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Abstract

The in-context learning capabilities of mod-
ern language models have motivated a deeper
mathematical understanding of sequence mod-
els. A line of recent work has shown that
linear attention models can emulate projected
gradient descent iterations to implicitly learn
the task vector from the data provided in
the context window. In this work, we con-
sider a novel setting where the global task
distribution can be partitioned into a union
of conditional task distributions. We then
examine the use of task-specific prompts and
prediction heads for learning the prior infor-
mation associated with the conditional task
distribution using a one-layer attention model.
Our results on loss landscape show that task-
specific prompts facilitate a covariance-mean
decoupling where prompt-tuning explains the
conditional mean of the distribution whereas
the variance is learned/explained through in-
context learning. Incorporating task-specific
head further aids this process by entirely de-
coupling estimation of mean and variance com-
ponents. This covariance-mean perspective
similarly explains how jointly training prompt
and attention weights can provably help over
fine-tuning after pretraining. The code for
reproducing the numerical results is available
at GitHub.

1 Introduction

Modern language models possess a remarkable ability to
learn new tasks or solve complex problems using exam-
ples provided within their context window [Brown et al.,
2020, GeminiTeam et al., 2023, OpenAI, 2023, Tou-
vron et al., 2023]. This capability, known as in-context
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Figure 1: Overview of our work: We present a theo-
retical analysis of a 1-layer linear attention model for
multi-task in-context learning (ICL), examining dif-
ferent configurations of task-specific parameters. By
progressively introducing more task-specific parameters
across various training settings, we achieve complete
covariance-mean decoupling, leading to an opti-
mal multi-task ICL loss. In our analysis, we derive
upper and lower bounds for the multi-task ICL loss,
corresponding to fully coupled and fully decoupled
covariance-mean scenarios.

learning (ICL), offers a novel and efficient alternative
to traditional fine-tuning methods. ICL enables models
to adapt to a wide range of tasks through a single for-
ward pass, eliminating the need for task-specific weight
updates. This adaptability has made ICL a central
feature in the use of large language models (LLMs),
extending their utility across diverse applications.

In a basic ICL setting, we construct an input sequence
Z that contains a query to label and related input-
label demonstrations. We feed Z to a sequence model
f to predict the label y of this query. Thus, the ICL

https://github.com/xchang1121/prompt_ICL
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optimization can be written as

min
W

Ey,Z [loss(y, fW (Z))], (1)

where W denotes the weights of f . In practice, however,
ICL examples are typically paired with task-specific
prompts. These prompts can be manually crafted or
automatically generated using methods like differen-
tiable optimization or zero-order search. In fact, the
model can often solve the task without any ICL ex-
ample (zero-shot) by solely relying on the prompt .
This motivates a deeper understanding of the synergies
between prompt-tuning and in-context learning. Con-
cretely, consider a multitask learning setting where we
first sample a task t and then sample (Z, y) from the
associated task distribution. In this case, a standard
approach is crafting a dedicated prompt pt to feed
with the input sequence. The joint optimization of the
weights W and prompts P = (pt)t≥1 takes the form

min
W ,P

E[loss(y, fW (Z,pt))]. (2)

Contrasting (1) with (2) motivate a few fundamental
questions:

Q1. How do ICL and prompt-tuning synergistically
contribute to learning?

Q2. In practice, we first pretrain a model via (1) and
then tune a task-specific prompt. Does joint train-
ing have an advantage over this?

Q3. Can utilizing additional task-specific parameters
together with prompts, further boost performance?

To answer these questions, we conduct a comprehen-
sive investigation of the optimization landscape for
attention weights and task-specific prompts within a
multitask dataset model, examining both joint opti-
mization approaches and sequential strategies involving
attention weight pretraining followed by prompt-tuning.
We derive closed-form solutions for optimal parameters
and loss landscapes, introducing the novel concept of
"covariance-mean decoupling" to elucidate the impact
of different training strategies on model performance.
While previous theoretical research has primarily fo-
cused on attention weight optimization, we extend the
analysis to include tunable prompts in a multi-task
linear regression framework, addressing the practical
scenario where models fine-tune task-specific modules
on fixed backbones. Notably, our work advances be-
yond existing research by incorporating non-zero task
mean and non-isotropic covariance considerations, re-
vealing why fine-tuning may not consistently enhance
performance. Our theoretical framework demonstrates
how varying performance gains across training strate-
gies can be attributed to covariance-mean decoupling,

providing both theoretical foundations and practical
insights for optimizing attention-based models through
careful design of tunable components.

Our key contributions are:

1. Comprehensive analysis of training strate-
gies: We analyze multi-task linear regression
with a linear attention layer and tunable parame-
ters, covering joint optimization and pretraining-
finetuning methods. A unified parameterization
allows for closed-form solutions of optimal param-
eters and loss landscapes, generalizing prior work.
(see Section 4)

2. Mean-covariance decoupling concept: We
introduce covariance-mean decoupling through
closed-form loss landscape analysis, demonstrat-
ing its correlation with model performance—the
greater the decoupling, the better the model’s pre-
dictions. (see Section 4.2)

3. Path to optimal in-context learning: Our
analysis guides the design of attention models, em-
phasizing the importance of training sequence and
parameter selection. We propose a model design
achieving full covariance-mean decoupling, offering
a strategy for improving in-context learning. (see
Theorem 4)

These contributions provide a deeper understanding
of prompt-tuning and weight optimization, offering in-
sights for designing more effective models that minimize
loss and maximize performance.

2 Related work

Understanding in-context learning (ICL) in large lan-
guage models (LLMs) has become a key research fo-
cus [Brown et al., 2020, Liu et al., 2023, Rae et al., 2021],
particularly due to LLMs’ ability to generalize across
diverse applications [GeminiTeam et al., 2023, OpenAI,
2023, Touvron et al., 2023]. ICL enables models to
adapt to new tasks using examples provided during in-
ference without parameter updates, effectively serving
as meta-learners. This has led to research exploring
how LLMs leverage in-context information.

Several studies have linked ICL with gradient-based
learning mechanisms. Akyürek et al. [2023] and Von Os-
wald et al. [2023] show that Transformers can emulate
gradient descent (GD) steps using in-context examples,
suggesting that Transformers implicitly learn gradient-
based updates within their attention mechanisms.

Recent work has provided theoretical perspectives on
ICL in simpler models like single-layer linear atten-
tion. Zhang et al. [2024], Mahankali et al. [2024], Ahn
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et al. [2023], Li et al. [2023b] examine how these models
can emulate GD-like algorithms when trained on in-
context prompts. Mahankali et al. [2024] and Ahn et al.
[2023] demonstrate that models trained on isotropic
Gaussian data perform GD steps at test time, while Li
et al. [2023a] explores generalization bounds for multi-
layer Transformers. Li et al. [2024] extends this to
dependent data with single-task ICL, showing that cen-
tralized data enables optimal preconditioned GD steps.
However, these works primarily focus on zero-mean
distributions or single parameters (W), simplifying the
optimization landscape.

Our work addresses multi-task ICL with non-zero
means and varying covariances, expanding beyond zero-
mean assumptions in prior studies [Li et al., 2023a,
2024]. We explore the joint optimization of W ,p, and
h parameters, introducing task-specific structures that
reduce the influence of task-specific means. Unlike Li
et al. [2024] who focus on single-task scenarios or Li
et al. [2023a] who assume a single mean and covari-
ance, we analyze diverse task distributions with distinct
means and covariances, developing the novel concept
of "mean-covariance decoupling" to reveal how task-
specific parameters enhance ICL performance. Our
approach provides theoretical guarantees and empirical
evidence for prompt-tuning in complex, multi-task envi-
ronments with real-world non-zero mean distributions.

3 Setup and Preliminaries

We begin with a brief note on notation. Let [n] denote
set {1, · · · , n} for some integer n. Bold lowercase and
uppercase letters (e.g., x and X) represent vectors
and matrices, respectively. 1d and 0d refer to the d-
dimensional all-ones and all-zeros vectors, respectively,
while Id denotes the d×d identity matrix. Additionally,
tr(W ) represents the trace of the square matrix W .

Our results are presented in a finite-dimensional setting.

3.1 In-context learning

We consider an in-context learning (ICL) problem with
demonstrations (xi, yi)

n+1
i=1 , and the input sequence Z

is defined by removing yn+1 as follows:

Z = [z1 . . . zn z]⊤ =

[
x1 . . . xn x
y1 . . . yn 0

]⊤
=

[
X⊤ x
y⊤ 0

]⊤
∈ R(n+1)×(d+1). (3)

Here, z = [x⊤ 0]⊤ is the query token where x := xn+1,
and X = [x1 · · · xn]

⊤ ∈ Rn×d, y = [y1 · · · yn]⊤ ∈ Rn.
Then, we aim for a sequence model to predict the asso-
ciated label y := yn+1 of the given input sequence Z.

In this work, we consider the following data generation
of (Z, y). We will refer to (X,y), x, and y as contexts,
query feature and the label to predict, respectively.

Definition 1 (Single-task ICL) Given a task mean
µ ∈ Rd, and covariances Σx,Σβ ≻ 0 ∈ Rd×d. The
input sequence and its associated label, i.e., (Z, y) with
Z denoted in (3), are generated as follows:

• A task parameter β is generated from a Gaussian
prior β ∼ N (µ,Σβ).

• Conditioned on β, for i ∈ [n+ 1], (xi, yi) is gen-
erated by xi ∼ N (0,Σx) and yi ∼ N (x⊤

i β, σ
2).

Here, σ ≥ 0 is the noise level.

In this work, we study the task-mixture ICL problem
where the task parameter β of each input sequence is
sampled from K different distributions, K ≥ 1.

Definition 2 (Multi-task ICL) Consider a multi-
task ICL problem with K different tasks. Each task
generates (Z, y) ∼ Dk following Definition 1 using
shared feature distribution xi ∼ N (0,Σx), i ∈ [n+ 1]
but distinct task distributions βk ∼ N (µk,Σβk

) with
mean µk and covariance Σβk

for k ∈ [K].

Additionally, let {πk}Kk=1 be the probabilities of each
task, satisfying

∑K
k=1 πk = 1 and πk ≥ 0.

We consider a task-aware multi-task ICL setting.
Specifically, when a task is selected according to πk, its
task index k is known.

Let D̄ :=
∑K

k=1 πkDk be the mixture of distributions
and given sequence model f : R(n+1)×(d+1) → R, we
define the multi-task ICL objective as follows:

L(f) = E(Z,y)∼D̄[(y − f(Z))
2
]. (4)

Notably, the multi-task ICL defined in Definition 2
differs from conventional multi-task learning [Caruana,
1997, Zhang and Yang, 2021, Li and Oymak, 2023]
where finite examples optimize task-specific parameters.
We instead parameterize task distributions with µk and
Σβk

, sampling unseen test tasks βk and focusing on
distribution-level generalization. We address the meta-
learning objective in (4), treating each distribution as
a meta-learning problem (c.f. Definition 1).

3.2 Single-layer linear attention

Considering the task-aware multi-task ICL problem
as described in Section 3.1, we explore the benefits of
using task-specific prompts to enhance the performance.

Definition 3 (Task-specific prompts) Recap in-
put sequence Z from (3). Given a task index k,
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k ∈ [K], let pk ∈ Rd+1 represent its corresponding
trainable prompt token. Then the input sequence of
task k is denoted by:

Z(k) = [pk z1 . . . zn z]⊤ ∈ R(n+2)×(d+1). (5)

Our work focuses on the single-layer linear attention
model in solving multi-task ICL problem with data
distribution following Definition 2. Given an input
sequence Z(k) corresponding to task k as defined in
(5), let Wq,Wk,Wv ∈ R(d+1)×(d+1) denote the query,
key, and value parameters. Then the single-layer linear
attention model outputs

Attn(Z(k)) = (Z(k)WqW
⊤
k (Z(k))⊤)MZ(k)Wv

where Attn(·) : R(n+2)×(d+1) → R(n+2)×(d+1). Here,
inspired by the previous work [Ahn et al., 2023], we

apply mask matrix M =

[
In+1 0n+1

0⊤
n+1 0

]
to to separate

the (n+ 1)-colomun context and the query z in Z(k).
Let h ∈ Rd+1 be the linear head that enables the single-
layer linear attention model to map the input sequence
to the prediction. Additionally, for simplification and
without loss of generality, let A := WqW

⊤
k and a :=

Wvh. Then the prediction returns

ŷ := fAttn(Z
(k)) = (z⊤A(Z(k))⊤)MZ(k)a. (6)

This is a more general form than the widely dis-
cussed Wu et al. [2023] case, which uses the bottom-
right entry of the attention layer output as prediction
(and equivalent to a one-hot head h = ed+1), i.e.,
fAttn(Z

(k)) = Attn(Z(k))n+2,d+1.

3.3 Optimizing the attention model

Our goal is to understand how optimizing fAttn in (6)
results in in-context learning. To this aim, we introduce
the following widely applied Wu et al. [2023], Ahn et al.
[2023] assumption on the model construction.

Assumption 1 (Preconditioning) Given parame-
ters A := WqW

⊤
k and a := Wvh, they are constrained

by

A =

[
Wd×d 0d×1

∗1×d ∗1×1

]
, a =

[
0d×1

11×1

]
.

Here, we use ∗ to fill the entries that do not affect
the final prediction, with subscripts indicating the di-
mensions. W ∈ Rd×d represents the parameter that
governs A.

Under Assumption 1, let the prompt token for task

k be pk =

[
p̄k

1

]
, hence Z(k) =

[
p̄k X⊤ x
1 y⊤ 0

]⊤
. The

prediction of a single-layer linear attention model in
(6) can then be written as:

fAttn(Z
(k)) = x⊤W

[
p̄k X⊤] [1

y

]
= x⊤W (X⊤y + p̄k). (7)

It is worth noting that we set the last entry of a and
each pk for k ∈ [K] to one for simplicity, as any nonzero
value yields the same output of (7) due to rescaling in-

variance of: a← γ1a, A← γ−1
1 A, and p̄k ←

[
γ−1
2 p̄k

γ2

]
for any nonzero scalar γ1, γ2.

We define the set of tunable prompts as:

P = [p̄1 . . . p̄K ]⊤ ∈ RK×d. (8)

Notably, previous research Ahn et al. [2023] has rig-
orously proven that for single-layer linear attention
applied to a single-task linear regression ICL problem
with zero-mean features, i.e., E[xi] = E[β] = 0, the op-
timal solution must conform to the structure specified
in Assumption 1. This insight motivates our adop-
tion of this assumption when extending the analysis to
more complex multi-task ICL settings with non-zero
task means. Building on this foundation, our work
breaks new ground by exploring task-specific tuning for
ICL across multiple tasks with varying means, offering
a more general perspective on ICL. This represents a
significant advancement in the field, as understanding
the loss landscape in the simpler W -preconditioned
space is an essential step toward tackling the complexi-
ties of the full Wk,Wq,Wv parameter space.

Additionally, in Section 5, we show that it is possible to
derive closed-form optimal solutions for Wk,Wq,Wv

with both task-specific prompts and heads, even with-
out relying on Assumption 1, further expanding the
scope of our analysis.

Recall the attention predictor from (7) and loss function
from (4). Consider the multi-task ICL problem defined
in Definition 2 and let W ∈ Rd×d and P ∈ RK×d

be the tunable parameters corresponding to attention
weights and task-specific prompt tokens. The multi-
task ICL loss is given by

L(W ,P ) =
K∑

k=1

πkLk(W , p̄k) (9)

where Lk(W , p̄k) = E(Z,y)∼Dk

[
(fAttn(Z

(k))− y)2
]
.

In this work, we address multi-task ICL problems by in-
vestigating and comparing three optimization settings:
plain training, fine-tuning, and joint training.
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Plain training: Plain training refers to a standard
ICL problem that train an linear attention model with-
out applying the task-specific prompts that are defined
in Definition 3. Therefore, following loss function (9),
its objective can be defined via

W ⋆
PT = argmin

W
L(W ,P = 0), (10)

and L⋆
PT = L(W ⋆

PT,P = 0) is the optimal loss.

Fine-tuning: Fine-tuning/Prompt-tuning involves
training separate prompts for each task while keeping
the attention weights fixed. The goal then is to fine-
tune the prompt parameters P (c.f. (8)) for all the
tasks k ∈ [K]. Suppose that parameter W is given,
the the optimal P based on W is defined by:

P ⋆(W ) = argmin
P
L(W ,P ).

In this work, we consider fine-tuning based on the plain
pretrained model, that is, by setting W = W ⋆

PT given
in (10), and define the optimal solution by

P ⋆
FT := P ⋆(W ⋆

PT) = argmin
P
L(W ⋆

PT,P ). (11)

The optimal loss is given via L⋆
FT = L(W ⋆

PT,P
⋆
FT).

Joint training: In contrast, joint training involves
jointly optimizing the attention weights W and prompt
tokens P . Hence, the optimization problem can be
formulated as:

W ⋆
JT,P

⋆
JT = arg min

W ,P
L(W ,P ). (12)

The optimal loss is given via L⋆
JT = L(W ⋆

JT,P
⋆
JT).

4 Main Results

In this section, we train and optimize the single-layer
linear attention model in a multi-task linear regression
ICL setting with dataset described in Definition 2, and
characterize the loss landscape under different settings,
i.e., L⋆

PT, L⋆
FT and L⋆

JT in Section 3.3.

4.1 Optimization landscape

Recap the multi-task ICL dataset from Definition 2
where Σx is the shared covariance matrix of the input
features and {(µk,Σβk

)}Kk=1 are the task mean vectors
and covariance matrices. In the main paper, we con-
sider noiseless data setting where σ = 0. We defer the
exact analysis considering noisy labels to Appendix.

Consider any data distribution in Definition 1 and let
β ∼ N (µ,Σβ). β can be rewritten via β = β̄ + µ
with β̄ ∼ N (0,Σβ). Then under the noiseless setting
(σ = 0), the associated label yi = x⊤

i β is generated via

yi = x⊤
i β̄︸︷︷︸

debiased

+ x⊤
i µ. (13)

Here we describe x⊤
i β̄ as debiased since E[x⊤

i β̄] = 0. In
this work, we investigate how task-specific prompts can
help to capture individual task means such that learn-
ing task means ({µk}Kk=1) and covariances ({Σβk

}Kk=1)
can be decoupled via optimizing prompts P and the
attention weight W . We say the model fully decouples
mean and covariance if the optimized attention weight
W ⋆ is only determined by the debiased term as shown
in (13), with prompts responsible for capturing the bias
introduced by the non-zero means.

To start with, recap from Definition 2 where task k has
probability πk and its task vector follows distribution
βk ∼ N (µk,Σβk

). Following (13), we define the debi-
ased and biased mixed-task covariances (variant with
Σx prior) as follows:

Debiased: Σ̄β = Σx

K∑
k=1

πk E[(βk − µk)(βk − µk)
⊤]; (14a)

Biased: Σ̃β = Σx

K∑
k=1

πk E[βkβ
⊤
k ]. (14b)

Note that they satisfy Σ̄β = Σx

∑K
k=1 πkΣβk

and
Σ̃β = Σx

∑K
k=1 πk(Σβk

+ µkµ
⊤
k ).

We first analyze the plain training setting where no
additional task-specific parameters are introduced, and
all K tasks are mixed together.

Theorem 1 (Plain training) Consider training a
single-layer linear attention model in solving multi-task
ICL problem with dataset defined in Definition 2 and
model construction as described in Assumption 1. Let
the optimal solution W ⋆

PT (c.f. (10)) and the minimal
plain training loss L⋆

PT as defined in Section 3.3. Addi-
tionally, let Σ̃β be defined in (14) and W̄ ⋆

PT = ΣxW
⋆
PT.

Then the solution W̄ ⋆
PT and optimal loss L⋆

PT satisfy

W̄ ⋆
PT = Σ̃β

(
(n+ 1)Σ̃β + tr(Σ̃β)I

)−1

,

L⋆
PT = tr(Σ̃β)− ntr(W̄ ⋆

PTΣ̃β).

Note that the above solution and optimal loss are iden-
tical to those in previous work [Li et al., 2024] when
considering a single-task ICL problem with with task
vector following distribution β ∼ N (0, Σ̃β).

Theorem 2 (Fine-tuning) Suppose a pretrained
model as described in Theorem 1 is given with W ⋆

PT
being its optimal solution. Consider fine-tuning this
model with task-specific prompts as defined in Def-
inition 3, and let the optimal prompt matrix P ⋆

FT
(c.f. (11)) and the minimal fine-tuning loss L⋆

FT be
defined in Section 3.3. Additionally, let Σ̄β, Σ̃β be
defined in (14) and W̄ ⋆

PT = ΣxW
⋆
PT, and define the
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mean matrix

Mµ = [µ1 · · · µK ]⊤ ∈ RK×d.

Then the solution P ⋆
FT and optimal loss L⋆

FT satisfy

P ⋆
FT = Mµ

(
(W̄ ⋆

PT)
−1 − nI

)
Σx,

L⋆
FT = L⋆

PT − tr((Σ̃β − Σ̄β)(nW̄
⋆
PT − I)⊤(nW̄ ⋆

PT − I)).

Results in Theorem 2 show that, fine-tuning achieves
better loss than plain training, L⋆

FT ≤ L⋆
PT, and our

results provably quantize the loss difference.

Theorem 3 (Joint training) Consider training a
single-layer linear attention model in solving multi-task
ICL problem with dataset defined in Definition 2 and
model construction as described in Assumption 1. Let
W ⋆

JT,P
⋆
JT (c.f. (12)) be the optimal solutions and L⋆

JT
is the optimal joint training loss defined in Section 3.3.
Additionally, let Σ̄β, Σ̃β,Mµ follow the same defini-
tions as in Theorem 2 and define W̄ ⋆

JT = ΣxW
⋆
JT.

Then the solution (W ⋆
JT,P

⋆
JT) and optimal loss L⋆

JT
satisfy

W̄ ⋆
JT = Σ̄β

(
(n+ 1)Σ̄β + tr(Σ̃β)I +O(1)

)−1

,

P ⋆
JT = Mµ

(
(W̄ ⋆

JT)
−1 − nI

)
Σx,

L⋆
JT = tr(Σ̄β)− ntr(W̄ ⋆

JTΣ̄β).

Here, O(1) is a d × d-sized matrix with entries being
bounded by some constant value, regardless of n and d.

In Theorem 3, for clarity, we use O(1) to represent
equality up to a matrix with entries bounded by a
constant. The explicit form of W̄ ⋆

JT is provided in the
Appendix.

The results of Theorem 2 and Theorem 3 highlight an
important commonality of the optimal prompt: the
optimal prompts p̄k capture the mean of corresponding
tasks based on the attention weight W ⋆

PT or W ⋆
JT .

For a large context length n, (p̄k)
⋆
FT and (p̄k)

⋆
JT will

be approximately −nΣxµk. Additionally, in a finite-
dimensional setting where d < ∞, as n → ∞, the
solutions W̄ ⋆

PT and W̄ ⋆
JT converge to I/n and all the

optimal losses L⋆
PT, L⋆

FT and L⋆
JT approach 0. There-

fore, the benefits of prompt tuning are more apparent
for finite n.

Corollary 1 Let L∗
PT, L∗

FT, and L∗
JT denote the op-

timal losses for plain training, fine-tuning, and joint
training, as described in Theorems 1, 2 and 3, respec-
tively. These losses satisfy:

L∗
JT ≤ L∗

FT ≤ L∗
PT. (15)

The equalities hold if and only if Σ̄β = Σ̃β (c.f. (14)),
which occurs when all task means µk = 0 for k ∈ [K].
Furthermore, the loss gaps satisfy the following:

1. The loss gaps scale quadratically with task mean:

L∗
PT − L∗

FT ∼ O
(

1

n2

)
∥∆∥F , L∗

FT − L∗
JT ∼ O

(
1

n

)
∥∆∥F ,

where ∆ := Σ̃β − Σ̄β = Σx

∑K
k=1 πkµkµ

⊤
k .

2. The ratio between gaps is: L∗
PT−L∗

FT
L∗

FT−L∗
JT
∼ O

(
1
n

)
, indi-

cating that fine-tuning provides most of the benefit
in few-shot regimes (small n), while joint training
benefits more for larger n.

4.2 Covariance-mean decoupling

For a single-layer linear attention model under Assump-
tion 1, where W ∈ Rd×d captures all the statistics, the
plain training loss L⋆

PT is determined by the second-
order moment of the task parameters βk:

E[βkβ
⊤
k ] = Σβk

+ µkµ
⊤
k ,

which represents the biased covariance of task k. Conse-
quently, L⋆

PT can be viewed as a function of this biased
variable, defined as Σ̃β (see Theorem 1), which affects
both the terms in W ⋆

PT and those that appear directly
in L⋆

PT but outside of W ⋆
PT.

When all tasks have zero mean, i.e., E[βk] = µk = 0
for all k ∈ [K], leading to Σ̄µ = 0d×d, the optimal
losses for pretraining, fine-tuning, and joint training
become identical:

µk = 0, k ∈ [K]⇒ L⋆
PT = L⋆

FT = L⋆
JT. (16)

In this case, the fine-tuned prompts remain as zero
vectors, learning nothing during fine-tuning (as shown
in Theorem 2 and Theorem 3). This implies that any
differences in loss arise from the ability of the trainable
prompts to decouple (i.e., remove task-mean related
bias terms) from Σ̃β to obtain Σ̄β. Specifically, when
all task means are zero, this decoupling is nullified,
resulting in no difference in losses across the training
methods.

When the task means E[βk] = µk are non-zero, the
decoupling effect varies between different training set-
tings. In joint training, the simultaneous optimization
of prompts and attention weights enables decoupling
in both L⋆

JT and W ⋆
JT, while in fine-tuning, only the

biased terms in W ⋆
FT are decoupled. As a result, joint

training achieves greater decoupling than fine-tuning.
According to Corollary 1, when a loss is more directly
influenced by the biased covariance Σ̃β, it tends to be
higher, whereas reducing the influence of Σ̃β through
decoupling generally leads to a lower loss.
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These findings suggest that introducing additional task-
specific trainable parameters into the single-layer linear
attention model, combined with joint optimization, can
effectively reduce the bias in mixed-task covariance,
thereby improving performance.

5 Fully-decoupled Loss

In Section 4, we focus on cases where model parameters
are constructed according to Assumption 1 and ana-
lyze the loss landscapes for plain training, finetuning,
and joint training. However, our results indicate that
with a shared head a := Wvh, none of these methods
fully decouple the mean and covariance. To address
this, we introduce an alternative approach that allows
each task to have its own specific linear prediction
head hk ∈ Rd+1. It is worth noting that using sep-
arate heads for different tasks is a common practice
in the general multi-task learning literature [Caruana,
1997, Zhang and Yang, 2021, Li and Oymak, 2023].
Our results demonstrate that optimizing task-specific
prompts, heads, and attention weights leads to a fully
decoupled loss (Theorem 4).

Definition 4 (Task-specific heads) Given K tasks,
let {hk}Kk=1 ⊂ Rd+1 represent their corresponding train-
able linear prediction heads. Recalling the input se-
quence and prediction from (5) and (6), the prediction
for task k returns

f̃Attn(Z
(k)) = (z⊤WqW

⊤
k (Z(k))⊤)MZ(k)Wvhk. (17)

Recap ICL problem from Definition 2, Z(k) from Defi-
nition 3 and loss function from (4), the ICL objective
considering task-specific prompts and heads is:

L̃⋆
Attn = min

(pk,hk)Kk=1,Wk,q,v

L(f̃Attn) (18)

where L(f̃Attn) =
K∑

k=1

πk EZ,y∼Dk
[(f̃Attn(Z

(k))− y)2].

Here, the search space for pk,hk is Rd+1 and the search
space for Wk,q,v is R(d+1)×(d+1).

Next, given task k with mean µk, we introduce debiased
preconditioned gradient descent (PGD) predictor as
follows:

f̃PGD(Z
(k)) = x⊤WX⊤(y −Xµk) + x⊤µk.

Note that for any task k, we have E[yi − x⊤
i µk] = 0,

and therefore, we expect f̃PGD(Z
(k))−x⊤µk to predict

unbiased label y − x⊤µk. The corresponding PGD
objective is defined as:

L̃⋆
PGD = min

W∈Rd×d
L(f̃PGD) (19)

where L(f̃PGD) :=
K∑

k=1

πk EZ,y∼Dk
[(f̃PGD(Z

(k))− y)2].

The following proposition establishes the equiva-
lence between optimizing single layer linear attention
(c.f. (18)) and one step of PGD predictor (c.f. (19)).

Proposition 1 Consider the multi-task ICL data as
described in Definition 2 and let L̃⋆

Attn and L̃⋆
PGD be the

optimal linear attention and debiased preconditioned
gradient descent losses as presented in (18) and (19),
respectively. Then, L̃⋆

Attn = L̃⋆
PGD.

Considering the single-task and zero-mean setting,
Proposition 1 aligns with the findings of previous work
[Ahn et al., 2023, Li et al., 2024]. Our results further
confirm the necessity of both task-specific prompts and
heads in effectively decoupling the influence of non-zero
means from the data.

Then, based on the Proposition 1, we are able to analyze
the optimization landscape of (18) via studying (19).

Theorem 4 Consider the multi-task ICL problem
with dataset defined in Definition 2. Let W ⋆

PGD :=

argminW L(f̃PGD) following (19). Define Σ̄β in (14)
and let W̄ ⋆

PGD = ΣxW
⋆
PGD. Then the solution W̄ ⋆

PGD
and optimal loss L̃⋆

PGD (c.f. (19)) satisfy

W̄ ⋆
PGD = Σ̄β

(
(n+ 1)Σ̄β + tr(Σ̄β)I

)−1
,

L̃⋆
PGD = tr(Σ̄β)− ntr(W̄ ⋆

PGDΣ̄β).

See Appendix for a proof.

Comparing Theorem 4 with Theorem 1, it is evident
that L̃⋆

PGD represents a fully decoupled loss, demon-
strating the clear benefit of adding task-specific heads.
While Theorem 1 provides an upper bound L⋆

PT for the
multi-task ICL loss, the proof of Theorem 4 establishes
that L̃⋆

PGD serves as the lower bound for a multi-task
ICL loss in a single-layer linear attention model.

6 Experiments

We conduct experiments on synthetic datasets to vali-
date our theoretical assumptions and explore the behav-
ior of single-layer linear attention models with various
trainable parameters under different training settings.

Experimental Setting. We train single-layer at-
tention models to solve K-task, d-dimensional linear
regression ICL in a noise-free meta-learning setup for
consistency with the main paper’s theorems, deferring
noisy results to the Appendix. For each context length
n, an independent model is trained for 20, 000 iterations
with a batch size of 8192 using the Adam optimizer
(learning rate 10−3).

To ensure robustness, each training process is repeated
50 times with independent initializations, and the mini-
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(a) (b) (c) (d)

Figure 2: Experimental results across various settings: (a) Performance of unconstrained Wk,Wq,Wv-
parameterized linear attention model and reduced model, with non-zero task mean. (b) Performance of
unconstrained Wk,Wq,Wv-parameterized linear attention model and reduced model, with zero task mean.
(c) Performance of unconstrained Wk,Wq,Wv-parameterized linear attention model and theoretical prediction,
with non-zero task mean. (d) Performance of unconstrained Wk,Wq,Wv-parameterized linear attention model,
with different numbers of task-specific trainable parameters.

mal test risk among these trials is reported. Theoretical
predictions in the plots are based on the theorems in
Section 4, and all results are normalized by E[‖y‖2].

Validation of the preconditioning. In order to
support Assumption 1 in Section 3.3, we train an un-
constrained Wk,Wq,Wv-parameterized model (with a
shared head h) which is of an alternative form 6, as
well as a reduced model 7 derived from Assumption 1,
in order to check the alignment of their loss landscape.
We configure the experiment with the following choice:

d = 10,K = 2,Mµ =
[
1.7 · 110 −1.3 · 110

]
,

Σβ1 = Σβ2 = I10, π1 = 0.3, π2 = 0.7.

d = 10,K = 2,Mµ =
[
010 010

]
,

Σβ1
= I10,Σβ2

= 2 · I10, π1 = π2 = 0.5.

As shown in Figure 2a, 2b, the alignment of the dashed
and solid lines across the plain training, fine-tuning,
and joint training settings suggests that Assumption 1
results in a simple yet effective reduced model. The
performance of this reduced model aligns closely with
that of optimizing a single-layer linear attention model
without the constraint imposed by this assumption,
indicating its reasonableness. We also validated that
the performance of different training settings of the
unconstrained model and the reduced model will be
aligned given a zero task mean scenario, which is stated
in Section 4.2.

Note that the joint optimization of the task-specific
head, prompt, and model attention weights is not in-
cluded in this experiment, although it could potentially
support Theorem 4. When the task-specific head is in-
cluded in the joint training, Assumption 1 is no longer
needed to derive the reduced form, making validation
of Assumption 1 under such settings unnecessary.

Validation of the theorems. Given the previous ex-
perimental results supporting Assumption 1, which in

turn validate Theorems 1, 2, and 3, these theorems are
primarily supported by empirical evidence. Similarly,
we train an unconstrained Wk,Wq,Wv-parameterized
model (with a shared head h) to assess the alignment
between its loss landscape and our theoretical predic-
tions from Theorems 1, 2, and 3. The experiments are
configured with the following settings:

d = 10,K = 2,Mµ =
[
2.1 · 110 −0.9 · 110

]
,

Σβ1
= Σβ2

= I10, π1 = 0.3, π2 = 0.7.

As shown in Figure 2c, the alignment of the dashed
and solid lines across the plain training, fine-tuning,
and joint training settings suggests that our theoretical
result can predict the multi-task linear regression ICL
loss accurately.

Benefits of Additional Task-Specific Parameters.
We assess the impact of adding task-specific heads to
a single-layer linear attention model with task-specific
prompts. Specifically, we compare the loss L̃�

Attn from
jointly training W ,P ,H to the loss L�

JT from jointly
training W ,P , using L�

PT as a baseline, where only
W is optimized. Theoretical curves are shown only
for Theorem 4, as the others have been validated in
Theorems 1, 2, and 3. The experiments are configured
as follows:

d = 10,K = 2,Mµ =
[
1.4 · 110 −0.6 · 110

]
,

Σβ1 = I10,Σβ2 = 2 · I10, π1 = 0.3, π2 = 0.7.

There is a clear, gradual improvement from adding
more task-specific parameters, as shown in Figure 2d.

Discussions. We analyze the impact of task-specific
parameters in multi-task ICL settings. Our work
provides theoretical guarantees for joint training and
pretrain → finetune approaches. We introduce a
covariance-mean decoupling mechanism for optimal
ICL: Task-specific parameters learn the task mean
prediction and attention weights learn the variance.
Experimental results support our theoretical analysis.
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A Lemmas

Lemma 1 Suppose X is a n× d matrix, each column of which is independently drawn from a d-variate Gaussian
distribution with zero mean:

X = [x1 . . . xn]
⊤, where xi ∼ N (0,Σx) ∈ Rd, i ∈ [n].

For a constant matrix A ∈ Rd×d, the following expectation can be determined by:

E
[
X⊤XAX⊤X

]
= ntr(ΣxA)Σx + n(n+ 1)ΣxAΣx.

Proof. We begin by expressing X⊤X as a sum over its columns:

X⊤X =
n∑

i=1

xix
⊤
i .

Therefore,

X⊤XAX⊤X =

(
n∑

i=1

xix
⊤
i

)
A

 n∑
j=1

xjx
⊤
j

 =
n∑

i=1

n∑
j=1

xix
⊤
i Axjx

⊤
j .

Taking expectations on both sides, we have:

E[X⊤XAX⊤X] =

n∑
i=1

n∑
j=1

E[xix
⊤
i Axjx

⊤
j ].

Since the vectors xi are independent and identically distributed, we can split the sum into terms where i = j and
i ̸= j:

E[X⊤XAX⊤X] =

n∑
i=1

E[xix
⊤
i Axix

⊤
i ] +

∑
i̸=j

E[xix
⊤
i Axjx

⊤
j ].

For i ̸= j, independence implies:

E[xix
⊤
i Axjx

⊤
j ] = E[xix

⊤
i ]AE[xjx

⊤
j ] = ΣxAΣx.

There are n(n− 1) such terms. For i = j, we compute:

E[xix
⊤
i Axix

⊤
i ] = E[(x⊤

i Axi)xix
⊤
i ].

Using Isserlis’ theorem for zero-mean Gaussian vectors, we have:

E[(x⊤Ax)xx⊤] = tr(AΣx)Σx + 2ΣxAΣx.

Thus, summing over n terms:

n∑
i=1

E[xix
⊤
i Axix

⊤
i ] = n (tr(AΣx)Σx + 2ΣxAΣx) .

Adding all terms together:

E[X⊤XAX⊤X] = n (tr(AΣx)Σx + 2ΣxAΣx) + n(n− 1)ΣxAΣx

= ntr(AΣx)Σx + (2n+ n(n− 1))ΣxAΣx

= ntr(AΣx)Σx + n(n+ 1)ΣxAΣx.

This completes the proof.
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Lemma 2 Suppose X is a n× d matrix, each column of which is independently drawn from a d-variate Gaussian
distribution with zero mean:

X = [x1 . . . xn]
⊤, where xi ∼ N (0,Σx) ∈ Rd, i ∈ [n].

For a zero-mean Gaussian variable sampled independently ξ ∼ N (0, σ2In) ∈ Rn, the following expectation moment
can be determined by:

E
[
X⊤ξξ⊤X

]
= nσ2Σx.

Proof. Using the independence of X and the entries of ξ = [ξ1 · · · ξn]⊤, E[ξiξj ] = σ2δij (where δij is the
Kronecker delta, equal to 1 if i = j and 0 otherwise):

E
[
X⊤ξξ⊤X

]
= E

 n∑
i=1

n∑
j=1

ξiξjxix
⊤
j


=

n∑
i=1

E[ξiξi]E[xix
⊤
i ]

= nσ2Σx.

Lemma 3 Let W ∈ Rd×d, and A,B ∈ Rd×d be constant matrices. Then,

∂

∂W
tr(WAW⊤B) = B⊤WA⊤ +BWA.

Proof. We will compute the derivative ∂
∂W tr(WAW⊤B) using an element-wise approach.

First, expand the trace function:

tr(WAW⊤B) =
d∑

i=1

(WAW⊤B)ii.

Using the definition of matrix multiplication, we have:

(WA)ij =
d∑

k=1

WikAkj ,

(W⊤B)ji =
d∑

l=1

WljBli.

Therefore,

(WAW⊤B)ii =
d∑

j=1

(WA)ij(W
⊤B)ji =

d∑
j=1

(
d∑

k=1

WikAkj

)(
d∑

l=1

WljBli

)
.

Thus, the trace becomes:

tr(WAW⊤B) =
d∑

i=1

d∑
j=1

d∑
k=1

d∑
l=1

WikAkjWljBli.

We need to compute the derivative with respect to Wpq:

∂

∂Wpq
tr(WAW⊤B) =

d∑
i=1

d∑
j=1

d∑
k=1

d∑
l=1

∂

∂Wpq
(WikAkjWljBli) .
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Note that Akj and Bli are constants.

We have:
∂

∂Wpq
Wik = δipδkq,

∂

∂Wpq
Wlj = δlpδjq,

where δij is the Kronecker delta, equal to 1 if i = j and 0 otherwise.

Therefore,
∂

∂Wpq
(WikAkjWljBli) = (δipδkqWlj +Wikδlpδjq)AkjBli.

Then:

∂

∂Wpq
tr(WAW⊤B) =

d∑
i=1

d∑
j=1

d∑
k=1

d∑
l=1

∂

∂Wpq
(WikAkjWljBli)

=
d∑

i=1

d∑
j=1

d∑
k=1

d∑
l=1

(δipδkqWlj +Wikδlpδjq)AkjBli

=
d∑

j=1

d∑
l=1

WljAqjBlp +
d∑

i=1

d∑
k=1

WikAkqBpi

= (AW⊤B)qp + (BWA)pq

= (B⊤WA⊤ +BWA)pq

Since this holds for all elements (p, q), in matrix form, we have:

∂

∂W
tr(WAW⊤B) = B⊤WA⊤ +BWA.

Lemma 4 (Reduced form) Denote the output sequence of the attention layer as Attn(Z). Then under As-
sumption 1, the output becomes

Proof.
ŷ = Attn(Z)(n+1,d+1) = e⊤n+1Attn(Z)ed+1

= e⊤n+1(ZWqW
⊤
k (Z)⊤)MZWved+1

= (e⊤n+1Z) (WqW
⊤
k )︸ ︷︷ ︸

=A

(Z⊤MZ)Wved+1︸ ︷︷ ︸
=a

= (e⊤n+1Z)A(Z⊤MZ)a

=

[
x
0

]⊤
A

[
X⊤X X⊤y
y⊤X y⊤y

]
a

Under Assumption 1

A =

[
Wd×d 0d×1

∗1×d ∗1×1

]
, a =

[
0d×1

11×1

]
,

The output finally reduced to

ŷ =

[
x
0

]⊤ [
W 0
∗ ∗

] [
X⊤X X⊤y
y⊤X y⊤y

] [
0
1

]
= x⊤WX⊤y.
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B Proofs for Section 4

We consider an in-context learning (ICL) problem with demonstrations (xi, yi)
n+1
i=1 , and the input sequence Z is

defined by removing yn+1 as follows:

Z = [z1 . . . zn z]⊤ =

[
x1 . . . xn x
y1 . . . yn 0

]⊤
=

[
X⊤ x
y⊤ 0

]⊤
∈ R(n+1)×(d+1). (A1)

Here, z = [x⊤ 0]⊤ is the query token where x := xn+1, and X = [x1 · · · xn]
⊤ ∈ Rn×d, y = [y1 · · · yn]⊤ ∈ Rn.

Then, we aim for a sequence model to predict the associated label y := yn+1 of the given input sequence Z. In
this work, we consider the following data generation of (Z, y). We will refer to (X,y), x, and y as contexts,
query feature and the label to predict, respectively.

Definition 1 (Single-task ICL) Given a task mean µ ∈ Rd, and covariances Σx,Σβ ≻ 0 ∈ Rd×d. The input
sequence and its associated label, i.e., (Z, y) with Z denoted in (A1), are generated as follows:

• A task parameter β is generated from a Gaussian prior β ∼ N (µ,Σβ).

• Conditioned on β, for i ∈ [n+ 1], (xi, yi) is generated by xi ∼ N (0,Σx) and yi ∼ N (x⊤
i β, σ

2).

Here, σ ≥ 0 is the noise level.

In a noisy label setting, the labels yi in the input sequence Z can be obtained by

yi = x⊤
i β + ξi, where ξi ∼ N (0, σ2), i ∈ [n+ 1].

Thus, the labels in the contexts and the label to predict can be obtained by:

y = Xβ + ξ, where ξ = [ξ1 · · · ξn]⊤ ∈ Rn,

y = x⊤β + ξn+1.

Definition 2 (Multi-task ICL) Consider a multi-task ICL problem with K different tasks. Each task generates
(Z, y) ∼ Dk following Definition 1 using shared feature distribution xi ∼ N (0,Σx), i ∈ [n+ 1] but distinct task
distributions βk ∼ N (µk,Σβk

) with mean µk and covariance Σβk
for k ∈ [K].

Additionally, let {πk}Kk=1 be the probabilities of each task, satisfying
∑K

k=1 πk = 1 and πk ≥ 0.

We consider a task-aware multi-task ICL setting. Specifically, when a task is selected according to πk, its task index
k is known. Let D̄ :=

∑K
k=1 πkDk be the mixture of distributions and given sequence model f : R(n+1)×(d+1) → R,

we define the multi-task ICL objective as follows:

L(f) = E(Z,y)∼D̄[(y − f(Z))
2
]. (A2)

To start with, recap from Definition 2 where task k has probability πk and its task vector follows distribution
βk ∼ N (µk,Σβk

). Following (13) in the main paper, we define the debiased and biased mixed-task covariances
(variant with Σx prior) as follows:

Debiased: Σ̄β = Σx

K∑
k=1

πk E[(βk − µk)(βk − µk)
⊤]; (A3a)

Biased: Σ̃β = Σx

K∑
k=1

πk E[βkβ
⊤
k ]. (A3b)

Note that they satisfy Σ̄β = Σx

∑K
k=1 πkΣβk

and Σ̃β = Σx

∑K
k=1 πk(Σβk

+ µkµ
⊤
k ).

We first analyze the plain training setting where no additional task-specific parameters are introduced, and all K
tasks are mixed together.
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Under Assumption 1 in the main paper, let the prompt token for task k be pk =

[
p̄k

1

]
. The prediction of a

single-layer linear attention model can then be written as:

f(Z(k)) = x⊤W
[
p̄k X⊤] [1

y

]
= x⊤W (X⊤y + p̄k) := g(x,X,y;W , p̄k). (A4)

Note that for the multi-task ICL with task-specific prompting, the optimization object (A2) can be denoted as:

L(f) =
K∑

k=1

πk E(Z,y)∼Dk

[
(y − f(Z(k)))2

]
︸ ︷︷ ︸

Denoted as Lk(f)

=
K∑

k=1

πkLk(f) =
K∑

k=1

πk E(Z,y)∼Dk

[
(y − g(x,X,y;W , p̄k))

2
]
:=

K∑
k=1

πkLk(W , p̄k),

where Z =

[
X⊤ x
y⊤ 0

]⊤
∈ R(n+1)×(d+1),Z(k) =

[
p̄k X⊤ x
1 y⊤ 0

]⊤
∈ R(n+2)×(d+1).

Note that the multi-task ICL loss is equivalent to calculating the weighted sum of the task-k ICL losses over all
tasks k ∈ [K].

We begin by deriving the single-task ICL loss Lk(f) for task k, and then generalize it to the multi-task ICL loss
by taking a weighted sum. Since the derivation is similar for all tasks, the task index k is omitted in the following
derivation for simplicity. Unless otherwise specified, Lk(W , p̄k) and L(W , p̄) will represent the same meaning.
This convention similarly applies to other task-specific parameters, e.g., Σβ ↔ Σβk

, µ↔ µk, etc.

The loss on a certain task with a trainable prompt can be determined by:

L(W , p̄) = E
[
(y − g(x,X,y;W , p̄))

2
]

= E
[(
x⊤WX⊤y + x⊤Wp̄− x⊤β − ξn+1

)2]
= E

[(
x⊤WX⊤(Xβ + ξ) + x⊤Wp̄− x⊤β − ξn+1

)2]

= E


x⊤ ((WX⊤X − I)(β̄ + µ) +WX⊤ξ +Wp̄

)︸ ︷︷ ︸
Denoted as a (task-specific) vector c


2+ σ2

= E
[(
x⊤c

)2]
+ σ2 = tr(E[cc⊤]Σx) + σ2, (A5)

where β̄ = β − µ ∼ N (0,Σβ) is a centralized variable.

B.1 Proof of Theorem 1

Theorem 1 (Plain training) Consider training a single-layer linear attention model in solving multi-task ICL
problem with dataset defined in Definition 2 and model construction as described in Assumption 1. Let the optimal
solution W ⋆

PT (c.f. (10) in the main paper) and the minimal plain training loss L⋆
PT as defined in Section 3.3.

Additionally, let Σ̃β be defined in (14) in the main paper and W̄ ⋆
PT = ΣxW

⋆
PT.

Then the solution W̄ ⋆
PT and optimal loss L⋆

PT satisfy

W̄ ⋆
PT = Σ̃β

(
(n+ 1)Σ̃β + (tr(Σ̃β) + σ2)I

)−1

,

L⋆
PT = tr(Σ̃β) + σ2 − ntr(W̄ ⋆

PTΣ̃β).



Provable Benefits of Task-Specific Prompts for In-context Learning

Proof. As previously stated, the following derivation applies to all tasks k ∈ [K]. Therefore, for simplicity, we
omit the index k in the notation unless otherwise specified.

In the plain training setting, p̄ = 0 for all tasks, and only the attention model, parameterized by W under
Assumption 1, is updated. Hence, the loss in (A5) is:

L(W , p̄ = 0) = tr(E[cc⊤]Σx) + σ2, where c =
(
(WX⊤X − I)(β̄ + µ) +WX⊤ξ

)
.

The expansion of cc⊤ is (there are 3× 3 = 9 terms in total):

cc⊤ =
(
(WX⊤X − I)(β̄ + µ) +WX⊤ξ

) (
(WX⊤X − I)(β̄ + µ) +WX⊤ξ

)⊤
=
(
(WX⊤X)(β̄ + µ)− (β̄ + µ) +WX⊤ξ

) (
(WX⊤X)(β̄ + µ)− (β̄ + µ) +WX⊤ξ

)⊤
=
[
(WX⊤X)(β̄ + µ)

] [
(WX⊤X)(β̄ + µ)

]⊤
+
[
(WX⊤X)(β̄ + µ)

] [
−(β̄ + µ)

]⊤
+
[
(WX⊤X)(β̄ + µ)

] [
WX⊤ξ

]⊤
+
[
−(β̄ + µ)

] [
(WX⊤X)(β̄ + µ)

]⊤
+

[
−(β̄ + µ)

] [
−(β̄ + µ)

]⊤
+

[
−(β̄ + µ)

] [
WX⊤ξ

]⊤
+
[
WX⊤ξ

] [
(WX⊤X)(β̄ + µ)

]⊤
+

[
WX⊤ξ

] [
−(β̄ + µ)

]⊤
+

[
WX⊤ξ

] [
WX⊤ξ

]⊤
.

Take expectation of it,

E[cc⊤] =

W E[X⊤X(β̄ + µ)(β̄ + µ)⊤X⊤X]︸ ︷︷ ︸
Lemma 1, denoted as a (task-specific) matrix C

W⊤

+
[
−nWΣx(Σβ + µµ⊤)

]
+ 0

+
[
−n(Σβ + µµ⊤)ΣxW

⊤]+ (Σβ + µµ⊤) + 0

+ 0 + 0 + nσ2WΣxW
⊤︸ ︷︷ ︸

Lemma 2

= W (C + nσ2Σx)W
⊤ − nWΣx(Σβ + µµ⊤)− n(Σβ + µµ⊤)ΣxW

⊤ + (Σβ + µµ⊤),

where C = ntr(Σx(Σβ + µµ⊤))Σx + n(n+ 1)Σx(Σβ + µµ⊤)Σx.

Substitute back into the loss L(W , p̄ = 0):

L(W , p̄ = 0) = tr(W (C + nσ2Σx)W
⊤Σx)− 2ntr(ΣxWΣx(Σβ + µµ⊤)) + tr(Σx(Σβ + µµ⊤)) + σ2.

Use the following definition:

Debiased: Σ̄β = Σx

K∑
k=1

πk E[(βk − µk)(βk − µk)
⊤] = Σx

K∑
k=1

πkΣβk
;

Biased: Σ̃β = Σx

K∑
k=1

πk E[βkβ
⊤
k ] = Σx

K∑
k=1

πk(Σβk
+ µkµ

⊤
k ).

Denote

C̄ =
K∑

k=1

πkCk = ntr(Σ̃β)Σx + n(n+ 1)Σ̃βΣx.

The weighted sum of the k-th task plain training loss over all tasks k ∈ [K] is:

LPT(W ,P = 0) =

K∑
k=1

πkLk(W , p̄k = 0)

= tr(W (C̄ + nσ2Σx)W
⊤Σx)− 2ntr(W Σ̃βΣx) + tr(Σ̃β) + σ2.

Take derivative w.r.t. W , using Lemma 3. Since C is symmetric

∂LPT(W ,P = 0)

∂W
= 2ΣxW (C̄ + nσ2Σx)− 2nΣ̃βΣx
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Let W̄ ⋆
PT = ΣxW

⋆
PT, and set the derivative to zero:

W̄ ⋆
PT = nΣ̃βΣx(C̄ + nσ2Σx)

−1

= Σ̃βΣx

(
(tr(Σ̃β) + σ2)Σx + (n+ 1)Σ̃βΣx

)−1

= Σ̃β

(
(n+ 1)Σ̃β + (tr(Σ̃β) + σ2)I

)−1

.

Substitute back into LPT(W ,P = 0):

L⋆
PT = tr(Σ̃β) + σ2 − ntr(W̄ ⋆

PTΣ̃β).

B.2 Proof of Theorem 2

Theorem 2 (Fine-tuning) Suppose a pretrained model as described in Theorem 1 is given with W ⋆
PT being its

optimal solution. Consider fine-tuning this model with task-specific prompts as defined in Definition 3, and let
the optimal prompt matrix P ⋆

FT (c.f. (11) in the main paper) and the minimal fine-tuning loss L⋆
FT be defined in

Section 3.3. Additionally, let Σ̄β, Σ̃β be defined in (14) in the main paper and W̄ ⋆
PT = ΣxW

⋆
PT, and define the

mean matrix
Mµ = [µ1 · · · µK ]⊤ ∈ RK×d.

Then the solution P ⋆
FT and optimal loss L⋆

FT satisfy

P ⋆
FT = Mµ

(
(W̄ ⋆

PT)
−1 − nI

)
Σx,

L⋆
FT = L⋆

PT − tr((Σ̃β − Σ̄β)(nW̄
⋆
PT − I)⊤(nW̄ ⋆

PT − I)).

Proof. As previously stated, the following derivation applies to all tasks k ∈ [K]. Therefore, for simplicity, we
omit the index k in the notation unless otherwise specified.

1. Determining the optimal task-specific prompts

In the fine-tuning setting, the attention model is pretrained and parameterized by a fixed W = W ⋆
PT, and only

the task-specific prompts are fine-tuned. Then recap from (A5):

L(W , p̄) = tr(E[cc⊤]Σx) + σ2,

where c =
(
(WX⊤X − I)(β̄ + µ) +WX⊤ξ +Wp̄

)
.

The optimal task-specific prompt is determined by taking the derivative and setting it to zero:

∂L(W , p̄)

∂p̄
= 2E

[
∂c

∂p̄

⊤
Σxc

]
= 2W⊤Σx E[c] = 2W⊤Σx [(nWΣx − I)µ+Wp̄] = 0,

⇒ p̄⋆ =
(
W−1 − nΣx

)
µ,

which is equivalent to (by substituting W = W ⋆
PT):

P ⋆
FT = Mµ

(
(W̄ ⋆

PT)
−1 − nΣx

)
.

2. Determining the fine-tuning loss

Substituting back p̄⋆ =
(
W−1 − nΣx

)
µ:

L(W , p̄) = tr(E[cc⊤]Σx) + σ2,

where c =
(
(WX⊤X − I)(β̄ + µ) +WX⊤ξ +Wp̄

)
= WX⊤X(β̄ + µ)− β̄ +WX⊤ξ − nWΣxµ.
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The expansion of cc⊤ is (there are 4× 4 = 16 terms in total):

cc⊤ =
[
WX⊤X(β̄ + µ)− β̄ +WX⊤ξ − nWΣxµ

] [
WX⊤X(β̄ + µ)− β̄ +WX⊤ξ − nWΣxµ

]⊤
=
[
WX⊤X(β̄ + µ)

] [
WX⊤X(β̄ + µ)

]⊤
+
[
WX⊤X(β̄ + µ)

] [
−β̄
]⊤

+
[
WX⊤X(β̄ + µ)

] [
WX⊤ξ

]⊤
+
[
WX⊤X(β̄ + µ)

]
[−nWΣxµ]

⊤

+
[
−β̄
] [

WX⊤X(β̄ + µ)
]⊤

+
[
−β̄
] [
−β̄
]⊤

+
[
−β̄
] [
WX⊤ξ

]⊤
+

[
−β̄
]
[−nWΣxµ]

⊤

+
[
WX⊤ξ

] [
WX⊤X(β̄ + µ)

]⊤
+
[
WX⊤ξ

] [
−β̄
]⊤

+
[
WX⊤ξ

] [
WX⊤ξ

]⊤
+
[
WX⊤ξ

]
[−nWΣxµ]

⊤

+[−nWΣxµ]
[
WX⊤X(β̄ + µ)

]⊤
+ [−nWΣxµ]

[
−β̄
]⊤

+ [−nWΣxµ]
[
WX⊤ξ

]⊤
+ [−nWΣxµ] [−nWΣxµ]

⊤.

Take expectation of it,

E[cc⊤] =

W E[X⊤X(β̄ + µ)(β̄ + µ)⊤X⊤X]︸ ︷︷ ︸
Lemma 1, denoted as a (task-specific) matrix C

W⊤

+ [−nWΣxΣβ] + 0 +
[
−n2WΣxµµ

⊤ΣxW
⊤]

+
[
−nΣβΣxW

⊤] + Σβ + 0 + 0

+ 0 + 0 + nσ2WΣxW
⊤︸ ︷︷ ︸

Lemma 2

+ 0

+
[
−n2WΣxµµ

⊤ΣxW
⊤]+ 0 + 0 +

[
n2WΣxµµ

⊤ΣxW
⊤]

=W (C + nσ2Σx − n2Σxµµ
⊤Σx)W

⊤ − nWΣxΣβ − nΣβΣxW
⊤ +Σβ

where C = ntr(Σx(Σβ + µµ⊤))Σx + n(n+ 1)Σx(Σβ + µµ⊤)Σx.

Substitute back into the loss L(W , p̄⋆(W )):

L(W , p̄⋆(W )) = tr(E[cc⊤]Σx) + σ2

= tr(W (C + nσ2Σx − n2Σxµµ
⊤Σx)W

⊤Σx)− 2ntr(WΣxΣβΣx) + tr(ΣβΣx) + σ2

Use the following definition:

Debiased: Σ̄β = Σx

K∑
k=1

πk E[(βk − µk)(βk − µk)
⊤] = Σx

K∑
k=1

πkΣβk
;

Biased: Σ̃β = Σx

K∑
k=1

πk E[βkβ
⊤
k ] = Σx

K∑
k=1

πk(Σβk
+ µkµ

⊤
k ).

Denote:

C̄ =
K∑

k=1

πkCk = ntr(Σ̃β)Σx + n(n+ 1)Σ̃βΣx.

The weighted sum of the k-th task fine-tuning loss over all tasks k ∈ [K] is:

LFT(W ,P ⋆
FT(W )) = tr(W

(
C̄ + nσ2Σx − n2(Σ̃β − Σ̄β)Σx

)
W⊤Σx)− 2ntr(W Σ̄βΣx) + tr(Σ̄β) + σ2

Note that for plain training,

LPT(W ,P = 0) = tr(W (C̄ + nσ2Σx)W
⊤Σx)− 2ntr(W Σ̃βΣx) + tr(Σ̃β) + σ2,

and their optimal loss share the same attention weight parameterization W = W ⋆
PT. Let W̄ ⋆

PT = ΣxW
⋆
PT,

L⋆
FT = L⋆

PT − tr(Σ̃β − Σ̄β) + 2ntr(W̄ ⋆
PT(Σ̃β − Σ̄β))− n2tr(W̄ ⋆

PT(Σ̃β − Σ̄β)W̄
⋆⊤
PT )

= L⋆
PT − tr((Σ̃β − Σ̄β)(nW̄

⋆
PT − I)⊤(nW̄ ⋆

PT − I)).
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B.3 Proof of Theorem 3

Theorem 3 (Joint training) Consider training a single-layer linear attention model in solving multi-task ICL
problem with dataset defined in Definition 2 and model construction as described in Assumption 1 in the main
paper. Let W ⋆

JT,P
⋆
JT (c.f. (12) in the main paper) be the optimal solutions and L⋆

JT is the optimal joint training
loss defined in Section 3.3. Additionally, let Σ̄β, Σ̃β,Mµ follow the same definitions as in Theorem 2 and define
W̄ ⋆

JT = ΣxW
⋆
JT. Then the solution (W ⋆

JT,P
⋆
JT) and optimal loss L⋆

JT satisfy

W̄ ⋆
JT = Σ̄β

(
(n+ 1)Σ̄β + (tr(Σ̃β) + σ2)I +Σx

K∑
k=1

πkµkµ
⊤
k

)−1

,

P ⋆
JT = Mµ

(
(W̄ ⋆

JT)
−1 − nI

)
Σx,

L⋆
JT = tr(Σ̄β) + σ2 − ntr(W̄ ⋆

JTΣ̄β).

Here, Σx

∑K
k=1 πkµkµ

⊤
k ∼ O(1) is a d× d-sized constant matrix.

Proof. As previously stated, the following derivation applies to all tasks k ∈ [K]. Therefore, for simplicity, we
omit the index k in the notation unless otherwise specified.

1. Determining the optimal task-specific prompts

In the joint training setting, the attention model is pretrained and parameterized by a trainable W , and the
task-specific prompts are fine-tuned accordingly (see (A5)):

L(W , p̄) = tr(E[cc⊤]Σx) + σ2,

where c = (WX⊤X − I)(β̄ + µ) +WX⊤ξ +Wp̄.

The optimal task-specific prompt is determined by taking the derivative and setting it to zero:

∂L(W , p̄)

∂p̄
= 2E

[
∂c

∂p̄

⊤
Σxc

]
= 2W⊤Σx E[c] = 2W⊤Σx [(nWΣx − I)µ+Wp̄] = 0,

⇒ p̄⋆ =
(
W−1 − nΣx

)
µ,

which is equivalent to:
P ⋆

JT = Mµ

(
(W̄ ⋆

JT)
−1 − nI

)
Σx.

2. Determining the fine-tuning loss

It is worth noting that fine-tuning and joint training share a functional relationship between the tuned prompts
p̄⋆ and the current attention model parameterization W . Thus, substituting the tuned prompt back into the
joint training loss will result in the same expression as the fine-tuning loss:

L(W , p̄⋆(W )) = tr(E[cc⊤]Σx) + σ2

= tr(W (C + nσ2Σx − n2Σxµµ
⊤Σx)W

⊤Σx)− 2ntr(WΣxΣβΣx) + tr(ΣβΣx)

Use the following definition:

Debiased: Σ̄β = Σx

K∑
k=1

πk E[(βk − µk)(βk − µk)
⊤] = Σx

K∑
k=1

πkΣβk
;

Biased: Σ̃β = Σx

K∑
k=1

πk E[βkβ
⊤
k ] = Σx

K∑
k=1

πk(Σβk
+ µkµ

⊤
k ).

Denote:

C̄ =
K∑

k=1

πkCk = ntr(Σ̃β)Σx + n(n+ 1)Σ̃βΣx.
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The weighted sum of the k-th task fine-tuning loss over all tasks k ∈ [K] is:

LJT(W ,P ⋆
JT(W )) = tr(W

(
C̄ + nσ2Σx − n2(Σ̃β − Σ̄β)Σx

)
W⊤Σx)− 2ntr(W Σ̄βΣx) + tr(Σ̄β) + σ2.

In joint training, the attention model parameterization W is no longer fixed (as it is in the fine-tuning setting),
but is instead optimized. Due to the functional relationship between the tuned prompts and parameterization
p̄⋆ = p̄⋆(W ), they will be optimized jointly until reaching their optimal values.

Take derivative w.r.t. W , using Lemma 3:

∂LJT(W ,P ⋆
JT(W ))

∂W
= 2ΣxW

(
C̄ + nσ2Σx − n2(Σ̃β − Σ̄β)Σx

)
− 2nΣ̄βΣx

Let W̄ ⋆
JT = ΣxW

⋆
JT, and set the derivative to zero (note that

∑K
k=1 µkµ

⊤
k ∼ O(1)):

W̄ ⋆
JT = nΣ̄βΣx

(
C̄ + nσ2Σx − n2(Σ̃β − Σ̄β)Σx)

)−1

= Σ̄βΣx

(
(tr(Σ̃β) + σ2)Σx − n(Σ̃β − Σ̄β)Σx + (n+ 1)Σ̃βΣx

)−1

= Σ̄β

(
(tr(Σ̃β) + σ2)I + (n+ 1)Σ̄β + (Σ̃β − Σ̄β)

)−1

= Σ̄β

(
(n+ 1)Σ̄β + (tr(Σ̃β) + σ2)I +Σx

K∑
k=1

πkµkµ
⊤
k

)−1

.

Substitute back into LJT(W ,P ⋆(W )):

L⋆
JT = tr(Σ̄β) + σ2 − ntr(W̄ ⋆

JTΣ̄β).

B.4 Proof of Corollary 1

Corollary 1 Let L∗
PT, L∗

FT, and L∗
JT denote the optimal losses for plain training, fine-tuning, and joint training,

as described in Theorems 1, 2 and 3, respectively. These losses satisfy:

L∗
JT ≤ L∗

FT ≤ L∗
PT. (A6)

The equalities hold if and only if Σ̄β = Σ̃β (c.f. (14)), which occurs when all task means µk = 0 for k ∈ [K].
Furthermore, the loss gaps satisfy the following:

1. The loss gaps scale quadratically with task mean: L∗
PT − L∗

FT ∼ O
(

1
n2

)
∥∆∥F , L∗

FT − L∗
JT ∼ O

(
1
n

)
∥∆∥F ,

where ∆ := Σ̃β − Σ̄β = Σx

∑K
k=1 πkµkµ

⊤
k .

2. The ratio between gaps is: L∗
PT−L∗

FT
L∗

FT−L∗
JT
∼ O

(
1
n

)
, indicating that fine-tuning provides most of the benefit in

few-shot regimes (small n), while joint training benefits more for larger n.

Proof. 1. L⋆
FT ≤ L⋆

PT:

From Theorem 2, we have:

L⋆
FT = L⋆

PT − tr((Σ̃β − Σ̄β)(nW̄
⋆
PT − I)⊤(nW̄ ⋆

PT − I)).

Use the following definition:

Debiased: Σ̄β = Σx

K∑
k=1

πk E[(βk − µk)(βk − µk)
⊤] = Σx

K∑
k=1

πkΣβk
;

Biased: Σ̃β = Σx

K∑
k=1

πk E[βkβ
⊤
k ] = Σx

K∑
k=1

πk(Σβk
+ µkµ

⊤
k ).
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We define an auxiliray variable:

Σ̃β − Σ̄β = Σx

K∑
k=1

πkµkµ
⊤
k = ∆

It can be seen that (Σ̃β − Σ̄β) = Σx(
∑K

k=1 πkµkµ
⊤
k ) ⪰ 0, (nW̄ ⋆

PT − I)⊤(nW̄ ⋆
PT − I) ≻ 0, which leads to

tr((Σ̃β − Σ̄β)(nW̄
⋆
PT − I)⊤(nW̄ ⋆

PT − I)) ≥ 0⇒ L⋆
FT ≤ L⋆

PT.

The equality holds if and only if µk = 0, k ∈ [K] ⇐⇒ Σ̄β = Σ̃β.

The loss gap between L⋆
FT and L⋆

PT can be written as:

L⋆
PT − L⋆

FT = tr(∆(nW̄ ⋆
PT − I)⊤(nW̄ ⋆

PT − I))

To analyze the asymptotic behavior of the gap, we need to analyze the asymptotic behavior of:

W̄ ⋆
PT = Σ̃β((n+ 1)Σ̃β + tr(Σ̃β)I)

−1.

First, for large n, we can factor out n from the inverse term:

W̄ ⋆
PT =

1

n
Σ̃β

(
Σ̃β

(
1 +

1

n

)
+

tr(Σ̃β)

n
I

)−1

Using a matrix Taylor expansion, with A = Σ̃β and B =
tr(Σ̃β)

n I + 1
nΣ̃β:

(A+B)−1 = A−1 −A−1BA−1 +O(∥B∥2)

Applying this to our expression:(
Σ̃β

(
1 +

1

n

)
+

tr(Σ̃β)

n
I

)−1

= Σ̃−1
β −

1

n
Σ̃−1

β

(
Σ̃β + tr(Σ̃β)I

)
Σ̃−1

β +O
(

1

n2

)
Therefore:

W̄ ⋆
PT =

1

n
I − 1

n2

(
I + tr(Σ̃β)Σ̃

−1
β

)
+O

(
1

n3

)
The omitted O( 1

n3 ) terms include higher-order expansion terms from the matrix Taylor series. These terms
involve powers of Σ̃β and its inverse. They grow increasingly small as n increases and don’t affect the dominant
O( 1

n2 ) behavior of the loss gap.

Using the result above:

nW̄ ⋆
PT − I = n

(
1

n
I − 1

n2

(
I + tr(Σ̃β)Σ̃

−1
β

)
+O

(
1

n3

))
− I

nW̄ ⋆
PT − I = I − 1

n

(
I + tr(Σ̃β)Σ̃

−1
β

)
+O

(
1

n2

)
− I

nW̄ ⋆
PT − I = − 1

n

(
I + tr(Σ̃β)Σ̃

−1
β

)
+O

(
1

n2

)
The omitted terms at order O( 1

n2 ) include additional matrix products that become negligible for large n.

Therefore:
∥nW̄ ⋆

PT − I∥F ∼ O
(
1

n

)
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Now, substituting this into the expression for the gap:

L⋆
PT − L⋆

FT = tr(∆(nW̄ ⋆
PT − I)⊤(nW̄ ⋆

PT − I))

L⋆
PT − L⋆

FT ∼ tr(∆ · O
(

1

n2

)
)

L⋆
PT − L⋆

FT ∼ O
(

1

n2

)
∥∆∥F

Given that ∥∆∥F ≤M2
∑K

k=1 π
2
k · λmax(Σx), we have:

L⋆
PT − L⋆

FT ∼ O
(

1

n2

)
M2

K∑
k=1

π2
k · λmax(Σx)

2. L⋆
JT ≤ L⋆

FT:

From the proof of Theorem 3, it can be seen that joint training and fine-tuning shares a functional relationship
between L and W :

LJT(W ,P ⋆
JT(W )) = LFT(W ,P ⋆

FT(W ))

However, the only minimizer of this funtion is derived from ∂LJT(W ,P ⋆(W ))
∂W = 0⇒W ⋆

JT, which leads to:

L⋆
JT ≤ L⋆

FT.

The equality holds if and only if W ⋆
PT = W ⋆

JT ⇐⇒ µk = 0, k ∈ [K] ⇐⇒ Σ̄β = Σ̃β.

Recall that W̄ ⋆
JT is given by:

W̄ ⋆
JT = Σ̄β((n+ 1)Σ̄β + tr(Σ̃β)I +Σx

K∑
k=1

πkµkµ
⊤
k )

−1

Note that we denote ∆ = Σx

∑K
k=1 πkµkµ

⊤
k , so:

W̄ ⋆
JT = Σ̄β((n+ 1)Σ̄β + tr(Σ̄β +∆)I +∆)−1

= Σ̄β((n+ 1)Σ̄β + tr(Σ̄β)I + tr(∆)I +∆)−1

First, we rewrite this for large n:

W̄ ⋆
JT =

1

n
Σ̄β

(
Σ̄β

(
1 +

1

n

)
+

tr(Σ̄β)

n
I +

tr(∆)

n
I +

∆

n

)−1

Let A = Σ̄β and B = 1
nΣ̄β +

tr(Σ̄β)
n I + tr(∆)

n I + ∆
n .

Using the matrix Taylor expansion for (A+B)−1:

(A+B)−1 = A−1 −A−1BA−1 +A−1BA−1BA−1 +O(∥B∥3)

Applying this to our expression and noting that ∥B∥ = O(1/n):(
Σ̄β

(
1 +

1

n

)
+

tr(Σ̄β)

n
I +

tr(∆)

n
I +

∆

n

)−1

= Σ̄−1
β −

1

n
Σ̄−1

β

(
Σ̄β + tr(Σ̄β)I + tr(∆)I +∆

)
Σ̄−1

β +O
(

1

n2

)
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Therefore:
W̄ ⋆

JT =
1

n
I − 1

n2

(
I + tr(Σ̄β)Σ̄

−1
β + tr(∆)Σ̄−1

β + Σ̄−1
β ∆

)
+O

(
1

n3

)
The omitted O( 1

n3 ) terms include higher-order matrix products involving powers of Σ̄β, ∆, and their inverses.
These become negligible as n grows.

Using the result above:

nW̄ ⋆
JT − I = n

(
1

n
I − 1

n2

(
I + tr(Σ̄β)Σ̄

−1
β + tr(∆)Σ̄−1

β + Σ̄−1
β ∆

)
+O

(
1

n3

))
− I

= − 1

n

(
I + tr(Σ̄β)Σ̄

−1
β + tr(∆)Σ̄−1

β + Σ̄−1
β ∆

)
+O

(
1

n2

)
Therefore:

∥nW̄ ⋆
JT − I∥F = O

(
1

n

)
Recall that:

W̄ ⋆
PT =

1

n
I − 1

n2

(
I + tr(Σ̃β)Σ̃

−1
β

)
+O

(
1

n3

)

W̄ ⋆
JT =

1

n
I − 1

n2

(
I + tr(Σ̄β)Σ̄

−1
β + tr(∆)Σ̄−1

β + Σ̄−1
β ∆

)
+O

(
1

n3

)
The leading terms (1/n)I cancel, and the difference appears in the second-order terms:

W̄ ⋆
PT − W̄ ⋆

JT =
1

n2
C +O

(
1

n3

)

Where C is a matrix that depends on Σ̄β and ∆. Therefore:

∥W̄ ⋆
PT − W̄ ⋆

JT∥F ∼ O
(

1

n2

)
∥∆∥F

Starting from the loss function definition:

L(W ) = tr(Σ̄β)− ntr(W Σ̄β)

The loss gap becomes:
L⋆

FT − L⋆
JT = n∥tr((W̄ ⋆

PT − W̄ ⋆
JT)Σ̄β)∥

This gives us:

L⋆
FT − L⋆

JT ∼ O
(
1

n

)
M2

K∑
k=1

π2
k · λmax(Σx)

3. Comparative Analysis

1. Plain Training vs Fine-tuning:

L⋆
PT − L⋆

FT ∼ O
(

1

n2

)
M2

K∑
k=1

π2
k · λmax(Σx)

2. Fine-tuning vs Joint Training:

L⋆
FT − L⋆

JT ∼ O
(
1

n

)
M2

K∑
k=1

π2
k · λmax(Σx)
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3. Ratio of gaps:
L⋆

PT − L⋆
FT

L⋆
FT − L⋆

JT
∼ O

(
1

n

)
This aligns with our experimental results in Section 6, indicating that for few-shot multi-task in-context learning
settings (e.g., when n = 1), fine-tuning task-specific prompts alone is sufficiently effective at improving performance.
However, for many-shot (large n) settings, joint training of both the attention weight and task-specific prompts is
necessary to achieve further performance improvements.

C Proofs for Section 5

C.1 Proof of Proposition 1

Proposition 1 Consider the multi-task ICL data as described in Definition 2 and let L̃⋆
Attn and L̃⋆

PGD be the
optimal linear attention and debiased preconditioned gradient descent losses as presented in (18) and (19) in the
main paper, respectively. Then, L̃⋆

Attn = L̃⋆
PGD.

Proof. To begin with, let attention weights be

WqW
⊤
k =

[
W̄1 w1

∗ ∗

]
and Wv =

[
W̄2 w2

w⊤
3 w

]
,

where W̄1,2 ∈ Rd×d,w1,2,3 ∈ Rd and w ∈ R. Additionally, let task-specific prompts and heads be

pk =

[
p̄k

pk

]
and hk =

[
h̄k

hk

]
for k ∈ [K],

where p̄k, h̄k ∈ Rd and pk, hk ∈ R. Recapping the prediction from (17) in the main paper and input sequence
Z(k) from (5) in the main paper, we obtain

f̃Attn(Z
(k)) = (z⊤WqW

⊤
k (Z(k))⊤)MZ(k)Wvhk

=
[
x⊤W̄1 x⊤w1

]([p̄kp̄
⊤
k pkp̄k

pkp̄
⊤
k p2k

]
+

[
X⊤X X⊤y

y⊤X ∥y∥2ℓ2

])[
W̄2h̄k + hkw2

w⊤
3 h̄k + hkw

]
.

Recap the task distribution from Definition 2. Let y0 = y −Xµk. For cleaner notation and without loss of
generality, we remove the subscription k and set[

W̄2h̄k + hkw2

w⊤
3 h̄k + hkw

]
=

[
v
v

]
where v ∈ Rd and v ∈ R.

f̃Attn(Z
(k)) =

[
x⊤W̄1 x⊤w1

]([p̄p̄⊤ pp̄
pp̄⊤ p2

]
+

[
X⊤X X⊤y

y⊤X ∥y∥2ℓ2

])[
v
v

]
=
[
x⊤W̄1 x⊤w1

] [p̄p̄⊤ pp̄
pp̄⊤ p2

] [
v
v

]
+
[
x⊤W̄1 x⊤w1

] [X⊤X X⊤y

y⊤X ∥y∥2ℓ2

] [
v
v

]
= x⊤ (W̄1p̄p̄

⊤v + pw1p̄
⊤v + pvW̄1p̄+ p2vw1

)
+ x⊤

(
W̄1X

⊤Xv +w1y
⊤Xv + vW̄1X

⊤y + v ∥y∥2ℓ2 w1

)
= x⊤p̃+ x⊤

(
W̄1X

⊤Xv + (w1v
⊤ + vW̄1)X

⊤y + v ∥y∥2ℓ2 w1

)
= x⊤

(
p̃+ W̄1X

⊤Xv + (w1v
⊤ + vW1)X

⊤(y0 +Xµ) + vw1(∥y0∥2ℓ2 + µ⊤X⊤Xµ+ 2µ⊤X⊤y0)
)

= x⊤W̃X⊤y0 + x⊤p̃+ x⊤
(
W̄1X

⊤Xv + (W̃ − vw1µ
⊤)X⊤Xµ+ vw1 ∥y0∥2ℓ2

)
︸ ︷︷ ︸

ε(X,y0)
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where

p̃ := W̄1p̄p̄
⊤v + pw1p̄

⊤v + pvW̄1p̄+ p2vw1

W̃ := w1v
⊤ + vW1 + 2vw1µ

⊤.

Then letting y0 = y − x⊤µk, the expected risk of task k obeys

EZ,y∼Dk
[(f̃Attn(Z

(k))− y)2] = E
[(

x⊤W̃X⊤y0 − y0 + x⊤p̃− x⊤µ+ x⊤ε(X,y0)
)2]

= E
[(

x⊤W̃X⊤y0 − y0

)2]
+ E

[(
x⊤p̃− x⊤µ+ x⊤ε(X,y0)

)2]
+ 2E

[(
x⊤W̃X⊤y0 − y0

) (
x⊤p̃− x⊤µ+ x⊤ε(X,y0)

)]
Note that, letting β0 = β − µk, we have y0 = Xβ0 + ξ, y = x⊤β0 + ξn+1 and β0 ∼ N (0,Σβk

). Therefore,

E
[(

x⊤W̃X⊤y0 − y0

) (
x⊤p̃− x⊤µ+ x⊤ε(X,y0)

)]
= E

[
x⊤
(
W̃X⊤Xβ0 − β0

)
(p̃− µ+ ε(X,y0))

⊤
x
]

= E
[
x⊤
(
W̃X⊤X − I

)
β0 ε(X,y0)

⊤x
]

= E
[
x⊤
(
W̃X⊤X − I

)
β0

(
v ∥Xβ0∥2ℓ2

)
w⊤

1 x
]

= 0.

Then the risk satisfies

EZ,y∼Dk
[(f̃Attn(Z

(k))− y)2] = E
[(

x⊤W̃X⊤y0 − y0

)2]
+ E

[(
x⊤p̃− x⊤µ+ x⊤ε(X,y0)

)2]
≥ E

[(
x⊤W̃X⊤y0 − y0

)2]
.

We next prove that the equality is achievable for any W̃ . Consider the following constructions:

WqW
⊤
k =

[
W 0
0⊤ 0

]
, Wv = I, pk =

[
W−1µk

µ⊤
k W

−⊤µk + 1

]
and hk =

[
−µk

1

]
.

Then [
v
v

]
=

[
−µk

1

]
, p̃ = µk, and W̃ = W .

Using above construction, we obtain that for any W ∈ Rd×d, there exist pk’s and hk’s such that

EZ,y∼Dk

[(
x⊤p̃− x⊤µ+ x⊤ε(X,y0)

)2]
= 0

and hence,
EZ,y∼Dk

[(f̃Attn(Z
(k))− y)2] = E

[(
x⊤WX⊤y0 − y0

)2]
.

Next, consider the preconditioned gradient descent problem defined in (19) in the main paper. Recapping the
PGD prediction where we have

f̃PGD(Z
(k)) = x⊤WX⊤(y −Xµk) + x⊤µk.

Then

EZ,y∼Dk
[(f̃PGD(Z

(k))− y)2] = EZ,y∼Dk
[(x⊤WX⊤(y −Xµk) + x⊤µk − y)2]

= EZ,y∼Dk
[(x⊤WX⊤y0 − y0)

2].

Combining the results together completes the proof.
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C.2 Proof of Theorem 4

Theorem 4 Consider the multi-task ICL problem with dataset defined in Definition 2. Let W ⋆
PGD :=

argminW L(f̃PGD) following (19) in the main paper. Define Σ̄β in (14) in the main paper and let W̄ ⋆
PGD =

ΣxW
⋆
PGD. Then the solution W̄ ⋆

PGD and optimal loss L̃⋆
PGD (c.f. (19) in the main paper) satisfy

W̄ ⋆
PGD = Σ̄β

(
(n+ 1)Σ̄β + (tr(Σ̄β) + σ2)I

)−1
,

L̃⋆
PGD = tr(Σ̄β)− ntr(W̄ ⋆

PGDΣ̄β).

Proof. From the proof of Proposition 1, it can be seen that the optimal multi-task ICL learning performance of
a 1-layer linear attention model can be rigorously calculated as: L̃⋆

Attn = L̃⋆
PGD. Moreover, in this case, with the

help of task-specific heads hk, the optimal loss L̃⋆
PGD is equivalent to the optimal plain training loss in a zero

task mean multi-task ICL setting.

By applying Theorem 1 with all task means µk = 0 for k ∈ [K], Theorem 4 can be proven.

D Additional experiments: noisy label and non-isotropic covariance

We conduct experiments on synthetic datasets to validate our theoretical assumptions and explore the behavior
of single-layer linear attention models with various trainable parameters under different training settings.

Experimental Setting. We train single-layer attention models to solve K-task, d-dimensional linear regression
ICL with noise level σ2 = 5. For each context length n, an independent model is trained for 20, 000 iterations
with a batch size of 8192 using the Adam optimizer (learning rate 10−3).

To ensure robustness, each training process is repeated 50 times with independent initializations, and the minimal
test risk among these trials is reported. Theoretical predictions in the plots are based on the theorems in Section 4,
and all results are normalized by E[∥y∥2].

D.1 Noisy labels

We validate our theoretical assumptions and predictions based on a noise-free setting. To test these assumptions
in a noisy label setting, where σ2 > 0, we repeat the experiments from the main paper under the noisy setting,
using the same experimental configurations as in Figure 2(a) and Figure 2(c), to validate Assumption 1 and
Theorems 1, 2, 3, and 4.

D.2 Non-isotropic covariance

We also validate our experiments under a non-isotropic covariance setting. At noise level σ2 = 5, we repeat the
experiments from the main paper under the noisy setting, using the same experimental configurations as in Figure
2(a) and Figure 2(d), except that the isotropic covariance multiplier I10 is replaced with a non-isotropic one:

I10 −→ diag{0.9, 0.9−1, . . . , 0.9−9}

This is done to validate Assumption 1 and Theorems 1, 2, 3, and 4.

As seen from Figure A1 (a)(c), the performance of the reduced model derived from Assumption 1 aligns perfectly
with the performance of the exact linear attention model, indicating that it serves as a good proxy. Furthermore,
from Figure A1 (b)(d), our theoretical predictions align perfectly with the performance of the linear attention
model.
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(a) (b) (c) (d)

Figure A1: Experimental results across various settings: (a)(b) Noisy labels; (c)(d) Non-isotropic covariance.
(a)(c) validate Assumption 1 in the main paper, and (b)(d) validate Theorems 1-4 in the main paper.

E Additional experiments: multi-layer linear attention models

E.1 Multi-layer linear attention model

In the main paper, Section 3, the output of a single-layer linear attention model is defined as:

Attn(Z(k)) = (Z(k)WqW
�
k (Z(k))�)MZ(k)Wv.

If task-specific heads hk, k ∈ [K] (see Section 5) are used, the prediction for Z(k) is (where ei is a one-hot
indicator vector with 1 at the i-th position and 0 elsewhere):

ŷ = e�n+1Attn(Z(k))hk,

otherwise,
ŷ = e�n+1Attn(Z(k))ed+1.

Next, we extend the network architecture we used throughout this section. For a model with L ≥ 2 layers, we
define an L-layer linear attention model as a stack of L single-layer attention models. Formally, denoting by
Z

(k)
l the output of the l-th layer of attention, we define

Z
(k)
l+1 = Z

(k)
l + Attn(Z(k)

l ), l = 1, . . . , L− 1.

If task-specific heads hk, k ∈ [K] (see Section 5) are used, the prediction for Z(k) is :

ŷ = e�n+1Z
(k)
L hk,

otherwise,
ŷ = e�n+1Z

(k)
L ed+1.

E.2 Experiments

We only conduct empirical study to explore the impact of linear attention model depth and label noise in
this section. Similarly, We conduct experiments on synthetic datasets to explore the behavior of multi-layer linear
attention models with various trainable parameters under a joint training setting.

Experimental Setting. For each context length n, an independent model is trained for 20, 000 iterations with a
batch size of 8192 using the Adam optimizer (learning rate 10−3). To ensure robustness, each training process is
repeated 50 times with independent initializations, and the minimal test risk among these trials is reported. All
the results are normalized by E[‖y‖2].

We use a same synthetic dataset configuration across all the multi-layer attention model experiments:

σ2 = 5 (Noisy), or σ2 = 0 (Noise-free)

d = 10, K = 2, Σnon-iso = diag{0.9, 0.9−1, . . . , 0.9−9}
Mµ =

[
1.7 · 110 −1.3 · 110

]
,

Σβ1
=

1

2
Σβ2

= Σnon-iso, π1 = 0.3, π2 = 0.7



Provable Benefits of Task-Specific Prompts for In-context Learning

(a) (b) (c)

(d) (e) (f)

Figure A2: Performance of L-layer linear attention models (L = 1, 2, 3) on (a-c) clean and (d-f) noisy datasets.

As seen in Figure A2: (1) For a clean dataset, task-specific parameters significantly improve performance in
the few-shot context region (where the context length n < d), but this benefit diminishes as n increases. (2)
Task-specific parameters help mitigate the impact of label noise. (3) Although increasing the depth of the
attention model can narrow the performance gaps between different numbers of trainable task-specific parameters,
adding task-specific parameters remains beneficial.
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