz axes created by the difference in the motor speeds are described by u2,

u3, and u4. We presume the mass is m = 0.478 kg and the moments of inertia are

41

Time

Evolution
Time Evolution

Figure 3.8: Mean trajectories for the quadcopter example. Our approach has the lowest
cost, and a probabilistic constraint satisfaction, with a reasonable overall solve time,
that is closest (but still above) the desired threshold (Table 3.2). This can be seen in
the fact that the trajectory for our approach is close to the reference trajectory (middle
plot) compared to the scenario approach which overshoots before recovering to track
the reference trajectory. In essence, our approach enables a better trajectory because it
can effectively account for the risk of violating the constraint satisfaction in the control
optimization process.

Ixx = Iyy = 0.0117 kg m2 and Izz = 0.00234 kg m2 [71]. We linearize the nonlinear

dynamics about a hovering point, and time discretize the dynamics via a zero-order hold

with sampling time Ts = 0.25.

We incorporate the effect of wind into the quadcopter model as an additive stochastic

disturbance, that takes the form of an asymmetric Laplace distribution with characteristic

function,

φw(t;µ, σ, κ) =
exp(iµt)

(1 + itκ
σ
)(1− it

κσ
)
, (3.15)

whose location, shape, and asymmetry suddenly changes halfway through the time hori-

zon, as shown in Figure 3.7, with distribution parameters [72, 73]. That is, the distri-

bution is non-stationary, but independent. We presume the wind directly influences the

translational motion, i.e. px, py, and pz.

We solve the stochastic optimal control problem (3.2) for a time horizon of N = 20

with cost weights Q = diag([10I1×9N 100I1×3N]) ⊗ IN×N and R = I4N×4N . The desired

reference trajectoryXd is defined for the state variables px and py by generating waypoints

42

Figure 3.9: The stage cost and input at each time step for all approaches compared in
the quadcopter example. Our proposed, moment, and ECF methods have comparable
inputs. However, note the scenario approach has differing inputs for u1 and u3, and
correspondingly higher cost (Table 3.2). The input u2 and u4 are not shown because
they are quite similar.

via the following functions,

Xd,x,k = r sin(θk), (3.16a)

Xd,y,k = r cos(θk − 20), (3.16b)

with r = 35, and θk ∈ R decreases from 3π/4 to −π/4. The vertical desired position,

Xd,x,k ∈ R is defined by linearly spaced waypoints from −10 to 10. The input set is

Uk = [−40, 40]× [−5, 5]3 and the constraint set Xk,

Xk =
{
x ∈ R12 : |px| ≤ 60, |py| ≤ 60, |pz| ≤ 60

}

imposes restrictions on the translational motion. The initial condition is x(0) = [0 · · · 0

44.75 − 34.75 − 10]⊺.

We choose a constraint satisfaction probability of 95% (∆ = 0.05). Figure 3.8 shows

the computed trajectories our approach and those we compare it to. All approaches

except for the particle approach find an optimal, open-loop controller, but with varying

43

Table 3.2: Quadcopter example: Cost and constraint satisfaction (1−∆) for computed
(Comp) and Monte-Carlo (MC) simulation with 105 samples, for all but the particle
control method. Sampling and ECF approach use Ns = 141 samples.

Method
Cost 1−∆ Time (s)

Comp MC Comp MC Online Offline

Proposed 228.4 228.3 0.95 1 0.86 856.8
Scenario 698.4 550.6 0.95 1 1.54 N/A
Particle N/A N/A N/A N/A N/A N/A
Moment 381.9 382.0 0.95 1 266.2 N/A
ECF 932.0 933.1 1 1 0.36 1949.3

conservatism (Table 3.2). The particle approach exceeds our cutoff time of an hour.

In contrast to the first example, only our proposed approach is the only approach

which tracks the reference trajectory closely with probabilistic constraint satisfaction

(Figure 3.8). As shown in Figure 3.9, our stage cost is the lowest amongst all approaches.

Although our approach requires an additional offline calculation for the piecewise under-

approximation, the overall cost to solve time is the best out of all approaches relative to

online solve time, as shown in Table 3.2.

The piecewise affine approximation for the ECF approach takes longer offline time due

to it using a sum of characteristic functions via data to construct the cumulative distribu-

tion function. In contrast, since we are given the characteristic function in our approach,

the offline time for the piecewise affine approximation is slightly lower. Nonetheless, our

approach has a lower cost due to exploiting the log-concavity properties of the distribu-

tion. Whereas the ECF approach relies on a conservative concave restriction about the

inflection point of the cumulative distribution function (Table 3.2).

3.7 Conclusion

We presented a convex optimization based approach for the constrained, optimal control

of a linear dynamical system with additive, log-concave disturbance. Our formulation

utilizes a characteristic function based risk allocation technique to assure probabilistic

44

safety for a log-concave disturbance. Our approach solves a tractable difference-of-convex

program to synthesize the desired controller. Our reforumulation is amenable to standard

conic solvers via the use of piecewise affine approximations that provide tight bounds.

Numerical experiments show the efficacy of our approach in comparison to scenario,

particle control, and moment based approaches.

45

Chapter 4

Closed-Loop Steering of Linear

Systems With General Uncertainty

4.1 Introduction

In many autonomous systems, the uncertainties that affect the system evolution are quite

complex and non-Gaussian. For example, in urban air mobility scenarios, uncertainties

may arise from the sensing and perception subsystems, the operating environment (i.e.,

wind gusts, ground effects), the presence of humans in the loop, or from unmodeled

physical phenomena (i.e., higher-order nonlinearities in lift or drag forces) among many

others. Methods that ensure robustness to such uncertainties are important for improv-

ing the reliability and robustness of autonomous systems. Recently, distribution steering,

by which a controller manipulates the stochasticity of the state to guide at states towards

a desirable probability distribution, has emerged as a promising approach to directly con-

trol system uncertainty [74–78]. However, most of these works to date assume Gaussian

noise, In this chapter, we describe an approach to synthesize feedback controllers for dis-

tribution steering of discrete-time linear systems subject to general (e.g., non-Gaussian)

disturbances.

46

X = Ax0 + BU+DW
Xk

ψx0
ψxf

Figure 4.1: We seek to steer a stochastic system from an initial distribution to a desired
final distribution, subject to probabilistic constraints on the state and input.

4.2 Related Work

Recent work in covariance steering, in which a system is steered from an initial Gaussian

distribution to a desired Gaussian distribution, captures the covariance and the mean as

extended state variables [76, 79–83]. However, extending this approach to non-Gaussian

disturbances is not straightforward. For non-Gaussian disturbances, the distribution is

characterized by higher order moments and the computational complexity of the problem

increases as the number of moments we need to steer increases. Additionally, when

incorporating chance, or probabilistic, constraints into the problem formulation, it is not

clear how one can make these constraints tractable (for example, as second order cone

constraints through Boole’s inequality [84, 85]) with non-Gaussian state evolution, since

closed form expressions often do not exist. Methods in optimal transport theory [74,76]

can steer to and from arbitrary distributions, but presume that the disturbance is a

Wiener process (i.e., Gaussian increments).

4.3 Main Contribution and Organization

The main contribution of this chapter is the steering of linear systems in the presence

of general, non-Gaussian distributions while satisfying state and input constraints with

affine feedback. It considers a broad class of disturbances for linear systems, which

places very few assumptions on the disturbance probability density function. The ap-

47

proach employs characteristic functions, which circumvent the need to steer all moments

individually, and enable straightforward calculation of the absolute distance between dis-

tributions. The key insight is that expressions for the chance constraints, previously im-

plemented in an open-loop context [13,15], and the terminal absolute distance constraint

can be represented efficiently using characteristic functions and their compositions.

Section 4.4 formulates the problem we wish to solve. We present our analysis of chance

constraints within the framework of characteristic functions in Section 4.5. The terminal

density matching constraint is presented in 4.6. Section 4.7 presents our reformulation of

the constrained stochastic optimal control problem using characteristic functions. Sec-

tion 4.8 presents an example of a 2D double integrator under various disturbances and

initial conditions.

4.4 Problem formulation

Problem 3. Solve the optimization problem

minimize
U

(2.25),

subject to (2.10), (2.26), and (4.1a)

E0x ∼ ψx0 , ENx ∼ ψxf
, W ∼ ψW. (4.1b)

The goal of Problem 3 is to minimize the quadratic cost (2.25), satisfy the constraints

in (2.10), (2.26), while steering the state of (2.10) from the given initial distribution, ψx0 ,

to the desired terminal state distribution, ψxf
.

48

4.5 Chance Constraints with Affine Feedback via Char-

acteristic Functions

In this section, we present a decomposition of the chance constraints using Boole’s in-

equality via affine disturbance feedback and represent the probabilistic constraints (also

known as chance constraints) using characteristic functions. The resulting constraint is

an integral transform over the linear system and the polytopic constraints.

4.5.1 Reformulation of Chance Constraints

State Chance Constraints

The joint state chance constraints in (2.26a) can be transformed into a set of individual

chance constraints through Boole’s inequality [39,44,86]

PX

({
X ∈ RnN : α⊺

j,kEkX ≤ βj,k
})
≥ 1− δxj,k,

N∑

k=1

NX∑

j=1

δxj,k ≤ ∆X , (4.2)

equivalently by the definition of the cumulative distribution function,

Φα⊺
j,kEkX (βj,k) ≥ 1− δxj,k,

N∑

k=1

NX∑

j=1

δxj,k ≤ ∆X , (4.3)

where δxj,k ∈ [0,∆X), k ∈ N[1,N], j ∈ N[1,NX]. Plugging (2.23a) into (4.3) yields

Φcj,k(βj,k − α⊺
j,kEkBv) ≥ 1− δxj,k, (4.4)

where cj,k = α⊺
j,kEk(I + BK)(Ax0 +DW).

49

Input Chance Constraints

Similar to the state chance constraints, we transform the joint chance constraints in

(2.26b) into a set of individual chance constraints as follows

PU

({
U ∈ Rm(N−1) : a⊺j,kFkU ≤ bj,k

})
≥ 1− δuj,k,

N∑

k=1

NU∑

j=1

δuj,k ≤ ∆U . (4.5)

Equivalently,

Φa⊺j,kFkU(bj,k) ≥ 1− δuj,k,
N∑

k=1

NU∑

j=1

δuj,k ≤ ∆U , (4.6)

where δuj,k ∈ (0,∆U), k ∈ N[0,N−1], j ∈ N[1,NU]. Using (2.23b) in the chance constraints

(4.6) yields

Φdj,k
(bj − a⊺j,kFkv) ≥ 1− δuj,k, (4.7)

where dj,k = a⊺j,kFkK(Ax0 +DW).

4.5.2 Encoding Chance Constraints in the Presence of Affine

Feedback

To illustrate how to encode the chance constraints (4.4) and (4.7) via characteristic

functions, consider first the state chance constraint in (4.4). Expanding the random

variable cj,k we can write

cj,k = µ⊺
c,j,kx0 + ν⊺c,j,kW, (4.8)

where µ⊺
c,j,k = α⊺

j,kEk(I + BK)A and ν⊺c,j,k = α⊺
j,kEk(I + BK)D are non-random vari-

ables that are linear in the decision variable K. Under Assumption 1, Property 3 of

50

characteristic functions allows us to decompose φcj,k as

φcj,k(t) = φµ⊺c,j,kx0
(t)φν⊺c,j,kW

(t). (4.9)

Next, Property 2 yields

φµ⊺c,j,kx0
(t) = φx0(t

c
x0
), (4.10a)

φν⊺c,j,kW
(t) = φW(tcW). (4.10b)

where tcx0
= µc,j,kt and t

c
W = νc,j,kt. Finally, Property 4 yields

φx0(t
c
x0
) =

n∏

i=1

φx0,i
(tcx0,i

), (4.11a)

φW(tcW) =

pN∏

i=1

φwi
(tcwi

). (4.11b)

where tcx0,i
= e⊺i,nt

c
x0

and tcwi
= e⊺i,pN t

c
w. Theorem 1 gives an analytical expression for the

cdf of cj,k evaluated at γj,k = βj,k − α⊺
j,kEkBv as

Φcj,k(γj,k) =
1

2
− 1

π

∫ ∞

0

1

t
Im
(
e−itγj,kφcj,k(t)

)
dt, (4.12)

where φcj,k(t) is given in (4.9). Thus, (4.12) provides a means to compute the cdf in

the state chance constraints (4.4), and encodes the decision variables K and v through

Theorem 1.

Similarly, we can also derive the input chance constraints in (4.7) for the random

variable dj,k by rewriting

dj,k = µ⊺
d,j,kx0 + ν⊺d,j,kW, (4.13)

where µ⊺
d,j,k = a⊺j,kFkKA and ν⊺d,j,k = a⊺j,kFkKD. From Property 3 of characteristic

51

functions, the characteristic function of dj,k is therefore

φdj,k
(t) = φµ⊺d,j,kx0

(t)φν⊺d,j,kW
(t). (4.14)

Further, by Properties 2 and 4, we have

φµ⊺d,j,kx0
(t) = φx0(t

d
x0
) =

n∏

i=1

φx0,i
(tdx0,i

), (4.15a)

φν⊺d,j,kW
(t) = φW(tdW) =

pN∏

i=1

φwi
(tdwi

) (4.15b)

where tdx0
= µd,j,kt, t

d
W = νd,j,kt, t

d
x0,i

= e⊺i,nt
d
x0
, and tdwi

= e⊺i,pN t
d
W. Thus, the expression

for the cdf of dj,k evaluated at γd,j,k = bj − a⊺jFkv is given by

Φdj,k
(γj,k) =

1

2
− 1

π

∫ ∞

0

1

t
Im
(
e−itγd,j,kφdj,k

(t)
)
dt. (4.16)

Note that the constraints encoded by the characteristic function in (4.12) and (4.16)

result in nonlinear constraints in terms of the decision variables K and v.

4.6 Terminal Density Constraints

Our approach aims at matching probability densities using the machinery of character-

istic functions. The benefit of using characteristic functions to match between densities

as opposed to other metrics such as KL-divergence or Wasserstein distance is two-fold.

First, it can be shown that the largest absolute difference between two pdfs is bounded by

the L1 difference of their characteristic functions. Second, this holds for all distributions

(including mixture distributions) which have a characteristic function in L1(Rn) and di-

rectly results in an explicit integral expression over the frequency domain, and not an

integration over the entire state-space [75]. This is convenient, as it is difficult to formu-

late the terminal constraints analytically in the state-space due to the non-Gaussian state

52

evolution requiring several convolutions at each time step (see Property 1 of operations

on characteristic functions).

Next, we first derive a joint distribution representation which results in an n-dimensional

integral. We then show that due to the independence property of the disturbances, we

can compute this integral using n separate matching constraints at the final time.

4.6.1 Joint Characteristic Function Representation of the Ter-

minal Density

Using Properties 1 and 2 of operations on characteristic functions, the joint characteristic

function of the terminal state xN is

φxN
(t) =

n∏

i=1

exp(iσ⊺
i t)φx0(t

N
x0
)φw(t

N
w), (4.17)

where

φx0(t
N
x0
) =

n∏

j=1

φx0,j
(tNx0,j

), (4.18)

φW(tNW) =

pN∏

j=1

φwj
(tNwj

), (4.19)

and where tNx0
= µit, t

N
x0,j

= e⊺j,nt
N
x0
, tNw = νit, t

N
wj

= e⊺j,pN t
N
w , and µ⊺

i = e⊺i,nEN(I +

BK)A, ν⊺i = e⊺i,pEN(I + BK)D, and σ⊺
i = e⊺i,mENBv. Similarly, the joint characteristic

function of the desired terminal state is

φxf
(t) =

n∏

i=1

φxf,i
(ti). (4.20)

We now introduce the L1 distance as an upper bound on the maximum L1 deviation

between two probability distributions.

53

Theorem 4.1 ([27, Sec. 1.4]). If the joint pdf for the terminal state of the system is

ψxN
with characteristic function (4.17) and the desired joint pdf is ψxf

with characteristic

function (4.20), then

∆ψxN
(K, v) = sup

z∈Rn

|ψxN
(z;K, v)− ψxf

(z)| ≤ D(K, v), (4.21)

where

D(K, v) =

(
1

2π

)n
∥φxN

−φxf
∥1 =

(
1

2π

)n ∫

Rn

∣∣φxN
(t)−φxf

(t)
∣∣ dt. (4.22)

Proof. Since

∣∣∣
∣∣
∫

Rn

exp(it⊺z)φxN
(t)dt

∣∣−
∣∣
∫

Rn

exp(it⊺z)φxf
(t)dt

∣∣
∣∣∣

≤
∫

Rn

∣∣exp(it⊺z)φxN
(t)− exp(it⊺z)φxf

(t)
∣∣ dt, (4.23)

by multiplying both sides by (1/2π)n and using (2.2), yields

|ψxN
(z)− ψxf

(z)| ≤
(

1

2π

)n
∥φxN

−φx∥1. (4.24)

Lastly, since this holds for all z ∈ Rn, we get (4.21).

Corollary 4.1. Let ϵ > 0 such that D(K, v) < ϵ for some K and v. Then, supz∈Rn |ψxN
(z;

K, v)− ψxf
(z)| ≤ ϵ.

4.6.2 Matching Densities

We derive a simpler representation of the n−dimensional integral of the joint represen-

tation in (4.21). Specifically, we construct n separate density matching expressions with

54

respect to each terminal state variable, that is, for all i ∈ N[1,n],

∆ψxN
,i(K, v) = sup

zi∈R

∣∣ψxN ,i(zi;K, v)− ψxf,i
(zi)
∣∣ ≤ Di(K, v), (4.25)

where

Di(K, v) =
1

2π

∫

R

∣∣φxN ,i(ti)−φxf ,i(ti)
∣∣ dt, (4.26)

which follows from Theorem 4.1. The next result provides a relationship between (4.22)

and (4.26).

Theorem 4.2. Suppose there exists (K, v) such that, for all i ∈ N[1,n], Di(K, v) ≤ ϵi.

Then, D(K, v) ≤ (1/2π)n−1ϵ, where ϵ =
∑

i ϵi.

Proof. By definition of the L1 distance, for each i ∈ N[1,N],

1

2π

∫

R
|φe⊺i,nxN

(ti)−φxf,i
(ti)| dti ≤ ϵi. (4.27)

Let ai = φe⊺i,nxN
(ti) and bi = φxf,i

(ti). Then, since |φe⊺i,nxN
(ti)|, |φxf,i

(ti)| ≤ 1, it

follows that |φxN
(t) − φxf

(t)| = |∏iφe⊺i,nENx(ti) −
∏

iφxf,i
(ti)| ≤

∑
i |φe⊺i,nxN

(ti) −

φxf,i
(ti)|, where we have used the fact that for ai, bi ∈ C, i ∈ N[1,n] where |ai|, |bi| ≤ 1,

|∏i ai −
∏

i bi| ≤
∑

i |ai − bi|. The result now follows immediately from the definition of

D(K, v).

4.7 Resulting optimization problem

With the elements derived for both the chance constraints and the terminal distribution

constraint, we present the resulting optimization problem.

55

Problem 4. Solve the optimization problem

minimize
K,v,δx,δu

J(K, v) +
n∑

i=1

λiDi(K, v) (4.28a)

subject to Φcj,k(βj,k − α⊺
j,kEkBv) ≥ 1− δxj,k, (4.28b)

Φdj,k
(bj − a⊺j,kFkv) ≥ 1− δuj,k, (4.28c)

N∑

k=1

NX∑

j=1

δxj,k ≤ ∆X ,
N∑

k=1

NU∑

j=1

δuj,k ≤ ∆U , (4.28d)

where J(K, v) is the expanded quadratic cost (2.25) and is defined as

J(K, v) = [(I + BK)(AE[x0] +DE[W]) + Bv −Xd]
⊺Q·

[(I + BK)(AE[x0] +DE[W]) + Bv −Xd]

+ [K(AE[x0] +DE[W]) + v]⊺R [K(AE[x0] +DE[W]) + v]

+ tr
[(
(I + BK)⊺Q(I + BK) +K⊺RK

)
Σ
]
, (4.29)

where Σ = AΣx0A⊺ +DΣWD⊺.

We treat the matching constraint as a soft constraint, as in [75]. By penalizing this

L1 distance in the cost, we provide flexibility to the underlying nonlinear program solver

and enable increased feasibility.

4.8 Examples

We demonstrate our approach on a 2D double integrator with different disturbances and

initial conditions. Consider the system (2.9) with state x = [x ẋ y ẏ]⊺. The expressions

for the system matrices Ak, Bk, and Dk are given in [83] with ∆T = 1 and N = 5. We

assume polytopic state constraints Xk, with α1k =

[
1 1 0 0

]
, β1k = 12.75, α2k =

[
1 0.1 0 0

]
, β2k = 8.75 for k ∈ N[1,N], and assume x0 ∼ ψx0 must be within the

56

state polytopic constraints, as well. We let Uk = [−4, 4]2 for k ∈ N[0,N−1]. The desired

trajectory Xd is interpolated from waypoints (4, 5) to (8, 5) for k ∈ N[0,2] and from (9, 5)

to (7.875, 3) for k ∈ N[3,5]. We seek to drive the final state to xN ∼ ψxf
= N (µxf

,Σxf
)

with mean µxf
= [7.75 2 0 0]⊺ and variance Σxf

= diag([0.06 0.006 0.6 0.006]). We choose

∆X = 0.1 and ∆U = 0.1, and Qk = diag([10 1 10 1]), Rk = diag([1 1]) for i ∈ N[0,N−1].

The weighting of the distance metrics in the cost is λ = [10 1 10 1]⊺.

All computations were done in MATLAB with an Intel Core i9-10900K processor and

64GB RAM. The optimization problems were solved using fmincon. The characteristic

function inversion (4.12) uses CharFunTool [30] and the density matching constraint in

(4.26) was implemented using trapezoidal quadrature. We used 104 Monte-Carlo samples

to verify average state and input constraint violation (denoted as ∆X,MC and ∆U,MC,

respectively) and cost (denoted as JMC(K, v)).

4.8.1 Double Integrator: Standard Gaussian Distribution

To validate our approach, we first considered x0 ∼ ψx0 = N (µx0 ,Σx0) with µx0 =

[4 0 5 0]⊺ and Σx0 = diag([0.18 0.002 0.18 0.002]); the disturbance is N (µwk
,Σwk

) with

mean µwk
= [0 0]⊺ and variance Σwk

= diag([1 1]) for the entire horizon. As shown

in Figure 4.2a, our method drives the system to follow the reference trajectory, while

not significantly violating the state constraints (Table 4.2). Likewise, input violation is

minimal, as shown in Figure 4.2b and Table 4.2. Since we steer the state from an initial

Gaussian distribution to a final Gaussian distribution, the maximum deviation between

the final and desired pdfs and the corresponding L1 distances are small (Table 4.1).

4.8.2 Double Integrator: Long Tail - Laplace Distribution

Heavy-tailed distributions are of interest as they decay much more slowly than Gaussians,

but with a similar mean and variance. The Laplace distribution has the pdf Lµ,β(x) =

exp (−|x− µ|/β) /2β. We assume the initial condition x0 ∼ L(µx0 , βx0) with location

57

µx0 = [4 0 5 0]⊺ and scale βx0 = [0.3 0.01 0.3 0.01]⊺. The disturbance also follows a

Laplace distribution wk ∼ L(µwk
, βwk

) with location µwk
= [0 0]⊺ and scale βwk

= [1 1]⊺.

Although the Laplace distribution is not smooth (Figure 4.3a), our method is able to

steer to the final desired density with little constraint violation (Table 4.2). The input

in Figure 4.3b shows that there is some violation of the bounds, but it is within the

violation threshold (Table 4.2). The larger deviation between the final and desired pdfs

(Table 4.1) reflects the fact that we modify a random variable that is not Gaussian so as

to behave like a Gaussian one.

4.8.3 Double Integrator: Mixture Distributions - Normal Mix-

ture

Lastly, we consider a Gaussian mixture with x0 ∼ ψx0 = 0.5N (µx0,1 ,Σx0,1) + 0.5N (µx0,2 ,

Σx0,2) with means x0,1 = [4 0 5 0]⊺, x0,2 = [3.5 0.1 3.5 0.1]⊺ and covariances Σx0,1 =

diag([0.3 0.01 0.3 0.01]), Σx0,2 = diag([0.1 0.01 0.5 0.01]). The disturbance is a Gaussian

mixture, w ∼ ψwk
= 0.5N (µw1,k

,Σw1,k
)+0.5N (µw2,k

,Σw2,k
), with means µw1,k

= [0 0.1]⊺,

µw2,k
= [0.1 0]⊺ and covariances Σw1,k

= diag([1 1]), Σw2,k
= diag([1 1]). The affine

controller steers the Gaussian mixture to a single Gaussian (Figure 4.4a) with mini-

mal violation of the state constraints (Table 4.2). The input remains within acceptable

limits (Table 4.2) despite the multi-modal nature of the noise (Figure 4.4b). The devi-

ation between final and desired pdfs are much smaller than seen with the Laplace pdf

(Table 4.1). This is likely because the controller alters the weights of the multi-modal

Gaussian elements to match the desired, final Gaussian density.

4.9 Conclusion

We have formulated a tractable solution of the distribution steering problem under gen-

eral, not necessarily Gaussian, disturbances. We showed that using Boole’s inequality

58

W ∆ψxN
,1 D1 ∆ψxN

,2 D2 ∆ψxN
,3 D3 ∆ψxN

,4 D4

(4.8.1) 0.000383 0.0026 1.69 10.63 3.36E− 6 2.11E− 5 4.29 33.38
(4.8.2) 0.037 0.346 0.077 0.6838 0.096 0.270 4.46 33.16
(4.8.3) 0.002 0.016 0.001 0.011 2.94E − 4 0.031 4.94 31.87

Table 4.1: The largest deviation between the actual and desired pdfs (4.25), compared to
the L1 distance (4.26) for each scenario. The controller from (4.28) yields an L1 distance
that upper bounds the largest deviation in each case.

W J(K, v) JMC(K, v) ∆X ∆X,MC ∆U ∆U,MC

(4.8.1) 53.17 49.36 0.098 0.052 0.0975 7E− 4
(4.8.2) 41.84 41.81 0.0983 0.0572 0.0977 0.0103
(4.8.3) 49.74 46.18 0.098 0.009 0.098 0.015

Table 4.2: Cost and risk allocation (for the state and the input) when solving (4.28), and
averaged values from 104 Monte-Carlo (MC) samples for validation. The MC average cost
is consistent with the computed cost, and the MC state and input constraint violations
are lower than the computed violations.

and characteristic functions, we can turn the problem into a nonlinear optimization prob-

lem. Future work will aim to further utilize the structure of the characteristic functions

to obtain faster, real-time solutions and extend the approach to nonlinear systems.

(a) State evolution (x and y) over 5 timesteps, subject to state chance constraints and terminal
density constraints. The system is steered from the initial density to the final, desired density
without collision, even though the reference trajectory violates the constraints.

(b) Inputs u1 and u2 satisfy input chance constraints with violation less than ∆U .

Figure 4.2: Distribution steering from one Gaussian distribution to another Gaussian
distribution.

59

(a) State evolution (x and y) over 5 time steps, subject to state chance and terminal density
constraints. The Laplace distribution is non-smooth at its peak, and is heavy-tailed. Our
approach drives the system from a Laplace distribution to a Gaussian distribution, while main-
taining state constraint violation below ∆X .

(b) Inputs u1 and u2 satisfy input chance constraints with violation less than ∆U .

Figure 4.3: Distribution steering from a Laplace distribution to a Gaussian distribution.

(a) State evolution (x and y) over timesteps, subject to the state chance and terminal density
constraints. The multi-modal Gaussian is transformed into a Gaussian with a single mode with
minimal state constraint violation.

(b) Inputs u1 and u2 satisfy input chance constraints with violation less than ∆U .

Figure 4.4: Distribution steering from a Gaussian mixture to a Gaussian distribution.

60

Part II

Data-Driven, Stochastic Optimal

Control

61

Chapter 5

Open-Loop Control of Linear

Systems With Unknown Uncertainty

5.1 Introduction

Stochastic optimal control typically presumes accurate models of the underlying dynamics

and stochastic processes [39, 87, 88]. However, in many circumstances, accurate charac-

terization of uncertainty is difficult. Further, inaccurate characterization of stochastic

processes may have unexpected impacts [89, 90], as optimal control actions are typically

dependent upon the first and second moments of the stochastic processes [88]. Such

inaccuracies could be particularly problematic when the unknown stochastic processes

is asymmetric, multimodal, or heavy-tailed. For example, in hypersonic vehicles, exces-

sive turbulence makes aerodynamic processes difficult to model accurately, and their fast

time-scale means that erroneous control actions could result in catastrophic failure.

5.2 Related Work

We consider the case in which the dynamics are known, but the noise process is not

known, and focus on the problem of data-driven stochastic optimal control in a chance

62

constrained setting, in which probabilistic constraints must be satisfied with at least a

desired likelihood. Some approaches, such as distributional stochastic optimal control,

seek robustness to ill-defined distributions with finite samples [90,91]. Other approaches

construct piecewise-affine over-approximations of value functions by solving a chance-

constrained problem [92]. Researchers have also employed kernel density estimation

[93,94] to approximate individual chance constraints in nonlinear optimization problems.

5.3 Main Contribution and Organization

One tool to characterize uncertainty through observed data is the empirical character-

istic function [95], which is often employed in economics and statistics to characterize

models where maximum-likelihood estimation can struggle. The empirical characteristic

function generates an approximation of the true characteristic function, and has known

convergence properties [96,97]. The advantage of this approach is that it enables direct,

closed-form approximation of the cumulative distribution function and the moments of

the underlying stochastic process [95], both of which are typically necessary for stochas-

tic optimal control problems. However, the main challenge then becomes one of finding

computationally efficient under-approximations of the resulting cumulative distribution

function, which may be non-convex.

We propose to employ empirical characteristic functions to characterize unknown dis-

turbance processes in a linear, time-invariant dynamical system with a quadratic cost

function. We construct a conic, convex reformulation of the resulting stochastic optimal

control problem, that ensures computational tractability [98]. Our approach employs

a piecewise under-approximation of the approximate cumulative distribution function,

with a user-specified trade-off between accuracy and the number of piecewise elements.

We use confidence intervals on the approximate cumulative distribution function to pro-

vide probabilistic bounds on the solution to the data-driven stochastic optimal control

63

problem. The main contribution of this paper is the construction of a convex, conic refor-

mulation of a stochastic optimal control problem in the presence of an unknown, additive

disturbance, via empirical characteristic functions, with confidence bounds on the optimal

solution.

The outline of the paper is as follows. We first formulate the problem in Section 5.4.

Section 5.5 presents algorithms to convexify the problem and proofs of its convergence

properties. In Section 5.6, we demonstrate our approach on two examples.

5.4 Problem Statement

Problem 5. Solve the optimization problem similar to (3.2),

minimize
U

E [(X−Xd)
⊺Q(X−Xd)] + U⊺RU (5.1a)

subject to (3.1), (2.26a)

N−1⋂

k=0

FkU ∈ Uk, (5.1b)

with positive semi-definite matrices as in (2.25), and polytopic state and input constraints

as in (2.27). without direct knowledge of the cumulative distribution function or moments

of w, but with observations of Ns samples {wj}Ns

j=1.

The standard approach to solving (5.1) when the disturbance process is well char-

acterized is to tighten the joint chance constraint (2.26a) via individual chance con-

straints [99, 100]. However, two main challenges then arise: 1) reliance of (2.25) and

(2.26a) upon moments and the cumulative distribution function, respectively, of the un-

known noise process, and 2) non-convexity of the individual chance constraints. The

former can be seen from expanding (2.25),

(µX,U −Xd)
⊺Q(µX,U −Xd) + U⊺RU + tr(QΣX,U) (5.2)

64

with mean and covariance of the state from (3.1).

Characteristic functions provide a means to obtain moments, via Definition 2.2, as

well as the cumulative distribution function, via Theorem 2.2.

Since we have no direct knowledge of w, the empirical characteristic function can be

used to compute the cumulative distribution function and moments from samples of w.

Definition 5.1 (Empirical Characteristic Function [95,97]). Let {wj}Ns

j=1 be the sequence

of Ns observations of the random vector, w. The empirical characteristic function is

φ̂w(t) =
Ns∑

j=1

αj(w)Kwj
(t) (5.3a)

Kwj
(t) = exp (it⊺wj) exp

(
−1

2
(t⊺Σt)

)
(5.3b)

for some smoothing parameter matrix Σ ∈ Rp×p and weighting function αj(w) > 0, with
∑Ns

j=1 αj(w) = 1.

A variety of approaches can be used to find a suitable Σ, to avoid over-smoothing and

under-smoothing [101]. The smoothing in (5.3b) is important for ensuring continuity in

the cumulative distribution function [26, Eq. 1.2.1] approximated via Theorem 2.2 from

the empirical characteristic function.

Hence to solve Problem 1, we first solve the following.

Problem 6. Using the empirical characteristic function, 1) construct a concave under-

approximation of the approximate cumulative distribution function Φ̂w(x), and 2) ap-

proximate the first two moments of w.

Problem 7. Reformulate (3) into a convex, conic stochastic optimal control problem, so

that feasible solutions of the convex program are feasible solutions of (3).

65

5.5 Method

We first transform (2.26a) into a series of individual chance constraints, similar to (3.4),

each with a risk δi. Similar to the risk allocation derivation in Section 3.5.1, the ith

constraint as p⊺iX ≤ qi, where we do not presume the initial condition is random,

PW

({
W ∈ RpN : p⊺iDW ≤ qi − p⊺i (Ax0 + BU)

})
≥ 1− δi (5.4a)

⇔ Φp⊺iDW(qi − p⊺i (Ax0 + BU)) ≥ 1− δi (5.4b)

L∑

i=1

δi ≤ ∆, δi ≥ 0, ∆ ∈ [0, 1], ∀i ∈ N[1,L]. (5.4c)

Then solutions of the optimization problem

minimize
U,δ

E [(X−Xd)
⊺Q(X−Xd)] + U⊺RU (5.5a)

subject to

∀i ∈ N[1,L]





Φp⊺iDW(qi − p⊺i (Ax0 + BU)) ≥ 1− δi (5.5b)

qi − p⊺i (Ax0 + BU) ≥ xlbi (5.5c)

L∑

i=1

δi ≤ ∆, δi ≥ 0, ∆ ∈ [0, 1] (5.5d)

(2.10), (5.1b)

are also feasible solutions of (3.2). This is because the joint chance constraint (2.26a) is

enforced by (5.5b) and (5.5d) with the additional constraint (5.5c), which restricts the

domain of the ith chance constraint by some lower bound xlbi .

However, several difficulties arise. Note that (5.5) is non-convex due to (5.5b). The

constraint (5.5c) ensures a restriction to the concave region of Φp⊺iDW(x). For unimodal

distributions, the inflection point, xlbi , occurs about the mode [61, Def. 1.1], but for

arbitrary distributions, this may not be true.

In addition, (5.5a) is dependent upon the first two moments of W and (5.5b) is

dependent upon the cumulative distribution function of p⊺iDW, ∀i ∈ N[1,l]. Hence we seek

66

empirical characteristic functions to approximate the cumulative distribution function

and moments based on samples wj. In addition, we also seek a method to reformulate

(5.5b) using its approximation from the empirical characteristic function with a concave

restriction (5.5c) by finding xlbi to solve a convex problem.

5.5.1 Approximating the cumulative distribution function and

moments from the empirical characteristic function

Applying Definition 5.1, we obtain

φ̂p⊺iDW(t) =
Ns∑

j=1

αj(W) exp (itp⊺iDWj)·

exp
(
−1

2
((p⊺iD)Σ(p⊺iD)⊺t2)

)
(5.6a)

φ̂W(t) =
Ns∑

j=1

αj(W) exp (it⊺Wj) exp
(
−1

2
(t⊺Σt)

)
(5.6b)

where Σ = diag([Σ0 · · ·ΣN]) ∈ RpN×pN , t = [t0 · · · tN]⊺ ∈ RpN and αj(W) = 1/Ns. To

approximate Φp⊺iDW in (5.5b), we use (2.3) to obtain Φ̂p⊺iDW. For the moments in the

cost (5.5a), we use (2.4) to obtain the approximate moments of W.

5.5.2 Constructing a Convex Restriction for (5.5b)

We seek a conic representation of (5.5b) with a restriction for which it is concave [61, Def

1.1]. For a user-defined error, ϵ, and desired number of affine terms, Ndr, we construct a

piecewise affine under-approximation [35, Sec. Sec. 4.3.1],

Φ̂l
p⊺iDW = min

r∈N[1,zi]

{ai,rx+ ci,r} (5.7)

67

Figure 5.1: (Left to Right) Algorithm 1 under-approximates the cumulative distribution
function, Φ̂y(x) (red), with Φ̂l

y(x) (green), for some user-defined error, ϵ. We use 1000
samples of y = fy1+(1−f)y2, with Bernoulli random variable f , y1 a Gaussian N (0, 0.2),
and y2 a Weibull distribution Weib(k = 4, θ = 2). The error Φ̂y(x)−Φ̂l

y(x) ≤ ϵ is depicted
on the far right.

such that

0 ≤ Φ̂p⊺iDW(x)− Φ̂l
p⊺iDW(x) ≤ ϵ (5.8)

is assured over the domain Ci = [xlbi ,∞]. We define ai,r and ci,r as the slope and intercept

for the rth affine term.

We propose Algorithm 1 to construct the piecewise linear under-approximation of

the cumulative distribution function, with a concave restriction xlb, derived from the

empirical characteristic function.

Algorithm 1 Computing Φ̂l
w from Φ̂w

Evaluations of cumulative distribution function {(xp, Φ̂w(xp)}Np

p=1, desired error ϵ, desired
number of affine terms Ndr.
Output: affine terms of Φ̂l

w, {(aj, cj)}zj=1, restriction x
lb

1: continue ← true, p← Np

2: while continue = true do ∀j ∈ N[1,p−1], ∀k ∈ N[j,p]

3: aj ← Φ̂w(xp)−Φ̂w(xj)

xp−xj
4: cj ← Φ̂w(xp)−mjxj
5: yj,k ← ajxk + cj
6: errorj,k ← Φ̂w(xk)− yj,k
7: w ← Smallest j such that max

j
{errorj,k} < ϵ and errorj,k > 0

8: if w = ∅ or z > Ndr or ||w − p|| = 1 then
9: continue ← false
10: (aj, cj)}zj=1 ←{(0,Φw(xNp))}

⋃F , xlb ← xj
11: else, F ← {(aj, cj)}j=w, p = w
12: end if
13: end while

68

Algorithm 1 is based on the sandwich algorithm [65], and is demonstrated in Figure

5.1. At each of Np evaluation points, {(xp, Φ̂w(xp)}Np

p=1, the algorithm constructs affine

terms, and stores the affine terms which result in largest positive error close to ϵ. This

is repeated until the break conditions are met (line 8) with a total of z piecewise affine

terms. We choose an upper bound Φw(xNp) (line 10), as it is unreasonable to infer the

probability of an event beyond max
j∈N[1,Ns]

(p⊺iDWj), and it assures (5.8) holds on Ci. This

solves Problem 6.

5.5.3 Underapproximative, Conic Optimization Problem

We replace the individual chance constraints in (5.5b) and the lower bounds in (5.5c)

with a conic, convex reformulation, obtained from Algorithm 1, resulting in the following.

min
u,δ

E [(x− xd)⊺Q (x− xd) + u⊺Ru] (5.9a)

s.t.

∀i ∈ N[1,l]

∀r ∈ N[1,zi]





ai,r(qi − p⊺i (Ax0 + BU)) + ci,r ≥ 1− δi (5.9b)

qi − p⊺i (Ax0 + BU) ≥ xlbi (5.9c)

l∑

i=1

δi ≤ ∆, δi ≥ 0, ∆ ∈ [0, 1] (5.9d)

u ∈ UN (5.9e)

The optimization problem in (5.9) can be posed as a second-order cone program [35,

Sec. 4.4]. Algorithm 2 summarizes how the methods described in this section solve (5.9).

5.5.4 Convergence and Confidence Intervals

While (5.9) is convex and conic, its relationship to (3.2) is not clear, as it utilizes an

under-approximation of the approximate cumulative distribution function, Φ̂p⊺iDW(x) and

approximate moments of W. We first establish asymptotic convergence, then construct

69

Algorithm 2 Underapproximative, conic optimization (5.9)

Time horizon N, Ts, polytopic set {P, q}, samples {wj}Ns
j=1, (5.6a), (5.6b), evaluation

points Np, desired error ϵ, desired number of affine terms Ndr, smoothing matrix Σ.
Output: Open loop input u, risk allocation δ

1: for i ∈ N[1,l] do
2: Let C = [min

j∈N[1,Ns]

(p⊺iDWj), max
j∈N[1,Ns]

(p⊺iDWj)]

3: {(xp,Φp⊺iDW(xp)}Np

p=1 ← Using (2.3) and (5.6a).

4: {(ai,r, ci,r)}zir=1 and xlbi ← From Algorithm 1
5: Let Ci ← [xlbi ,∞]
6: end for
7: E[W], E[W2]← Using (2.4) and (5.6b).
8: Cw ← E[W2]− (E[W])2

9: {u, δ} ← Solve (5.9).

Figure 5.2: (Top) Approximation Φ̂y(x) (yellow) of Φy(x) (red) with 80% confidence
interval bands (blue) for 10, 100, and 1000 samples. (Bottom) Convergence of E[y] and
E[y2]. We presume y = fy1 + (1 − f)y2 for a Bernoulli random variable f , with y1,
y2, drawn from a gamma distribution Gam(k = 2, θ = 5), and a uniform distribution
Unif[0, 5], respectively.

confidence intervals to describe a relationship to (3.2).

Theorem 5.1. If φ̂W(t) converges in probability to φW(t) as Ns → ∞, every feasible

solution of (5.9) is feasible for (3.2).

Proof. By [97, Thm 2.1] φ̂W(t) converges to φW(t) as Ns → ∞. By the Portmanteau

theorem, the cumulative distribution function converges [102, Thm. 2.1]. For φ̂W(t) that

is differentiable at zero, then by (5.6b), the moments converge [26, Thm. 2.3.2].

Remark 5.1. The ECF converges at a rate
√
Ns [95, Sec. 3].

70

Asymptotic convergence establishes the relationship between our convex formulation

and the original problem, but it is not practical in order to solve the reformulation quickly

nor does it guarantee that (5.9b) is an under-approximation. We provide confidence

intervals on the cumulative distribution function, a worst-case under-approximation.

Definition 5.2 (Dvoretzky–Kiefer–Wolfowitz Inequality [103]). Given an empirical cu-

mulative distribution function, Φ̂E
p⊺iDW

(x), from Ns samples, the probability that the worst

deviation is above some ϵE is

P
{
sup
x∈R

(
|Φ̂E

p⊺iDW(x)− Φp⊺iDW(x)| > ϵE

)}
≤ α (5.10)

for α = 2e−2Nsϵ2E .

Hence for a desired confidence level α, using Ns samples, we have ϵE = ((2Ns)
−1

ln (2/α))1/2. To make use of (5.10) for Φ̂, we make the following assumption.

Assumption 5.1. For x ∈ Ci, |Φ̂E
p⊺iDW

(x)− Φ̂p⊺iDW(x)| ≤ ϵD.

Assumption 5.1 is dependent upon Σ and Ns, and reasonable for Σ chosen to avoid

under- or over-smoothing. Both terms converge to Φp⊺iDW(x) as Ns → ∞, so their

difference tends to zero [25, Thm. 20.6].

Theorem 5.2 (Confidence Interval for Φ̂p⊺iDW(x)). Given Def. 5.2 and Assumption 5.1,

we have that with probability 1− α,

|Φ̂p⊺iDW(x)− Φp⊺iDW(x)| ≤ ϵE + ϵD (5.11)

Proof. For x ∈ Ci, by Def. 5.2 and by the least upper bound property [104, Def. 5.5.5],

we have that |Φ̂E
p⊺iDW

(x) − Φp⊺iDW(x)| ≤ ϵE is satisfied with probability 1 − α. By the

properties of absolute value [104, Prop. 4.3.3],

Φ̂E
p⊺iDW(x)− ϵE ≤ Φp⊺iDW(x) ≤ Φ̂E

p⊺iDW(x) + ϵE (5.12)

71

By Assumption 5.1 and the properties of absolute value,

Φ̂p⊺iDW(x)− ϵD ≤ Φ̂E
p⊺iDW(x) ≤ Φ̂p⊺iDW(x) + ϵD (5.13)

Since Φ̂p⊺iDW(x), Φ̂E
p⊺iDW

(x), and Φp⊺iDW(x) are positive, bounded, right-hand continuous

functions [25], we combine (5.12) and (5.13), so that Φ̂p⊺iDW(x)− ϵE − ϵD ≤ Φp⊺iDW(x) ≤

Φ̂p⊺iDW(x) + ϵE + ϵD. Thus, we have (5.11) by the properties of absolute value.

Corollary 5.1. Given Φ̂l
p⊺iDW

(x), which under-approximates Φ̂p⊺iDW(x) according to (5.8)

on Ci, and the confidence interval ϵD + ϵE in (5.11) with likelihood 1 − α, we have

Φ̂l
p⊺iDW

(x)− ϵ− ϵE − ϵD ≤ Φp⊺iDW(x) with likelihood 1− α.

Proof. Follows directly from (5.8) and (5.11).

Corollary 5.1 establishes a worst-case under-approximation to the true cumulative

distribution function. A similar approach can be taken for E[W] and E[W2], using

results from [105] and [106], respectively. However, because the approximate moments

are cheap to compute (i.e., 3.22 seconds for 106 samples), numerical approximations can

be quite accurate (Figure 5.2). In contrast, the computational cost of sampling is high

for the chance constraint under-approximation.

Algorithm 2 and the optimization reformulation (5.9), along with convergence results

and confidence intervals in this section, solve Problem 7.

5.6 Examples

We demonstrate our approach on two examples. We presume Ns = 1000, Np = 1000,

ϵ = 1× 10−3, Ndr = 20, and ∆ = 0.2. In each case, we compare our method to a mixed-

integer particle control approach [7], which uses disturbance samples (we chose 50) to

compute an open-loop controller. To do so, we used Monte-Carlo simulation with 105

disturbance sequences. All computations were done in MATLAB with a 3.80GHz Xeon

72

processor and 32GB of RAM. The optimization problems were formulated in CVX [107]

and solved with Gurobi [108]. The inversion (2.3) uses CharFunTool [30] and system

formulations are implemented in SReachTools [109]. We use [110], which employs linear

diffusion and a plug-in method, to compute Σ.

5.6.1 Double Integrator

Figure 5.3: (Top) Mean trajectories for the double integrator. Algorithm 2 satisfies
the desired constraint satisfaction likelihood, while particle control [7] does not. The
reference trajectory is chosen to test constraint violation. (Bottom) Mean stage cost and
control input. Algorithm 2 has higher stage cost due to constraint satisfaction.

Consider a double integrator

xk+1 =



1 Ts

0 1


xk +



T 2
s

2

Ts


uk +wk (5.14)

with state xk ∈ R2, disturbance wk ∈ R2, input uk ∈ Uk = [−100, 100] ⊂ R, sam-

pling time Ts = 0.25, and time horizon N = 10. Disturbance samples are drawn in-

dependently for each dimension, from a uniform distribution Unif[−5, 5] on w1, and

73

Table 5.1: Empirical evaluation of the constraint satisfaction likelihood and mean com-
putation time, based on 105 samples.

Algorithm 2 Particle Control
Example 1−∆ Time (s) 1−∆ Time (s)

Double Integrator 0.912 2.502 0.697 144.6
Hypersonic Vehicle 0.889 5.395 0.639 31.563

from a scaled gamma distribution 0.005 · Gam(k = 8, θ = 0.5) on w2. The cost

function has Q10I22×22, R = 10−2I10×10. The time-varying constraint set is Xk =
{
k ∈ N[0,N] × R2 : p1k + q1 ≤ x1 ≤ p2k + q2

}
with p1 = −p2 = −2, q1 = −q2 = −50.

The reference trajectory, Xd = [50 0]⊺, was chosen intentionally to be outside of the

constraint set, to test constraint violation.

While the mean state trajectories from Algorithm 2 and from particle control are

similar (Figure 5.3), the stage cost, i.e. the cost at each time, and the control trajectories

differ. Algorithm 2 exceeds the constraint satisfaction likelihood of 0.8, while particle

control falls well below (Table 5.1). This is due to the fact that Algorithm 2 is based

on 1000 disturbance samples, while particle control is based on only 50 (from inherent

undersampling due to computational cost). The higher cost for Algorithm 2 is incurred

because of constraint satisfaction.

5.6.2 One-way Hypersonic Vehicle

Consider a hypersonic vehicle with longitudinal dynamics

ḣ = V sin(θ − α)

V̇ = 1
m
(T (Ψ, α) cosα−D(α, δe))− g sin(θ − α)

α̇ = 1
mV

(−T (Ψ, α) sinα− L) +Q+ g
V
cos(θ − α)

θ̇ = Q

Q̇ = M(α, δe,Ψ)/Iyy

(5.15)

74

Figure 5.4: (Top) Mean trajectories for the hypersonic vehicle. Constraint satisfaction is
above the desired likelihood with Algorithm 2, but not with particle control [7]. (Bottom)
Mean stage cost and input. The particle control cost is low because constraints are not
satisfied.

with state x = [h V α θ Q]⊺ and input u = [Ψ δe]
⊺, that includes fuel-to-air ratio

Ψ and elevator deflection δe [8]. We linearize (5.15) about the trim condition, xd =

[85000 ft, 7702 ft/s, 0.026 rad, 0.026 rad, 0 rad], which is also the reference trajectory,

and ud = [0.25, 0.2 rad], and add a disturbance w ∈ R2, which affects ḣ and V̇ only,

with w1, w2 drawn from a scaled Weibull distribution, 2 ·Weib(shape = 5, θ = 4), and

a gamma distribution, Gam(shape = 5, θ = 1), respectively. We discretize in time with

Ts = 0.25, N = 10. The cost function has Q10I55×55 and R = 10−2I20×20. The constraint

set, Xk = {k ∈ N[0,N] × R5 : h ∈ [85000 ft, 85200 ft], V ∈ [7650 ft/s, 7750 ft/s]}, and

input constraints Ψ ∈ [0.2, 1.2], δe ∈ [−0.26 rad, 0.26 rad] arise from the flight envelope

and the operational mode [111–113].

Comparing Algorithm 2 to the particle filter approach, mean trajectories (Figure 5.4)

show a similar trend as in Section 5.6.1. While constraints are satisfied under Algorithm 2

with at least the desired likelihood, particle control violates the altitude constraint, and is

excessively conservative with respect to the speed constraint. The constraint satisfaction

75

likelihood is 0.889 for Algorithm 2, but only 0.639 for particle control (Table 5.1).

5.7 Conclusion

In conclusion, this chapter presented a novel approach for solving stochastic optimal

control problems for linear systems in the presence of unknown uncertainty. By lever-

aging empirical characteristic functions, we were able to compute both the cumulative

distribution function and moments from sampled data, constructing a convex, conic re-

formulation of the control problem. This approach allows for probabilistic bounds on the

solution, offering a flexible, sample-driven method that balances accuracy and computa-

tional efficiency. The methods were demonstrated on practical examples, showing that

our algorithm provides reliable performance with probabilistic guarantees on constraint

satisfaction.

76

Chapter 6

Distributional Representation of

Value Functions for Reinforcement

Learning

6.1 Introduction

Reinforcement learning in stochastic settings is limited by what is easy to compute, e.g.

the average cost [31,114]. However, being able to compute other metrics of interest such

as Value-at-Risk, Conditional-Value-at-Risk, expectiles, etc. is important to understand

the performance of the system through the cost distribution [115,115,116]. For example,

it would be of interest to understand how large the tails are for the cost distribution,

despite the cost distribution having high average performance [117]. In this chapter,

we first propose that characteristic functions are an effective representation of the cost

distribution as we can construct them from empirical observations. Second, we show that

we can derive metrics of the cost distribution, such as Value-at-Risk, Conditional-Value-

at-Risk, and expectiles from the cost distribution.

77

6.2 Related Work

In distributional reinforcement learning, authors utilize performance metrics to improve a

controller’s performance across the entire distribution [115,115,116]. We emphasize also

a distributional representation of the cost is not new and the author in [118] explores

characteristic functions in the value iteration context. Policy gradient methods are pop-

ular within reinforcement learning for their wide applicability and commercial success, of

the most popular being proximal policy gradient (PPO) [119]. With such policy gradient

methods, many only optimize the control policy over the average cost [114, 119, 120].

In both stochastic optimization and optimal control, metrics other than the average

cost are commonplace. For example, in stochastic optimal control, many authors study

risk-sensitive stochastic optimal control for the quadratic regulator [121], model pre-

dictive control [122–124], and reachability [125]. Works in reinforcement learning also

look into risk-sensitivity to improve the controller’s, i.e. agent’s, ability to handle rare

situations [126].

6.3 Main Contribution and Organization

The main contribution of this chapter is a distributional representation of the cost from

which we can derive its cost in closed form, but also other performance metrics including,

but not limited to, Value-at-Risk, Conditional-Value-at-Risk, and expectiles. We represent

the distribution of the cost via characteristic functions, from which we derive closed form

expressions for the above performance metrics. We do not explore the entire pipeline

to conduct reinforcement learning via policy gradients or value iteration but utilize the

derivations as a starting point for future work.

The chapter is organized as follows. Section 6.4 overviews the preliminaries specif-

ically needed for reinforcement learning and where cost arises along with the problem

formulation. Section 6.5 covers the derivation of the following performance metrics:

78

Value-at-Risk, Conditional-Value-at-Risk, and expectiles from a characteristic function

representation of the cost. As a proof of concept, Section 6.6 presents the derivation of

various performance metrics through a simple, toy examples.

6.4 Reinforcement Learning Preliminaries and Prob-

lem Statements

6.4.1 Costs

A stage cost is a mapping from state and/or action to the set of real numbers.

Definition 6.1 (Stage Cost). A stage cost under stochastic policies is a mapping g :

X → R,

ct = g(xk), (6.1)

where ct ∈ R denotes the cost incurred for state at timestep t ∈ N.

The stage cost can also be a mapping g : X × U × W → R, i.e. it depends on

the current action, uk, and disturbance, w but we defer adding complexity into the

exposition. Nonetheless, with a stage cost, we can formulate a total cost over a time

horizon, N , presuming a fixed policy π.

Definition 6.2 (Total Expected Cost). The total expected cost is the expected value of

sum of stage costs, conditioned on the state at initial time, t = 0,

J0,π(x) = E

[
N−1∑

t=0

γtg(xk)

∣∣∣∣∣x0 = x

]
(6.2a)

= γ0g(x) + E

[
N−1∑

t=0

γtg(f(xk, π(xk),w))

∣∣∣∣∣x0 = x

]
, (6.2b)

where γ ∈ (0, 1) is a discount factor for each stage and x0 = x and, as a result, is a

deterministic variable.

79

We can expand the expected total cost in terms of integrals over the state and action

transition kernels,

J0,π(x) =

∫

XN−1

∫

UN−1

N−1∑

t=0

γtg(xt) dPxN−1
(xN−1|xN−2, uN−2)dPπ(uN−2|xN−2)

· · · dPx1(x1|x0 = x, u0)dPπ(u0|x0 = x). (6.3)

The integrals are over state and action and, as a result, amount to 2(N−1) integrals. The

integral form also elucidates a decomposition known as a value function or cost-to-go.

Definition 6.3 (Cost-To-Go). A value function is a mapping Jt : N×X → R,

JN−k,π(x) = g(x) + γE[JN−k+1,π(f(s, π(x),w))|s], k = {2, . . . , N} (6.4)

Another, intuitive way to define the cost-to-go is in terms of a value function, where

Vk(x) = JN−k(x), thus

Vk+1,π(x) = g(x) + γE[Vk,π(f(s, π(s,v),w))|s], k = {1, . . . , N}. (6.5)

Note, V1,π(x) = JN−1,π(x) = g(x) and VN,π(x) = JN−N,π(x) = J0,π(x). Should we need to

extend the time horizon for example by 1, then Vk=N+1,π = JN−(N+1),π = J−1,π, thereby

allowing us to continue the backward recursion indefinitely.

While there are variations in total expected costs, such as infinite and finite horizon

costs, we will only focus on infinite, discounted costs. Discounted, infinite horizon total

80

expected costs presume N =∞, which is shorthand for

Jπ(x) = lim
N→∞

J0,π(x), (6.6a)

= lim
N→∞

γ0g(x) + E

[
N−1∑

t=1

γtg(xk)

∣∣∣∣∣x0 = x

]
, (6.6b)

= lim
N→∞

g(x) + γE[J1,π(f(s, π(s,v),w))|s]. (6.6c)

We could use lim sup here to avoid cases where the limit does not exist [127, Ch.1].

However, we will just acknowledge when the limit may not exist. For the value function

in (6.5), limk→∞ Vk(x) = J(x), ∀s ∈ X . We can make this argument a bit cleaner by

introducing the Bellman operator.

Definition 6.4 (Bellman Operator). Let R(X) be the set of functions J : X → R. Given

a policy, π, the Bellman operator is an abstract operator, Nπ : R(X)×X → R,

Nπ(Jπ)(x) = g(x) + γE[Jπ(f(s, π(s,v),w))|s]. (6.7)

With this operator, we will arrive at the value function convergence by the following

steps. First, we note that the Bellman operator is monotone. Second, we show that is

a contraction mapping. Finally, that this contraction mapping has a unique fixed point

via the Banach fixed point theorem.

Lemma 6.1 (Bellman Operator is Monotone). Suppose we are given a policy π. If

J1,π, J2,π ∈ R(X), and J1,π(x) ≤ J2,π(x), ∀s ∈ X , then

Nπ(J1,π)(x) ≤ Nπ(J2,π)(x), ∀s ∈ X . (6.8)

Definition 6.5 (Contraction Mapping). Let (Z, d) be a metric space. A mapping L :

Z → Z is a contraction mapping when there exists a constant a ∈ [0, 1) such that for all

81

z1, z2 ∈ Z, we have

d(L(z1), L(z2)) ≤ d(z1, z2). (6.9)

Lemma 6.2 (Bellman Operator is a γ−Contraction). Suppose we have a policy π and

operating on a metric space (Z, d∞). If the Bellman operator, Nπ, is monotone, then the

Bellman operator is a γ-contraction mapping. That is,

||Nπ(J1,π)(x)−Nπ(J2,π)(x)||∞ ≤ γ||J1,π − J2,π||∞, ∀s ∈ X . (6.10)

Definition 6.6 (Fixed Point). Suppose we are given a mapping L : R → Z. For a point

z ∈ Z such that,

L(z) = z, (6.11)

is a fixed point of L.

Theorem 6.1 (Banach Fixed Point Theorem). If L : Z → Z is a contraction mapping

on a complete metric space (Z, d), then there exists a unique ẑ ∈ Z such that L(ẑ) = ẑ.

In addition, with initial point z0 ∈ Z and zk+1 = L(zk) where k ∈ N, then limk→∞ zk = ẑ.

Proposition 6.1 (Bellman Operator has a Unique Fixed Point). Suppose (Z, d∞) is a

complete metric space and g(x), ∀s ∈ X is bounded. If the Bellman operator, Nπ, is a

contraction mapping, then the Bellman operator has a unique fixed point

Jπ(x) = Nπ(Jπ)(x), ∀s ∈ X . (6.12)

Thus, from an initial point V0 ∈ R(X) and Vk+1,π = N (Vk,π) where k ∈ N, limk→∞ Vk,π =

Jπ (i.e. limk→∞ Vk,π(x) = Jπ(x), ∀s ∈ X).

82

6.4.2 Optimal Costs and Policy

The optimal solution of the stochastic optimal control problem in finite time is the

infimum of (6.2),

J∗
0,π(x) = inf

π

(
γ0g(x) + E

[
N−1∑

t=0

γtg(f(xk, π(xk),w))

∣∣∣∣∣x0 = x

])
. (6.13)

The backward recursion via cost-to-go and value function take similar modifications where

the optimal cost-to-go and value function are infimums of the expressions, which we

denote by J∗N − k and V ∗
k respectively.

Thus for the discounted, infinite time stochastic optimal control problem, the optimal

solution is,

J∗
π(x) = inf

π
lim
N→∞

(
γ0g(x) + E

[
N−1∑

t=0

γtg(f(xk, π(xk),w))

∣∣∣∣∣x0 = x

])
. (6.14)

We obtain a convergence of the optimal value function similar to the value function, i.e.

J∗(x) = limk→∞ V ∗
k (x), ∀s ∈ X . With this, we directly introduce the Bellman optimality

operator,

Definition 6.7 (Bellman Optimality Operator). Let R(X) be the set of functions Jπ :

X → R. Given a policy, π, the Bellman optimality operator is an abstract operator,

Nπ∗ : R(X)×X → R,

Nπ∗(Jπ)(x) = inf
π
(g(x) + γE[Jπ(f(s, π(s,v),w))|s]) . (6.15)

We can show that this operator is also a γ-contraction mapping and has a unique

fixed point, i.e. limk→∞ Tπ∗(V ∗
k,π) = limk→∞ V ∗

k,π = J∗
π .

83

6.4.3 Markov Decision Process Formalism

A Markov decision process encapsulates the problem data for a stochastic optimal control

problem.

Definition 6.8 (Markov Decision Process). A Markov decision process is a tuple (X ,

U , f, g, γ).

Note that the dynamics, f , are included here rather than the state transition kernel.

In addition, some Markov decision processes only mention the state transition kernel

as opposed to the dynamics as above, yielding the tuple (X ,U , Pxk+1
, g, γ) In addition,

some Markov decision processes include an initial state distribution, i.e. where the system

starts from, as part of the tuple making it (X ,U , f, g, γ, Px0).

6.4.4 Reinforcement Learning

Reinforcement learning is a study of efficient and scalable algorithms to solve Markov

decision processes. There is a large taxonomy of approaches labeled as reinforcement

learning such as value iteration and policy gradients [31, 114]. Value iteration follows

the exposition in Section 6.4.1 with variations should a controller/policy be given [118].

However, policy gradients requires additional steps. First make the following assumptions

of the policy function.

Definition 6.9 (Parameterized Stochastic Policy Function). A parametrized policy func-

tion is a function πθ where θ ∈ Rp modify the behavior of the mapping πθ : X × V → U .

For simplicity, we will derive everything in terms of the discounted finite horizon case,

which will also hold for the discounted, infinite horizon case. Policy gradient solves the

optimization problems in (6.2), starting from some s ∈ X by gradient descent,

θk+1 = θk +∇θkJ0,πθk (x), k ∈ N. (6.16)

84

To make the gradient descent step computationally practical, i.e. to not take the

gradient of J0, the following theorem uses the log-probability trick.

Theorem 6.2 (Policy Gradient Theorem). Given a parameterized stochastic policy func-

tion πθ and a cost function, J0,πθ , the gradient of the cost in (6.16) is reformulated as,

∇θJ0,πθ(x) = E

[
C(x)∇θ

(
N−1∑

t=0

log(Pπθ(A|xk))
)∣∣∣∣∣x0 = s

]
, ∀A ∈M(U) (6.17a)

= E

[
N−1∑

t=0

∇θ log(Pπθ(A|xk))C(xk)
∣∣∣∣∣x0 = s

]
(6.17b)

where

C(xk) =
N−1∑

τ=0

γτg(xt+τ), (6.18)

is the finite horizon, discounted cost as before but we evaluate from timestep t onward.

Note that there are a number of functions C : X → R which improve the total cost

minimization. This is due to the fact that C is evaluated through repeated simulations

of the system with a policy function, making it unstable. Such functions include the

Q-function,

Qπθ(xk, uk) = E

[
N−1∑

τ=0

γτg(xt+τ)

∣∣∣∣∣xt = xk, at = uk

]
, (6.19)

as well as the advantage function,

Aπθ(xk, uk) = Qπθ(xk, uk)− J0,π(xk). (6.20)

To evaluate such functions, an estimate of the total cost. We can use either empirical

sampling, Ĵ0,π, or an approximation, Ĵ0,π,ϕ both based on the current policy iteration.

The approximation uses empirical samples to obtain an estimate that could potentially

have better properties, such as smoothness. This approximation is typically done with a

85

neural network in the literature, with a mean squared error,

ϕk ∈ arg inf
ϕ

E
[
(Ĵ0,π(x)− Ĵ0,π,ϕ(x))2

]
, (6.21)

where ϕk are the updated parameters for the approximation of the total cost Ĵ0,π,ϕ.

Thus, at a high-level, the steps to find an optimal policy in the reinforcement learning

context are:

1. Evaluate the parameterized stochastic policy function (random weights at k = 0)

and compute samples of the state to approximate Ĵ0,π,ϕk .

2. Iterate the policy gradient step in (6.16) to obtain, πθk+1.

3. Iterate k and repeat from step 1 until convergence criteria is met.

There are variations on the steps above which seek to improve optimality. For example,

ensuring monotonic improvement in the policy optimization [120]. Others utilize clipping

to stabilize the optimization process [119].

6.4.5 Problem Statement

Problem 8. Given a Markov Decision Process (X ,U , Pxk+1
, g, γ) where the stationary

state transition kernel, Pxk+1
, does not have a closed form or is intractable to compute,

and a cost objective,

Jρ0,π(x) = ρ

(
N−1∑

k=0

γkg(xt);x0 = x

)
, (6.22)

where ρ : C ×X → R is a performance metric and C is the space of random variables, c,

find closed form expressions for performance metrics such as: i) Expectation, ii) Value-

at-Risk/quantiles [128], iii) Conditional-Value-at-risk [126], or iv) expectiles [129].

86

6.5 Method

We utilize characteristic functions to represent the underlying distribution of the total

cost within the function ρ in (6.22),

c(x) = g(x) + c̃, (6.23a)

c̃ =
N−1∑

k=1

γkg(xk). (6.23b)

The total cost has a direct representation when we use characteristic functions,

φc(t) = exp(itg(x))φc̃(t) (6.24)

where the complex exponential represents the first part of (6.23a) and φc̃ represents the

random variable in (6.23b).

From this, deriving expectation is straightforward, as it is merely the first derivative

of the characteristic function evaluated at zero as in Definition 2.2.

E[c] =
dφc

dt
(0) (6.25)

Value-at-Risk is simply a re-framing of the quantile function, in terms of a “risk” param-

eter, ∆.

Definition 6.10. The quantile function Q : [0, 1] → R associated with a cumulative

distribution function is the inverse of the cumulative distribution function, provided that

ΦgC(f(x))(x) is continuous and non-decreasing. Formally, for p ∈ [0, 1], the quantile

function is given by

Q(∆) = inf{c ∈ R : Φc(c) ≥ ∆}. (6.26)

In other words, Q(∆) returns the value c such that the probability of a random variable

being less than or equal to c is at least ∆.

87

Note that the quantile function requires the cumulative distribution function. We

can compute the cumulative distribution function directly from the characteristic func-

tion through Theorem 2.2. Thus, both performance metrics are attainable with known

properties of the characteristic functions.

Conditional-Value-at-Risk is a measure of tail behavior beyond Value-at-Risk [130].

Definition 6.11. Suppose c is a random variable which has a mean. The Conditional-

Value-at-Risk of the random variable, c, is

CVaR∆(c) = inf
c∈R

{
c+

1

∆
E[max(0, c− c)]

}
(6.27)

We derive the following theorem that enables the derivation of the metric directly

from the characteristic function.

Theorem 6.3. Given the cost as in (6.23a), then the Conditional-Value-at-Risk via the

cost characteristic function is,

CVaR∆(c) = inf
c∈R

{
c+

1

∆

dφmax(0,c−c)(0; c)

dt

}
, (6.28a)

φmax(0,c−c);c(t) =
1

2
[1 +φz(t)] +

i

2
[H(φz)(t)−H(φz)(0)], (6.28b)

φz(t) = φc(t) exp(−itc), (6.28c)

where we evaluate the derivative of the characteristic function at zero while we can still

evaluate the variable c in (6.28a).

Proof. The characteristic function in (6.28c) arises from the properties of the characteris-

tic function in Section 2.2.1. This characteristic function is then fed into the characteristic

function for a max function in (6.28b) [131]. From Definition (2.2), we can substitute for

the expectation in (6.27) with the derivative of the characteristic function as in Defini-

tion 2.2 evaluated at zero.

88

Theorem 6.3 utilizes the average, (2.4), from the derivative of the characteristic func-

tion in Definition 2.2 as well as the derivation of the characteristic function of the positive

part of a random variable [131].

Lastly, we investigate the expectile, which is a re-framing of the mean similar to how

the quantile in Definition 6.10 is a parameterized representation of the median [132].

Definition 6.12. Suppose c is a random variable which as a mean. The expectile is a

value c ∈ R found by determining when, for ∆ ∈ (0, 1),

∆E[max(0, c− c)] = (1−∆)E[max(0, c− c)], (6.29)

where the expectations are in terms of the random variable c.

Note that finding c such that (6.29) holds is a root finding problem [133]. As with the

Conditional-Value-at-Risk, we can compute the expectile from the characteristic function.

This involves us computing the expectations in (6.29).

Theorem 6.4. Given the cost as in (6.23a), then the expectations in finding the expectile

in (6.29) are,

E[max(0, c− c)] =
dφmax(0,c−c)(0; c)

dt
(6.30a)

E[max(0, c− c)] = dφmax(0,c−c)(0; c)

dt
(6.30b)

we evaluate the derivative of the characteristic function at zero while it is parameterized

by c in (6.29). Both (6.30a) and (6.30b) are

Proof. Follows similarly to Theorem 6.3.

Thus, with Theorems 6.3 and 6.4 show that a single distributional representation is

sufficient to derive various distributional metrics without needing to empiricially calclu-

late them separately.

89

6.5.1 Computational and Representation Considerations

In most approaches to reinforcement learning, the total cost is approximatied via function

approximation [31, 114]. As a result, poor approximation of the characteristic function

will result in poor representations of the performance metrics. For example, since the

average of the total cost in (6.23a) is the derivative of the characteristic function of

the total cost evaluated at zero, i.e. (6.25), an approximate characteristic function can

potentially have a poor approximation of the derivative. For Value-at-Risk, Conditional-

Value-at-Risk, and expectiles, the approximation of the characteristic function, which

informs the quality of the integral transforms involved will dictate how accurate the

metric is relative to the true value.

Another concern is the representation of the performance metrics. For risk metrics

such as conditional-value-at-risk, risk violations as a Markov decision process evolves over

time are not accounted for [134]. This distinguishes approaches that consider risk over

time, preventing paradoxes [135, 136], versus static assessments of risk, as we present

here. Here, we only consider the static assessment of the performance metrics for sake

of addressing the problem statement. Static assessments of risk nonetheless have been

used successfully on benchmarks in distributional reinforcement learning despite its lim-

itations [116,129].

6.6 Example

We empirically demonstrate the calculation of various performance metrics via charac-

teristic functions through a simple toy example. We presume a scalar linear system with

state x ∈ R

xk+1 = xk +wk, (6.31)

90

Table 6.1: The proposed characteristic function approach closely reflects the empirical
result. While this example is simple, the proof of concept shows promise for application
to reinforcement learning.

Performance Metric Proposed Empirical
Value-at-Risk 8.35 8.35

Conditional-Value-at-Risk 7.56 7.42
expectile 6.09 6.43

with Gaussian additive noise, wk ∼ N (0, 1) and the initial state be deterministic, x0 = 1.

Let the cost function, g, be a linear function,

g(x) = x. (6.32)

Note that by the properties of the standard Gaussian, the sum of Gaussians increases

the variance by one as the time horizon grows, k ∈ N, but the average will remain the

same,

µxk+1
= µxk

+ µwk
(6.33a)

σ2
xk+1

= σ2
xk

+ σ2
wk
. (6.33b)

We conduct all experiments on a Macbook Pro, with an M3 Pro CPU and 16GB of

RAM in MATLAB. Computations with the characteristic functions are done using the

CharFun toolbox [30]. Table 6.1 presents a comparison of the characteristic function

approach and the empirical computation via 1,000,000 samples. With a time horizon of

N = 10, the characteristic function derived results are near the empirically computed

quantity, but not exact for both Conditional Value-at-Risk and expectiles. This is likely

due to the fact that we have to employ numerical quadrature for the Hilbert transforms

in (6.28b) and take a numerical derivative atop this quadrature.

91

6.7 Conclusion

This chapter has presented a novel starting point for reinforcement learning to be perfor-

mance metric agnostic by leveraging the distributional representation of value functions.

Specifically, we introduced computational and representation techniques that account for

the full distribution of returns, rather than just the expected value via the characteristic

function. As part of future work, we will focus on the dynamic enforcement of risk over

time as well as efficient computation via the characteristic function. Additionally, we

plan to explore a characteristic function variant of the policy gradient method to provide

a performance metric agnostic means of improving the controller. Finally, we aim to

validate the proposed approach by applying it to standard reinforcement learning bench-

marks, ensuring its scalability and robustness in real-world applications [137]. These

future directions will further strengthen the integration of distributional representations

of the cost into reinforcement learning, enriching algorithms which already exist and

spawn exploration for new algorithms that improve performance.

92

Part III

Probabilistic Verification of Neural

Networks

93

Chapter 7

Analytic Distribution Propagation

Through ReLUs

7.1 Introduction

Neural networks have become a powerful tool in recent years for a large class of appli-

cations, including image classification [138], speech recognition [139], autonomous driv-

ing [140], drone acrobatics [141], and many others. The formal verification of neural

networks is crucial for their wider adoption in safety-critical scenarios. The main dif-

ficulty with the use of (deep) neural network for safety-critical applications lies in the

demonstrated sensitivity of deep neural networks to input uncertainties and/or adver-

sarial attacks. For example, in the context of image classification, adding even a small

amount of noise to the input set can greatly change the network output [142, 143]. For

safety-critical applications, deep neural networks should be robust or insensitive to in-

put uncertainties, a property that be tested by verifying that the network prescribes to

certain output specifications subject to various inputs.

94

x0
1

x0
2

x0
n

x1
m

x1
1

w1
1,1w1
1,1

w1
1,2w1
1,2

w1
1,nw1
1,n...

...

x1 =
[
x1
1 = ReLU

(
y1
1

)
· · · x1

m = ReLU
(
y1
m

)]⊺

y1 = W 1x0 + b1

⇕

φx1
1
(t) =

1

2
(1 +φy1

1
(t)) +

i

2

[
H(φy1

1
)(t)−H(φy1

1
)(0)

]

...

φx1
m
(t) =

1

2
(1 +φy1

m
(t)) +

i

2

[
H(φy1

m
)(t)−H(φy1

m
)(0)

]

φy1(t) = exp(it⊺b1)φx0((W 1)⊺t)

Figure 7.1: The characteristic function of the input data can be propagated through a
ReLU network analytically. This enables one to query the characteristic function of the
network to answer out-of-distribution questions at the output. The use of characteristic
functions also circumvents difficulties in cases where the underlying distributions do not
have any moments or moment-generating functions (e.g., Cauchy distribution).

7.2 Related Work

Verification frameworks for deep neural networks can be classified as either deterministic

or probabilistic. In exact verification, a deterministic input set is mapped to an output

set; if any output falls outside the safety set, the verification fails. This is referred to

as worst-case safety verification since the input set can be treated as an uncertainty

set centered around some nominal input. Given some input x0 and a neural network

f : x 7→ y, deterministic verification can be posed as a nonlinear program (NLP), with the

objective function quantifying satisfaction of some safety rule y ∈ S. In general, though,

the resulting NLP is intractable using standard off-the-shelf solvers. Several works have

used mixed-integer linear programming (MILP) [144,145], Satisfiability Modulo Theories

(SMT) [146,147], or semi-definite programming (SDP) [148–153], to recast and solve this

NLP problem. In recent work, given an input or an output polytope, one can generate

the respective output or input polytope through the ReLU neural network [154].

In probabilistic verification, the input set itself is uncertain and potentially un-

bounded. Random uncertainties naturally arise in practical applications, for example,

from signal processing, environmental noise, and other exogenous disturbances. For ex-

95

ample, impulse noise from Cauchy distributions arise in varioius sensing and imaging

domains [155,156]. In this context, the uncertainties are modeled in terms of probability

distributions, and the verification problem is to find the probability that the output is

contained in a safety set given a random input from the input set. Given a random

input vector x0 and a neural network f , the probability that the output random vector

y = f(x0) lies in some safety set X is greater than some threshold 1−∆ is given by the

chance constraint

Py(X) ≥ 1−∆. (7.1)

Relatively few works have studied the verification of deep neural networks in a proba-

bilistic setting; most of the existing approaches involve under- or over-approximations.

In [157], an output confidence ellipsoid is estimated via an SDP that is an affine and

quadratic relaxation, and then equivalence between confidence sets and chance con-

straints is used to solve the verification problem. PROVEN [158] accommodates bounded

disturbances, using linear approximations of activation functions and concentration in-

equalities to generate bounds on (7.1). In [159], a similar approach is taken with Cramer-

Chernoff concentration inequalities, but because it is based on sampling, a linear approx-

imation of the activation functions is not needed. Generative deep neural networks are

considered in [160, 161], which formulates an upper bound on the chance constraint via

duality. Lastly, a scenario optimization approach in [162] constructs a lower bound on

(7.1) that depends upon the number of samples.

7.3 Main Contribution and Organization

In this chapter, the main contribution is the interpretion of a deep neural network as

a dynamical system [163–165] that shapes distributions of data and view the verification

problem as one of propagating a distribution through a linear stochastic system to form

an output distribution that needs to meet the safety constraints. We focus on deep neural

96

networks with rectified linear units (ReLU) activation functions, as the piece-wise linear

nonlinearity of ReLU have known integral operators which allow us to propagate a given

input distribution. Specifically, as we denote in Figure 7.1, given an input distribution’s

characteristic function , we can recover the characteristic function of the output of a

ReLU deep neural network with, known error accuracy, from which we can verify the

output chance constraint (7.1). Therefore, we can provide rigorous statistical guarantees

for the performance of any given ReLU neural network for any input distribution.

The chapter is organized as follows. Section 7.4 introduces the preliminaries and

problem formulation. Section 7.5 presents the main properties of characteristic functions

we use in our work and states the main result that allows us to propagate a characteristic

function through a ReLU neural network. Section 7.5 Section 7.7 presents the safety

verification algorithm given the machinery developed in the previous section applied to

output polytopes. Examples demonstrating the theory are given in Section 7.8, and we

provide some concluding remarks and avenues for future work in Section 7.9.

7.4 Preliminaries and Problem Statement

We consider an L-layer ReLU deep neural network with input x0 ∈ Rh0 and output

y = f(x0) = xl ∈ RhL , with f being the composition of L layers, that is, f = fL−1◦· · ·◦f0.

The kth layer of the ReLU network corresponds to a function fk : Rhk → Rhk+1 of the

form

xk+1 = fk(x
k) = σ(W kxk + bk), (7.2)

whereW k ∈ Rhk+1×hk is the weight matrix, bk ∈ Rhk+1 is the bias, and σ(xkj) := max(0, xkj)

is the component-wise ReLU function, where xkj is the jth component of xk ∈ Rhk . We

assume that the last layer is an affine transformation, that is, xL = WL−1xL−1 + bL−1.

Note that convolution layers can be captured by this framework, as they correspond to

linear layers W k endowed with a particular matrix structure.

97

Let the mapping f : X 7→ Y with X and Y subsets of Euclidean spaces of given

dimensions, and let S ⊂ Y denote the output safety set. We would like to answer the

following problems:

Problem 9. Given a random sample from the input set x = x(ω) ∈ X , where ω ∈ Ω,

what is the probability that the output y = f(x) ∈ Y lies in the output set S? Equivalently,

given some verification threshold p ∈ (0, 1], is the chance constraint (7.1) satisfied for all

x ∈ X?

Problem 10. Given the numerically computed output distribution ψ̂y, what is the relative

error in the probability of satisfaction of the output chance constraint compared to that

of the true output distribution ψy?

To solve the above problems, we use the machinery of characteristic functions to

propagate a distribution through a ReLU network allowing us to perform the verification

task.

7.5 Propagation of a Characteristic Function through

a ReLU Network

Given an initial characteristic function φ0 that represents the input distribution, we

compute the output characteristic function φL. At an arbitrary layer k this propagation

can be split into a two-step process: (i) propagate the characteristic function through

the affine layer to obtain φyk , where yk = W kxk + bk, and (ii) propagate the interme-

diate characteristic function through the ReLU layer to obtain the output φxk+1 . Using

Property P5 of characteristic functions, it is straightforward to compute

φyk(t) = exp(it⊺bk)φxk((W k)⊺t). (7.3)

98

Given the intermediate characteristic function φyk , we can compute the component-wise

characteristic function after the ReLU, based on the work of [166], which is summarized

below.

Corollary 7.1. The characteristic function of the random variable x+ := max(0,x) is

given by

φx+(t) := E[eitx+] =
1

2
[1 +φx(t)] +

i

2
[H(φx)(t)−H(φx)(0)] . (7.4)

Let x ∈ R be a scalar random variable, and introduce the operator

Ja(φ)(t) :=
1

2πi

∫

R
e−iaηφ(t+ η)

dη

η
. (7.5)

Using the change of variables u 7→ −u, one may equivalently write (7.5) as

Ja(φ)(t) =
1

4πi

∫

R
[e−iaηφ(t+ η)− eiaηφ(t− η)] dη

η
. (7.6)

Proposition 7.1. Let x ∈ R be a real-valued random variable with characteristic function

φx. Then,

Ja(φx)(t) =
1

2
E[eitfx sgn(x− a)]. (7.7)

Proof. The proof is straightforward using the definition of Ja in (7.5) and Fubini’s theo-

rem. See [166] for details.

Next, consider the ReLU operator ReLU(x) = max(0, x). Using the identity

2eitmax(0,x) = 1 + eitx + eitx sgn(x)− sgn(x), (7.8)

we can derive the CF of the ReLU operator [166, Equation 8]. From the identity in (7.8),

99

take the expectation of both sides, which yields

2E[eitx+] = 1 + E[eitx] + E[eitx sgn(x)]− E[sgn(x)]. (7.9)

Using (7.7) from Proposition 1 with a = 0 we get the desired result. Comparing the

alternative definition of Ja in (7.6) with the definition of the HT, we can identify J0 =
i
2
H,

which implies that

φxk+1
j

(tj) =
1

2
(1 +φyk

j
(tj)) +

i

2

[
H(φyk

j
)(tj)−H(φyk

j
)(0)

]
, (7.10)

where tj = e⊺j,hk+1
t isolates the jth element of the frequency variable t. Applying the

characteristic function update (7.4) to each neuron j for each layer k results in the

update (7.10).

7.6 Complexity of Propagation

Given the machinery of how to propagate characteristic functions through a ReLU net-

work via (7.3) and (7.10), we would like to know how many computations are actually

being done per layer. Exact neural network verifiers face an exponential run-time barrier

due to the coupling between all neurons in the spacial domain [148]. Inexact verifiers

still have to solve an associated convex program, which is bottlenecked by the solver

speed and tolerances. The accuracy of our method, on the other hand, is solely due to

the refinement of the frequency grid for the characteristic function evaluations and the

parameters used to numerically compute the HT, that is, no optimization is needed for

verification.

100

7.6.1 Frequency Domain Gridding

In order to numerically propagate the characteristic function through the ReLU network,

one needs to properly setup the bounds for computing the characteristic function. Since

the characteristic function is defined for all points t ∈ R, we need to setup a grid {tm}Nm=1

with some cutoffs −∞ < d− < d+ <∞ and evaluate the characteristic function at these

grid points. As we shall see, our method is only linearly complex in the total number

of grid points used to compute the characteristic function. Given that the characteristic

function reduces down to zero at its tails, we can heuristically find the cutoff points with

a convergence-type condition of the form

d− : = argmaxt|φ(t)−φ(t− ϵ)| ≤ ϵ, (7.11a)

d+ : = argmint|φ(t+ ϵ)−φ(t)| ≤ ϵ. (7.11b)

7.6.2 Affine Layer Propagation

To analyze the complexity of computations in our frequency domain-based formalism, we

can break up the computations between the affine and max layers. The propagation of

the joint characteristic function is given in (7.3), however in practice, we propagate each

component φ
(j)
k individually, then parallelize over each marginal characteristic function.

In the spacial domain, breaking up the affine layer propagation into components yields

ykj =

hk∑

ℓ=1

W k
j,ℓx

k
ℓ + bkℓ , j ∈ {1, . . . , hk+1}. (7.12)

Since this is just an affine transformation of the random variables xkℓ , we can use prop-

erties P4 and P5 of characteristic functions to get

φyk
ℓ
(tm) = exp(itmb

k
ℓ)

hk∏

ℓ=1

φxk
ℓ
(W k

j,ℓtm), (7.13)

101

where tm ∈ [d−, d+] is a grid point in the frequency domain. From (7.13), there are

(hk+1) terms in the product for each grid point and each component, which results in a

complexity of O(hkhk+1N). Since the number of grid points N ≫ hk for all layers k, this

essentially becomes O(N), which is linear in the resolution of the grid. As a result, this

implies we can construct a very fine grid - hence capturing the data very well - without

major losses in computational speed.

7.6.3 Max Layer Propagation

The propagation of the characteristic function through the max layer requires the compu-

tation of two Hilbert transforms, as per (7.10), for each grid point and neuron. The dis-

crete HT requires 2M+1 terms in the sum, which implies a complexity of O(hk+1MN) ∼

O(MN) across all neurons for one layer [167].

Consider the set C(d−,d+) := {z ∈ C : Im(z) ∈ (d−, d+)}, for some −∞ < d− < 0 and

0 < d+ <∞. A function f is in H(C(d−,d+)) if it is analytic in C(d−,d+) and satisfies

∫ d+

d−

|f(x+ iy)| dy → 0, x→ ±∞,

∥f∥± := lim
ϵ→0+

∫

R
|f(x+ i(d± ∓ ϵ))| dx < +∞.

From [168], we can approximate the Hilbert transform of a function f ∈ H(C(d−,d+)) via

Hh,∞(f, 0)(x) =
∞∑

m=−∞

f(mh)
1− cos(π(x−mh)/h)

π(x−mh)/h , (7.14)

with the error bound

|Hf(x)−Hh,∞(f, 0)(x)| ≤ e−πd0/h

πd0(1− e−πd0/h)
(∥f∥− + ∥f∥+), (7.15)

where d0 = min(−d−, d+). Note that the error decays exponentially in 1/h, which is an

102

attractive property. The truncated approximation of (7.14) is given by

Hh,M(f)(x) =
M∑

m=−M

f(mh)
1− cos(π(x−mh)/h)

π(x−mh)/h ,

which can be equivalently written as

Hh,M(f)(x) =
M∑

m=−M

f(mh) sinc

(
x−mh

2h

)
sin

(
x−mh

2h

)
, (7.16)

where sinc(x) := sin(πx)/(πx). The truncation error of (7.16) depends on the tail be-

haviour of f(· + ia). In the context of characteristic functions, the following holds in

general:

|f(x+ ia)| ≤ κ|x|n exp(−c|x|ν), x ∈ R, (7.17)

for some κ, ν, c > 0, and n ∈ R. If f satisfies (7.17), then the truncation error is bounded

by (7.15) plus the additional term

Th,M :=
2κ

νc(n+1)/νh
Γ

(
n+ 1

ν
, c(Mh)ν

)
, (7.18)

where Γ(s, b) :=
∫∞
b
e−tts−1 dt is the incomplete Gamma function. The dominant term

in the truncation error of level M is thus exp(−c(Mh)ν and thus decays exponentially in

Mh. To this end, we can choose h = h(M) so that the discretization errors from (7.15),

which decay according to exp(−πd0/h), and the truncation errors from (7.18) decay at

the same rate, i.e.,

exp(−πd0/h) = exp(−c(Mh)ν) (7.19)

h(M) = (πd0/c)
1

1+νM− ν
1+ν . (7.20)

103

Algorithm 3 ReLU Network Verification

φx, {c, d}, N,M, h, p
Output: ∆̂, pass/fail

1: φx0
j
← Compute initial characteristic function components on grid.

2: φxL
j
← Propagate through ReLU network using (7.13) and (7.10)

3: φy ← Compute characteristic function of output r.v. y := c⊺xL
4: Φy ← Compute cumulative distribution function using (2.3)

5: ∆̂ := P(y ∈ S) = Φy(d)

7.7 Probabilistic Deep Neural Network Verification

With the developed characteristic function machinery outlined in Section 7.5, we can

verify ReLU networks to a prescribed degree of accuracy. For example, if p = 0.05, then

a neural network passes verification if at least 95% of the input samples belong in the

desired output set S. We presume that the output set Y ⊆ RhL can be represented by

a convex polytope, that is, an intersection of halfspaces. For notational simplicity, we

consider an output set that can be written as

S = {y ∈ Rhl | c⊺y ≤ d}. (7.21)

and note that generalization to convex polytopes follows easily by analyzing each half-

space independently.

The first three parameters the algorithm accepts are the characteristic function of the

input, φx, and the parameters that define the half-space, c, d. The last two design choices

are the HT resolution, specified by N, h,M , and the cutoff probability for verification, p.

The initial characteristic function is then propagated through the network, which yields

the final characteristic function. Since the output set is a half-space, the probability for

the output xL to be in the half-space is given by Theorem 2.2, which can also be written

as a Hilbert transform [169],

PxL(X) = Φy(d) =
1

2
− i

2
H(e−itdφy(t))(0), (7.22)

104

where y := c⊺xL and φy(t) =
∏

j φxL
j
(cjt). Thus, Steps 3-4 in Algorithm 1 compute the

associated characteristic function and cumulative distribution function of the constraint

(7.21). The cumulative distribution function evaluated at x = d represents the probability

of the event {x ∈ Rm : c⊺x ≤ d}; if this value is less than 1−∆, this is below the cutoff

for verification. As an example, if Φc⊺xL(d) = 0.7 but ∆ = 0.1, then only 70% of samples

from the output set lie in the safety set, which is less than the cutoff of 90%; hence the

verification test fails in this case.

7.8 Examples

We provide two examples that illustrate the proposed verification algorithm. Both exam-

ples use ReLU feedfoward neural networks from the verification literature. All simulations

were run on a 32 GB Intel i7-10750H @ 2.60 GHz computer. For computations and mem-

ory storage, we use python with JAX [170]. JAX was run on CPU-only mode but can

be run on GPUs or TPUs. All trials of the verification algorithm were compared to an

empirical truth computed by brute-force propagation of 104 samples through the ReLU

networks for each example.

7.8.1 Small Toy Neural Network With Cauchy Noise Input

-10 -5 0 5 10
0

0.2

0.4

0.6

0.8

1
Input Layer

-5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Hidden Layer

-40 -20 0 20
0

0.2

0.4

0.6

0.8

1
Output Layer

Empirical truth
Proposed Method

0 1 2

0.5
0.6
0.7
0.8
0.9

Figure 7.2: The characteristic function and cumulative distribution function for each layer
in the ReLU network. The cumulative distribution function computed using the proposed
method (black dot) using (2.3) closely resembles the empirical cumulative distribution
function computed from brute-force propagation of 104 input samples (red line).

105

To showcase the proposed verification scheme and its advantages, we simulate the

following scenario, adapted from [148], and compare against the bounds from a scenario-

based approach in [162]. We run a set of 1000 trials, where the ReLU network weights

and biases are uniformly sampled from U [−1, 1] for various parameters affecting the

accuracy of the characteristic function propagation. The network architecture has two

inputs, one output, and one hidden layer with 10 neurons. The output safety set is

S = {xL : xL ≥ 0}. The maximum probability of lying outside the safety set is p = 0.05.

Lastly, we also generated (an approximation of) the true output set Y by propagating

1 million samples from the input set through the network. The inputs are modeled as

Cauchy distributions with characteristic function

φ0(t) = exp(x0it− γ|t|), (7.23)

with locations x
(1)
0 = 1, x

(2)
0 = −1 and scale γ(1) = γ(2) = 1. The characteristic func-

tion of a distribution allows one to easily compute its moments from the derivatives of

the characteristic function via Definition 2.2. We emphasize that the derivatives of the

Cauchy characteristic function do not exist at zero, hence this distribution does not have

any standard moments nor does it have a moment generating function. As a result, the

methods proposed in [157–159] would not work in this case.

To show how the distribution of the inputs propagates throughout the ReLU net-

work, we take a snapshot of the characteristic functions and CDFs for a few ran-

dom trials. The plots in images 7.2-7.3 correspond to the parameters {N, h,M, d} =

{10000, 0.05, 5000, 50}, namely, 10001 terms in the HT for each of the 104 grid points in

the domain C = {t : t ∈ [−50, 50]}. Figure 7.2 shows the cumulative distribution function

at each layer in the network, as computed from the characteristic function through the

HT. It closely resembles the ground-truth cumulative distribution function computed via

sampling.

106

(a) For this random trial, our method
accurately determines the violation of
the output safety set. Our results
(black) are very close (|∆̃| = 0.049)
to the empirically obtained cumula-
tive distribution function and likeli-
hood (red).

-80 -60 -40 -20
0.85

0.9

0.95

1

(b) Our estimated safety set at the de-
sired probability threshold (black) is
much closer to the empirically deter-
mined safety set (red) as compared to
other SoTA methods (magenta).

Figure 7.3: Comparison of ReLU network safety verification.

The accuracy of this propagation depends on the grid resolution in the frequency

domain and the numerical accuracy of the HT used to propagate the characteristic func-

tion through the max layer. A finer grid in the frequency domain with a large number of

terms in the HT summation yields better results than a coarser grid with fewer terms in

the summation. To illustrate this, the fourth column in Table 7.1 computes the average

error in probability across all trials for various values of the grid resolution and HT pa-

rameters, where ∆̃ represents the difference in the computed probability of success with

the given probability threshold, i.e.,

∆̃ := Φ̄y(0)− (1−∆), (7.24)

where Φ̄y(0) := P(xL > 0) = 1 − ΦxL(0) is known as the complementary cumulative

distribution function. See Figure 7.3 for a visual representation of these differences.

Thus, the difference in these deltas is a metric for how accurate the characteristic function

propagation is — if the numerics were exact (M,L→∞), then ∆̃p∗ = ∆̃p. Note that the

trial for Figure 7.3 fails verification because ∆̃ < 0, which implies that the probability of

107

Table 7.1: Average verification times, approximation errors for different values of Hilbert
transform terms (h,M), and grid resolution (N).

h N M E[|∆̃p|] Time (s) h N M E[|∆̃p|] Time (s)
1.0 104 5,000 0.0259 17.78 0.7 104 2,000 0.0254 7.26
0.6 104 5,000 0.0238 17.52 0.7 104 103 0.0303 3.55
0.5 104 5,000 0.0209 18.69 0.7 103 103 0.1007 0.29
0.1 104 5,000 0.0228 18.55 0.7 103 100 0.1009 0.03

being in the safety set is less than 1− p = 0.95.

For the trial in Figure 7.3(a), the estimated probability of being in the safety set is

approximately 23.6%, whereas the true probability is 27.9%, giving |∆̃∆̃p| = 4.3%. In

comparison, [162, Appendix D], uses scenario optimization to solve the reverse problem;

namely, that of finding the maximal safety set X = r̄(p) = supr{r ∈ R : P(y > r) ≥

1 − p}. Running the method by choosing samples according to N ≥ 2
ϵ
(log(1

∆̃
) + 1)

where ∆̃ is a confidence parameter such that Pr̃{P(y > r) ≥ 1 − p} ≥ 1 − ∆̃. With

∆̃ = 10−5, we require 501 samples. Over 500 trials, we generated 501 samples and

propagated them through the network. The best r̃ = −74.99 with the average over 500

trials is E[r̃] = −3297.92, whereas the true 95% quantile occurs at x∗ = −17.43 while our

estimated quantile is at x = −22.67. We mark the quantile values with vertical lines on

Figure 7.3(b). The Cauchy distribution has a longer tail than the normal distribution,

thus sampling from it produces more outliers. This does not bode well for sampling-based

verification methods, causing large over-approximations of the safety set.

Table 7.1 also shows the average time it takes to complete verification for one trial

for various parameters. For a grid resolution of 104 points and 103 HT computations

per grid point, we can get verification results in approximately 3 seconds for a two-layer

network. Naturally, the accuracy of the propagation degrades with lower values for the

parameters, but the computation time decreases, so there is a trade-off between accuracy

and speed.

108

-5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Input Layer

-5 0 5
0

0.5

1
Hidden 1

0 5
0

0.5

1

-5 0 5
0

0.5

1
Hidden 2

0 5
0

0.5

1

-5 0 5
0

0.5

1
Hidden 3

0 5
0

0.5

1

-5 0 5
0

0.5

1
Hidden 4

0 2 4
0

0.5

1

-5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Output Layer

Empirical truth
Proposed Method

Figure 7.4: Comparison of empirical truth and estimated CDFs for each layer of the
ReLU network where only the cumulative distribution function of the first three neurons
are plotted before activation, φ−, and after activation, φ+. The cumulative distribution
function as calculated from the characteristic function via (2.3) (circles) closely matches
the empirically calculated cumulative distribution function from the propagation of 104

samples (solid lines) even for 50 neuron hidden layer deep networks.

7.8.2 Larger Toy Neural Network with Gaussian Input Noise

We now consider a more complex network based on [157]. In this example, we have 2

inputs, 5 hidden layers, 50 neurons in each of the 5 hidden layers, and 2 outputs. The

inputs are normally distributed with mean µ0 = [1, 1]⊺ and covariance Σ = diag(1, 2).

We assume the weights and biases for each layer are randomly chosen from U [−1, 1]. For

the propagation we use d = 20 for the frequency cutoffs, N = 104 grid points for the

frequency resolution, and h = 0.5 and M = 5000 for the HT computations.

Figure 7.4 shows the evolution of the CDFs of each marginal distribution along the

network. The labels φ+/− denote the cumulative distribution function before and after

the ReLU activation layer. We see that the characteristic function propagation is rela-

tively accurate throughout the whole network given the resolution in the characteristic

function and HT. The inaccuracies result from the evaluation of the cumulative distri-

bution function at x = 0 as can be first seen in Φ+
1 . The sinc method that was used

to compute the HT and cumulative distribution function does not perform very well at

discontinuity points and these errors propagate after each max layer [168].

109

7.9 Conclusion

We have presented a probabilistic verification scheme for ReLU neural networks using

the machinery of characteristic functions. We show that our method has a clear repre-

sentation of distribution propagation through a ReLU feedforward (deep) neural network

and verification becomes a evaluation of the cumulative distribution function from the

network’s output characteristic function. One extension of this work could be to opti-

mize the risk level by minimizing p such that Pf(x0)(X) ≥ ∆, for some input distribution

x0 ∼ ψ0. Moreover, we can consider the reverse problem of finding the largest input set

X such that a network is probabilistically safe for a given risk level ∆ [158,162]. Lastly, it

might be possible to extend this framework to other activation functions, as long as one

can analytically propagate the characteristic function through that activation function.

110

Chapter 8

Sample-based Verification of Neural

Networks

8.1 Introduction

As we emphasize in the previous chapter, safety of neural nets is paramount at auton-

omy becomes pervasive. This has been particularly evident in autonomous vehicles [171].

Therefore, the development of tools to verify neural networks and prevent costly mishaps

is paramount, especially as they percolate into high-stakes systems such as those in

aerospace [172]. While analytical forms of ReLU activation functions exist to propagate

distributions via characteristic function as in Chapter 7, they do note scale to higher di-

mensions. Consider a two dimensional random vector x ∈ R2 through a ReLU activation

function,



y1

y2


 =



ReLU(x1)

ReLU(x2)


 (8.1)

111

Using the characteristic function of a ReLU activation function in (7.4), we can extend

it to higher dimension as follows for (8.1),

E[ei(t1 max(x1,0)+t2 max(x2,0))] =

1

4
E[(1 + eit1x1 + eit2x2 + ei(t1x1+t2x2) + eit1x1sign(x1) + eit2x2sign(x2)

+ ei(t1x1+t2x2)sign(x1) + ei(t1x1+t2x2)sign(x2) + eit1x1sign(x1)sign(x2)

+ eit2x2sign(x1)sign(x2) + ei(t1x1+t2x2)sign(x1)sign(x2)

− sign(x1)− sign(x2)− sign(x1)sign(x2))]. (8.2)

With this multivariate definition, we already see that there are a large number of terms

for which we need to integrate over. Should we increase the dimension of the input

random vector, x, by one,




y1

y2

y3



=




ReLU(x1)

ReLU(x2)

ReLU(x3)



, (8.3)

thus characteristic function of the multivariate ReLU is,

E[ei(t1 max(x1,0)+t2 max(x2,0)+t3 max(x3,0))] =

1

6
E[(exp(it1x1) + exp(it2x2) + exp(it3x3)− sign(x1)− sign(x2)− sign(x3)

+ sign(x1)sign(x2) + sign(x1)sign(x3) + sign(x2)sign(x3)

+ exp(it1x1) exp(it2x2) + exp(it1x1) exp(it3x3) + exp(it2x2) exp(it3x3)

+ exp(it1x1)sign(x1)− exp(it1x1)sign(x2)− exp(it1x1)sign(x3)

− exp(it2x2)sign(x1) + exp(it2x2)sign(x2)− exp(it2x2)sign(x3)

− exp(it3x3)sign(x1)− exp(it3x3)sign(x2) + exp(it3x3)sign(x3)

112

− sign(x1)sign(x2)sign(x3) + exp(it1x1) exp(it2x2) exp(it3x3)

+ exp(it1x1) exp(it2x2)sign(x1) + exp(it1x1) exp(it2x2)sign(x2)

− exp(it1x1) exp(it2x2)sign(x3)

+ exp(it1x1) exp(it3x3)sign(x1)− exp(it1x1) exp(it3x3)sign(x2)

+ exp(it1x1) exp(it3x3)sign(x3)

− exp(it2x2) exp(it3x3)sign(x1) + exp(it2x2) exp(it3x3)sign(x2)

+ exp(it2x2) exp(it3x3)sign(x3)

− exp(it1x1)sign(x1)sign(x2)− exp(it1x1)sign(x1)sign(x3)

+ exp(it1x1)sign(x2)sign(x3)

− exp(it2x2)sign(x1)sign(x2) + exp(it2x2)sign(x1)sign(x3)

− exp(it2x2)sign(x2)sign(x3)

+ exp(it3x3)sign(x1)sign(x2)− exp(it3x3)sign(x1)sign(x3)

− exp(it3x3)sign(x2)sign(x3) + exp(it1x1) exp(it2x2) exp(it3x3)sign(x1)

+ exp(it1x1) exp(it2x2) exp(it3x3)sign(x2) + exp(it1x1) exp(it2x2) exp(it3x3)sign(x3)

+ exp(it1x1) exp(it2x2)sign(x1)sign(x2)− exp(it1x1) exp(it2x2)sign(x1)sign(x3)

− exp(it1x1) exp(it2x2)sign(x2)sign(x3)− exp(it1x1) exp(it3x3)sign(x1)sign(x2)

+ exp(it1x1) exp(it3x3)sign(x1)sign(x3)− exp(it1x1) exp(it3x3)sign(x2)sign(x3)

− exp(it2x2) exp(it3x3)sign(x1)sign(x2)− exp(it2x2) exp(it3x3)sign(x1)sign(x3)

+ exp(it2x2) exp(it3x3)sign(x2)sign(x3) + exp(it1x1)sign(x1)sign(x2)sign(x3)

+ exp(it2x2)sign(x1)sign(x2)sign(x3) + exp(it3x3)sign(x1)sign(x2)sign(x3)

+ exp(it1x1) exp(it2x2) exp(it3x3)sign(x1)sign(x2)

+ exp(it1x1) exp(it2x2) exp(it3x3)sign(x1)sign(x3)

+ exp(it1x1) exp(it2x2) exp(it3x3)sign(x2)sign(x3)

− exp(it1x1) exp(it2x2)sign(x1)sign(x2)sign(x3)

113

− exp(it1x1) exp(it3x3)sign(x1)sign(x2)sign(x3)

− exp(it2x2) exp(it3x3)sign(x1)sign(x2)sign(x3)

+ exp(it1x1) exp(it2x2) exp(it3x3)sign(x1)sign(x2)sign(x3) + 1)]. (8.4)

We can see that the number of terms scales exponentially. This makes the analytical

propagation of the distribution, proposed in Chapter 7, infeasible in higher dimensions.

Hence, we require alternative approaches to verify. . . neural networks at scale. This

chapter explores sampling-based approaches to minimize the curse of dimensionality.

8.2 Related Work

Sampling-based verification is not new and many works exist in the scenario optimization

literature. For example, the authors in [173] employ scenario optimization for forward

reachability problems of dynamical systems where the goal is to determine sets for which

some 1 − ∆ of the probability mass of the state resides within it. Convex scenario

optimization arises in the verification of neural networks in [174], similar to Chapter 7,

where the authors validate the neural network’s robustness through the propagation

of samples. To improve the set characterizations for forward reachability, the authors

in [175] employ scenario optimization guarantees amenable for non-convex optimization

problems. The sampling guarantees in this chapter follow Chapter 5 where we use the

Dvoretzky–Kiefer–Wolfowitz inequality [103].

8.3 Main Contribution and Organization

The main contribution of this chapter is a sampling-based approach in verifying neural

networks through samples via empirical characterizations of the cumulative distribution

function. We enable this through the characterization of high dimensional sets via signed

114

distance functions. In doing so, it naturally allows us to utilize the structure of cumulative

distribution functions and empirically compute them via samples with guarantees, as

done in the context of stochastic optimal control in Chapter 5.

The chapter is structured as follows. Section 8.4 states two problem statements.

The first being for the verification task and the second poses the problem of modifying

the specification in the event that the verification task fails. Section 8.5 lays out the

procedure to empirically estimate the empirical characteristic function as well as how

many samples are necessary for the estimate to be accurate. It also presents a method

to modify the set defined specification in the event we cannot assure that guarantee

the probability of satisfaction. The conclusion in Section 8.7 outlines future directions

of sample-based verification, including how we can employ samples for the same utility

characteristic functions provide.

8.4 Problem Statement

We denote a constraint set C ∈ M(Y) through a measurable signed-distance function

gC : Y → R,

gC(y) :=





infp∈C ∥p− y∥, y ∈ Y\C,

− infp∈Y\C ∥p− y∥, y ∈ C.
(8.5)

Put simply, the signed distance function says that the point y ∈ Y is within the set if its

output is negative or zero and positive otherwise. Union of two sets are a minimum of

between two signed distance functions, intersection of two sets are a maximum two signed

distance function, and the subtraction of two signed distance functions is the maximum

of one signed distance and the negative of the other.

Problem 11. Given a nonlinear function f : X → Y, e.g. a system with an neural net-

work in the loop, a signed distance function gC : Y → R, and a probability of satisfaction

115

ϵ ∈ (0, 1), determine if

P ({ω : gC(f(x(ω))) ≤ 0}) ≥ 1−∆, (8.6)

where 1−∆ ∈ (0, 1) is the probability of satisfaction.

Problem 12. Given a nonlinear function f : X → Y, e.g. a system with an neural

network in the loop, a parameterized signed distance function, gC,θ : Y × R → R, and a

probability of satisfaction ∆ ∈ (0, 1), solve

minimize
θ∈R

θ, (8.7a)

subject to P ({ω : gC(f(x(ω)))− θ ≤ 0}) ≥ 1−∆. (8.7b)

Solving Problem 11 is crucial for determining whether neural network or a system

with a neural network in the loop satisfies specifications with a given probability. In

addition, Problem 12 serves two purposes:

1. It provides a tighter sets for the required satisfaction probability, ∆ should the

original specification be satisfied with high probability.

2. It relaxes the specification to reach the satisfaction probability, ∆.

Regardless, for both, the most basic way to represent the left-hand side of (8.6) is via a

cumulative distribution function,

ΦgC(f(x))(0) = E[1gC(f(x))≤0], (8.8a)

= P({ω ∈ Ω| gC(f(x(ω))) ≤ 0}), (8.8b)

which we denote via the function Φ : R → [0, 1]. Note that (8.8b) is the original

116

probability constraint and since it is a expectation of the indicator function, i.e. (8.8),

Φ̂gC(f(x))(0) =
1

M

M∑

i=1

1gC(f(x(i)))≤0. (8.9)

However, having M → ∞ is computationally irresponsible to solve both problem state-

ments.

8.5 Method

We can determine how many samples are needed to estimate (8.8) via (8.9). The

Dvoretzky-Kiefer-Wolfowitz inequality, which we utilize in Chapter 5, gives a bound

on the difference between the empirical distribution function Φ̂gC(f(x)) and the true cu-

mulative distribution function ΦgC(NN(x)). It can be used to derive sample complexity

estimates, which indicate how many samples are needed to achieve a given confidence

level 1−β and error tolerance ϵ. Formally, givenM i.i.d. samples, the Dvoretzky-Kiefer-

Wolfowitz inequality states that for any error tolerance ϵ > 0,

P
(
sup
x
|Φ̂gC(f(x))(x)− ΦgC(f(x))(x)| > ϵ

)
≤ 2e−2Mϵ2 , (8.10)

where Φ̂gC(NN(x))n(x) is the empirical cumulative distribution function, ΦgC(NN(x))n(x) is

the true cumulative distribution function, and N is the sample size. Given a confidence

level 1− β, we set:

M ≥
⌈
− 1

2ϵ2
ln

(
β

2

)⌉
, (8.11)

following [103].

Therefore, solving Problem 11 is merely a matter of using (8.11) to compute the

number of samples via a user specified ϵ, β ∈ (0, 1). For Problem 12, we require more

exposition. Note that the optimization problem in (8.7) is equivalent to Definition 6.10

117

of the quantile function,

Q(p) = inf{x ∈ R : ΦgC(f(x))(x) ≥ p}. (8.12)

If we can evaluate the cumulative distribution function, which we can even for the em-

pirical cumulative distribution function, we can utilize root-finding, such as the bisection

algorithm [133], to find the smallest θ such that,

Φ̂gC(f(x))(θ
∗) = 1−∆. (8.13)

8.6 Examples

We provide two examples that illustrate the proposed verification algorithm. Both exam-

ples use ReLU feedfoward neural networks from the verification literature. All simulations

were run on a Intel Core i9-10900K processor and 128 GB RAM. For computations and

randomness generation, we use Python with NumPy and SciPy [176, 177]. For neural

network evaluations in the toy example, we utilize PyTorch for all evaluations [178].

8.6.1 Toy Neural Network with Cauchy Input

In this example, we replicate the toy neural networks similar to Section 7.8 where we

feed a Cauchy input into to feedforward neural network with ReLU activation functions.

The network size is 3 inputs, 10 layers, and two outputs. The location, x, and scale, γ

parameters of the input Cauchy distribution are 0 and 1 respectively. The weights and

biases are randomly initialized using PyTorch’s neural network module. We require the

neural network’s output to reside within a 2-norm ball of size 10,

gC(p) = ||p||2 − 10. (8.14)

118

We require the specification in (8.14) to be satisfied with 1 −∆ = 0.99 probability. To

determine the number of samples to empirically confirm the probability of satisfaction,

we specify ϵ = 0.001 and β = 0.001 for (8.11). This results in us needing 3800452 samples.

Figure 8.1: The output samples of the toy neural network which is fed with a Cauchy
input. The original specification of the 2-Norm with value 10 (in red) fails the probability
of satisfaction, 1 − ∆ = 0.99. Thus, we solve Problem 12 to find a modification of the
specification which results in θ∗ = 241.37. Thus, to ensure 1 − ∆ = 0.99 we get larger
set, i.e. ||p||2 − 10− θ∗.

Figure 8.1 shows the output samples of the neural network in blue, the original spec-

ification in orange. By the difference in the specification and the modification of the

specification we plot in orange, we see that Problem 11 is not satisfied and in solving

Problem 12, we obtain θ∗ = 241.37 to guarantee 1 − ∆ = 0.99, taking 5.61 seconds to

solve. Figure 8.2 shows the resulting empirical cumulative distribution function plotted

using samples along with the probability of satisfaction we require, and the resulting mod-

ification to the specification necessary to satisfy it. Note that if we satisfy 1−∆ = 0.99,

then the the evaluation at zero would be 0.99, which it is not here.

119

Figure 8.2: The empirical cumulative distribution function of the neural network output
from 3800452 samples. We wish to satisfy (8.14) with 1 −∆ = 0.99 probability. We do
not satisfy the specification, thus we find the level set scaling needed to satisfy 1−∆ by
solving Problem 12 and obtain θ∗ = 241.37.

Image Downsampled Image

TaxiNet XPlane Simulator

Noise, w ∼ N (0, 50) to each pixel

Figure 8.3: The TaxiNet simulator consists of a Cessna 208B Grand Caravan where the
camera is placed under the right wing of the aircraft. The camera image is downsampled,
where we have added Gaussian noise, and fed into a feedforward neural network, thereby
causing deviations in the aircraft’s crosstrack position down the runway.

8.6.2 TaxiNet: Pixels to Control Input

We validate the sampling-based approach on the TaxiNet benchmark shown in Fig-

ure 8.3 [11]. TaxiNet consists of a neural network which predicts heading angle and the

cross track position from images from a camera attached on the right wing of a Cessna

208B Grand Caravan taxiing at 5 m/s down runway 04 of Grant County International

Airport. The crosstrack and heading angle are fed into a proportional controller,

ϕ = −0.74p− 0.44θ, (8.15)

120

where ϕ is the steering angle of the aircraft. Gaussian noise to each pixel, i.e. w ∼

N (0, 50), corrupts the downsampled image that is fed into TaxiNet.

Figure 8.4: Top down visual of the TaxiNet experiment. The Cessna 208B Grand Caravan
starts at the cross track position of 5 meters and attempts to get centerline. However,
because the downsampled image is corrupted, the aircraft veers off. Solving Problem 12
to ensure 1−∆ = 0.99, results in a larger set than the original specification dictates, i.e.
|p| − 1− θ∗, where θ∗ = 1.1.

The aircraft starts at crosstrack position p0 = 5 meters, heading angle θ0 = 10 degrees,

and runway downtrack position of 322 meters. At 422 meters, wish to validate whether

the crosstrack position is within 1 meters of the centerline of the runway, i.e.

gC(p) = |p| − 1, (8.16)

where we have taken the 1-Norm deviation from the aircraft’s crosstrack position. Fig-

ure 8.4 visually overviews the experiment and specification, (8.16), in orange. After we

solve the root finding problem that attempts to compute the quantile in (8.12), solving

Problem 12 to find (8.13).

We require that the specification in (8.16) be satisfied to with 1−∆ = 0.99 probability.

To determine if the specification is satisfied, we specify ϵ = 0.1 and β = 0.001 for (8.11),

121

Figure 8.5: The empirical cumulative distribution function of the resulting TaxiNet exam-
ple computed from 381 samples. We wish to satisfy (8.16) with 1−∆ = 0.99 probability.
Since the specification is not satisfied, we can find the level set scaling necessary to satisfy
1−∆ (green) by solving Problem 12 and obtain θ∗ = 3.6 (red).

resulting in requiring 381 samples. Thus we ran the simulator for 381 times, over a span

of two hours. Note, by Problem 11, we did not satisfy the specification in (8.16). Thus,

we solve Problem 12, to determine a θ that satisfies the probability of satisfaction 1−∆.

In doing so θ∗ = 1.1 to ensure 1−∆ = 0.99, which we compute in 589 milliseconds.

8.7 Conclusion

In this chapter, we addressed the challenge of verifying high-dimensional neural networks

by exploring sample-based approaches. Given the limitations posed by the curse of di-

mensionality, especially with purely analytic methods, the introduction of sample-based

empirical characteristic functions offers a practical solution. These methods allow for

more computationally efficient estimation of the probability of specification satisfaction.

The results demonstrate that sample-based techniques hold promise in overcoming the

challenges inherent in high-dimensional verification problems. Furthermore, the empirical

122

approaches outlined in this chapter provide both accuracy and computational feasibil-

ity, even when traditional analytic methods fail. Future work should focus on refining

these sample-based techniques, enhancing their robustness and scalability, especially in

safety-critical applications. Additionally, integrating hybrid methods that combine both

analytic and sample-based approaches could further improve the reliability and efficiency

of neural network verification.

123

Part IV

Conclusion

124

Chapter 9

Conclusion

In this dissertation, we have advanced the field of stochastic optimal control by develop-

ing new theoretical frameworks and algorithms that address the challenge of controlling

dynamical systems under uncertainty. The work is structured into three primary parts,

each contributing to a distinct aspect of stochastic control and expanding into neural

network verification. Through the combination of these approaches, this dissertation

offers a comprehensive set of tools for learning, propagating, and exploiting uncertainty

in stochastic control systems, showing promise for developing more tools for stochastic

optimal control and neural network verification. The work not only enhances the un-

derstanding of stochastic optimal control but also sets the stage for future research into

more complex, data-driven, and real-time control systems.

9.1 Summary of Contributions

In the first part, we addressed model-based stochastic optimal control, focusing on sys-

tems where the underlying dynamics are known but are subject to uncertainties, par-

ticularly those with non-Gaussian disturbances. A significant contribution in this part

is the development of a scalable, convex solution for open-loop control of linear sys-

tems with log-concave disturbances. By leveraging characteristic functions, we bypass

125

the need for sampling or moment-based methods, which often introduce conservatism or

computational inefficiency. Our method allows for the efficient enforcement of chance

constraints through convex optimization, offering a more tractable approach to handling

non-Gaussian uncertainties. We then turn to utilizing a central representation of the

stochasticity via characteristic functions to steer linear systems with affine disturbance

feedback controllers. We show that we can steer linear systems in the presence of general

disturbances through measuring the distance between characteristic functions of the state

and the desired distribution.

The second part of the dissertation turns towards data-driven stochastic optimal

control, where the system’s disturbances or even the system itself are unknown. We

proposed a novel methodology for solving stochastic control problems with unknown

disturbances by utilizing empirical characteristic functions derived from observed data.

This approach allows us to construct a convex reformulation of the control problem while

providing theoretical guarantees through confidence intervals. This framework opens new

possibilities for practical applications where model uncertainties are prevalent, offering a

robust alternative to traditional approaches that rely on assumed distributions. Moving

into the state-of-the-art, we lay the groundwork of utilizing a characteristic function

representation of the cost to derive not only the average, but other performance metrics

such at Value-at-Risk, Conditional-Value-at-Risk, and expectiles.

Finally, in the third part, we explored the probabilistic verification of neural networks.

We presented a framework for propagating characteristic functions through neural net-

works, particularly those utilizing ReLU activation functions, allowing for the analytical

verification of network outputs under probabilistic constraints. Additionally, we show

how an analytical approach can fail in higher dimensions and propose a sample-based

method with guarantees for neural network verification, providing a means to quantify

the probability of satisfying a given specification.

126

9.2 Future Work

There are many directions to extend work in this dissertation.

1. Further exploring properties of characteristic functions : Properties such as con-

vexity would be crucial for optimizing in the presence of uncertainty. For example,

Pólya identified some properties of a function to qualify as a characteristic function,

one of which is convexity of the positive half plane of a characteristic function [179].

Should it be possible to exploit convexity or generalizations such as quasiconvex-

ity [35], invexity [180], or exploiting pseudoconvex domains [181] of characteristic

functions, we may be improve the efficiency and relax the assumptions made within

the stochastic optimal control problems in this dissertation.

2. Working with learned approximations of characteristic functions : While the empir-

ical characteristic function has proven useful, they are not ideal to work with to

extract the various elements that characteristic functions have to offer. Chapter 5

addressed this by using a smoothing factor with the empirical characteristic func-

tion. Nonetheless, it would relevant to use convex approaches as a proxy for the

empirical characteristic function to extract elements such as moments and proba-

bilities. We emphasize convex here as a starting point as there are a multitude of

tools such as kernel methods [182] and convex relaxations of neural networks [183],

thereby retaining the convex nature of the stochastic optimal control problems.

3. Expanding reinforcement learning using characteristic functions: Chapter 6 laid

the groundwork for utilizing the characteristic function to represent the cost dis-

tribution. Further explorations in using characteristic functions for reinforcement

learning may prove useful in not only risk sensitive reinforcement learning [134]

and distributional reinforcement learning [115], but also safe reinforcement learn-

ing [184] where we cannot allow the systems to violate safety constraints even while

learning.

127

References

[1] G. Calafiore and M. Campi, “The scenario approach to robust control design,”

IEEE Trans. Autom. Control, vol. 51, no. 5, pp. 742–753, 2006.

[2] M. C. Campi and S. Garatti, “A sampling-and-discarding approach to chance-

constrained optimization: Feasibility and optimality,” J. Optim Theory Appl.,

vol. 148, no. 2, pp. 257–280, 2011.

[3] L. Blackmore, M. Ono, and B. Williams, “Chance-constrained optimal path plan-

ning with obstacles,” IEEE Trans. Robot., vol. 27, no. 6, pp. 1080–1094, 2011.

[4] G. Calafiore and L. Ghaoui, “On distributionally robust chance-constrained linear

programs,” J. Optim Theory Appl., vol. 130, no. 1, pp. 1–22, 2006.

[5] A. Nemirovski and A. Shapiro, “Convex approximations of chance constrained

programs,” J. Optimization, vol. 17, pp. 969–996, 2006.

[6] V. Sivaramakrishnan and M. Oishi, “Fast, convexified stochastic optimal open-loop

control for linear systems using empirical characteristic functions,” IEEE Control

Sys. Lett., vol. 4, no. 4, pp. 1048–1053, 2020.

[7] L. Blackmore, M. Ono, A. Bektassov, and B. Williams, “A probabilistic particle-

control approximation of chance-constrained stochastic predictive control,” IEEE

Transactions on Robotics, vol. 26, no. 3, pp. 502–517, 2010.

128

[8] J. Parker, A. Serrani, S. Yurkovich, M. Bolender, and D. Doman, “Control-oriented

modeling of an air-breathing hypersonic vehicle,” J. Guid. Control Dyn., vol. 30,

no. 3, pp. 856–869, 2007.

[9] H. Buschek and A. J. Calise, “Uncertainty modeling and fixed-order controller de-

sign for a hypersonic vehicle model,” Journal of Guidance, Control, and Dynamics,

vol. 20, no. 1, pp. 42–48, 1997.

[10] M. J. Holzinger, C. C. Chow, and P. Garretson, “A primer on cislunar space,” 2021.

[11] S. M. Katz, A. Corso, S. Chinchali, A. Elhafsi, A. Sharma, M. J. Kochenderfer,

and M. Pavone, “NASA ULI Aircraft Taxi Dataset.” Stanford Digital Repository,

2021. Available at: https://purl.stanford.edu/zz143mb4347.

[12] J. Gil-Pelaez, “Note on the inversion theorem,” Biometrika, vol. 38, no. 3-4,

pp. 481–482, 1951.

[13] V. Sivaramakrishnan, A. P. Vinod, and M. M. K. Oishi, “Convexified open-loop

stochastic optimal control for linear systems with log-concave disturbances,” IEEE

Transactions on Automatic Control, vol. 69, no. 2, pp. 1249–1256, 2024.

[14] V. Sivaramakrishnan, J. Pilipovsky, M. Oishi, and P. Tsiotras, “Distribution steer-

ing for discrete-time linear systems with general disturbances using characteristic

functions,” in the Proceedings of the 2022 American Control Conference (ACC),

pp. 4183–4190, 2022.

[15] V. Sivaramakrishnan and M. M. K. Oishi, “Fast, convexified stochastic optimal

open-loop control for linear systems using empirical characteristic functions,” IEEE

Control Systems Letters, vol. 4, no. 4, pp. 1048–1053, 2020.

[16] J. Pilipovsky, V. Sivaramakrishnan, M. Oishi, and P. Tsiotras, “Probabilistic ver-

ification of relu neural networks via characteristic functions,” in Proceedings of

129

https://purl.stanford.edu/zz143mb4347

The 5th Annual Learning for Dynamics and Control Conference, vol. 211 of the

Proceedings of Machine Learning Research, pp. 966–979, PMLR, 15–16 Jun 2023.

[17] V. Sivaramakrishnan, R. A. Devonport, M. Arcak, and M. M. K. Oishi, “Forward

reachability for discrete-time nonlinear stochastic systems via mixed-monotonicity

and stochastic order,” 2024. (To appear the Proceedings of the 2024 Conference

on Decision and Control (CDC)).

[18] K. Sivaramakrishnan, V. Sivaramakrishnan, R. A. Devonport, and M. M. K. Oishi,

“Stochastic reachability of uncontrolled systems via probability measures: Approx-

imation via deep neural networks,” 2024. (To appear the Proceedings of the 2024

Conference on Decision and Control (CDC)).

[19] I. Pacula, A. Vinod, V. Sivaramakrishnan, C. Petersen, and M. Oishi, “Stochastic

multi-satellite maneuvering with constraints in an elliptical orbit,” in 2021 Amer-

ican Control Conference (ACC), pp. 4261–4268, 2021.

[20] A. J. Thorpe, V. Sivaramakrishnan, and M. M. K. Oishi, “Approximate stochastic

reachability for high dimensional systems,” in the Proceedings of the 2021 American

Control Conference (ACC), pp. 1287–1293, 2021.

[21] V. Sivaramakrishnan, O. Thapliyal, A. Vinod, M. Oishi, and I. Hwang, “Predicting

mode confusion through mixed integer linear programming,” in the Proceedings of

the 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 2442–2448,

2019.

[22] A. P. Vinod, V. Sivaramakrishnan, and M. M. Oishi, “Piecewise-affine

approximation-based stochastic optimal control with gaussian joint chance con-

straints,” in the Proceedings of the 2019 American Control Conference (ACC),

pp. 2942–2949, 2019.

130

[23] A. P. Vinod, V. Sivaramakrishnan, and M. M. K. Oishi, “Sampling-free enforcement

of non-gaussian chance constraints via fourier transforms,” Proceedings of the Fifth

International Workshop on Symbolic-Numeric methods for Reasoning about CPS

and IoT, p. 9–11, Association for Computing Machinery, 2019.

[24] A. Abate, H. Blom, N. Cauchi, S. Haesaert, A. Hartmanns, K. Lesser, M. Oishi,

V. Sivaramakrishnan, S. Soudjani, C.-I. Vasile, and A. P. Vinod, “Arch-comp18

category report: Stochastic modelling,” in ARCH18. 5th International Workshop

on Applied Verification of Continuous and Hybrid Systems, vol. 54 of EPiC Series

in Computing, pp. 71–103, EasyChair, 2018.

[25] P. Billingsley, Probability and Measure. Wiley, 2008.

[26] E. Lukacs, Characteristic functions. London: Griffin, 2nd ed., revised & en-

larged ed., 1970.

[27] N. G. Ushakov, Selected Topics in Characteristic Functions. No. 4 in Modern

probability and statistics, Utrecht: VSP, 1999.

[28] H. Cramér, Mathematical Methods of Statistics. Princeton Landmarks in Mathe-

matics and Physics, Princeton: Princeton University Press, 1999.

[29] R. Davies, “Numerical inversion of a characteristic function,” Biometrika, vol. 60,

no. 2, pp. 415–417, 1973.

[30] V. Witkovsky, “Numerical inversion of a characteristic function: An alternative

tool to form the probability distribution of output quantity in linear measurement

models,” ACTA IMEKO, vol. 5, no. 3, pp. 32–44, 2016.

[31] D. Bertsekas, Reinforcement learning and optimal control, vol. 1. Athena Scientific,

2019.

131

[32] D. Bertsekas and S. E. Shreve, Stochastic optimal control: the discrete-time case,

vol. 5. Athena Scientific, 1996.

[33] K. Okamoto, M. Goldshtein, and P. Tsiotras, “Optimal covariance control for

stochastic systems under chance constraints,” IEEE Control Systems Letters, vol. 2,

no. 2, pp. 266–271, 2018.

[34] J. Skaf and S. Boyd, “Design of affine controllers via convex optimization,” IEEE

Transactions on Automatic Control, vol. 55, no. 11, pp. 2476–2487, 2010.

[35] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press,

2004.

[36] T. Lipp and S. Boyd, “Variations and extension of the convex–concave procedure,”

Optim. and Engg., vol. 17, pp. 263–287, 2016.

[37] R. Horst, P. Pardalos, and N. Van Thoai, Introduction to Global Optimization.

Springer, 2000.

[38] B. Sriperumbudur and G. Lanckriet, “On the convergence of the concave-convex

procedure,” in NeurIPS, pp. 1759–1767, 2009.

[39] A. Mesbah, “Stochastic model predictive control: An overview and perspectives for

future research,” IEEE Ctrl. Syst. Mag., vol. 36, no. 6, pp. 30–44, 2016.

[40] A. Shapiro, D. Dentcheva, and A. Ruszczyński, Lectures on stochastic programming:

modeling and theory. SIAM, 2014.

[41] A. Carè, S. Garatti, and M. Campi, “Fast—fast algorithm for the scenario tech-

nique,” Operations Research, vol. 62, no. 3, pp. 662–671, 2014.

[42] J. A. Paulson, E. A. Buehler, R. D. Braatz, and A. Mesbah, “Stochastic model pre-

dictive control with joint chance constraints,” Int’l J. Ctrl., vol. 93, no. 1, pp. 126–

139, 2020.

132

[43] F. Oldewurtel, C. Jones, A. Parisio, and M. Morari, “Stochastic model predictive

control for building climate control,” IEEE Trans. Control Syst. Technol., vol. 22,

no. 3, pp. 1198–1205, 2014.

[44] M. Ono and B. Williams, “Iterative risk allocation: A new approach to robust

model predictive control with a joint chance constraint,” in Conf. on Dec. Ctrl,

pp. 3427–3432, 2008.

[45] P. Kumar and P. Varaiya, Stochastic systems: Estimation, identification, and adap-

tive control, vol. 75. SIAM, 1986.

[46] D. Mayne and P. Falugi, “Stabilizing conditions for model predictive control,”

International Journal of Robust and Nonlinear Control, vol. 29, no. 4, pp. 894–903,

2019.

[47] A. D. Bonzanini, D. B. Graves, and A. Mesbah, “Learning-based smpc for refer-

ence tracking under state-dependent uncertainty: An application to atmospheric

pressure plasma jets for plasma medicine,” IEEE Trans. on Ctrl Sys. Tech., vol. 30,

no. 2, pp. 611–624, 2022.

[48] D. Limon, I. Alvarado, T. Alamo, and E. Camacho, “Mpc for tracking piecewise

constant references for constrained linear systems,” Automatica, vol. 44, no. 9,

pp. 2382–2387, 2008.

[49] P. K. Mishra, S. S. Diwale, C. N. Jones, and D. Chatterjee, “Reference tracking

stochastic model predictive control over unreliable channels and bounded control

actions,” Automatica, vol. 127, p. 109512, 2021.

[50] P. Hokayem, E. Cinquemani, D. Chatterjee, F. Ramponi, and J. Lygeros, “Stochas-

tic receding horizon control with output feedback and bounded controls,” Automat-

ica, vol. 48, no. 1, pp. 77–88, 2012.

133

[51] M. Cannon, B. Kouvaritakis, and X. Wu, “Model predictive control for systems with

stochastic multiplicative uncertainty and probabilistic constraints,” Automatica,

vol. 45, no. 1, pp. 167–172, 2009.

[52] R. D. McAllister and J. B. Rawlings, “Nonlinear stochastic model predictive con-

trol: Existence, measurability, and stochastic asymptotic stability,” IEEE Trans-

actions on Automatic Control, vol. 68, no. 3, pp. 1524–1536, 2023.

[53] P. Hokayem, D. Chatterjee, and J. Lygeros, “On stochastic receding horizon control

with bounded control inputs,” in Conf. on Dec. Ctrl, pp. 6359–6364, 2009.

[54] M. Farina, L. Giulioni, L. Magni, and R. Scattolini, “An approach to output-

feedback mpc of stochastic linear discrete-time systems,” Automatica, vol. 55,

pp. 140–149, 2015.

[55] S. Chan, P. Cheng, D. Pitt, T. Myers, D. Klyde, R. Magdaleno, and D. McRuer,

“Aeroservoelastic stabilization techniques for hypersonic flight vehicles,” Tech. Rep.

187614, NASA, 1991.

[56] P. J. Goulart, E. C. Kerrigan, and J. M. Maciejowski, “Optimization over state

feedback policies for robust control with constraints,” Automatica, vol. 42, no. 4,

pp. 523–533, 2006.

[57] J. Lofberg, “Approximations of closed-loop minimax mpc,” in Conf. on Dec. Ctrl,

vol. 2, pp. 1438–1442, 2003.

[58] D. van Hessem and O. Bosgra, “A conic reformulation of model predictive control

including bounded and stochastic disturbances under state and input constraints,”

in Conf. on Dec. Ctrl, vol. 4, pp. 4643–4648, 2002.

134

[59] A. P. Vinod, V. Sivaramakrishnan, and M. Oishi, “Piecewise-affine approximation-

based stochastic optimal control with gaussian joint chance constraints,” in Amer.

Ctrl. Conf., pp. 2942–2949, 2019.

[60] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge Univ. Press, 2004.

[61] S. Dharmadhikari and K. Joag-Dev, Unimodality, convexity, and applications. El-

sevier, 1988.

[62] M. Bagnoli and T. Bergstrom, “Log-concave probability and its applications,” Eco-

nomic theory, vol. 26, no. 2, pp. 445–469, 2005.

[63] M. Vitus, Z. Zhou, and C. Tomlin, “Stochastic control with uncertain parameters

via chance constrained control,” IEEE Trans. Autom. Control, vol. 61, no. 10,

pp. 2892–2905, 2016.

[64] A. Prékopa, Stochastic programming. Springer, 1995.

[65] G. Rote, “The convergence rate of the sandwich algorithm for approximating convex

functions,” Computing, vol. 48, no. 3-4, pp. 337–361, 1992.

[66] A. Bemporad, “Reducing conservativeness in predictive control of constrained sys-

tems with disturbances,” in Conf. on Dec. Ctrl, vol. 2, pp. 1384–1389 vol.2, 1998.

[67] D. Mayne, M. Seron, and S. Raković, “Robust model predictive control of con-

strained linear systems with bounded disturbances,” Automatica, vol. 41, no. 2,

pp. 219–224, 2005.

[68] J. Löfberg, “Yalmip : A toolbox for modeling and optimization in matlab,” in

CACSD Conf., (Taipei, Taiwan), 2004.

[69] M. ApS, The MOSEK optimization toolbox for MATLAB manual. Version 9.3.,

2021.

135

[70] F. Sabatino, Quadrotor control: modeling, nonlinearcontrol design, and simulation.

Master’s thesis, KTH Royal Institute of Technology, 2015.

[71] A. Vinod, B. HomChaudhuri, C. Hintz, A. Parikh, S. Buerger, M. Oishi, G. Brun-

son, S. Ahmad, and R. Fierro, “Multiple pursuer-based intercept via forward

stochastic reachability,” in Amer. Ctrl. Conf., pp. 1559–1566, 2018.

[72] I. Mathiasson, “Wind power. statistical analysis of wind speed,” Chalmers Univer-

sity of Technology, 2015.

[73] S. Kotz, T. Kozubowski, and K. Podgórski, The Laplace distribution and gener-

alizations: a revisit with applications to communications, economics, engineering,

and finance. No. 183, Springer, 2001.

[74] K. F. Caluya and A. Halder, “Reflected Schrödinger bridge: Density control with

path constraints,” in American Control Conference, (New Orleans, LA), pp. 1137–

1142, 2021.

[75] I. M. Balci and E. Bakolas, “Covariance steering of discrete-time stochastic lin-

ear systems based on wasserstein distance terminal cost,” IEEE Control Systems

Letters, vol. 5, no. 6, pp. 2000–2005, 2020.

[76] Y. Chen, T. T. Georgiou, and M. Pavon, “Optimal steering of a linear stochastic

system to a final probability distribution – Part I,” IEEE Trans. Automatic Control,

vol. 61, no. 5, pp. 1158–1169, 2016.

[77] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou,

“Information-theoretic model predictive control: Theory and applications to au-

tonomous driving,” IEEE Transactions on Robotics, vol. 34, no. 6, pp. 1603–1622,

2018.

136

[78] G. Williams, A. Aldrich, and E. A. Theodorou, “Model predictive path integral

control: From theory to parallel computation,” Journal of Guidance, Control, and

Dynamics, vol. 40, no. 2, pp. 344–357, 2017.

[79] M. Goldshtein and P. Tsiotras, “Finite-horizon covariance control of linear time-

varying systems,” in 56th IEEE Conference on Decision and Control, (Melbourne,

Australia), pp. 3606–3611, Dec 12–15 2017.

[80] K. Okamoto and P. Tsiotras, “Optimal stochastic vehicle path planning using co-

variance steering,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2276–

2281, 2019.

[81] E. Bakolas, “Finite-horizon covariance control for discrete-time stochastic linear

systems subject to input constraints,” Automatica, vol. 91, pp. 61–68, 2018.

[82] J. Pilipovsky and P. Tsiotras, “Chance-constrained optimal covariance steering

with iterative risk allocation,” in American Control Conference, (New Orleans,

LA), pp. 2011–2016, 2021.

[83] J. Ridderhof, J. Pilipovsky, and P. Tsiotras, “Chance-constrained covariance con-

trol for low-thrust minimum-fuel trajectory optimization,” in AAS/AIAA Astrody-

namics Specialist Conference, (Lake Tahoe, CA), Aug 9–13 2020.

[84] L. Blackmore, H. X. Li, and B. C. Williams, “A probabilistic approach to optimal

robust path planning with obstacles,” in American Control Conference, (Minneapo-

lis, MN), pp. 1–7, June 14–16, 2006.

[85] A. Prékopa, “Boole-Bonferroni inequalities and linear programming,” Operations

Research, vol. 36, no. 1, pp. 145–162, 1988.

137

[86] M. Farina, L. Giulioni, and R. Scattolini, “Stochastic linear model predictive control

with chance constraints – a review,” J. of Process Control, vol. 44, pp. 53–67, Aug.

2016.

[87] D. Bertsekas and S. Shreve, Stochastic optimal control: The discrete time case.

Academic Press, 1978.

[88] R. Stengel, Optimal control and estimation. Dover, 1994.

[89] A. Nilim and L. El Ghaoui, “Robust control of Markov decision processes with

uncertain transition matrices,” Operations Res., vol. 53, no. 5, pp. 780–798, 2005.

[90] S. Samuelson and I. Yang, “Data-driven distributionally robust control of energy

storage to manage wind power fluctuations,” in IEEE Conf. on Ctrl. Technol. and

Appl., pp. 199–204, 2017.

[91] I. Yang, “A Convex Optimization Approach to Distributionally Robust Markov

Decision Processes With Wasserstein Distance,” IEEE Contr. Syst. Lett., vol. 1,

no. 1, pp. 164–169, 2017.

[92] G. Darivianakis, A. Eichler, R. Smith, and J. Lygeros, “A data-driven stochastic

optimization approach to the seasonal storage energy management,” IEEE Contr.

Syst. Lett., vol. 1, no. 2, pp. 394–399, 2017.

[93] B. Calfa, I. Grossmann, A. Agarwal, S. Bury, and J. Wassick, “Data-driven indi-

vidual and joint chance-constrained optimization via kernel smoothing,” Comput.

& Chem. Eng., vol. 78, pp. 51–69, 2015.

[94] J. Caillau, M. Cerf, A. Sassi, E. Trélat, and H. Zidani, “Solving chance constrained

optimal control problems in aerospace via kernel density estimation,” Optim Con-

trol Appl Methods, vol. 39, no. 5, pp. 1833–1858, 2018.

138

[95] J. Yu, “Empirical Characteristic Function Estimation and its Applications,”

Econom. Rev., vol. 23, no. 2, pp. 93–123, 2004.

[96] S. Csorgo, “Limit Behaviour of the Empirical Characteristic Function,” Ann.

Probab., vol. 9, pp. 130–144, Feb. 1981.

[97] A. Feuerverger and R. Mureika, “The Empirical Characteristic Function and Its

Applications,” Ann. Stat., vol. 5, no. 1, pp. 88–97, 1977.

[98] L. Blackmore, B. Açikmeşe, and D. Scharf, “Minimum-landing-error powered-

descent guidance for mars landing using convex optimization,” J. Guid. Control

Dyn., vol. 33, no. 4, pp. 1161–1171, 2010.

[99] E. Cinquemani, M. Agarwal, D. Chatterjee, and J. Lygeros, “Convexity and con-

vex approximations of discrete-time stochastic control problems with constraints,”

Automatica, vol. 47, no. 9, pp. 2082–2087, 2011.

[100] M. Vitus, Z. Zhou, and C. Tomlin, “Stochastic Control With Uncertain Parame-

ters via Chance Constrained Control,” IEEE Transactions on Automatic Control,

vol. 61, no. 10, pp. 2892–2905, 2016.

[101] B. W. Silverman, Density estimation for statistics and data analysis. Chapman

and Hall, 1986.

[102] P. Billingsley, Convergence of probability measures. Wiley, 2013.

[103] P. Massart, “The Tight Constant in the Dvoretzky-Kiefer-Wolfowitz Inequality,”

Ann. Probab., pp. 1269–1283, 1990.

[104] T. Tao, Analysis, vol. 1. Springer, 2006.

[105] T. Anderson, “Confidence limits for the expected value of an arbitrary bounded

random variable with a continuous distribution function,” tech. rep., Stanford Dept.

Of Statistics, 1969.

139

[106] J. Romano and M. Wolf, “Explicit nonparametric confidence intervals for the vari-

ance with guaranteed coverage,” Commun. Stat. - Theory Methods, vol. 31, no. 8,

pp. 1231–1250, 2002.

[107] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex program-

ming.” http://cvxr.com/cvx, Mar. 2014.

[108] Gurobi Optimization LLC, “Gurobi optimizer reference manual,” 2018.

[109] A. Vinod, J. Gleason, and M. Oishi, “SReachTools: Stochastic reachability toolbox

for MATLAB,” in Hybrid Systems Control Conference, 2019. https://unm-hscl.

github.io/SReachTools.

[110] Z. Botev, J. Grotowski, D. Kroese, et al., “Kernel density estimation via diffusion,”

Ann. Stat., vol. 38, no. 5, pp. 2916–2957, 2010.

[111] J. Hicks, “Flight testing of airbreathing hypersonic vehicles,” tech. rep., NASA,

Office of Management, 1993.

[112] D. Dalle, S. Torrez, J. Driscoll, and M. Bolender, “Flight envelope calculation of a

hypersonic vehicle using a first principles-derived model,” 17th AIAA International

Space Planes and Hypersonic Systems and Technologies Conference, 2011.

[113] L. Fiorentini, A. Serrani, M. Bolender, and D. B. Doman, “Nonlinear robust adap-

tive control of flexible air-breathing hypersonic vehicles,” J. Guid. Control Dyn.,

vol. 32, no. 2, pp. 402–417, 2009.

[114] R. S. Sutton, “Integrated modeling and control based on reinforcement learning

and dynamic programming,” Advances in neural information processing systems,

vol. 3, 1990.

[115] M. G. Bellemare, W. Dabney, and M. Rowland, Distributional reinforcement learn-

ing. MIT Press, 2023.

140

http://cvxr.com/cvx
https://unm-hscl.github.io/SReachTools
https://unm-hscl.github.io/SReachTools

[116] W. Dabney, M. Rowland, M. Bellemare, and R. Munos, “Distributional reinforce-

ment learning with quantile regression,” in Proceedings of the AAAI conference on

artificial intelligence, vol. 32, 2018.

[117] Y. Wang and M. P. Chapman, “Risk-averse autonomous systems: A brief history

and recent developments from the perspective of optimal control,” Artificial Intel-

ligence, vol. 311, p. 103743, 2022.

[118] A.-m. Farahmand, “Value function in frequency domain and the characteristic

value iteration algorithm,” in Advances in Neural Information Processing Systems

(H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché Buc, E. Fox, and R. Garnett,

eds.), vol. 32, Curran Associates, Inc., 2019.

[119] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy

optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[120] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy

optimization,” in International conference on machine learning, pp. 1889–1897,

PMLR, 2015.

[121] A. Tsiamis, D. S. Kalogerias, L. F. Chamon, A. Ribeiro, and G. J. Pappas, “Risk-

constrained linear-quadratic regulators,” in 2020 59th IEEE Conference on Deci-

sion and Control (CDC), pp. 3040–3047, IEEE, 2020.

[122] J. Yin, Z. Zhang, and P. Tsiotras, “Risk-aware model predictive path integral

control using conditional value-at-risk,” in 2023 IEEE International Conference on

Robotics and Automation (ICRA), pp. 7937–7943, IEEE, 2023.

[123] Y. Chen, U. Rosolia, W. Ubellacker, N. Csomay-Shanklin, and A. D. Ames, “Inter-

active multi-modal motion planning with branch model predictive control,” IEEE

Robotics and Automation Letters, vol. 7, no. 2, pp. 5365–5372, 2022.

141

[124] A. Hakobyan, G. C. Kim, and I. Yang, “Risk-aware motion planning and control us-

ing cvar-constrained optimization,” IEEE Robotics and Automation letters, vol. 4,

no. 4, pp. 3924–3931, 2019.

[125] M. P. Chapman, R. Bonalli, K. M. Smith, I. Yang, M. Pavone, and C. J. Tomlin,

“Risk-sensitive safety analysis using conditional value-at-risk,” IEEE Transactions

on Automatic Control, vol. 67, no. 12, pp. 6521–6536, 2021.

[126] A. Tamar, Y. Chow, M. Ghavamzadeh, and S. Mannor, “Policy gradient for co-

herent risk measures,” in Advances in Neural Information Processing Systems

(C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, eds.), vol. 28,

Curran Associates, Inc., 2015.

[127] D. Bertsekas, Abstract dynamic programming. Athena Scientific, 2022.

[128] W. Dabney, G. Ostrovski, D. Silver, and R. Munos, “Implicit quantile networks

for distributional reinforcement learning,” in International conference on machine

learning, pp. 1096–1105, PMLR, 2018.

[129] M. Rowland, R. Dadashi, S. Kumar, R. Munos, M. G. Bellemare, and W. Dabney,

“Statistics and samples in distributional reinforcement learning,” in International

Conference on Machine Learning, pp. 5528–5536, PMLR, 2019.

[130] R. T. Rockafellar, S. Uryasev, et al., “Optimization of conditional value-at-risk,”

Journal of risk, vol. 2, pp. 21–42, 2000.

[131] I. Pinelis, “Characteristic function of the positive part of a random variable and

related results, with applications,” 2015.

[132] C. S. Phillips, “Interpreting expectiles,” Working Paper 2022-01, United States Air

Force Academy, Department of Economics and Geosciences, 2354 Fairchild Drive,

Suite 6k-110, United States Air Force Academy, CO 80840, January 2022.

142

[133] J. Nocedal and S. J. Wright, Numerical optimization. Springer, 1999.

[134] A. Tamar, Y. Chow, M. Ghavamzadeh, and S. Mannor, “Policy gradient for co-

herent risk measures,” Advances in neural information processing systems, vol. 28,

2015.

[135] A. Ruszczyński, “Risk-averse dynamic programming for markov decision pro-

cesses,” Mathematical programming, vol. 125, pp. 235–261, 2010.

[136] D. A. Iancu, M. Petrik, and D. Subramanian, “Tight approximations of dynamic

risk measures,” Mathematics of Operations Research, vol. 40, no. 3, pp. 655–682,

2015.

[137] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann,

“Stable-baselines3: Reliable reinforcement learning implementations,” Journal of

Machine Learning Research, vol. 22, no. 268, pp. 1–8, 2021.

[138] X. Yang, Y. Ye, X. Li, R. Y. K. Lau, X. Zhang, and X. Huang, “Hyperspectral

image classification with deep learning models,” IEEE Transactions on Geoscience

and Remote Sensing, vol. 56, no. 9, pp. 5408–5423, 2018.

[139] C.-C. Chiu, T. N. Sainath, Y. Wu, R. Prabhavalkar, and et al., “State-of-the-art

speech recognition with sequence-to-sequence models,” IEEE International Confer-

ence on Acoustics, Speech and Signal Processing (ICASSP), pp. 4774–4778, 2018.

[140] Y. Huang and Y. Chen, “Survey of state-of-art autonomous driving technologies

with deep learning,” in IEEE 20th International Conference on Software Quality,

Reliability and Security Companion (QRS-C), pp. 221–228, 2020.

[141] Y. Song, M. Steinweg, E. Kaufmann, and D. Scaramuzza, “Autonomous drone rac-

ing with deep reinforcement learning,” in 2021 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pp. 1205–1212, 2021.

143

[142] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep neu-

ral networks,” IEEE Transactions on Evolutionary Computation,, vol. 23, no. 5,

pp. 828–841, 2019.

[143] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Universal adver-

sarial perturbations,” in 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 86–94, 2017.

[144] A. Lomuscio and L. Maganti, “An approach to reachability analysis for feed-forward

relu neural networks,” 2017.

[145] C.-H. Cheng, G. Nührenberg, and H. Ruess, “Maximum resilience of artificial neural

networks,” in Automated Technology for Verification and Analysis (D. D’Souza and

K. Narayan Kumar, eds.), (Cham), pp. 251–268, Springer International Publishing,

2017.

[146] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer, “Reluplex:

An efficient SMT solver for verifying deep neural networks,” in Computer Aided

Verification, pp. 97–117, Springer, 2017.

[147] K. Scheibler, L. Winterer, R. Wimmer, and B. Becker, “Towards verification of

artificial neural networks,” in MBMV, 2015.

[148] R. A. Brown, E. Schmerling, N. Azizan, and M. Pavone, “A unified view of SDP-

based neural network verification through completely positive programming,” in

Proceedings of The 25th International Conference on Artificial Intelligence and

Statistics (G. Camps-Valls, F. J. R. Ruiz, and I. Valera, eds.), vol. 151 of Proceedings

of Machine Learning Research, pp. 9334–9355, PMLR, 28–30 Mar 2022.

[149] M. Fazlyab, M. Morari, and G. J. Pappas, “Safety verification and robustness anal-

ysis of neural networks via quadratic constraints and semidefinite programming,”

IEEE Transactions on Automatic Control, vol. 67, no. 1, pp. 1–15, 2022.

144

[150] K. Dvijotham, R. Stanforth, S. Gowal, C. Qin, S. De, and P. Kohli, “Efficient

neural network verification with exactness characterization,” in Proceedings of The

35th Uncertainty in Artificial Intelligence Conference (R. P. Adams and V. Gogate,

eds.), vol. 115 of Proceedings of Machine Learning Research, pp. 497–507, 22–25

Jul 2020.

[151] S. Dathathri, K. Dvijotham, A. Kurakin, A. Raghunathan, J. Uesato, R. R. Bunel,

S. Shankar, J. Steinhardt, I. Goodfellow, P. S. Liang, and P. Kohli, “Enabling certi-

fication of verification-agnostic networks via memory-efficient semidefinite program-

ming,” in Advances in Neural Information Processing Systems, vol. 33, pp. 5318–

5331, Curran Associates, Inc., 2020.

[152] E. Wong and J. Z. Kolter, “Provable defenses against adversarial examples via

the convex outer adversarial polytope,” in Proceedings of the 35th International

Conference on Machine Learning, (ICML), vol. 80, (Stockholm, Sweden), pp. 5283–

5292, July 10-15, 2018.

[153] A. Raghunathan, J. Steinhardt, and P. S. Liang, “Semidefinite relaxations for cer-

tifying robustness to adversarial examples,” in Advances in Neural Information

Processing Systems, vol. 31, Curran Associates, Inc., 2018.

[154] J. A. Vincent and M. Schwager, “Reachable polyhedral marching (rpm): A safety

verification algorithm for robotic systems with deep neural network components,”

in 2021 IEEE International Conference on Robotics and Automation (ICRA),

pp. 9029–9035, 2021.

[155] F. Sciacchitano, Y. Dong, and T. Zeng, “Variational approach for restoring blurred

images with cauchy noise,” SIAM Journal on Imaging Sciences, vol. 8, no. 3,

pp. 1894–1922, 2015.

145

[156] J.-J. Mei, Y. Dong, T.-Z. Huang, and W. Yin, “Cauchy Noise Removal by Non-

convex ADMM with Convergence Guarantees,” Journal of Scientific Computing,

vol. 74, pp. 743–766, Feb. 2018.

[157] M. Fazlyab, M. Morari, and G. J. Pappas, “Probabilistic verification and reach-

ability analysis of neural networks via semidefinite programming,” in 2019 IEEE

58th Conference on Decision and Control (CDC), pp. 2726–2731, 2019.

[158] L. Weng, P.-Y. Chen, L. Nguyen, M. Squillante, A. Boopathy, I. Oseledets, and

L. Daniel, “PROVEN: Verifying robustness of neural networks with a probabilistic

approach,” in Proceedings of the 36th International Conference on Machine Learn-

ing, vol. 97 of Proceedings of Machine Learning Research, pp. 6727–6736, 09–15

Jun 2019.

[159] M. Pautov, N. Tursynbek, M. Munkhoeva, N. Muravev, A. Petiushko, and I. Os-

eledets, “Cc-cert: A probabilistic approach to certify general robustness of neural

networks,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36,

pp. 7975–7983, Jun. 2022.

[160] K. Dvijotham, M. Garnelo, A. Fawzi, and P. Kohli, “Verification of deep prob-

abilistic models,” in Advances in Neural Information Processing Systems, SecML

workshop, 2018.

[161] L. Berrada, S. Dathathri, K. Dvijotham, R. Stanforth, R. R. Bunel, J. Uesato,

S. Gowal, and M. P. Kumar, “Make sure you're unsure: A framework for verifying

probabilistic specifications,” in Advances in Neural Information Processing Systems

(M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, eds.),

vol. 34, pp. 11136–11147, Curran Associates, Inc., 2021.

146

[162] B. G. Anderson and S. Sojoudi, “Data-driven certification of neural networks with

random input noise,” IEEE Transactions on Control of Network Systems, pp. 1–12,

2022.

[163] K. S. Narendra and K. Parthasarathy, “Neural networks and dynamical systems,”

International Journal of Approximate Reasoning, vol. 6, no. 2, pp. 109–131, 1992.

[164] K. S. Narendra and K. Parthasarathy, “Identification and control of dynamical

systems using neural networks,” IEEE Transactions on Neural Networks, vol. 1,

no. 1, pp. 4–27, 1990.

[165] E. Weinan, “A proposal on machine learning via dynamical systems,” Communica-

tions in Mathematics and Statistics, vol. 5, pp. 1–11, 3 2017. Dedicated to Professor

Chi-Wang Shu on the occasion of his 60th birthday.

[166] I. Pinelis, “Characteristic function of the positive part of a random variable and re-

lated results, with applications,” Statistics & Probability Letters, vol. 106, pp. 281–

286, 2015.

[167] J. Pilipovsky, V. Sivaramakrishnan, M. M. K. Oishi, and P. Tsiotras, “Probabilistic

verification of relu neural networks via characteristic functions,” 2023.

[168] L. Feng and X. Lin, “Inverting analytic characteristic functions and financial ap-

plications,” SIAM Journal on Financial Mathematics, vol. 4, no. 1, pp. 372–398,

2013.

[169] L. Feng and X. Lin, “Inverting analytic characteristic functions and financial ap-

plications,” SIAM Journal on Financial Mathematics, vol. 4, no. 1, pp. 372–398,

2013.

147

[170] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Nec-

ula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang, “JAX: com-

posable transformations of Python+NumPy programs,” 2018.

[171] Forbes Advisor, “Perception of self-driving cars,” 2024. Accessed: 2024-05-30.

[172] K. Dunlap, N. Hamilton, Z. Lippay, M. Shubert, S. Phillips, and K. L. Hobbs,

“Demonstrating reinforcement learning and run time assurance for spacecraft in-

spection using unmanned aerial vehicles,” arXiv preprint arXiv:2405.06770, 2024.

[173] A. Devonport and M. Arcak, “Estimating reachable sets with scenario optimiza-

tion,” in Learning for dynamics and control, pp. 75–84, PMLR, 2020.

[174] B. G. Anderson and S. Sojoudi, “Data-driven certification of neural networks with

random input noise,” IEEE transactions on control of network systems, vol. 10,

no. 1, pp. 249–260, 2022.

[175] E. Dietrich, A. Devonport, and M. Arcak, “Nonconvex scenario optimization for

data-driven reachability,” in 6th Annual Learning for Dynamics & Control Confer-

ence, pp. 514–527, PMLR, 2024.

[176] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cour-

napeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer,

M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Rı́o, M. Wiebe, P. Peterson,

P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,

and T. E. Oliphant, “Array programming with NumPy,” Nature, vol. 585, pp. 357–

362, Sept. 2020.

[177] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cour-

napeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt,

M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern,

148

E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Lax-

alde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M.

Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contrib-

utors, “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,”

Nature Methods, vol. 17, pp. 261–272, 2020.

[178] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-

maison, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” 2017.

[179] G. Pólya et al., “Remarks on characteristic functions,” in Proc. First Berkeley

Conf. on Math. Stat. and Prob, pp. 115–123, 1949.

[180] A. Ben-Israel and B. Mond, “What is invexity?,” The Journal of the Australian

Mathematical Society. Series B. Applied Mathematics, vol. 28, no. 1, p. 1–9, 1986.

[181] R. M. Range, “What is a pseudoconvex domain,” Notices of the AMS, vol. 59,

no. 2, 2012.

[182] K. Muandet, K. Fukumizu, B. Sriperumbudur, B. Schölkopf, et al., “Kernel mean

embedding of distributions: A review and beyond,” Foundations and Trends® in

Machine Learning, vol. 10, no. 1-2, pp. 1–141, 2017.

[183] T. Ergen and M. Pilanci, “Revealing the structure of deep neural networks via

convex duality,” in International Conference on Machine Learning, pp. 3004–3014,

PMLR, 2021.

[184] R. Mitta, H. Hasanbeig, J. Wang, D. Kroening, Y. Kantaros, and A. Abate, “Safe-

guarded progress in reinforcement learning: Safe bayesian exploration for control

policy synthesis,” in Proceedings of the AAAI Conference on Artificial Intelligence,

vol. 38, pp. 21412–21419, 2024.

149

	List of Figures
	List of Tables
	Introduction
	Motivation
	Summary of research contributions
	Summary of publications

	Preliminaries
	Notation
	Probability
	Characteristic Functions

	Dynamical Systems
	Linear Dynamical System

	Control Policies
	Open-Loop Control for Linear Systems
	Affine-Feedback Control for Linear Systems

	Optimization
	Convex Optimization
	Non-Convex and Difference of Convex Optimization

	I Model-Based, Stochastic Optimal Control
	Open-Loop Control of Linear Systems With Log-Concave Uncertainty
	Introduction
	Related Work
	Main Contribution and Organization
	Problem statement
	Convexification of non-Gaussian joint chance constraints
	Risk-allocation for log-concave disturbances
	Enforcing chance constraints using characteristic functions
	Conic reformulation of (3.7c) via piecewise affine approximation
	Solving (3.12) via difference of convex programming

	Examples
	Constrained control of a stochastic double integrator
	Quadrotor in the crosswinds of a harsh environment

	Conclusion

	Closed-Loop Steering of Linear Systems With General Uncertainty
	Introduction
	Related Work
	Main Contribution and Organization
	Problem formulation
	Chance Constraints with Affine Feedback via Characteristic Functions
	Reformulation of Chance Constraints
	Encoding Chance Constraints in the Presence of Affine Feedback

	Terminal Density Constraints
	Joint Characteristic Function Representation of the Terminal Density
	Matching Densities

	Resulting optimization problem
	Examples
	Double Integrator: Standard Gaussian Distribution
	Double Integrator: Long Tail - Laplace Distribution
	Double Integrator: Mixture Distributions - Normal Mixture

	Conclusion

	II Data-Driven, Stochastic Optimal Control
	Open-Loop Control of Linear Systems With Unknown Uncertainty
	Introduction
	Related Work
	Main Contribution and Organization
	Problem Statement
	Method
	Approximating the cumulative distribution function and moments from the empirical characteristic function
	Constructing a Convex Restriction for (5.5b)
	Underapproximative, Conic Optimization Problem
	Convergence and Confidence Intervals

	Examples
	Double Integrator
	One-way Hypersonic Vehicle

	Conclusion

	Distributional Representation of Value Functions for Reinforcement Learning
	Introduction
	Related Work
	Main Contribution and Organization
	Reinforcement Learning Preliminaries and Problem Statements
	Costs
	Optimal Costs and Policy
	Markov Decision Process Formalism
	Reinforcement Learning
	Problem Statement

	Method
	Computational and Representation Considerations

	Example
	Conclusion

	III Probabilistic Verification of Neural Networks
	Analytic Distribution Propagation Through ReLUs
	Introduction
	Related Work
	Main Contribution and Organization
	Preliminaries and Problem Statement
	Propagation of a Characteristic Function through a ReLU Network
	Complexity of Propagation
	Frequency Domain Gridding
	Affine Layer Propagation
	Max Layer Propagation

	Probabilistic Deep Neural Network Verification
	Examples
	Small Toy Neural Network With Cauchy Noise Input
	Larger Toy Neural Network with Gaussian Input Noise

	Conclusion

	Sample-based Verification of Neural Networks
	Introduction
	Related Work
	Main Contribution and Organization
	Problem Statement
	Method
	Examples
	Toy Neural Network with Cauchy Input
	TaxiNet: Pixels to Control Input

	Conclusion

	IV Conclusion
	Conclusion
	Summary of Contributions
	Future Work

	References

