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The mid-Cretaceous is demarcated by enigmatic yet glob-
ally significant tectonic and climatic processes (Huber
et al, 2018). Although our understanding of the
Cenomanian-Turonian is improving, geological and pale-
ontological data immediately succeeding the Cretaceous
Thermal Maximum remains fragmentary (Nesbitt et al.,
2019; Cilliers, 2022). Fortunately, potential insights into
the Turonian—-Coniacian transition are preserved within
the Moreno Hill Formation (MHF) of the Salt Lake Coal
Field (SLCF) in west-central New Mexico (McLellan
et al., 1983). Despite this importance, the MHF has hith-
erto undergone limited geohistorical interpretations.

Recently, we constructed new temporal, palaeoenviron-
mental, and stratigraphic frameworks for this globally
important fossil-bearing sedimentary succession. We
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conducted U/Pb radiometric age dating of detrital zircons
sampled from the historically defined lower, middle, and
upper members of the MHF via LA-ICP-MS and CA-
TIMS (Cilliers et al., 2021). Our study found that sedi-
ment transport and emplacement occurred during two
non-coeval pulses of volcanism. The lower and middle
members were emplaced after an eruption at 90.855
+ 0.040 Ma (late Turonian). A subsequent, younger pulse
of volcanism at 88.632 + 0.072 Ma (early Coniacian) is
preserved in the upper MHF. Although sediment trans-
port and emplacement were ongoing, the different zircon
populations indicate the MHF to be diachronous. Based
on geographic proximity, the Peninsular Ranges and
Sierra Nevada Batholiths were likely source terranes for
the above-mentioned youthful zircon grains and popula-
tions (Pecha et al., 2018).

With the additional assessment of co-occurring recycled
zircon grains, we were able to strengthen tenuous linkages
to key sediment source terranes and simultaneously con-
struct a meaningful drainage history. By and large, most
grains are derived from uplifted and eroded portions of the
Yavapai/Mazatzal and Grenville to the west and south via
the Sevier Fold and Thrust Belt and Mogollon Highlands
(Pecha et al., 2018). Chiefly, this study identified the mark-
edly different detrital histories of the lower and middle
members when compared to the upper member to be a
result of tectonically driven landscape modification. This
difference is linked to the ongoing eastward migration of
the forebulge, which gradually diverted westerly and
north-westerly-lying feeder systems (e.g., Sierra Nevada
Batholith and Sevier Highlands), synchronous with the
development of the Maria Fold and Thrust Belt as a sedi-
ment source from the west to the southwest around 90-86
Ma (Cilliers et al., 2021; Szwarc et al., 2015).

We further assessed preserved Turonian-Coniacian cli-
matic and environmental changes. Utilizing facies analy-
sis and architectural reconstruction (Miall, 2016), we
identified that the majority of lower member floodplain
sediment was modified by pedogenic processes, with the
most frequent facies comprising stacked gleyed vertisols,
histosols, vertic histosols, and protosols (Tabor et al.,
2017). These alternating paleosols indicate that ground-
water fluctuated during a regional (southern Colorado
Plateau) regression (R1) coincident with the latest Green-
horn Cyclothem which was followed by the New Mexico-
specific  T2-R2  transgressive-regressive  sequence
(Molenaar, 1983). Overall regression and base level fall
within the lower member following the T2 is corrobo-
rated by the transition from relatively more-sulfurous
coastal to less-sulfurous fluvial coals and by increasingly
bedload-rich multi-story channel complexes (Hoffman,
1994; Cilliers, 2022). Transitioning to the upper member,
sedimentary patterns and pedogenic development remain

consistent with continued base level fall and slight aridi-
fication albeit with continuing groundwater flux.
Whereas westerly feeder system diversion probably con-
tributed to a return to single-story sandstones, more
suspended-load-rich fluvial sediment and thin upper
member coals are also linked to landward effects of
another minor (T3) transgression (Elder & Kirkland,
1993). Therefore, MHF sediment modification occurred
in a developing upper delta floodplain during punctuated
regression of the Western Interior Seaway coincident
with the latest Greenhorn through early Niobrara
Cyclothems (Blakey, 2014; Miall & Catuneanu, 2019). We
consider the Rufiji (Tanzania) or Godavari Rivers (India)
as useful modern analogs.

Bolstered by shifting provenance, slight facies-based dif-
ferences between the lower and upper MHF support a
revised subdivision from three to two informal members.
Using this two-member subdivision as a foundation for
stratigraphic reappraisal we first resolved the stratigraphy
of field sites in the southern SLCF where the MHF is
mostly mapped as undivided. By including sedimentary,
paleocurrent, structural, and existing spatial data within
a parsimonious progradational geomorphologic model
three sites were assigned to the lower MMF and one site
to the upper member. Correlations to the seaward Gallup
Delta (Molenaar et al., 2002) and contemporaneous Kai-
parowits, Notom, Last Chance, Vernal, Frontier, and Car-
dium  fluvio-deltaic  systems (Bhattacharya &
MacEachern, 2009) were then reassessed and strength-
ened. The lower member correlates to the Tres Hermanos
Formation (Carthage and Ramah members), the upper-
most Gallup Sandstone, and the Crevasse Canyon Forma-
tion (Torrivio Sandstone Member) and regionally to the
middle-upper Toreva, Straight Cliffs (Tibbet Canyon and
Smoky Hollow members), lower Funk Valley, upper Fer-
ron Sandstone, Frontier (Dry Hollow Member), and Car-
dium formations. The upper member correlates to the
Crevasse Canyon Formation (Dilco Coal Member) and
regionally to the lower Wepo and Straight Cliffs (John
Henry Member) formations. Ongoing progradation of the
Gallup Delta system in response to the Greenhorn
Regression likely resulted in continued maturation of the
Moreno Hill floodplain and the biological communities
therein (Cilliers, 2022).
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Paleopathologies are useful data for interpreting disease
and behavior in extinct organisms. Isolated pathological
specimens record discrete events in an individual's life,
but pathologies common to many within a population
may suggest habitual behaviors or diseases (Moodie,
1923; Peterson et al., 2013; Stilson et al., 2015; Wolff
et al., 2009; Woodruff et al., 2022). Ceratopsian dinosaurs
are frequently speculated to have used their cranial horns
and bosses against conspecifics in agonistic interactions
(Farke et al., 2009; Farlow & Dodson, 1976; Hatcher,
1907; Hieronymus et al., 2009). Studying their distribu-
tions and frequencies of pathology is one way to test this
hypothesis. The crania of these animals frequently
exhibit lesions, fracture calluses, extra fenestrae, and
other pathologies suggesting traumatic injury or unusual
ontogenetic change (Campbell et al., 2018; Farke et al.,
2009; Tanke & Farke, 2006). The axial and appendicular
skeletons receive less attention despite the abundance of
bonebed material (but see Tanke & Rothschild, 2010).
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