
(both trace and body) will help us to understand the con-
tinental recovery from the ETE event.
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The Lower Cretaceous of Utah preserves a multitude of
dinosaur taxa, records the spread of angiosperms on the
North American continent, along with the evolution of
marsupial and eutherian mammals. Despite this impor-
tance, the timing of deposition of these rocks, unconfor-
mities within the record and depositional rates are poorly
understood. Important fossil-bearing units as well as cor-
relation of these units must be determined to understand
climatic and tectonic controls on these biological events.
Recent work from our group is clarifying the age distribu-
tion and depositional rates of the Cedar Mountain For-
mation of east-central Utah by using a combination of
detrital zircon geochronology, C-isotope chemostratigra-
phy of bulk organic matter, and biostratigraphy. Here we
present the first full C-isotope chemostratigraphic curve
for the Cedar Mountain Formation (CMF) on the western
end of the depositional belt and compare it to some of
the ages and chemostratigraphy from other locations in
the CMF.
Bulk organic C, carbonate C, and detrital zircon geochro-
nology samples were taken from near Moore Cutoff Road
(UT Hwy 803), approximately 25 km south of Castle
Dale, Utah, within southwestern Emery County. Organic
C samples were taken every 25 cm where possible and
detrital zircon samples were taken at key stratigraphic
intervals. A detailed measured section was taken from
the top of the Morrison Formation to the base of the Nat-
urita Sandstone. Members of the CMF described include
the Yellow Cat, Ruby Ranch, Short Canyon Conglomer-
ate, and Mussentuchit. Within the Yellow Cat Member,
pre-excursion values are δ13C ≈ -26‰ VPDB, followed by
a small negative C-isotope excursion (NCIE) of -2.5‰
magnitude at 6.5 m. This is followed by a double peaked
positive C-isotope excursion (PCIE) that reaches a maxi-
mum of -22.8‰ at 9.7 m. C-isotopes values then decrease
consistently from this point throughout the remainder of

the Yellow Cat Member. A CA-ID-TIMS generated detri-
tal zircon sample gives a weighted mean age of 126.45
± 0.08 Ma sampled between 4.75 to 6.25 m at the base of
the PCIE suggests the PCIE must be younger than 126.45
Ma. The Ruby Ranch Member preserves at least three
PCIE. Background values start � -24‰ and increase to
-22.8‰ then decrease to pre-excursion values. The main
PCIE expressed in the section ranges between 40 m above
the Morrison Formation boundary to 60 m above the
Morrison Formation boundary and is a double peaked
PCIE with a magnitude of � +5‰ to a maximum value
of -19.3‰ and then decreases to a minimum of -26.0‰. A
third, less extreme PCIE of magnitude +4‰ occurs start-
ing at � 60 m before decreasing in C-isotopic composi-
tion to � -24‰. No C-isotope chemostratigraphic
samples were taken from the cobble conglomerate lithol-
ogy of the Short Canyon Conglomerate; however, a detri-
tal zircon sample was taken from the medium to fine
grain sands at the top of the member and resulted in a
youngest maximum depositional age no older than
103.08 ± 0.05 Ma. The Mussentuchit Member has a back-
ground δ13Corg value between -23 to -24‰ before a mod-
erate PCIE occurs with a magnitude of �+4‰ between
8.5 and 10.75m above the Short Canyon Conglomerate
with a maximum value of -19.98‰ and then rapidly
decreases in C-isotopic composition to � -25.5‰. The
youngest aged ash zone for the Mussentuchit Member is
98.931 ± 0.054 Ma (Tucker et al., in press) suggesting that
the majority of the Mussentuchit Member was deposited
in the early Cenomanian.
Based on these values, the Yellow Cat Member at Moore
Cutoff Road on the western side of the outcrop belt pre-
serves the PCIE consistent with the OAE1a; a C-cycle
perturbation caused by the eruption of the Ontong-Java
large igneous province, which formed between 126 and
119 Ma. The Ruby Ranch Member preserves a sustained
broad PCIE relative to underlying and overlying units
that has been described as the C10 PCIE by (Bralower
et al., 1999). This interval ranges in age between
�117 Ma to �112 Ma. The addition of the 103.08 Ma
maximum depositional age for the upper part of the Short
Canyon Conglomerate suggests the Ruby Ranch Member
here is mostly Late Aptian to Albian. Although the PCIE
from the Mussentuchit Member is reminiscent of the
mid-Cenomanian Event (96.4 – 95.8 Ma), newly
described ash ages from Tucker et al (in press) suggests
the Mussentuchit Member deposition ranges between
99.95 to 98.931 Ma (Cenomanian) suggesting the PCIE
within our section is a local PCIE that is not related to
global C-cycle perturbations, however, additional detrital
zircon ages from within this section will test this. Overall,
the Moore Cutoff Road section preserves a near-
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continuous depositional record (albeit with some uncon-
formities) between a maximum of 126.45 Ma and a mini-
mum of 98.931 Ma.
Relative to other studied sections of the CMF, one clear
trend seems to occur. Ages for the Yellow Cat facies from
the western part of the CMF outcrop belt preserve maxi-
mum depositional ages from detrital zircons, C-isotope
chemostratigraphic ages, and magnetostratigraphy of
Lower Aptian age (�126 Ma) while sections on the east-
ern edge of the outcrop belt (east of the Salt Valley

Anticline) preserved maximum ages from detrital zircon,
C-isotope chemostratigraphy, as well as biostratigraphy
(pre-angiosperm pollen, ostracods and charophytes)
much older than this, as old as Berriasian (145.0 – 139.4
Ma) (Joeckel et al., 2019; Martín-Closas et al., 2013;
Sames et al., 2010). This has significant influence on the
faunal assemblages’ interpreted age distributions and
interpreted faunal turnover. These age discrepancies may
be related to differing tectonic control on depositional
basins, with the Sevier Fold and Thrust Belt creating

Figure 1. Comparison of C-isotope chemostratigraphic records along with known ocean anoxic events (OAEs) from the Cretaceous to the C-

isotope record from the CMF at Moore Cutoff Road (UT-803). The CMF curve is fitted to the chemostratigraphic section and bounding

conditions according to (Bralower et al., 1999) and compared to (Castro et al., 2021), (Herrle et al., 2015). All values are compared to VPDB
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depositional basins and source sediment in the west and
salt tectonics controlling depositional basins in the east
(Kirkland et al., 2016). Additional high resolution chron-
ostratigraphic work will help us to correlate fauna from
the CMF to each other as well as fauna from other units
along the Western Interior Basin such as the Cloverly,
Kootenai, and Blackleaf formations. This painstaking
work is crucial to interpreting the climatic and tectonic
controls on the Cretaceous terrestrial revolution, latitudi-
nal faunal zones, and paleobiogeography.
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The Cedar Mountain Formation is thought to span a sig-
nificant portion of the lower Cretaceous and the base of
the upper Cretaceous (Valanginian to Cenomanian). As
such, the Cedar Mountain Formation is important for
understanding the transition of terrestrial ecosystems
from those characterized by pre-angiosperm ecosystems
of the Jurassic to the angiosperm-dominated ecosystems
that characterized the height of dinosaur diversity in the
later part of the Cretaceous. Lacustrine strata offer
unique opportunities to shed light on environmental and
climate conditions of the past. This study presents results
from a multi-proxy study of lacustrine strata in the Cedar
Mountain Formation termed “Lake Carpenter.” The
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