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Abstract—Respiratory monitoring is essential for early detec-
tion of various health conditions. Conventional methods rely
on contact sensors or clinical equipment, limiting usability for
daily healthcare or remote settings. Wireless sensing provides a
contactless alternative; however, OFDM-based systems face chal-
lenges in resolution and motion robustness, while FMCW radars
lack communication capabilities without additional hardware.

In this paper, we make an attempt toward a lightweight Inte-
grated Sensing and Communication (ISAC) system by embedding
narrowband FMCW signals into the guard bands of OFDM
channels. This re-purposing enables high-resolution sensing and
reliable communication simultaneously, without modifying the
OFDM structure or introducing extra hardware. We explore
trade-offs between sensing accuracy and communication quality,
evaluated in terms of Error Vector Magnitude (EVM), under
varying FMCW sweep bandwidths and FMCW-to-OFDM power
ratios. By integrating signal enhancement techniques and a
1D-CNN classifier, we develop a robust respiratory pattern
recognition system resilient to motion interference.

We implement a 28 GHz mmWave testbed with USRPs.
Through extensive experimental evaluation, we determine suit-
able parameter settings for the proposed composite waveform
based on EVM performance and alignment with ground truth
measurements. Ultimately, our system classifies four respiratory
patterns achieves over 98% accuracy, demonstrating its effective-
ness and practicality for wireless health monitoring.

Index Terms—Integrated Sensing and Communication (ISAC),
mmWave Sensing, Composite OFDM-FMCW Waveform, Chan-
nel State Information (CSI), Machine Learning, Respiration
Pattern Recognition

I. INTRODUCTION

Respiration is one of the most vital human life activities
and plays a critical role in maintaining normal physiological
and mental functions. Key respiratory parameters offer valu-
able insights into an individual’s physical and psychological
states. Therefore, accurate and timely detection of respiratory
disorders is of significant importance.

In the past decades, various respiration detection techniques
such as Capnography, Pulse Oximetry, Arterial Blood Gas
(ABG) analysis, and lung MRI have been developed. While
reliable, these methods depend on specialized equipment and
clinical settings, limiting their use in daily or remote envi-
ronments. To improve accessibility, portable solutions have
emerged. For instance, Respiratory Inductive Plethysmography
(RIP) [1] uses chest and abdominal bands for ambulatory
monitoring. Vision-based contactless approaches [2, 3] using
RGB or infrared cameras have also been explored, but suffer
from sensitivity to lighting, occlusion, and privacy issues.

The rise of smart homes and telehealth services has cre-
ated demand for unobtrusive health monitoring systems that
seamlessly integrate into daily life. An ideal solution would
leverage existing wireless infrastructure (e.g., 5G small cells
or home gateways) to provide continuous respiration moni-
toring without dedicated sensors or cameras. This approach
offers several advantages: no additional hardware deployment,
privacy preservation, and the ability to reuse underutilized
spectrum resources for health sensing. Integrated Sensing
and Communication (ISAC) serves as a design paradigm in
which sensing and communication coexist on shared hardware,
spectrum, and control [4].

Realizing ISAC for respiration monitoring depends critically
on waveform and processing choices. Wireless signals can be
repurposed for contactless breathing detection, but existing
approaches exhibit complementary limitations. Orthogonal
Frequency-Division Multiplexing (OFDM)-based systems esti-
mate respiration from Channel State Information (CSI) [5–7].
mmWave CSI methods further exploit Doppler with learning
and reference channel cancellation [8]. However, limited range
resolution and strong multipath dependence thwart motion
robustness and fine-grained spatial localization.

In contrast, Frequency Modulated Continuous Wave
(FMCW)-based systems offer centimeter-level range resolution
and high sensitivity to micro-motions (e.g., chest displace-
ment), with reliable respiration and heart-rate detection at
77 GHz in LoS and NLoS settings [9, 11, 12]. But standalone
FMCW lacks built-in communication capabilities. Using a
separate system increases both the cost and the use of the
spectrum, which is against the ISAC goal of resource sharing.

Therefore a central challenge is to design waveforms that
serve communication and sensing simultaneously with accept-
able performance in both. Composite waveform has emerged
as a promising approach to address this challenge. The core
idea is to combine multiple signal types (e.g., OFDM for
communication and FMCW for sensing) within one transmis-
sion to exploit complementary strengths. Prior work [13–15]
explores chirp embedding, non-orthogonal superposition, and
time-multiplexing, aiming to keep OFDM data rates while
preserving FMCW resolution. However, these designs face
practical barriers. Most of existing works require complex
modulation, precise timing and phase alignment, or sophis-
ticated interference cancellation, which adds implementation
overhead. This challenge is especially severe in mmWave 5G



Table I
COMPARATIVE ANALYSIS

REF. SIGNAL TYPE PROCESSING INTERFERENCE DETECTION CLASSIFIER ACCURACY

Kontou et al. [7] WiFi 802.11ac (5GHz) Hampel Filter, PCA No Interference Respiration Rate ANN 98.6%

Wu et al. [8] OFDM, Radar
(60.48GHz) CAF, 2D-CFAR External Person

Interference
Presence and

Respiration Rate ResNet 90%

Hao et al. [9] FMCW (77GHz) Signal overlay, HOG Background Interference Respiration Patterns G-SVM 94.75%
Luo et al. [10] OFDM (28GHz) Smoothing, EWT No Interference Respiration Rate FFT 94%

Our Work OFDM, FMCW
(28GHz)

Smoothing, EWT,
Normalization

Moderate Body and
Hand Movement Respiration Patterns 1D-CNN 98.5%

(e.g., Band n257: 26.5–29.5 GHz), where spectrum is limited
and shared with high-throughput services. More critically, the
practical feasibility of composite OFDM–FMCW waveforms
remains largely unvalidated on real hardware. Without empiri-
cal evidence, it is unclear whether they can move from theory
to deployable ISAC systems.

In this work, we present an OFDM–FMCW composite
ISAC system at 28 GHz (5G NR mmWave). We embed a
narrowband FMCW signal in the OFDM guard band, avoiding
structural changes to OFDM and minimizing overlap. This
enables simultaneous high-resolution sensing and communi-
cation without additional hardware. Because guard-band reuse
can introduce interference to adjacent subcarriers, we quantify
its impact under varying sweep bandwidth (0.25–2 MHz)
and FMCW-to-OFDM power ratio (0.1–2). Using EVM and
ground-truth alignment as metrics, our experiments charac-
terize the trade-offs between sensing and QoS and show
that a usable data link and accurate sensing can coexist. We
validate the system on a 28 GHz mmWave testbed with USRP
radios and phased-array antennas. Our main contributions are
summarized as follows:

• We propose a lightweight composite ISAC waveform
that embeds narrowband FMCW in OFDM guard bands
at 28 GHz, enabling simultaneous communication and
respiration sensing without restructuring OFDM.

• We extensively evaluate FMCW-induced interference
across parameters and provide baselines for choosing
practical sensing–communication trade-offs.

• We implement and validate the system on a real mmWave
testbed with USRPs and phased arrays, demonstrating
superior FMCW sensing over CSI-based methods in
ground-truth alignment.

• Our end-to-end signal processing and classification
pipeline achieves over 98% accuracy on four respiratory
patterns, confirming the practicality of the design.

The remainder of this paper is organized as follows. Sec-
tion II reviews related work. Section III introduces technical
background. The composite waveform detection system is
presented in Section IV, followed by experimental results in
Section V. We conclude the paper in Section VI.

II. RELATED WORK

This section reviews wireless respiration sensing in three
categories: OFDM-based methods, FMCW-based methods,
and composite signals. Table I summarizes representative

prior work and contrasts it with our approach, highlighting
differences in waveform design, processing, and performance.
OFDM-Based Respiration Sensing. OFDM-based systems
leverage CSI from existing wireless communication infras-
tructure to detect respiratory patterns. Liu et al. [5] utilized
CSI data from Wi-Fi access point pairs to monitor respiration
rates during sleep, demonstrating the feasibility of using
communication signals for vital sign monitoring. Wang et al.
[6] employed Wi-Fi (802.11n) at 5.24 GHz with 30 OFDM
subcarriers, applying Hampel and Moving Average filters for
denoising, followed by variance-based subcarrier selection.
Their system successfully distinguished individual frequency
variations through Power Spectral Density (PSD) analysis.

Kontou et al. [7] proposed a Wi-Fi-based system using
802.11ac at 5 GHz to estimate respiratory rate from CSI
amplitude. Their preprocessing involved Hampel filtering and
Principal Component Analysis (PCA), with an Artificial Neu-
ral Network (ANN) model achieving 98.6% accuracy, though
limited to static conditions. Recent mmWave advances include
Wu et al. [8], who presented a 60.48 GHz OFDM-based sys-
tem using Doppler processing with Cross Ambiguity Function
(CAF) and 2D Constant False Alarm Rate (CFAR) algorithms,
achieving 90% accuracy with ResNet classification. Luo et al.
[10] implemented an OFDM system at 28 GHz using smooth-
ing and Empirical Wavelet Transform (EWT), achieving 94%
accuracy through FFT-based analysis.

Despite these advances, OFDM-based approaches face fun-
damental limitations including limited range resolution, ambi-
guity in target localization due to multipath propagation, and
sensitivity to frequency-selective fading.
FMCW-Based Respiration Sensing. FMCW radar systems
demonstrate superior performance in vital sign detection due
to excellent range resolution and high sensitivity to small-
scale motions. Alizadeh et al. [11] used a 77 GHz FMCW
radar with a 3.99 GHz sweep to extract respiration and heart
rate, achieving 94% and 80% accuracy. Li et al. [12] demon-
strated non-line-of-sight operation with an 896 MHz sweep for
simultaneous vital-sign monitoring and human localization.
Hao et al. [9] implemented a 77 GHz FMCW system with
a 4 GHz sweep for respiration-pattern detection, applying
signal superimposition for static-noise suppression and HOG
features, achieving 94.75% with a Gaussian SVM.

However, FMCW-based systems present significant limita-
tions for integrated applications. Traditional FMCW radars
lack inherent communication capabilities, requiring separate
communication systems that increase hardware complexity



and reduce spectrum efficiency. Their relatively low spectral
efficiency compared to modern communication waveforms
makes them unsuitable for high-data-rate applications.
Composite Signal Approaches. Recent research has ex-
plored composite waveforms that combine multiple signal
types to leverage complementary sensing and communication
capabilities. Bouziane et al. [13] proposed a DFT matrix-
based method that embeds chirp components into a custom
modulator, enabling analog-domain radar processing while
maintaining communication performance. Jia et al. [14] in-
troduced frequency-domain OFDM-chirp waveforms by ap-
plying chirp-modulated phases to OFDM subcarriers, im-
proving Doppler robustness but requiring precise chirp phase
alignment. Mert Şahin and Arslan [15] demonstrated non-
orthogonal superposition of FMCW and OFDM signals over
the same bandwidth, achieving joint sensing and data trans-
mission but at the cost of complex waveform coordination and
interference cancellation. While effective, these methods often
require additional processing or structural changes. In contrast,
our approach embeds a narrowband FMCW signal into the
OFDM guard band, enabling joint sensing and communication
without modifying the waveform or increasing complexity.

Figure 1. The signal emitted from TX towards a subject exhibiting the
Doppler effect, and reflected back to RX.

III. PRELIMINARIES

A transmitted signal reflects off a subject and returns with
Doppler Effect due to chest motion, as shown in Fig. 1. For
OFDM-based sensing, these variations manifest across the CSI
of subcarriers, whereas in FMCW radar signals, they appear
as small frequency shifts in the received signal, observable in
the beat signals for subsequent analysis.
A. OFDM

Orthogonal Frequency-Division Multiplexing (OFDM) is
the fundamental modulation scheme employed in 5G NR com-
munication systems. It provides high spectral efficiency, ro-
bustness against multipath fading, and fine-grained frequency-
domain resource allocation, making it well-suited for both data
transmission and integrated sensing applications.

An OFDM signal is composed of multiple orthogonal sub-
carriers, each modulated by a complex symbol. The baseband
OFDM signal St(t) with N subcarriers is:

St(t) =
N−1∑
n=0

Xne
j2πfnt, 0 ≤ t ≤ T (1)

where Xn is the complex symbol transmitted on the n-th
subcarrier, fn = f0 + n∆f is the subcarrier frequency, and
∆f = 1

T is the subcarrier spacing.

In a wireless channel, each subcarrier experiences different
amplitude and phase distortions due to multipath propagation
and motion-induced Doppler shifts. The received subcarrier at
index k and OFDM symbol n is modeled as:

Sr,k[n] = Hk[n] ·Xk[n] +Nk[n] (2)

where Hk[n] is the complex channel coefficient (Channel
State Information, CSI), and Nk[n] represents the additive
noise. The phase component ϕk[n] = arg(Hk[n]) contains rich
temporal information about motion within the environment.

B. FMCW Radar

Frequency Modulated Continuous Wave (FMCW) is a radar
technique where the frequency of a continuous wave varies
linearly over time. A transmitted FMCW signal St(t) is sent
to the breathing subject and is expressed as:

St(t) = A cos(2π(fct+
B

2T
t2)) (3)

where A is the amplitude, fc is the carrier frequency, B is the
sweep bandwidth, and T is the chirp duration. The instanta-
neous transmitted frequency ft(t) is obtained by calculating
the derivative of the phase:

ft(t) =
1

2π

d

dt
(2π(fct+

B

2T
t2)) = fc +

B

T
t (4)

From Eq. (4), we can observe the chirp characteristic, where
the frequency changes linearly over time within a fixed range.
When reflecting off the subject, the signal experiences a time
delay τ = 2d

c , where c is the speed of light and 2d represents
the round-trip traveling path of St(t) from transmitter to the
subject and reflected back to the receiver. With this time delay,
the received signal Sr(t) is given by:

Sr(t) = A cos(2π(fc(t− τ) +
B

2T
(t− τ)2)) (5)

According to Eq. (5), the transmitted signal continues to
sweep linearly in frequency throughout the process. The
instantaneous received frequency fr(t) is expressed as:

fr(t) =
1

2π

d

dt

(
2π

(
fc(t− τ) +

B

2T
(t− τ)2

))
= fc +

B

T
(t− τ)

(6)

Due to the time delay τ during round-trip propagation,
the received signal has a lower frequency than the current
transmitted signal. The difference defines the beat frequency:

fb = ft(t)− fr(t) =
2Bd

cT
(7)

For periodic chest motions due to breathing, a dynamic
component fD caused by the periodic Doppler effect will be
added to the beat frequency fb. The Doppler frequency shift
is given by fD = 4vmax

λ sin(2πfbreatht), where vmax is the
maximum chest velocity, λ is the wavelength, and fbreath is the
breathing frequency. In this scenario with moving subjects, the
modulated beat frequency fmb is given by:

fmb = fD +
2Bd

cT
(8)



This dynamic modulation causes periodic shifts in the beat
frequency due to inhalation and exhalation. By performing
Fast Fourier Transform (FFT) on the modulated beat frequency
fmb, the static component 2Bd

cT appears as a DC offset (0 Hz
component), while the dynamic breathing component fD pro-
duces spectral peaks at the fundamental breathing frequency
and its harmonics.

C. Signal-to-Noise Ratio

The Signal-to-Noise Ratio (SNR) quantifies a radar system’s
ability to separate target echoes from noise and is defined as:

SNR =
PtGtGrλ

2σ

(4π)3d4kTsysFBr
(9)

The numerator of the SNR equation reflects received signal
power, influenced by transmit power Pt, antenna gains Gt and
Gr, wavelength λ, radar cross-section σ, and target distance
d. The denominator represents noise power, determined by
Boltzmann’s constant k, system noise temperature Tsys, re-
ceiver noise figure F , and bandwidth Br.

Since noise power scales linearly with Br, reducing receiver
bandwidth improves SNR. However, range resolution degrades
with narrower sweep bandwidth B, following ∆R = c/(2B).
To avoid aliasing, B must remain within the receiver band-
width and is typically constrained by B < Br/2. In 5G
NR-based radar systems, where bandwidths typically range
from 106 to 108 Hz, balancing SNR and resolution is critical.
Although lower sweep bandwidths increase SNR, they also
reduce range resolution and signal energy per chirp, impairing
detection of fine patterns such as breathing. To compensate,
higher transmit power or antenna gain is required, at the cost
of increased power consumption, which must be considered
in energy-constrained scenarios.

D. Breathing Patterns

Abnormal breathing patterns often indicate underlying phys-
iological or pathological conditions. This study focuses on four
representative patterns: Eupnea, Bradypnea, Kussmaul, and
Biot’s respiration [16]. Eupnea refers to normal, smooth, and
rhythmic breathing. Bradypnea is characterized by abnormally
slow rate, often linked to hypoventilation from drug overdose,
brainstem injury, or metabolic disorders. Kussmaul breathing
presents as deep and rapid respiration, typically observed
in metabolic acidosis such as diabetic ketoacidosis. Biot’s
respiration, associated with brainstem damage or elevated
intracranial pressure, features irregular breathing interrupted
by unpredictable apneic episodes.

Table II
BREATHING PATTERNS DESCRIPTION

NO. PATTERNS
RESPIRATION

EFFORT
RESPIRATORY RATE RANGE

BREATHS PER MINUTE

1 Bradypnea 1 5-10
2 Eupnea 1 12-25
3 Kussmaul 2.5 20-35
4 Biot’s 1 12-25

Two features distinguish breathing types: Respiratory Rate
(RR) and Respiratory Effort (RE). RR represents breaths
per minute, reflecting ventilation efficiency. RE represents
muscular effort for breathing, estimated using biomechanical
indicators. As shown in Table II, Eupnea maintains moderate
RR with minimal effort, Bradypnea reduces RR at the same
effort level, Kussmaul increases RR and effort, while Biot’s
respiration maintains RR but is disrupted by irregular pauses.

IV. COMPOSITE WAVEFORM DETECTION SYSTEM

A. Composite Signal Generation

To enable integrated sensing and communication, we con-
struct a composite signal by embedding a narrowband FMCW
radar signal into the guard band of a 5G NR OFDM waveform.
This approach leverages unoccupied spectral resources to max-
imize resource utilization while maintaining the fundamental
OFDM structure. The guard band provides spectral separation
between the FMCW component and active OFDM subcarri-
ers, though potential interference effects on communication
performance are addressed through careful system design and
will be discussed in the evaluation section.

To improve power efficiency while maintaining sensing
performance, the FMCW waveform is configured with narrow
sweep bandwidth and short chirp durations. As discussed in
Section III-C, selecting appropriate chirp lengths and idle
intervals reduces average transmit power, enabling low-power
operation suitable for continuous health monitoring.

This design avoids extra bandwidth and reduces need
for continuous radar transmissions. Compared to traditional
FMCW systems, our approach achieves reliable respiration
sensing with lower energy consumption and minimal impact
on communication performance.

B. Breathing Detection Scheme

With the OFDM-FMCW composite signal designed as
described in Section IV-A, the following section details the
breathing pattern detection scheme, consisting of the following
five steps outlined in Fig. 2.
Step 1: Signal Deployment
The composite signal is transmitted toward the subject via
the ISAC system, leveraging spectral separation to support
concurrent sensing and communication.
Step 2: Data Collection
The subject simulates the different breathing patterns described
in Table II under the following postural conditions: (i) static
postures with the subject facing different directions, (ii) delib-
erate hand movements, and (iii) moderate body movements,
including lateral (left–right) and axial (front–back) shifts.
These conditions emulate a more realistic subject behavior
during respiration monitoring.
Step 3: Data Processing
a. Data Extraction At the receiver, the composite signal
is separated into 5G NR OFDM and FMCW components
using band-pass filters. These modalities are independently
processed to extract respiratory information.



Figure 2. System Overview. Step 1: Signal Deployment; Step 2: Sensing and Data Collection; Step 3: Data Processing; Step 4: Artificial-Intelligence-based
Pattern Feature Learning; Step 5: Breathing Pattern Detection Output.

For the 5G NR component, the filtered signal under-
goes time synchronization and frequency offset compensation.
CSI is estimated for each active subcarrier, from which the
subcarrier-specific phase is extracted. The measured phase for
the sth symbol and kth subcarrier is modeled as:

ϕ̂s,k = ϕs,k + 2π
mk

N
·∆t︸ ︷︷ ︸

SFO, STO

+ γ︸︷︷︸
CFO

+Z (10)

Here, ϕ̂s,k denotes the measured phase and ϕs,k is the true
phase. The term 2πmk

N ·∆t captures sample frequency offset
(SFO) and sample timing offset (STO) effects, γ accounts for
carrier frequency offset (CFO), and Z represents measurement
noise. Linear detrending removes phase distortion introduced
by SFO and STO [17].

For the FMCW component, the received signal is dechirped
into beat signals and reshaped into a chirp matrix. Tracking
a specific range bin across successive chirps forms a slow-
time signal capturing micro-motion effects. A detrend filter
suppresses low-frequency drift and oscillator-induced artifacts.
b. Denoising and Smoothing: Respiratory signals are of-
ten corrupted by abrupt phase jumps and movement-induced
noise. A multi-stage denoising pipeline is applied: first, a
Hampel filter suppresses outliers using Median Absolute De-
viation (MAD) as a robust dispersion metric. Next, a moving
average filter smooths CSI-phase signals, while a median filter
is applied to radar slow-time signals to reduce impulse noise.
c. Pattern Extraction: To isolate respiratory patterns from
low-frequency noise, Empirical Wavelet Transform (EWT)
is applied to both slow-time and CSI-phase signals. EWT
adaptively decomposes each signal into frequency bands, with
one band predominantly capturing respiratory activity while
others contain residual noise.
d. Normalization: The extracted respiratory signal is con-
verted into an analytic signal using the Hilbert transform to
compute a smooth amplitude envelope. This reduces signal
variability and highlights the rhythmic structure of breath-
ing, producing a consistent representation suitable for deep
learning-based prediction.
e. Multi-Modal Complementarity: Under static conditions,
both OFDM and FMCW modalities provide reliable respira-
tory measurements. However, during dynamic conditions with
body movement interference, OFDM-based CSI measurements
become susceptible to multipath variations and frequency-
selective fading. In these scenarios, FMCW radar plays a crit-

ical role by maintaining high sensitivity to micro-motions and
superior range resolution, ensuring robust respiratory detec-
tion when OFDM data quality degrades. This complementary
behavior enables the system to adapt to varying environmental
conditions and movement patterns.
Step 4: Pattern Features Learning The extracted breathing
patterns are fed into a 1-D Convolutional Neural Network
for classification. The network learns specific pattern features
from the extracted breathing waveform to distinguish between
different respiratory patterns.
Step 5: Breathing Pattern Detection The individual samples
are classified according to the characteristics of each different
pattern. Then, breathing patterns are detected successfully.

V. EVALUATION

In this section, we experimentally validate the effectiveness
of our dual-mode ISAC system, breathing pattern detection,
and extraction.

Figure 3. Breathing patterns detection setup. Left: All entities. Right: Specific
antennas and subject setup for breathing pattern detection.

Experimental Setup: The mmWave ISAC system uses an
NI-USRP 2974 and GNU Radio. Baseband signals at 2.8 GHz
are upconverted to 28 GHz via a TMYTEK UD-Box. A 16-
channel phased array (BBox-One) transmits and a 4-channel
array (BBox-Lite) receives. Arrays use a 30° horizontal aper-
ture, yielding αTX = αRX = 60◦ unde line-of-sight (LoS)
conditions. The 5G NR link operates at a 50 MHz sample
rate, 40 MHz bandwidth, and 60 kHz subcarrier spacing, using
240 subcarriers over 20 resource blocks. With 16-QAM and a
0.3320 code rate, the system achieves 11.42 Mbps throughput
and maintains 14% EVM, as summarized in Table III.
A. FMCW Parameters Selection

The OFDM–FMCW composite system design hinges on
selecting appropriate parameters that balance sensing accuracy
with communication reliability. In this subsection, we detail
the rationale for configuring the FMCW sweep bandwidth
and transmit power allocation.



Table III
5G NR COMMUNICATION SPECIFICATIONS

PARAMETERS VALUES

Channel Bandwidth 40 MHz
Subcarrier Spacing 60 kHz
Resource Blocks 20

Subcarriers 240
Modulation 16 QAM

Target Code Rate 0.3320
Error Vector Magnitude (EVM) 14%

Throughput 11.42 Mbps

FMCW Sweep Bandwidth Selection: Our system
transmits a narrowband FMCW signal alongside the 5G
NR communication signal, with the FMCW component
placed 18 MHz away from the center frequency to minimize
interference. To balance sensing performance and spectral
efficiency, we evaluate sweep bandwidths ranging from 2
MHz to 0.25 MHz. Each FMCW chirp lasts 1 ms, with
a chirp repetition rate of 1 kHz. While narrower sweep
bandwidths (e.g., 1 MHz, 0.5 MHz, 0.25 MHz) occupy less
spectrum and reduce potential interference, they also degrade
range resolution, governed by ∆R = c

2B . To maintain sensing
accuracy under narrow bandwidths, higher antenna gains are
required—for example, increasing transmit gain (Gt) from
10 dB to 15 dB and receive gain (Gr) from 20 dB to 25
dB. However, this leads to increased power consumption
and hardware complexity, as discussed in Section III-C.
Considering these trade-offs, we select a 2 MHz sweep
bandwidth as the primary configuration for our system.
FMCW Power Allocation: The transmit power of the embed-
ded FMCW component critically affects the trade-off between
sensing and communication. As shown in Table IV, when
FMCW and OFDM are transmitted with equal power (Ratio =
1), the average EVM increases to 22.65%, representing only
an 8% degradation compared to OFDM-only transmissions.
Lower FMCW power ratios (0.5, 0.25, 0.1) reduce EVM to
around 16–17%, minimizing interference but also lowering
the SNR, which weakens chirp returns and reduces robustness
under realistic motion and noise conditions. In contrast, higher
ratios (≥ 1.25) significantly increase interference, with severe
degradation in the first 50 subcarriers and unfeasible EVM
values for reliable communication.
Final Configuration: To balance sensing reliability and com-
munication quality, we set a threshold of 50% EVM for eval-
uating respiration pattern extraction. Based on this guideline,
a 2 MHz FMCW sweep bandwidth with transmit power ratios
under 1.25 provides sufficient SNR for accurate pattern clas-
sification, while keeping communication degradation within
acceptable limits for short-range mmWave deployments.

B. Data Collection and Processing

A composite 5G NR–FMCW signal is transmitted toward a
single human subject over a 30-second interval, during which
the respiratory patterns described in Table II are simulated.
Sensing data is collected under three distinct environmental
conditions, as outlined in Step 2 of Section IV-B. The received

(a)

(b)

Figure 4. Phase sanitization of 5G CSI phase over a 30-second window with
six respiratory cycles. (a) Raw phase with SFO/STO trend. (b) Zoomed view
showing respiratory cycles amid noise.

Table IV
EVM ANALYSIS FOR FMCW POWER ALLOCATION

EVM ACROSS FMCW BANDWIDTHS

DIFFERENT FMCW SWEEP BANDWIDTH (HZ) AVERAGE

RATIO 2M 1 M 0.5M 0.25M –

2 109.94%* 119.64%* 122.96%* 138.56% 122.77%
1.75 54.86%* 106%* 111.78%* 128.56%* 100.3%
1.5 46.6% 57.98%* 86.44%* 91.73%* 70.68%

1.25 37.76% 46.09%* 46.54%* 72.01%* 50.6%
1 20.36% 23.91% 24.83% 21.49% 22.65%

0.5 16.77% 17.03% 16.88% 17.11% 16.95%
0.25 13.49% 17.05% 18.05% 18.16% 16.91%
0.1 15.96% 16.11% 16.12% 15.94% 16.03%

* The EVM is based on removing the degraded ∼50 first subcarriers.

composite signal is separated into its individual components
using bandpass filters centered on the respective spectral
regions of the FMCW and 5G NR OFDM modes.
FMCW Slow-Time signal extraction: The beat signal is
extracted from the isolated FMCW waveform and reshaped
into a chirp matrix. An initial FFT is performed to locate
the target’s beat frequency peak. With a chirp repetition rate
of 1 kHz over 30 seconds, the matrix has dimensions of
30,000×20,000, where each row is a range profile. This chirp
rate offers sufficient temporal resolution to capture respiratory
motion while keeping processing manageable. A second FFT
is applied row-wise to extract range information, and the range
bin corresponding to the target peak is selected to form a slow-
time signal of length 30,000. Variations in peak magnitudes
over time reflect respiration-induced chest movements.
OFDM CSI-Phase Sanitization: The CSI-phase extraction
process for the 5G signal is illustrated in Fig. 4, using a 30-
second sample with six respiratory cycles. As shown in Fig. 4a,
the raw phase exhibits a downward linear trend from SFO and
STO, removed via linear compensation (Fig. 4b). Although
residual noise and amplitude variations remain, the respiratory
pattern becomes clearer. After sanitization, respiratory rhythms
appear consistently across active subcarriers with minimal
variance. The subcarrier with the lowest EVM is selected for
further processing to ensure reliability.

Following the separation of 5G and FMCW components,
their corresponding CSI-phase and slow-time signals are ex-
tracted. Both undergo a unified three-stage processing pipeline:
(i) smoothing to reduce residual noise, (ii) EWT-based decom-



Figure 5. OFDM (top) vs FMCW (bottom): Bradypnea, Eupnea, Kussmaul, Biot.

position for respiratory pattern isolation, and (iii) normaliza-
tion for amplitude consistency across samples. A total of 200
samples are collected, with 50 samples per respiratory class,
resulting in a balanced dataset for training and evaluation.

Table V
PATTERN SIMILARITY UNDER DIFFERENT FMCW-TO-OFDM POWER

RATIOS (2 MHZ SWEEP BANDWIDTH)

DIFFERENT FMCW POWER RATIOS

MODE 1.25 1 0.5 0.25 0.1
FMCW 81.6% 89.2% 84.4% 86.2% 75.9%
OFDM 79.7% 83.5% 84.4% 89.3% 89.5%

C. OFDM and FMCW Pattern Extraction Comparison

To evaluate the consistency of the signal processing pipeline
across both modalities, we conducted experiments under two
scenarios: static conditions and dynamic conditions with body
movement interference.
Static Condition Performance: Under controlled static condi-
tions, both OFDM and FMCW modalities achieve reliable res-
piration pattern extraction. The extracted signals from FMCW
and 5G CSI-phase align well with chest belt references,
demonstrating stable and consistent performance despite their
differing waveform characteristics. To quantify performance,
we compute the similarity between extracted and ground-
truth patterns using Fast Dynamic Time Warping (FastDTW).
Table V reports the similarity scores under different FMCW-
to-OFDM power ratios. A general trend is observed where
FMCW similarity decreases with reduced power, while OFDM
similarity slightly improves. Based on the power allocation
analysis, we consider ratios starting from 1.25 when evaluating
trade-offs between sensing and communication. This high-
lights the importance of selecting a chirp power that balances
sensing fidelity with communication quality. For the finalized
configuration (ratio = 1), the similarity scores are 89.2% for
FMCW and 83.5% for OFDM, indicating that both modalities
perform well, with FMCW providing slightly higher fidelity
in capturing respiratory dynamics while maintaining reliable
communication performance.

Dynamic Condition Performance: When moderate body
movements and arm gestures were introduced, the two modal-
ities exhibited distinct robustness. As shown in Fig. 5, OFDM-
based CSI-phase extraction suffered from pattern mismatches
and increased noise sensitivity. In contrast, FMCW maintained
stable and accurate pattern extraction. This difference arises
from their sensing mechanisms: OFDM relies on multipath
propagation, which is highly susceptible to body-induced
channel variations, whereas FMCW leverages direct range
measurements, which remain reliable as long as the chest stays
within the sensing range.

These experimental observations highlight the key advan-
tage of our composite approach: the FMCW component serves
as a robust sensing modality that maintains performance even
when the OFDM-based sensing experiences degradation due
to environmental interference. This complementary behavior
ensures continuous respiration monitoring capability across
varying deployment conditions, making the system particu-
larly suitable for practical home healthcare applications where
complete environmental control is not feasible.

Table VI
1D-CNN MODEL ARCHITECTURE

LAYER ACTIVATIONS INPUT SHAPE OUTPUT SHAPE

Conv1D ReLU (600, 1) (578, 64)
Conv1D ReLU (578, 64) (556, 64)

GlobalMaxPooling1D – (556, 64) (64)
Flatten – (64) (64)
Dense ReLU (64) (32)
Dense Softmax (32) (4)

D. Respiration Pattern Classification Using 1D-CNN
The extracted respiratory patterns from both sensing modal-

ities are resampled to a uniform length and concatenated
to form the input dataset for a one-dimensional Convolu-
tional Neural Network (1D-CNN) model for classification.
The consistency achieved through the unified signal processing
pipeline across FMCW and 5G modalities allows for the use
of a lightweight model architecture without compromising per-
formance. This design choice is particularly advantageous for



ISAC systems, where minimizing computational complexity is
critical for real-time implementation. The structure of the 1D-

Figure 6. Confusion matrix of the classification model

CNN model is outlined in Table VI. It includes two successive
1D convolutional layers, each with 64 filters and a kernel size
of 23, enabling the capture of broad temporal dependencies
and distinctive respiratory patterns. This filter configuration
balances expressiveness with compactness. A Global Max
Pooling layer follows, extracting salient temporal features
while enhancing generalization and reducing sensitivity to
local input variations. The model achieves an overall classifi-
cation accuracy of 98%. Fig. 6 shows Eupnea and Kussmaul
samples are classified with 100% accuracy. Bradypnea samples
achieve 98% accuracy with occasional misclassifications as
Eupnea, while Biot samples reach 96% accuracy, with a few
misclassifications leaning toward Bradypnea.

VI. CONCLUSION

In this paper, we proposed a practical 28 GHz
OFDM–FMCW composite ISAC system that simultaneously
supports respiration sensing and communication. By embed-
ding a narrowband FMCW waveform in the OFDM guard
band, the design preserved spectral efficiency, avoided com-
plex waveform co-design and additional hardware, and pro-
vided resilience to motion interference. To handle real-world
interference and bandwidth constraints, we developed a ro-
bust signal-processing pipeline integrated with a 1D-CNN
classifier. Implemented on an mmWave USRP testbed, the
system accurately detected multiple respiratory patterns across
varied configurations, achieving up to 98.5% classification
accuracy. These findings highlight the feasibility of deploy-
ing bandwidth-efficient ISAC systems for contactless health
monitoring. Future work will expand data collection to larger
and more diverse subject groups, explore NLOS and multi-user
scenarios, and investigate additional embedding strategies such
as prefix and OFDM idle slot insertion.
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