
Eric Herrison Gyamfi1, Bledar A Konomi1, Guang Lin2, and Emily L. Kang1*

1Division of Statistics and Data Science, Department of Mathematical Sciences, University of Cincinnati
2Department of Mathematics, School of Mechanical Engineering, Purdue University

Enhancing Gaussian Process for

Surrogate Modeling: A Review of

Dimension Reduction Techniques for

Input Variables

1Corresponding author: kangel@ucmail.uc.edu

0.1 Introduction

Computer models, also called simulators, are widely used to model complex processes in many fields such as
engineering and climate modeling. These simulators are physics-based to reproduce the physical processes or
systems of interest. However, due to their complexity, these simulators are often computationally expensive,
making them costly or prohibitive to carry out. In addition, these simulators usually involve unknown
parameters requiring calibration. To address these challenges, computationally efficient surrogate models
have been commonly used to approximate such expensive-to-evaluate simulators in experiments and to
facilitate computational savings in calibration. One prevailing surrogate modeling approach is to construct a
statistical model as the surrogate, namely an emulator, based on a training dataset of the input and output
pairs from the expensive-to-evaluate simulator. The emulators are then employed in various analyses related
to uncertainty quantification (UQ), ranging from sensitivity analysis, parameter calibration, and uncertainty
quantification for quantities of interest (QoIs).

Gaussian process (GP) regression is one mainstream statistical method for surrogate modeling (see Gra-
macy, 2020). GP involves a relatively small number of parameters. It provides explicit formulas for interpo-
lation and prediction based on the training data, making it straightforward to implement. Furthermore, we
obtain the predictive distribution based on the conditional distribution from GP. This provides a natural
way to quantify the uncertainty, which is often crucial in computer experiments. In addition, GP can be
integrated into hierarchical modeling structures, allowing for the modeling of more complicated computer
experiments, including noisy data, multi-output, multi-fidelity, and multi-stage computer experiments (e.g.,
Kennedy and O’Hagan, 2001; Bayarri et al., 2007; Chen et al., 2015; Gu and Berger, 2016; Ma et al., 2022;
Ji et al., 2023). When the size of training data n is large, fitting a GP model could be computationally
challenging, since it requires O(n3) operations and O(n2) memory. However, there has been a rich litera-
ture suggesting various approaches to overcome this, such as imposing low-dimensional structure (Banerjee
et al., 2008; Cressie and Johannesson, 2008), approximating with a local structure (laGP; Gramacy and
Apley, 2015), or based on a directed acyclic graph (DAG) in Datta et al. (2016) and Katzfuss and Guinness
(2021), and combinations of these methods (e.g. Sang and Huang, 2012; Ma and Kang, 2020). Overall, these
advantages and new developments make GP regression a powerful tool for surrogate modeling, particularly
in scenarios where computational efficiency, robustness to noise, and flexibility in building surrogates in
complex computer experiments are essential considerations.

Although GP emulators are favorable in many UQ analyses, it has been shown that they struggle to
handle high input dimensions. The accuracy of the GP emulator’s approximation to the true simulator relies
on the size of training data n. With an increasing number of training data, the GP emulator is anticipated
to better approximate the behavior of the simulator. Various theoretical findings in the literature explore
the effectiveness of the GP emulator, denoted as f̂ , in approximating the true but expensive-to-evaluate
simulator f . For instance, De Marchi et al. (2011) shows that when the size of training data is n, and
the training data with d-dimensional input variables are observed quasi-uniformly within the input space
Ω ⊂ R

d, the approximation error for the GP emulator can be bounded by Cdn
−s/d‖f‖H, where s governs the

smoothness of the simulator f in a Hilbert space over Ω, and Cd is a dimension-dependent constant. As d, the
dimensionality of the input variables increases, the constant Cd grows, and n−p/d increases, unless we have
the training sample size n increase simultaneously and exponentially. However, due to the computational cost
to run the physics-based simulators, it is very rare to accommodate such exponential growth in the size of
training data when d is large. Consequently, accuracy of the GP emulators to approximate the true simulators
deteriorates as the input dimension d increases. Meanwhile, when we fit a GP model, we assume a covariance
function (also called a kernel), C : Ω × Ω → R, which in practice is often assumed to be separable and
stationary, dependent on the Euclidean distance between input points. As the input dimension increases, the
Euclidean distances lose their informativeness, and it becomes harder to identify covariance parameters from
the training data (Bengio et al., 2005). These challenges associated with the high-dimensional input variables
are termed the curse of dimensionality, and they render the task of directly employing GP regression with

2

high-dimensional input variables futile. This underscores the desirability of performing dimension reduction
with GP regression for enhancing both accuracy and efficiency in surrogate modeling.

Several approaches have been developed to mitigate the curse of dimensionality in GP regression for
surrogate modeling, focusing on identifying and exploiting specific structures of the input variables and then
constructing a GP emulator based on the reduced input space. These dimension reduction techniques can
be categorized into unsupervised and supervised methods. Unsupervised methods utilize only the input data
to perform dimension reduction and aim to learn a lower-dimensional representation of the input variables
with minimal information loss. Methods in this category range from the classic principal component analysis
(PCA) to the more recent autoencoder approach (AE; Hinton et al., 2006). On the other hand, supervised
dimension reduction methods learn a lower-dimensional structure of the input variables using both input
and output data, with a focus on maintaining the mapping or conditional representation between the input
and output variables. We discuss methods within this category including partial least squares (PLS; Wold,
1966; Geladi and Kowalski, 1986), the active subspace method (AS; Constantine et al., 2014), and the
gradient-based kernel dimension reduction (gKDR; Fukumizu and Leng, 2014).

This chapter reviews the aforementioned dimension reduction approaches for input variables, embracing
both unsupervised and supervised dimension reduction methods. In addition to elucidating these approaches,
we present a numerical study illustrating their performance. While we consider univariate output simulators
here, the framework and methods discussed can be applied to multi-output simulators as well (Ma et al.,
2022; Lan et al., 2022). Our focus lies on GP surrogate modeling, showcasing various dimension reduction
methods combined with GP in a numerical study. It’s worth noting that these dimension reduction methods
can also be employed with other surrogate modeling techniques, such as polynomial chaos expansion (PCE;
Xiu and Karniadakis, 2002; Kontolati et al., 2022) and neural networks (NN; Lan et al., 2022; Lu et al.,
2022).

The remainder of this chapter is organized as follows: In Section 0.2, we briefly review GP and explain
the framework of GP surrogate modeling with dimension reduction. Then, in Section 0.3, we describe the
use of unsupervised dimension reduction methods with the input variables, including PCA and autoencoder.
In Section 0.4, we present several supervised dimension reduction methods, including PLS, AS, and gKDR.
Section 0.6 contains a numerical study illustrating various dimension reduction techniques combined with
GP in surrogate modeling. The chapter concludes with a discussion in Section 0.7.

0.2 Gaussian Process Regression for Surrogate Modeling

In this section, we provide a brief review of the basics of GP regression for surrogate modeling. For a more
detailed and thorough description of GP regression and GP emulation, readers are referred to Rasmussen
and Williams (2005) and Gramacy (2020).

Let f denote a simulator with d-dimensional input x = (x1, . . . , xd)
T ∈ Ω ⊂ R

d and univariate output
Y ∈ R. In GP emulation, we assume that the output from this simulator is modeled with a Gaussian process,

f(·)|θ ∼ GP(µ(·;θ), C(·, ·;θ)),

where µ(·;θ) and C(·, ·;θ) are the mean function and covariance function known up to some parameters θ.
The mean function µ(·;θ) typically describes generic large-scale trends in the response surface, of-

ten modeled with a regression function µ(x) = h(x)Tβ in terms of q pre-specified covariates h(x) =
(h1(x), . . . , hq(x))

T but unknown coefficients β, and sometimes as a constant (i.e., µ(x) = µ). The co-
variance function C(·, ·;θ) gives the covariance between two outputs Y = f(x) and Y ′ = f(x′) as
Cov[Y, Y ′] = C(x,x′;θ). This covariance function, also called a kernel, is symmetric and positive-definite to
ensure that for any x1, . . . ,xn ∈ Ω and a1, . . . , an ∈ R, we have

∑n
i=1

∑n
j=1 aiajC(xi,xj ;θ) ≥ 0. Common

3

choices for this covariance function are typically stationary and separable, such as:

C(x,x′;θ) = σ2
d
∏

i=1

c(|xi − x′
i|; ρi)

where σ2 is the variance parameter, ci(·, ·; ρi) is a correlation function with some unknown length scale
parameter ρi for the i-th input, i = 1, . . . , d. Some common choices for the correlation function include the
squared-exponential correlation function c(x, x′) = exp[−(x − x′)2/ρ] and the family of Matérn correlation
functions plus a nugget (Gramacy and Lee, 2012).

Suppose we have n runs from the simulator, providing training data {(x1, Y1), . . . , (xn, Yn)}, where Yi =
f(xi), for i = 1, . . . , n. Define the n × q design matrix H = (h(x1), . . . ,h(xn))

T . Assume that we are
interested in the output at a set of unobserved input points x∗

1, . . .x
∗
m. Let Y ∗

i = f(x∗
i) for i = 1, . . . ,m.

Define Y = (Y1, . . . , Yn)
T , Y∗ = (Y ∗

1 , . . . , Y
∗
m)T , and H∗ = (h(x∗

1), . . . ,h(x
∗
m))T . The assumption of GP

renders that the joint distribution of Y and Y∗ a multivariate Gaussian distribution:

(

Y

Y∗

)

∼ Nn+m

((

H

H∗

)

β,

(

Σ C

CT Σ∗

))

, (1)

where Σ, C, and Σ∗ are n×n, n×m, and m×m matrices, respectively with the associated (i, j)-th entries as
Σij = C(xi,xj), Cij = C(xi,x

∗
j), and Σ∗

ij = C(x∗
i ,x

∗
j). Assume that the parameters θ = {β, σ2, ρ1, . . . , ρd}

are known. Then the predictive distribution of the outputs at the unobserved input points is the conditional
distribution of Y∗ given the training data and θ:

Y∗|Y,θ ∼ Nm(µ̃, Σ̃), (2)

where
µ̃ = H∗β +CTΣ−1(Y −Hβ), (3)

Σ̃ = Σ∗ −CTΣ−1C. (4)

These explicit formulas in (3) and (4) can be used to obtain the prediction with the GP emulator
together with associated uncertainty. It should be noted that (3) and (4) depend on the parameters θ which
are usually unknown. To estimate θ in the GP model, we can use maximum likelihood estimation (MLE) by
maximizing the likelihood L(θ;Y) = p(Y|θ) with Y|θ ∼ Nn(Hβ,Σ). Alternatively, we can impose priors
on the parameters and make a fully Bayesian inference via a Markov chain Monte Carlo (MCMC) to obtain
the posterior distribution of Y∗ given data. When the size of training data n is large, various approaches
including Gramacy and Apley (2015), Datta et al. (2016), and Katzfuss and Guinness (2021) can be used
to facilitate efficient evaluation of the likelihood or sampling from a high-dimensional multivariate Gaussian
distribution.

When the input dimension d is high, we need n to increase as more runs of the expensive-to-evaluate
simulators are required to construct a GP emulator that accurately approximates the simulator, which is
usually computationally costly or infeasible. One way to address this curse of dimensionality is to perform
dimension reduction on the input variables (e.g., Liu and Guillas, 2017; Ma et al., 2022; Lan et al., 2022).
The procedure of constructing the GP emulator consists of two steps:

In Step 1, we perform dimension reduction on the original input variables to produce the lower-
dimensional input in the reduced space RD whereD < d. This is achieved by finding a mappingΦ : Rd → R

D,
and the resulting low-dimensional input is denoted by Φ(x) = (Φ1(x), . . . ,ΦD(x))T ∈ R

D. We review unsu-
pervised and supervise methods for constructing this mapping Φ in Sections 0.3 and 0.4, respectively.

In Step 2, we use the low-dimensional input points corresponding to the input points in the training data,
Φi = Φ(xi), for i = 1, . . . , n, and construct a GP emulator based on the pairs, {(Φ1, Y1), . . . , (Φn, Yn)}. When
making predictions, we first need to obtain {Φ∗

i : i = 1, . . . ,m} corresponding to {x∗
i : i = 1, . . . ,m} with

Φ∗
i = Φ(x∗

i), and then obtain the predictive distribution of Y∗ associated with Φ∗
i , i = 1, . . . ,m.

It’s important to note that GP modeling extends beyond computer models. For instance, it’s widely
employed in analyzing spatial and spatiotemporal data in environmental and climate science (e.g., Gelfand

4

and Schliep, 2016). However, effectively addressing the complexities of such data often entails special consid-
erations. This may involve incorporating a more flexible covariance function to accommodate nonstationary
dependence structures or represent specific geometric or geographical patterns realistically. We discuss po-
tential extensions related to these considerations in Section 0.7.

0.3 Unsupervised dimension reduction methods

In this section, we present various unsupervised dimension reduction methods, such as PCA and AE, and
explore some related extensions. They are termed unsupervised as they solely focus on the input variables,
disregarding the input-output relationship, to unveil the lower-dimensional structure within the input space.

0.3.1 Principal Component Analysis

Principal Component Analysis (PCA) is a statistical method widely employed for dimension reduction, data
compression, feature extraction, and data visualization. In essence, PCA seeks to discover the orthogonal
projection of the original input data into a lower-dimensional space while maximizing variance. Specifically,
PCA identifies linear combinations of the original input variables that are mutually orthogonal:

Φi(x) = wT
i x, for i = 1, . . . , D

where the d-dimensional vector wi is referred to as the i-th principal component (PC). It satisfies wT
i wj =

1(i = j) for i, j = 1, . . . , D, and Φi(x) represents the i-th principal component score associated with x.
Given the input data X = (x1, . . . ,xn)

T , PCA involves the computation of the d× d sample covariance
matrix R. The principal components (PCs) are then determined via the eigendecomposition of R:

R = UΛUT ,

where U is a d × d matrix whose columns are normalized eigenvectors {ui : i = 1, . . . , d} associated with
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd, and Λ is a diagonal matrix diag(λ1, . . . , λd). The mapping Φ : Rd → R

D

based on PCA then projects an input point x∗ onto the subspace spanned by the first D PCs:

Φ(x) = WTx,

where the d×D W consists of the D leading eigenvectors of R: W = (u1, . . . ,uD).
To determine the optimal value of D, we often calculate the cumulative proportion of explained variance

and visualize how much variance is retained as we increase the number of principal components (PCs). This
process helps us decide on D based on the desired level of variance explained by the first D PCs.

The computational complexity of PCA can be analyzed in three main steps. First, computing the sample
covariance matrix R from the input data X ∈ R

n×d requires computing means with O(nd) operations and
forming R with O(nd2) operations, leading to an overall complexity of O(nd2). Second, the eigendecompo-
sition of the d× d covariance matrix, given by R = UΛUT , is typically computed using iterative numerical
methods such as the QR algorithm, which requires O(d3) operations. Lastly, once the projection matrix
W ∈ R

d×D is obtained from the top D eigenvectors, projecting each data point xi involves computing
Φ(xi) = WTxi, which requires O(dD) operations per data point, leading to a total complexity of O(ndD).
Thus, the total computational complexity of PCA is O(nd2 + d3 + ndD), where the dominant term depends
on the relative sizes of n, d, and D. If d is large, the eigendecomposition step O(d3) dominates, whereas if
n � d, the covariance computation O(nd2) is the bottleneck.

PCA is widely used in engineering experiments to reduce the dimensionality of geometric or parametric
inputs—and sometimes outputs—enabling more efficient surrogate modeling of aerodynamic or structural
systems. For example, Koziel and Pietrenko-Dabrowska (2020) applied PCA to constrain and scale the input

5

space of a data-driven surrogate model used to predict the responses of a rat-race coupler and transformer.
Higdon et al. (2008b) used PCA for output dimensionality reduction in the context of computer model
calibration. PCA has also been applied to reduce input variables for calibration and surrogate modeling in
hydrological models (Kamali et al., 2007) and aerodynamic models (Tao et al., 2020).

One limitation of PCA is its assumption of linearity in the mapping Φ. An extension aimed at addressing
this limitation is kernel PCA (k-PCA; Schölkopf et al., 1997, 1998; Hoffmann, 2007). Briefly speaking, k-
PCA maps the original input data into a higher-dimensional feature space using a kernel function and then
performs eigendecomposition on the resulting n× n kernel matrix. The mapped input point Φ(x∗) depends
on the eigenvectors derived from the n×n kernel matrix and the kernel function evaluated at the input data
{xi} and x∗. Common choices for the kernel function include polynomial kernels and Gaussian kernels. For
further details and applications of k-PCA, readers are referred to Schölkopf et al. (1997), Hoffmann (2007),
Ma and Zabaras (2011), Lataniotis et al. (2018), and Kontolati et al. (2023).

Additionally, PCA has important limitations in the context of designed experiments commonly used
in computer experiments, such as space-filling and orthogonal array-based Latin hypercube designs. These
designs intentionally construct input variables to be uncorrelated or orthogonal, which conflicts with PCA’s
reliance on correlated structure to identify meaningful lower-dimensional projections. In such cases, PCA
recovers directions aligned with the coordinate axes, offering no insight or dimension reduction. While PCA
can be useful for reducing dimensionality in observational settings with naturally correlated inputs, it is
generally not suitable for structured experimental designs. Recognizing this distinction is important for the
appropriate application of PCA in computer experiments.

0.3.2 Autoencoder

In this subsection, we discuss autoencoders (AE) for dimensionality reduction (Hinton and Salakhutdinov,
2006). Autoencoders have found applications in diverse tasks such as feature learning, denoising, and anomaly
detection spanning domains like computer vision, natural language processing, and signal processing. An
autoencoder consists of two components: an encoder and a decoder. The encoder, denoted as Φ : Rd → R

D,
serves as a dimensionality reduction mapping. It employs a neural network (NN) structure to enact a sequence
of transformations that reduce the dimensionality of the input data. Conversely, the decoder, denoted by
Ψ : RD → R

d, reconstructs the low-dimensional representation back to its original dimensionality, resembling
the initial data. Both the encoder and decoder architectures in AE can adopt convolutional or recurrent NN
structures (Ribeiro et al., 2018; Kingma and Welling, 2019).

Training an AE entails jointly optimizing the parameters within Φ and Ψ to minimize the reconstruction
error, often quantified by the mean squared error (MSE) loss function:

1

n

n
∑

i=1

‖xi −Ψ(Φ(xi))‖
2

This is achieved using gradient descent algorithms. Decisions regarding the lower dimensionality D and
parameters and configurations related to the NN structures, such as the number of layers and the choice of
non-linear activation functions, need to be specified and can be fine-tuned through cross-validation.

It’s important to acknowledge that training AE often requires a relatively large dataset, which may not
always be readily available, particularly when dealing with computationally expensive simulators. However,
when abundant data are accessible, AE can provide a valuable tool in handling imaging or functional input
variables, as demonstrated in Banerjee et al. (2016) and Lan et al. (2022).

6

0.4 Supervised dimension reduction methods

Unlike unsupervised dimension reduction methods that solely utilize input data, supervised dimension re-
duction methods leverage both input and output data to derive the mapping Φ. This approach aims to
preserve important relationships or structures within the input-output pair (x, Y).

0.4.1 Partial least squares

Partial Least Squares (PLS) regression was introduced in Wold (1966) as an alternative to ordinary least
squares (OLS) regression in situations where linear regression models become ill-conditioned. Helland (1990)
provides a definition of PLS regression models. Frank and Friedman (1993) discuss and compare PLS with
regression using PCA and ridge regression. Widely utilized initially in chemometrics, PLS regression has been
applied in diverse fields such as social sciences and medicine (e.g., de Jong, 1993; Hulland, 1999; Boulesteix
and Strimmer, 2006; Abdi, 2010).

In this subsection, we present PLS regression in the context of a multivariate responseY ∈ R
q initially, but

we will specifically describe the optimization procedure for dimension reduction when q = 1, i.e., univariate
response. Let’s recall the n×d input data matrix X = (x1, . . . ,xn)

T . We define an n× q output data matrix
Y = (y1, . . . ,yn)

T . When we have a univariate output, q = 1, and Y is reduced to an n-dimensional vector.
Assuming both X and Y are centered, i.e., with the sample means subtracted, PLS regression assumes a
basic latent decomposition of both input and output matrices:

X = TP+E; (5)

Y = TQ+ F. (6)

Here, T is an n × D matrix whose rows are the D-dimensional scores, P and Q are matrices of latent
components (called loadings), and E and F are matrices of random errors. If we know T, under typical
regression assumptions, we can obtain the least squared estimator for Q:

Q̂ = (TTT)−1TTY.

In PLS regression, the n ×D matrix T is constructed as a linear combination of the column vectors in
the n× d input data matrix X:

T = XW,

where W is a d×D matrix. Define B = WQ. Then when we replace T with XW in (6), we have

Y = XB+ F,

and the estimated B is:
B̂ = WQ̂ = W(TTT)−1TTY.

The fitted response can then be written as:

Ŷ = TQ̂ = T(TTT)−1TTY,

and the predicted response with a new input x∗ is

Ŷ∗ = (x∗)T B̂.

In PLS regression, the key lies in constructing the n×D matrix T = XW. Unlike PCA, which seeks W
to provide the maximum explanation of the variation in X, PLS takes into consideration Y and constructs
T to maximize the correlation between T and Y. Let’s denote the i-th column in W as wi = (wi1, . . . , wid),

7

for i = 1, . . . , D. Let ti denote the i-th column in T. We have ti = Xwi, for i = 1, . . . , D. In the univariate
output setting with q = 1, the sample covariance between ti and Y is:

Cov(Y, ti) =
1

n
tTi Y =

1

n
wT

i X
TY.

The sample covariance between ti and tj is:

Cov(ti, tj) =
1

n
tTi tj =

1

n
wT

i X
TXwj .

PLS specifies T by finding w1, . . . ,wD through solving sequential optimization problems, for i = 1, . . . , D:

wi = argmax
w

(wTXTY)2, (7)

subject to
wTw = 1 and wTXTXwj = 0; for j = 1, . . . , i− 1.

In other words, PLS successively specifies a unit-length wi to ensure it maximizes the covariance between
ti and Y, while ti is empirically uncorrelated with tj ’s. With W obtained from this successive but non-
iterative algorithm, the resulting dimension reduction mapping Φ : Rd → R

D based on PLS is given by:
Φ(x) = WTx.

In their work, Bhadra et al. (2024) employ PLS for dimension reduction before fitting a GP model, thereby
enhancing the predictive performance of the resulting GP model. Meanwhile, Chun and Keleş (2010) and
Polson et al. (2021) delve into theoretical properties and extensions of PLS, particularly in the realms of
variable selection and deep learning.

The computational complexity of PLS regression can be analyzed by breaking it into key steps. Given
the input data matrix X ∈ R

n×d and response matrix Y ∈ R
n×q, the core of PLS lies in constructing the

latent score matrix T = XW, where W ∈ R
d×D is determined iteratively. The main computational steps

involve: (1) computing the cross-product matrix XTY, which requires O(ndq) operations, (2) iteratively
solving the optimization problem wi = argmaxw(wTXTY)2 for each component, which involves a power
iteration or singular value decomposition (SVD) with complexity O(dqD) per iteration, resulting in an overall
complexity of O(dqD), (3) computing the score vectors ti = Xwi for each of the D components, requiring
O(ndD) operations, (4) updating X by deflation, involving matrix multiplications with complexity O(ndD),

and (5) computing the regression coefficients B̂ = W(TTT)−1TTY, where forming and inverting TTT takes
O(D3) operations, and the final multiplication adds O(ndD). The total computational complexity of PLS
regression is thus O(ndq + dqD + ndD +D3), where the dominant term depends on the relative sizes of n,
d, q, and D. If D is small, the overall complexity is approximately O(ndq + ndD), but for larger D, the
inversion step O(D3) becomes significant.

PLS has been often applied in surrogate modeling for computer experiments, particularly to address
high-dimensional input spaces. For instance, Bouhlel et al. (2016) used PLS to reduce the number of hyper-
parameters prior to applying Kriging, enabling more efficient emulation of high-fidelity computer codes. In a
case study on an ammonia synthesis reactor, Straus and Skogestad (2017) demonstrated that incorporating
PLS significantly improved surrogate model accuracy. Additionally, Ehre et al. (2020) proposed a PLS-
based Polynomial Chaos Expansion (PLS-PCE) method for global sensitivity analysis in high-dimensional
problems, highlighting the utility of PLS in enhancing computational efficiency and interpretability.

0.4.2 Active subspace method

The objective of the active subspace (AS) method (Constantine et al., 2014) is to identify a low-dimensional
linear manifold within the input space that captures maximal variation in the simulator f : R

d → R.
This method has found widespread application in surrogate modeling and Bayesian inverse problems (e.g.,
Constantine et al., 2016; Vohra et al., 2019; Ma et al., 2022). We offer a succinct overview of it in this
subsection, while readers interested in a more extensive discussion are directed to Constantine (2015).

8

The AS method assumes that f is square integrable on the input x with a prior distribution x ∼ π. Let
∇xf(x) = (∂f

∂x1

, . . . , ∂f
∂xd

)T denote the gradient of f with respect to x. The AS method proposes exploring
the d× d matrix:

H = Ex∼π[(∇xf(x))(∇xf(x))
T],

referred to as the active subspace matrix (AS matrix). In the eigendecomposition H = W̃ΛW̃T , Λ =
diag(λ1, . . . , λd) with λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0, and the d× d matrix W̃ contains eigenvectors wi as its i-th
column, i = 1, . . . , d. Constantine et al. (2014) demonstrate that the mean-squared directional derivative of
f with respect to the eigenvector wi equals its corresponding eigenvalue λi. Therefore, with the eigenvalues
arranged in decreasing order, the AS method utilizes the partitions:

W̃ = [W V], and Λ = diag(Λ1,Λ2),

where Λ=(λ1, . . . , λD)T , and Λ2 = (λD+1, . . . , λd)
T ; the eigenvectors in the d×D matrix W correspond to

the D largest eigenvalues in Λ1, while those in the d× (d−D) matrix V correspond to the remaining (d−D)
eigenvalues in Λ2. Define:

φ = WTx, and η = VTx.

Constantine et al. (2014) prove that f varies more on average along the directions given by the eigenvectors
in W than along the directions given by those in V. The column space of W is thus termed the active
subspace, and φ is called the corresponding active variables. Additionally, Constantine et al. (2014) express
x = Wφ+Vη and derive that:

E[(∇φf(x))T (∇φf(x))] =

D
∑

i=1

λi,

E[(∇ηf(x))
T (∇ηf(x))] =

d
∑

i=D+1

λi.

In particular, when λD+1, . . . , λd are all zero, the gradient ∇ηf(x) is zero for any x in the input space.
It’s important to note that the AS matrix H is typically not directly available. In practice, we need to

estimate it from data. Suppose we sample xi ∼ π, for i = 1, . . . , n. We then evaluate the gradient of f at xi:
∇xfi ≡ ∇xf(xi), for i = 1, . . . , n. The AS matrix is estimated by:

Ĥ =
1

n

n
∑

i=1

(∇xfi)(∇xfi)
T .

Let Ŵ denote the d×D matrix consisting of the leading D eigenvectors of Ĥ. Consequently, the dimension
reduction mapping Φ : Rd → R

D based on the AS method is given by: Φ(x) = ŴTx.
To estimate H and implement the AS method, having access to the gradient of f is essential. However,

extensions have been proposed to address scenarios where this gradient is not readily available. Constan-
tine (2015) suggests performing linear regression with training data (x1, y1), . . . , (xn, yn). Another approach
involves utilizing surrogate modeling for both f and its gradient (Zahm et al., 2020; Wycoff et al., 2021).
Furthermore, the AS method has been extended to accommodate simulators with multivariate output: Ma
et al. (2022) leverage the likelihood function of the output to derive the AS matrix, while Musayeva and
Binois (2024) explore various approaches to identify a common structure based on the gradients of each
component in the output vector. Additionally, Lam et al. (2020) extend the AS method to handle computer
models of varying fidelities.

The computational complexity of the AS method is primarily determined by the estimation of the AS
matrix H, its eigendecomposition, and subsequent projection steps. Given n sampled points xi ∼ π, for i =
1, . . . , n, we first compute the gradients ∇xfi = ∇xf(xi), which requires evaluating f and its derivatives at n
points, leading to an initial complexity of O(nd) if automatic differentiation or finite difference methods are

used. The AS matrix is then estimated as Ĥ = 1
n

∑n
i=1(∇xfi)(∇xfi)

T , which involves O(nd2) operations. The

eigendecomposition of the d×d matrix Ĥ is performed next, requiring O(d3) operations. Once the leading D

9

eigenvectors Ŵ are extracted, projecting an input x onto the active subspace via Φ(x) = ŴTx takes O(dD)
operations per data point, leading to an additional complexity of O(ndD) when performed for all n data
points. The total computational complexity of the AS method is thus given by O(nd+nd2+d3+ndD), where
the dominant term depends on the relationship between n, d, and D. If d is large, the eigendecomposition
step O(d3) dominates, whereas if n � d, the covariance matrix computation O(nd2) becomes the bottleneck.

AS has frequently been used in combination with Gaussian Process (GP) models and output dimension
reduction, as demonstrated in Guy et al. (2019) and Ma et al. (2022). Tripathy and Bilionis (2019) introduced
a scalable framework called Deep Active Subspaces, which integrates deep neural networks with AS to support
high-dimensional uncertainty propagation. In the context of chemical reaction systems, Vohra et al. (2020)
applied AS to construct efficient surrogate models for uncertainty quantification, showcasing the method’s
ability to reduce computational cost while preserving model fidelity.

0.4.3 gKDR

The gradient-based kernel dimension reduction (gKDR) approach builds upon the framework of the sufficient
dimension reduction (SDR) framework, which was initially proposed and refined in seminal works by Cook
(1994),Chiaromonte and Cook (2002) and Cook (2009). It operates under the assumption that the variables
Y and x are conditionally independent given the projected inputs WTx, as expressed by the equation:

Y ⊥ x |WTx (8)

Here, W ∈ R
d×D, and WTW = I, and ⊥ stands for independence. The space defined by the column vectors

of W is termed the effective dimension reduction (EDR) space. Methods aimed at determining W include
sliced inverse regression (SIR; Li, 1991) and the minimum average variance estimation (MAVE; Xia et al.,
2002). However, these techniques either rely on strong assumptions regarding the distributions of x or are
computationally intensive. The gKDR method is proposed by Fukumizu and Leng (2014) to overcome these
limitations. Notably, unlike the AS method, gKDR does not require evaluations of the gradients of the
simulator ∇xf(x). We provide an overview of gKDR in this subsection, while a comprehensive exposition of
the method can be found in the original paper by Fukumizu and Leng (2014).

Consider a random variable (x, Y) defined on the spaces X × Y with the probability distribution πxy,
where (X ,BX , µX) and (Y,BY , µY) are measure spaces. Let kX and kY be positive-definite kernels on X and
Y, respectively, with associated reproducing kernel Hilbert spaces (RKHS) denoted as HX and HY .

The cross-covariance operator CY X : HX → HY is defined by:

〈g, CY Xh〉HY
= E[h(x)g(Y)],

for any h ∈ HX and g ∈ HY . Similarly, the covariance operator CXX on HX is defined as:

〈h2, CXXh1〉HX
= E[h1(x)h2(x)],

for any h1, h2 ∈ HX . Fukumizu et al. (2004) establish that when E[g(Y)|x] ∈ HX and CXX is injective, we
have:

E[g(Y)|x] = C−1
XXCXY g.

Furthermore, Fukumizu et al. (2004) introduce a conditional covariance operator CY Y |x and propose to
minimize the determinant of the corresponding empirical conditional covariance matrix, calculated from
data, with respect to the choice of W. This method is termed kernel dimension reduction (KDR). However,
the numerical optimization involving a nonconvex objective function in KDR is generally computationally
expensive, limiting its applicability to large and high-dimensional datasets.

The gKDR method enhances KDR by integrating the principles of gradient-based dimension reduction
methods (Samarov, 1993; Hristache et al., 2001). Specifically, Fukumizu and Leng (2014) demonstrate that
when (8) is satisfied, subject to certain mild conditions, the following expressions hold:

∂

∂xi
E[g(Y)|x] = 〈g, CY XC−1

XX

∂kX (·,x)

∂xi
〉HY

,

10

and

CY XC−1
XX

∂kX (·,x)

∂xi
=

D
∑

j=1

Wij
∂

∂φj
E[kY(·, Y)|WTx = φ].

We define the d× d matrix-valued function M(x) with the (i, j)-th element given by:

Mij(x) = 〈CY XC−1
XX

∂kX (·,x)

∂xi
, CY XC−1

XX

∂kX (·,x)

∂xj
〉HY

,

for i, j = 1, . . . , d. Fukumizu and Leng (2014) demonstrate that Mij(x) is equivalent to:

D
∑

k=1

D
∑

l=1

WikWjl〈
∂

∂φk
E[kY(·, Y)|WTx = φ],

∂

∂φl
E[kY(·, Y)|WTx = φ]〉HY

.

Therefore, the eigenvectors of M(x) encompass the EDR space defined by the column vectors of W.
With data (x1, Y1), . . . , (xn, Yn), the estimator for M(x) in Fukumizu and Leng (2014) is given by:

M̂(x) = ∇kX (x)T (GX + nεnI)
−1GY(GX + nεnI)

−1∇kX (x),

where

∇kX (x) =

(

∂kX (x1,x)

∂x
, . . . ,

∂kX (xn,x)

∂x

)T

∈ R
n×d,

and GX and GY represent the n × n Gram matrices with the (i, j)-th entry as kX (xi,xj) and kY(Yi, Yj),
respectively. Here, εn denotes the regularization coefficient (Bach and Jordan, 2002).

Fukumizu and Leng (2014) define the average of M̂(xi) over the data set {xi : i = 1, . . . , n} as:

M̃n ≡
1

n
M̂(xi)

Subsequently, the d×D matrix W is constructed with the unit-length eigenvectors corresponding to the D
largest eigenvalues of the d × d matrix M̃n. This approach is termed gKDR in Fukumizu and Leng (2014).
In their work, Fukumizu and Leng (2014) also propose two additional variants:

1. The first variant involves gradually reducing the dimensionality in an iterative algorithm. Initially,
D(0) = d. In the l-th iteration, a D(l−1) ×D(l) matrix W(l) is obtained from gKDR, where D(l) < D(l−1),
for l = 1, 2, . . . , L, with the condition D(L) = D. The final d ×D dimension reduction matrix W is formed
as W = W(1)W(2) · · ·W(L). This variant is referred to as gKDR-i in Fukumizu and Leng (2014).

2. The second variant involves firstly partitioning the data into L subsets. Then, a d×D matrix W(l) is
computed from each subset, for l = 1, . . . , L. The final dimension reduction matrix W is constructed using
the eigenvectors corresponding to the D largest eigenvalues of the matrix P = 1

L

∑L
l=1 W(l)W

T
(l). This is

called gKDR-v in Fukumizu and Leng (2014).
To implement gKDR and its variants, it’s essential to specify the kernel functions, tune parameters

within these functions, select the regularization coefficient εn, and determine the low dimensionality D.
Fukumizu and Leng (2014) suggest employing the Gaussian or Laplace kernels and utilizing cross-validation,
particularly with k-nearest neighbor (kNN) regression, to set these parameters efficiently. Additionally, Liu
and Guillas (2017) suggest determining D based on the predictive performance of the resulting emulator,
particularly if gKDR is integrated into surrogate modeling frameworks.

The computational complexity of the gradient-based kernel dimension reduction (gKDR) method is
primarily determined by the estimation of the kernel Grammatrices, computation of the empirical matrix M̃n,
its eigendecomposition, and the iterative or ensemble-based variants. Given a dataset (xi, Yi) for i = 1, . . . , n,
gKDR requires computing the Gram matrices GX and GY , each of size n×n, by evaluating kernel functions
on all pairs of data points, leading to a complexity of O(n2d) and O(n2q), respectively, where q is the output
dimension. Constructing the gradient matrix ∇kX (x), which involves differentiating the kernel function
with respect to input variables, requires O(nd2) operations. Solving the system (GX + nεnI)

−1 requires

11

computing a Cholesky decomposition or matrix inversion, which has a complexity of O(n3). The empirical
estimate M̂(x) is then computed as a quadratic form involving the inverse Gram matrices and the gradient
matrix, leading to an overall complexity of O(n3 + nd2). Finally, obtaining the dimension reduction matrix
W requires performing the eigendecomposition of the d × d matrix M̃n, which has complexity O(d3). The
total computational complexity of gKDR is thus given by O(n2d+n2q+n3+nd2+d3), where the dominant
term depends on the relative sizes of n, d, and q. If n � d, then the inversion step O(n3) dominates, while
if d is large, the eigendecomposition O(d3) becomes the bottleneck. The iterative variant gKDR-i introduces
additional matrix multiplications across iterations, contributing an extra factor of L, making the complexity
approximately O(L(n3 + d3)), whereas the ensemble-based gKDR-v method requires computing separate
eigenvalue decompositions for each subset, increasing the complexity to O(L(n3/L3 + d3)). The choice of
kernel function and regularization parameter εn also influences computational costs, with cross-validation
or parameter tuning adding an extra complexity of O(T (n3 + d3)), where T is the number of parameter
evaluations.

gKDR has been shown to be effective in capturing complex, nonlinear relationships between inputs and
outputs. For example, Liu and Guillas (2016) applied gKDR within a Gaussian Process emulator to assess
the influence of bathymetry on tsunami heights, demonstrating its ability to handle intricate dependencies.
More recently, Yang et al. (2025) showed that surrogate models incorporating gKDR outperformed those
based on Active Subspaces (AS) in the construction of a surrogate for the forward model in a remote
sensing instrument. These studies highlight gKDR’s potential as a powerful tool for dimension reduction in
challenging scientific applications.

0.5 Practical Guidelines for Dimension Reduction in Computer Experiments

Before presenting the numerical results, we offer a set of practical recommendations for handling high-
dimensional input settings in computer experiments. A summary of the recommended workflow is provided
in Figure 1.

When dealing with high-dimensional inputs, the first step is to clearly define the objectives of the study
– whether they involve prediction, uncertainty quantification, surrogate modeling, or calibration. It is also
important to understand the characteristics of the input variables, including their domains, dependence
structures, and potential influence on the outputs. An initial assessment should be made to determine
whether the problem is susceptible to the curse of dimensionality, which can degrade model accuracy and
increase computational cost. In the context of computer experiments, where the size of the training dataset
is typically limited, even a moderate number of input variables (e.g., 10–50) can pose challenges.

In such cases, applying dimension reduction techniques can be highly beneficial. Unsupervised methods
such as Principal Component Analysis (PCA) or autoencoders are effective at capturing dominant structures
in the input space, but because they do not incorporate output information, they are generally less suitable
for surrogate modeling. Supervised approaches—such as Partial Least Squares (PLS), Active Subspaces (AS),
and gradient-based Kernel Dimension Reduction (gKDR)—are better suited for this purpose, as they are
designed to preserve input-output relationships and can handle complex, nonlinear dependencies.

After reducing the dimensionality, the transformed inputs can be used in surrogate modeling frameworks,
such as Gaussian Process (GP) emulators. Model performance can be assessed through a train-test split
and appropriate metrics, such as Root Mean Squared Prediction Error (RMSPE). Cross-validation can be
employed to determine the optimal dimension of the reduced input space. This process may require iteration
to refine the reduction method or its parameters. Throughout, domain knowledge should guide decisions
about which inputs are most relevant and how to interpret the results. Finally, it is essential to document
the dimension reduction process clearly, including the techniques used, the rationale for their selection, and
their impact on model performance. This ensures that the reduced representation remains interpretable and
meaningful in the context of the original scientific problem.

12

FIGURE 1

A summary of workflow when dealing with high-dimensional inputs.

0.6 A numerical study

In this section, we demonstrate the efficacy of GP surrogate modeling using different dimension reduc-
tion techniques in a numerical study. Section 0.6.1 elucidates the process of generating synthetic data.
It’s worth noting that we adopt a two-step approach in surrogate modeling with the synthetic data: ini-
tially reducing the dimensionality of input variables, followed by constructing a GP model between the
reduced-dimension input and output. Section 0.6.2 outlines the implementation of various dimension re-
duction methods and evaluates their performance. The details of GP modeling implementation and the
corresponding results are delineated in Section 0.6.3. The computation is executed using either R or Matlab
on a 4-core HP system equipped with 12 Gigabytes of memory. The code for this experiment can be accessed
at https://github.com/UCStat/DimensionR.

0.6.1 Synthetic Data

We generate synthetic data to evaluate the efficacy of dimension reduction methods, including PCA, PLS, AS,
and gKDR. Subsequently, we employ a GP model utilizing the lower-dimensional input variables obtained
from these dimension reduction techniques, alongside the synthetic output data. Specifically, we assume that
the input vector x follows a multivariate standard normal distribution Nd(0, I), where each component xi is

13

independently sampled from a standard normal distribution. Moreover, we model the function f : Rd → R

as follows:
f(x) = γ(WTx),

where W ∈ R
d×D, and γ : RD → R represents a quadratic function defined as:

γ(φ) = a0 + aTφ+ φTAφ,

with a0 being the intercept, a the D-dimensional linear coefficient vector, and A the D × D matrix. The
output Y is generated based on this model below:

Y = f(x) + ε,

where ε follows a normal distribution N(0, σ2
ε). This setup considers the output as f contaminated with

Gaussian white noise having zero mean and variance σ2
ε . The term ε can also be interpreted as a nugget

term, as suggested even for deterministic simulators (Gramacy and Lee, 2012).
In this numerical investigation, we adopt a setup similar to Tripathy et al. (2016). Specifically, we set

d = 10 and D = 1. The d×D matrix W is then condensed into a d-dimensional vector, which we define as:

W = (−0.0091,−0.0579,−0.1877, 0.4774, 0.4559,−0.6714,−0.1264,−0.0082, 0.0724,−0.2308)T .

With D = 1, the remaining parameters, including a and A in γ(·), are all scalars and specified as follows:

a0 = −0.16113, a = (−0.97483), A = (−1.66526), and σ2
ε = 0.01.

We initially generate N samples from x ∼ Nd(0, I) independently. For each sampled x, we compute f(x) =
γ(WTx). The corresponding synthetic output Y is obtained by adding a sampled value from N(0, σ2

ε) to
f(x). Subsequently, we randomly partition the resulting data into a training set of size n = 80%N and a
test set of size N − n. The former is utilized for dimension reduction of x and fitting a GP model, while the
latter validates the predictive performance of the fitted GP models employing various dimension reduction
methods, namely PCA, PLS, AS, and gKDR. We set the total sample size N = 150, 350, and 600, with
corresponding training set sizes of n = 120, 280, and 480, respectively.

0.6.2 Implementation and Results for Dimension Reduction

We apply the dimension reduction methods PCA, PLS, AS, gKDR, as well as its two variants, gKDR-i and
gKDR-v, to the synthetic data. In this subsection, we first outline implementation specifics for these methods
before proceeding to a comparison of their results.

0.6.2.1 Implementation of PCA

In PCA, we derive the d×D dimension reduction matrix W by computing the D eigenvalues of the sample
covariance matrix corresponding to the largest D eigenvalues. However, determining the optimal value of D
in PCA is essential. In practice, this is often achieved by examining the cumulative proportion of variance
explained by the leading D eigenvectors, denoted as r(D), calculated as:

r(D) =

∑D
i=1 λi

∑d
j=1 λj

,

where λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0 are the eigenvalues of the sample covariance matrix. In the left panels of
Figure 2, we illustrate the proportion r(D) against D for sample sizes n = 120, 280, and 480, respectively.
If we desire r(D) to be substantial, for instance, exceeding 80%, we would need to select D to be at least
8. However, compared to the original dimensionality d = 10, opting for D = 8 does not yield significant
dimension reduction. This outcome aligns with expectations because we generate xi independently from
the distribution Nd(0, I). Consequently, the elements in x are independent N(0, 1), indicating no inherent

14

structure in the input space. Subsequently, when constructing the GP model, we utilize PCA with D = 2
and D = 8 respectively: the former allows for an examination of GP performance with PCA at a comparable
lower dimensionality to other methods, while the latter represents a choice of D following common practices
with r(D) at least 80%.

0.6.2.2 Implementation of PLS

To determine the appropriate value of D in PLS implementation, we employ leave-one-out cross-validation
(LOOCV), a widely adopted method for PLS analysis (e.g., Liland et al., 2020). In our numerical study, we
depict the LOOCV root-mean-squared error (RMSPE) against D for varying training data sizes of n = 120,
280, and 480, respectively, in the right panels of Figure 2. These plots reveal that additional components
beyond the first do not lead to an improvement in RMSPE. Hence, we opt for D = 1 for PLS in this numerical
study.

0.6.2.3 Implementation of AS

To implement the AS method, we require the gradients ∇xf . For the data-generating model, the correspond-
ing gradient function is given by ∇xf(x) = Wa + 2WAWTx. During the AS method implementation, we
compute the gradients corresponding to the training data, ∇xf(x1), . . . ,∇xf(xn). The AS matrix is then
estimated as:

Ĥ =
1

n

n
∑

i=1

(∇xfi)(∇xfi)
T .

The dimension reduction projection W is derived as the d×D matrix comprising the unit-length eigenvectors
of Ĥ associated with the largest D eigenvalues from the AS matrix H. To select the value of D, we plot
∑D

i=1 λi/
∑D

j=1 λj , where λi denotes the i-th largest eigenvalue from Ĥ, and choose D = 1 such that the
ratio exceeds 80% (refer to Figure 3).

0.6.2.4 Implementation of gKDR and its variants

When implementing the gKDR method and its variants (i.e., gKDR-i and gKDR-v) as described in Sec-
tion 0.4.3, several specifications are required, including the kernel function and its parameters, regularization
parameter, and the choice of D. For the kernel functions, we adopt the Gaussian radial basis function
(RBF) kernel for both HX and HY , as recommended in Fukumizu and Leng (2014). Specifically, we define
kX (x,x′) = exp

(

−‖x− x′‖2/(2σ2
x)
)

and kY(Y, Y
′) = exp

(

−(Y − Y ′)2/(2σ2
Y)

)

. To determine the parameters
σ2
x and σ2

Y , we follow the procedure outlined in Fukumizu and Leng (2014): considering candidate values (in
our study, (0.25, 0.5, 0.75, 1, 2)) for both parameters, we perform k-nearest neighbor (kNN) regression cross-
validation. For each pair of candidate values for the kernel parameters, we compute the cross-validation
RMSPE with the kNN method and select the ones that yield the least cross-validation error. The regulariza-
tion parameter is specified as εn = 10−5, following Fukumizu and Leng (2014). For the gKDR-i variant, we
iteratively reduce dimensionality in d−D iterations. In the l-th iteration, a D(l−1)×D(l) matrix W(l) is ob-
tained from gKDR, where D(l) = D(l−1)−1, for l = 1, 2, . . . , L, with D(0) = d and D(L) = D. The final d×D
dimension reduction matrix W is formed as W = W(1)W(2) · · ·W(L). For the gKDR-v variant, we partition
the training data into two subsets and apply gKDR on each of them, obtaining resulting dimension reduction
matrices W(1) and W(2). The final dimension reduction matrix W from gKDR-v is constructed using the

eigenvectors corresponding to the D largest eigenvalues of the matrix P = 1
2 (W(1)W

T
(1) + W(2)W

T
(2)). To

determine the value of D, we once again analyze cross-validation errors. Figure 4 illustrates that we select
D = 1 to minimize cross-validation errors for gKDR, gKDR-i, and gKDR-v when n = 120, 280, and 480,
respectively. We utilize the MATLAB code provided at (http://www.ism.ac.jp/ fukumizu/) to implement
gKDR and its variants.

15

14.11%

26.63%

39.03%

50.08%

60.45%

69.91%

78.73%

86.62%

93.85%

100.00%

25

50

75

100

1 2 3 4 5 6 7 8 9 10
Principal Component

C
u
m

u
la

tiv
e
 P

e
rc

e
n
ta

g
e
 (

%
)

(a) PCA: n = 120

2.915

2.920

2.925

2.930

1 2 3 4 5 6 7 8 9 10
Component

L
O

O
C

V
 E

rr
o
r

(b) PLS: n = 120

12.42%

24.39%

35.07%

45.59%

55.76%

65.87%

75.53%

84.41%

92.34%

100.00%

25

50

75

100

1 2 3 4 5 6 7 8 9 10
Principal Component

C
u
m

u
la

tiv
e
 P

e
rc

e
n
ta

g
e
 (

%
)

(c) PCA: n = 280

2.553

2.554

2.555

2.556

2.557

1 2 3 4 5 6 7 8 9 10
Component

L
O

O
C

V
 E

rr
o
r

(d) PLS: n = 280

12.19%

24.18%

35.07%

45.45%

55.57%

65.40%

74.76%

83.80%

92.32%

100.00%

25

50

75

100

1 2 3 4 5 6 7 8 9 10
Principal Component

C
u

m
u

la
tiv

e
 P

e
rc

e
n
ta

g
e
 (

%
)

(e) PCA: n = 480

2.359

2.360

2.361

1 2 3 4 5 6 7 8 9 10
Component

L
O

O
C

V
 E

rr
o
r

(f) PLS: n = 480

FIGURE 2

Left: plots of the cumulative proportion of variation explained by the leading D PCs in PCA, when n = 120,
280, and 480, respectively (from top to bottom). Right: plots of the root mean squared prediction error in
LOOCV for PLS for different values of D when n = 120, 280, and 480, respectively (from top to bottom).

0.6.2.5 Results from Dimension Reduction

We implement the aforementioned dimension reduction methods using the synthetic data. We denote the
estimated dimension reduction matrix from method A as WA, where A represents one of the six methods

16

100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

97

98

99

100

101

102

1 2 3 4 5 6 7 8 9 10
Active Component

C
u
m

u
la

t
iv

e

P

e
r
c
e
n
t
a
g
e

(
%

)

(a) n = 120

100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

97

98

99

100

101

102

1 2 3 4 5 6 7 8 9 10
Active Component

C
u
m

u
la

t
iv

e

P

e
r
c
e
n
t
a
g
e

(
%

)

(b) n = 280

100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

97

98

99

100

101

102

1 2 3 4 5 6 7 8 9 10
Active Component

C
u
m

u
la

t
iv

e

P

e
r
c
e
n
t
a
g
e

(
%

)

(c) n = 480

FIGURE 3

Plots showing the cumulative proportion of variation explained,
∑D

i=1 λi/
∑d

j=1 λj , where λi is the largest

eigenvalue of the estimated AS matrix Ĥ for n = 120 (panel a), 280 (panel b), and 480 (panel c), respectively.

(PCA, PLS, AS, gKDR, gKDR-i, and gKDR-v), respectively. To assess the quality of WA compared to the
true W, we utilize the norm proposed in Li and Wang (2007):

e(WA,W) = ||W(WTW)−1WT −WA(W
T
AWA)

−1WT
A||F ,

17

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10

D

R
M

S
P

E

Method (n=120)

gKDR

gKDR−i

gKDR−v

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10

D

R
M

S
P

E

Method (n=280)

gKDR

gKDR−i

gKDR−v

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10

D

R
M

S
P

E

Method (n=480)

gKDR

gKDR−i

gKDR−v

FIGURE 4

Plots of CV error associated with various values of D in gKDR (in solid line), gKDR-i (in dashed line), and
gKDR-v (in dotted line), for n = 120 (top), 280 (middle), and 480 (bottom), respectively.

which measures the discrepancy between WA and W using the Frobenius norm for the difference of the
projection matrices for the spaces spanned by the columns in WA and W. Consequently, a smaller value of
this metric e(WA,W) indicates a better estimate of the mapping Φ(x) = WTx.

Table 0.1 presents a summary of e(WA,W) for all different methods, where A = PCA with 8 PCs, PCA
with 2 PCs, PLS, AS, gKDR, gKDR-i, and gKDR-v, with respective sample sizes of n = 120, 280, and 480.
Since the goal in PCA is to maximize the variance in the resulting subspace, which is not directly relevant
to how the output is specifically related to the input, PCA, whether with 2 or 8 PCs, fails to provide a good
estimate for W, resulting in the largest discrepancy e(WA,W). Moreover, this discrepancy for PCA does
not improve with an increase in sample size n.

Among the supervised dimension reduction methods, gKDR and its variants (gKDR-i and gKDR-v)
achieve smaller values of e(Wa,W) compared to PLS. Active Subspaces (AS) delivers the best performance;

18

however, it should be noted that AS relies on gradient information, which was not provided to the other
methods. In this case, the underlying function is a relatively simple second-order polynomial, so the availabil-
ity of gradient information provides a substantial advantage to AS in model fitting. Among the gKDR-based
methods, gKDR and gKDR-v perform similarly, while gKDR-i shows the smallest discrepancy from the true
subspace.

The e(Wa,W) and computational complexity associated with AS varies slightly with n. For all the rest
supervised dimension reduction methods, we observe a decreasing pattern of e(Wa,W) as the sample size
n increases, indicating that more data are beneficial for inferring the lower structure of inputs related to the
output. In terms of computation, gKDR is more time-consuming than the other methods, and its computa-
tional cost substantially increases with the sample size n. Among the three gKDR methods, gKDR-i requires
the most computation time, as expected, since it involves running gKDR iteratively. It is worth noting that
although many of these dimension reduction methods are originally specified through the eigendecomposition
of a d×d matrix, this can be rewritten into a singular value decomposition of a corresponding matrix of size
n × d and some approximation can be adopted with large n as pointed out by Fukumizu and Leng (2014).
Additionally, it should be mentioned that these dimension reduction methods are not all implemented in the
same software: gKDR and its variants are executed in Matlab, while the other methods are implemented in
R, which may also contribute to differences in computation time.

n = 120 n = 280 n = 480
Method A Time e(WA,W) Time e(WA,W) Time e(WA,W)
PCA(8) 0.46 7.1077 0.53 6.4953 0.55 5.2201
PCA(2) 0.46 2.0046 0.53 2.2187 0.55 2.1758
PLS (1) 0.64 0.5172 1.26 0.21805 1.43 0.0841
AS (1) 0.70 9.7884e− 32 0.72 1.3679e− 31 0.80 2.2994e− 31
gKDR (1) 1.70 0.0111 7.03 0.0081 19.10 0.0022
gKDR-i (1) 4.37 0.0069 21.69 0.0024 78.61 0.0004
gKDR-v (1) 2.07 0.0993 3.05 0.0901 4.34 0.0533

TABLE 0.1

Summary of results from dimension reduction, presenting e(WA,W) and the associated computation time
(in seconds) for method A(a), representing the method A with D = a, including PCA with 8 PCs, PCA
with 2 PCs, PLS with D = 1, AS with D = 2, and gKDR, gKDR-i, and gKDR-v with D = 1 for n = 120,
280, and 480, respectively.

0.6.3 Implementation and Results for GP Modeling

Next, we fit a GP using the lower-dimensional inputs φi = WTxi and outputs Yi, i = 1, . . . , n, derived from
all the dimension reduction methods reported in Section 0.6.2. We assume a zero mean GP associated with
a separable squared exponential correlation function, defined as:

cρ(φ,φ
′) = exp

{

−
D
∑

i=1

(φi − φ′
i)

2

ρi

}

,

where ρ = (ρ1, · · · , ρD) represents the set of length-scale parameters. The covariance function of the GP is
then given by:

C(φ,φ′) = σ2
[

cρ(φ,φ
′) + τ21(φ = φ′)

]

,

where τ2 denotes the nugget as a proportion of σ2. We estimate the parameters ρ, σ2, and τ2 using maximum
likelihood estimation. Notably, with a larger value of D, we have more parameters to estimate, as ρ becomes
a D-dimensional vector of length-scale parameters.

For a test input x∗
j , j = 1, . . . ,M − n, we first compute its corresponding lower-dimensional input φ∗

j =

WTx∗
j by utilizing the estimated dimension reduction matrix from the methods discussed in Section 0.6.2.

19

Subsequently, we calculate the GP prediction for its corresponding output Y ∗
i , based on the conditional

distribution given in (2), (3), and (4). We assess the predictive performance of the fitted GP combined with
different dimension reduction methods in terms of the root mean squared prediction errors (RMSPE), defined
as:

RMSPEA =

√

√

√

√

1

M − n

M−n
∑

i=1

(Yi − Ŷi,A)2,

where A denotes a specific dimension reduction method used to obtain the lower-dimensional inputs. Addi-
tionally, we include computation time as a metric to evaluate the cost incurred in GP fitting and prediction.
The summary of these results is provided in Table 0.2.

As shown in Table 0.2, the GP emulator using AS achieves the best overall performance. This result is
expected, as AS provides the most accurate subspace estimate and leverages additional gradient informa-
tion, allowing the GP to effectively model the underlying second-order polynomial function. For the other
methods, the RMSPE of the GP emulator decreases with increasing training sample size. Excluding AS,
the GP emulators based on inputs reduced by gKDR-related methods consistently yield the best predictive
performance, as indicated by the lowest RMSPE values. Among the three gKDR variants, gKDR-i achieves
both the smallest discrepancy in estimating the true subspace (Table 0.1) and the lowest RMSPE (Table 0.2),
albeit at a higher computational cost. The GP emulator using inputs reduced by PLS is less accurate than
those based on other supervised dimension reduction methods, but it still outperforms PCA. Notably, the GP
emulator built on the 8 principal components from PCA performs the worst among the methods considered
and also requires more time to fit.

In terms of computation, the calculation of the likelihood requires O(n3) floating point operations (flops)
to invert the covariance matrix of the GP model. Therefore, we observe an increase in computational time
as n increases for all the methods in Table 0.2. Moreover, we observe that fitting a GP model with 8 PCs
is computationally more expensive because the parametric space of the correlation parameters is larger
than other reduced input space. As the parametric space of the correlation function increases so does the
evaluation of the likelihood in the optimization process to find the MLEs. Apart from PCA, the other methods
seem to have comparable computational times, although the AS method with D = 2 costs more time than
the other methods with D = 1. Additionally, it should be noted that the computation time of the entire
analysis,i.e., dimension reduction, GP fitting, and prediction, is the summation of the computation time
from both Table 0.1 and Table 0.2. From this, we can observe that AS costs similar or less computationally
than other supervised methods. Overall, the empirical results from this numerical study demonstrate that
the GP emulator on the gKDR input dimension reduction yields accurate estimations of W and achieves
the best predictions compared to other methods, albeit at the expense of increased computation time.

n = 120 n = 280 n = 480
Method A(a) RMSPE Time RMSPE Time RMSPE Time
PCA(8) 5.1095 4.01 2.8689 10.55 0.7986 59.64
PCA(2) 3.9771 0.68 2.1325 4.17 2.0279 11.1
PLS (1) 2.2051 0.22 1.2437 2.99 0.7486 15.23
AS (1) 0.0038 0.24 0.0005 2.81 0.0014 15.07
gKDR (1) 0.3656 0.48 0.2394 2.58 0.115 15.41
gKDR-i (1) 0.3224 0.39 0.1177 3.20 0.0553 19.65
gKDR-v (1) 0.2757 0.37 0.2393 3.83 0.1451 16.58

TABLE 0.2

Summary of results from GP modeling and prediction, presenting the root mean squared prediction error
(RMSPE) the associated computation time (in seconds) for method A(a), representing the method A, with
D = a, including PCA with 8 PCs, PCA with 2 PCs, PLS with D = 1, AS with D = 2, and gKDR, gKDR-i,
and gKDR-v with D = 1 for n = 120, 280, and 480, respectively.

20

0.7 Discussion

In summary, we review various dimension reduction techniques that have been applied in surrogate modeling.
We conducted a comparative analysis involving PCA, PLS, AS, and gKDR through a numerical study. The
results from this empirical investigation underscore the efficacy of employing supervised dimension reduction
approaches on input variables, enhancing the precision of resulting GP surrogates compared to unsupervised
counterparts such as PCA. It would be interesting to conduct a more comprehensive comparison across these
methods, utilizing simulated and real-world datasets across diverse scenarios. This could encompass varying
dimensions (d/D), levels of low-dimensional structural complexity, and dataset sizes, thereby enriching our
understanding of their performance under different conditions.

In this chapter, we delve into the integration of GP regression with various dimension reduction tech-
niques. However, it’s worth noting that these dimension reduction methods can be applied with other sur-
rogate modeling approaches. For instance, Kontolati et al. (2023) utilize k-PCA for dimension reduction,
employing the resultant lower-dimensional inputs with manifold-based polynomial chaos expansion (m-PCE)
and the deep neural operator, known as DeepONet (Lu et al., 2021), to construct surrogates. Meanwhile, Lan
et al. (2022) employ a convolutional neural network (CNN) as an emulator, implementing the autoencoder
approach for dimension reduction within the context of solving the Bayesian inverse problem using MCMC.

The framework adopted in this chapter for combining input dimension reduction and surrogate modeling
aligns closely with methods presented in Liu and Guillas (2017) and Ma et al. (2022). This approach involves
a sequential two-step analysis, as outlined in Section 0.2: Step 1 entails dimension reduction, followed by
Step 2, where the lower-dimensional input and output are utilized to construct a surrogate. It’s essential to
underscore that employing a stochastic model like the GP in Step 2 facilitates various UQ tasks in the analysis
pipeline, such as UQ for quantities of interest (QoIs) and model calibration. However, it’s noteworthy that the
two steps are executed separately in this framework, with uncertainties associated with Step 1’s dimension
reduction not directly propagated into Step 2. Some may argue that the dimension reduction in Step 1 serves
primarily as a preprocessing or data transformation step, and thus the uncertainty in this phase might be of
less interest compared to that in the surrogate modeling step (Bhadra et al., 2024). Nevertheless, a unified
modeling or inference framework connecting these steps could offer inferential advantages. For example,
Tripathy et al. (2016) propose a probabilistic framework for the AS method, jointly inferring the matrix W

and fitting the GP model. They demonstrate that this extends the AS method beyond reliance on simulator
gradients, while still yielding satisfactory results. Furthermore, developing information-based criteria for
determining D would be of significant interest. An additional extension could involve incorporating D into
such a joint probabilistic framework and estimating it alongside other unknown quantities. However, these
potential extensions are likely to introduce substantial complexity to the models and make computation,
whether numerical optimization or Monte Carlo Bayesian inference, more challenging. Addressing these
challenges remains an open problem.

It’s worth noting that while the GP model with a stationary covariance function is effective for many
applications, it can be extended with a more complicated covariance function to approximate more complex
simulators. In fields such as environmental and climate studies, geophysical processes often exhibit nonsta-
tionary or non-Gaussian structures. To accommodate such complexities, a generalized GP model can be
constructed by embedding the GP within a hierarchical structure and employing an appropriate link func-
tion (e.g., Sung et al., 2020). Moreover, for modeling nonstationary covariance structures, it’s possible to
introduce additional layers of models to enhance flexibility. Approaches such as the deep GP (e.g., Damianou
and Lawrence, 2013; Annie Sauer and Higdon, 2023) and the Kernel Flows (KF) method (Owhadi and Yoo,
2019) propose incorporating layers of simple stationary GPs as intermediate layers to facilitate warping,
thereby constructing a nonstationary GP model. Additionally, leveraging the transport map framework of-
fers another avenue to enhance flexibility in modeling the dependence structure and joint distribution of
Y1, . . . , Yn (Parno and Marzouk, 2018; Katzfuss and Schäfer, 2023). These advancements provide powerful
tools for addressing the intricacies of complex simulators for real-world processes in various domains.

When dealing with simulators featuring large datasets n, or multivariate, and even high-dimensional out-

21

puts, the utilization of cross-covariance functions or the implementation of dimension reduction for output
variables becomes useful in constructing multi-output GP surrogates. For instance, in scenarios involving
high-dimensional outputs, techniques such as PCA or functional PCA are often employed (Higdon et al.,
2008a; Ma et al., 2022). Moreover, Gu and Berger (2016) propose modeling each output at individual coor-
dinates as conditionally independent GPs, with certain shared parameters.

Incorporating experimental design and screening into dimension reduction algorithms and surrogate mod-
eling remains a challenging yet crucial open problem. Drawing inspiration from Bayesian optimization and
sequential designs could offer promising solutions. Additionally, the exploration of more intricate computer
experiments and simulation studies, encompassing multi-fidelity and multi-stage setups, is essential for effec-
tively capturing the complexities of real-world systems. Investigating how dimension reduction methods can
be integrated into UQ studies within such experiments, including sensitivity and reliability analysis, as well
as optimization, represents another avenue for future research. We look forward to the emergence of work in
this area.

Acknowledgements The research of Konomi and Kang was supported in part by National Science Founda-
tion grant (NSF DMS-2053668) and the Taft Research Center at the University of Cincinnati. The research of
Lin was supported in part by National Science Foundation grant (NSF DMS-2053746, DMS-2134209, ECCS-
2328241, and OAC-2311848), and U.S. Department of Energy (DOE) Office of Science Advanced Scientific
Computing Research program DE-SC0023161. Kang was also supported in part by Simons Foundation’s
Collaboration Awards (#317298 and #712755).

22

Bibliography

Abdi, H. (2010). Partial least squares regression and projection on latent structure regression (pls regression).
WIREs Computational Statistics, 2(1):97–106.

Annie Sauer, R. B. G. and Higdon, D. (2023). Active learning for deep gaussian process surrogates. Tech-
nometrics, 65(1):4–18.

Bach, F. and Jordan, M. (2002). Learning graphical models with mercer kernels. Advances in Neural
Information Processing Systems, 15.

Banerjee, A., Ding, W., Dy, J., Lyubchich, V., and Rhines, A. (2016). Proceedings of the 6th international
workshop on climate informatics: Ci 2016. NCAR Technical Note NCAR/TN-529+PROC, National Center
for Atmospheric Research (NCAR).

Banerjee, S., Gelfand, A. E., Finley, A. O., and Sang, H. (2008). Gaussian Predictive Process Models
for Large Spatial Data Sets. Journal of the Royal Statistical Society Series B: Statistical Methodology,
70(4):825–848.

Bayarri, M. J., Berger, J. O., Cafeo, J., Garcia-Donato, G., Liu, F., Palomo, J., Parthasarathy, R. J., Paulo,
R., Sacks, J., and Walsh, D. (2007). Computer model validation with functional output. The Annals of
Statistics, 35(5):1874–1906.

Bengio, Y., Delalleau, O., and Roux, N. (2005). The curse of highly variable functions for local kernel
machines. In Weiss, Y., Schölkopf, B., and Platt, J., editors, Advances in Neural Information Processing
Systems, volume 18. MIT Press.

Bhadra, A., Datta, J., Polson, N. G., Sokolov, V., and Xu, J. (2024). Merging two cultures: Deep and
statistical learning. WIREs Computational Statistics, 16(2):e1647.

Bouhlel, M. A., Bartoli, N., Otsmane, A., and Morlier, J. (2016). An improved approach for estimating
the hyperparameters of the kriging model for high-dimensional problems through the partial least squares
method. Mathematical Problems in Engineering, 2016:1–11.

Boulesteix, A.-L. and Strimmer, K. (2006). Partial least squares: a versatile tool for the analysis of high-
dimensional genomic data. Briefings in Bioinformatics, 8(1):32–44.

Chen, P., Zabaras, N., and Bilionis, I. (2015). Uncertainty propagation using infinite mixture of gaussian
processes and variational bayesian inference. Journal of Computational Physics, 284:291–333.

Chiaromonte, F. and Cook, R. D. (2002). Sufficient dimension reduction and graphics in regression. Annals
of the Institute of Statistical Mathematics, 54(4):768–795.

Chun, H. and Keleş, S. (2010). Sparse Partial Least Squares Regression for Simultaneous Dimension Re-
duction and Variable Selection. Journal of the Royal Statistical Society Series B: Statistical Methodology,
72(1):3–25.

Constantine, P. G. (2015). Active Subspaces. Society for Industrial and Applied Mathematics, Philadelphia,
PA.

23

24 BibliographyConstantine, P. G., Dow, E., and Wang, Q. (2014). Active subspace methods in theory and practice:
Applications to kriging surfaces. SIAM Journal on Scientific Computing, 36(4):A1500–A1524.

Constantine, P. G., Kent, C., and Bui-Thanh, T. (2016). Accelerating markov chain monte carlo with active
subspaces. SIAM Journal on Scientific Computing, 38(5):A2779–A2805.

Cook, R. D. (1994). On the interpretation of regression plots. Journal of the American Statistical Association,
89(425):177–189.

Cook, R. D. (2009). Regression graphics: Ideas for studying regressions through graphics. John Wiley &
Sons.

Cressie, N. and Johannesson, G. (2008). Fixed rank kriging for very large spatial data sets. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 70(1):209–226.

Damianou, A. and Lawrence, N. D. (2013). Deep Gaussian processes. In Carvalho, C. M. and Ravikumar,
P., editors, Proceedings of the Sixteenth International Conference on Artificial Intelligence and Statistics,
volume 31 of Proceedings of Machine Learning Research, pages 207–215, Scottsdale, Arizona, USA. PMLR.

Datta, A., Banerjee, S., Finley, A. O., and Gelfand, A. E. (2016). Hierarchical nearest-neighbor gaus-
sian process models for large geostatistical datasets. Journal of the American Statistical Association,
111(514):800–812. PMID: 29720777.

de Jong, S. (1993). Simpls: An alternative approach to partial least squares regression. Chemometrics and
Intelligent Laboratory Systems, 18(3):251–263.

De Marchi, S., Buhmann, M. D., and Plonka-Hoch, G. (2011). Kernel functions and meshless methods.
Dolomites Research Notes on Approximation, 4(DRNA Volume 4.2):1–63.

Ehre, M., Papaioannou, I., and Straub, D. (2020). Global sensitivity analysis in high dimensions with pls-pce.
Reliab. Eng. Syst. Saf., 198:106861.

Frank, I. E. and Friedman, J. H. (1993). A statistical view of some chemometrics regression tools. Techno-
metrics, 35(2):109–135.

Fukumizu, K., Bach, F. R., and Jordan, M. I. (2004). Dimensionality reduction for supervised learning with
reproducing kernel hilbert spaces. Journal of Machine Learning Research, 5(Jan):73–99.

Fukumizu, K. and Leng, C. (2014). Gradient-based kernel dimension reduction for regression. Journal of
the American Statistical Association, 109(505):359–370.

Geladi, P. and Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. Analytica Chimica Acta,
185:1–17.

Gelfand, A. E. and Schliep, E. M. (2016). Spatial statistics and gaussian processes: A beautiful marriage.
Spatial Statistics, 18:86–104. Spatial Statistics Avignon: Emerging Patterns.

Gramacy, R. (2020). Surrogates: Gaussian Process Modeling, Design, and Optimization for the Applied
Sciences. Chapman & Hall/CRC Texts in Statistical Science. CRC Press.

Gramacy, R. B. and Apley, D. W. (2015). Local gaussian process approximation for large computer experi-
ments. Journal of Computational and Graphical Statistics, 24(2):561–578.

Gramacy, R. B. and Lee, H. K. H. (2012). Cases for the nugget in modeling computer experiments. Statistics
and Computing, 22(3):713–722.

Gu, M. and Berger, J. O. (2016). Parallel partial Gaussian process emulation for computer models with
massive output. The Annals of Applied Statistics, 10(3):1317 – 1347.

Bibliography 25Guy, H., Alexanderian, A., and Yu, M. (2019). A distributed active subspace method for scalable surrogate
modeling of function valued outputs. Journal of Scientific Computing, 85.

Helland, I. S. (1990). Partial least squares regression and statistical models. Scandinavian Journal of
Statistics, 17(2):97–114.

Higdon, D., Gattiker, J., Williams, B., and Rightley, M. (2008a). Computer Model Calibration Using High-
Dimensional Output. Journal of the American Statistical Association, 103(482):570–583.

Higdon, D. M., Gattiker, J. R., Williams, B. J., and Rightley, M. L. J. (2008b). Computer model calibration
using high-dimensional output. Journal of the American Statistical Association, 103:570 – 583.

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A Fast Learning Algorithm for Deep Belief Nets. Neural
Computation, 18(7):1527–1554.

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks.
Science, 313(5786):504–507.

Hoffmann, H. (2007). Kernel pca for novelty detection. Pattern Recognition, 40(3):863–874.

Hristache, M., Juditsky, A., Polzehl, J., and Spokoiny, V. (2001). Structure adaptive approach for dimension
reduction. The Annals of Statistics, 29(6):1537–1566.

Hulland, J. (1999). Use of partial least squares (pls) in strategic management research: a review of four
recent studies. Strategic Management Journal, 20(2):195–204.

Ji, Y., Mak, S., Soeder, D., Paquet, J.-F., and Bass, S. A. (2023). A graphical multi-fidelity gaussian process
model, with application to emulation of heavy-ion collisions. Technometrics, 0(0):1–15.

Kamali, M., Ponnambalam, K., and Soulis, E. (2007). Integration of surrogate optimization and pca for
calibration of hydrologic models, a watclass case study. In 2007 IEEE International Conference on Systems,
Man and Cybernetics, pages 2733–2737.

Katzfuss, M. and Guinness, J. (2021). A General Framework for Vecchia Approximations of Gaussian
Processes. Statistical Science, 36(1):124 – 141.

Katzfuss, M. and Schäfer, F. (2023). Scalable bayesian transport maps for high-dimensional non-gaussian
spatial fields. Journal of the American Statistical Association, 0(0):1–15.

Kennedy, M. C. and O’Hagan, A. (2001). Bayesian calibration of computer models. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 63(3):425–464.

Kingma, D. P. and Welling, M. (2019). An introduction to variational autoencoders. Foundations and
Trends® in Machine Learning, 12(4):307–392.

Kontolati, K., Goswami, S., Shields, M. D., and Karniadakis, G. E. (2023). On the influence of over-
parameterization in manifold based surrogates and deep neural operators. Journal of Computational
Physics, 479:112008.

Kontolati, K., Loukrezis, D., Giovanis, D. G., Vandanapu, L., and Shields, M. D. (2022). A survey of
unsupervised learning methods for high-dimensional uncertainty quantification in black-box-type problems.
Journal of Computational Physics, 464:111313.

Koziel, S. and Pietrenko-Dabrowska, A. (2020). Low-cost data-driven modelling of microwave components
using domain confinement and pca-based dimensionality reduction. IET Microwaves, Antennas & Propa-
gation, 14(13):1643–1650.

Lam, R. R., Zahm, O., Marzouk, Y. M., and Willcox, K. E. (2020). Multifidelity dimension reduction via
active subspaces. SIAM Journal on Scientific Computing, 42(2):A929–A956.

26 BibliographyLan, S., Li, S., and Shahbaba, B. (2022). Scaling up bayesian uncertainty quantification for inverse problems
using deep neural networks. SIAM/ASA Journal on Uncertainty Quantification, 10(4):1684–1713.

Lataniotis, C., Marelli, S. P., and Sudret, B. (2018). Extending classical surrogate modeling to high dimen-
sions through supervised dimensionality reduction : A data-driven approach. International Journal for
Uncertainty Quantification.

Li, B. and Wang, S. (2007). On directional regression for dimension reduction. Journal of the American
Statistical Association, 102(479):997–1008.

Li, K.-C. (1991). Sliced inverse regression for dimension reduction. Journal of the American Statistical
Association, 86(414):316–327.

Liland, K. H., Stefansson, P., and Indahl, U. G. (2020). Much faster cross-validation in plsr-modelling by
avoiding redundant calculations. Journal of Chemometrics, 34(3):e3201. e3201 cem.3201.

Liu, X. and Guillas, S. (2016). Dimension reduction for gaussian process emulation: An application to the
influence of bathymetry on tsunami heights. SIAM/ASA J. Uncertain. Quantification, 5:787–812.

Liu, X. and Guillas, S. (2017). Dimension reduction for gaussian process emulation: An application to the
influence of bathymetry on tsunami heights. SIAM/ASA Journal on Uncertainty Quantification, 5(1):787–
812.

Lu, L., Jin, P., Pang, G., Zhang, Z., and Karniadakis, G. E. (2021). Learning nonlinear operators via deeponet
based on the universal approximation theorem of operators. Nature Machine Intelligence, 3(3):218–229.

Lu, L., Meng, X., Cai, S., Mao, Z., Goswami, S., Zhang, Z., and Karniadakis, G. E. (2022). A comprehensive
and fair comparison of two neural operators (with practical extensions) based on fair data. Computer
Methods in Applied Mechanics and Engineering, 393:114778.

Ma, P. and Kang, E. L. (2020). A fused gaussian process model for very large spatial data. Journal of
Computational and Graphical Statistics, 29(3):479–489.

Ma, P., Mondal, A., Konomi, B. A., Hobbs, J., Song, J. J., and Kang, E. L. (2022). Computer model em-
ulation with high-dimensional functional output in large-scale observing system uncertainty experiments.
Technometrics, 64(1):65–79.

Ma, X. and Zabaras, N. (2011). Kernel principal component analysis for stochastic input model generation.
Journal of Computational Physics, 230(19):7311–7331.

Musayeva, K. and Binois, M. (2024). Shared active subspace for multivariate vector-valued functions.

Owhadi, H. and Yoo, G. R. (2019). Kernel flows: From learning kernels from data into the abyss. Journal
of Computational Physics, 389:22–47.

Parno, M. D. and Marzouk, Y. M. (2018). Transport map accelerated markov chain monte carlo. SIAM/ASA
Journal on Uncertainty Quantification, 6(2):645–682.

Polson, N., Sokolov, V., and Xu, J. (2021). Deep learning partial least squares.

Rasmussen, C. E. and Williams, C. K. I. (2005). Gaussian Processes for Machine Learning. The MIT Press.

Ribeiro, M., Lazzaretti, A. E., and Lopes, H. S. (2018). A study of deep convolutional auto-encoders for
anomaly detection in videos. Pattern Recognition Letters, 105:13–22. Machine Learning and Applications
in Artificial Intelligence.

Samarov, A. M. (1993). Exploring regression structure using nonparametric functional estimation. Journal
of the American Statistical Association, 88(423):836–847.

Sang, H. and Huang, J. Z. (2012). A full scale approximation of covariance functions for large spatial data
sets. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 74(1):111–132.

Schölkopf, B., Smola, A., and Müller, K.-R. (1997). Kernel principal component analysis. In Gerstner,
W., Germond, A., Hasler, M., and Nicoud, J.-D., editors, Artificial Neural Networks — ICANN’97, pages
583–588, Berlin, Heidelberg. Springer Berlin Heidelberg.

Schölkopf, B., Smola, A., and Müller, K.-R. (1998). Nonlinear Component Analysis as a Kernel Eigenvalue
Problem. Neural Computation, 10(5):1299–1319.

Straus, J. and Skogestad, S. (2017). Use of latent variables to reduce the dimension of surrogate models. In
Espuña, A., Graells, M., and Puigjaner, L., editors, 27th European Symposium on Computer Aided Process
Engineering, volume 40 of Computer Aided Chemical Engineering, pages 445–450. Elsevier.

Sung, C.-L., Hung, Y., Rittase, W., Zhu, C., and Wu, C. F. J. (2020). A generalized gaussian process
model for computer experiments with binary time series. Journal of the American Statistical Association,
115(530):945–956.

Tao, J., SUN, G., GUO, L., and WANG, X. (2020). Application of a pca-dbn-based surrogate model to
robust aerodynamic design optimization. Chinese Journal of Aeronautics, 33(6):1573–1588.

Tripathy, R. and Bilionis, I. (2019). Deep active subspaces – a scalable method for high-dimensional uncer-
tainty propagation. arXiv: Computational Physics.

Tripathy, R., Bilionis, I., and Gonzalez, M. (2016). Gaussian processes with built-in dimensionality reduction:
Applications to high-dimensional uncertainty propagation. Journal of Computational Physics, 321:191–
223.

Vohra, M., Alexanderian, A., Guy, H., and Mahadevan, S. (2019). Active subspace-based dimension reduction
for chemical kinetics applications with epistemic uncertainty. Combustion and Flame, 204:152–161.

Vohra, M., Nath, P., Mahadevan, S., and Tina Lee, Y. (2020). Fast surrogate modeling using dimensionality
reduction in model inputs and field output: Application to additive manufacturing. Reliability Engineering
and System Safety, 201. Publisher Copyright: © 2020 Elsevier Ltd.

Wold, H. (1966). Estimation of principal components and related models by iterative least squares. Multi-
variate Analysis, pages 391–420.

Wycoff, N., Binois, M., and Wild, S. M. (2021). Sequential learning of active subspaces. Journal of Compu-
tational and Graphical Statistics, 30(4):1224–1237.

Xia, Y., Tong, H., Li, W. K., and Zhu, L.-X. (2002). An adaptive estimation of dimension reduction space.
Journal of the Royal Statistical Society. Series B (Statistical Methodology), 64(3):363–410.

Xiu, D. and Karniadakis, G. E. (2002). The wiener–askey polynomial chaos for stochastic differential equa-
tions. SIAM Journal on Scientific Computing, 24(2):619–644.

Yang, G., Konomi, B., Hobbs, J., , , and Kang, E. L. (2025). A data driven statistical emulation for large-scale
remote sensing observing systems. Technical report, Department of Mathematical Sciences, University of
Cincinnati, Cincinnati, OH. Technical Report.

Zahm, O., Constantine, P. G., Prieur, C., and Marzouk, Y. M. (2020). Gradient-based dimension reduction
of multivariate vector-valued functions. SIAM Journal on Scientific Computing, 42(1):A534–A558.

27

