

(both trace and body) will help us to understand the continental recovery from the ETE event.

References

Antonietto, L. S., Park-Boush, L., Suarez, C. A., Milner, A. R. C., & Kirkland, J. I. (2018). The “Last Dawn of the Reigning Darwinulids”? A review of the Ostracoda (Arthropoda: Crustacea) from the Whitmore Point Member, Moenave Formation, Lower Jurassic (Hettangian), Arizona and Utah, USA. *Journal of Paleontology*, 92(4), 648-660.

Cornet, B., & Waanders, G. L (2006). Palynomorphs indicate Hettangian (Early Jurassic) age for the middle Whitmore Point Member of the Moenave Formation, Utah and Arizona. In *The Triassic-Jurassic terrestrial transition, New Mexico Bulletin of Natural History and Science*, 37, 390.

Fox, C. P., Cui, X., Whiteside, J. H., Olsen, P. E., Summons, R. E., & Grice, K. (2020). Molecular and isotopic evidence reveals the end-Triassic carbon isotope excursion is not from massive exogenous light carbon. *Proceedings of the National Academy of Sciences*, 117(48), 30171-30178.

Kirkland, J. I., Milner, A. R. C., Olsen, P. E., & Hargrave, J. (2014). The Whitmore Point Member of the Moenave Formation in its type area in Northern Arizona and its age and correlation with the section in St. George, Utah: Evidence for two major lacustrine sequences. In *Geology of Utah's far South* (pp. 322-355). Utah Geological Association.

Kürschner, W. M., Batenburg, S. J., & Mander, L. (2013). Aberrant *Classopollis* pollen reveals evidence for unreduced (2n) pollen in the conifer family Cheirolepidiaceae during the Triassic–Jurassic transition. *Proceedings of the Royal Society B: Biological Sciences*, 280 (1768), 20131708.

Lucas, S. G., & Heckert, A. B. (2001). Theropod dinosaurs and the Early Jurassic age of the Moenave Formation, Arizona-Utah, USA. *Neues Jahrbuch für Geologie und Paläontologie*, 2001, 435-488.

Lucas, S. G., & Milner, A. R. C. (2006). Conchostraca from the Lower Jurassic Whitmore Point Member of the Moenave Formation, Johnson Farm, southwestern Utah. In J. Harris, S. G. Lucas, J. A. Spielmann, M. G. Lockley, A. R. C. Milner, & J. I. Kirkland (Eds.), *The Triassic-Jurassic terrestrial transition. New Mexico Museum Bulletin of Natural History*, 37, 421-423.

Milner, A. R., Harris, J. D., Lockley, M. G., Kirkland, J. I. & Matthews, N. A. (2009). Bird-like anatomy, posture, and behavior revealed by an Early Jurassic theropod dinosaur resting trace. *PLoS ONE*, 4(3), e4591.

Milner, A. R. C., Birthis, T., Kirkland, J. I., Breithaupt, B. H., Matthews, N. A., Lockley, M., Santucci, V. L., Gibson, S. Z., DeBlieux, D. D. Hurlbut, M., Harris, J., & Olsen, P. E. (2012). Tracking Early Jurassic dinosaurs across southwestern Utah and the Triassic-Jurassic transition. In *Nevada State Museum, Paleontological Papers 1 – 71st Annual Meeting of the Society of Vertebrate Paleontology* (p. 108).

Mmasa, D. (2021). *Effects of the Triassic-Jurassic Central Atlantic magmatic event recorded in continental strata in western Pangea: The $\delta^{13}\text{C}$ record of Warner Valley & Zion National Park* [Master's Thesis, University of Arkansas].

Olsen, P., Sha, J., Fang, Y., Chang, C., Whiteside, J. H., Kinney, S., Sues, H.-D., Kent, D., Schaller, M., & Vajda, V. (2022). Arctic ice and the ecological rise of the dinosaurs. *Science Advances*, 8(26), eab06342.

Schaller, M. F., Wright, J. D., & Kent, D. V. (2015). A 30 Myr record of Late Triassic atmospheric pCO₂ variation reflects a fundamental control of the carbon cycle by changes in continental weathering. *Geological Society of America Bulletin*, 127(5-6), 661-671.

Schaller, M. F., Wright, J. D., Kent, D. V., & Olsen, P. E. (2012). Rapid emplacement of the Central Atlantic Magmatic Province as a net sink for CO₂. *Earth and Planetary Science Letters*, 323, 27-39.

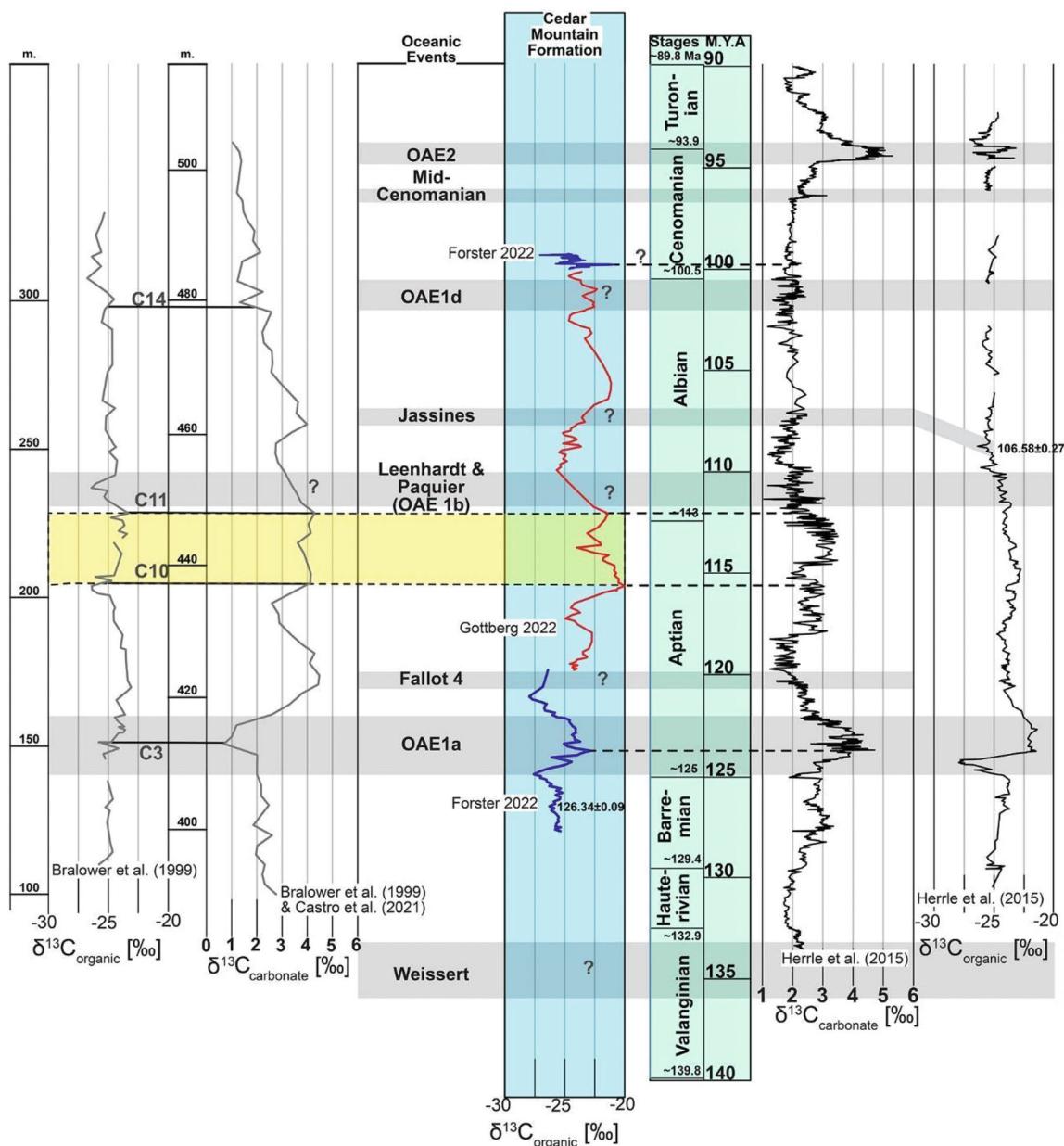
Suarez, C. A., Knobbe, T. K., Crowley, J. L., Kirkland, J. I., & Milner, A. R. C. (2017). A chronostratigraphic assessment of the Moenave Formation, USA using C-isotope chemostratigraphy and detrital zircon geochronology: Implications for the terrestrial end Triassic extinction. *Earth and Planetary Science Letters*, 475, 83-93.

Williford, K. H., Grice, K., Holman, A., & McElwain, J. C. (2014). An organic record of terrestrial ecosystem collapse and recovery at the Triassic–Jurassic boundary in East Greenland. *Geochimica et Cosmochimica Acta*, 127, 251-263.

Technical Session 3: Terrestrial Ecosystems – Early Cretaceous (Saturday, June 10, 2023, 10:15 AM)

UPDATES ON THE CHRONOSTRATIGRAPHIC FRAMEWORK OF THE CEDAR MOUNTAIN FORMATION OF UTAH AND IMPLICATIONS FOR FAUNAL COMPARISONS AND THE CRETACEOUS TERRESTRIAL REVOLUTION

Suarez, Celina¹, Forster, Clayton¹, Sharman, Glenn¹, Fekete, Jack¹, Suarez, Marina², Zanno, Lindsay^{3,4}, Tucker, Ryan


¹Department of Geosciences, University of Arkansas, 216 Gearhart Hall, Fayetteville, Arkansas, USA 72701, casuarez@uark.edu, cforster@uark.edu, gsharman@uark.edu, jwfekete@uark.edu; ²Department of Geology, University of Kansas, Ritchie Hall, Earth, Energy, and Environment Center, 1414 Naismith Dr Room 254, Lawrence, Kansas, USA 66045, mb.suarez@ku.edu; ³Paleontology, North Carolina Museum of Natural Sciences, 11 W. Jones St., Raleigh, North Carolina, USA 27601, lindsay.zanno@naturalsciences.org; ⁴Department of Biological Sciences, Campus Box 7617, North Carolina State University, Raleigh, North Carolina, USA 27695; ⁵Department of Earth Sciences, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch, South Africa 7602, tucker@sun.ac.za

The Lower Cretaceous of Utah preserves a multitude of dinosaur taxa, records the spread of angiosperms on the North American continent, along with the evolution of marsupial and eutherian mammals. Despite this importance, the timing of deposition of these rocks, unconformities within the record and depositional rates are poorly understood. Important fossil-bearing units as well as correlation of these units must be determined to understand climatic and tectonic controls on these biological events. Recent work from our group is clarifying the age distribution and depositional rates of the Cedar Mountain Formation of east-central Utah by using a combination of detrital zircon geochronology, C-isotope chemostratigraphy of bulk organic matter, and biostratigraphy. Here we present the first full C-isotope chemostratigraphic curve for the Cedar Mountain Formation (CMF) on the western end of the depositional belt and compare it to some of the ages and chemostratigraphy from other locations in the CMF.

Bulk organic C, carbonate C, and detrital zircon geochronology samples were taken from near Moore Cutoff Road (UT Hwy 803), approximately 25 km south of Castle Dale, Utah, within southwestern Emery County. Organic C samples were taken every 25 cm where possible and detrital zircon samples were taken at key stratigraphic intervals. A detailed measured section was taken from the top of the Morrison Formation to the base of the Naturita Sandstone. Members of the CMF described include the Yellow Cat, Ruby Ranch, Short Canyon Conglomerate, and Müssentuchit. Within the Yellow Cat Member, pre-excursion values are $\delta^{13}\text{C} \approx -26\text{\textperthousand}$ VPDB, followed by a small negative C-isotope excursion (NCIE) of $-2.5\text{\textperthousand}$ magnitude at 6.5 m. This is followed by a double peaked positive C-isotope excursion (PCIE) that reaches a maximum of $-22.8\text{\textperthousand}$ at 9.7 m. C-isotopes values then decrease consistently from this point throughout the remainder of

the Yellow Cat Member. A CA-ID-TIMS generated detrital zircon sample gives a weighted mean age of 126.45 ± 0.08 Ma sampled between 4.75 to 6.25 m at the base of the PCIE suggests the PCIE must be younger than 126.45 Ma. The Ruby Ranch Member preserves at least three PCIE. Background values start $\sim -24\text{\textperthousand}$ and increase to $-22.8\text{\textperthousand}$ then decrease to pre-excursion values. The main PCIE expressed in the section ranges between 40 m above the Morrison Formation boundary to 60 m above the Morrison Formation boundary and is a double peaked PCIE with a magnitude of $\sim +5\text{\textperthousand}$ to a maximum value of $-19.3\text{\textperthousand}$ and then decreases to a minimum of $-26.0\text{\textperthousand}$. A third, less extreme PCIE of magnitude $+4\text{\textperthousand}$ occurs starting at ~ 60 m before decreasing in C-isotopic composition to $\sim -24\text{\textperthousand}$. No C-isotope chemostratigraphic samples were taken from the cobble conglomerate lithology of the Short Canyon Conglomerate; however, a detrital zircon sample was taken from the medium to fine grain sands at the top of the member and resulted in a youngest maximum depositional age no older than 103.08 ± 0.05 Ma. The Müssentuchit Member has a background $\delta^{13}\text{C}_{\text{org}}$ value between -23 to $-24\text{\textperthousand}$ before a moderate PCIE occurs with a magnitude of $\sim +4\text{\textperthousand}$ between 8.5 and 10.75 m above the Short Canyon Conglomerate with a maximum value of $-19.98\text{\textperthousand}$ and then rapidly decreases in C-isotopic composition to $\sim -25.5\text{\textperthousand}$. The youngest aged ash zone for the Müssentuchit Member is 98.931 ± 0.054 Ma (Tucker et al., in press) suggesting that the majority of the Müssentuchit Member was deposited in the early Cenomanian.

Based on these values, the Yellow Cat Member at Moore Cutoff Road on the western side of the outcrop belt preserves the PCIE consistent with the OAE1a; a C-cycle perturbation caused by the eruption of the Ontong-Java large igneous province, which formed between 126 and 119 Ma. The Ruby Ranch Member preserves a sustained broad PCIE relative to underlying and overlying units that has been described as the C10 PCIE by (Bralower et al., 1999). This interval ranges in age between ~ 117 Ma to ~ 112 Ma. The addition of the 103.08 Ma maximum depositional age for the upper part of the Short Canyon Conglomerate suggests the Ruby Ranch Member here is mostly Late Aptian to Albian. Although the PCIE from the Müssentuchit Member is reminiscent of the mid-Cenomanian Event (96.4 – 95.8 Ma), newly described ash ages from Tucker et al (in press) suggests the Müssentuchit Member deposition ranges between 99.95 to 98.931 Ma (Cenomanian) suggesting the PCIE within our section is a local PCIE that is not related to global C-cycle perturbations, however, additional detrital zircon ages from within this section will test this. Overall, the Moore Cutoff Road section preserves a near-

Figure 1. Comparison of C-isotope chemostratigraphic records along with known ocean anoxic events (OAEs) from the Cretaceous to the C-isotope record from the CMF at Moore Cutoff Road (UT-803). The CMF curve is fitted to the chemostratigraphic section and bounding conditions according to (Bralower et al., 1999) and compared to (Castro et al., 2021), (Herrle et al., 2015). All values are compared to VPDB

continuous depositional record (albeit with some unconformities) between a maximum of 126.45 Ma and a minimum of 98.931 Ma.

Relative to other studied sections of the CMF, one clear trend seems to occur. Ages for the Yellow Cat facies from the western part of the CMF outcrop belt preserve maximum depositional ages from detrital zircons, C-isotope chemostratigraphic ages, and magnetostratigraphy of Lower Aptian age (~126 Ma) while sections on the eastern edge of the outcrop belt (east of the Salt Valley

Anticline) preserved maximum ages from detrital zircon, C-isotope chemostratigraphy, as well as biostratigraphy (pre-angiosperm pollen, ostracods and charophytes) much older than this, as old as Berriasian (145.0 – 139.4 Ma) (Joeckel et al., 2019; Martín-Closas et al., 2013; Sames et al., 2010). This has significant influence on the faunal assemblages' interpreted age distributions and interpreted faunal turnover. These age discrepancies may be related to differing tectonic control on depositional basins, with the Sevier Fold and Thrust Belt creating

depositional basins and source sediment in the west and salt tectonics controlling depositional basins in the east (Kirkland et al., 2016). Additional high resolution chronostratigraphic work will help us to correlate fauna from the CMF to each other as well as fauna from other units along the Western Interior Basin such as the Cloverly, Kootenai, and Blackleaf formations. This painstaking work is crucial to interpreting the climatic and tectonic controls on the Cretaceous terrestrial revolution, latitudinal faunal zones, and paleobiogeography.

References

Bralower, T. J. CoBabe, E., Clement, B., Sliter, W. V., Osburn, C. L., & Longoria, J. (1999). The record of global change in Mid-Cretaceous (Barremian-Albian) sections from the Sierra Madre, northeastern Mexico. *Journal of Foraminiferal Research*, 29, 418-437.

Castro, J. M., Ruiz-Ortiz, P. A., de Gea, G. A., Aguado, R., Jarvis, I., Weissert, H., Molina, J. M., Nieto, L. M., Pancost, R. D., Quijano, M. L., Reolid, M., Skelton, P. W., López-Rodríguez, C., & Martínez-Rodríguez, R. (2021). High-resolution C-Isotope, TOC and biostratigraphic records of OAE 1a (Aptian) from an expanded hemipelagic cored succession, Western Tethys: A new stratigraphic reference for global correlation and paleoenvironmental reconstruction. *Paleoceanography and Paleoceanography*, 36, e2020PA004004.

Herrle, J. O., Schröder-Adams, C. J., Davis, W., Pugh, A. T., Galloway, J. M., & Fath, J. (2015). Mid-Cretaceous high Arctic stratigraphy, climate, and oceanic anoxic events. *Geology*, 43, 403-406.

Joeckel, R. M., Ludvigson, G. A., Möller, A., Hotton, C. L., Suarez, M. B., Suarez, C. A., Sames, B., Kirkland, J. I., & Hendrix, B. (2019). Chronostratigraphy and terrestrial palaeoclimatology of Berriasian–Hauterivian strata of the Cedar Mountain Formation, Utah, USA. *Geological Society of London, Special Publication*, SP498-2018-133.

Kirkland, J. I., Suarez, M. B., Suarez, C. A., & Hunt-Foster, R. (2016). The Lower Cretaceous in east-central Utah—the Cedar Mountain Formation and its bounding strata. *Geology of the Intermountain West*, 3, 101-228.

Martín-Closas, C., Sames, B., & Schudack, M. E. (2013). Charophytes from the Upper Berriasian of the Western Interior Basin of the United States. *Cretaceous Research*, 46, 11-23.

Sames, B., Cifelli, R. L., & Schudack, M. E. (2010). The nonmarine Lower Cretaceous of the North American Western Interior foreland basin: new biostratigraphic results from ostracod correlations and early mammals, and their implications for paleontology and geology of the basin—an overview. *Earth-Science Research*, 101, 207-224.

Tucker, R. T., Crowley, J. I., Renault, R. K., Makovicky, P. J., Cifelli, R. L., & Zanno, L. E. (In Press). Exceptional age constraint on a fossiliferous sedimentary archive preceding the Cretaceous Thermal Maximum. *Geology*

Theme Session: Global Perspectives on Mesozoic Lacustrine Ecosystems (Thursday, June 8, 2023, 3:30 PM)

A WINDOW TO THE EARLY CRETACEOUS NORTH AMERICAN CLIMATE AND ENVIRONMENT: THE ‘LAKE CARPENTER’ LACUSTRINE STRATA OF THE CEDAR MOUNTAIN FORMATION

Suarez, Marina B.¹, Al-Suwaidi, Aisha², Kirkland, James I.³ Snell, Kathryn⁴, Möller, Andreas¹, McLean, Noah¹, Suarez, Celina A.⁵, Montgomery, Elizabeth⁶, Paige, Marquise⁷

¹Department of Geology, The University of Kansas, 1414 Naismith Dr. Lawrence, Kansas, USA 66045, mb.

suarez@ku.edu; ²Earth Science Department, Khalifa University, PO Box 127788, Abu Dhabi, UAE, aisha.

alsuwaidi@ku.ac.ae; ³Utah Geological Survey, Utah Department of Natural Resources, Salt Lake City, Utah, USA 84114-6100, jameskirkland@utah.gov; ⁴Department of Geological Sciences, The University of Colorado, UCB 399, Boulder, Colorado, USA 80309, Kathryn.

snell@colorado.edu; ⁵Department of Geosciences, The University of Arkansas, 340 N. Campus Dr. Fayetteville, Arkansas, USA 72701, casuarez@uark.edu; ⁶Palo Alto College, 1400 V. Villaret Blvd, San Antonio, Texas, USA 78224, ealger@alamo.edu; ⁷Department of Geological Sciences, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas, USA 78249,

mpaige27@gmail.com

The Cedar Mountain Formation is thought to span a significant portion of the lower Cretaceous and the base of the upper Cretaceous (Valanginian to Cenomanian). As such, the Cedar Mountain Formation is important for understanding the transition of terrestrial ecosystems from those characterized by pre-angiosperm ecosystems of the Jurassic to the angiosperm-dominated ecosystems that characterized the height of dinosaur diversity in the later part of the Cretaceous. Lacustrine strata offer unique opportunities to shed light on environmental and climate conditions of the past. This study presents results from a multi-proxy study of lacustrine strata in the Cedar Mountain Formation termed “Lake Carpenter.” The