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Abstract
With the growing adoption of data privacy regu-
lations, the ability to erase private or copyrighted
information from trained models has become a
crucial requirement. Traditional unlearning meth-
ods often assume access to the complete training
dataset, which is unrealistic in scenarios where
the source data is no longer available. To address
this challenge, we propose a certified unlearning
framework that enables effective data removal
without access to the original training data sam-
ples. Our approach utilizes a surrogate dataset
that approximates the statistical properties of the
source data, allowing for controlled noise scaling
based on the statistical distance between the two.
While our theoretical guarantees assume knowl-
edge of the exact statistical distance, practical im-
plementations typically approximate this distance,
resulting in potentially weaker but still meaning-
ful privacy guarantees. This ensures strong guar-
antees on the model’s behavior post-unlearning
while maintaining its overall utility. We estab-
lish theoretical bounds, introduce practical noise
calibration techniques, and validate our method
through extensive experiments on both synthetic
and real-world datasets. The results demonstrate
the effectiveness and reliability of our approach
in privacy-sensitive settings.

1. Introduction
Machine learning models have achieved remarkable success
across a wide range of applications by leveraging large-scale
datasets. However, growing concerns about data privacy and
regulatory requirements—such as the General Data Protec-
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tion Regulation (GDPR, 2016), California Consumer Pri-
vacy Act (CCPA, 2018), or the Canadian Consumer Privacy
Protection Act (CPPA, 2023)—have led to a pressing de-
mand for mechanisms that allow the removal of specific
data points from trained models.

Among these mechanisms, certified unlearning has emerged
as a cornerstone, formalizing data removal with rigorous
guarantees. In contrast to heuristic methods, certified un-
learning ensures that the influence of removed data is prov-
ably eliminated from the model, offering both privacy com-
pliance and practical utility. This is typically achieved by
bounding the statistical discrepancy between a model re-
trained without the forget data and an approximated model
that simulates this retraining. While fully retraining a model
from scratch on the retained data is a straightforward and
rigorous solution, it becomes computationally prohibitive
for large-scale models and frequent deletion requests. Cer-
tified unlearning instead provides a practical alternative:
it enables efficient, provably correct data removal without
exhaustive retraining (Guo et al., 2019; Neel et al., 2021;
Sekhari et al., 2021; Chien et al., 2024; Zhang et al., 2024).

Existing certified unlearning methods generally focus on
two key aspects. First, they approximate the retrained model
using an efficient technique, often leveraging a single-step
Newton update (Guo et al., 2019; Sekhari et al., 2021; Zhang
et al., 2024). Second, they inject noise based on differen-
tial privacy (Dwork, 2006) principles—commonly via a
Gaussian mechanism—to ensure that the retrained and un-
learned models are statistically indistinguishable. We adopt
this single-step update approach in our work as it strikes a
balance between efficiency, theoretical grounding, and em-
pirical effectiveness, as supported by prior studies. Despite
their promise, these methods often rely on the assumption
that the source data remains accessible during unlearning.

A critical challenge arises when the unlearning mechanism
has no access to the source data samples. This limitation
may stem from privacy constraints, as the original model
may have been trained by a different organization or a third
party; resource restrictions, as old data may be deleted due to
memory constraints; or regulatory barriers, as data retention
policies or security concerns may prohibit storing the source
data. As a result, existing unlearning methods that rely on
access to the source data become impractical or infeasible.
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Consequently, a key open question emerges:

• What if the unlearning mechanism has no access to
the original training samples, and instead must rely
entirely on a surrogate dataset that mimics these statis-
tical properties to achieve certified unlearning?

This problem is related to zero-shot unlearning, where no
information about the true dataset is available during for-
getting, beyond the model. While several relevant methods
(Foster et al., 2024; Chundawat et al., 2023; Cha et al., 2023)
have been proposed, no theoretical guarantees exist.

A more tractable scenario in practice is when the unlearning
mechanism has access to a surrogate dataset that mimics the
statistical properties of the source data up to a specified level
of fidelity. Summary statistics, learned from this surrogate
dataset, are then used to guide the unlearning process. For
instance, consider a case where a person requests their data
to be deleted, but the organization no longer retains the orig-
inal training data due to regulatory or resource limitations.
Instead, the organization uses publicly available data or pre-
viously generated surrogate datasets that closely resemble
the source data distribution to facilitate the unlearning pro-
cess. Alternatively, the individual may provide a new set
of data samples (e.g., images)—distinct from the source
data but with some statistical discrepancy—specifically to
facilitate the unlearning process.

In this work, we address precisely this scenario. We study
certified unlearning when the unlearning mechanism has
no access to source (retain) samples, but instead relies on
samples from a surrogate dataset that mimics the source
data up to a fidelity criterion. Our goal is to establish formal
certified unlearning guarantees during unlearning, and how
the unlearning performance changes as a function of the
distance between the surrogate and source data.

Main Result. We propose a certified unlearning framework
that does not require access to the original retain data sam-
ples. Instead, we leverage a surrogate dataset where the
samples are generated from a distribution that may be differ-
ent from the original. By carefully scaling the noise based
on the statistical distance between the source and surrogate
datasets, we provide rigorous indistinguishability guaran-
tees on how closely the unlearned model mimics the truly
retrained model. These guarantees are explicitly dependent
on the distance between the source and surrogate data.

Formally, let D denote the source dataset drawn from a dis-
tribution ρ, whereas Ds denotes a surrogate dataset drawn
from a distribution ν. Both distributions share the support
X × Y , where X represents the feature space and Y repre-
sents the label space. Suppose we want to remove a set of
samples Du from D. We define w∗

r as the model retrained
from scratch on the original retain data Dr = D\Du and
ŵr as the model produced by our unlearning mechanism

that uses Ds in place of the source dataset D. Throughout
the paper, we focus on classification models.

Under typical assumptions (Assumption 4.1) about the loss
function used to train the model, we prove that the norm of
the difference between the model retrained from scratch over
the original retain data, w∗

r , and the model approximated
with our unlearning mechanism using the surrogate dataset,
ŵr, is upper bounded as (Theorem 4.2),

∥w∗
r − ŵr∥2 ≤ ∆

where ∆ is a function of the statistical distance between the
two distributions ρ and ν. Then, by carefully scaling the
noise as a function of the statistical distance between ρ and
ν, we achieve certified unlearning without direct access to
the retain data. Technical details are provided in Section 4.

Contributions. Our contributions are summarized below.

• We propose a certified unlearning mechanism to forget
samples drawn from a given distribution without hav-
ing access to the true retain samples (from the source
distribution). Instead, it relies on a surrogate datasetDs

sampled from a different distribution to ensure certified
unlearning. This is the first work to provide certified
unlearning guarantees when the source data is not avail-
able, offering a practical solution in scenarios where
direct access to the source data is restricted.

• We establish rigorous certified unlearning guarantees
that hinge on the statistical distance between the source
data distribution ρ and the surrogate data distribution
ν. Our main theorem ensures that the influence of
the unlearned data points is effectively removed while
preserving a provable bound.

• For scenarios when the statistical (distance) informa-
tion is not readily available between the source and
surrogate datasets, we introduce a heuristic to approx-
imate the distance between ρ and ν. Our approach
uses only the model and surrogate dataset, without
any information about the source statistics, making it
well-suited for resource-limited environments.

• We provide an extensive set of experiments, on both
synthetic and real-world datasets, to demonstrate the
effectiveness of our approach. In particular, we show
how our noise-calibration procedure ensures certified
unlearning while maintaining utility comparable to
methods that assume full access to source data.

2. Related Works
Certified Unlearning. Certified unlearning has become a
key mechanism for data removal, offering rigorous privacy
guarantees while avoiding full retraining costs. Existing
methods typically rely on single-step Newton updates, influ-
ence functions (Guo et al., 2019; Sekhari et al., 2021; Zhang
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et al., 2024), or projected gradient descent algorithms (Neel
et al., 2021; Chien et al., 2024) combined with a randomiza-
tion mechanism for statistical indistinguishability.

Source-Free Unlearning. Zero-shot machine unlearning
(Chundawat et al., 2023) removes data influence using only
model weights and the forget set, using noise-based er-
ror maximization and gated knowledge transfer. Another
method (Cha et al., 2023) employs adversarial sample gener-
ation to preserve decision boundaries while applying gradi-
ent ascent on forget data. JiT unlearning (Foster et al., 2024)
fine-tunes models with perturbed samples to reduce reliance
on forget instances. Bonato et al. (Bonato et al., 2025)
modify feature vectors to align forgotten data with the near-
est incorrect class, using a surrogate dataset in source-free
settings. Despite some recent work in zero-shot/source-free
unlearning, formal certified guarantees remain an open prob-
lem. We address this by ensuring such guarantees using a
surrogate dataset in the absence of source data.

3. Preliminaries and Problem Formulation
Certified Unlearning. Machine unlearning removes the
influence of specific data points from a trained model while
preserving its performance on the retained data. Certified
unlearning formalizes this concept by offering rigorous prob-
abilistic guarantees on the correctness and reliability of the
unlearning process. In essence, it ensures that the adjusted
model behaves as though it was fully retrained without the
removed data, with bounded error relative to the fully re-
trained model. This contrasts with empirical unlearning
techniques, which may be easier to implement but lack any
formal assurances about the fidelity of the resulting model.

Let the original dataset D contain samples {x, y}ni=1, each
sampled from the joint distribution ρ with the support set
X × Y . Let the set of samples to be unlearned, Du ⊂ D,
have size |Du| = m. Then, the retain set Dr = D \ Du has
size |Dr| = n−m. A learning algorithmA takesD as input
and outputs a model w∗ = A(D), which minimizes the
expected loss E(x,y)∼ρ

[
L
(
(x, y),w

)]
, whereL

(
(x, y),w

)
measures the error of the model w on the data sample (x, y).

Having the trained model parameters w∗, unlearning can be
examined under exact and approximate approaches:

1. Exact unlearning involves retraining the model from
scratch on the retained data Dr (Bourtoule et al., 2021;
Ullah et al., 2021; Dukler et al., 2023), which guarantees
complete removal of Du’s influence but is often computa-
tionally infeasible. This motivated approximate unlearning
methods to replicate exact unlearning at a reduced cost.

2. Certified Approximate Unlearning provides a practical
approach to certified unlearning by relaxing the requirement
of retraining from scratch. Instead, it modifies the trained

model w∗ directly so the influence of Du is effectively
removed. The goal is to construct an updated model wr

that closely approximates the retrained model w∗
r , while

ensuring strong statistical indistinguishability guarantees.

Most existing certified approximate unlearning methods
employ techniques such as influence functions (Guo et al.,
2019), second-order Newton updates (Sekhari et al., 2021;
Zhang et al., 2024), or other optimization methods (Chien
et al., 2024; Neel et al., 2021) to efficiently adjust w∗.
By incorporating carefully calibrated randomness, often
through a Gaussian mechanism inspired by differential pri-
vacy (Dwork, 2006), approximate unlearning ensures that
the statistical properties of wr align with those of w∗

r , up
to a specified certification budget. In these approaches, an
upper bound is placed on the norm of the difference between
w∗

r and wr, which in turn determines the required noise
variance. Details of the relation between differential privacy
and certified unlearning are provided in Appendix B.

Formally, given a model w∗ trained on dataset D, the sam-
ples to be unlearned Du, and additional statistical informa-
tion S(D) about D, the unlearning mechanism U produces
an updated model wr. The mechanism U satisfies (ϵ, δ)-
certified unlearning if it adheres to the following guarantees.

Definition 3.1 ((ϵ, δ)-Certified Unlearning (Sekhari et al.,
2021)). Given a learning mechanism A defined over the
hypothesis spaceH, an unlearning mechanism U guarantees
(ϵ, δ) certified unlearning if and only if ∀T ⊆ H,

Pr
(
U(Du,A(D),S(D)) ∈ T

)
≤ eϵ Pr

(
U(∅,A(Dr),S(Dr)) ∈ T

)
+ δ,

Pr
(
U(∅,A(Dr),S(Dr)) ∈ T

)
≤ eϵ Pr

(
U(Du,A(D),S(D)) ∈ T

)
+ δ.

where S is a mechanism that returns statistical information
about the given dataset to guide unlearning U .

Definition 3.1 ensures that the updated model wr is statis-
tically indistinguishable from the retrained model w∗

r , up
to the parameters (ϵ, δ). We adopt the unlearning definition
from (Sekhari et al., 2021) due to its versatility and practi-
cal benefits. Unlike earlier definitions (Ginart et al., 2019),
which rely on the unlearning algorithm being inherently
randomized even when no deletions occur.

Second-order unlearning. For certified unlearning, S(·)
typically represents detailed information about the true data
samples (Guo et al., 2019; Neel et al., 2021; Sekhari et al.,
2021; Chien et al., 2024; Zhang et al., 2024). A common
approach is to utilize the second-order Newton update, for
which S(·) refers to the Hessian of D, evaluated on the
trained model w∗ (Sekhari et al., 2021; Zhang et al., 2024).
These approaches follow a general methodology consisting
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of updating the model with a single-step Newton update,

wr ← w∗ − m

n−m
H−1

Dr
∇L(Dr,w

∗),

and then injecting noise (commonly Gaussian) to the up-
dated model, which is calibrated with respect to an upper
bound on the norm difference between w∗

r and wr. The
details on certified unlearning mechanisms utilizing second-
order Newton updates are given under Appendix B.1.

This work. In contrast to the conventional certified un-
learning problem, in our scenario the unlearning mechanism
only has access to the surrogate dataset Ds, as opposed to
the source dataset D. Our goal is then to develop a certi-
fied unlearning mechanism with only access to Ds. In the
next section, we present a novel approach to address this
challenge, where we propose a novel Gaussian mechanism
building on a second-order Newton update, where the noise
is calibrated as a function of the statistical distance between
the source and surrogate data distributions, without having
access to the original training set. In scenarios where the
statistical distance is not readily available, we demonstrate
a simple methodology to estimate this by using the model.
While providing strong theoretical guarantees, our approach
is versatile and can be applied to a wide range of unlearn-
ing algorithms that use a single-step second-order Newton
update as the approximation method.

4. Methodology
Our approach consists of the following key steps:

1. (Hessian estimation.) Our approach builds on second-
order unlearning, which requires the Hessian of the
source dataset to update the model for forgetting. As
we do not have access to the source data, we estimate
the true Hessian HD using the Hessian of the surrogate
dataset HDs . Using the surrogate Hessian, we estimate
the true Hessian HDr of the retain samples Dr.

2. (Model update.) Using the estimated Hessian ĤDr
of

the retain samples, we update the model w∗ (trained
on D) using a single-step second-order Newton update.

3. (Noise calibration.) Finally, we employ a Gaussian
mechanism adding noise n to the updated model ŵr.
To ensure certified unlearning, we calibrate the noise
using an upper bound on the L2 norm distance between
the estimated model ŵr and the true unlearned model
w∗

r , along with the total variation distance TV(ρ ∥ ν)
between the source and surrogate datasets.

Before we describe the details of these steps, we first provide
a useful technical assumption.

Assumption 4.1. The loss function L used during the train-
ing of the model parameters is L-Lipschitz, α-strongly con-
vex, β-smooth, and γ-Hessian Lipschitz.

Details of these assumptions are provided in Appendix A.
We next describe our individual steps.

1. Hessian estimation. Our mechanism approximates the
model retrained from scratch, i.e., trained only on the re-
tained samples of the source dataset, by using the surrogate
dataset and a one-step second-order Newton update.

The second-order Newton update is the product of the in-
verse Hessian and the gradient vector, both evaluated at
w∗, the model trained on the training dataset D. If the
original retain data Dr was available, the update would be,
wr = w∗ − H−1

Dr
∇L(Dr,w

∗). Since Dr is unavailable,
we approximate its Hessian as

ĤDr =
nHDs

−mHDu

n−m
. (1)

2. Model update. Using the estimated Hessian
ĤDr

, we then update the model. The update also re-
quires ∇L(Dr,w

∗), which we express using the fact that
∇L(D,w∗) = 0 for the fully trained model and therefore,

∇L(Dr,w
∗) =

−m∇L(Du,w
∗)

n−m
. (2)

Substituting (1) and (2) into the second-order Newton up-
date yields our model update for unlearning,

ŵr = w∗ +
m

n−m
Ĥ−1

Dr
∇L(Du,w

∗). (3)

3. Noise calibration. To ensure certified unlearning, we
then introduce a Gaussian mechanism with the noise scaled
according to: 1) an upper bound on ∥w∗

r − ŵr∥2, 2) a
fidelity criterion based on the statistical distance between
the source and surrogate data distributions. Specifically, the
final model is given by,

ŵ′
r := ŵr + n

where n ∼ N (0, σ2I) such that,

σ =
∆

ϵ

√
2 ln(1.25/δ) (4)

and

∥w∗
r − ŵr∥2 ≤ ∆

≜
2γLm2

α3n2
1

+

(
∥∇L(Du,w

∗)∥2

m(n1 − n2)β + 2mn2βTV(ρ ∥ ν)
(n1α−mβ)(n2α−mβ)

)
(5)

to achieve (ϵ, δ)-certified unlearning. Algorithm 1 presents
the individual steps for our certified unlearning mechanism
Û . We next provide the theoretical justification behind (4)
and (5) in Theorem 4.2 and Theorem 4.3.
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Algorithm 1 Unlearning Mechanism Leveraging Surrogate
Data Statistics
Require: Unlearning datasetDu, trained model parameters

w∗ (from A(D)), data statistics S(Ds) : HDs
, upper

bound ∆, privacy parameters ϵ, δ
Ensure: Updated model parameters ŵ′

r after unlearning

1: Compute σ = ∆
ϵ

√
2 ln(1.25/δ)

2: Compute ĤDr
=

nHDs−mHDu

n−m

3: Update ŵr = w∗ + m
n−mĤ−1

Dr
∇L(w∗,Du)

4: Sample n ∼ N (0, σ2I)
5: Return ŵ′

r := ŵr + n

4.1. Theoretical Principles

In this section we provide the theoretical intuition behind our
mechanism. In Theorem 4.2, we derive an upper bound on
the difference between the true retrained model w∗

r , trained
from scratch on the retain data Dr, and the approximate
model ŵr, which uses the surrogate data Ds. This bound is
formulated in terms of the total variation distance TV(ρ ∥ ν)
between the source and surrogate data distributions.

Theorem 4.2. Consider a loss functionL satisfying Assump-
tion 4.1, and a surrogate dataset Ds with n2 samples drawn
from a distribution ν, to mimic the source dataset D with
n1 drawn from a distribution ρ, over the support set X ×Y .
Define the retrained model over the retain samples as w∗

r

and the model achieved after unlearning as ŵr. Also, as-
sume that n1 and n2 are sufficiently large and n1, n2 ≥ mβ

α .
Then, the following upper bound holds,

∥w∗
r − ŵr∥2 ≤ ∆

where ∆ is as defined in (5).

Proof. The proof is provided in Appendix C.

The next theorem presents our certified unlearning guaran-
tees under a given privacy budget ϵ and confidence δ when
noise scaled by ∆ is added to the approximate model in (3).

Theorem 4.3. Consider a dataset D where data samples
follow the distribution ρ, and a surrogate dataset Ds where
data samples follow the distribution ν. Given a forget set
Du ⊆ D, and the hypothesis setH, the unlearning mecha-
nism Û satisfies (ϵ, δ)-certified unlearning.

Proof. The proof is provided in Appendix C.1.

Thus, when TV(ρ ∥ ν) is large, the noise magnitude σ
increases, ensuring certified guarantees even when the sur-
rogate distribution significantly differs from the source.

A key challenge is estimating (or upper bounding)
TV(ρ ∥ ν) without access to D. In the next section, we

introduce a heuristic method to approximate this distance
(or an upper bound) using only Ds and the trained model
w∗. This enables the implementation of Algorithm 1 with-
out direct access to D, which is crucial for privacy-sensitive
applications and real-world deployments.

4.2. From Theory to Practice

In this section, we first propose an upper bound using
Kullback-Leibler (KL) divergence. While total variation
distance would be preferable, we use KL for efficiency due
to no access to D. Next, we approximate KL without direct
access to exact samples by training a model on Ds and uti-
lizing models as conditional probabilities. We sample from
input marginal distribution using energy-based modeling to
compute the KL. Finally, we estimate the KL between input
marginal distributions using the Donsker-Varadhan varia-
tional representation (Donsker & Varadhan, 1983). The
details of these steps are explained below.

To apply the bound in Theorem 4.2, we require the exact
total variation distance TV(ρ ∥ ν) or an upper bound. In
practice, we approximate this bound using the KL diver-
gence, leveraging heuristics outlined in this section. In
Corollary 4.4, we provide an upper bound based on the KL
divergence between surrogate and source data distributions.

Corollary 4.4. Under the same assumptions and definitions
in Theorem 4.2, the following upper bound holds:

∥w∗
r − ŵr∥2 ≤

2γLm2

α3n2
1

+

(
∥∇L(Du,w

∗)∥2

m(n1 − n2)β + 2mn2β
√
1− exp(−KL(ν ∥ ρ))

(n1α−mβ)(n2α−mβ)

)

Proof. The proof is available in Appendix D.1.

To approximate KL(ν ∥ ρ), we leverage the model w∗

trained on the entire dataset D. Let f(w,x) denote the
probability simplex over classes parameterized by the model
w for a sample x, with f(w,x)y representing the proba-
bility of class y. Assuming w̃∗ is the model trained on the
surrogate datasetDs, the KL divergence can be decomposed
as shown in Proposition 4.5.

Proposition 4.5. Let f(w,x) output a probability simplex
over classes for a data sample x, parameterized by w.
Given trained models w∗ and w̃∗, such that w∗ is trained
on D and w̃∗ on Ds, where data samples from D and Ds

follow distributions ρ and ν, the KL divergence KL(ν ∥ ρ)
can be decomposed as,

KL(ν ∥ ρ) ≈ 1

n

∑
(x,y)∈Ds

log
f(w̃∗,x)y
f(w∗,x)y

+KL(ν(x) ∥ ρ(x))
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Proof. The derivation is given in Appendix D.2.

Proposition 4.5 decomposes the KL divergence into two
components: (1) divergence between conditional distribu-
tions, which we can approximate using the classifiers, and
(2) divergence between input marginal distributions.

To estimate the latter, we leverage the hidden energy-based
model in the classifier w∗ to sample from the true input
marginal distribution ρ(x). These samples, combined with
the surrogate dataset, enable us to approximate the KL di-
vergence between marginal distributions. The next section
details the technical steps for sampling from ρ(x) using
only the trained model parameters.

Sampling from input marginal distribution. Inspired by
(Grathwohl et al., 2019), we leverage the implicit energy-
based model of the trained model w∗ to sample from the
approximated input marginal distribution ρ̂(x) given by:

ρ̂(x) =
exp(−E(x))

Z

where the energy function is defined as E(x) =
− log

∑
y∈Y exp(f(w∗,x)y). Here, f(w∗,x)y denotes

the logit score for label y under w∗, and the summation
runs over the label space Y .

To sample from ρ̂(x), we employ Stochastic Gradient
Langevin Dynamics (SGLD), which iteratively refines sam-
ples without explicitly computing the normalization con-
stant Z. These samples, combined with the surrogate data,
allow us to approximate the input marginal KL divergence.

In the next section, we present how to estimate this diver-
gence using a variational representation, ensuring a practical
approach for our unlearning mechanism. Further details on
the energy-based modeling, SGLD sampling procedure, and
convergence criteria can be found in Appendix D.3.

Approximating KL Distance Between Input Marginal Dis-
tributions. After generating samples from the approximated
source distribution ρ̂(x) using Langevin dynamics, we ap-
proximate the KL divergence between the surrogate dis-
tribution ν and the approximated source distribution ρ̂ by
leveraging the Donsker-Varadhan variational representation,

KL(ν(x) ∥ ρ̂(x)) = sup
T

EX∼ν [T (X)]

− logEX∼ρ̂ [exp(T (X))]
(6)

where T is a variational function, parametrized by a neural
network, that maps input samples to real-valued scores.

To approximate the expectations in (6), we rely on the sam-
ples generated through Langevin dynamics. Given k sam-
ples sampled from ρ̂(x), forming a set {x̂i}ki=1, and n sam-
ples from ν(x) forming the set {xi}ki=1, the KL divergence

can be approximated as,

KL(ν(x) ∥ ρ̂(x)) ≈ sup
T

1

n

n∑
i=1

T (xi)

− log

1

k

k∑
j=1

exp(T (x̂j))


Finally, building on this result, we refine the decomposition
of the KL divergence from Proposition 4.5 to explicitly
account for the approximation of KL(ν ∥ ρ) as follows.

Proposition 4.6. Consider the setting from Proposition 4.5
and assume KL(ν ∥ ρ) is approximated using sampling from
ρ̂(x) and the Donsker-Varadhan variational representation
described in (6). The KL(ν ∥ ρ) can then be expressed as,

KL(ν ∥ ρ) ≈ 1

n

∑
(x,y)∈Ds

log
f(w̃∗,x)y
f(w∗,x)y

+ sup
T

(
1

n

n∑
i=1

T (xi)− log

1

k

k∑
j=1

exp(T (x̂j))

)

In our experiments, we demonstrate our evaluations with
both synthetic and real-world datasets. For the latter, SGLD
sampling and Proposition 4.6 will be instrumental in our
experiments with real-world datasets.

5. Experiments
We systematically evaluate our approach on synthetic
and real-world datasets to demonstrate its effectiveness in
achieving certified unlearning. Unless otherwise noted, we
adopt a linear training model with forget ratio of 0.1, and an
L2 regularization constant λ = 0.01. The loss function is
assumed to be α-strongly convex, L-Lipschitz, β-smooth,
and γ-Hessian Lipschitz. In line with prior works (Koh &
Liang, 2017; Wu et al., 2023b;a; Zhang et al., 2024) we
tune α, L, β, and γ for each experimental setting, which
preserves theoretical soundness but may lead to approxi-
mate certifications. All details about the parameter study
and implementation are given under Appendix E.

We now turn to our empirical evaluation, where we assess
the effectiveness of our approach through a series of experi-
ments. We first provide explanations about the evaluation
metrics used to evaluate our unlearning mechanism. Then,
we provide synthetic and real-world dataset experiments. In
addition to that, we also investigate our methodology over
different setups to demonstrate its effectiveness.

Performance Metrics. We evaluate the performance using
train, test, retain, and forget accuracies on their respective
data splits. Additionally, we employ the unlearning-specific
membership inference attack (MIA) (Kurmanji et al., 2023),
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ζ Method Train Test Retain Forget MIA RT
– Retrain 77.0 % 72.0 % 77.4 % 73.6 % 47.63 % 10
– Unlearn (+) 77.1 % 72.6 % 77.5 % 74.1 % 47.63 % 10

0.02 Unlearn (-) 77.2 % 72.2 % 77.5 % 74.8 % 48.89 % 7
0.04 Unlearn (-) 77.3 % 72.4 % 77.6 % 74.4 % 48.89 % 10
0.06 Unlearn (-) 77.3 % 72.2 % 77.6 % 74.3 % 48.37 % 10
0.08 Unlearn (-) 77.3 % 72.4 % 77.6 % 74.4 % 48.15 % 10
0.1 Unlearn (-) 77.3 % 72.7 % 77.7 % 74.1 % 48.30 % 10

Table 1. Evaluation of unlearning performance while varying the
off-diagonal elements (ζ) of the unit covariance.

where an accuracy of 50% means the attack can not distin-
guish whether a specific sample belongs to the forget or test
dataset. Relearn time (RT) (Golatkar et al., 2020) measures
how many additional training iterations are required to re-
store the model’s performance on the forgotten data after
it is reintroduced. Intuitively, the unlearned model should
give high relearn time scores which indicates the model
effectively unlearns the forget dataset. Finally, we report the
forget score (FS) (Triantafillou et al., 2024), which quan-
tifies how closely the predictions of the unlearned model
align with those of a model retrained from scratch. A higher
forget score indicates stronger unlearning and higher indis-
tinguishability between retrained and unlearned models.

Overall, we denote our method as ”Unlearn (-)” indicating
no access to the statistical information about the source data,
unlearning method utilizing statistical information about the
source data as ”Unlearn (+)” and the model retrained from
scratch over the retain data as ”Retrain”. Also, we report
three FS variants: “FS1 (+)” applies the noise required by
Unlearn (+), “FS1 (-)” applies the noise required by our
proposed Unlearn (-), and “FS2 (-)” applies the noise from
Unlearn (+) to Unlearn (-). Comparing these scores demon-
strates that our proposed approach is required to achieve
certified unlearning while utilizing a surrogate dataset.

Synthetic Experiments. We generate an source dataset of
15000 samples from a 50-dimensional standard Gaussian,
N (0, I). A corresponding surrogate dataset of the same size
is drawn from N

(
0, ζ1− (ζ + 1)I

)
, where ζ ∈ [0.01, 0.1]

controls the off-diagonal covariance terms. Varying ζ mod-
ulates the KL divergence between the source and surro-
gate distributions, influencing the noise variance needed for
certified unlearning. As demonstrated in Figure 1(a), the
required noise variance is increased following Theorem 4.2.

Table 1 reports train, test, retain, and forget accuracies along-
side the MIA score and RT. Despite the required noise in-
creasing with larger KL divergence, our method Unlearn (-)
achieves utility comparable to other methods. These results
underscore that appropriately scaling noise according to dis-
tributional distance can preserve model performance while
guaranteeing unlearning. From the forget scores given in
Figure 1(b), we observe that while FS1 (+) and FS1 (-) can
achieve similar forget scores, FS2 (-) is always lower than

(a) Required noise variance σ (b) Forget scores

Figure 1. (a): Required variance σ for achieving certified unlearn-
ing on synthetic datasets as a function of the off-diagonal elements
(ζ). (b): Forget scores achieved for synthetic datasets.

(a) Required noise variance σ (b) Forget scores

Figure 2. (a): Required variance σ for achieving certified unlearn-
ing across CIFAR10, StanfordDogs, and Caltech256 datasets as
a function of the concentration parameter ξ. (b): Forget scores
achieved for CIFAR10, StanfordDogs, and Caltech256.

the others, implying that to achieve similar certification with
Unlearn (+), our proposed noise is required. We report addi-
tional experiments using different random seeds along with
corresponding error bars in Appendix F.

Real-World Dataset Experiments. We further evaluate our
method on CIFAR10 (Krizhevsky et al., 2009), Caltech256
(Griffin et al., 2007), and StanfordDogs (Khosla et al., 2011),
by dividing each dataset into an source and a surrogate sub-
set according to a Dirichlet distribution with concentration ξ.
Lower values of ξ lead to more skewed class splits and thus
greater distributional divergences. We show these results in
Figure 2(a). We observe that the required noise variance de-
creases while increasing the concentration parameter ξ. We
approximate the KL distance between source and surrogate
datasets without accessing source data by using Proposi-
tion 4.6. We use embeddings from a ResNet18 (He et al.,
2016) model, following (Guo et al., 2019).

In Table 2 we report the train, test, retain, and forget ac-
curacies for all datasets. Our method Unlearn (-) achieves
comparable accuracy over all data splits similar to other
methods while utilizing only the surrogate datasets. We
also report the MIA and RT metrics in Table 3 showing that
our unlearning performance is close to the other methods.
Finally, in Figure 2(b) we demonstrate the forget scores for
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ξ Method CIFAR-10 StanfordDogs Caltech256
Train Test Retain Forget Train Test Retain Forget Train Test Retain Forget

13
Retrain 77.6 % 76.2 % 77.8 % 76.0 % 86.1 % 73.7 % 87.3 % 75.2 % 87.1 % 72.0 % 88.8 % 72.2 %
Unlearn (+) 77.9 % 76.4 % 78.0 % 76.3 % 84.1 % 71.9 % 85.3 % 73.2 % 86.8 % 70.8 % 88.6 % 71.2 %
Unlearn (-) 77.5 % 76.1 % 77.7 % 75.8 % 84.0 % 72.2 % 85.2 % 73.1 % 87.0 % 71.5 % 88.4 % 74.6 %

36
Retrain 78.0 % 76.7 % 78.2 % 76.5 % 84.6 % 75.1 % 86.0 % 71.4 % 84.9 % 74.6 % 86.2 % 73.3 %
Unlearn (+) 77.4 % 76.5 % 77.6 % 75.7 % 84.5 % 75.6 % 85.9 % 71.7 % 84.7 % 73.2 % 86.0 % 73.8 %
Unlearn (-) 77.3 % 76.4 % 77.5 % 75.7 % 84.4 % 75.7 % 85.8 % 72.0 % 84.9 % 73.5 % 86.0 % 74.9 %

100
Retrain 78.0 % 76.9 % 78.0 % 77.8 % 82.9 % 76.0 % 84.2 % 71.1 % 83.5 % 74.1 % 84.7 % 73.3 %
Unlearn (+) 78.2 % 77.3 % 78.3 % 77.2 % 83.8 % 75.7 % 85.1 % 72.2 % 82.1 % 73.0 % 83.2 % 72.8 %
Unlearn (-) 78.1 % 77.2 % 78.1 % 77.3 % 83.7 % 75.6 % 85.0 % 72.0 % 82.0 % 72.8 % 83.0 % 72.9 %

Table 2. Train, test, retain, forget set accuracies for each method across CIFAR10, StanfordDogs, and Caltech256 datasets while varying
the concentration parameter (ξ) of the Dirichlet distribution.

ξ Method CIFAR-10 StanfordDogs Caltech256
MIA RT MIA RT MIA RT

13
Retrain 51.14 % 14 51.95 % 70 50.97 % 20
Unlearn (+) 52.68 % 10 51.61 % 15 51.20 % 20
Unlearn (-) 52.59 % 23 51.49 % 15 52.00 % 16

36
Retrain 49.97 % 2 50.87 % 20 50.21 % 21
Unlearn (+) 50.15 % 10 50.05 % 18 47.39 % 21
Unlearn (-) 49.80 % 6 50.14 % 19 50.46 % 17

100
Retrain 49.76 % 7 52.49 % 19 48.01 % 17
Unlearn (+) 48.90 % 13 52.02 % 21 52.05 % 16
Unlearn (-) 48.83 % 32 51.94 % 16 52.33 % 14

Table 3. MIA and RT metrics given for each method across CI-
FAR10, StanfordDogs, and Caltech256 datasets while varying the
concentration parameter (ξ) of the Dirichlet distribution.

all datasets and selected concentration parameters. This
implies the necessity of our noise scaling approach while
using a surrogate dataset to achieve certified unlearning.

Additional experiments with different random seeds, cor-
responding error bars, and evaluations of our heuristic KL
approximation—used for noise calibration without access-
ing the source data—against KL estimates via the Donsker-
Varadhan method (with data access) are reported in Ap-
pendix F, highlighting the gap between practical estimation
and the exact quantity required for certified unlearning.

Experiments with Different Forget Ratios. We conducted
extensive experiments on the StanfordDogs dataset with
varying forget ratios to assess how forget ratio impacts un-
learning. The results in Table 4 show that our method Un-
learn (-) scales well across different forget set ratios. Also,
results under the MIA and RT columns indicate that similar
unlearning performance is achieved across different forget
ratios with Unlearn (+) and Retrain models. These findings
confirm the robustness of our approach.

Mixed-Linear Network Experiments. While the convexity
and smoothness assumptions in Assumption 4.1 may not
hold for general neural networks, there exist practical archi-
tectures that satisfy these conditions while retaining strong
utility. To this end, we adopt the mixed-linear networks
(Golatkar et al., 2021), which linearizes a pre-trained neural

FR Method Train Test Retain Forget MIA RT

0.01
Retrain 87.1 % 73.7 % 87.2 % 73.8 % 52.1 % 10
Unlearn (+) 87.3 % 74.1 % 87.3 % 74.5 % 53.2 % 10
Unlearn (-) 87.1 % 74.1 % 87.2 % 74.1 % 53.1 % 10

0.1
Retrain 82.9 % 76.0 % 84.2 % 71.1 % 52.5 % 19
Unlearn (+) 83.8 % 75.7 % 85.1 % 72.2 % 52.0 % 21
Unlearn (-) 83.7 % 75.6 % 85.0 % 72.0 % 51.9 % 16

0.2
Retrain 85.6 % 72.4 % 88.7 % 73.3 % 50.6 % 40
Unlearn (+) 84.9 % 71.8 % 88.3 % 71.5 % 51.8 % 40
Unlearn (-) 85.0 % 71.4 % 88.0 % 72.6 % 52.0 % 40

Table 4. Evaluation of unlearning performance across varying for-
get ratios (FR) on StanfordDogs dataset with ξ = 100.

network using a first-order Taylor expansion. Specifically,
the network output is approximated via its Neural Tangent
Kernel (Jacot et al., 2018) formulation, transforming the
objective into a convex optimization problem. This approxi-
mation allows for efficient and tractable unlearning while
preserving much of the model’s predictive performance.

In Table 5, we report results on CIFAR-10 under two set-
tings using this architecture. One with randomly selecting
10% of the data as forget set and the other with removing
all samples belonging to class 0. In both cases, our method
achieves effective certified unlearning and maintains com-
petitive accuracy on the retained data, demonstrating that
mixed linear networks provide a practical and theoretically
sound foundation for unlearning in neural models. MIA

– Method Train Test Retain Forget MIA RT

0.1
Retrain 93.6 % 86.4 % 95.6 % 84.7 % 51.2 % 53
Unlearn (+) 93.7 % 86.4 % 94.8 % 87.2 % 51.3 % 54
Unlearn (-) 94.1 % 85.2 % 94.9 % 86.8 % 52.1 % 54

0
Retrain 81.7 % 72.3 % 92.7 % 0 % – 142
Unlearn (+) 82.2 % 72.5 % 93.2 % 4.2 % – 135
Unlearn (-) 82.4 % 72.4 % 93.5 % 5.1 % – 132

Table 5. Evaluation of unlearning performance on CIFAR-10 using
mixed-linear networks with ξ = 100. In this table, ”0.1” indicates
that 10% of the data is used as the forget set, and ”0” denotes the
class selected for unlearning.
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Arch Method Train Test Retain Forget MIA RT

L
Retrain 78.0 % 76.9 % 78.0 % 77.8 % 49.76 % 7
Unlearn (+) 78.2 % 77.3 % 78.3 % 77.2 % 48.90 % 13
Unlearn (-) 78.1 % 77.2 % 78.1 % 77.3 % 48.83 % 32

C+L
Retrain 81.6 % 79.8 % 82.1 % 78.4 % 49.94 % 40
Unlearn (+) 80.8 % 78.4 % 81.3 % 78.1 % 51.32 % 45
Unlearn (-) 80.5 % 78.1 % 80.9 % 77.5 % 50.71 % 46

2C+L
Retrain 83.0 % 80.3 % 83.1 % 81.2 % 50.86 % 22
Unlearn (+) 84.3 % 81.4 % 84.3 % 81.7 % 51.28 % 20
Unlearn (-) 82.9 % 80.5 % 83.1 % 81.1 % 50.05 % 22

Table 6. Evaluation of unlearning performance across different
model architectures: a single linear layer (L), a convolutional layer
followed by a linear layer (C+L), and two convolutional layers
followed by a linear layer (2C+Lin).

scores are omitted for class unlearning because the attack
is designed to distinguish between test and forget samples;
forgetting an entire class greatly increases distinguishability,
making the MIA score uninformative.

Unlearning Across Model Architectures. To evaluate the
generality of our approach, we train three different archi-
tectures on CIFAR-10 using a Dirichlet concentration of
ξ=100: a single linear layer (”L”), a convolutional layer
followed by a linear layer (”C+L”), and two convolutional
layers with a linear layer (”2C+L”). As shown in Table 6,
our method maintains accuracy comparable to others, while
keeping the MIA score close to 50%. Also, the RT metric
implies that the unlearning succeeded in removing the influ-
ence of the forget samples. Finally, for the C+L architecture,
the observed FS1 (+), FS1 (-), and FS2 (-) values are 0.08,
0.08, and 0.05, respectively, while for 2C+L, they are lower
at 0.04, 0.04, and 0.02. These results reinforce that the
introduced noise is essential for the unlearning process.

MNIST-USPS Experiment. To illustrate our contribution in
a practical setting, we consider MNIST (Lecun et al., 1998)
and USPS (Hull, 1994) datasets and analyze the following
cases. First, we train a model on MNIST and apply our
unlearning framework by selecting a random forget set from
MNIST while using USPS as the surrogate dataset (M→U).
Second, we reverse the process, training a model on USPS
and unlearning with MNIST as the surrogate (U → M).
As can be seen from Table 7, in both cases the unlearning
performance of our method Unlearn (-) is similar to the
other methods we are comparing with.

Task Method Train Test Retain Forget MIA RT

M
→

U Retrain 94.2 % 91.4 % 94.3 % 92.5 % 51.23 % 11
Unlearn (+) 94.1 % 91.3 % 94.1 % 90.7 % 50.15 % 13
Unlearn (-) 94.1 % 91.1 % 94.1 % 91.5 % 50.54 % 13

U
→

M Retrain 95.2 % 91.1 % 95.1 % 92.9 % 50.71 % 21
Unlearn (+) 93.7 % 91.3 % 95.3 % 91.7 % 51.93 % 24
Unlearn (-) 93.5 % 90.4 % 94.9 % 90.9 % 50.60 % 23

Table 7. Evaluation of unlearning performance with MNIST and
USPS dataset experiments.

6. Conclusion
We introduce a certified unlearning framework that enables
data removal without requiring access to the original train-
ing data statistics. Unlike existing methods, our approach
utilizes a surrogate dataset and calibrates noise based on sta-
tistical distance, ensuring provable guarantees. We establish
theoretical bounds, develop a practical noise-scaling mech-
anism, and validate our method through experiments on
synthetic and real-world datasets. Our results demonstrate
certified unlearning can be achieved by utilizing a surrogate
dataset while maintaining utility and privacy guarantees.

Software
Our main implementation used for this paper is
available at https://github.com/info-ucr/
certified-unlearning-surr-data. We also im-
plemented the mixed-linear networks (Golatkar et al., 2021)
from scratch, the code is available at https://github.
com/info-ucr/mixed-privacy-forgetting.
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Impact Statement
Unlearning is increasingly critical due to evolving privacy
regulations, such as GDPR, CCPA and CPPA, which man-
date mechanisms to effectively erase private or sensitive
data from trained machine learning models. Retraining
these models from scratch to remove specific data points is
computationally infeasible. Traditional unlearning methods
circumvent exhaustive retraining but typically require full
access to the original source data, an assumption often unre-
alistic in practical scenarios due to privacy concerns, storage
limitations, or regulatory restrictions on data retention. Our
work directly addresses this crucial gap by proposing a certi-
fied unlearning framework that does not rely on the availabil-
ity of original training data. Instead, we leverage surrogate
datasets that approximate the original data distribution to
guide the unlearning process. By carefully calibrating noise
injection based on statistical distances between original and
surrogate datasets, our method ensures rigorous theoretical
guarantees on unlearning performance, thereby providing a
principled alternative to heuristic methods. This approach
significantly broadens the practical applicability of certified
unlearning methods, ensuring compliance with privacy re-
quirements even when access to original training data is
restricted or completely unavailable.
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A. Assumptions
For the loss function L used to train the model parameters, we have the following assumptions listed in Assumption 4.1.

Definition A.1 (L-Lipschitz). The loss function L is L-Lipschitz in the parameter w if ∀(x, y) ∈ X ×Y and ∀w1,w2 ∈ H,

|L((x, y),w1)− L((x, y),w2)| ≤ L∥w1 −w2∥2. (7)

Definition A.2 (α-Strong Convexity). The loss function L is α-strong convex if ∀(x, y) ∈ X × Y and ∀w1,w2 ∈ H,

L((x, y),w1) ≥ L((x, y),w2) + ⟨∇L((x, y),w2),w1 −w2⟩+
α

2
∥w1 −w2∥22. (8)

Definition A.3 (β-Smoothness). The loss function L is β-smooth if ∀(x, y) ∈ X × Y and ∀w1,w2 ∈ H,

L((x, y),w1) ≤ L((x, y),w2) + ⟨∇L((x, y),w2),w1 −w2⟩+
β

2
∥w1 −w2∥22. (9)

Definition A.4 (γ-Hessian Lipschitz). The loss function L is γ-Hessian Lipschitz in the parameter w if ∀(x, y) ∈ X × Y
and ∀w1,w2 ∈ H,

|∇2L((x, y),w1)−∇2L((x, y),w2)| ≤ γ∥w1 −w2∥2. (10)

B. Relationship Between Certified Machine Unlearning and Differential Privacy
Differential privacy (Dwork, 2006) and certified unlearning share a common conceptual foundation. Both concepts aim to
provide statistical indistinguishability. However, they focus on achieving indistinguishability in fundamentally different
aspects of data handling and model behavior.

In differential privacy, the goal is to ensure that the information obtained from a randomized mechanism applied to a dataset
is indistinguishable when a specific data sample is included versus when it is excluded. This statistical indistinguishability is
achieved by bounding the influence of any single data point on the output of the mechanism. Formally, the randomized
mechanismM satisfies (ϵ, δ)-differential privacy if, for any two neighboring datasets D and D′ differing by at most one
data point, and for any measurable set T , the following holds.

Definition B.1 (Differential Privacy). A randomized mechanism M satisfies (ϵ, δ)-differential privacy if, for any two
neighboring datasets D and D′ differing in at most one data point, and for any measurable subset T ⊆ H:

Pr
(
M(D) ∈ T

)
≤ eϵ Pr

(
M(D′) ∈ T

)
+ δ,

Pr
(
M(D′) ∈ T

)
≤ eϵ Pr

(
M(D) ∈ T

)
+ δ.

Thus, DP focuses on controlling the extent to which the output of the mechanism reveals information about any individual
data sample.

In contrast, certified unlearning ensures statistical indistinguishability between the output of a retrained model and that of an
unlearned model. The guarantee provided by certified unlearning, as defined in Definition 3.1, ensures that the behavior of
the unlearned model closely approximates the retrained model within (ϵ, δ) bounds.

Certified unlearning often employs DP-inspired techniques like the Gaussian mechanism to achieve guarantees. Specifically,
certification requires finding an upper bound for the norm of the difference between a model retrained from scratch and one
updated via the unlearning mechanism. This bound enables noise scaling according to the Gaussian mechanism ((Dwork,
2006), App. A) to satisfy (ϵ, δ)-certified unlearning, ensuring statistical indistinguishability between the unlearned and
retrained models (Definition 3.1).

Previous works derive this upper bound based on the unlearning mechanism’s algorithm. Many certified unlearning
approaches rely on single-step second-order Newton updates under strong convexity assumptions (Guo et al., 2019; Sekhari
et al., 2021; Zhang et al., 2024), where the Hessian is computed over the retain dataset Dr at the model trained on the full
dataset w∗.

12



A Certified Unlearning Approach without Access to Source Data

B.1. Certified Unlearning Using Newton Updates with Exact Data Samples

Certified unlearning methods often utilize statistical information, S(·), such as the Hessian of the full dataset evaluated
at w∗ (Sekhari et al., 2021; Zhang et al., 2024). These methods randomize the unlearning mechanism by adding noise,
following the Gaussian mechanism. The upper bound for the norm of the difference between the retrained and unlearned
models is derived using retained data samples (Sekhari et al., 2021; Zhang et al., 2024).

Building on this framework, Sekhari et al. (Sekhari et al., 2021) derived an explicit upper bound for the norm difference,
leveraging strong convexity and second-order information. This bound provides critical insights into the statistical guarantees
of certified unlearning. In the following the upper bound between

Lemma B.2 ((Sekhari et al., 2021) Lemma 3). Let the loss function L satisfy Assumption 4.1. Suppose the training dataset
D contains n samples, and the forget dataset Du ⊆ D consists of m samples. The norm of the difference between the model
retrained from scratch, w∗

r , and the model obtained using a second-order Newton update on the exact retain dataset Dr, wr,
is bounded above by

∥w∗
r −wr∥2 ≤

2γLm2

α3n2
. (11)

Proof. The proof can be found in the Supplementary Material of Sekhari et al. (Sekhari et al., 2021) under C.1.

C. Upper Bound for Norm of Difference Between Unlearning Updates (Proof of Theorem 4.2)
Let us focus on the Hessians of the loss function L, calculated at the same model w, for two different distributions, ρ and ν.
The distributions ρ and ν share the same support set, X ×Y . The Hessians corresponding to each distribution are defined as
follows.

The Hessian of the loss function L under the distribution ρ, evaluated at the model w, is given by

Hρ = E(x,y)∼ρ

[
∇2L((x, y),w)

]
. (12)

Similarly, the Hessian of the loss function L under the distribution ν, evaluated at the model w, is given by

Hν = E(x,y)∼ν

[
∇2L((x, y),w)

]
. (13)

Next, we focus on the spectral norm of the difference between these two Hessians. The following lemma provides an upper
bound.

Lemma C.1. If the loss function L satisfies the Assumption 4.1, then the following upper bound holds:

∥Hρ −Hν∥2 ≤ 2βTV(ρ ∥ ν) (14)

Proof.

∥Hρ −Hν∥2 = ∥E(x,y)∼ρ

[
∇2L((x, y),w)

]
− E(x,y)∼ν

[
∇2L((x, y),w)

]
∥2 (15)

= ∥
∑
x∈X

∑
y∈Y

ρ(x, y)∇2L((x, y),w)−
∑
x∈X

∑
y∈Y

ν(x, y)∇2L((x, y),w)∥2 (16)

= ∥
∑
x∈X

∑
y∈Y

(ρ(x, y)− ν(x, y))∇2L((x, y),w)∥2 (17)

≤
∑
x∈X

∑
y∈Y
|(ρ(x, y)− ν(x, y))|∥∇2L((x, y),w)∥2 (18)

≤ β
∑
x∈X

∑
y∈Y
|(ρ(x, y)− ν(x, y))| (19)

= 2βTV(ρ ∥ ν) (20)
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In the above, Equation (18) follows from the sub-multiplicativity and sub-additivity of the matrix norm. Equation (19) holds
due to the β-smoothness property of the loss function L, and Equation (20) follows from the definition of the Total Variation
distance.

Building on the discussion of the Hessians for the distributions ρ and ν, we now turn our attention to their empirical
counterparts. The empirical Hessian matrices can be represented as follows. Let the training dataset D consist of n1 samples
drawn from the distribution ρ, and let Ds consist of n2 samples drawn from the distribution ν. Then, if n1 and n2 are
sufficiently large, we can make the following statement based on the law of large numbers.

HD =
1

n1

∑
(x,y)∈D

∇2L((x, y),w) ≈ E(x,y)∼ρ

[
∇2L((x, y),w)

]
, (21)

HDs
=

1

n2

∑
(x,y)∈Ds

∇2L((x, y),w) ≈ E(x,y)∼ν

[
∇2L((x, y),w)

]
. (22)

After establishing the empirical Hessian matrices and their dependence on datasets D and Ds, we now state the following
result, which provides a bound on the spectral norm of their scaled difference. This result directly follows from the
assumptions on the loss function L and the distributions ρ and ν.

Lemma C.2. Suppose the loss function L satisfies Assumption 4.1. Let the training dataset D consist of n1 samples drawn
from the distribution ρ, and let the surrogate dataset Ds consist of n2 samples drawn from the distribution ν. Assuming that
n1 and n2 are sufficiently large, the following bound holds.

∥n1HD − n2HDs∥2 ≤ (n1 − n2)β + 2n2βTV(ρ ∥ ν) (23)

Proof. Without loss of generality assume that n1 ≥ n2

∥n1HD − n2HDs∥2 = ∥(n1 − n2)HD + n2HD − n2HDs∥2 (24)
≤ (n1 − n2)∥HD∥2 + n2∥HD −HDs∥2 (25)
≈ (n1 − n2)∥HD∥2 + n2∥Hρ −Hν∥2 (26)
≤ (n1 − n2)β + 2n2βTV(ρ ∥ ν) (27)

Here, the first inequality uses the triangle inequality for matrix norms. The approximation in the third step relies on
the assumption that the empirical Hessian matrices HD and HDs

converge to their population counterparts Hρ and Hν ,
respectively, when n1 and n2 are sufficiently large by the law of large numbers. The last inequality holds because of the
Lemma C.1.

To proceed with the main proof, we introduce the following lemma as a key tool. This lemma provides an upper bound on
the spectral norm of the inverse of the weighted difference of Hessians.

Lemma C.3. Suppose the loss function L satisfies Assumption 4.1. Let the training dataset D consist of n samples, and the
forget dataset Du consist of m samples. If n > mβ

α , then the following bound holds:

∥(nHD −mHDu)
−1∥2 ≤

1

nα−mβ
(28)

Proof. By using the reverse triangle inequality we know that,

∥(nHD −mHDu)∥2 ≥ |n∥HD∥2 −m∥HDu∥2|. (29)

If n > mβ
α then the inner term will be positive because the spectral norms of Hessians are between α and β by the

Assumption 4.1 (strong convexity and smoothness). Therefore,
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|n∥HD∥2 −m∥HDu∥2| = n∥HD∥2 −m∥HDu∥2 (30)
≥ nα−mβ. (31)

Having this lower bound on the spectral norm of ∥(nHD −mHDu
)∥2, we can conclude on the following upper bound.

∥(nHD −mHDu
)−1∥2 ≤

1

nα−mβ
(32)

In this section, we focus on quantifying the difference between the models approximated using the exact dataset and the
surrogate dataset. By leveraging the previously introduced tools, we can establish an upper bound on the norm of the
difference between these two models.

Lemma C.4. Suppose the loss function L satisfies Assumption 4.1. Let wr denote the model approximated using the exact
dataset D of size n1 and the forget set Du of size m. Similarly, let ŵr denote the model approximated using the surrogate
dataset Ds of size n2. Also, assume that the n1 and n2 are sufficiently large and ni ≥ mβ

α where i ∈ {1, 2} . Then, the
norm of the difference between the approximated models is upper bounded as follows:

∥wr − ŵr∥2 ≤
m(n1 − n2)β + 2mn2βTV(ρ ∥ ν)

(n1α−mβ)(n2α−mβ)
∥∇L(Du,w

∗)∥2 (33)

Proof. Let’s start from the applied update to the trained model w∗ having the exact training data samples and the forget set.

wr = w∗ +
m

n1 −m

(
n1HD −mHDu

n1 −m

)−1

∇L(Du,w
∗) (34)

= w∗ +m (n1HD −mHDu
)
−1∇L(Du,w

∗) (35)

The model achieved after applying the update with the surrogate dataset Ds is

ŵr = w∗ +
m

n2 −m

(
n2HDs

−mHDu

n2 −m

)−1

∇L(Du,w
∗) (36)

= w∗ +m (n2HDs
−mHDu

)
−1∇L(Du,w

∗) (37)

∥wr − ŵr∥2 = ∥m
(
(n1HD −mHDu

)
−1 − (n2HDs

−mHDu
)
−1
)
∇L(Du,w

∗)∥2 (38)

≤ m
∥∥∥((n1HD −mHDu

)
−1 − (n2HDs

−mHDu
)
−1
)∥∥∥

2
∥∇L(Du,w

∗)∥2 (39)

≤ m
∥∥∥(n2HDs

−mHDu
)
−1
∥∥∥
2
∥(n1HD −mHDu

)− (n2HDs
−mHDu

)∥2∥∥∥(n1HD −mHDu)
−1
∥∥∥
2
∥∇L(Du,w

∗)∥2
(40)

= m
∥∥∥(n2HDs −mHDu)

−1
∥∥∥
2
∥(n1HD − n2HDs)∥2∥∥∥(n1HD −mHDu

)
−1
∥∥∥
2
∥∇L(Du,w

∗)∥2
(41)

≤ m(n1 − n2)β + 2mn2βTV(ρ ∥ ν)
(n1α−mβ)(n2α−mβ)

∥∇L(Du,w
∗)∥2 (42)

The last inequality holds by using Lemma C.2 and Lemma C.3.
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With all the necessary tools established, we are now ready to prove the main result, Theorem 4.2. This theorem quantifies
the relationship between the retrained model over the retained samples and the model approximated using the surrogate
dataset, providing an upper bound on their difference.
Theorem C.5 (Proof of Theorem 4.2). Consider a loss function L satisfying Assumption 4.1, and a surrogate dataset Ds

with n2 samples drawn from a distribution ν, to mimic the true dataset D with n1 drawn from a distribution ρ, over the
support set X × Y . Define the retrained model over the retained samples as w∗

r and the model achieved after unlearning
as ŵr. Also, assume that the n1 and n2 are sufficiently large and ni ≥ mβ

α where i ∈ {1, 2} . Then, the following upper
bound holds,

∥w∗
r − ŵr∥2 ≤

2γLm2

α3n2
1

+
m(n1 − n2)β + 2mn2βTV(ρ ∥ ν)

(n1α−mβ)(n2α−mβ)
∥∇L(Du,w

∗)∥2 (43)

Proof. By the triangle inequality,

∥w∗
r − ŵr∥2 = ∥w∗

r −wr +wr − ŵr∥2 (44)
≤ ∥w∗

r −wr∥2 + ∥wr − ŵr∥2 (45)

Then by utilizing the Lemma C.4 and Lemma B.2 the upper bound is proven.

C.1. Proof of Theorem 4.3

Theorem C.6 (Proof of Theorem 4.3). Consider a dataset D where data samples follow the distribution ρ, and a surrogate
dataset Ds where data samples follow the distribution ν. Given a forget set Du ⊆ D, and the hypothesis set H, the
unlearning mechanism Û (Algorithm 1) satisfies (ϵ, δ)-certified unlearning. For any T ⊆ H,

Pr
(
Û(Du,A(D),S(Ds)) ∈ T

)
≤ eϵ Pr

(
Û(∅,A(Dr),S(Dr)) ∈ T

)
+ δ,

Pr
(
Û(∅,A(Dr),S(Dr)) ∈ T

)
≤ eϵ Pr

(
Û(Du,A(D),S(Ds)) ∈ T

)
+ δ.

(46)

Proof. Let w∗ = A(D) denote the model trained on the whole train dataset D with n1 number of samples following the
distribution ρ, w∗

r = A(Dr) the model retrained from scratch over the retain dataset Dr = D\Du where Du is the forget
set with m number of samples, and ŵr the model approximated retrained model after the single step second-order Newton
update utilizing the surrogate dataset Ds with n2 number of samples following distribution ν. Assume that the loss function
used is satisfying the Assumption 4.1, n1 and n2 are sufficiently large and ni ≥ mβ

α where i ∈ {1, 2}. Also the support sets
of distributions are the same X × Y .

The ŵr defined as

ŵr = w∗ +
m

n2 −m

(
n2HDs −mHDu

n2 −m

)−1

∇L(Du,w
∗). (47)

By applying Theorem C.5 we can observe the following upper bound,

∥w∗
r − ŵr∥2 ≤

2γLm2

α3n2
1

+
m(n1 − n2)β + 2mn2βTV(ρ ∥ ν)

(n1α−mβ)(n2α−mβ)
∥∇L(Du,w

∗)∥2 = ∆. (48)

The Algorithm 1 introduces the Gaussian noise to achieve indistinguishability between the model retrained from scratch
w∗

r and the model achieved after the unlearning ŵr. Let’s define (w∗
r)

′ = Û(∅,A(Dr),S(Dr)) = w∗
r + n and ŵ′

r =

Û(Du,A(D),S(Ds)) = ŵr + n where the Gaussian noise n ∼ N (0, σ2I) with σ = (∆/ϵ)
√
2 log(1.25/δ). Following

the proof from Dwork et al. ((Dwork, 2006) Theorem A.1), we can prove that for any set T ⊆ H,

Pr
(
ŵ′

r ∈ T
)
≤ eϵ Pr

(
(w∗

r)
′ ∈ T

)
+ δ,

Pr
(
(w∗

r)
′ ∈ T

)
≤ eϵ Pr

(
ŵ′

r ∈ T
)
+ δ.

(49)
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D. Approximating Kullbeck-Leiber Distance
D.1. Proof of Corollary 4.4

Corollary D.1 (Proof of Corollary 4.4). Under the same assumptions and definitions in Theorem 4.2, the following upper
bound holds:

∥w∗
r − ŵr∥2 ≤

2γL2m2

α3n2
+

m(n1 − n2)β∥∇L(Du,w
∗)∥2

(n1α−mβ)(n2α−mβ)

+

(
2mn2β

√
1− exp(−KL(ν ∥ ρ))

(n1α−mβ)(n2α−mβ)
· ∥∇L(Du,w

∗)∥2

)
= ∆

(50)

Proof. The total variation distance is symmetric therefore,

TV(ρ ∥ ν) = TV(ν ∥ ρ) (51)

Also, by the Bretagnolle-Huber Inequality (Bretagnolle & Huber, 1979),

TV(ν ∥ ρ) ≤
√
1− e−KL(ν ∥ ρ) (52)

By replacing the total variation distance with this upper bound we prove the Corollary 4.4.

We need this upper bound utilizing the KL divergence between the surrogate and the exact data distributions because we
have the surrogate samples. By having the surrogate samples we can approximate the expected values calculated over
surrogate samples utilizing Monte-Carlo approximation.

D.2. Derivations for Proposition 4.5

Proposition D.2 (Derivation of Proposition 4.5). Let f(w,x) output a probability simplex over classes for a data sample x,
parameterized by w. Given trained models w∗ and w̃∗, where w∗ is trained on D and w̃∗ on Ds. Also, data samples from
D and Ds follow distributions ρ and ν, respectively. the KL divergence KL(ν ∥ ρ) can be decomposed as,

KL(ν ∥ ρ) ≈ 1

n

∑
(x,y)∈Ds

log
f(w̃∗,x)y
f(w∗,x)y

+KL(ν(x) ∥ ρ(x)) (53)

Proof. Starting with the definition,

KL(ν ∥ ρ) =
∑

(x,y)∈X×Y

ν(x, y) log
ν(y|x)
ρ(y|x)

+
∑

(x)∈X

ν(x) log
ν(x)

ρ(x)
(54)

The conditional probabilities can be approximated by classifiers. Let’s say the classifier model trained on the exact dataset
(representing conditional distribution for exact distribution) is w∗. This model is already given to us for the unlearning.
To represent the nominator we need to have an another model trained on the surrogate dataset provided, let’s say after the
training on the surrogate dataset we achieve the model w̃∗. Then we can approximate (54) as

KL(ν ∥ ρ) ≈
∑

(x,y)∈X×Y

ν(x, y) log
f(w̃∗,x)y
f(w∗,x)y

+KL(ν(x) ∥ ρ(x)) (55)

By using Monte-Carlo approximation because we have access to the surrogate data samples we can further approximate (55)
and prove the derivation.

KL(ν ∥ ρ) ≈ 1

n

∑
(x,y)∈Ds

log
f(w̃∗,x)y
f(w∗,x)y

+KL(ν(x) ∥ ρ(x)) (56)
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D.3. Energy Based Modeling, Stochastic Gradient Langevin Dynamics and Proposition 4.6

Without direct access to exact samples from the target distribution, we approximate the input marginal KL divergence
using energy-based modeling, as introduced in (Grathwohl et al., 2019). Energy-based models (EBMs) provide a flexible
framework for modeling complex distributions by associating an energy score with each input, which corresponds to the
unnormalized log-probability of the input under the target distribution. The normalized target distribution, denoted as ρ(x),
can be expressed as:

ρ(x) =
exp(−E(x))

Z
(57)

Here, E(x) represents the energy function, which is defined as follows,

E(x) = − log
∑
y∈Y

exp(f(w∗,x)y) (58)

where f(w∗,x)y corresponds to the logit score (or unnormalized log-probability) for the label y given the input x
under the model w∗. The summation is taken over the support of the output label space Y . The normalization constant
Z =

∫
exp(−E(x)) dx ensures that ρ(x) is a valid probability distribution. However, evaluating Z is computationally

intractable due to the high-dimensional integral over the input space.

To circumvent the intractability of computing Z, we employ Stochastic Gradient Langevin Dynamics (SGLD), a popular
sampling technique for EBMs. SGLD enables approximate sampling from ρ(x) by iteratively updating samples based on
the gradient of the energy function. Specifically, the update rule for the samples x at step i is given by:

xi+1 = xi −
µ

2

∂E(x)

∂x
+ ε (59)

where ε ∼ N (0, µ) is Gaussian noise, and µ represents the step size or learning rate. The negative gradient term −∂E(x)
∂x

directs the samples toward regions of lower energy (higher likelihood), while the Gaussian noise ensures exploration of the
input space to avoid convergence to local minima. The process begins with initializing x0 from a prior distribution over the
input space, which is often chosen to be uniform for simplicity and generality.

By iteratively applying this update rule, the generated samples approximate the target distribution ρ(x) without requiring
explicit computation of the normalization constant Z. Given the collected samples from the distribution ρ(x) along with
the surrogate data samples, we then approximate the input marginal KL divergence using a Donsker-Varadhan variational
representation (Donsker & Varadhan, 1983) of KL divergence.

E. Parameter Study and Implementation
We systematically evaluate our approach on both synthetic and real-world datasets to demonstrate its effectiveness in
achieving certified unlearning. Unless stated otherwise, we use a linear training model with privacy parameters ϵ = 5e3 and
δ = 1, a forget ratio of 0.1, and an L2 regularization constant of λ = 0.01. The loss function is assumed to be α-strongly
convex, L-Lipschitz, β-smooth, and γ-Hessian Lipschitz. Following prior works (Koh & Liang, 2017; Wu et al., 2023b;a;
Zhang et al., 2024), we set α, L, β, and γ for each experimental setting as hyperparameters. We set α = 1+λ, L = 1, β = 1
and γ = 1. Even if the added noise does not follows the exact theoretical requirements, it does not affect the theoretical
soundness of the paper.

For the sampling from the marginal distribution of the exact data, we used Stochastic Gradient Langevin Dynamics (SGLD)
with step size 0.02 and generate 1000 samples. For each sample random update is applied 4000 iteration for each generated
sample.

After sampling done to estimate the KL divergence via Donsker Varadhan variational bound, we trained a a network with
three linear layers for a 500 epochs with learning rate 0.0001 using Adam optimizer.

F. Additional Synthetic and Real-World Dataset Experiments
We conducted experiments on both synthetic and real datasets to justify the heuristic KL-divergence estimation (Section 4.2)
and the corresponding empirical unlearning error ∆̂. In Figures 3 and 4, we plot both the “exact” and “approximated”
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results (our heuristic method) for the KL-divergence and the respective noise σ. For the synthetic data experiments, the
exact KL is computed using its closed-form for Gaussians. For real data experiments, since the exact KL divergence was
not available, we estimated it using the Donsker-Varadhan bound as a reference, leveraging both exact and surrogate data
samples. Figure 3, Figure 4, Tables 8 and 9 show our approximations closely match exact values.

ζ Method Train Test Retain Forget MIA RT ∆ ∆̂
– Original 78.2±0.2% 74.0±0.3% 78.2±0.2% 78.6±0.4% 47.6±0.2% – – –
– Retrain 77.2±0.3% 71.8±0.2% 77.7±0.5% 73.2±0.4% 47.4±0.2% 10±1 – –
– Unlearn (+) 77.4±0.6% 72.1±0.7% 76.9±0.8% 74.1±0.3% 47.5±0.4% 10±2 0.02 –

0.02 Unlearn (-) 77.5±0.2% 72.3±0.5% 77.8±0.1% 74.5±0.2% 49.1±0.4% 9±2 0.23 0.21±0.12
0.04 Unlearn (-) 77.4±0.6% 72.4±0.3% 77.2±0.4% 74.3±0.3% 49.2±0.2% 10±3 0.31 0.35±0.23
0.06 Unlearn (-) 77.4±0.5% 72.4±0.6% 77.5±0.2% 74.2±0.5% 48.7±0.7% 11±2 0.37 0.38±0.13
0.08 Unlearn (-) 77.5±0.7% 72.3±0.2% 77.4±0.7% 74.2±0.3% 48.1±0.5% 9±1 0.4 0.39±0.15
0.1 Unlearn (-) 77.4±0.4% 72.3±0.1% 77.7±0.4% 74.1±0.9% 48.2±0.2% 12±3 0.41 0.41±0.08

Table 8. Evaluation of unlearning performance while varying the off-diagonal elements (ζ) of the unit covariance on synthetic dataset.

(a) Required noise variance (σ) (b) Estimated KL divergence (c) Forget Scores

Figure 3. (a) Required noise variance σ for certified unlearning on synthetic data as a function of the off-diagonal elements of the
covariance matrix (ζ). Both exact and heuristic (approximate) estimates are shown based on KL divergence. (b) Estimated KL divergence
vs. ζ. Exact values use the closed-form Gaussian KL divergence, approximate values use our heuristic based on model parameters and
surrogate data. (c) Forget scores achieved for synthetic datasets for varying off-diagonal elements of the covariance matrix (ζ).

ξ Method Train Test Retain Forget MIA RT ∆ ∆̂

13

Original 85.9±0.8% 73.3±0.1% 85.4±0.5% 84.6±0.2% – – – –
Retrain 86.7±0.2% 73.7±0.8% 87.7±0.5% 75.6±0.2% 51.5±0.7% 70±1 – –
Unlearn (+) 84.1±0.9% 71.7±0.4% 85.2±0.6% 73.2±0.7% 51.4±0.4% 15±3 0.02 –
Unlearn (-) 84.7±0.4% 72.2±0.9% 85.3±0.7% 73.6±0.5% 51.8±0.3% 15±2 0.49±0.03 0.51±0.04

36

Original 85.5±0.1% 76.2±0.7% 85.6±0.8% 83.1±0.3% – – – –
Retrain 84.1±0.4% 75.1±0.8% 86.1±0.9% 71.5±0.5% 50.3±0.1% 20±1 – –
Unlearn (+) 84.9±0.1% 75.6±0.1% 85.1±0.1% 71.5±0.3% 50.8±0.5% 18±1 0.02 –
Unlearn (-) 84.9±0.8% 75.3±0.9% 85.1±0.4% 72.4±0.8% 50.2±0.8% 19±3 0.43±0.02 0.41±0.02

100

Original 84.7±0.5% 71.3±0.3% 84.9±0.4% 83.6±0.5% – – – –
Retrain 82.9±0.3% 76.0±0.2% 84.2±0.8% 71.1±0.5% 52.5±0.4% 19±2 – –
Unlearn (+) 83.8±0.5% 75.7±0.7% 85.1±0.1% 72.2±0.8% 52.0±0.4% 21±1 0.02 –
Unlearn (-) 83.7±0.4% 75.6±0.3% 85.0±0.7% 72.0±0.6% 51.9±0.2% 16±3 0.25±0.02 0.31±0.07

Table 9. Evaluation of unlearning performance while varying Dirichlet parameters (ξ) on StanfordDogs dataset.

To address whether the approximate certificate is practically useful, we report both ∆ (exact) and ∆̂. The results confirm
that even if the estimated bounds grow, model performance aligns with Unlearn(+). For completeness, we ran multiple trials
with different seeds, included error bars in all figures, and included error margins into the tables demonstrating consistency
across repeated experiments. Overall, these findings validate the heuristic’s reliability and practical utility in estimating KL
divergence and unlearning error.
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(a) Required noise variance (σ) (b) Estimated KL divergence (c) Forget Scores

Figure 4. (a) Required noise variance σ for certified unlearning on StanfordDogs as a function of the Dirichlet parameter (ξ). Both exact
and heuristic (approximate) estimates are shown based on KL divergence. (b) Estimated KL divergence vs. ξ. Exact values are calculated
by using the exact and surrogate data samples, approximate values use our heuristic based on model parameters and surrogate data. (c)
Forget scores achieved for StanfordDogs dataset for varying Dirichlet parameter (ξ).
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