
U n d e rst a n di n g M o d e C o n n e cti vit y vi a P a r a m et e r S p a c e S y m m et r y

B o Z h a o 1 Ni m a D e h m a m y 2 R o bi n W alt e rs 3 R os e Y u 1

A bst r a ct

N e ur al n et w or k mi ni m a ar e oft e n c o n n e ct e d b y
c ur v es al o n g w hi c h tr ai n a n d t est l oss r e m ai n
n e arl y c o nst a nt, a p h e n o m e n o n k n o w n as m o d e
c o n n e cti vit y. W hil e t his pr o p ert y h as e n a bl e d a p-
pli c ati o ns s u c h as m o d el m er gi n g a n d fi n e-t u ni n g,
its t h e or eti c al e x pl a n ati o n r e m ai ns u n cl e ar. We
pr o p os e a n e w a p pr o a c h t o e x pl ori n g t h e c o n n e ct-
e d n ess of mi ni m a usi n g p ar a m et er s p a c e s y m m e-
tr y. B y li n ki n g t h e t o p ol o g y of s y m m etr y gr o u ps
t o t h at of t h e mi ni m a, w e d eri v e t h e n u m b er of
c o n n e ct e d c o m p o n e nts of t h e mi ni m a of li n e ar
n et w or ks a n d s h o w t h at s ki p c o n n e cti o ns r e d u c e
t his n u m b er. We t h e n e x a mi n e w h e n m o d e c o n-
n e cti vit y a n d li n e ar m o d e c o n n e cti vit y h ol d or f ail,
usi n g p ar a m et er s y m m etri es w hi c h a c c o u nt f or a
si g ni fi c a nt p art of t h e mi ni m u m. Fi n all y, w e pr o-
vi d e e x pli cit e x pr essi o ns f or c o n n e cti n g c ur v es
i n t h e mi ni m a i n d u c e d b y s y m m etr y. Usi n g t h e
c ur v at ur e of t h es e c ur v es, w e d eri v e c o n diti o ns
u n d er w hi c h li n e ar m o d e c o n n e cti vit y a p pr o xi-
m at el y h ol ds. O ur fi n di n gs hi g hli g ht t h e r ol e of
c o nti n u o us s y m m etri es i n u n d erst a n di n g t h e n e u-
r al n et w or k l oss l a n ds c a p e.

1. I nt r o d u cti o n

A m o n g r e c e nt st u di es o n t h e l oss l a n ds c a p e, a p arti c ul arl y i n-
t er esti n g fi n di n g is m o d e c o n n e cti vit y (Dr a xl er et al. , 2 0 1 8 ;
G ari p o v et al. , 2 0 1 8 ) —t h e o bs er v ati o n t h at disti n ct mi n-
i m a f o u n d b y st o c h asti c gr a di e nt d es c e nt ( S G D) c a n b e
c o n n e ct e d b y c o nti n u o us, l o w-l oss p at hs t hr o u g h t h e hi g h-
di m e nsi o n al p ar a m et er s p a c e. M o d e c o n n e cti vit y h as i m p or-
t a nt i m pli c ati o ns f or ot h er as p e cts of d e e p l e ar ni n g t h e or y,
i n cl u di n g t h e l ott er y ti c k et h y p ot h esis (Fr a n kl e et al. , 2 0 2 0 )
a n d t h e a n al ysis of l oss l a n ds c a p es a n d tr ai ni n g tr aj e ct ori es
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(G ot m ar e et al. , 2 0 1 8 ). M o d e c o n n e cti vit y h as als o i ns pir e d
a p pli c ati o ns i n di v ers e fi el ds, i n cl u di n g m o d el e ns e m bli n g
(G ari p o v et al. , 2 0 1 8 ; B e nt o n et al. , 2 0 2 1 ; B e n zi n g et al. ,
2 0 2 2 ), m o d el a v er a gi n g (I z m ail o v et al., 2 0 1 8 ; W orts m a n
et al. , 2 0 2 2 ), pr u ni n g (Fr a n kl e et al. , 2 0 2 0 ), i m pr o vi n g a d-
v ers ari al r o b ust n ess ( Z h a o et al. , 2 0 2 0 ), a n d fi n e-t u ni n g f or
alt eri n g pr e di cti o n m e c h a nis m ( L u b a n a et al. , 2 0 2 3 ).

D es pit e e xt e nsi v e e m piri c al v ali d ati o n, m o d e c o n n e cti vit y,
es p e ci all y li n e ar m o d e c o n n e cti vit y, r e m ai ns l ar g el y a t h e o-
r eti c al c o nj e ct ur e (Alti nt as et al. , 2 0 2 3 ). T h e li mit e d t h e or et-
i c al e x pl a n ati o n s u g g ests a n e e d f or n e w pr o of t e c h ni q u es.
I n t his p a p er, w e f o c us o n p ar a m et er s y m m etri es, w hi c h e n-
c o d e i nf or m ati o n a b o ut t h e str u ct ur e of t h e p ar a m et er s p a c e
a n d t h e mi ni m u m. O ur w or k i ntr o d u c es a n e w a p pr o a c h
t o w ar ds u n d erst a n di n g t h e t o p ol o g y of t h e mi ni m u m a n d
c o m pl e m e nts e xisti n g t h e ori es o n m o d e c o n n e cti vit y ( Yu nis
et al. , 2 0 2 2 ; Fr e e m a n & Br u n a , 2 0 1 7 ; N g u y e n , 2 0 1 9 ; 2 0 2 1 ;
K u diti p u di et al. , 2 0 1 9 ; S h e v c h e n k o & M o n d elli , 2 0 2 0 ;
N g u y e n et al. , 2 0 2 1 ).

Dis cr et e s y m m etr y is k n o w n t o b e r el at e d t o m o d e c o n n e c-
ti vit y. I n p arti c ul ar, t h e n e ur al n et w or k o ut p ut, a n d h e n c e t h e
mi ni m u m, is i n v ari a nt u n d er n e ur o n p er m ut ati o ns ( H e c ht-
Ni els e n , 1 9 9 0 ). S e v er al al g orit h ms h a v e b e e n d e v el o p e d
t o fi n d o pti m al p er m ut ati o ns f or li n e ar c o n n e cti vit y (Si n g h
& J a g gi , 2 0 2 0 ; Ai ns w ort h et al. , 2 0 2 3 ), a n d E nt e z ari et al.
(2 0 2 2 ) c o nj e ct ur e t h at all mi ni m a f o u n d b y S G D ar e li n e arl y
c o n n e ct e d u p t o p er m ut ati o n. C o m p ar e d t o dis cr et e s y m-
m etr y, t h e r ol e of c o nti n u o us s y m m etr y, s u c h as p ositi v e
r es c ali n g i n R e L U, i n s h a pi n g l oss l a n ds c a p e r e m ai ns l ess
w ell st u di e d.

We e x pl or e t h e c o n n e ct e d n ess of mi ni m u m t hr o u g h c o nti n u-
o us s y m m etri es i n t h e p ar a m et er s p a c e. C o nti n u o us s y m m e-
tr y gr o u ps wit h c o nti n u o us a cti o ns d e fi n e p ositi v e di m e n-
si o n al c o n n e ct e d s p a c es i n t h e mi ni m u m ( Z h a o et al. , 2 0 2 3 ).
B y r el ati n g t o p ol o gi c al pr o p erti es of s y m m etr y gr o u ps t o
t h eir or bits a n d t h e mi ni m u m, w e s h o w t h at b ot h c o nti n u-
o us a n d dis cr et e s y m m etr y ar e us ef ul i n u n d erst a n di n g t h e
ori gi n a n d f ail ur e c as es of m o d e c o n n e cti vit y. A d diti o n all y,
c o nti n u o us s y m m etr y d e fi n es c ur v es o n t h e mi ni m u m ( Z h a o
et al. , 2 0 2 4 ). T his e n a bl es a pri n ci pl e d m et h o d f or d eri vi n g
e x pli cit e x pr essi o ns f or p at hs c o n n e cti n g t w o mi ni m a, a t as k
t h at pr e vi o usl y r eli e d o n e m piri c al a p pr o a c h es.

O ur m ai n c o ntri b uti o ns ar e:
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• Pr o vi di n g t h e n u m b er of c o n n e ct e d c o m p o n e nts of f ull-
r a n k li n e ar r e gr essi o n wit h a n d wit h o ut s ki p c o n n e c-
ti o ns, b y r el ati n g t o p ol o gi c al pr o p erti es of s y m m etr y
gr o u ps t o t h os e of mi ni m a.

• Pr o vi n g m o d e c o n n e cti vit y u p t o p er m ut ati o n f or li n e ar
n et w or ks wit h i n v erti bl e w ei g hts.

• D eri vi n g e x a m pl es w h er e t h e err or b arri er o n li n e ar
i nt er p ol ati o n of mi ni m a is u n b o u n d e d.

• D eri vi n g e x pli cit l o w-l oss c ur v es t h at c o n n e ct mi ni m a
r el at e d b y s y m m etr y, a n d b o u n di n g t h e l oss b arri er o n
li n e ar i nt er p ol ati o ns b et w e e n mi ni m a usi n g t h e c ur v a-
t ur e of t h es e c ur v es.

2. R el at e d W o r k

M o d e c o n n e cti vit y. G ari p o v et al. (2 0 1 8 ) a n d Dr a xl er
et al. (2 0 1 8 ) dis c o v er e m piri c all y t h at t h e mi ni m a of n e u-
r al n et w or ks ar e c o n n e ct e d b y c ur v es o n w hi c h tr ai n a n d
t est l oss ar e al m ost c o nst a nt. It is t h e n o bs er v e d t h at S G D
s ol uti o ns ar e li n e arl y c o n n e ct e d if t h e y ar e tr ai n e d fr o m
pr e-tr ai n e d w ei g hts ( N e ys h a b ur et al. , 2 0 2 0 ) or s h ar e a s h ort
p eri o d of tr ai ni n g at t h e b e gi n ni n g ( Fr a n kl e et al. , 2 0 2 0 ).
A d diti o n all y, n e ur o n ali g n m e nt b y p er m ut ati o n i m pr o v es
m o d e c o n n e cti vit y ( Si n g h & J a g gi , 2 0 2 0 ; Tatr o et al. , 2 0 2 0 ).
S u bs e q u e ntl y, E nt e z ari et al. (2 0 2 2 ) c o nj e ct ur e t h at all mi n-
i m a f o u n d b y S G D ar e li n e arl y c o n n e ct e d u p t o p er m ut ati o n.
F oll o wi n g t h e c o nj e ct ur e, Ai ns w ort h et al. (2 0 2 3 ) d e v el o p
al g orit h ms t h at fi n d t h e o pti m al ali g n m e nt f or li n e ar m o d e
c o n n e cti vit y, a n d J or d a n et al. (2 0 2 3 ) f urt h er r e d u c e t h e b ar-
ri er b y r es c ali n g t h e pr e a cti v ati o ns of i nt er p ol at e d n et w or ks.

It is w ort h n oti n g t h at li n e ar m o d e c o n n e cti vit y d o es n ot
al w a ys h ol d o utsi d e of c o m p ut er visi o n. L a n g u a g e m o d els
t h at ar e n ot li n e arl y c o n n e ct e d h a v e diff er e nt g e n er ali z ati o n
str at e gi es ( J u n ej a et al. , 2 0 2 3 ). L u b a n a et al. (2 0 2 3 ) f urt h er
s h o w t h at t h e l a c k of li n e ar c o n n e cti vit y i n di c at es t h at t h e
t w o m o d els r el y o n diff er e nt attri b ut es t o m a k e pr e di cti o ns.
We d eri v e n e w t h e or eti c al e x a m pl es of f ail ur e c as es of li n e ar
m o d e c o n n e cti vit y ( S e cti o n 5. 2 ).

T h e o r y o n c o n n e ct e d n ess of mi ni m u m. S e v er al w or k
e x pl or es t h e t h e or eti c al e x pl a n ati o n of m o d e c o n n e cti vit y
b y st u d yi n g t h e c o n n e ct e d n ess of s u b-l e v el s ets. Fr e e m a n
& Br u n a (2 0 1 7 ) s h o w t h at t h e mi ni m u m is c o n n e ct e d f or
2-l a y er li n e ar n et w or k wit h o ut r e g ul ari z ati o n, a n d f or d e e p er
li n e ar n et w or ks wit h L 2 r e g ul ari z ati o n. F ut h er m or e, t h e y
s h o w t h at t h e mi ni m u m of a t w o-l a y er R e L U n et w or k is
as y m pt oti c all y c o n n e ct e d, t h at is, t h er e e xists a p at h c o n n e ct-
i n g a n y t w o s ol uti o ns wit h b o u n d e d err or. N g u y e n (2 0 1 9 )
pr o v es t h at t h e s u bl e v el s ets ar e c o n n e ct e d i n p yr a mi d al
n et w or ks wit h pi e c e wis e li n e ar a cti v ati o n f u n cti o ns a n d first
hi d d e n l a y er wi d er t h a n 2 N , w h er e N is t h e n u m b er of

tr ai ni n g d at a). T h e wi dt h r e q uir e m e nt is l at er i m pr o v e d t o
N + 1 (N g u y e n , 2 0 2 1 ).

Ot h ers pr o v e c o n n e cti vit y u n d er dr o p o ut st a bilit y. K u di-
ti p u di et al. (2 0 1 9 ) s h o w t h at a pi e c e- wis e li n e ar p at h e xists
b et w e e n t w o s ol uti o ns of R e L U n et w or ks, if t h e y ar e b ot h
dr o p o ut st a bl e, or b ot h n ois e st a bl e a n d s uf fi ci e ntl y o v er-
p ar a m etri z e d. S h e v c h e n k o & M o n d elli (2 0 2 0 ) g e n er ali z e
t his pr o of t o s h o w t h at wi d er n e ur al n et w or ks ar e m or e c o n-
n e ct e d, f oll o wi n g t h e o bs er v ati o n t h at S G D s ol uti o ns f or
wi d er n et w or k ar e m or e dr o p o ut st a bl e. N g u y e n et al. (2 0 2 1 )
gi v e a n e w u p p er b o u n d of t h e l oss b arri er b et w e e n s ol u-
ti o ns usi n g t h e l oss of s p ars e s u b n et w or ks t h at ar e o pti mi z e d,
w hi c h is a mil d er c o n diti o n t h a n dr o p o ut st a bilit y.

A f e w p a p ers pr o vi d e t h e or eti c al i nsi g hts i nt o li n e ar m o d e
c o n n e cti vit y usi n g diff er e nt a p pr o a c h es. Yu nis et al. (2 0 2 2 )
e x pl ai n li n e ar m o d e c o n n e cti vit y b y fi n di n g a c o n v e x h ull
d e fi n e d b y S G D tr aj e ct or y e n d p oi nts. F er b a c h et al. (2 0 2 3 )
us e o pti m al tr a ns p ort t h e or y t o pr o v e t h at wi d e t w o-l a y er
n e ur al n et w or ks tr ai n e d wit h S G D ar e li n e arl y c o n n e ct e d
wit h hi g h pr o b a bilit y. ( Si n g h et al. , 2 0 2 4 ) e x pl ai n t h e t o p o g-
r a p h y of t h e l oss l a n ds c a p e t h at e n a bl es or o bstr u cts li n e ar
m o d e c o n n e cti vit y. Z h o u et al. (2 0 2 3 ) s h o w t h at t h e f e at ur e
m a ps of e a c h l a y er ar e als o li n e arl y c o n n e ct e d a n d i d e ntif y
c o n diti o ns t h at g u ar a nt e e li n e ar c o n n e cti vit y. Alti nt as et al.
(2 0 2 3 ) a n al y z e eff e cts of ar c hit e ct ur e, o pti mi z ati o n al g o-
rit h m, a n d d at as et o n li n e ar m o d e c o n n e cti vit y e m piri c all y.

We a p pr o a c h t h e t h e or eti c al ori gi n of m o d e c o n n e cti vit y vi a
c o nti n u o us s y m m etri es i n t h e p ar a m et er s p a c e, a c o n n e cti o n
t h at h as n ot b e e n pr e vi o usl y est a blis h e d. T his c o n n e cti o n
l e a ds t o n e w t o p ol o gi c al r es ults a n d e x pli cit e x pr essi o ns of
l o w l oss c ur v es. Usi n g t h es e r es ults, w e als o c o ntri b ut e t o
t h e u n d erst a n di n g f or li n e ar m o d e c o n n e cti vit y b y pr o vi di n g
c o n diti o ns u n d er w hi c h it a p pr o xi m at el y h ol ds.

S y m m et r y i n t h e l oss l a n ds c a p e. Dis cr et e s y m m etri es
h a v e i ns pir e d a li n e of w or k o n l oss l a n ds c a p es. Br e a et al.
(2 0 1 9 ) s h o w t h at p er m ut ati o ns of a l a y er ar e c o n n e ct e d
wit hi n a l oss l e v el s et. B y a n al y zi n g p er m ut ati o n s y m m e-
tri es, Ş i mş e k et al. (2 0 2 1 ) c h ar a ct eri z e t h e g e o m etr y of t h e
gl o b al mi ni m a m a nif ol d f or n et w or ks a n d s h o w t h at a d di n g
o n e n e ur o n t o e a c h l a y er i n a mi ni m al n et w or k c o n n e cts
t h e p er m ut ati o n e q ui v al e nt gl o b al mi ni m a. C o nti n u o us s y m-
m etri es h a v e als o g ai n e d att e nti o n i n o pti mi z ati o n ( B a dri-
n ar a y a n a n et al. , 2 0 1 5 ; P et z k a et al. , 2 0 2 0 ; K u ni n et al. ,
2 0 2 1 ; Z h a o et al. , 2 0 2 2 ). B y r e m o vi n g p er m ut ati o n a n d
r es c ali n g s y m m etri es, Pitt ori n o et al. (2 0 2 2 ) st u d y t h e g e o m-
etr y of mi ni m a i n t h e f u n cti o n al s p a c e. Z h a o et al. (2 0 2 3 )
fi n d a s et of n o nli n e ar c o nti n u o us s y m m etri es t h at p arti all y
p ar a m etri z es t h e mi ni m u m. Z h a o et al. (2 0 2 4 ) us e s y m m etr y
i n d u c e d c ur v es t o a p pr o xi m at e t h e c ur v at ur e of t h e mi ni-
m u m. O ur p a p er e x pl or es a n e w a p pli c ati o n of p ar a m et er
s y m m etr y — e x pl ai ni n g t h e c o n n e ct e d n ess of t h e mi ni m u m.
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3. P r eli mi n a ri es

I n t his s e cti o n, w e r e vi e w m at h e m ati c al c o n c e pts us e d i n
t h e p a p er a n d list s o m e us ef ul r es ults o n t h e n u m b er of c o n-
n e ct e d c o m p o n e nts of t o p ol o gi c al s p a c es. A m or e d et ail e d
v ersi o n wit h pr o ofs c a n b e f o u n d i n A p p e n di x A .

3. 1. C o n n e ct e d c o m p o n e nts

C o nsi d er t w o t o p ol o gi c al s p a c es X a n d Y . A m a p f : X →
Y is c o nti n u o us if f or e v er y o p e n s u bs et U ⊆ Y , its pr ei m-
a g e f − 1 (U ) is o p e n i n X . If X a n d Y ar e m etri c s p a c es
wit h m etri cs d X a n d d Y r es p e cti v el y, t his is e q ui v al e nt t o
t h e d elt a- e psil o n d e fi niti o n. T h at is, f is c o nti n u o us if at
e v er y x ∈ X , f or a n y ϵ > 0 t h er e e xists δ > 0 s u c h t h at
d X (x, y ) < δ i m pli es d Y (f (x ), f(y )) < ϵ f or all y ∈ X .

A t o p ol o gi c al s p a c e is c o n n e ct e d if it c a n n ot b e e x pr ess e d
as t h e u ni o n of t w o disj oi nt, n o n e m pt y, o p e n s u bs ets. A
t o p ol o gi c al s p a c e X is p at h c o n n e ct e d if f or e v er y p, q ∈ X ,
t h er e is a c o nti n u o us m a p f : [ 0, 1] → X s u c h t h at f ( 0) = p
a n d f ( 1) = q . P at h c o n n e ct e d n ess i m pli es c o n n e ct e d n ess.
T h e c o n v ers e is n ot al w a ys tr u e ( L e e , 2 0 1 0 ), b ut c o u nt er e x-
a m pl es ar e oft e n s p e ci fi c all y c o nstr u ct e d a n d u nli k el y t o b e
e n c o u nt er e d i n t h e c o nt e xt of d e e p l e ar ni n g. P at h c o n n e ct e d-
n ess c a n t h er ef or e h el p d e v el o p i nt uiti o n f or c o n n e ct e d n ess,
f or pr a cti c al p ur p os es.

T h e f oll o wi n g t h e or e m is t h e m ai n i nt uiti o n of t his p a p er
a n d will a p p e ar fr e q u e ntl y i n pr o ofs.

T h e o r e m 3. 1 ( T h e or e m 4. 7 i n (L e e , 2 0 1 0 )). L et X, Y b e
t o p ol o gi c al s p a c es a n d l et f : X → Y b e a c o nti n u o us m a p.
If X is c o n n e ct e d, t h e n f (X ) is c o n n e ct e d.

A m a p f is a h o m e o m or p his m fr o m X t o Y if f is bij e cti v e
a n d b ot h f a n d f − 1 ar e c o nti n u o us. X a n d Y ar e h o m e o-
m or p hi c if s u c h a m a p e xists. A ( c o n n e ct e d) c o m p o n e nt of
a t o p ol o gi c al s p a c e X is a m a xi m al n o n e m pt y c o n n e ct e d
s u bs et of X . T h e c o m p o n e nts of X f or m a p artiti o n of X .
T h e n e xt t w o c or oll ari es of T h e or e m 3. 1 s h o w t h at c o n-
n e ct e d n ess a n d t h e n u m b er of c o n n e ct e d c o m p o n e nts ar e
t o p ol o gi c al pr o p erti es. T h at is, t h e y ar e pr es er v e d u n d er
h o m e o m or p his ms.

C o r oll a r y 3. 2. L et f : X → Y b e a h o m e o m or p his m fr o m
X t o Y , a n d l et U ⊆ X b e a s u bs et of X wit h t h e s u bs p a c e
t o p ol o g y. T h e n U is c o n n e ct e d if a n d o nl y if f (U ) ⊆ Y is
c o n n e ct e d.

C o r oll a r y 3. 3. L et X b e a t o p ol o gi c al s p a c e t h at h as N
c o m p o n e nts. L et Y b e a t o p ol o gi c al s p a c e h o m e o m or p hi c
t o X . T h e n Y h as N c o m p o n e nts.

A n ot h er c o ns e q u e n c e of T h e or e m 3. 1 is t h e f oll o wi n g u p p er
b o u n d o n t h e n u m b er of c o m p o n e nts of t h e i m a g e of a
c o nti n u o us m a p.

P r o p ositi o n 3. 4. L et f : X → Y b e a c o nti n u o us m a p. T h e

n u m b er of c o m p o n e nts of t h e i m a g e f (X ) ⊆ Y is at m ost
t h e n u m b er of c o m p o n e nts of X .

L et X 1 , ..., Xn b e t o p ol o gi c al s p a c es. T h e pr o d u ct s p a c e
is t h eir C art esi a n pr o d u ct X 1 × ... × X n e n d o w e d wit h t h e
pr o d u ct t o p ol o g y. D e n ot e π 0 (X ) as t h e s et of c o n n e ct e d
c o m p o n e nts of a s p a c e X . T h e f oll o wi n g pr o p ositi o n pr o-
vi d es a w a y t o c o u nt t h e c o m p o n e nts of a pr o d u ct s p a c e.

P r o p ositi o n 3. 5. C o nsi d er n t o p ol o gi c al s p a c es X 1 , ..., Xn .
T h e n |π 0 (X 1 × ... × X n )| =

n
i = 0 |π 0 (X i )|.

3. 2. G r o u ps

A gr o u p is a s et G t o g et h er wit h a c o m p ositi o n l a w, writt e n
as j u xt a p ositi o n, t h at s atis fi es ass o ci ati vit y, (a b )c = a (b c )
∀ a, b, c ∈ G , h as a n i d e ntit y 1 s u c h t h at 1 a = a 1 = a
∀ a ∈ G , a n d f or all a ∈ G , t h er e e xists a n i n v ers e b s u c h
t h at a b = b a = 1 . A n a cti o n of a gr o u p G o n a s et S is a
m a p · : G × S → S t h at s atis fi es 1 · s = s f or all s ∈ S
a n d (g g ′) · s = g · (g ′ · s ) f or all g, g ′ i n G a n d all s i n
S . T h e or bit of s ∈ S is t h e s et O (s ) = { s ′ ∈ S | s ′ =
g s f or s o m e g ∈ G } .

A t o p ol o gi c al gr o u p is a gr o u p G e n d o w e d wit h a t o p ol o g y
s u c h t h at m ulti pli c ati o n a n d i n v ers e ar e b ot h c o nti n u o us.
A r e c urri n g e x a m pl e is t h e g e n er al li n e ar gr o u p G L n (R ),

wit h t h e s u bs p a c e t o p ol o g y o bt ai n e d fr o m R n 2

. T h e gr o u p
G L n (R ) h as t w o c o n n e ct e d c o m p o n e nts, w hi c h c orr es p o n d
t o m atri c es wit h p ositi v e a n d n e g ati v e d et er mi n a nt.

T h e pr o d u ct of gr o u ps G 1 , ..., Gn is a gr o u p d e n ot e d
b y G 1 × ... × G n .  T h e s et u n d erl yi n g G 1 × ... ×
G n is t h e C art esi a n pr o d u ct of G 1 , ..., Gn .  T h e
gr o u p str u ct ur e is d e fi n e d b y i d e ntit y ( 1, ..., 1) , i n v ers e
(g 1 , ..., gn ) − 1 = ( g − 1

1 , ..., g− 1
n ), a n d m ulti pli c ati o n r ul e

(g 1 , ..., gn )(g ′
1 , ..., g′n ) = ( g 1 g ′

1 , ..., gn g ′
n ).

3. 3. C o n n e ct e d n ess of g r o u ps, o r bits, a n d l e v el s ets

Fr o m T h e or e m 3. 1 , c o nti n u o us m a ps pr es er v e c o n n e ct e d-
n ess. T hr o u g h c o nti n u o us a cti o ns, w e st u d y t h e c o n n e ct e d-
n ess of or bits a n d l e v el s ets b y r el ati n g t h e m t o t h e c o n n e ct-
e d n ess of m or e f a mili ar o bj e cts s u c h as t h e g e n er al li n e ar
gr o u p. Est a blis hi n g a h o m e o m or p his m fr o m t h e gr o u p t o
t h e s et of mi ni m a r e q uir es t h e s y m m etr y gr o u p’s a cti o n t o
b e c o nti n u o us, tr a nsiti v e, a n d fr e e. H er e w e o nl y ass u m e
t h e a cti o n t o b e c o nti n u o us a n d tr y t o b o u n d t h e n u m b er of
c o m p o n e nts of t h e or bits.

As a n i m m e di at e c o ns e q u e n c e of Pr o p ositi o n 3. 4 , a n or bit
c a n n ot h a v e m or e c o m p o n e nts t h a n t h e gr o u p.

C o r oll a r y 3. 6. Ass u m e t h at t h e a cti o n of a gr o u p G o n S
is c o nti n u o us. T h e n t h e n u m b er of c o n n e ct e d c o m p o n e nts
of or bit O (s ) is s m all er t h a n or e q u al t o t h e n u m b er of
c o n n e ct e d c o m p o n e nts of G , f or all s i n S .
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L et X b e a t o p ol o gi c al s p a c e a n d L : X → R a c o nti n u-
o us f u n cti o n o n X . A t o p ol o gi c al gr o u p G is s ai d t o b e a
s y m m etr y gr o u p of L if L (g · x ) = L (x ) f or all g ∈ G a n d
x ∈ X . I n t his c as e, t h e a cti o n c a n b e d e fi n e d o n a l e v el s et
of L , L − 1 (c ) wit h a c ∈ R , as G × L − 1 (c ) → L − 1 (c ). If
t h e mi ni m u m of L c o nsists of a si n gl e or bit, C or oll ar y 3. 6
e xt e n ds t o t h e n u m b er of c o m p o n e nts of t h e mi ni m u m.

C o r oll a r y 3. 7. L et L b e a f u n cti o n wit h a s y m m etr y gr o u p
G . If t h e mi ni m u m of L c o nsists of a si n gl e G - or bit, t h e n t h e
n u m b er of c o n n e ct e d c o m p o n e nts of t h e mi ni m u m is s m all er
or e q u al t o t h e n u m b er of c o n n e ct e d c o m p o n e nts of G .

G e n er all y, s y m m etr y gr o u ps d o n ot a ct tr a nsiti v el y o n a
l e v el s et L − 1 (c ) ∈ X . I n t his c as e, t h e c o n n e ct e d n ess of
t h e or bits d o es n ot dir e ctl y i nf or m t h e c o n n e ct e d n ess of t h e
l e v el s et. N e v ert h el ess, si n c e t h e s et of or bits p artiti o ns t h e
s p a c e, w e c a n us e t h e f oll o wi n g b o u n d o n t h e n u m b er of
c o m p o n e nts of t h e s p a c e.

P r o p ositi o n 3. 8. L et X b e a t o p ol o gi c al s p a c e a n d l et
X = i X i b e a p artiti o n of X i nt o disj oi nt s u bs p a c es.
T h e n |π 0 (X )| ≤ i |π 0 (X i )|.

C o nsi d er a t o p ol o gi c al s p a c e X a n d a gr o u p G t h at a cts
o n X . L et O = { O 1 , ..., On } b e t h e s et of or bits. B y
Pr o p ositi o n 3. 8 , t h e n u m b er of c o m p o n e nts of t h e or bits gi v e
t h e f oll o wi n g u p p er b o u n d o n t h e n u m b er of c o m p o n e nts of
t h e s p a c e: |π 0 (X )| ≤

n
i = 1 |π 0 (O i )|.

4. C o n n e ct e d C o m p o n e nts of t h e Mi ni m u m

I n t his s e cti o n, w e r el at e t o p ol o gi c al pr o p erti es of s y m m etr y
gr o u ps t o t o p ol o gi c al pr o p erti es of t h e mi ni m u m. I n p arti c u-
l ar, w e pr o vi d e t h e n u m b er of c o n n e ct e d c o m p o n e nts of t h e
mi ni m u m w h e n all s y m m etri es ar e k n o w n. O mitt e d pr o ofs
c a n b e f o u n d i n A p p e n di x C .

4. 1. Li n e a r n et w o r k wit h i n v e rti bl e w ei g hts

L et P ar a m b e t h e s p a c e of p ar a m et ers. C o nsi d er t h e m ulti-
l a y er l oss f u n cti o n L : P ar a m → R ,

L : P ar a m → R , (W 1 , ..., Wl ) → || Y − W l ... W1 X ||22 .
( 1)

w h er e X, Y ∈ R h × h ar e t h e i n p ut a n d o ut p ut of t h e
n et w or k. I n t his s u bs e cti o n, w e ass u m e t h at b ot h X, Y
h a v e r a n k h , a n d P ar a m = ( R h × h ) l . T h e n L is i n v ari a nt t o
G L h (R ) l− 1 , w hi c h a cts o n P ar a m b y g · (W 1 , ..., Wl ) =
(g 1 W 1 , g2 W 2 g − 1

1 , ..., gl− 1 W l− 1 g − 1
l− 2 , Wl g

− 1
l− 1 ), f or

(g 1 , ..., gl− 1 ) ∈ G L h (R ) l− 1 .

L et L − 1 (c ) = { θ ∈ P ar a m : L (θ ) = c } b e a l e v el s et of
L . Si n c e ∥ · ∥ 2 ≥ 0 a n d L − 1 ( 0) ≠ ∅ , t h e mi ni m u m v al u e
of L is 0. B y r el ati n g t h e t o p ol o g y of G L h (R ) a n d L − 1 ( 0) ,
w e h a v e t h e f oll o wi n g o bs er v ati o ns o n t h e str u ct ur e of t h e
mi ni m u m of L .
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( b) R es n et

Fi g ur e 1: Mi ni m u m of ( a) 3-l a y er li n e ar n et ||Y −
W 3 W 2 W 1 X ||2 a n d ( b) 3-l a y er li n e ar n et wit h a r esi d u al
c o n n e cti o n ||Y − W 3 (W 2 W 1 X + X )||2 , w h er e X = 1 ,
Y = 1 , a n d W 1 , W2 , W3 ∈ R .

P r o p ositi o n 4. 1. T h er e is a h o m e o m or p his m b et w e e n
L − 1 ( 0) a n d ( G L h ) l− 1 .

Si n c e ( G L h ) l− 1 h as 2 l− 1 c o n n e ct e d c o m p o n e nts a n d h o m e-
o m or p his ms pr es er v e t o p ol o gi c al pr o p erti es, L − 1 ( 0) als o
h as 2 l− 1 c o n n e ct e d c o m p o n e nts. N ot e t h at t his n u m b er
is i n d e p e n d e nt of t h e n et w or k wi dt h, d u e t o t h e f a ct t h at
G L n (R )) h as t w o c o n n e ct e d c o m p o n e nts r e g ar dl ess of n .

C o r oll a r y 4. 2. T h e mi ni m u m of L h as 2 l− 1 c o n n e ct e d c o m-
p o n e nts.

4. 2. R es N et wit h 1 D w ei g hts

T h e t o p ol o gi c al pr o p erti es of t h e mi ni m u m s et d e p e n d o n
t h e ar c hit e ct ur e. As a n e x a m pl e of t his d e p e n d e n c y, w e
s h o w t h at a d di n g a s ki p c o n n e cti o n c h a n g es t h e n u m b er of
c o n n e ct e d c o m p o n e nts of t h e mi ni m u m.

C o nsi d er a r esi d u al n et w or k W 3 (W 2 W 1 X + ε X ) a n d l oss
f u n cti o n

L (W 3 , W2 , W1 ) = ||Y − W 3 (W 2 W 1 X + ε X )||2 , ( 2)

w h er e (W 1 , W2 , W3 ) ∈ P ar a m = R n × n × R n × n × R n × n ,
ε ∈ R , a n d d at a X ∈ R n × n , Y ∈ R n × n . T h e f oll o wi n g
pr o p ositi o n st at es t h at f or a t hr e e-l a y er r esi d u al n et w or k
wit h w ei g ht m atri c es of di m e nsi o n 1 × 1 , t h e n u m b er of
c o m p o n e nts of t h e mi ni m u m is s m all er t h a n t h at of a li n e ar
n et w or k wit h o ut t h e s ki p c o n n e cti o n.

P r o p ositi o n 4. 3. L et n = 1 . Ass u m e t h at X, Y ≠ 0 . W h e n
ε = 0 , t h e mi ni m u m of L h as 4 c o n n e ct e d c o m p o n e nts.
W h e n ε ≠ 0 , t h e mi ni m u m of L h as 3 c o n n e ct e d c o m p o n e nts.

T h e ε = 0 c as e f oll o ws fr o m C or oll ar y 4. 2 . F or t h e ε ≠ 0
c as e, t h e pr o of d e c o m p os es t h e mi ni m u m of L i nt o t w o s ets
S 1 a n d S 0 , c orr es p o n di n g t o t h e mi ni m a wit h o ut t h e s ki p
c o n n e cti o n a n d a n e xtr a s et of s ol uti o ns b e c a us e of t h e s ki p
c o n n e cti o n. S 1 is h o m e o m or p hi c t o G L 1 × G L 1 a n d h as
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4 c o n n e ct e d c o m p o n e nts. S 0 is a li n e a n d h as 1 c o n n e ct e d
c o m p o n e nt. T w o c o m p o n e nts of S 1 ar e c o n n e ct e d t o S 0 ,
w hil e t h e ot h er t w o c o m p o n e nts of S 1 ar e n ot. T h er ef or e, S 0

c o n n e cts t w o c o m p o n e nts of S 1 . As a r es ult, t h e mi ni m u m
of L h as 3 c o n n e ct e d c o m p o n e nts.

Fi g ur e 1 vis u ali z es t h e mi ni m u m wit h o ut a n d wit h t h e s ki p
c o n n e cti o n. T his r es ult r e v e als t h e eff e ct of s ki p c o n n e cti o n
o n t h e c o n n e ct e d n ess of t h e s et of mi ni m a, w hi c h m a y l e a d
t o a n e w e x pl a n ati o n of t h e eff e cti v e n ess of R es N ets (H e
et al. , 2 0 1 6 ) a n d D e ns e N ets (H u a n g et al. , 2 0 1 7 ). We l e a v e
t h e c o n n e cti o n b et w e e n t h e t o p ol o g y of t h e mi ni m u m a n d
t h e o pti mi z ati o n a n d g e n er ali z ati o n pr o p erti es of n e ur al
n et w or ks t o f ut ur e w or k.

5. M o d e C o n n e cti vit y

T h e pr e vi o us s e cti o n c o u nts t h e c o n n e ct e d c o m p o n e nts of
t h e mi ni m u m a n d s h o ws t h at t h e c o n n e ct e d n ess of t h e mi ni-
m u m is r el at e d t o t h e s y m m etr y of t h e l oss f u n cti o n u n d er
c ert ai n c o n diti o ns. I n t his s e cti o n, w e us e t his i nsi g ht t o
e x pl ai n r e c e nt e m piri c al o bs er v ati o ns t h at wit h hi g h pr o b a-
bilit y t w o p oi nts i n t h e mi ni m u m ar e c o n n e ct e d, i. e. t h er e is
a l ar g e c o n n e ct e d c o m p o n e nt. Pr o ofs of t his s e cti o n a p p e ars
i n A p p e n di x D .

M o d e c o n n e cti vit y r ef ers t o t h e p h e n o m e n o n t h at t h er e e xist
hi g h a c c ur a c y or l o w l oss p at hs b et w e e n t w o mi ni m a f o u n d
b y st o c h asti c gr a di e nt d es c e nt ( G ari p o v et al. , 2 0 1 8 ). Li n e ar
m o d e c o n n e cti vit y o c c urs w h e n all p oi nts o n t h e li n e ar i nt er-
p ol ati o n b et w e e n t w o mi ni m a h a v e l o w l oss v al u es. M or e
r e c e ntl y, p er m ut ati o n of n e ur o ns is us u all y p erf or m e d t o
ali g n t h e t w o mi ni m a b ef or e e v al u ati n g li n e ar m o d e c o n-
n e cti vit y ( E nt e z ari et al. , 2 0 2 2 ; Ai ns w ort h et al. , 2 0 2 3 ). We
us e t h e t er m m o d e c o n n e cti vit y w h e n w e c o nsi d er ar bitr ar y
c ur v es a n d will s p e cif y li n e ar m o d e c o n n e cti vit y w h e n o nl y
li n e ar i nt er p ol ati o n is c o nsi d er e d.

5. 1. M o d e c o n n e cti vit y u p t o p e r m ut ati o n

F or t h e f a mil y of li n e ar n e ur al n et w or ks d e fi n e d i n S e cti o n
4. 1 , w e s h o w t h at p er m ut ati o ns all o w us t o c o n n e ct p oi nts
i n t h e mi ni m u m t h at ar e n ot c o n n e ct e d wit h o ut p er m ut a-
ti o n. O ur r es ults s u p p ort t h e e m piri c al o bs er v ati o n t h at n e u-
r o n ali g n m e nt b y p er m ut ati o n i m pr o v es m o d e c o n n e cti vit y
(Tatr o et al. , 2 0 2 0 ).

C o nsi d er a g ai n t h e li n e ar n et w or k (1 ) wit h i n v erti bl e
w ei g hts. W h e n l = 2 , t h e mi ni m u m of L h as t w o c o n-
n e ct e d c o m p o n e nts c orr es p o n di n g t o t h e t w o c o n n e ct e d
c o m p o n e nts of t h e G L gr o u p. A n y g ∈ G L t h at is n ot o n
t h e i d e ntit y c o m p o n e nt c a n t a k e a p oi nt o n o n e c o n n e ct e d
c o m p o n e nt of t h e mi ni m u m t o t h e ot h er.

L e m m a 5. 1. C o nsi d er t w o p oi nts (W 1 , W2 ), (W ′
1 , W ′

2 ) ∈
L − 1 ( 0) t h at ar e n ot c o n n e ct e d i n L − 1 ( 0) . F or a n y g ∈
G L (h ) s u c h t h at d et( g ) < 0 , g · (W 1 , W2 ) a n d (W ′

1 , W ′
2 )

ar e c o n n e ct e d i n L − 1 ( 0) .

W h e n t h e hi d d e n di m e nsi o n h ≥ 2 , t h er e e xists a p er m ut a-
ti o n g s u c h t h at d et( g ) > 0 , a n d a p er m ut ati o n g s u c h t h at
d et( g ) < 0 . T h er ef or e, L e m m a 5. 1 i m pli es t h e f oll o wi n g
r es ult t h at all p oi nts o n t h e mi ni m u m of L ar e c o n n e ct e d u p
t o p er m ut ati o n.

P r o p ositi o n 5. 2. Ass u m e t h at h ≥ 2 .  F or
all (W 1 , ..., Wl ), (W

′
1 , ..., W ′

l ) ∈ L − 1 ( 0) , t h er e e x-
ists a list of p er m ut ati o n m atri c es P 1 , ..., Pl− 1 s u c h
t h at (W 1 P 1 , P − 1

1 W 2 P 2 , ..., Pl− 2 W l− 1 P l− 1 , Pl− 1 W l ) a n d
(W ′

1 , ..., W ′
l ) ar e c o n n e ct e d i n L − 1 ( 0) .

T h e r es ults a b o v e ar e e x a m pl es w h er e a l ar g er p art of t h e
mi ni m u m b e c o m es c o n n e ct e d aft er a p er m ut ati o n. M or e
g e n er all y, p er m ut ati o n i m pr o v es m o d e c o n n e cti vit y i n c as es
w h er e a n or bit is n ot c o n n e ct e d d u e t o t h e s y m m etr y gr o u p
c o m prisi n g m ulti pl e c o n n e ct e d c o m p o n e nts, t h e or bit d o es
n ot r esi d e o n t h e s a m e c o n n e ct e d c o m p o n e nt of t h e mi ni-
m u m, a n d t h er e e xists a p er m ut ati o n t h at t a k es a p oi nt o n
o n e c o n n e ct e d c o m p o n e nt of t h e gr o u p t o a n ot h er.

5. 2. F ail u r e c as e of li n e a r m o d e c o n n e cti vit y

As a n a p pli c ati o n of o bt ai ni n g n e w mi ni m a fr o m ol d o n es us-
i n g s y m m etri es, w e s h o w t h at li n e ar m o d e c o n n e cti vit y f ails
t o h ol d i n m ulti-l a y er r e gr essi o ns. T h e f oll o wi n g pr o p ositi o n
s a ys t h at i n n e ur al n et w or ks wit h a h o m o g e n e o us a cti v ati o n
(s u c h as l e a k y R e L U) b et w e e n t h e l ast t w o l a y ers, t h e err or
b arri er i n t h e li n e ar i nt er p ol ati o n b et w e e n t w o s ol uti o ns c a n
b e ar bitr aril y l ar g e.

P r o p ositi o n 5. 3. C o nsi d er a l oss f u n cti o n of t h e f oll o wi n g
f or m

L : P ar a m → R , W = ( W 1 , ..., Wl ) →

||Y − W l σ (W l− 1 f (W l− 2 , Wl− 3 , ..., W1 , X))||22 ,( 3)

w h er e f is a f u n cti o n of W l− 2 , Wl− 3 , ..., W1 , X, a n d
σ (c z ) = c k σ (z ) f or all c ∈ R a n d s o m e k > 0 . Ass u m e
t h at ||Y ||2 ≠ 0 a n d L − 1 ( 0) ≠ ∅ . Als o ass u m e t h at l ≥ 2 .
F or a n y p ositi v e n u m b er b > 0 , t h er e e xist W, W ′ ∈ L − 1 ( 0)
t h at b el o n g t o t h e s a m e c o n n e ct e d c o m p o n e nt of L − 1 ( 0)
a n d 0 < α < 1 , s u c h t h at L (( 1 − α )W + α W ′) > b .

T h e pr o of c o nstr u cts a n e w p oi nt o n t h e mi ni m u m fr o m a n
e xisti n g o n e usi n g t h e r es c ali n g s y m m etr y of h o m o g e n e o us
f u n cti o ns. T h e t w o p oi nts c a n b e f ar a p art si n c e t h e or bit of
t his gr o u p a cti o n is u n b o u n d e d. T o pr o vi d e i nt uiti o n, Fi g ur e
2 vis u ali z es t h e t w o p oi nts o n t h e mi ni m u m of a t w o-l a y er
n et w or k wit h w ei g hts of di m e nsi o n 1 × 1 a n d t h e li n e ar
i nt er p ol ati o n b et w e e n t h e m. T h e li n e ar n et w or k us e d is a
s p e ci al c as e of a h o m o g e n e o us n et w or k. N ot e t h at o ur r es ult
h er e d o es n ot c o ntr a di ct wit h t h e l a y er- wis e c o n n e cti vit y
r es ult i n (A dil o v a et al. , 2 0 2 4 ), as m or e t h a n o n e l a y er of
t h e t w o mi ni m a ar e diff er e nt.
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Fi g ur e 2: I nt er p ol ati o n b et w e e n 2 mi ni m a of l oss f u n c-
ti o n L (W 1 , W2 ) = ||Y − W 2 W 1 X ||2 wit h 1 di m e nsi o n al
w ei g hts. L oss o n t h e i nt er p ol ati o n c a n b e u n b o u n d e d.

T h e l oss f u n cti o n c o nsi d er e d i n Pr o p ositi o n 5. 3 is si g nif-
i c a ntl y m or e g e n er al t h a n t h os e i n S e cti o n 5. 1 . F or t h e
ar c hit e ct ur e, w e o nl y r e q uir e t h e pr es e n c e of a r es c ali n g
s y m m etr y i n t h e l ast t w o l a y ers, a n d f c a n b e a n y n e u-
r al n et w or k wit h a n y a cti v ati o n. Ot h er ass u m pti o ns of t h e
pr o p ositi o n ar e als o n ot e x c essi v el y r estri cti v e, as t h e l a b els
Y ar e r ar el y all z er o, a n d t h er e us u all y e xists a mi ni m u m i n
c o m m o n m a c hi n e l e ar ni n g t as ks.

Pr o p ositi o n 5. 3 e xt e n ds t o c as es w h er e w e all o w c ert ai n
p er m ut ati o ns. T h e f oll o wi n g pr o p ositi o n st at es t h at u n d er
a d diti o n al ass u m pti o ns, t h e err or b arri er i n t h e li n e ar i nt er-
p ol ati o n is u n b o u n d e d e v e n wit h n e ur o n p er m ut ati o ns. T h e
pr o of c o nstr u cti o n is si mil ar t o t h at of Pr o p ositi o n 5. 3 .

L et S n b e t h e s et of n × n p er m ut ati o n m atri c es, w h er e n is
t h e n u m b er of c ol u m ns of W l .

P r o p ositi o n 5. 4. C o nsi d er t h e l oss f u n cti o n wit h t h e s a m e
s et of ass u m pti o ns i n Pr o p ositi o n 5. 3 . Ass u m e a d diti o n all y
t h at t h er e d o es n ot e xist a p er m ut ati o n P s u c h t h at e v er y
c ol u m n of P σ (W l− 1 f (W l− 2 , Wl− 3 , ..., W1 , X)) is i n t h e
n ull s p a c e of W l . F or a n y p ositi v e n u m b er b > 0 , t h er e e xist
(W 1 , ..., Wl ), (W

′
1 , ..., W ′

l ) ∈ L − 1 ( 0) a n d 0 < α < 1 , s u c h
t h at (W 1 , ..., Wl− 2 ) = ( W ′

1 , ..., W ′
l− 2 ) a n d

mi n
P ∈ S n

L ( 1 − α )(W 1 , ..., Wl )

+ α (W 1 , ..., Wl− 2 , P − 1 W l− 1 , Wl P ) > b.

B y i n cl u di n g p er m ut ati o n, t h e s etti n g i n Pr o p ositi o n 5. 4 is
cl os er t o t h e s etti n g i n w hi c h li n e ar m o d e c o n n e cti vit y is
e m piri c all y o bs er v e d. H o w e v er, t h e p er m ut ati o n i n Pr o p o-
siti o n 5. 4 is r estri ct e d t o t h e first t w o l a y ers, w hi c h d o es
n ot r ul e o ut t h e p ossi bilit y of l o w eri n g t h e l oss b arri er b y
i n cl u di n g p er m ut ati o ns of ot h er n e ur o ns.

T h e pr o ofs of Pr o p ositi o n 5. 3 a n d 5. 4 d e p e n d o n t h e r es c al-
i n g s y m m etr y of h o m o g e n e n o us a cti v ati o n f u n cti o ns. F or

ot h er a cti v ati o ns wit h k n o w n s y m m etri es, si mil ar r es ults
m a y b e d eri v e d as usi n g t h e l ar g e s et of mi ni m u m o bt ai n e d
fr o m t h e gr o u p a cti o n. W h et h er t h e l oss b arri er o n t h e li n e ar
i nt er p ol ati o n is b o u n d e d c a n d e p e n d o n t h e c o m p a ct n ess of
t h e s y m m etr y gr o u p a n d t h e c ur v at ur e of t h e mi ni m u m. We
l e a v e a s yst e m ati c i n v esti g ati o n of t h e c o n diti o n f or li n e ar
m o d e c o n n e cti vit y t o f ut ur e w or k.

O n e p ossi bl e r e as o n w h y li n e ar m o d e c o n n e cti vit y is o b-
s er v e d i n pr a cti c e d es pit e Pr o p ositi o n 5. 4 is t h at o nl y a
s m all p art of t h e mi ni m a is r e a c h a bl e b y st o c h asti c gr a di e nt
d es c e nt d u e t o i m pli cit bi as ( Mi n et al. , 2 0 2 1 ), as ot h er o pti-
mi z ers h a v e b e e n o bs er v e d t o fi n d l ess c o n n e ct e d mi ni m a
(Alti nt as et al. , 2 0 2 3 ).

5. 3. Li n e a r m o d e c o n n e cti vit y of o r bits

S y m m etr y a c c o u nts f or a l ar g e p art of t h e s et of mi ni m a. I n
p arti c ul ar, gi v e n a k n o w n mi ni m u m x , t h e or bit of x d e fi n es
a s et of p oi nts t h at ar e als o mi ni m a. Alt h o u g h n ot all mi ni m a
ar e o n t h e s a m e or bit of k n o w n s y m m etri es, e a c h or bit oft e n
c o nt ai ns a n o ntri vi al s et of mi ni m a. I n t his s e cti o n, w e
e x a mi n e t h e err or b arri er of li n e ar i nt er p ol ati o ns of mi ni m a
r estri ct e d t o a n or bit of p ar a m et er s y m m etri es.

W h e n t h e ar c hit e ct ur e c o nt ai ns a m ulti pli c ati o n of t w o
w ei g ht m atri c es W 2 W 1 , w h er e W 2 ∈ R m × h , W1 ∈ R h × n ,
t h er e is a G L h s y m m etr y t h at a cts o n (W 1 , W2 ) b y g ·
(W 1 , W2 ) = ( g W 1 , W2 g − 1 ) f or g ∈ G L h . T h e f oll o wi n g
pr o p ositi o n st at es t h at a p oi nt o n t h e li n e ar i nt er p ol ati o n of
t w o p oi nts i n t h e s a m e or bit c a n b e f ar a w a y fr o m t h e or bit.

P r o p ositi o n 5. 5. L et A ∈ R n × n b e a n i n v erti bl e m atri x.
L et s et S = { (W 1 , W2 ) : W 1 , W2 ∈ R n × n , W1 W 2 = A } .
F or a n y p ositi v e n u m b er b > 0 , t h er e e xist W ′, W ′′ ∈ S a n d
0 < α < 1 , s u c h t h at mi n ˆW ∈ S ∥ (( 1 − α )W ′ + α W ′′) −
ˆW ∥ 2 > b .

T h e str u ct ur e i n t h e f or m of W 1 W 2 is n ot u n c o m m o n i n
d e e p l e ar ni n g ar c hit e ct ur es. N ot a bl y, t h e p ar a m et er m atri c es
f or q u eri es a n d k e ys i n t h e att e nti o n f u n cti o n ar e m ulti pli e d
dir e ctl y i n t his m a n n er ( Vas w a ni et al. , 2 0 1 7 ), t h us a d mitti n g
t h e G L h s y m m etr y a n d h a vi n g or bits wit h pr o p erti es gi v e n
b y Pr o p ositi o n 5. 5 .

W hil e t h e err or b arri er i n t h e li n e ar i nt er p ol ati o n of t w o
mi ni m a c a n b e u n b o u n d e d ( Pr o p ositi o n 5. 3 ), t his t y pi c all y
o c c urs w h e n t h e p ar a m et ers ar e all o w e d t o b e ar bitr aril y
l ar g e. C o nstr ai ni n g t h e p ar a m et ers t o r e m ai n b o u n d e d e n-
s ur es t h at t h e l oss b arri er is b o u n d e d a b o v e. T h e f oll o wi n g
pr o p ositi o n m a k es t his i nt uiti o n pr e cis e f or t h e s et of mi ni m a
c o nsisti n g of a p arti c ul ar or bit.

P r o p ositi o n 5. 6. C o nsi d er t h e l oss f u n cti o n wit h t h e s a m e
s et of ass u m pti o ns i n Pr o p ositi o n 5. 3 . L et W ∈ L − 1 ( 0)
b e a p oi nt o n t h e mi ni m u m. C o nsi d er t h e m ulti pli c ati v e
gr o u p of p ositi v e r e al n u m b ers R + t h at a cts o n L − 1 ( 0) b y
g · (W 1 , ..., Wl ) = ( W 1 , ..., Wl− 2 , g Wl− 1 , Wl g

− k ), w h er e
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g ∈ R + . T h e n t h er e e xists a p ositi v e n u m b er b > 0 , s u c h
t h at f or all 0 < α < 1 a n d W ′ ∈ O r bit (W ) wit h ||W ′

i ||2 <
c f or all i a n d s o m e c > 0 , t h e l oss v al u e f or p oi nts o n t h e
li n e ar i nt er p ol ati o n L (( 1 − α )W + α W ′) < b .

Pr o p ositi o n 5. 5 a n d 5. 6 ar e t w o e x a m pl es w h er e t h e k n o wl-
e d g e of p ar a m et er s y m m etr y e n a bl es a n al ysis of t h e li n e ar
c o n n e cti vit y of s u bs ets of mi ni m a. As m or e c o nti n u o us
s y m m etri es ar e c h ar a ct eri z e d ( e. g. t h e n o nli n e ar s y m m e-
tri es i n Z h a o et al. (2 0 2 3 )), t h es e a n al ysis c a n p ot e nti all y b e
e xt e n d e d t o e v e n l ar g er p arts of t h e s et of mi ni m a.

6. C u r v es o n Mi ni m u m f r o m G r o u p A cti o ns

T h e p at hs c o n n e cti n g t w o p oi nts i n t h e s et of mi ni m a m a y
n ot b e li n e ar. Pr e vi o usl y, t h es e p at hs w er e dis c o v er e d e m pir-
i c all y b y fi n di n g p ar a m etri c c ur v es o n w hi c h t h e e x p e ct e d
l oss is mi ni mi z e d (G ari p o v et al. , 2 0 1 8 ). Usi n g p ar a m et er
s p a c e s y m m etr y, w e u n c o v er a n alt er n ati v e a n d pri n ci pl e d
w a y t o fi n d c ur v es o n t h e mi ni m u m.

6. 1. S y m m et r y i n d u c e d c u r v es

S u p p os e t h e l oss f u n cti o n L : P ar a m → R is i n v ari a nt wit h
r es p e ct t o s o m e Li e gr o u p G . C o nsi d er t h e f oll o wi n g c ur v e
f or a p oi nt w ∈ P ar a m a n d M ∈ Li e (G ):

γ M : R × P ar a m → P ar a m ,

γ M (t, w ) = e x p ( t M ) · w . ( 4)

Si n c e e x p ( t M ) ∈ G a n d t h e a cti o n of G pr es er v es t h e
v al u e of L , e v er y p oi nt o n γ M is i n t h e s a m e L l e v el s et
as w . T his pr o vi d es a w a y t o fi n d a c ur v e of c o nst a nt l oss
b et w e e n t w o p oi nts t h at ar e i n t h e s a m e or bit. C o n cr et el y,
gi v e n t w o p oi nts w 1 a n d w 2 = g ·w 1 , l et γ b e t h e f oll o wi n g
c ur v e:

γ : [ 0, 1] × G × P ar a m → P ar a m ,

γ (t, g, w ) = e x p ( t l o g (g )) · w . ( 5)

N ot e t h at γ ( 0, g, w 1 ) = w 1 , γ ( 1, g, w 1 ) = w 2 , a n d
L (γ (t, g, w 1 )) = L (w 1 ) = L (w 2 ) f or all t ∈ [ 0, 1] . H e n c e,
γ is a c ur v e t h at c o n n e cts t h e p oi nts w 1 a n d w 2 , a n d e v er y
p oi nt o n γ h as t h e s a m e l oss v al u e as L (w 1 ) = L (w 2 ).

F or a gr o u p G , t h e c ur v e γ is d e fi n e d w h e n t h e m a p · :
G × P ar a m → P ar a m is c o nti n u o us a n d i d · w = w f or
all w ∈ P ar a m , e v e n if it is n ot a gr o u p a cti o n or d o es n ot
pr es er v e l oss. H o w e v er, w h e n · d o es n ot pr es er v e l oss, t h e
l oss c a n c h a n g e o n γ . C o nsi d er o ur t w o-l a y er n et w or k a n d
t h e f oll o wi n g m a p:

· : G L (h, R ) × P ar a m → P ar a m

g · (U, V ) = (U σ (V X )σ (g V X ) † , g V ).( 6)

W h e n σ is t h e i d e ntit y f u n cti o n, · pr es er v es t h e l oss v al u e,
a n d γ d e fi n es a c ur v e o n t h e mi ni m u m. I n g e n er al, t h e m a p

(6 ) d o es n ot pr es er v e l oss w h e n b at c h si z e k is l ar g er t h a n
hi d d e n di m e nsi o n h . H o w e v er, t h e m a xi m u m c h a n g e of l oss
o n γ c a n b e b o u n d e d as f oll o ws.

P r o p ositi o n 6. 1. L et (U, V ) ∈ P ar a m , a n d (U ′, V ′) =
g · (U, V ). T h e n

∥ U σ (V X ) − U ′σ (V ′X )∥ ≤ ∥ U σ (V X )∥ . ( 7)

We d e m o nstr at e Pr o p ositi o n 6. 1 e m piri c all y usi n g a s et of
t w o-l a y er n et w or ks wit h v ari o us p ar a m et er s p a c e di m e n-
si o ns. S p e ci fi c all y, w e c o nstr u ct n et w or ks i n t h e f or m of
∥ U σ (V X ) − Y ∥ 2 , wit h σ b ei n g t h e si g m oi d f u n cti o n, X ∈
R n × k , Y ∈ R m × k , a n d (U, V ) ∈ P ar a m = R m × h × R h × n .
We cr e at e 1 0 0 s u c h n et w or ks, e a c h wit h m, h, n, k r a n d o ml y
s a m pl e d fr o m i nt e g ers b et w e e n 2 a n d 1 0 0. I n e a c h n et w or k,
el e m e nts i n X a n d Y ar e s a m pl e d i n d e p e n d e ntl y fr o m a
n or m al distri b uti o n, a n d U, V ar e r a n d o ml y i niti ali z e d. Af-
t er tr ai ni n g wit h S G D, w e c o m p ut e (U ′, V ′) = g · (U, V )
usi n g (6 ) wit h a r a n d o m i n v erti bl e m atri x g . We t h e n pl ot
∥ U σ (V X )∥ a g ai nst ∥ U σ (V X ) − U ′σ (V ′X )∥ i n Fi g ur e
3 ( a). All p oi nts ar e a b o v e t h e li n e y = x , as pr e di ct e d b y
Pr o p ositi o n 6. 1 .

W hil e t h e m a p (6 ) is n ot a gr o u p a cti o n i n g e n er al, it c o n-
n e cts m or e p oi nts i n t h e s et of mi ni m a t h a n o nl y usi n g
k n o w n s y m m etri es, a n d t h e p oi nts o n t h e c o n n e cti n g c ur v es
h a v e b o u n d e d l oss. Fi g ur e 3 ( b- c) s h o ws t h at t h e l oss o n t h e
c ur v es i n d u c e d b y a p pr o xi m at e s y m m etri es r e m ai ns r el a-
ti v el y l o w, c o m p ar e d t o t h e l oss o n t h e li n e ar i nt er p ol ati o n
b et w e e n t h e t w o e n ds of t h es e c ur v es. We c o nsi d er a t w o
l a y er n et w or k wit h l oss f u n cti o n ∥ W 2 σ (W 1 X ) − Y ∥ , wit h σ
b ei n g a l e a k y R e L U f u n cti o n, X ∈ R 1 6 × 8 , Y ∈ R 6 4 × 8 , a n d
(W 1 , W2 ) ∈ P ar a m = R 3 2 × 1 6 × R 3 2 . I n t h e fi g ur es, γ d e-
n ot es a c ur v e o bt ai n e d usi n g E q u ati o n (5 ) t o g et h er wit h (6 ).
T h e st arti n g p oi nt of γ is a mi ni m u m f o u n d b y S G D. B ot h
γ a n d t h e li n e ar i nt er p ol ati o n ar e p ar a m etri z e d b y t ∈ [ 0, 1] .
C o m p ar e d t o t h e li n e ar i nt er p ol ati o n b et w e e n t h e t w o e n d
p oi nts of γ , t h e l oss o n γ is c o nsist e ntl y l o w er. Fi g ur e 3 ( c)
us es gr o u p el e m e nts wit h l ar g er m a g nit u d es, r es ulti n g i n a
l ar g er dist a n c e b et w e e n γ ( 0) a n d γ ( 1) , w hi c h mi g ht e x pl ai n
t h e hi g h er l oss b arri er o n t h eir li n e ar i nt er p ol ati o n.

6. 2. A p p r o xi m at e li n e a r c o n n e cti vit y u n d e r b o u n d e d
c u r v at u r e of mi ni m a

K n o wi n g t h e e x pli cit e x pr essi o n of c o n n e cti n g c ur v es bri n gs
n e w i nsi g ht i nt o w h e n li n e ar m o d e c o n n e cti vit y a p pr o xi-
m at el y h ol ds. I n p arti c ul ar, t h es e e x pr essi o ns pr o vi d e i nf or-
m ati o n a b o ut t h e c ur v at ur e of t h e c ur v es. If t h e c ur v at ur es
ar e s m all, t h e n t h er e e xists a n a p pr o xi m at el y str ai g ht li n e
c o n n e cti n g a n y t w o mi ni m a al o n g w hi c h t h e l oss r e m ai ns
cl os e t o its mi ni m u m v al u e.

C o nsi d er a l oss l e v el s et L − 1 (c ) = { w ∈ P ar a m :
L (w ) = c } wit h s o m e c ∈ R . S u p p os e w e h a v e t w o p oi nts
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Fi g ur e 3: ( a) E m piri c al v ali d ati o n of Pr o p ositi o n 6. 1 . ( b- c)
T h e l oss o n t h e c ur v es i n d u c e d b y a p pr o xi m at e s y m m etri es
(γ ) r e m ai ns r el ati v el y l o w, c o m p ar e d t o t h e l oss o n t h e li n e ar
i nt er p ol ati o n b et w e e n t h e t w o e n ds of t h es e c ur v es. ( b) a n d
( c) diff er b y t h e m a g nit u d e of t h e gr o u p el e m e nt us e d. T h e
l oss is a v er a g e d o v er 5 r a n d o m c ur v es.

w 1 , w 2 ∈ L − 1 (c ) c o n n e ct e d b y a s m o ot h c ur v e γ l yi n g
e ntir el y wit hi n L − 1 (c ). T h e c ur v at ur e of γ c a n b e writt e n

as κ (γ, t ) = ∥ T ′ ( t ) ∥
∥ γ ′ ( t ) ∥ , w h er e γ ′ = d γ

d t a n d T (t) = γ ′ ( t )
∥ γ ′ ( t ) ∥ . If

t h e c ur v at ur e of t his c ur v e is s m all or b o u n d e d, w e c a n s h o w
t h at t h er e e xists a n a p pr o xi m at el y str ai g ht li n e c o n n e cti n g
w 1 a n d w 2 t h at r e m ai ns cl os e t o L − 1 (c ) . A d diti o n all y, if L
is Li ps c hit z c o nti n u o us, its v al u e r e m ai ns cl os e t o c al o n g
t his li n e s e g m e nt. We f or m ali z e t his wit h t h e f oll o wi n g
t h e or e m.

T h e o r e m 6. 2. L et L − 1 (c ) ⊂ P ar a m , wit h c ∈ R , b e a l e v el
s et of t h e l oss f u n cti o n L : P ar a m → R . L et γ : [ 0, 1] →
L − 1 (c ) b e a s m o ot h c ur v e i n L − 1 (c ) c o n n e cti n g t w o p oi nts
w 1 = γ ( 0) a n d w 2 = γ ( 1) . S u p p os e t h e c ur v at ur e κ (t) of
γ s atis fi es κ (t) ≤ κ m a x f or all t ∈ [ 0, 1] .

L et S b e t h e str ai g ht li n e s e g m e nt c o n n e cti n g w 1 a n d w 2 .
T h e n, f or a n y p oi nt w o n S , t h e dist a n c e t o L − 1 (c ) is
b o u n d e d b y

di st( w , L− 1 (c )) ≤ d m a x , ( 8)

wit h

d m a x =
1

κ m a x



 1 − 1 −
κ m a x ∥ w 2 − w 1 ∥ 2

2

2


 .

F urt h er m or e, ass u mi n g L is Li ps c hitz c o nti n u o us wit h Li ps-
c hitz c o nst a nt C L , t h e l oss at a n y p oi nt w o n S s atis fi es

|L (w ) − c | ≤ C L d m a x . ( 9)

W h e n t h e gr o u p a cti o n i n d u c es c ur v es wit h b o u n d e d c ur-
v at ur e, T h e or e m 6. 2 a p pli es. Si n c e t h e mi ni m u m is als o
a l e v el s et of L , T h e or e m 6. 2 pr o vi d es a s uf fi ci e nt c o n di-
ti o n f or li n e ar m o d e c o n n e cti vit y t o a p pr o xi m at el y h ol d.
W h e n t h e c ur v at ur e of t h e mi ni m u m is s m all, p oi nts o n
t h e mi ni m u m ar e a p pr o xi m at el y c o n n e ct e d t hr o u g h n e arl y
str ai g ht p at hs al o n g wit h t h e l oss d o es n ot i n cr e as e si g-
ni fi c a ntl y. If κ m a x ∥ w 2 − w 1 ∥ is s m all, w e c a n us e t h e
first- or d er a p pr o xi m ati o n of t h e s q u ar e r o ot a n d o bt ai n

d m a x ≈
κ m a x ∥ w 2 − w 1 ∥ 2

2

8 .

7. Dis c ussi o n

I n t his w or k, w e st u d y t o p ol o gi c al pr o p erti es of t h e l oss
l e v el s ets b y r el ati n g t h eir t o p ol o g y t o t h e t o p ol o g y of s y m-
m etr y gr o u ps. S p e ci fi c all y, w e d eri v e t h e n u m b er of c o n-
n e ct e d c o m p o n e nts of f ull-r a n k m ulti-l a y er n et w or ks wit h
a n d wit h o ut s ki p c o n n e cti o ns, a n d pr o v e m o d e c o n n e cti vit y
u p t o p er m ut ati o n f or f ull-r a n k li n e ar r e gr essi o ns. Usi n g
s y m m etr y i n t h e p ar a m et er s p a c e, w e c o nstr u ct a n e x pli cit
e x pr essi o n f or c ur v es t h at c o n n e ct t w o p oi nts i n t h e s a m e
or bit. T h e e x pli cit e x pr essi o ns all o w us t o o bt ai n t h e c ur-
v at ur e of t h es e c ur v es, w hi c h ar e us ef ul t o b o u n d t h e l oss
b arri er o n li n e ar i nt er p ol ati o n b et w e e n mi ni m a.

F or pr a ctiti o n ers, t h es e r es ults m oti v at e c o n cr et e str at e gi es —
a n d c a uti o ns —f or t as ks t h at n a vi g at e t h e l oss l a n ds c a p e,
i n cl u di n g m o d el m er gi n g, e ns e m bli n g, a n d fi n e-t u ni n g:

• O n e c a n b uil d l o w-l oss c ur v es e x pli citl y usi n g k n o w n
p ar a m et er s y m m etri es. T his gi v es a pri n ci pl e d a n d
ef fi ci e nt w a y t o o bt ai n n e w mi ni m a fr o m ol d o n es, p o-
t e nti all y us ef ul f or ( 1) g e n er ati n g m o d el e ns e m bl es
wit h l o w c ost; ( 2) i m pr o vi n g m o d el ali g n m e nt b y al-
l o wi n g a m u c h l ar g er gr o u p of tr a nsf or m ati o ns t h a n
p er m ut ati o n; a n d ( 3) miti g ati n g c at astr o p hi c f or g etti n g
i n fi n e-t u ni n g b y c o nstr ai ni n g u p d at es t o t h e s y m m etr y-
i n d u c e d m a nif ol d of t h e pr etr ai ni n g mi ni m u m.

• T h e c o n n e ct e d n ess of mi ni m a s u p p orts t h e pr a cti c e of
m o d el m er gi n g a n d e ns e m bli n g, e v e n w h e n m o d els ar e
tr ai n e d s e p ar at el y. I n a d diti o n t o p er m ut ati o n, m a n y
ot h er s y m m etr y tr a nsf or m ati o ns c a n c o n n e ct s ol uti o ns
t h at w o ul d ot h er wis e a p p e ar v er y diff er e nt.

• Li n e ar i nt er p ol ati o n b et w e e n mi ni m a is n ot g u ar a nt e e d
t o l e a d t o b ett er m o d els, d es pit e its wi d es pr e a d us e.
T his hi g hli g hts t h e n e e d t o e v al u at e w h et h er t h e mi n-
i m a f o u n d b y s p e ci fi c l e ar ni n g al g orit h ms ar e a p pr o xi-
m at el y c o n n e ct e d b ef or e a v er a gi n g m o d els dir e ctl y.

E xt e n di n g t h es e r es ults t o n o nli n e ar n et w or ks is a c h all e n g-
i n g y et e x citi n g f ut ur e dir e cti o n. A f ull c h ar a ct eri z ati o n of
t h e mi ni m a i n n o n-li n e ar s etti n gs r e q uir es i d e ntif yi n g t h e
c o m pl et e s et of s y m m etri es — a n o p e n pr o bl e m f or m a n y
ar c hit e ct ur es — a n d a n al y zi n g h o w t h e r es ulti n g or bits i nt er-
s e ct, w hi c h b e c o m es i n cr e asi n gl y c o m pl e x as t h e n u m b er of
or bits gr o ws. O n e a p pr o a c h is t hr o u g h a p pr o xi m at e s y m m e-
tri es, s u c h as t h os e i n S e cti o n 6 . A n ot h er is b y c o nti n u o usl y
d ef or mi n g t h e n et w or k or its mi ni m u m a n d st u d yi n g its b e-
h a vi or i n t h e li mit as t h e n et w or k a p pr o a c h es a li n e ar r e gi m e.
A d diti o n all y, m a n y m o d er n ar c hit e ct ur es r et ai n l ar g e c o n-
ti n u o us s y m m etr y gr o u ps, p arti c ul arl y i n c o m p o n e nts li k e
s elf att e nti o n or n or m ali z ati o n l a y ers. As w e s a w i n S e cti o n
5. 3 , e v e n p arti al k n o wl e d g e of s y m m etri es i n a n et w or k c a n
yi el d v al u a bl e str u ct ur al i nf or m ati o n a b o ut its mi ni m a.
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A c k n o wl e d g e m e nts

We t h a n k I or d a n G a n e v f or h el pf ul c o m m e nts o n pr o ofs
i n A p p e n di x A . T his w or k w as s u p p ort e d i n p art b y
t h e U. S. Ar m y R es e ar c h Of fi c e u n d er Ar m y- E C A S E
a w ar d W 9 1 1 N F- 0 7- R- 0 0 0 3- 0 3, t h e U. S. D e p art m e nt Of
E n er g y, Of fi c e of S ci e n c e, I A R P A H A Y S T A C Pr o gr a m, a n d
N S F Gr a nts # 2 2 0 5 0 9 3, # 2 1 4 6 3 4 3, # 2 1 3 4 2 7 4, # 2 1 0 7 2 5 6,
# 2 1 3 4 1 7 8, C D C- R F A- F T- 2 3- 0 0 6 9, D A R P A AI E F o u n d S ci
a n d D A R P A Y F A.

I m p a ct St at e m e nt

T his w or k a d v a n c es t h e t h e or eti c al u n d erst a n di n g of m o d e
c o n n e cti vit y i n n e ur al n et w or k l oss l a n ds c a p es t hr o u g h p a-
r a m et er s p a c e s y m m etri es, wit h p ot e nti al a p pli c ati o ns i n
m o d el m er gi n g a n d fi n e-t u ni n g. We d o n ot i d e ntif y s p e ci fi c
et hi c al c o n c er ns b ut r e c o g ni z e t h at i m pli c ati o ns m a y v ar y
d e p e n di n g o n t h e d o m ai n of a p pli c ati o n.

R ef e r e n c es

A dil o v a, L., A n dri us h c h e n k o, M., K a m p, M., Fis c h er, A.,
a n d J a g gi, M. L a y er- wis e li n e ar m o d e c o n n e cti vit y. I n
T h e T w elft h I nt er n ati o n al C o nf er e n c e o n L e ar ni n g R e pr e-
s e nt ati o ns , 2 0 2 4.

Ai ns w ort h, S. K., H a y as e, J., a n d Sri ni v as a, S. Git r e-
b asi n: M er gi n g m o d els m o d ul o p er m ut ati o n s y m m etri es.
I nt er n ati o n al C o nf er e n c e o n L e ar ni n g R e pr es e nt ati o ns,
2 0 2 3.

Alti nt as, G. S., B a c h m a n n, G., N o ci, L., a n d H of m a n n, T.
Dis e nt a n gli n g li n e ar m o d e- c o n n e cti vit y. ar Xi v pr e pri nt
ar Xi v: 2 3 1 2. 0 9 8 3 2 , 2 0 2 3.

B a dri n ar a y a n a n, V., Mis hr a, B., a n d Ci p oll a, R. S y m m etr y-
i n v ari a nt o pti mi z ati o n i n d e e p n et w or ks. ar Xi v pr e pri nt
ar Xi v: 1 5 1 1. 0 1 7 5 4 , 2 0 1 5.

B e nt o n, G., M a d d o x, W., L ot fi, S., a n d Wils o n, A. G. L oss
s urf a c e si m pl e x es f or m o d e c o n n e cti n g v ol u m es a n d f ast
e ns e m bli n g. I n I nt er n ati o n al C o nf er e n c e o n M a c hi n e
L e ar ni n g , p p. 7 6 9 – 7 7 9. P M L R, 2 0 2 1.

B e n zi n g, F., S c h u g, S., M ei er, R., Vo n Os w al d, J., A kr a m,
Y., Z u c c h et, N., Ait c his o n, L., a n d St e g er, A. R a n d o m
i niti alis ati o ns p erf or mi n g a b o v e c h a n c e a n d h o w t o fi n d
t h e m. 1 4t h A n n u al W or ks h o p o n O pti miz ati o n f or M a-
c hi n e L e ar ni n g ( O P T 2 0 2 2) , 2 0 2 2.

B h ar a d w aj, A. a n d H o ş t e n, S. C o m pl e x criti c al p oi nts
of d e e p li n e ar n e ur al n et w or ks. ar Xi v pr e pri nt
ar Xi v: 2 3 0 1. 1 2 6 5 1 , 2 0 2 3.

Br e a, J., Si ms e k, B., Illi n g, B., a n d G erst n er, W. Wei g ht-
s p a c e s y m m etr y i n d e e p n et w or ks gi v es ris e t o p er m ut a-

ti o n s a d dl es, c o n n e ct e d b y e q u al-l oss v all e ys a cr oss t h e
l oss l a n ds c a p e. ar Xi v pr e pri nt ar Xi v: 1 9 0 7. 0 2 9 1 1 , 2 0 1 9.

C h a z al, F. a n d Mi c h el, B. A n i ntr o d u cti o n t o t o p ol o gi c al
d at a a n al ysis: f u n d a m e nt al a n d pr a cti c al as p e cts f or d at a
s ci e ntists. Fr o nti ers i n arti fi ci al i nt elli g e n c e , 4: 6 6 7 9 6 3,
2 0 2 1.

Dr a xl er, F., Ves c h gi ni, K., S al m h of er, M., a n d H a m pr e c ht,
F. Ess e nti all y n o b arri ers i n n e ur al n et w or k e n er g y l a n d-
s c a p e. I n I nt er n ati o n al c o nf er e n c e o n m a c hi n e l e ar ni n g,
p p. 1 3 0 9 – 1 3 1 8. P M L R, 2 0 1 8.

E nt e z ari, R., S e d g hi, H., S a u k h, O., a n d N e ys h a b ur, B. T h e
r ol e of p er m ut ati o n i n v ari a n c e i n li n e ar m o d e c o n n e c-
ti vit y of n e ur al n et w or ks. I nt er n ati o n al C o nf er e n c e o n
L e ar ni n g R e pr es e nt ati o ns , 2 0 2 2.

F er b a c h, D., G o uj a u d, B., Gi d el, G., a n d Di e ul e v e ut, A.
Pr o vi n g li n e ar m o d e c o n n e cti vit y of n e ur al n et w or ks
vi a o pti m al tr a ns p ort. ar Xi v pr e pri nt ar Xi v: 2 3 1 0. 1 9 1 0 3 ,
2 0 2 3.

Fr a n kl e, J., D zi u g ait e, G. K., R o y, D., a n d C ar bi n, M. Li n e ar
m o d e c o n n e cti vit y a n d t h e l ott er y ti c k et h y p ot h esis. I n
I nt er n ati o n al C o nf er e n c e o n M a c hi n e L e ar ni n g, p p. 3 2 5 9 –
3 2 6 9. P M L R, 2 0 2 0.

Fr e e m a n, C. D. a n d Br u n a, J. T o p ol o g y a n d g e o m etr y of
h alf-r e cti fi e d n et w or k o pti mi z ati o n. I n 5t h I nt er n ati o n al
C o nf er e n c e o n L e ar ni n g R e pr es e nt ati o ns, I C L R , 2 0 1 7.

G a bri elss o n, R. B. a n d C arlss o n, G. E x p ositi o n a n d i nt er pr e-
t ati o n of t h e t o p ol o g y of n e ur al n et w or ks. I n 2 0 1 9 1 8t h
i e e e i nt er n ati o n al c o nf er e n c e o n m a c hi n e l e ar ni n g a n d
a p pli c ati o ns (i c ml a) , p p. 1 0 6 9 – 1 0 7 6. I E E E, 2 0 1 9.

G ari p o v, T., I z m ail o v, P., P o d o pri k hi n, D., Vetr o v, D. P.,
a n d Wils o n, A. G. L oss s urf a c es, m o d e c o n n e cti vit y, a n d
f ast e ns e m bli n g of d n ns. A d v a n c es i n n e ur al i nf or m ati o n
pr o c essi n g s yst e ms , 3 1, 2 0 1 8.

G ot m ar e, A., K es k ar, N. S., Xi o n g, C., a n d S o c h er, R. Us-
i n g m o d e c o n n e cti vit y f or l oss l a n ds c a p e a n al ysis. 3 5t h
I nt er n ati o n al C o nf er e n c e o n M a c hi n e L e ar ni n g’s W or k-
s h o p o n M o d er n Tr e n ds i n N o n c o n v e x O pti miz ati o n f or
M a c hi n e L e ar ni n g , 2 0 1 8.

H e, K., Z h a n g, X., R e n, S., a n d S u n, J. D e e p r esi d u al l e ar n-
i n g f or i m a g e r e c o g niti o n. I n Pr o c e e di n gs of t h e I E E E
c o nf er e n c e o n c o m p ut er visi o n a n d p att er n r e c o g niti o n ,
p p. 7 7 0 – 7 7 8, 2 0 1 6.

H e c ht- Ni els e n, R. O n t h e al g e br ai c str u ct ur e of f e e df or w ar d
n et w or k w ei g ht s p a c es. I n A d v a n c e d N e ur al C o m p ut ers ,
p p. 1 2 9 – 1 3 5. Els e vi er, 1 9 9 0.
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H u a n g, G., Li u, Z., Va n D er M a at e n, L., a n d Wei n b er g er,
K. Q. D e ns el y c o n n e ct e d c o n v ol uti o n al n et w or ks. I n
Pr o c e e di n gs of t h e I E E E c o nf er e n c e o n c o m p ut er visi o n
a n d p att er n r e c o g niti o n , p p. 4 7 0 0 – 4 7 0 8, 2 0 1 7.

I z m ail o v, P., P o d o pri k hi n, D., G ari p o v, T., Vetr o v, D., a n d
Wils o n, A. G. A v er a gi n g w ei g hts l e a ds t o wi d er o pti m a
a n d b ett er g e n er ali z ati o n. C o nf er e n c e o n U n c ert ai nt y i n
Arti fi ci al I nt elli g e n c e , 2 0 1 8.

J or d a n, K., S e d g hi, H., S a u k h, O., E nt e z ari, R., a n d
N e ys h a b ur, B. R e p air: R e n or m ali zi n g p er m ut e d a cti-
v ati o ns f or i nt er p ol ati o n r e p air. I nt er n ati o n al C o nf er e n c e
o n L e ar ni n g R e pr es e nt ati o ns , 2 0 2 3.

J u n ej a, J., B a ns al, R., C h o, K., S e d o c, J., a n d S a p hr a, N. Li n-
e ar c o n n e cti vit y r e v e als g e n er ali z ati o n str at e gi es. I nt er-
n ati o n al C o nf er e n c e o n L e ar ni n g R e pr es e nt ati o ns , 2 0 2 3.

K o h n, K., M er k h, T., M o nt úf ar, G., a n d Tr a g er, M. G e o m-
etr y of li n e ar c o n v ol uti o n al n et w or ks. SI A M J o ur n al o n
A p pli e d Al g e br a a n d G e o m etr y , 6( 3): 3 6 8 – 4 0 6, 2 0 2 2.

K u diti p u di, R., Wa n g, X., L e e, H., Z h a n g, Y., Li, Z., H u, W.,
G e, R., a n d Ar or a, S. E x pl ai ni n g l a n ds c a p e c o n n e cti vit y
of l o w- c ost s ol uti o ns f or m ultil a y er n ets. A d v a n c es i n
n e ur al i nf or m ati o n pr o c essi n g s yst e ms , 3 2, 2 0 1 9.

K u ni n, D., S a g ast u y- Br e n a, J., G a n g uli, S., Ya mi ns, D. L.,
a n d Ta n a k a, H. N e ur al m e c h a ni cs: S y m m etr y a n d br o-
k e n c o ns er v ati o n l a ws i n d e e p l e ar ni n g d y n a mi cs. I n
I nt er n ati o n al C o nf er e n c e o n L e ar ni n g R e pr es e nt ati o ns,
2 0 2 1.

L e e, J. I ntr o d u cti o n t o t o p ol o gi c al m a nif ol ds, v ol u m e 2 0 2.
S pri n g er S ci e n c e & B usi n ess M e di a, 2 0 1 0.

L u b a n a, E. S., Bi g el o w, E. J., Di c k, R. P., Kr u e g er, D., a n d
Ta n a k a, H. M e c h a nisti c m o d e c o n n e cti vit y. I n I nt er-
n ati o n al C o nf er e n c e o n M a c hi n e L e ar ni n g , p p. 2 2 9 6 5 –
2 3 0 0 4. P M L R, 2 0 2 3.

M e ht a, D., C h e n, T., Ta n g, T., a n d H a u e nst ei n, J. D. T h e l oss
s urf a c e of d e e p li n e ar n et w or ks vi e w e d t hr o u g h t h e al g e-
br ai c g e o m etr y l e ns. I E E E Tr a ns a cti o ns o n P att er n A n al-
ysis a n d M a c hi n e I nt elli g e n c e , 4 4( 9): 5 6 6 4 – 5 6 8 0, 2 0 2 1.

Mi n, H., Tar m o u n, S., Vi d al, R., a n d M all a d a, E. O n t h e e x-
pli cit r ol e of i niti ali z ati o n o n t h e c o n v er g e n c e a n d i m pli cit
bi as of o v er p ar a m etri z e d li n e ar n et w or ks. I n I nt er n a-
ti o n al C o nf er e n c e o n M a c hi n e L e ar ni n g, p p. 7 7 6 0 – 7 7 6 8.
P M L R, 2 0 2 1.

N e ys h a b ur, B., S e d g hi, H., a n d Z h a n g, C. W h at is b ei n g
tr a nsf err e d i n tr a nsf er l e ar ni n g ? A d v a n c es i n n e ur al
i nf or m ati o n pr o c essi n g s yst e ms, 3 3: 5 1 2 – 5 2 3, 2 0 2 0.

N g u y e n, Q. O n c o n n e ct e d s u bl e v el s ets i n d e e p l e ar ni n g. I n
I nt er n ati o n al c o nf er e n c e o n m a c hi n e l e ar ni n g, p p. 4 7 9 0 –
4 7 9 9. P M L R, 2 0 1 9.

N g u y e n, Q. A n ot e o n c o n n e cti vit y of s u bl e v el s ets i n d e e p
l e ar ni n g. ar Xi v pr e pri nt ar Xi v: 2 1 0 1. 0 8 5 7 6 , 2 0 2 1.

N g u y e n, Q. N., Br é c h et, P., a n d M o n d elli, M. W h e n ar e s o-
l uti o ns c o n n e ct e d i n d e e p n et w or ks ? A d v a n c es i n N e ur al
I nf or m ati o n Pr o c essi n g S yst e ms, 3 4: 2 0 9 5 6 – 2 0 9 6 9, 2 0 2 1.

P et z k a, H., Tri m m el, M., a n d S mi n c his es c u, C. N ot es o n
t h e s y m m etri es of 2-l a y er r el u- n et w or ks. I n Pr o c e e di n gs
of t h e n ort h er n li g hts d e e p l e ar ni n g w or ks h o p , v ol u m e 1,
p p. 6 – 6, 2 0 2 0.

Pitt ori n o, F., F err ar o, A., P er u gi ni, G., F ei n a u er, C., B al-
d assi, C., a n d Z e c c hi n a, R. D e e p n et w or ks o n t or oi ds:
R e m o vi n g s y m m etri es r e v e als t h e str u ct ur e of fl at r e-
gi o ns i n t h e l a n ds c a p e g e o m etr y. I n Pr o c e e di n gs of t h e
3 9t h I nt er n ati o n al C o nf er e n c e o n M a c hi n e L e ar ni n g , p p.
1 7 7 5 9 – 1 7 7 8 1, 2 0 2 2.

S h e v c h e n k o, A. a n d M o n d elli, M. L a n ds c a p e c o n n e c-
ti vit y a n d dr o p o ut st a bilit y of s g d s ol uti o ns f or o v er-
p ar a m et eri z e d n e ur al n et w or ks. I n I nt er n ati o n al C o n-
f er e n c e o n M a c hi n e L e ar ni n g, p p. 8 7 7 3 – 8 7 8 4. P M L R,
2 0 2 0.

Ş i mş e k, B., G e d, F., J a c ot, A., S p a d ar o, F., H o n gl er, C.,
G erst n er, W., a n d Br e a, J. G e o m etr y of t h e l oss l a n ds c a p e
i n o v er p ar a m et eri z e d n e ur al n et w or ks: S y m m etri es a n d
i n v ari a n c es. I n I nt er n ati o n al C o nf er e n c e o n M a c hi n e
L e ar ni n g , p p. 9 7 2 2 – 9 7 3 2. P M L R, 2 0 2 1.

Si n g h, S. P. a n d J a g gi, M. M o d el f usi o n vi a o pti m al tr a ns-
p ort. A d v a n c es i n N e ur al I nf or m ati o n Pr o c essi n g S yst e ms ,
3 3: 2 2 0 4 5 – 2 2 0 5 5, 2 0 2 0.

Si n g h, S. P., A dil o v a, L., K a m p, M., Fis c h er, A., S c h öl k o pf,
B., a n d H of m a n n, T. L a n ds c a pi n g li n e ar m o d e c o n n e cti v-
it y. ar Xi v pr e pri nt ar Xi v: 2 4 0 6. 1 6 3 0 0 , 2 0 2 4.

Tatr o, N., C h e n, P.- Y., D as, P., M el n y k, I., S atti g eri, P.,
a n d L ai, R. O pti mi zi n g m o d e c o n n e cti vit y vi a n e ur o n
ali g n m e nt. A d v a n c es i n N e ur al I nf or m ati o n Pr o c essi n g
S yst e ms , 3 3: 1 5 3 0 0 – 1 5 3 1 1, 2 0 2 0.

Vas w a ni, A., S h a z e er, N., P ar m ar, N., Us z k or eit, J., J o n es,
L., G o m e z, A. N., K ais er, Ł ., a n d P ol os u k hi n, I. At-
t e nti o n is all y o u n e e d. A d v a n c es i n n e ur al i nf or m ati o n
pr o c essi n g s yst e ms , 3 0, 2 0 1 7.

W orts m a n, M., Il h ar c o, G., G a dr e, S. Y., R o el ofs, R.,
G o ntij o- L o p es, R., M or c os, A. S., N a m k o o n g, H.,
F ar h a di, A., C ar m o n, Y., K or n blit h, S., et al. M o d el
s o u ps: a v er a gi n g w ei g hts of m ulti pl e fi n e-t u n e d m o d-
els i m pr o v es a c c ur a c y wit h o ut i n cr e asi n g i nf er e n c e ti m e.
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I n I nt er n ati o n al C o nf er e n c e o n M a c hi n e L e ar ni n g, p p.
2 3 9 6 5 – 2 3 9 9 8. P M L R, 2 0 2 2.

Yu nis, D., P at el, K. K., S a v ar es e, P. H. P., Var di, G., Fr a n kl e,
J., Walt er, M., Li v es c u, K., a n d M air e, M. O n c o n v e xit y
a n d li n e ar m o d e c o n n e cti vit y i n n e ur al n et w or ks. I n O P T
2 0 2 2: O pti miz ati o n f or M a c hi n e L e ar ni n g ( N e urI P S 2 0 2 2
W or ks h o p) , 2 0 2 2.

Z h a o, B., D e h m a m y, N., Walt ers, R., a n d Yu, R. S y m m etr y
t el e p ort ati o n f or a c c el er at e d o pti mi z ati o n. A d v a n c es i n
N e ur al I nf or m ati o n Pr o c essi n g S yst e ms , 2 0 2 2.

Z h a o, B., G a n e v, I., Walt ers, R., Yu, R., a n d D e h m a m y, N.
S y m m etri es, fl at mi ni m a, a n d t h e c o ns er v e d q u a ntiti es
of gr a di e nt fl o w. I nt er n ati o n al C o nf er e n c e o n L e ar ni n g
R e pr es e nt ati o ns , 2 0 2 3.

Z h a o, B., G o w er, R. M., Walt ers, R., a n d Yu, R. I m pr o vi n g
c o n v er g e n c e a n d g e n er ali z ati o n usi n g p ar a m et er s y m m e-
tri es. I nt er n ati o n al C o nf er e n c e o n L e ar ni n g R e pr es e nt a-
ti o ns, 2 0 2 4.

Z h a o, P., C h e n, P.- Y., D as, P., R a m a m urt h y, K. N., a n d
Li n, X. Bri d gi n g m o d e c o n n e cti vit y i n l oss l a n ds c a p es
a n d a d v ers ari al r o b ust n ess. I nt er n ati o n al C o nf er e n c e o n
L e ar ni n g R e pr es e nt ati o ns , 2 0 2 0.

Z h o u, Z., Ya n g, Y., Ya n g, X., Ya n, J., a n d H u, W. G oi n g
b e y o n d li n e ar m o d e c o n n e cti vit y: T h e l a y er wis e li n e ar
f e at ur e c o n n e cti vit y. ar Xi v pr e pri nt ar Xi v: 2 3 0 7. 0 8 2 8 6 ,
2 0 2 3.
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A p p e n di x

A. B a c k g r o u n d

T his s e cti o n c o nt ai ns a d diti o n al b a c k gr o u n d i n g e n er al t o p ol o g y a n d pr o ofs f or st at e m e nts i n S e cti o n 3 . We r ef er r e a d ers t o
(L e e , 2 0 1 0 ) f or a m or e d et ail e d i ntr o d u cti o n t o t his t o pi c.

A. 1. C o n n e ct e d c o m p o n e nts

C o nsi d er t w o t o p ol o gi c al s p a c es X a n d Y . A m a p f : X → Y is c o nti n u o us if f or e v er y o p e n s u bs et U ⊆ Y , its
pr ei m a g e f − 1 (U ) is o p e n i n X . If X a n d Y ar e m etri c s p a c es wit h m etri cs d X a n d d Y r es p e cti v el y, t his is e q ui v al e nt t o t h e
d elt a- e psil o n d e fi niti o n. T h at is, f is c o nti n u o us if at e v er y x ∈ X , f or a n y ϵ > 0 t h er e e xists δ > 0 s u c h t h at d X (x, y ) < δ
i m pli es d Y (f (x ), f(y )) < ϵ f or all y ∈ X .

A t o p ol o gi c al s p a c e is c o n n e ct e d if it c a n n ot b e e x pr ess e d as t h e u ni o n of t w o disj oi nt, n o n e m pt y, o p e n s u bs ets. A t o p ol o gi c al
s p a c e X is p at h c o n n e ct e d if f or e v er y p, q ∈ X , t h er e is a c o nti n u o us m a p f : [ 0, 1] → X s u c h t h at f ( 0) = p a n d f ( 1) = q .
P at h c o n n e ct e d n ess i m pli es c o n n e ct e d n ess, b ut t h e c o n v ers e is n ot tr u e ( L e e , 2 0 1 0 ). (N g u y e n , 2 0 1 9 ) st u di es t h e p at h
c o n n e ct e d n ess of s u bl e v el s ets of l oss f u n cti o ns.

T h e f oll o wi n g t h e or e m is t h e m ai n i nt uiti o n of t his p a p er a n d will a p p e ar fr e q u e ntl y i n pr o ofs.

T h e o r e m A. 1 ( T h e or e m 4. 7 i n (L e e , 2 0 1 0 ), T h e or e m 3. 1 i n t h e M ai n Te xt). L et X, Y b e t o p ol o gi c al s p a c es a n d l et
f : X → Y b e a c o nti n u o us m a p. If X is c o n n e ct e d, t h e n f (X ) is c o n n e ct e d.

A m a p f is a h o m e o m or p his m fr o m X t o Y if f is bij e cti v e a n d b ot h f a n d f − 1 ar e c o nti n u o us. X a n d Y ar e h o m e o m or p hi c
if s u c h a m a p e xists. A ( c o n n e ct e d) c o m p o n e nt of a t o p ol o gi c al s p a c e X is a m a xi m al n o n e m pt y c o n n e ct e d s u bs et of X .
T h e c o m p o n e nts of X f or m a p artiti o n of X . T h e n e xt t w o c or oll ari es of T h e or e m A. 1 s h o w t h at c o n n e ct e d n ess a n d t h e
n u m b er of c o n n e ct e d c o m p o n e nts ar e t o p ol o gi c al pr o p erti es. T h at is, t h e y ar e pr es er v e d u n d er h o m e o m or p his ms.

C o r oll a r y A. 2. L et f : X → Y b e a h o m e o m or p his m fr o m X t o Y , a n d l et U ⊆ X b e a s u bs et of X wit h t h e s u bs p a c e
t o p ol o g y. T h e n U is c o n n e ct e d if a n d o nl y if f (U ) ⊆ Y is c o n n e ct e d.

Pr o of. B y t h e d e fi niti o n of h o m e o m or p his m, f a n d f − 1 ar e c o nti n u o us. Fr o m T h e or e m A. 1 , if U ∈ X is c o n n e ct e d, t h e n
f (U ) ∈ Y is c o n n e ct e d. Si mil arl y, if f (U ) is c o n n e ct e d, t h e n f − 1 (f (U )) = U is c o n n e ct e d.

C o r oll a r y A. 3. L et X b e a t o p ol o gi c al s p a c e t h at h as N c o m p o n e nts. L et Y b e a t o p ol o gi c al s p a c e h o m e o m or p hi c t o X .
T h e n Y h as N c o m p o n e nts.

Pr o of. L et C 1 , ..., CN b e t h e c o m p o n e nts of X . L et f b e a h o m e o m or p his m fr o m X t o Y . Si n c e f is bij e cti v e a n d
C 1 , ..., CN is a p artiti o n of X , f (C 1 ), ..., f (C N ) is a p artiti o n of Y . Fr o m T h e or e m A. 1 , si n c e C 1 , ..., CN ar e all c o n n e ct e d,
s o ar e f (C 1 ), ..., f (C N ).

L astl y, w e n e e d t o s h o w t h at f (C 1 ), ..., f (C N ) ar e m a xi m all y c o n n e ct e d. S u p p os e t h er e e xists a s et U ⊆ Y , s u c h t h at
U ̸ ⊆f (C i ) a n d f (C i ) ∪ U is c o n n e ct e d f or s o m e i. T h e n b y T h e or e m A. 1 , f − 1 (f (C i ) ∪ U ) ⊃ C i is c o n n e ct e d i n X . T his
c o ntr a di cts t h e f a ct t h at C i is a m a xi m al c o m p o n e nt i n X . T h er ef or e, f (C 1 ), ..., f (C N ) ar e m a xi m all y c o n n e ct e d.

Si n c e f (C 1 ), ..., f (C N ) p artiti o ns Y a n d ar e m a xi m all y c o n n e ct e d, Y h as N c o m p o n e nts.

A n ot h er c o ns e q u e n c e of T h e or e m A. 1 is t h e f oll o wi n g u p p er b o u n d o n t h e n u m b er of c o m p o n e nts of t h e i m a g e of a
c o nti n u o us m a p.

P r o p ositi o n A. 4. L et f : X → Y b e a c o nti n u o us m a p. T h e n u m b er of c o m p o n e nts of t h e i m a g e f (X ) ⊆ Y is at m ost t h e
n u m b er of c o m p o n e nts of X .

Pr o of. L et C 1 , ..., CN b e t h e c o m p o n e nts of X . Si n c e C i is c o nti n u o us a n d t h e a cti o n is c o nti n u o us, a c c or di n g t o T h e or e m
A. 1 , f (C i ) is c o nti n u o us f or all i ∈ { 1 , ..., N } . A d diti o n all y, si n c e

N
i = 1 C i = X , w e h a v e

N
i = 1 f (C i ) = f (X ). T h er ef or e,

t h er e is a s urj e cti v e m a p fr o m { f (C 1 ), ..., f (C N )} t o t h e s et of c o m p o n e nts of f (X ), w hi c h i m pli es t h at f (X ) h as at m ost
N c o m p o n e nts.
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L et X 1 , ..., Xn b e t o p ol o gi c al s p a c es. T h e pr o d u ct s p a c e is t h eir C art esi a n pr o d u ct X 1 × ... × X n e n d o w e d wit h t h e pr o d u ct
t o p ol o g y. D e n ot e π 0 (X ) as t h e s et of c o n n e ct e d c o m p o n e nts of a s p a c e X . T h e f oll o wi n g pr o p ositi o n pr o vi d es a w a y t o
c o u nt t h e c o m p o n e nts of a pr o d u ct s p a c e.

P r o p ositi o n A. 5. C o nsi d er n t o p ol o gi c al s p a c es X 1 , ..., Xn . T h e n |π 0 (X 1 × ... × X n )| =
n
i = 0 |π 0 (X i )|.

Pr o of. W h e n n = 1 , t h e n u m b er of c o m p o n e nts of t h e pr o d u ct s p a c e is |π 0 (X 1 )|.

F or t h e n > 1 c as e, si n c e X 1 × ... × X n = ( X 1 × ... × X n − 1 ) × X n , it s uf fi c es t o s h o w t h at |π 0 (A × B )| = |π 0 (A )||π 0 (B )|
f or a n y t o p ol o gi c al s p a c es A a n d B . L et f : π 0 (A ) × π 0 (B ) → π 0 (A × B ) b e t h e m a p t h at assi g ns C ∈ π 0 (A ) × π 0 (B ) t o
t h e el e m e nt i n π 0 (A × B ) t h at c o nt ai ns C . T h e n f is s urj e cti v e b e c a us e π 0 (A ) × π 0 (B ) f or ms a p artiti o n of A × B . T o pr o v e
t h at f is i nj e cti v e, s u p p os e t h at f (C 1 ) = f (C 2 ) f or C 1 , C2 ∈ π 0 (A ) × π 0 (B ). C o nsi d er t h e pr oj e cti o n π A : A × B → A .
Si n c e π A is c o nti n u o us a n d C 1 , C2 b el o n g t o t h e s a m e c o m p o n e nt of A × B , π A (C 1 ) a n d π A (C 2 ) b el o n g t o t h e s a m e
c o m p o n e nt of A . Si mil arl y, π B (C 1 ) a n d π B (C 2 ) b el o n g t o t h e s a m e c o m p o n e nt of B u n d er t h e pr oj e cti o n π B : A × B → B .
Si n c e all c o m p o n e nts of A a n d B ar e m a xi m all y c o n n e ct e d, w e h a v e C 1 = C 2 , w hi c h i m pli es t h at f is i nj e cti v e. Si n c e f is
a bij e cti o n fr o m π 0 (A ) × π 0 (B ) t o π 0 (A × B ), |π 0 (A × B )| = |π 0 (A )||π 0 (B )|.

A. 2. G r o u ps

A gr o u p is a s et G t o g et h er wit h a c o m p ositi o n l a w, writt e n as j u xt a p ositi o n, t h at s atis fi es ass o ci ati vit y, (a b )c = a (b c )
∀ a, b, c ∈ G , h as a n i d e ntit y 1 s u c h t h at 1 a = a 1 = a ∀ a ∈ G , a n d f or all a ∈ G , t h er e e xists a n i n v ers e b s u c h t h at
a b = b a = 1 . A n a cti o n of a gr o u p G o n a s et S is a m a p · : G × S → S t h at s atis fi es 1 · s = s f or all s ∈ S a n d
(g g ′) ·s = g ·(g ′ ·s ) f or all g, g ′ i n G a n d all s i n S . T h e or bit of s ∈ S is t h e s et O (s ) = { s ′ ∈ S | s ′ = g s f or s o m e g ∈ G } .

A t o p ol o gi c al gr o u p is a gr o u p G e n d o w e d wit h a t o p ol o g y s u c h t h at m ulti pli c ati o n a n d i n v ers e ar e b ot h c o nti n u o us. A

r e c urri n g e x a m pl e is t h e g e n er al li n e ar gr o u p G L n (R ) , wit h t h e s u bs p a c e t o p ol o g y o bt ai n e d fr o m R n 2

. T h e gr o u p G L n (R )
h as t w o c o n n e ct e d c o m p o n e nts, w hi c h c orr es p o n d t o m atri c es wit h p ositi v e a n d n e g ati v e d et er mi n a nt.

T h e pr o d u ct of gr o u ps G 1 , ..., Gn is a gr o u p d e n ot e d b y G 1 × ... × G n . T h e s et u n d erl yi n g G 1 × ... × G n is t h e C art esi a n
pr o d u ct of G 1 , ..., Gn . T h e gr o u p str u ct ur e is d e fi n e d b y i d e ntit y ( 1, ..., 1) , i n v ers e (g 1 , ..., gn ) − 1 = ( g − 1

1 , ..., g− 1
n ), a n d

m ulti pli c ati o n r ul e (g 1 , ..., gn )(g ′
1 , ..., g′n ) = (g 1 g ′

1 , ..., gn g ′
n ).

A. 3. R el ati n g c o n n e ct e d n ess of g r o u ps, o r bits, a n d l e v el s ets

Fr o m T h e or e m 3. 1 , c o nti n u o us m a ps pr es er v e c o n n e ct e d n ess. T hr o u g h c o nti n u o us a cti o ns, w e st u d y t h e c o n n e ct e d n ess
of or bits a n d l e v el s ets b y r el ati n g t h e m t o t h e c o n n e ct e d n ess of m or e f a mili ar o bj e cts s u c h as t h e g e n er al li n e ar gr o u p.
Est a blis hi n g a h o m e o m or p his m fr o m t h e gr o u p t o t h e s et of mi ni m a r e q uir es t h e s y m m etr y gr o u p’s a cti o n t o b e c o nti n u o us,
tr a nsiti v e, a n d fr e e. H er e w e o nl y ass u m e t h e a cti o n t o b e c o nti n u o us a n d tr y t o b o u n d t h e n u m b er of c o m p o n e nts of t h e
or bits.

As a n i m m e di at e c o ns e q u e n c e of Pr o p ositi o n A. 4 , a n or bit c a n n ot h a v e m or e c o m p o n e nts t h a n t h e gr o u p.

C o r oll a r y A. 6. Ass u m e t h at t h e a cti o n of a gr o u p G o n S is c o nti n u o us. T h e n t h e n u m b er of c o n n e ct e d c o m p o n e nts of or bit
O (s ) is s m all er t h a n or e q u al t o t h e n u m b er of c o n n e ct e d c o m p o n e nts of G , f or all s i n S .

Pr o of. A n or bit O (s ) is t h e i m a g e of t h e gr o u p a cti o n, w hi c h w e ass u m e t o b e c o nti n u o us. T h e r es ult f oll o ws fr o m
Pr o p ositi o n A. 4 .

L et X b e a t o p ol o gi c al s p a c e a n d L : X → R a c o nti n u o us f u n cti o n o n X . A t o p ol o gi c al gr o u p G is s ai d t o b e a s y m m etr y
gr o u p of L if L (g · x ) = L (x ) f or all g ∈ G a n d x ∈ X . I n t his c as e, t h e a cti o n c a n b e d e fi n e d o n a l e v el s et of L , L − 1 (c )
wit h a c ∈ R , as G × L − 1 (c ) → L − 1 (c ) . If t h e mi ni m u m of L c o nsists of a si n gl e or bit, C or oll ar y A. 6 e xt e n ds i m m e di at el y
t o t h e n u m b er of c o m p o n e nts of t h e mi ni m u m.

C o r oll a r y A. 7. L et L b e a f u n cti o n wit h a s y m m etr y gr o u p G . If t h e mi ni m u m of L c o nsists of a si n gl e G - or bit, t h e n t h e
n u m b er of c o n n e ct e d c o m p o n e nts of t h e mi ni m u m is s m all er or e q u al t o t h e n u m b er of c o n n e ct e d c o m p o n e nts of G .

G e n er all y, s y m m etr y gr o u ps d o n ot a ct tr a nsiti v el y o n a l e v el s et L − 1 (c ) ∈ X . I n t his c as e, t h e c o n n e ct e d n ess of t h e or bits
d o es n ot dir e ctl y i nf or m t h e c o n n e ct e d n ess of t h e l e v el s et.
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P r o p ositi o n A. 8.

1. T h er e e xists a s p a c e X a n d a gr o u p G wit h a n a cti o n o n X , s u c h t h at e a c h or bit f or t h e gr o u p a cti o n is c o n n e ct e d a n d
X is n ot c o n n e ct e d.

2. T h er e e xists a s p a c e X a n d a gr o u p G wit h a n a cti o n o n X , s u c h t h at e a c h or bit f or t h e gr o u p a cti o n is dis c o n n e ct e d
a n d X is c o n n e ct e d.

Pr o of. F or p art ( a), c o nsi d er a s u bs p a c e of R 2 , X = X 1 ∪ X 2 w h er e X 1 = { (x, y ) : x = 0 , y > 0 } a n d X 2 = { (x, y ) :
x = 1 , y > 0 } . T h e s p a c e X is n ot c o n n e ct e d. L et G b e t h e m ulti pli c ati v e gr o u p of p ositi v e r e al n u m b ers a n d a ct o n X b y
m ulti pli c ati o n o n t h e s e c o n d c o or di n at e. T h e n t h er e ar e t w o or bits, X 1 a n d X 2 , w hi c h ar e b ot h c o n n e ct e d.

F or p art ( b), c o nsi d er t h e s p a c e X = R 2 \ { 0 } . T h e n X is c o n n e ct e d. L et G b e t h e m ulti pli c ati v e gr o u p of r e al n u m b ers,
w hi c h a cts o n X b y m ulti pli c ati o n o n b ot h c o or di n at es. T h at is, g · (x 1 , x2 ) = ( g x, g x 2 ), ∀ (x 1 , x2 ) ∈ X, ∀ g ∈ G . T h e or bit
of a n y p oi nt (x 1 , x2 ) ∈ X is n ot c o n n e ct e d.

N e v ert h el ess, si n c e t h e s et of or bits p artiti o ns t h e s p a c e, w e c a n us e t h e f oll o wi n g b o u n d o n t h e n u m b er of c o m p o n e nts of
t h e s p a c e.

P r o p ositi o n A. 9. L et X b e a t o p ol o gi c al s p a c e a n d l et X = i X i b e a p artiti o n of X i nt o disj oi nt s u bs p a c es. T h e n
|π 0 (X )| ≤ i |π 0 (X i )|.

Pr o of. L et S = { A ⊆ X : ∃ i, A is a c o m p o n e nt of X i } b e t h e u ni o n of t h e c o m p o n e nts of t h e s u bs p a c es. T h e n S is a
p artiti o n of X , a n d e v er y el e m e nt i n S is c o n n e ct e d. T h er ef or e, t h er e is a s urj e cti v e m a p fr o m S t o π 0 (X ), d e fi n e d b y
m a p pi n g e a c h s ∈ S t o t h e el e m e nt of π 0 (X ) t h at i n cl u d es s . T his i m pli es t h at |π 0 (X )| ≤ |S | =

n
i = 1 |π 0 (X i )|.

C o nsi d er a t o p ol o gi c al s p a c e X a n d a gr o u p G t h at a cts o n X . L et O = { O 1 , ..., On } b e t h e s et of or bits. B y Pr o p ositi o n
A. 9 , t h e n u m b er of c o m p o n e nts of t h e or bits gi v e t h e f oll o wi n g u p p er b o u n d o n t h e n u m b er of c o m p o n e nts of t h e s p a c e:
|π 0 (X )| ≤

n
i = 1 |π 0 (O i )|.

B. A d diti o n al R el at e d W o r k

T o p ol o gi c al a p p r o a c h es i n m a c hi n e l e a r ni n g. T o p ol o g y h as b e e n a p pli e d i n ot h er ar e as of m a c hi n e l e ar ni n g, p arti c ul arl y
t hr o u g h t o ols s u c h as p ersist e nt h o m ol o g y, t o st u d y t h e str u ct ur e of d at a m a nif ol ds a n d tr ai ni n g d y n a mi cs (C h a z al &
Mi c h el , 2 0 2 1 ). F or e x a m pl e, pri or w or k h as us e d t o p ol o gi c al d at a a n al ysis ( T D A) t o st u d y t h e s h a p e of a cti v ati o n p att er ns,
u n d erst a n d g e n er ali z ati o n, a n d vis u ali z e l e ar ni n g tr aj e ct ori es ( G a bri elss o n & C arlss o n , 2 0 1 9 ).

B o u n ds o n t h e n u m b e r of c o n n e ct e d c o m p o n e nts. F or n e ur al n et w or ks t h at ar e s yst e ms of p ol y n o mi als, t h e n u m b er of
criti c al p oi nts c a n b e u p p er b o u n d e d usi n g m et h o ds i n al g e br ai c g e o m etr y. M e ht a et al. (2 0 2 1 ) s h o ws t h at aft er a d di n g a
g e n er ali z e d L 2 r e g ul ari z ati o n, t h er e ar e n o p ositi v e- di m e nsi o n al s ol uti o ns i n d e e p li n e ar n et w or ks wit h m e a n s q u ar e d err or.
T h e y o bs er v e t h at t h e criti c al p oi nts, w hi c h s atisf y ∇ L = 0 , f or m t h e s ol uti o n s et of a s yst e m of p ol y n o mi al e q u ati o ns. T h e y
t h e n pr o vi d e t w o u p p er b o u n ds, t h e cl assi c al B e z o ut b o u n d ( C B B) a n d t h e B er ns ht ei n- K us h nir e n k o- K h o v a ns kii B o u n d
( B K K), o n t h e n u m b er of is ol at e d c o m pl e x criti c al p oi nts. B h ar a d w aj & H o ş t e n (2 0 2 3 ) i m pr o v es t h e u p p er b o u n d f or n e ur al
n et w or ks wit h o n e hi d d e n l a y er a n d o n e tr ai ni n g d at a p oi nt. K o h n et al. (2 0 2 2 ) pr o vi d e b o u n ds o n t h e n u m b er of criti c al
p oi nts i n t h e f u n cti o n s p a c e f or li n e ar c o n v ol uti o n al n et w or ks. Si n c e pr o vi n g t h e e x a ct n u m b er of c o n n e ct e d c o m p o n e nts of
a mi ni m u m is n ot al w a ys e as y, a p ossi bl e f ut ur e dir e cti o n is t o d eri v e B e z o ut a n d B K K b o u n ds o n t h e n u m b er of c o n n e ct e d
c o m p o n e nts f or v ari o us ar c hit e ct ur es a n d p er h a ps e xt e n d t his a n al ysis b e y o n d p ol y n o mi al n e ur al n et w or ks.

C. P r o ofs i n S e cti o n 4

P r o p ositi o n 4. 1 . T h er e is a h o m e o m or p his m b et w e e n L − 1 ( 0) a n d ( G L h ) l− 1 .
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Pr o of. R e c all t h at W 1 , ..., Wn , X, Y ar e m atri c es i n R h × h , a n d X, Y ar e b ot h f ull r a n k. C o nsi d er t h e m a p

f : ( G Lh ) l− 1 → L − 1 ( 0), (g 1 , ..., gl− 1 ) → (g 1 X − 1 , g2 , ..., gl− 1 , Y
l− 1

i

g − 1
i ). ( 1 0)

T h e i n v ers e f − 1 : (W 1 , ..., Wl ) → (W 1 X, W 2 , W3 , ..., Wl− 1 ) is w ell d e fi n e d, b e c a us e X , W 1 , W2 , W3 , ..., Wl− 1 ar e all
f ull-r a n k. Si n c e b ot h f a n d f − 1 ar e c o nti n u o us, f is a h o m e o m or p his m b et w e e n ( G L h ) l− 1 a n d L − 1 ( 0).

C o r oll a r y 4. 2 . T h e mi ni m u m of L h as 2 l− 1 c o n n e ct e d c o m p o n e nts.

Pr o of. Fr o m Pr o p ositi o n 4 .1 , L − 1 ( 0) is h o m e o m or p hi c t o ( G L h ) l− 1 . A c c or di n g t o C or oll ar y A. 3 , t his i m pli es t h at L − 1 ( 0)
h as t h e s a m e n u m b er of c o n n e ct e d c o m p o n e nts as ( G L h ) l− 1 . Fr o m Pr o p ositi o n A. 5 , G L h (R ) l− 1 h as 2 l− 1 c o n n e ct e d
c o m p o n e nts. T h er ef or e, L − 1 ( 0) h as 2 l− 1 c o n n e ct e d c o m p o n e nts.

P r o p ositi o n 4. 3 . L et n = 1 . Ass u m e t h at X, Y ≠ 0 . W h e n ε = 0 , t h e mi ni m u m of L h as 4 c o n n e ct e d c o m p o n e nts. W h e n
ε ≠ 0 , t h e mi ni m u m of L h as 3 c o n n e ct e d c o m p o n e nts.

Pr o of. W h e n ε = 0 , t h e s ki p c o n n e cti o n is eff e cti v el y r e m o v e d, a n d t h e l oss f u n cti o n (2 ) r e d u c es t o (1 ). B y C or oll ar y 4. 2 ,
t h e mi ni m u m of L h as 4 c o n n e ct e d c o m p o n e nts. I n t h e r est of t h e pr o of, w e c o nsi d er t h e c as e w h er e ε ≠ 0 .

L et (W 1 0
, W2 0

, W3 0
) = ( I, (α − ε )I, α − 1 Y X − 1 ), w h er e α ∈ R is a n ar bitr ar y n u m b er s u c h t h at α ≠ ε a n d α ≠ 0 .

T h e n (W 1 0
, W2 0

, W3 0
) is a p oi nt i n L − 1 ( 0) . D e fi n e s et G 1 = { g ∈ R h × h : d et (g W 2 0

W 1 0
X + ε X ) ≠ 0 } . L et

a : G L 1 × G 1 → P ar a m b e t h e f oll o wi n g m a p:

g 1 , g2 → (g 1 W 1 0
,

g 2 W 2 0 g − 1
1 ,

W 3 0
(W 2 0

W 1 0
X + ε X )(g 2 W 2 0

W 1 0
X + ε X ) − 1 ). ( 1 1)

Fr o m t h e d e fi niti o n of G 1 , (g 2 W 2 0 W 1 0 X + ε X ) is i n v erti bl e, s o a is w ell d e fi n e d. A d diti o n all y, w e h a v e L (a (g 1 , g2 )) =
L (W 1 0 , W2 0 , W3 0 ) = 0, ∀ g 1 , g2 ∈ G L 1 × G 1 . T h er ef or e, d e n oti n g t h e i m a g e of a as S 1 , w e h a v e S 1 ⊆ L − 1 ( 0) .

L et S 0 = { (W 1 , W2 , W3 ) : W 3 = Y (ε X ) − 1 a n d W 1 = 0 } if ε ≠ 0 , or ∅ ot h er wis e. F or (W 1 , W2 , W3 ) ∈ S 0 , w e h a v e
L (W 1 , W2 , W3 ) = ||Y − Y (ε X ) − 1 ( 0 + ε X )||2 = 0 . T h er ef or e, S 0 ⊆ L − 1 ( 0) .

We t h e n s h o w t h at t h e mi ni m u m of L is t h e u ni o n of S 1 a n d S 0 . C o nsi d er a p oi nt (W 1 , W2 , W3 ) ∈ L − 1 ( 0) . If W 1 = 0 , t h e n
ε ≠ 0 , ot h er wis e (W 1 , W2 , W3 ) c a n n ot b e i n L − 1 ( 0) . I n t his c as e, W 3 m ust e q u al t o Y (ε X ) − 1 , a n d (W 1 , W2 , W3 ) ∈ S 0 . If
W 1 ≠ 0 , t h e n W 1 W − 1

1 0
∈ G L 1 a n d W 2 W 1 W − 1

1 0
W − 1

2 0
∈ G 1 . T h e s e c o n d p art is d u e t o W 2 W 1 W − 1

1 0
W − 1

2 0
W 2 0 W 1 0 X + ε X =

W 2 W 1 X + ε X ≠ 0 si n c e (W 1 , W2 , W3 ) ∈ L − 1 ( 0) . I n t his c as e w e h a v e (W 1 , W2 , W3 ) = a (W 1 W − 1
1 0

, W2 W 1 W − 1
1 0

W − 1
2 0

),
w hi c h m e a ns t h at (W 1 , W2 , W3 ) ∈ S 1 .

T h e n u m b er of c o n n e ct e d c o m p o n e nts of S 1 a n d S 0 c a n b e o bt ai n e d fr o m t h eir str u ct ur es. Si n c e W 2 0
W 1 0

X ≠ 0 , t h er e is a
h o m e o m or p his m b et w e e n G 1 a n d G L 1 d e fi n e d b y t h e m a p

f : G 1 → G L 1 , g → g W 2 0 W 1 0 X + ε X ( 1 2)

wit h i n v ers e f − 1 : G L 1 → G 1 , g → ε (g − ε X )(W 2 0
W 1 0

X ) − 1 . Si n c e a is als o a h o m e o m or p his m, its i m a g e S 1 is
h o m e o m or p hi c t o G L 1 × G L 1 a n d h as 4 c o n n e ct e d c o m p o n e nts. W h e n ε ≠ 0 , S 0 is a li n e a n d t h us h as 1 c o n n e ct e d
c o m p o n e nt.

T h e l ast p art of t h e pr o of s h o ws t h e c o n n e ct e d n ess of t h e c o n n e ct e d c o m p o n e nts of S 1 a n d S 0 . L et G +
1 = { g 2 ∈ G 1 :

f (g 2 ) ∈ G L s i g n ( ε X ) } b e t h e c o n n e ct e d c o m p o n e nt i n G 1 t h at c orr es p o n d t o G L s i g n ( ε X ) , a n d G −
1 = { g 2 ∈ G 1 : f (g 2 ) ∈

G L − s i g n ( ε X ) } b e t h e c o m p o n e nt t h at c orr es p o n d t o G L − s i g n ( ε X ) . F or c o n v e ni e n c e, w e n a m e t h e c o n n e ct e d c o m p o n e nts of
I m (a ) as f oll o ws:

C 1 = { (W 1 , W2 , W3 ) ∈ P ar a m : (W 1 , W2 , W3 ) = a (g 1 , g2 ), g1 ∈ G L + , g2 ∈ G +
1 }

C 2 = { (W 1 , W2 , W3 ) ∈ P ar a m : (W 1 , W2 , W3 ) = a (g 1 , g2 ), g1 ∈ G L − , g2 ∈ G +
1 }

C 3 = { (W 1 , W2 , W3 ) ∈ P ar a m : (W 1 , W2 , W3 ) = a (g 1 , g2 ), g1 ∈ G L + , g2 ∈ G −
1 }

C 4 = { (W 1 , W2 , W3 ) ∈ P ar a m : (W 1 , W2 , W3 ) = a (g 1 , g2 ), g1 ∈ G L − , g2 ∈ G −
1 }

1 5



U n d e rst a n di n g M o d e C o n n e cti vit y vi a P a r a m et e r S p a c e S y m m et r y

N ot e t h at f or (W 1 , W2 , W3 ) ∈ S 1 , t h er e e xists a ( u ni q u e) g 2 ∈ G 1 s u c h t h at w e c a n writ e W 3 as

W 3 = W 3 0 [W 2 0 W 1 0 X + ε X ][g 2 W 2 0 W 1 0 X + ε X ]− 1 ) = Y f (g 2 ) − 1 .

F oll o wi n g fr o m t h e d e fi niti o n of G +
1 , f or a p oi nt (W 1 , W2 , W3 ) i n C 1 or C 2 , si g n (W 3 ) = si g n (Y (ε X ) − 1 ). A d diti o n all y,

w h e n g 2 is cl os e t o 0, g 2 b el o n gs t o G +
1 . T h e b o u n d ar y of b ot h C 1 a n d C 2 c o nt ai n a p oi nt i n S 0 :

li m
g 1 → 0 +

a (g 1 , g1 ) = li m
g 1 → 0 −

a (g 1 , g1 ) = ( 0 , α − ε, Y (ε X ) − 1 ) ∈ S 0 .

T h er ef or e, b ot h C 1 a n d C 2 ar e c o n n e ct e d t o S 0 .

F or p oi nts i n C 3 a n d C 4 , si g n (W 3 ) ≠ si g n (Y (ε X ) − 1 ). T h er ef or e, n o p oi nt i n C 3 or C 4 c a n b e s uf fi ci e ntl y cl os e t o S 0 . As
a r es ult, t h es e c o m p o n e nts ar e n ot c o n n e ct e d t o S 0 . I n s u m m ar y, w h e n ε ≠ 0 , S 0 c o n n e cts 2 c o m p o n e nts of S 1 , a n d t h e
mi ni m u m of L h as 3 c o n n e ct e d c o m p o n e nts.

We n ot e t h at c o n n e ct e d n ess al o n e d o es n ot i m pl y e as y c o n n e cti vit y i n t h e s e ns e of s h ort or si m pl e p at hs b et w e e n s ol uti o ns.
B ei n g i n t h e s a m e c o n n e ct e d c o m p o n e nts is a n e c ess ar y c o n diti o n f or c o n n e cti vit y, b ut a si n gl e c o m p o n e nt m a y still c o nt ai n
c o m pl e x g e o m etr y n e c essit ati n g c o m pli c at e d c o n n e cti n g p at hs.

D e fi ni n g t h e e as e of c o n n e cti vit y is s u btl e. O n e n at ur al m e as ur e is t h e p ar a m etri c c o m pl e xit y of t h e c o n n e cti n g c ur v es,
q u a nti fi a bl e b y t h eir d e gr e e if p ol y n o mi al, or n u m b er of s e g m e nts if pi e c e- wis e. A n ot h er p ossi bl e d e fi niti o n f or e as y
c o n n e cti vit y w o ul d b e l o w c ur v at ur e of t h e mi ni m u m m a nif ol d or s h ort g e o d esi c dist a n c e b et w e e n t w o p oi nts o n it. As
w e s a w i n S e cti o n 6. 2 , l o w c ur v at ur e i m pli es t h at li n e ar i nt er p ol ati o n st a ys n e ar t h e m a nif ol d. Ot h er p ot e nti al d e fi niti o ns
i n cl u d e w h et h er t h e c o n n e cti n g c ur v e h as a n a n al yti c al e x pr essi o n, or h o w m a n y p oi nts ar e n e e d e d t o a p pr o xi m at e it wit hi n
a c ert ai n err or. It w o ul d b e i nt er esti n g t o e x a mi n e t h es e pr o p erti es f or s y m m etr y-i n d u c e d c o n n e cti n g c ur v es.

D. P r o ofs i n S e cti o n 5

L e m m a 5. 1 . C o nsi d er t w o p oi nts (W 1 , W2 ), (W ′
1 , W ′

2 ) ∈ L − 1 ( 0) t h at ar e n ot c o n n e ct e d i n L − 1 ( 0) . F or a n y g ∈ G L (h )
s u c h t h at d et (g ) < 0 , g · (W 1 , W2 ) a n d (W ′

1 , W ′
2 ) ar e c o n n e ct e d i n L − 1 ( 0) .

Pr o of. C o nsi d er t h e m a p f a n d its i n v ers e f − 1 d e fi n e d i n (1 0 ) i n t h e pr o of of Pr o p ositi o n 4. 1 . L et g = f − 1 (W 1 , W2 )
a n d g ′ = f − 1 (W ′

1 , W ′
2 ). B y C or oll ar y A. 2 , si n c e (W 1 , W2 ) a n d (W ′

1 , W ′
2 ) ar e n ot i n t h e s a m e c o n n e ct e d c o m p o n e nt of

L − 1 ( 0) , g a n d g ′ ar e n ot i n t h e s a m e c o n n e ct e d c o m p o n e nt of G L h . E q ui v al e ntl y, d et (g g ′) < 0 . C o nsi d er a g 1 ∈ G L h

s u c h t h at d et (g ) < 0 . T h e n d et (g 1 g g ′) > 0 , w hi c h m e a ns t h at g 1 g a n d g ′ b el o n g t o t h e s a m e c o n n e ct e d c o m p o n e nt of
G L h . T h er ef or e, a c c or di n g t o C or oll ar y A. 2 , g 1 · (W 1 , W2 ) = f (g 1 g ) a n d (W ′

1 , W ′
2 ) = f (g ′) b el o n g t o t h e s a m e c o n n e ct e d

c o m p o n e nt of L − 1 ( 0).

E x a m pl e. S u p p os e W 1 =
1 0
0 1

, W2 =
− 1 0
0 1

is a p oi nt i n L − 1 ( 0) f or s o m e l oss f u n cti o n L .  T h e n

W ′
1 =

− 1 0
0 1

, W ′
2 =

1 0
0 1

is als o a p oi nt i n L − 1 ( 0) . H o w e v er, (W 1 , W2 ) a n d (W ′
1 , W ′

2 ) ar e n ot o n t h e s a m e

c o n n e ct e d c o m p o n e nt of t h e mi ni m u m, si n c e t h eir d et er mi n a nts h a v e diff er e nt si g ns. B y L e m m a 5. 1 , a n y g ∈ G L (h ) wit h
d et (g ) < 0 c a n bri n g (W 1 , W2 ) a n d (W ′

1 , W ′
2 ) t o t h e s a m e c o n n e ct e d c o m p o n e nt i n L − 1 ( 0) . L et g b e t h e p er m ut ati o n

m atri x
0 1
1 0

. T h e n g · (W 1 , W2 ) =
0 1
1 0

,
0 − 1
1 0

, w hi c h is i n t h e s a m e c o n n e ct e d c o m p o n e nt as (W ′
1 , W ′

2 ).

P r o p ositi o n 5. 2 . Ass u m e t h at h ≥ 2 . F or all (W 1 , ..., Wl ), (W
′
1 , ..., W ′

l ) ∈ L − 1 ( 0) , t h es e e xists a list of p er m ut ati o n m atri-
c es P 1 , ..., Pl− 1 s u c h t h at (W 1 P 1 , P − 1

1 W 2 P 2 , ..., Pl− 2 W l− 1 P l− 1 , Pl− 1 W l ) a n d (W ′
1 , ..., W ′

l ) ar e c o n n e ct e d i n L − 1 ( 0) .

Pr o of. L et (g 1 , ..., gl− 1 ), (g ′
1 , ..., g′l− 1 ) ∈ (G L h ) n − 1 s u c h t h at f (g 1 , ..., gl− 1 ) = ( W 1 , ..., Wl ) a n d f (g ′

1 , ..., g′l− 1 ) =

(W ′
1 , ..., W ′

l ). L et P 0 = I . F or i = 1 , ..., l − 1 , if d et (g i g
′
i P

− 1
i − 1 ) > 0 , s et P i t o I . Ot h er wis e, w e s et P i t o a n ar bi-

tr ar y el e m e nt i n P ∈ S h \ A h , w hi c h is n ot e m pt y w h e n h ≥ 2 .

L et (g ′′
1 , ..., g′′l− 1 ) ∈ (G L h ) n − 1 s u c h t h at f (g ′′

1 , ..., g′′l− 1 ) = (W 1 P 1 , P − 1
1 W 2 P 2 , ..., Pl− 2 W l− 1 P l− 1 , P l− 1 W l ). B y

t h e w a y w e c o nstr u ct P i ’s, w e h a v e g ′′
i = P − 1

i − 1 g ′
i P i a n d d et (g i g

′′
i ) > 0 . T h er ef or e, g i a n d g ′′

i b el o n g t o t h e
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s a m e c o n n e ct e d c o m p o n e nt of (G L h ) l− 1 f or all i. Si n c e f is a h o m e o m or p his m b et w e e n ( G L h ) l− 1 a n d L − 1 ( 0) ,
(W 1 P 1 , P − 1 W 2 P 2 , ..., Pl− 2 W l− 1 P l− 1 , Pl− 1 W l ) a n d (W ′

1 , ..., W ′
l ) ar e c o n n e ct e d i n L − 1 ( 0) .

P r o p ositi o n 5. 3 . C o nsi d er t h e l oss f u n cti o n of t h e f oll o wi n g f or m

L : P ar a m → R , W = ( W 1 , ..., Wl ) → || Y − W l σ (W l− 1 f (W l− 2 , Wl− 3 , ..., W1 , X))||22 , ( 1 3)

w h er e f is a f u n cti o n of W l− 2 , Wl− 3 , ..., W1 , X, a n d σ (c z ) = c k σ (z ) f or all c ∈ R a n d s o m e k > 0 . Ass u m e t h at ||Y ||2 ≠ 0
a n d L − 1 ( 0) ≠ ∅ . Als o ass u m e t h at l ≥ 2 . F or a n y p ositi v e n u m b er b > 0 , t h er e e xist W, W ′ ∈ L − 1 ( 0) t h at b el o n g t o t h e
s a m e c o n n e ct e d c o m p o n e nt of L − 1 ( 0) a n d 0 < α < 1 , s u c h t h at L (( 1 − α )W + α W ′) > b .

Pr o of. L et W = ( W l , ..., W2 , W1 ) ∈ L − 1 ( 0) b e a n ar bitr ar y p oi nt o n t h e mi ni m u m of L . L et W ′ = ( W ′
l , ..., W ′

2 , W ′
1 ) =

(W l m
− k , m Wl− 1 , Wl− 2 , ..., W1 ). T h e n W, W ′ b el o n g t o t h e s a m e c o n n e ct e d c o m p o n e nt of L − 1 ( 0) , c o n n e ct e d b y c ur v e

γ : R → P ar a m , γ(t) = (( 1 − t)W l + t Wl m
− k , ( 1 − t)W l− 1 + t m W l− 1 , Wl− 2 , ..., W1 ).

Si n c e W ∈ L − 1 ( 0) , w e h a v e W l σ [W l− 1 f (W l− 2 , ..., W1 , X)] = Y . T h e l oss o n t h e li n e ar i nt er p ol ati o n of W, W ′ is

L (( 1 − α )W + α W ′) = ||Y − (( 1 − α )W l + α W ′
l )σ (( 1 − α )W l− 1 + α W ′

l− 1 )f (W l− 2 , ..., W1 , X) ||22

= ||Y − ( 1 − α + α m − k )W l σ [( 1 − α + α m )W l− 1 f (W l− 2 , ..., W1 , X)] ||22

= ||Y − ( 1 − α + α m − k )( 1 − α + α m ) k W l σ [W l− 1 f (W l− 2 , ..., W1 , X)] ||22

=( 1 − ( 1 − α + α m − k )( 1 − α + α m ) k ) 2 ||Y ||22 . ( 1 4)

L et α = 0 .5 . T h e n

L (( 1 − α )W + α W ′) = 1 −
1

2
+

1

2
m − k 1

2
+

1

2
m

k 2

||Y ||22

= 1 − 2 − ( k + 1 ) ( 1 + m − k )( 1 + m ) k
2

||Y ||22 ( 1 5)

L et m = 2 k + 1
√

b
||Y ||2 + 1 − 1

k

. R e c all t h at k > 0 . T h e n m > 0 , ( 1 + m ) k > 1 , a n d

2 − ( k + 1 ) ( 1 + m − k )( 1 + m ) k > 2 − ( k + 1 ) ( 1 + m − k ) =

√
b

||Y ||2
+ 1 > 1 . ( 1 6)

T h er ef or e, t h e l oss at o ur c h os e n v al u es of α a n d m is at l e ast b :

L (( 1 − α )W + α W ′) > 1 −

√
b

||Y ||2
+ 1

2

||Y ||22 = b. ( 1 7)

Fi g ur e 4 vis u ali z es t h e l oss b arri er o n t h e li n e ar i nt er p ol ati o n b et w e e n t w o mi ni m a. We c o nstr u ct a n et w or k wit h l oss
f u n cti o n ∥ W 5 σ (W 4 σ (W 3 σ (W 2 σ (W 1 X )))) − Y ∥ , wit h σ b ei n g a l e a k y R e L U f u n cti o n, X ∈ R 8 × 4 , Y ∈ R 4 × 4 , a n d
(W 1 , W2 , W3 , W4 , W5 ) ∈ P ar a m = R 1 6 × 8 × R 3 2 × 1 6 × R 1 6 × 3 2 × R 8 × 1 6 × R 4 × 8 . T h e n et w or k is i niti ali z e d wit h r a n d o m
w ei g hts, a n d e a c h el e m e nt of X, Y is s a m pl e d i n d e p e n d e ntl y fr o m a n or m al distri b uti o n.

We o bt ai n t h e first mi ni m a (W ′
1 , W ′

2 , W ′
3 , W ′

4 , W ′
5 ) b y S G D, a n d t h e s e c o n d (W ′′

1 , W ′′
2 , W ′′

3 , W ′′
4 , W ′′

5 )  =
(W ′

1 , W ′
2 , W ′

3 , m W ′
4 , W ′

5 m − 1 ) b y r es c ali n g t h e l ast t w o l a y ers wit h m ∈ R + . At l ar g e m , t h e t w o mi ni m a ar e f art h er a p art,
a n d t h e l oss e v al u at e d at t h e mi d dl e p oi nt of t h eir li n e ar i nt er p ol ati o n gr o ws u n b o u n d e dl y as pr e di ct e d b y Pr o p ositi o n 5. 3 .

P r o p ositi o n 5. 4 . C o nsi d er t h e l oss f u n cti o n wit h t h e s a m e s et of ass u m pti o ns i n Pr o p ositi o n 5. 3 . Ass u m e a d diti o n all y
t h at t h er e d o es n ot e xist a p er m ut ati o n P s u c h t h at e v er y c ol u m n of P σ (W l− 1 f (W l− 2 , Wl− 3 , ..., W1 , X)) is i n t h e n ull
s p a c e of W l . F or a n y p ositi v e n u m b er b > 0 , t h er e e xist (W 1 , ..., Wl ), (W

′
1 , ..., W ′

l ) ∈ L − 1 ( 0) a n d 0 < α < 1 , s u c h t h at
(W 1 , ..., Wl− 2 ) = ( W ′

1 , ..., W ′
l− 2 ) a n d mi n P ∈ S n L ( 1 − α )(W 1 , ..., Wl ) + α (W 1 , ..., Wl− 2 , P − 1 W l− 1 , Wl P ) > b .
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Fi g ur e 4: L oss at t h e mi d dl e of t h e li n e ar i nt er p ol ati o n b et w e e n t w o mi ni m a i n a h o m o g e n e o us n et w or k b e c o m es u n b o u n d e d
w h e n t h e t w o mi ni m a is f ar a p art.

Pr o of. L et W = ( W l , ..., W2 , W1 ) ∈ L − 1 ( 0) b e a n ar bitr ar y p oi nt o n t h e mi ni m u m of L . L et W ′ = ( W ′
l , ..., W ′

2 , W ′
1 ) =

(W l m
− k , m Wl− 1 , Wl− 2 , ..., W1 ).

Si n c e W ∈ L − 1 ( 0), w e h a v e W l σ [W l− 1 f (W l− 2 , ..., W1 , X)] = Y . T h e l oss o n t h e li n e ar i nt er p ol ati o n of W, W ′ is

L (( 1 − α )W + α W ′) = ||Y − (( 1 − α )W l + α W ′
l P )σ (( 1 − α )W l− 1 + α P − 1 W ′

l− 1 )f (W l− 2 , ..., W1 , X) ||22 . ( 1 8)

L et α = 0 .5 . T h e n

L (( 1 − α )W + α W ′) = ||Y −
1

4
W l (I + m − k P )σ (I + m P − 1 )W l− 1 f (W l− 2 , ..., W1 , X) ||22 . ( 1 9)

W h e n m → ∞ ,

li m
m → ∞

σ (I + m P − 1 )W l− 1 f (W l− 2 , ..., W1 , X)

= li m
m → ∞

m k σ (m − 1 I + P − 1 )W l− 1 f (W l− 2 , ..., W1 , X)

= li m
m → ∞

m k P − 1 σ [W l− 1 f (W l− 2 , ..., W1 , X)] . ( 2 0)

T h er ef or e,

li m
m → ∞

L (( 1 − α )W + α W ′) = li m
m → ∞

||Y −
1

4
W l (I + m − k P )m k P − 1 σ [W l− 1 f (W l− 2 , ..., W1 , X)] ||22

= li m
m → ∞

||Y −
1

4
W l (I + m k P − 1 )σ [W l− 1 f (W l− 2 , ..., W1 , X)] ||22

= li m
m → ∞

||
3

4
Y −

m k

4
W l P

− 1 σ [W l− 1 f (W l− 2 , ..., W1 , X)] ||22 . ( 2 1)

Si n c e w e ass u m e d t h at t h er e d o es n ot e xist a p er m ut ati o n P s u c h t h at e v er y c ol u m n of P σ (W l− 1 f (W l− 2 , Wl− 3 , ..., W1 , X))
is i n t h e n ull s p a c e of W l , at l e ast o n e el e m e nt i n t h e s e c o n d t er m is u n b o u n d e d f or a n y p er m ut ati o n P . T h er ef or e,
L (( 1 − α )W + α W ′) is u n b o u n d e d f or a n y P .

P r o p ositi o n 5. 5 . L et A ∈ R n × n b e a n i n v erti bl e m atri x. L et s et S = { (W 1 , W2 ) : W 1 , W2 ∈ R n × n , W1 W 2 = A } . F or a n y
p ositi v e n u m b er b > 0 , t h er e e xist W ′, W ′′ ∈ S a n d 0 < α < 1 , s u c h t h at mi n ˆW ∈ S ∥ (( 1 − α )W ′ + α W ′′) − ˆW ∥ 2 > b .

Pr o of. L et W b e a n el e m e nt of S . L et W ′
1 = W 1 g − 1

1 , W ′
2 = g 1 W 2 , W ′′

1 = W 1 g − 1
2 , a n d W ′′

2 = g 2 W 2 , w h er e g 1 , g2 ∈ R n × n

ar e i n v erti bl e m atri c es. N ot e t h at W ′ = ( W ′
1 , W ′

2 ) a n d W ′′ = ( W ′′
1 , W ′′

2 ) ar e b ot h i n S . T h e n,

mi n
ˆW ∈ S

∥ (( 1 − α )W ′ + α W ′′) − ˆW ∥ 2
2

= mi n
ˆW ∈ S

∥ ( 1 − α )W 1 g − 1
1 + α W 1 g − 1

2 − ˆW 1 ∥ 2
2 + ∥ ( 1 − α )g 1 W 2 + α g 2 W 2 − ˆW 2 ∥ 2

2

= mi n
g ∈ G L ( n )

∥ W 1 (( 1 − α )g − 1
1 + α g − 1

2 − g − 1 )∥ 2
2 + ∥ W 2 (( 1 − α )g 1 + α g 2 − g )∥ 2

2 . ( 2 2)
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L et g 1 = β I a n d g 2 = β − 1 I f or s o m e β > 0 . L et α = 1
2 . T h e n, i n t h e li mit of a l ar g e β , w e h a v e

li m
β → ∞

mi n
ˆW ∈ S

∥ (( 1 − α )W + α W ′) − ˆW ∥ 2
2

= li m
β → ∞

mi n
g ∈ G L ( n )

W 1
β + β − 1

2
I − g − 1

2

2

+ W 2
β + β − 1

2
I − g

2

2

. ( 2 3)

As β → ∞ , g a n d g − 1 c a n n ot a p pr o a c h β + β − 1

2 I si m ult a n e o usl y. T h er ef or e, ( 2 3 ) is n ot b o u n d e d.

P r o p ositi o n 5. 6 . C o nsi d er t h e l oss f u n cti o n wit h t h e s a m e s et of ass u m pti o ns i n Pr o p ositi o n 5. 3 . L et W ∈ L − 1 ( 0)
b e a p oi nt o n t h e mi ni m u m. C o nsi d er t h e m ulti pli c ati v e gr o u p of p ositi v e r e al n u m b ers R + t h at a cts o n L − 1 ( 0) b y
g · (W 1 , ..., Wl ) = (W 1 , ..., Wl− 2 , g Wl− 1 , Wl g

− k ), w h er e g ∈ R + . T h e n t h er e e xists a p ositi v e n u m b er b > 0 , s u c h t h at
f or all 0 < α < 1 a n d W ′ ∈ O r bit (W ) wit h ||W ′

i ||2 < c f or all i a n d s o m e c > 0 , t h e l oss v al u e f or p oi nts o n t h e li n e ar
i nt er p ol ati o n L (( 1 − α )W + α W ′) < b .

Pr o of. Si n c e W ′ ∈ O r bit (W ), W ′ = ( W l m
− k , m Wl− 1 , Wl− 2 , ..., W1 ) f or s o m e m > 0 . A d diti o n all y, m a n d m − k ar e

b o u n d e d si n c e W ′
i is b o u n d e d. Si n c e W ∈ L − 1 ( 0) , w e h a v e W l σ [W l− 1 f (W l− 2 , ..., W1 , X)] = Y . T h e l oss o n t h e li n e ar

i nt er p ol ati o n of W, W ′ is

L (( 1 − α )W + α W ′) = ||Y − (( 1 − α )W l + α W ′
l )σ (( 1 − α )W l− 1 + α W ′

l− 1 )f (W l− 2 , ..., W1 , X) ||22

= ||Y − ( 1 − α + α m − k )W l σ [( 1 − α + α m )W l− 1 f (W l− 2 , ..., W1 , X)] ||22

= ||Y − ( 1 − α + α m − k )( 1 − α + α m ) k W l σ [W l− 1 f (W l− 2 , ..., W1 , X)] ||22

=( 1 − ( 1 − α + α m − k )( 1 − α + α m ) k ) 2 ||Y ||22 . ( 2 4)

As m , m − k , a n d α ar e all b o u n d e d, t h e l oss v al u e f or p oi nts o n t h e li n e ar i nt er p ol ati o n L (( 1 − α )W + α W ′) is als o
b o u n d e d.

T h e c o n n e ct e d n ess r es ults d eri v e d fr o m s y m m etr y r ais e s e v er al i nt er esti n g q u esti o ns a b o ut m o d e c o n n e cti vit y. F or e x a m pl e,
it w o ul d b e i nt er esti n g t o u n d erst a n d w h e n a n d w h y t h er e is n o si g ni fi c a nt c h a n g e i n l oss o n t h e li n e ar i nt er p ol ati o n b et w e e n
t w o mi ni m a. O n e p ossi bl e e x pl a n ati o n is t h at t h er e al w a ys e xists a s y m m etr y-i n d u c e d p at h γ t h at st a ys cl os e t o t h e li n e ar
i nt er p ol ati o n. A n ot h er p ot e nti al f a ct or is t h e hi g h di m e nsi o n alit y of t h e mi ni m u m, w hi c h i n cr e as es t h e li k eli h o o d t h at
a si g ni fi c a nt p orti o n of t h e li n e ar i nt er p ol ati o n r e m ai ns wit hi n t h e l o w-l oss r e gi o n. A d diti o n all y, e m piri c al o bs er v ati o ns
s u g g est t h at b ot h tr ai n a n d t est a c c ur a c y r e m ai n n e arl y c o nst a nt al o n g p at hs c o n n e cti n g diff er e nt S G D s ol uti o ns ( G ari p o v
et al. , 2 0 1 8 ). If t h es e p at hs ar e i n d u c e d b y a gr o u p a cti o n, t his w o ul d i m pl y t h at t h e gr o u p a cti o n’s d e p e n d e n c e o n d at a is
w e a k. I n v esti g ati n g t h e e xt e nt t o w hi c h d at a i n fl u e n c es t h es e s y m m etri es c o ul d pr o vi d e d e e p er i nsi g hts i nt o t h e str u ct ur e of
t h e l oss l a n ds c a p e a n d t h e g e n er ali z ati o n pr o p erti es of n e ur al n et w or ks.

E. P r o ofs i n S e cti o n 6

P r o p ositi o n 6. 1 . L et (U, V ) ∈ P ar a m, a n d (U ′, V ′) = g · (U, V ). T h e n

∥ U σ (V X ) − U ′σ (V ′X )∥ ≤ ∥ U σ (V X )∥ . ( 2 5)

Pr o of. We n ot e t h at I − σ (g V X ) † σ (g V X ) is a pr oj e cti o n:

(I − σ (g V X ) † σ (g V X )) 2

= I − σ (g V X ) † σ (g V X ) − σ (g V X ) † σ (g V X )(I − σ (g V X ) † σ (g V X ))

= I − σ (g V X ) † σ (g V X ).

T h er ef or e,

∥ U σ (V X ) − U ′σ (V ′X )∥ = ∥ U σ (V X ) I − σ (g V X ) † σ (g V X ) ∥ ≤ ∥ U σ (V X )∥ . ( 2 6)
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T h e o r e m 6. 2 . L et L − 1 (c ) ⊂ P ar a m , wit h c ∈ R , b e a l e v el s et of t h e l oss f u n cti o n L : P ar a m → R . L et γ : [ 0, 1] → L − 1 (c )
b e a s m o ot h c ur v e i n L − 1 (c ) c o n n e cti n g t w o p oi nts w 1 = γ ( 0) a n d w 2 = γ ( 1) . S u p p os e t h e c ur v at ur e κ (t) of γ s atis fi es
κ (t) ≤ κ m a x f or all t ∈ [ 0, 1] .

L et S b e t h e str ai g ht li n e s e g m e nt c o n n e cti n g w 1 a n d w 2 . T h e n, f or a n y p oi nt w o n S , t h e dist a n c e t o L − 1 (c ) is b o u n d e d b y

di st( w , L− 1 (c )) ≤ d m a x =
1

κ m a x



 1 − 1 −
κ m a x ∥ w 2 − w 1 ∥ 2

2

2


 .

F urt h er m or e, ass u mi n g L is Li ps c hitz c o nti n u o us wit h Li ps c hitz c o nst a nt C L , t h e l oss at a n y p oi nt w o n S s atis fi es

|L (w ) − c | ≤ C L d m a x .

Pr o of. We will fi n d a n u p p er b o u n d f or t h e m a xi m u m dist a n c e b et w e e n a s m o ot h c ur v e a n d t h e c h or d c o n n e cti n g t w o p oi nts
o n t h e c ur v e, ass u mi n g t h e c ur v at ur e of t h e c ur v e is b o u n d e d b y κ m a x .

T h e c ur v at ur e κ at a p oi nt o n a c ur v e is d e fi n e d as κ = 1
R , w h er e R is t h e r a di us of t h e os c ul ati n g cir cl e at t h at p oi nt. L et s

b e t h e m a xi m u m p er p e n di c ul ar dist a n c e fr o m t h e mi d p oi nt of a c h or d t o t h e c ur v e. F or a cir c ul ar ar c, P yt h a g or e a n t h e or e m
gi v es

R 2 =
∥ w 2 − w 1 ∥ 2

2

2

+ ( R − s ) 2 .

S ol vi n g f or s :

s = R



 1 − 1 −
∥ w 2 − w 1 ∥ 2

2 R

2


 .

S u bstit ut e R = 1
κ i nt o t h e a b o v e, w e h a v e

s =
1

κ



 1 − 1 −
κ ∥ w 2 − w 1 ∥ 2

2

2


 .

Si n c e t h e c ur v at ur e of γ is e v er y w h er e l ess t h a n or e q u al t o κ m a x , t h e c ur v e c a n n ot b e n d m or e s h ar pl y t h a n t h e os c ul ati n g
cir cl e wit h c ur v at ur e κ m a x . T h er ef or e, t h e m a xi m u m d e vi ati o n d m a x b et w e e n γ a n d its c h or d c a n n ot e x c e e d t h at of t h e
os c ul ati n g cir cl e:

di st( w , L− 1 (c )) ≤ d m a x
d ef
=

1

κ m a x



 1 − 1 −
κ m a x ∥ w 2 − w 1 ∥ 2

2

2


 .

Ass u mi n g L is Li ps c hit z c o nti n u o us wit h Li ps c hit z c o nst a nt C L , f or a n y w o n S , w e h a v e

|L (w ) − c | = |L (w ) − L (γ (t))| ≤ C L ∥ w − γ (t)∥ ≤ C L d m a x .

2 0


