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Abstract

Equivariant neural networks have shown
great success in reinforcement learning, im-
proving sample efficiency and generalization
when there is symmetry in the task. How-
ever, in many problems, only approximate
symmetry is present, which makes imposing
exact symmetry inappropriate. Recently, ap-
proximately equivariant networks have been
proposed for supervised classification and
modeling physical systems. In this work,
we develop approximately equivariant algo-
rithms in reinforcement learning (RL). We
define approximately equivariant MDPs and
theoretically characterize the effect of ap-
proximate equivariance on the optimal Q
function. We propose novel RL architectures
using relaxed group and steerable convolu-
tions and experiment on several continuous
control domains and stock trading with real
financial data. Our results demonstrate that
the approximately equivariant network per-
forms on par with exactly equivariant net-
works when exact symmetries are present,
and outperforms them when the domains ex-
hibit approximate symmetry. As an added
byproduct of these techniques, we observe in-
creased robustness to noise at test time. Our
code is available at https://github.com/

jypark0/approx_equiv_rl.

1 INTRODUCTION

Symmetry is a powerful inductive bias that can be
used to improve generalization and data efficiency
in deep learning. One way to leverage symmetry
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Figure 1: An approximately equivariant policy π on
a Reacher domain, where the goal is to determine the
torques (green, magenta) to apply on each joint for the
fingertip to reach the target (red). Due to wear, the
first joint is more responsive to positive torques. When
the state is flipped, the policy also flips the actions but
can learn to adjust for symmetry breaking factors.

is through equivariant neural networks, which are
model classes constrained to respect the symmetry of
a known ground truth. Equivariant neural networks
have successfully been applied to image classification
(Cohen and Welling, 2016; Worrall et al., 2017), par-
ticle physics (Bogatskiy et al., 2020), molecular biol-
ogy (Satorras et al., 2021; Thomas et al., 2018), and
robotic manipulation (Wang et al., 2022b). Empirical
studies have demonstrated that equivariant networks
require much fewer data than their standard network
counterparts (Winkels and Cohen, 2018; Wang et al.,
2022b), can have fewer parameters (Weiler and Cesa,
2019; He et al., 2022), and can generalize better to
unseen data (Wang et al., 2020; Fuchs et al., 2020).

However, equivariant neural networks crucially assume
that the data is perfectly symmetric in both the inputs
and outputs, which may not be true in real-world data
such as fluid dynamics (Wang et al., 2022c) or finan-
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cial data (Black, 1986). By relaxing the strict equivari-
ance constraints, approximately equivariant networks
can outperform exactly equivariant and unconstrained
networks in the presence of asymmetry. While various
approaches to achieve approximate equivariance have
been proposed (Wang et al., 2022c; van der Ouderaa
et al., 2022; McNeela, 2023; Kim et al., 2023), they
focus on vision-based tasks or dynamics modeling.

One area where symmetry has been especially useful is
in reinforcement learning (RL), where equivariant net-
works greatly improve sample efficiency (Wang et al.,
2022b; Zhu et al., 2022), a key challenge in RL. How-
ever, most works consider exact symmetry and use ex-
actly equivariant networks, which cannot address sym-
metry breaking in the reward or transition functions
or noise in the observations. In this work, we employ
relaxed group and steerable convolutional neural net-
works for RL (Wang et al., 2022c); they are flexible
enough to adapt to approximate equivariance but also
have improved efficiency and robustness.

In this paper, we theoretically and empirically inves-
tigate approximately equivariant reinforcement learn-
ing. Our key contributions are to:

• formalize the notion of approximately equivari-
ant MDPs and prove the (optimal) value function
in such MDPs exhibits approximate equivariance,
motivating the use of approximately equivariant
RL,

• introduce a novel approximately equivariant RL
architecture using relaxed group convolutions,

• demonstrate improved sample efficiency and ro-
bustness to noise for our approximately equivari-
ant RL compared to other baselines with or with-
out symmetry biases,

• successfully apply approximate equivariant RL to
real-world financial data.

2 RELATED WORK

Equivariant Reinforcement Learning Early
works explored equivalence classes in reinforcement
learning from the lens of abstractions by defining
MDP homomorphisms (Ravindran and Barto, 2002;
Zinkevich and Balch, 2001). More recently, several
approaches have combined function approximation
with RL with equivariant neural networks (Van der
Pol et al., 2020; Wang et al., 2022b; Mondal et al.,
2020) with significantly improved sample efficiency.
However, all of these works considered perfectly
symmetric domains where the policy is constrained
to be exactly equivariant. This paper considers do-
mains with symmetry breaking factors where exactly
equivariant networks can be suboptimal.

Approximate Equivariant Architectures There
has been recent interest in exploring approximate
equivariance and approximately equivariant neural
networks (Finzi et al., 2021; Wang et al., 2022c;
Romero and Lohit, 2022; van der Ouderaa et al., 2022;
McNeela, 2023; Petrache and Trivedi, 2024; Samudre
et al., 2024). Wang et al. (2022c, 2024b) use a linear
combination of exactly equivariant convolution kernels
with learnable weights to achieve relaxed equivariance
and discover symmetry breaking factors. van der Oud-
eraa et al. (2022) define a nonstationary kernel and a
tunable frequency parameter to control the amount
of approximate equivariance. McNeela (2023) propose
using a neural network to approximate the exponential
map from the Lie algebra to the group to learn almost
equivariant functions. Petrache and Trivedi (2024)
give theoretical bounds on when approximate equiv-
ariance can improve generalization. However, none of
these works studied approximate equivariance in RL,
the main focus of this work.

Closest to our setting is Residual Pathway Priors
(Finzi et al., 2021), which considered soft equivariance
constraints in model-free RL. They construct a relaxed
equivariant neural network layer as the sum of an ex-
actly equivariant and a non-equivariant layer with a
prior on the equivariant layer. We take a different ap-
proach in this work and use relaxed group convolutions
Wang et al. (2022c), which are flexible enough to learn
different outputs for each transformation.

Learning with Latent Symmetry Other works
also apply equivariant neural networks to domains
with latent symmetry. These are cases where the full
state has exact symmetry but only partial observa-
tions with an unknown group action are available to
the model. Park et al. (2022) learn the out-of-plane
rotations from 2D images using a symmetric embed-
ding network while others have learned 3D rotational
features from images using manifold latent variables
(Falorsi et al., 2018) or disentanglement (Quessard
et al., 2020). Wang et al. (2022a) find that equivariant
models where the group acts directly on observation
space perform well in RL even with camera skew or
occlusions. They define extrinsic equivariance (trans-
formed samples are outside the data distribution) and
show that it can benefit in some scenarios but can also
be harmful in certain cases (Wang et al., 2024a). Un-
like these works where the observation is partial and
does not contain full information about the state, we
assume that the domains are fully observable and con-
sider various symmetry breaking factors.
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3 BACKGROUND

In this section, we provide some background on sym-
metry groups and equivariant functions. As building
blocks of exactly and approximately equivariant net-
works, we also describe exact and relaxed group con-
volutions, respectively.

3.1 Groups and Equivariance

A symmetry group G is a set equipped with a binary
operation that satisfies associativity, existence of an
identity, and existence of inverses. A group can act on
vector space X via a group representation ρX which
homomorphically assigns each element g ∈ G an in-
vertible matrix ρX(g) ∈ GL(X). For example, for
a finite group G, the regular representation acts on
R|G| by permuting basis elements {eg : g ∈ G} as
ρreg(h)eg = ehg. A function f : X → Y , x 7→ y
is G-equivariant if f(ρX(g)(x)) = ρY (g)f(x). That
is, transformations of the input x by g correspond to
transformations of the output by the same group el-
ement. We can enforce this constraint in equivariant
neural networks to learn only over the space of equiv-
ariant functions by replacing linear layers with group
or steerable convolutional layers. One benefit of en-
forcing equivariance is lower sample complexity as the
network searches over a reduced function class.

3.2 Group Convolution

One method of constructing equivariant network layers
is by group convolution (Cohen and Welling, 2016),
which we briefly describe here. Group convolutions
map between features which are signals over the group
f : G→ R. For inputs not natively of this form, a lift
operation must first be performed. Let ψθ : G → R
be the convolutional kernel parameterized by θ. A G-
equivariant group convolutional layer is defined as

(f ⋆ ψθ)(g) =
∑
h∈G

ψθ(g
−1h)f(h). (1)

Equivariance follows from the fact that the kernel de-
pends only on the product g−1h and not the specific
elements (g, h). For example, if we consider equivari-
ance across translations, we obtain the standard con-
volution where h, g ∈ Z2 and g−1h = h − g. An-
other possible approach to constructing equivariant
network layers is with G-steerable convolutions (Co-
hen and Welling, 2017), which can generalize to con-
tinuous groups.

3.3 Relaxed Group Convolution

A key component of our method is the relaxed version
of the group convolution (Wang et al., 2022c). The

kernel ψ is replaced with several kernels {ψl}Ll=1 and
the output is composed as a linear combination. The
relaxed group convolution is defined as

(f⋆̃ψθ)(g) =
∑
h∈G

f(h)
L∑

l=1

wl(h)ψl
θ(g

−1h), (2)

where wl are the relaxed weights and each ψl
θ are con-

strained to be exactly equivariant. Note that as wl(h)
depends on the specific element h, this breaks the strict
equivariance of the group convolution. Wang et al.
(2022c) also introduce relaxed versions of steerable
convolutions, see Wang et al. (2022c) or Appendix C.2
for more details.

3.4 Approximate Equivariance

There have been several different definitions of approx-
imate, relaxed, or partial equivariance. In this paper,
we use the definition given by Petrache and Trivedi
(2024). We give some background to build up to the
definition. Let G be a group and f : X → Y, x 7→ y be
the task function.

Definition 1 (Equivariance Error). For g ∈ G and
x ∈ X, the equivariance error ee(f, g, x) is defined as

ee(f, g, x) = ∥f(g(x))− g(f(x))∥, (3)

Equivariance error measures exactly how far a function
is from perfect equivariance with respect to G for a
particular x. For an exactly G-equivariant function,
ee(f, g, x) = 0 for all g ∈ G and x ∈ X.

Definition 2 (ε-stabilizer). The ε-stabilizer of f and
G is defined as

Stabε(f,G) = {g ∈ G | ee(f, g, x) ≤ ε}. (4)

The ε-stabilizer gives the set of group elements for
which the equivariance error is under some threshold.

Definition 3 (Approximate G-Equivariance). Given
a function f : X → Y and a group G, f is approxi-
mately G-equivariant if Stabε(f,G) = G.

We adopt the definition of approximate equivari-
ance where f has bounded equivariance error for all
g ∈ G, in contrast to partial equivariance, where
Stabε(f,G) < G.

4 METHOD: APPROXIMATELY
EQUIVARIANT
REINFORCEMENT LEARNING

We first theoretically characterize the problem by
defining approximately equivariant Markov decision
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processes (MDP). We then prove that environments
with approximate symmetry admit approximately in-
variant Q functions. This motivates our method of us-
ing approximately equivariant neural networks to learn
the policy and Q function.

4.1 Approximately Equivariant MDP

Consider an infinite-horizon discounted-reward
Markov decision process (MDP) represented by a tuple
M = (S,A, P,R, γ) with state space S, action spaceA,
instantaneous reward function R : S × A → R, a
transition function P : S × A → ∆S and discount
factor γ ∈ (0, 1).

Let π : S → ∆A be a policy giving the probability
π(a|s) of taking action a in state s. The expected
cumulative reward of using the policy starting from
state s (or state s and action a) are the value functions
defined as follows

V π(s) := Eπ
[ ∞∑
k=0

γkR(sk, ak)
∣∣∣s0 = s

]
,

Qπ(s, a) := Eπ
[ ∞∑
k=0

γkR(sk, ak)
∣∣∣s0 = s, a0 = a

]
.

(5)

The goal is to find a policy π∗ that maximizes the
expected return with an initial state distribution ξ

π∗ := argmax
π

Es0∼ξ[V
π(s0)].

We denote V ∗ = V π∗
and Q∗ = Qπ∗

.

Let G be a group acting on S and A. Denote the ac-
tion of an element g ∈ G on s and a by gs and ga,
respectively. We now extend the definition of Equiv-
ariant MDPs (Van der Pol et al., 2020) to cases where
the symmetry is approximate.

Definition 4. An MDP is (G, ϵR, ϵP )-invariant if

|R(gs, ga)−R(s, a)| ≤ ϵR, ∀g ∈ G

dF

(
P (gs′ | gs, ga), P (s′ | s, a)

)
≤ ϵP , ∀g ∈ G,

where dF (µ, ν) := supf∈F

∣∣∣ ∫S fdµ− ∫
S fdν

∣∣∣ is an in-

tegral probability metric (IPM) between two distribu-
tions µ, ν ∈ ∆(X ).

Some well known examples of IPM include (Sriperum-
budur et al., 2009): total variation distance (F =
{f : ∥f∥∞ ≤ 1}) and Kantorovich metric (F = {f :
∥f∥Lip ≤ 1}). A useful property of IPMs is, given a
function class F and a function f (Müller, 1997)∣∣∣ ∫

S
fdµ−

∫
S
fdν

∣∣∣ ≤ ρF (f) · dF (µ, ν),

where the Minkowski functional w.r.t F is

ρF (f) = inf{ρ ∈ R≥0 : ρ−1f ∈ F}.

For the total variation distance ρF (f) := 1
2 (max f −

min f) and for Kantorovich metric ρF (f) := ∥f∥Lip.

The following theorem provides a characterization
of the gap between the value functions in the orig-
inal and symmetry transformed domain, for the
(G, ϵR, ϵP )−invariant MDP described in Definition 4.
Theorem 1 highlights that the Q-function is approx-
imately group-invariant, where the approximation is
now a function of the reward and transition mismatch,
the discount factor, and the Minkowski functional eval-
uated on the optimal value function.

Theorem 1. Let the rewards R be bounded Rmin ≤
R ≤ Rmax, 0 ≤ γ < 1 and let g ∈ G be an onto
mapping. For any state s and action a, we have

|Q∗(s, a)−Q∗(gs, ga)| ≤ α,

|V ∗(s)− V ∗(gs)| ≤ α,

where α = ϵR+γρF (V ∗)ϵP
1−γ .

Theorem 1 implies that when the invariance mismatch
is small – i.e., when the domain has only minor sym-
metry violations – the Q-function is approximately
group-invariant. A proof is provided in Appendix A.
Note that, in Theorem 1, when the Kantorovich met-
ric is used for uncertainty characterization, ρF (V ∗) =
∥V ∗∥Lip, where ∥ · ∥Lip is the Lipschitz norm of the
value function (Gelada et al., 2019). For total varia-
tion distance, ρF (V ∗) = |Rmax −Rmin|.

Also, from Theorem 1, it is clear that when γ ∈ [0, 1),
we obtain a non-trivial characterization, while γ = 1
results in a trivial and uninformative bound. This is
the limitation of the infinite horizon setting, and can
be remedied by considering an arbitrary finite-horizon
setup. We do this for the sake of completeness in
Appendix B. We not only show that the finite hori-
zon setup allows for a time-dependent transition func-
tion, but also obtain an approximate group-invariance
of the time dependent Q-function in terms of similar
elements that appear in Theorem 1.

There are different ways to use the above results. One
can discover how approximate the value functions are
and learn α, or one can incorporate approximate equiv-
ariance into the model and leverage the benefits of
equivariance. We take the latter approach and con-
sider approximately equivariant networks for the pol-
icy and critic in domains with inexact symmetry.

4.2 Approximately Equivariant Actor-Critic

We propose approximately equivariant versions of two
commonly used actor-critic algorithms, DrQv2 (Yarats
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Figure 2: Illustration of the approximately D2-equivariant encoder and policy (critic is not shown for space).
The D2 group consists of vertical reflections and π rotations. Both the encoder and policy consist of relaxed
group convolution layers.

et al., 2021) and SAC (Haarnoja et al., 2018). In doing
so, we generalize exactly equivariant versions of SAC
(Wang et al., 2022b) and DrQv2 (Wang et al., 2022a)
from previous works by replacing strictly equivariant
layers with relaxed equivariant layers.

Illustrative Example We first illustrate how to
apply our proposed approximately equivariant actor-
critic architecture on the Reacher domain; see Fig-
ure 2. The objective is to actuate a two-joint arm so
that the end effector reaches the red point. The state
is a stack of consecutive images s ∈ RC×H×W and
the action a ∈ R2 corresponds to torques for the first
and second arms. There is clear rotational and reflec-
tional symmetry in this domain. If the state (image)
is rotated, the action should be invariant to rotations
as they are angular torques. If the state is reflected,
then the action would also correspondingly be flipped
(in sign). However, as in the example in Figure 1, the
first joint is more responsive to positive torques, which
breaks rotational and reflectional symmetry.

For this domain, we implement approximate equivari-
ance to the group D2 of vertical reflections and π ro-
tations. The group D2 transforms the input states by
image transformations, where the input images are re-
flected or rotated. Latent representations are images
z : R2 → RC where g ∈ D2 acts on the pixel axes by
image transformation and on the channel axis by per-
mutations corresponding to the regular representation
of D2, i.e. (gz)(x, y) = ρreg(g)z(g

−1 ·(x, y)). Note that
the latent representations can be high-dimensional,
consisting of a direct sum of several different or re-
peated low-dimensional representations of D2. For the
output, the torques a1 and a2 are scalars that change
sign under reflection but are invariant under rotations.

Encoder, Policy, and Critic We extend exactly
equivariant versions of SAC (Wang et al., 2022b) and
DrQv2 Wang et al. (2022a) by replacing each group
convolution with relaxed group convolutions for the

encoder, policy, and critics. Practically, each relaxed
group convolution layer contains L exactly equivariant
kernels ψl and the output is a linear combination of
the outputs of these convolutions and relaxed weights
wl(g). The wl(g) also transform as the regular rep-
resentation of G, see Section 3.1 for the definition for
finite groups.

The encoder E and the policy π are approximately
equivariant. The latent state z output by E is defined
to transform as the direct sum of regular represen-
tations of G. The action representation is domain-
specific. The critics are approximately invariant and
output scalars q(s,a) that are fixed by G, i.e. transform
via the trivial representation. For more details, please
see Section 5 and Appendix C.

In the case of continuous groups, we can also construct
relaxed steerable versions of the encoder, policy, and
critics. Analogous to the group convolution case, we
can replace the exactly equivariant steerable convo-
lutions with relaxed steerable convolutions. See Ap-
pendix C for more details.

5 EXPERIMENTS

We experiment on how approximately equivariant RL
compares to methods with exact equivariance and no
equivariance in domains with both exact symmetry
and various symmetry breaking factors, and to elu-
cidate when approximate equivariance should be pre-
ferred. We consider standard continuous control do-
mains and stock trading with real-world data.

5.1 Continuous Control

We first experiment on four continuous control do-
mains in DeepMind Control Suite (Tassa et al., 2018).
Similar to Wang et al. (2022a), we consider a subset of
the domains which have apparent symmetry. Acrobot,
Cartpole, and BallInCup have reflectional symmetry
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Figure 3: Total episode reward on selected domains in the DeepMind Control Suite, shaded regions indicate 95%
confidence intervals (CI). Compared to an exactly equivariant agent (ExactEquiv), our approximately equivariant
agent (ApproxEquiv) outperforms in Acrobot, performs similarly in two domains, and is slightly worse in the
Reacher domain. ApproxEquiv can outperform ExactEquiv on some modified variants with inexact symmetry
as it can adjust for symmetry breaking. Our agent outperforms all other baselines, including a non-equivariant
agent, suggesting that relaxed symmetry is a good inductive bias.

Figure 4: Selected domains in DeepMind Control
Suite. The domains were modified to remove extrinsic
symmetry and to include several types of symmetry
breaking factors such as repeating or reflecting actions
in certain states, or by modifying gravity.

described by the group D1 and Reacher has D2 sym-
metry. For all domains, the observations are a stack
of 3 consecutive RGB images.

We modify the domains to carefully control the type
and degree of symmetry breaking that is present. We
first remove fixed background features such as random
stars in the sky and checkered floors (see Figure 4).
These features break symmetry to some extent since

they do not transform with the underlying state, but
give a form of mild symmetry breaking termed ex-
trinsic equivariance, which has an inconsistent impact
on equivariant models (Wang et al., 2022a). We then
introduce several different symmetry breaking factors
for each domain: 1) repeat action - the action is
repeated twice in a certain region of the domain, 2)
gravity - gravity is modified from the force vector
(0, 0,−9.81) to (a,−a,−9.81) where a ̸= 0, and 3)
reflect action - the action direction is flipped in
certain regions of the domain. repeat action and
reflect action test local symmetry breaking factors,
while gravity tests a global symmetry breaking fac-
tor. See Appendix D.1 for more details.

Models For the continuous control tasks, we im-
plement an approximately equivariant(ApproxEquiv)
version of a SOTA image-based RL algorithm DrQv2
(Yarats et al., 2021). We compare with exactly equiv-
ariant (ExactEquiv) and non equivariant (NonEquiv)
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Table 1: Total episode reward on 50 rollouts for the best policy in the original and noisy domains. Gray values
indicate 95% CI. ApproxEquiv learns a better policy than baselines on the modified domains and is more robust
to noisy inputs.

No Noise Noisy
ApproxEquiv ExactEquiv NonEquiv ApproxEquiv ExactEquiv NonEquiv

Acrobot
Original 389±11 522±21 309±22 344±14 402±22 190±14

Gravity 471±17 382±15 358±23 369±15 218±10 202±12

Cartpole
Original 876±0.2 881±0.1 881±0.1 778±22 855±0.6 572.5±25

Repeat Action 859±0.4 749±13 855±0.6 624±6.0 523±21 192±5.0

Ball in Cup
Original 961±0.0 958±0.0 970±0.0 882±7.7 783±24 0±0.0

Gravity 969±0.0 966±0.0 959±0.0 888±13.2 0±0.0 1.8±1.8

Reacher
Original 903±33 950±15 519±68 778±41 745±44 247±52

Reflect Action 757±55 707±59 243±58 659±42 217±41 82±29

Figure 5: Visualization of relaxed weights for the first layer of the encoder and policy over all runs. Similar
weights for each g indicate perfect equivariance while differing values indicate symmetry breaking. The modified
variants of most domains exhibit larger differences or increased variance in the relaxed weights compared to the
original variant.

versions of the same architecture. We largely use the
hyperparameters from Yarats et al. (2021) but reduce
the latent dimension for more tractable computation
for all methods. We also compare against an ap-
proximately equivariant model, Residual Pathway Pri-
ors (RPP) (Finzi et al., 2021), and a self-supervised
symmmetry-aware model, SiT (Weissenbacher et al.,
2024). We extend RPP to the DrQv2 architecture by
using RPP layers in the encoder, policy, and critics.
We find that RPP is somewhat sensitive to the speed τ
of the critic moving average (as mentioned in the orig-
inal paper), and had to reduce its value for Acrobot

and BallInCup for stability. We also extend SiT to
the DrQv2 architecture by using an SiT as the en-
coder and standard MLPs for the policy and critics.
Although we adapted the code from the official SiT
implementation, we were unable to modify the input
image sizes and had to use the image size used in the
original paper (64px).

Results Figure 3 show the total episode reward over
training. As expected, we confirm that NonEquiv

has much lower sample efficiency than the models
with a symmetry bias. In the repeat action and
reflect action variants of Acrobot, ApproxEquiv

significantly outperforms ExactEquiv and RPP. It does
slightly worse than ExactEquiv on the Reacher do-
main but beats RPP, suggesting that the symmetry
breaking we introduced was not strong enough to
achieve incorrect equivariance. It is also possible that
ExactEquiv can infer the symmetry breaking factors
from the 3 frames of input, making the task a case
of extrinsic equivariance where an equivariant model
can succeed Wang et al. (2022a). In CartPole and
BallInCup, all methods perform similarly and learn
an optimal policy quickly. In domains with exact sym-
metry (original), our method ApproxEquiv performs
similarly to ExactEquiv, showing there is no cost in
performance by giving the model the ability to adapt
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to symmetry breaking in cases where it is not needed.
This result supports Proposition 3.1 from Wang et al.
(2024b), which proves that relaxed group convolutions
initialized to be exactly equivariant stay exactly equiv-
ariant when trained with exact data symmetry.

We visualize the relaxed weights of the first layers of
the encoder and policy over all runs in Figure 5. If
these weights are equal, the model is equivariant; the
more they differ the more the model has relaxed the
symmetry constraint. For Acrobot and CartPole, the
weights differ more for the modified domains than the
original symmetric domain, especially for the encoder,
while the policy weights vary more for the modified do-
mains of BallInCup. This indicates the relaxed equiv-
ariant models have adapted to the symmetry breaking
in the domains.

To quantitatively evaluate the models, we select the
best-performing policy from all runs and measure the
total reward over 50 episodes. The results echo the
training curves in Figure 3, where ApproxEquiv per-
forms well, particularly in the domains with symmetry
breaking factors (see Table 1).

To test whether approximately equivariant models are
robust to noisy observations, we also consider variants
of the domains where Gaussian noise are added to the
input images only at test time (σ = 0.02 for Acrobot
and Reacher, σ = 0.06 for CartPole and BallInCup).
Interestingly, we find that our approach is more robust
to noisy inputs than ExactEquiv or NonEquiv, espe-
cially on the BallInCup and Reacher domains. We
further experiment with training on noisy data and
test on noisy domains to see which policies are more
robust, see Table 4 in Appendix E. We find that in
the BallInCup domains, the approximately equivari-
ant agent is still more robust to noise than the fully
equivariant or non equivariant baselines.

5.2 Stock Trading

We also consider a stock trading task using real world
price data, formulated as an MDP (Liu et al., 2018).
Given a fixed amount of initial cash, the objective
is to learn the optimal number of stocks to buy and
sell (once daily) to maximize the portfolio value. The
state consists of the current cash balance, the stock
prices, the number of shares in the current portfolio,
and other technical indicators of each stock. The ac-
tions are the number of stocks to buy and sell for each
stock. The reward is the scaled difference in portfo-
lio values between consecutive timesteps. We assume
that the market dynamics are not affected by our trad-
ing. There is a small 0.1% transaction cost for every
trade. We use real financial data scraped from Ya-
hoo Finance (yfi, 1997) and consider the stocks in the

Table 2: Test results on the stock trading dataset.
Gray values indicate 95% CI over 5 runs. The approx-
imately equivariant agents for both scale-translation
(ST) and translation (T) outperform the exactly
equivariant and non equivariant methods.

Final Portfolio
Value ($mm)

Annualized
Return (%)

Sharpe Ratio

ApproxEquiv
ST 1.489±0.16 12.0±3.4 0.63±0.1

T 1.428±0.04 10.6±3.8 0.60±0.1

ExactEquiv
ST 1.411±0.15 10.3±3.4 0.62±0.2

T 1.307±0.18 7.8±4.3 0.50±0.3

NonEquiv 1.378±0.05 9.6±1.3 0.62±0.1

Uniform 1.412 10.4 0.71
ˆDJI 1.293 7.7 0.53

Dow Jones index from 2001-01-01 to 2024-07-01 (see
Appendix D.2 for sample data). We split the train,
validation, and test data into time periods 2001-01-
01-2019-01-01, 2019-01-01 - 2021-01-01, and 2021-01-
01-2024-07-01, respectively. Unlike Liu et al. (2018),
who used only the current timestep, we use a sliding
window approach and use the previous 9 timesteps for
the state. See Appendix D.2 for a more detailed de-
scription.

Models For this domain, we use SAC (Haarnoja
et al., 2018) as our RL algorithm and consider equiv-
ariance to both the translation group and scale-
translation group across the time dimension. Tempo-
ral translations can be useful as the most recent his-
tory of stock prices inform your actions, and this infor-
mation may be approximately preserved across time.
Temporal scaling could also be beneficial as there could
be market seasonality, which is only approximately
shared across different time scales. As our actions do
not affect stock prices, which in turn is directly corre-
lated with the reward, we learn an approximately in-
variant policy and invariant critic for both symmetry
groups. As before we compare approximately equiv-
ariant, strictly equivariant, and unconstrained models.
We evaluate each method on the final portfolio value
(equivalent to the total episode reward), annualized
return, and the Sharpe ratio (Sharpe, 1994), which is
a standard financial metric that measures an asset’s
risk-adjusted performance. We also include as base-
lines a uniform holding strategy Uniform, where we
initially buy equal values of each stock and hold, and
the Dow Jones index ^DJI.

Results Table 2 lists the average test results of the
learned policies on the stock trading domain. The
ApproxEquivmodel for both translation (T) and scale-
translation (ST) outperform all baselines, with annu-
alized returns of 10.6% and 12.0% respectively. The
Exact ST-Equiv model outperforms NonEquiv, while
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Figure 6: 10 episode rollouts from the best perform-
ing policy for each method. Approx ST-Equiv often
achieves the highest portfolio value for each time step
and incurs minimal transaction costs.

Figure 7: Visualization of relaxed weights for transla-
tion (left) and scale (right) over all runs. The relaxed
weights for translation differ for each timestep and are
similar for scale.

the Exact T-Equiv model does worse. These observa-
tions suggest that temporal scale and translation sym-
metries can be good biases in analyzing financial data
and that translation symmetry may be more approxi-
mate than scale. We also visualize 10 episode rollouts
of the best-performing policies in Figure 6, with the
portfolio values on the left and transaction costs on
the right. The Approx ST-Equiv method achieves the
highest portfolio value for most timesteps and incurs
lower transaction costs than the exactly equivariant
policies. We note that overall the annualized returns
are fairly low, as the test dataset from 2021-01-01 to
2024-07-01 includes both the COVID-19 pandemic and
2022 stock market decline.

We visualize the relaxed weights of the first layer of
the encoder across translation (left) and scale (right)
in Figure 7. For translation, our model places higher
weights on the very last timestep. This matches our
intuition as the most recent stock prices and portfolio
holdings would be most informative in determining the
optimal action. For scale, we find that the relaxed
weights do not differ greatly, but there is increased
variance with increasing scale.

6 DISCUSSION

We proposed a novel approximately equivariant archi-
tecture using relaxed group convolutions for model-
free reinforcement learning. Our experimental results
on continuous control domains and a stock trading

problem with real-world data demonstrate that the
approximately equivariant model performs similarly to
an exactly equivariant model in domains with perfect
symmetry but outperforms it in most domains with
symmetry breaking factors. This suggests that our
method can act as a much more flexible alternative to
exactly equivariant agents that can boost sample effi-
ciency in a wider variety of settings and is also more
robust to perturbations.

Limitations and Future Work While we did con-
sider real-world data in the stock trading domain, our
continuous control domains used simplified observa-
tions and synthetic symmetry breaking. Furthermore,
exactly equivariant networks perform better in some
modified domains than others (Reacher vs. Acrobot).
Another limitation is that, as with all equivariant net-
works, the symmetry group and how it acts on the
state and action spaces need to be known in advance.
An interesting future direction could be to quantify ex-
actly what types of symmetry breaking factors could
lead to higher performance for approximately equiv-
ariant RL, possibly by measuring equivariance error.
Other future work includes proving bounds on the op-
timal policy π(s) and π(gs) or applying approximately
equivariant RL in robotic manipulation, where kine-
matic constraints or obstacles can break symmetry.
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Approximate Equivariance in Reinforcement Learning:
Supplementary Materials

A PROOF OF THEOREM 1

The proof is established by first deriving the deviation for an (arbitrary) finite-horizon discounted problem and
then using this to derive the bounds for the infinite horizon case. All intermediate results are collected as
propositions.

Consider an discounted-reward finite-horizon (horizon length is T rather than infinity) MDP with the same
reward and transition kernel as the original MDP (independent of time). For a given stochastic policy π =
(π1, π2 · · · , πT−1), let

Vπ
t (s) = Eπ

[ T−1∑
k=t

γk−tR(sk, ak)
∣∣∣st = s

]
,

Qπ
t (s, a) = Est+1

[
R(s, a) + γVπ

t+1(st+1)
∣∣∣st = a, at = a

]
,

be the finite-horizon counterparts of the expected return and action-value. Recursively define the policy inde-
pendent counterparts as follows:

VT (sT ) = 0, VT (gsT ) = 0,

Qt(st, at) = R(st, at) + γ

∫
S
Vt+1(st+1)P (st+1|st, gt),

Qt(gst, gat) = R(gst, gat) + γ

∫
S
Vt+1(gst+1)P (gst+1|gst, gat),

Vt(st) = sup
at∈A

Qt(st, at), Vt(gst) = sup
at∈A

Qt(gst, gat).

We also define

V π
t (s) := Eπ

[ ∞∑
k=t

γk−tR(sk, ak)
∣∣∣st = s

]
, Qπ

t (s, a) := Eπ
[ ∞∑
k=t

γk−tR(sk, ak)
∣∣∣st = s, at = a

]
.

Let Vt(st) := supπ V
π
t (st) and

Qt(st, at) = E
[
R(sa, at) + γVt+1(st+1)

∣∣∣st, at].
Note that V π

t and Qπ
t equal V π and Qπ defined in (5) for any t, and Vt and Qt equal V

∗ and Q∗. We introduce
the notations only to make the connection between the finite-horizon and infinite-horizon MDPs clearer.

Proposition 1. For a (G, ϵR, ϵP )-invariant MDP, the following holds at any t,

|Qt(st, at)−Qt(gst, gat)| ≤ αt, and |Vt(st)− Vt(gst)| ≤ αt,

where αt is given by the following recursion: αT+1 = 0 and

αt = ϵR + γ
{
ρF (Vt+1)ϵP + αt+1

}
.
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Proof. We will prove the results using induction. First, note that the result is true for T by definition. Suppose
the result is true for t+ 1, and consider the differential at time t,

|Qt(st, at)−Qt(gst, gat)| ≤ |R(st, at)−R(gst, gat)|

+ γ
∣∣∣ ∫

S
Vt+1(st+1)P (st+1|st, at)−

∫
S
Vt+1(gst+1)P (gst+1|gst, gat)

∣∣∣
≤ ϵR + γ

∣∣∣ ∫
S
Vt+1(st+1)P (st+1|st, at)−

∫
S
Vt+1(gst+1)P (st+1|st, at)

∣∣∣
+ γ

∣∣∣ ∫
S
Vt+1(gst+1)P (st+1|st, at)−

∫
S
Vt+1(gst+1)P (gst+1|gst, gat)

∣∣∣
≤ ϵR + γρF (Vt+1)ϵP + γ

∫
S

∣∣∣Vt+1(st+1)− Vt+1(gst+1)
∣∣∣P (st+1|st, at).

The last inequality follows by using the decomposition using Minkowski’s functional. Further, note that∣∣∣Vt+1(st+1)− Vt+1(gst+1)
∣∣∣ ≤ sup

at+1∈A
|Qt+1(st+1, at+1)−Qt+1(gst+1, gat+1)| ≤ αt+1,

by induction assumption, and the fact that when g is onto

sup
a′∈gA

Qt+1(gst, a
′) = sup

a∈A
Qt+1(gst, ga).

The result follows.

Proposition 2. Let the rewards R ∈ [Rmin, Rmax]. For an arbitrary, but finite, horizon T

Qt(st, at) +
γT−t

1− γ
Rmin ≤ Qt(st, at) ≤ Qt(st, at) +

γT−t

1− γ
Rmax.

Proof. We have by definition,

Qt(st, at) = E
[ ∞∑
k=t

γk−tR(sk, ak)
∣∣∣st = s, at = a

]
= E

[
R(st, at) + γE

[ ∞∑
k=t+1

γk−(t+1)R(sk, ak)
∣∣∣st+1

]∣∣∣∣∣st = s, at = a

]

≤ E

[
R(st, at) + γE

[
Vt+1(st+1) +

γT−(t+1)Rmax

1− γ

]∣∣∣st+1

]∣∣∣∣∣st = s, at = a

]

= Qt(st, at) +
γT−t

1− γ
Rmax.

Similarly, we have

Qt(st, at) = E
[ ∞∑
k=t

γk−tR(sk, ak)
∣∣∣st = s, at = a

]
≥ E

[
T−1∑
k=t

γk−tR(sk, ak) +
∞∑

k=T

γk−tRmin

∣∣∣st, at]

= E

[
R(st, at) + γ

T−1∑
k=t+1

γk−(t+1)R(sk, ak)
∣∣∣st, at]+

γT−t

1− γ
Rmin

= Qt(st, at) +
γT−t

1− γ
Rmin.
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We now prove Theorem 1. Let B(S) denote the Banach space of bounded real-valued functions on S. We define
the Bellman optimality operator B : B(S) → B(S) such that for any uniformly bounded function V ∈ B(S),

BV (s) = sup
a∈A

{
R(s, a) + γ

∫
S
V (s′)P (s′|s, a)

}
∀s ∈ S. (6)

It is known that V ∗ is the (unique) fixed point of B, i.e., BV ∗ = V ∗. We note that V ∗ also satisfies the following
equation for any s

V ∗(gs) = sup
a∈A

{
R(gs, ga) + γ

∫
S
V ∗(gs′)P (gs′|gs, ga)

}
. (7)

To see this, consider the following arguments.

Q∗(s, a) = R(s, a) + γ sup
a′∈A

∫
s′∈S

Q∗(s, a)P (s′|s, a),

Q∗(gs, ga) = R(gs, ga) + γ sup
a′∈A

∫
s′∈S

Q∗(gs, ga)P (s′|gs, ga).

Since g ∈ G permutes the elements of G, re-indexing the integral using s̃′ = gs′, we have

Q∗(gs, ga) = R(gs, ga) + γ sup
ã∈gA

∫
s̃′∈gS

Q(s̃′, ã′)P (s̃′|gs, ga).

∴ Q∗(gs, ga) = R(gs, ga) + γ sup
a′∈A

∫
s′∈S

Q(gs′, ga′)P (gs′|gs, ga).

Proof of Theorem 1:

Consider a sequence of value functions V(n) on the symmetry transformed domain as follows: V(0)(gs) = 0 and
V(n+1) = BV(n). For an arbitrary T , we have using Proposition 1 for any t ∈ {1, · · · , T},

|Vt(st)− V(T−t)
t (gst)| ≤ αt,

where

αt = ϵR +
T−1∑

τ=t+1

γτ−t[ρF (V(T−τ))ϵP + ϵR].

From Proposition 2, we have, noting that V(s) = supa Q(s, a), that

V(T−t)
t (gst)− αt +

γT−t

1− γ
Rmin ≤ Vt(st) ≤ V(T−t)

t (gst) + αt +
γT−t

1− γ
Rmax

By Banach fixed point theorem, we know that limT→∞ V(T−t)
t = V ∗. By continuity of ρF (·), we have that

limT→∞ ρF (V(T−τ)) = ρF (V ∗) whence limT→∞ αt = α := ϵR+γρF (V ∗)ϵP
1−γ . Therefore, taking the limit, we have

V ∗(gst)− α ≤ Vt(st) ≤ V ∗(gst) + α.

A similar argument establishes the result for Q using the onto function g. The claims in Theorem 1 follows by
recognizing that Vt and Qt exactly equal V ∗ and Q∗.

B CASE OF FINITE HORIZON: NO DISCOUNTING

As is clear from Theorem 1, when γ → 1, the bound becomes trivial and not useful. In this section we will
briefly discuss the case when the discount factor γ = 1. In this setting, we allow the transition functions to be a
function of t.
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Proposition 3. Let |R(gst, gat) − R(st, at)| ≤ ϵR and dF

(
Pt(gs

′
t | gst, gat), Pt(s

′
t | st, at)

)
≤ ϵP (t). For a

finite-horizon MDP of duration T , we have

|Qt(st, at)−Qt(gst, gat)| ≤ αt, |Vt(st)− Vt(gst)| ≤ αt

where αT+1 = 0 and for t ∈ {1, 2, · · · , T},

αt = ϵR +
T∑

τ=t+1

[
ρF (Vτ )ϵP (τ − 1) + ϵR

]
.

Proof. The proof proceeds as in Proposition 1. We have

|Qt(st, at)−Qt(gst, gat)| ≤ |R(st, at)−R(gst, gat)|

+
∣∣∣ ∫

S
Vt+1(st+1)Pt(st+1|st, at)−

∫
S
Vt+1(gst+1)Pt(gst+1|gst, gat)

∣∣∣
≤ ϵR +

∣∣∣ ∫
S
Vt+1(st+1)Pt(st+1|st, at)−

∫
S
Vt+1(gst+1)Pt(st+1|st, at)

∣∣∣
+
∣∣∣ ∫

S
Vt+1(gst+1)Pt(st+1|st, at)−

∫
S
Vt+1(gst+1)Pt(gst+1|gst, gat)

∣∣∣
≤ ϵR + ρF (Vt+1)ϵP (t) + αt+1 := αt.

The result follows by recursion.

C BACKGROUND AND METHOD

C.1 Equivariance with Group Convolutions

Group convolutions (Cohen and Welling, 2016) generalize standard convolutions, which are translation-
equivariant, to be equivariant to a group G. Group convolutions act on signals over the group f : G → R.
As many data samples are not natively of this form (e.g. an image), the input must first be lifted onto a function
in G. For example, let f0 : Z2 → R be the input signal, a grayscale image, and H = D2 be the group. The lifting
convolution lifts f0 from Z2 to G = D2 ⋉ Z2 by

(f0 ⋆ ψ)(x, h) =
∑
y∈Z2

f0(y)ψ(h
−1(y − x)), (8)

where h ∈ H. Practically, the lift operation creates |H|, the order of group H, images by acting on x by
h−1. Typically the lift operation is the first layer of the network, followed by subsequent group convolutions,
nonlinearities, or other equivariant layers. We use relaxed versions of the lift and group convolutions as described
in Wang et al. (2022c) and the main paper.

C.2 Steerable Convolutions

As an alternative to group convolutions, one can use steerable convolutions (Weiler et al., 2018) that use weight
tying to generalize to continuous groups and are more parameter-efficient. Let H < O(2) be the subgroup
which acts on R2 by matrix multiplication on the input and output channel spaces Rc and Rd by ρin and ρout,
respectively. Then G = H ⋉R2. Given input signal f : R2 → Rc, then standard convolution over R2 with kernel
ψ : R2 → Rd×c is G-equivariant if ψ satisfies

ψ(hx) = ρout(g)ψ(x)ρin(h
−1), (9)

for all h ∈ H. Intuitively, this kernel constraint ensures that the output features transform by ρout when the
input features are transformed by ρin. Kernels that satisfy this constraint have been solved for many common
subgroups of E(2), see Weiler and Cesa (2019) for more details.

Using the example of grayscale images as in Section C.1, let the input feature be f : Z2 → R and {ψk}Kk=1 be
a precomputed, nontrainable equivariant kernel basis of K kernels that satisfy Eq. (9). Assume that both the
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Figure 8: Illustration of an approximately D2-equivariant encoder and policy using relaxed steerable convolution
layers. The critic is not shown and is approximately invariant.

number of input and output channels is 1 and let w ∈ RK be the trainable coefficients of the kernels. Then a
G-steerable convolution is defined as

(f ⋆ ψ)(x) =
∑
y∈Z2

K∑
k=1

(wkψk(y))f(x+ y), (10)

where x ∈ Z2 is the spatial position and wk is the weight associated with kernel ψk.

Relaxed Steerable Convolution As described in Wang et al. (2022c), one can also use relaxed versions of
steerable convolutions by letting the trainable weights w also depend on y. A relaxed G-steerable convolution is
defined as

(f⋆̃ψ)(x) =
∑
y∈Z2

K∑
k=1

(wk(y)ψk(y))f(x+ y). (11)

Allowing the trainable weights wk to also depend on the absolute spatial position y breaks the equivariance
constraint in Eq. (9).

By replacing relaxed group convolutions with relaxed steerable convolutions, we can also design a variant of our
proposed approximately equivariant RL architecture (Figure 8).

D EXPERIMENT DETAILS

D.1 Continuous Control

Acrobot We use the swingup task. The domain consists of two joints where the goal is to apply torque to
the inner joint so that both joints are near vertical. We use D1 as the symmetry group, i.e. vertical reflection,
and the action a ∈ R transforms via the sign representation ρsign, where ρsign(flip)(a) = −a. For variants, we
consider 1) repeat action - the action is repeated when the inner joint is in the fourth quadrant and 2) gravity
- gravity g⃗ = [0, 0,−9.81] is modified to [−2, 2,−9.81].

CartPole We consider the swingup task. The domain consists of a pole swinging on a cart and the goal is to
move the cart left or right (a ∈ R) to make the pole upright. The symmetry group and action representation are
the same as in Acrobot, D1 and ρsign. For variants, we consider 1) repeat action - the action is repeated when
the pole is in the first quadrant, 2) gravity - gravity is modified to [0.2,−0.2,−9.81], and 3) reflect action

- the pole angle is in [0, π4 ]. Gravity is modified less than in Acrobot as too high values forced the cart out of
frame.

Cup Catch The domain consists of a ball attached to the bottom of the cup and the goal is to move the cup
to catch the ball inside the cup. The action (x, z) ∈ R2 is the cup’s spatial position. The symmetry group is D1

and the action representation is ρsign ⊕ ρ0, where the x position transforms via the sign representation and the
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z transforms via the trivial representation ρ0. For variants, we consider 1) repeat action - the ball x position
greater than 0.0 and z position is greater than 0.3, 2) gravity - gravity is modified to [−2, 2,−9.81], and 3)
reflect action - same as repeat action.

Reacher We consider the hard task. The domain consists of two joints and the goal is to apply torques to
make the end effector reach the target. The action a ∈ R2. The symmetry group is D2, i.e. vertical reflections
and π rotations, and the action transforms via the quotient representation 2ρquot, where the torques for both
joints are invariant to rotations and flip signs for vertical reflections. For variants, we consider 1) repeat action

- the inner joint angle is in [0, π2 ] and 2) reflect action - the inner joint angle is in [π2 , π].

D.1.1 Training Details

For all DeepMind Control Suite (DMC) domains, we fix the episode length to 1000 and use RGB image of size
85 × 85. We considered four domains of varying difficulty, of which Acrobot is the hardest. In the original
DrQv2 implementation (Yarats et al., 2021), the encoder reduces the spatial dimensions to 35 × 35, which is
then flattened to be input to the policy and critic. We follow Wang et al. (2022a) and further reduce the spatial
dimensions to 7× 7 for faster training for all models. We reduce the replay buffer size from 1,000,000 to 500,000
to slightly reduce the memory footprint. All other hyperparameters are kept the same as in Yarats et al. (2021).

For the exactly equivariant and approximately equivariant models, we reduce the number of channels by
√

|G|
where |G| is the order of the group to preserve roughly the same number of parameters as the non-equivariant
model. We use L = 1 filters for the approximately equivariant model in all experiments.

RPP contains both the non-equivariant layers and exactly equivariant layers and thus has roughly twice as many
parameters as ExactEquiv. For the critic moving average speed τ , we use the default τ = 0.01 for CartPole and
Reacher and τ = 0.009 for Acrobot and Ball in Cup.

The plots in Figure 3 show the mean reward of 10 episodes, evaluated every 20,000 environment steps. For the
results in Table 1, we use σ = 0.02 for Acrobot and Reacher and σ = 0.06 for CartPole and Ball in Cup.

The continuous control experiments were run on single GPUs of different types. Acrobot was run on an Nvidia
RTX 4090 and all other experiments were run on an Nvidia RTX 2080 Ti. We note that the wall clock time
for training both exactly and approximately equivariant models is longer than that for a non equivariant model,
even though they are generally more sample efficient. This is because equivariant neural networks often incur
more overhead in implementation - for group convolutions, the kernel must be transformed and the outputs must
be stacked and for steerable convolutions, the basis must be projected onto matrices at every forward pass.

D.2 Stock Trading

We formulate the stock trading problem as an MDP as described in Liu et al. (2018). The state consists of
the cash balance ct, the stock prices pnt , the number of shares in the current portfolio hnt , and other technical
indicators int for time t stock n ∈ {1, . . . , N}. The actions xnt are the number of stocks to buy and sell for each
stock n and are bounded to [−M,M ] where M was set to 100. The reward rt is the scaled difference in portfolio
values between consecutive timesteps and we assume that the market dynamics are not affected by our trading.
There is a small transaction cost ϵn = 0.001 for every trade. Initially, the portfolio contains 0 shares and the
cash balance is 1,000,000. This can be formulated as a constrained program as follows

max
∑
t

rt

s.t. −M ≤ ant ≤M, ∀n, t
ant ≥ −hnt , ∀n, t
ant ≤ ⌊ct/(pnt (2 + ϵn))⌋ ∀n, t
ct ≥ 0 ∀t

ct+1 = ct −
∑
n

ant p
n
t (1 + ϵn) ∀t

hnt+1 = hnt + ant ∀n, t



Park, Bhatt, Zeng, Wong, Koppel, Ganesh, Walters

rt+1 = (ct+1 − ct) +
∑
n

(pnt+1h
n
t+1 − pnt h

n
t ) ∀t

c0 = 1,000,000

hn0 = 0 ∀n
hnt ∈ Z+, ant ∈ Z, ct ∈ R+.

The financial data was pulled from Yahoo Finance (yfi, 1997) for the time period 2001-01-01 to 2024-07-01 (see
Figure 9 for sample stock prices). As historical stock prices and portfolio can be important for determining the
action, we use the previous H = 9 timesteps for the state, unlike Liu et al. (2018).

Figure 9: Sample stock trading data. We use a sliding window of the stock prices, current portfolio, cash balance,
and other indicators as the state. The dataset is split into train/val/test as shown.

D.2.1 Training Details

or all models, we use 4 layers for the shared encoder, 1 layer for the actor, and 2 layers for the critic. The non
equivariant model uses linear layers after flattening the input, while the exactly equivariant and approximately
equivariant models use group convolutions and relaxed group convolutions with a kernel size of 5, respectively.
We consider both temporal translations and temporal scale-translations. For scale-translation, we use separable
group convolutions (Knigge et al., 2022) and use 3 scale factors 0.8, 0.98, 1.2. We control the number of channels
so that the total number of parameters is roughly equal to the non equivariant model. We use L = 1 filters for
the approximately equivariant model in all experiments.

The stock trading experiments were run on a single Nvidia RTX 2080 Ti. All other hyperparameters are given
in Table 3.

Table 3: Hyperparameters used for stock trading experiments

Hyperparameter ApproxEquiv ExactEquiv NonEquiv

Batch size 64
Learning rate 1e-4
α 0.05
τ 0.005
Discount factor 0.99
Hidden dim/channels 64 64 128
Encoder output dim/channels 256
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Table 4: Total episode reward on 50 rollouts for the best policy when trained on noisy inputs and tested in the
noisy domain. Gray values indicate 95% CI. ApproxEquiv learns a more robust policy than baselines on the
modified BallInCup domain.

ApproxEquiv ExactEquiv NonEquiv

Ball in Cup
(Noisy)

Original 971±1.7 977±3.8 914±7.9

Gravity 973±2.7 952±5.7 942±10.

E ROBUSTNESS WITH NOISE AUGMENTATION

Table 4 shows the results from training policies with noisy inputs and evaluating their robustness to noise at test
time. This experiment tests whether our approximately equivariant method is truly more robust to noise than
other baselines trained with noise augmentation. We find that our approximately equivariant method is more
robust than baselines for the modified domain, even when trained with noise augmentation.
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