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ABSTRACT
Specifications — precise mathematical representations of correct domain-specific behaviors — are crucial to
guarantee the trustworthiness of computer systems. With the increasing development of neural networks as
computer system components, specifications gain more importance as they can be used to regulate the behaviors
of these black-box models. Traditionally, specifications are designed by domain experts based on their intuition
of correct behavior. However, this is labor-intensive and hence not a scalable approach as computer system
applications diversify. We hypothesize that the traditional (aka reference) algorithms that neural networks replace
for higher performance can act as effective proxies for correct behaviors of the models, when available. This
is because they have been used and tested for long enough to encode several aspects of the trustworthy/correct
behaviors in the underlying domain. Driven by our hypothesis, we develop a novel automated framework, Spec-
TRA (Specifications from Trustworthy Reference Algorithms) to generate specifications for neural networks
using references. We formulate specification generation as an optimization problem and solve it with observations
of reference behaviors. SpecTRA clusters similar observations into compact specifications. We present specifi-
cations generated by SpecTRA for neural networks in adaptive bit rate and congestion control algorithms. Our
specifications show evidence of being correct and matching intuition. Moreover, we use our specifications to show

2412.03028v1 [cs.Al] 4 Dec 2024

.
.

arxiv

several unknown vulnerabilities of the SOTA models for computer systems.

1 INTRODUCTION

Neural Networks (NNs) have recently found numerous ap-
plications as integral components in computer systems (Jay
etal.,2019; Mao et al., 2017; 2019; Mendis et al., 2019). For
example, they have been applied to enhance video stream-
ing quality, congestion control, database query optimization,
indexing, scheduling, and various other system tasks. Com-
pared to traditional heuristic-based approaches, NNs reduce
development overheads and offer improved average perfor-
mance (Kraska, 2021).

Despite recent advancements, skepticism remains about
the practicality of NNs in computer systems. A key con-
cern is that user-facing systems, like video streaming, re-
quire high standards of performance and reliability in dy-
namic environments. Although NNs often surpass tradi-
tional methods in average performance, they are fundamen-
tally opaque (Chaudhary et al., 2024) and lack guarantees.

Indeed, researchers have identified numerous counterintu-
itive behaviors of these NNs in computer systems. For
example, Eliyahu et al. (2021) observed that Aurora (Jay
et al., 2019), a congestion control system, in certain condi-
tions, would repeatedly decrease its sending rate, ultimately
reaching and maintaining the minimal rate despite excellent
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network conditions. In another example, Meng et al. (2020,
§6.3) “debugged” Pensieve (Mao et al., 2017), a bitrate con-
troller for video streaming, which systematically avoided
two specific bitrates (1200 and 2850kbps); they introduced
these bitrates back to enhance performance.

Note that these observations are not unique; similar behav-
iors have been extensively studied in other domains, such as
vision (Szegedy et al., 2014; Liu et al., 2023; Athalye et al.,
2018). For instance, in image classification, researchers
have identified adversarial images that can mislead vision
models, such as altering a stop sign to resemble a speed limit
sign (Eykholt et al., 2018). To address this issue, robustness
specifications have been introduced—requiring that, despite
noise, the image should still be classified correctly (Gehr
et al., 2018; Balunovic et al., 2019; Mirman et al., 2020).

However, unlike vision tasks, where some notions of cor-
rectness exist (Athalye et al., 2018; Yang et al., 2023), deter-
mining correctness in system applications is more challeng-
ing. Typically, manually-designed specifications are hard
to design, error-prone, and limited to some corner-cases.
Consider the example of a video bitrate controller: given
the current network conditions and buffered video frames,
it is difficult to manually label bitrate choices as “incorrect”.
Prior work (Eliyahu et al., 2021) has introduced specifica-
tions based on extreme cases, excluding several desirable
trustworthy behaviors as we observe in our experiments.
Furthermore, the authors of NN4SysBench (He et al., 2022),
a benchmark suite for NNs in systems, acknowledge that
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their specifications are inherently subjective. Our aim is to
mitigate these drawbacks of manually-designed specifica-
tions with automated specification generation for NNs in
computer systems. We desire the specifications to be ex-
pressive, containing multiple aspects of correct/trustworthy
behaviors in the given applications. Thus, we investigate:

How can we automatically generate specifications
encoding several trustworthy behaviors for NNs in
computer systems?

Main idea. We observe that a unique characteristic of
computer systems is the presence of traditionally-used rule-
based algorithms and heuristics—referred to as references.
Although these references may not match the performance
of neural networks, they are considered reliable, having
been crafted according to domain experts’ understanding
of correct behavior and rigorously tested in production en-
vironments. This forms an analogy: references in systems
serve a similar role as, for example, human perception does
in image classification. By collecting the outputs of these
references across various inputs and environments, we can
define specifications for their neural network counterparts.

Implementing this idea presents three key challenges. First,
multiple traditional implementations often exist for the same
application; for instance, model predictive control (Yin et al.,
2015) and buffer-based algorithms (Huang et al., 2014) are
both widely used adaptive bitrate algorithms. These imple-
mentations may exhibit divergent behaviors on the same
input, making it unclear how to consolidate their feedback
into specifications for NNs. Second, the set of specifica-
tions derived from references is not unique, and some spec-
ifications are more useful than others. Thus, we need to
design criteria to identify high-quality specifications. Fi-
nally, synthesizing specifications is generally expensive and
error-prone (Wen et al., 2024; Albarghouthi et al., 2016;
Bastani et al., 2015). We need an efficient algorithm capable
of generating specifications with the desired traits.

Our approach. We propose an automated specification
generation method for system domains where references
are available. Our specifications are based on pre and post-
conditions consisting of constraints on the neural network
inputs and outputs respectively (Hoare, 1969). We specify
that if the network input satisfies the precondition, its output
must satisfy the postcondition. The postconditions are con-
structed by combining the behaviors of multiple references.

We formalize the desired traits that specifications should
satisfy and pose their generation as an optimization problem
(§ 3). We design an effective algorithm, SpecTRA to solve
the optimization problem using clustering. Our algorithm
assumes access to offline observations (i.e., we do not use
the source code or make custom queries to get observations
of the behaviors of references), therefore, our algorithm can

handle references that have complicated implementations,
whose source code is unavailable or inference is either im-
possible or expensive. We generate expressive and useful
specifications for NNs for two challenging and practically
important applications: adaptive bit rate streaming (Mao
et al., 2017) and congestion control (Jay et al., 2019).

Solution scope. As the first step towards automatically
generated specifications for NNs in computer systems, the
specifications learned from references serve as guidance
rather than strict requirements. In particular, some behaviors
in reference implementations should be emulated by NN,
while others should be avoided, allowing NNs to poten-
tially exceed the performance of conventional approaches—
achieving this balance is essential. In addition, behavioral
expectations are not absolute given the dynamically-varying
environments in which computer systems are operated; and
similarly specifications are likely encodings of the notion
of trustworthiness in the given domain, as they are gener-
ated from observations of the references operated in these
environments. Nonetheless, the specifications are useful for
testing and verification (§5) and can serve as concise, inter-
pretable descriptions of desirable behaviors in the chosen
domain. The specifications can also be used to compare dif-
ferent NNss; a network that satisfies the specification while
achieving high performance is more aligned with developer
expectations than one that does not.

Contributions. Our main contributions are:

1. We formalize generating expressive and useful specifi-
cations from references as an optimization problem.

2. We develop an automated specification generation
algorithm, called SpecTRA' using our formalism,
that can handle complicated and closed-sourced ref-
erences. SpecTRA leverages clustering to identify
common behaviors across observations from the refer-
ences. Code is available at https://github.com/
uiuc—-focal-lab/spectra.

3. We create specifications for NNs in Adaptive Bitrate
and Congestion Control applications. We empirically
demonstrate (§5) the high quality of our specifications.
We also use SpecTRA’s specifications to identify pre-
viously unknown vulnerabilities of the tested NNs.

SpecTRA is the first step towards formally verified NNs
in computer systems. As SpecTRA’s specifications are
generated from references that are deemed trustworthy by
domain experts, checking and enforcing NNs to adhere to
the specifications can enhance the reliability of these models
and encourage their practical deployment.

'Specifications from Trustworthy Reference Algorithms
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2 BACKGROUND

We demonstrate specifications for 2 applications — Adap-
tive Bit Rate (ABR) video streaming (Sani et al., 2017) and
Network Congestion Control (CC) (Jiang et al., 2020).

Adaptive Bitrate. Adaptive Bit Rate (ABR) algorithms
are used to optimize the bit rate for streaming videos
from servers to clients such that the Quality of Experience,
QoE (Balachandran et al., 2013) for the users is maximized.
Quality of experience is typically determined by the bit rate
of video chunks (higher is better), and the startup time, re-
buffering time, and bitrate variations (lower is better). An
ABR algorithm observes the video streaming system’s state
consisting of buffer size and video chunk download time,
observed throughput, size of the next video chunk at all pos-
sible bit rates, etc. to determine the bit rate at which the next
video chunk should be fetched. Pensieve (Mao et al., 2017)
is a popular neural network (NN) used for ABR. It is trained
using reinforcement learning (RL) to maximize the QoE.
We provide Pensieve’s architectural details in Appendix A.

Congestion control. Congestion control is a regulatory pro-
cess that determines the packet sending rate across a given
network at any time, to maximize the network through-
put (packets sent over the network) and minimize latency
and packet loss (Jay et al., 2019). Congestion control al-
gorithms use latency gradient (Dong et al., 2018) and la-
tency ratio (Winstein et al., 2013) as input features and
output the change in sending rate for the next time step.
Aurora (Jay et al., 2019) is a popular NN-based solution for
congestion control, trained with RL (architectural details
in Appendix B). The reward here is a combination of the
throughput, latency, and packet loss observed in the system.

3 FORMALIZING SPECIFICATIONS FROM
REFERENCE ALGORITHMS

While neural networks attempt to maximize aggregate per-
formance, we develop a set of specifications ¥ for individ-
ual inferences to satisfy for greater trust. Let ¥ C R™ be
the sets of all possible m-dimensional (m > 0) inputs to
the neural network for which we want to generate W. Let
Y =[1,..., k] be the (discrete) set of all possible outputs of
the neural network, where 1 < k& < oco. Such instances with
finite output sets are fairly common, e.g., in neural-network
classifiers (Zhang, 2000; Deng, 2012) and RL agents over fi-
nite action spaces such as Pensieve (Mao et al., 2017). If that
is not the case, we discretize ) when possible. For example,
the output of the Aurora congestion control model (Jay et al.,
2019) is continuous-valued and we generate specifications
for it. We provide details of the output discretization for
Aurora’s specifications in §5.1. Each specification S € ¥
describes the desirable behavior over a set of possible inputs
called a precondition, denoted by the Boolean predicate

s that evaluates to true for inputs in the precondition. S
mandates that for all inputs € X such that ps(x), the
output y € Y should follow a postcondition, denoted by the
Boolean predicate s, i.e., S(z,y) = ps(z) = ¥s(y).
The specifications in W are considered to be in conjunction,
i.e., the overall desirable behavior is Ag.q S.

We leverage the behavior of ¢ (> 0) traditional algorithms,
aka references R, ... R, to determine ¥. We use multiple
references to avoid W that overfit the behavior of one refer-
ence and contain its suboptimal behaviors. Specifically, we
consider inputs z € & for which the combined set of out-
puts from all the references (¢, R; (%) is non-trivial, i.e.,
excludes some possible outputs from ). For other inputs,
the references are not selective and do not provide useful
information about the desirable behaviors in the target do-
main. Hence, they are not used to form the specifications.
We use ~, the mapping between such x and their correspond-
ing outputs from references (¢, R (@), as the interesting
behaviors of references (Definition 1), which are used for
generating specifications ¥. We hypothesize and empiri-
cally show that if a neural network’s output matches that of
any reference for inputs in the interesting behaviors, then it
will be more trustworthy.

Definition 1. (Interesting behaviors of references). Inter-
esting behaviors y contain inputs x € X for which all refer-
ences Ri, ..., Ry collectively lead to a non-trivial output
set y C Y, which is a strict subset of all possible outputs.

vES @y lzeXny= ] Ri(x)AycCy
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We use 7, to denote the inputs x in the interesting behaviors
. A lookup table mapping -, to the corresponding outputs
from the references is an exact set of specifications. How-
ever, it is not amenable to downstream applications such as
verification of the neural networks as it can potentially con-
sist of uncountably many entries. The lookup table may not
have finite representations in a general case. Therefore, we
combine several x € +, into a single concise representation
(s via overapproximation in each of our specifications S
and map it to 1)s which captures the permissible output of
z. The downside of simple and concise representations is
that they can potentially introduce errors by restricting the
outputs of the additional inputs & ¢ ~, that satisfy pgs to
s C Y. We attempt to minimize such overapproximation
errors when developing our specifications.

Typically, concise representations consist of polyhedral con-
straints on permissible inputs, each of which is mapped to a
common set of outputs (Brix et al., 2023). The simplest and
widely used polyhedral representation consists of interval
constraints. It leads to easily interpretable specifications.
Hence, our specifications are defined using intervals that
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overapproximate interesting behaviors.

Preconditions. The precondition of each specification con-
sists of intervals over each dimension of the input space.
Their canonical form is ps(z) = Vi € {1,...,m}.z; €
[li,s,7i,s] (z; = i-th element of vector x) with [; s < r; s.
Next, we list desirable properties of preconditions.

* High representation. We want each specification
S € U to capture several interesting behaviors to be
meaningful and important for ¥. With more interesting
behaviors in each S, we will need fewer specifications
in ¥, making it more interpretable. For this we define
the representation of a specification S as:

o 22 v Aps(@))]

Rep(S) ol
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We require each specification’s precondition to contain
at least 7., € (0, 1] fraction of ~,, i.e., Rep(S) >
Treps Where T,¢p, is a user-defined threshold.

* High coverage. We want all specifications in ¥ to
collectively cover a large fraction of ,. This increases
the interesting behavior information conveyed by W.
We define the coverage of ¥ (2) as the fraction of v,
captured by any specification’s precondition in W.

o | Useal® |2 €5 Aps(@)}) |

Cov(D) BN

(@)
We desire a coverage more than a user-specified thresh-
old 7.0, € (0,1], i.e., Cov(¥) > Trpp.

* Low volume. To reduce overapproximation error due
to interval-based preconditions, we want to reduce the
number of inputs allowed by any specification S € ¥
while maintaining high coverage and representation
scores. This can be done by minimizing the volume of
W which is the sum of the volume of each s (3). The
parts of X" accepted by (s are hyperrectangles denoted
by the intervals [I; 5,7 s|,Vi € {1,...,m}. Hence
their volumes are defined as products of their ranges
along each dimension.

vo(w) £ > ]

Sevie{l,...,m}

(ri,s — li,s) (3)

Postconditions. Let ps(7,) = {z € 7. | ws(z)} de-
note the interesting behavior inputs that satisfy ps. We
define the postcondition s for a given precondition ¢ as
Ys(y) =y € Useps () Ujerg Ri (@), ie., ¥s accepts all
the outputs of all the references for the interesting behaviors
captured by ps. Letns = {y | y € Y A ¢s(y)}| denote
the number of allowed outputs by S. Ideally, we should
map each input z € s(7,) only to its permissible output

from the references (J,¢(, R;j(). However, this can be
difficult to satisfy with the coverage and representation con-
straints on precondition. Hence, we relax this requirement
to overapproximate the allowed outputs of x with outputs
permissible for other elements of ¢s(7,). To minimize
the overapproximation error, we do not allow more than a
specific number of outputs to be accepted by s, given by a
threshold 700 € {1,...,|Y — 1|}, ie., Ns < Timaz-

Optimization problem. For high-quality specifications, we
generate specification sets U satisfying a minimum cover-
age threshold 7.,,, with each specification having a rep-
resentation score higher than a threshold 7., and having
a maximum of 7,4, outputs in the postcondition. With
these constraints, we want to minimize the volume of W.
The optimal specifications set ¥* is the solution to the opti-
mization problem in Equation (4). We allow the thresholds
Teovs Treps Tmaa 10 be user-defined to generalize to varying
domain-specific requirements for coverage, representation,
and maximum number of outputs in postconditions.

U* = argmingVol(¥) 4
st. Cov(¥) > Teon, VS € U.Rep(S) > Trep,
VS € V.ns < Thaz

4 SPECTRA— SPECIFICATIONS FROM
REFERENCE ALGORITHMS

In this section, building on our formalism from Section 3, we
describe our algorithm SpecTRA, for automatically generat-
ing high-quality specifications from reference algorithms.

4.1 Practical optimization problem

The optimization problem (4) is hard to solve in general
settings, as identifying all the interesting behaviors for
any given references is not trivial. The references can be
complex functions and may lack closed-form expression.
To identify the interesting behaviors across multiple refer-
ences, we need to encode them in languages such as SMT-
Lib (Barrett et al., 2016) to use specialized solvers, such as
Z3 (De Moura and Bjgrner, 2008), which requires extensive
manual efforts and may not be feasible for complicated ref-
erences based on thousands of lines of intricate low-level
code (e.g., for congestion control). Thus, for general ap-
plicability and ease of usage of our framework, we only
assume access to the references through availability of some
of their observations, from which we identify the interesting
behaviors. Note that we do not assume the ability to control
the observations by not assuming query-access to the refer-
ences unlike prior specification generation works (Astorga
et al., 2019; 2021). This causes us to use the observations
available from the references in production settings, while
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reducing the costs of running them in sandboxed environ-
ments. Moreover, the observations contain the behaviors
of the references seen during practical deployment, which
supports our quest for specifications encoding practical reli-
ability. However, the assumption of a static, given dataset of
observations imposes several constraints and SpecTRA ap-
plies the following adaptations to the optimization problem
in (4) to solve it in this setting.

Interesting input regions. A drawback of our assuming
a static, given dataset of observations is that we cannot
ensure the availability of the outputs of all references for
any specific input € X, to identify interesting behaviors.
However, we may have observations from references for
‘close-by’ inputs, which can indicate the behaviors of the
references in a local input region. Let X be such an input
region containing x1,...,%;,... € X observations. The
reference R ;’s output Yx ; C Y for X is the set of outputs
of R; for any input in X in the given observations, i.e.,
Yx,; = Rj(X) = U,cxr Rj(z). We treat a local region X
as a single entity for the following discussion.

Definition 2. (Interesting behavior regions) Interesting be-
havior regions Ux = {..., X;, ...} is a potentially infinite
set of non-overlapping local regions X;, where each X;
contains multiple observations from each reference and
Yx, = Uje[q] Yx,; C Y. Iy denotes the set of outputs

corresponding toT'y, i.e, Ty = {... Yx,,... }.

The preconditions of specifications, ¢s are still based on
intervals and an input region X is accepted by ¢s when all
points in X satisfy the precondition ¢s(X) <= Vz €
X.ps(x). An output y satisfies the postcondition if it is
included in the output of a X € I'x for which pgs(X)
is true, ie., Ys(y) £ (¥ € Uxerynps(x) Yx)- Inter-
esting behavior regions overapproximate ideal interesting
behaviors introducing overapproximation errors as we map
each X € I'x to outputs based on the observations in X,
which may exclude some outputs for inputs of X that are
not observed. We require the interesting behavior regions
to be generated with more observations to reduce the er-
ror. Note that such interesting behavior regions are similar
to robustness regions around given inputs as defined and
used in manually designed specifications in several prior
works (Chakravarthy et al., 2022; Seshia et al., 2018). How-
ever, the salient difference from the latter is that the inter-
esting behavior regions are automatically determined using
several observations of references.

Relaxed metrics. To incorporate the above notion of inter-
esting behavior regions, I' x, we adapt our desirable proper-
ties of high representation (1) and high coverage (2) metrics.
Originally coverage denotes the fraction of interesting be-
haviors captured by a specifications set ¥. In this case,
coverage modifies to the fraction of I' x captured in ¥ (5).
We desire a coverage higher than a given threshold in the

relaxed problem 7.0y, i.€., 5&1(@) > Teon-

s [Usca{X [ X €Tx Aps(X)}) |
| Ix |

Cou(W) )

Similarly, representation relaxes to the fraction of I'x cap-
tured in a given specification (6). We want it to be more
than a given threshold 7., i.e., VS € U. Rep(S) > Trep.

o XX €Tx Aps(0)}) |

Rep(S) | Ix |

(6)

The final practical optimization problem (7) thus minimizes
the volume of the specifications set, while covering at least
Teov fraction of interesting behavior regions overall, with
each specification covering at least 7., fraction of interest-
ing behavior regions and allowing less than 7,,,,, outputs.

U* = argming Vol (V) @)
sit. Cov(V) > Togn, VS € W. Rep(S) > Trop,
VS € ¥.ns < Thag

4.2 TImplementation

Figure 1 presents a high-level overview of SpecTRA’s work-
ing. Algorithm 1 gives the pseudocode of SpecTRA’s algo-
rithm to solve (7). Let Dy, ... Dy be the set of observations
from the references Rq, ..., R, respectively.

Identifying interesting behavior regions. To identify the
interesting behavior regions across references, Algorithm 1
first identifies non-overlapping local input regions, which
could potentially be interesting, from X'. We form the in-
put regions by partitioning X’ along each dimension into a
fixed number p > 0 of equally-sized parts (line 4). Input
regions may be identified with other partitioning methods
too, however, SpecTRA is agnostic to them. We selected
this partitioning method for simplicity. Not all input regions
thus obtained can be worth considering, as some may have
very few or 0 observations of some references. Therefore,
we identify the important input regions having at least a
certain fraction of the available observations for every ref-
erence (line 5) to reduce the overapproximation error due
to considering input regions. We then obtain the interest-
ing behavior regions from the important regions common
across all the references by applying the condition for inter-
esting behaviors (Definition 1). We thus obtain the set of
input regions I' x and their corresponding outputs I', from
Dy, ..., D, as interesting behavior regions (line 6).

Combining interesting behavior regions into specifica-
tions. The identified interesting behavior regions are used
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Figure 1: (Overview of SpecTRA) Observations from all the references (a) are given as input to our specification generation
algorithm, SpecTRA. For illustration purposes, a 2-D feature space is considered and each input is classified in either the red
or black class by the corresponding reference algorithm. SpecTRA takes the observations and from them develops a set of
likely specifications (e). To generate the specifications, SpecTRA first partitions the input space into input regions and from
them identifies the regions which have several observations for each reference separately (b) to form the important input
regions for the reference. These important regions are combined into interesting behavior input regions (c) according to
Definition 1. Clusters are identified in the interesting behavior regions with the same output set according to density (d).
These clusters form the specifications (e) that map the inputs in each cluster to the corresponding output set of the cluster.

Algorithm 1 SpecTRA Algorithm

I: Input: X, Y, D1, ... Dy, Teov> Treps Tmazs P
2: Qutput: ¥
3 U+
{ Identifying interesting behavior regions}
4: input_regions <— Partition(X, p)

5: 1 < Important(input_regions, D1,...,Dy)
6: I'x,I'y < Interesting(Z)
{Combining interesting behavior regions}
7: fori € [1,..., Tmax) do
8:  for each subset Q C Y with || =i do
9: FQ7m%{X|Xerx,YXgQ}
10: FQ7y<*{YX |X€F)(}
11: L + Cluster(lo ¢, Trep)
12: S1,...,8 + Cluster2Spec(L,I'a ., I'a,y)
13: U.extend(Sy,...,S;)
14; it Cov(¥) > 705y then
15: return ¥
16: return ¥

to solve the optimization problem in (7). Firstly, SpecTRA
considers the constraint on the maximum number of outputs
accepted by the postconditions, i.e., VS € V.ns < Timaa-
To satisfy the constraint, SpecTRA forms individual spec-
ifications only over X (€ I'x) which combine to yield
a postcondition accepting less than 7,,,, outputs. To do
so, SpecTRA enumerates all subsets {2 of ), such that
| € [1,..., Tmaz). For each €, it filters out the interesting
behavior regions having output as a subset of €2 (lines 9-10).
The problem thus reduces to generating specifications for

I'a,z,T'a,y without any constraints on the postconditions.

The precondition of each specification that allows any sub-
set of I'q , should be the tightest bounding hypercube the
subset, to minimize the volume of the specification. More-
over, as all input regions have the same volume, minimizing
the volume of specification sets reduces to minimizing the
number of input regions allowed by the preconditions of
the specifications, while satisfying the representation and
coverage constraints. The optimization problem becomes
minimizing the number of input regions in the preconditions
(volume) while retaining a minimum number of interesting
behavior input regions in every specification (representation)
and over all the specifications (coverage). Exactly solving
this optimization problem is hard, as (i) the search space is
large with several observations, high number of parts p along
each input dimension, high number of input dimensions, (ii)
there are no obvious structures (e.g., decomposability or
differentiability) that we can exploit in our setting where
we cannot query or access the reference implementations.
Hence, we develop an approximate solution by identifying
clusters in I'g , according to the proximity of constituent
regions. To minimize the volume, we apply density-based
clustering methods such as the DBSCAN algorithm (Ester
et al., 1996) as they find dense clusters and are resistant
to outliers. The general Cluster(.) function in line 11
uses the selected clustering algorithm to returns [ clusters
from T'g ., denoted as cluster labels £ € [1,...,[]Teel
for each element in I'p . We encode the representation
constraint into the clustering process, requiring each cluster
to have at least 7,..,, samples. Each cluster thus identified
can be combined to form a specification (line 12). Specif-
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ically, each S;,7 € [1,...,1] has pg, as the tightest hyper-
rectangle bounding R = {X | X € I'q,,L(X) = i},
where L£(X) denotes the cluster label for input region X.
vs, = U xer Yx, i.e., the post condition allows for the out-
puts corresponding to any element of I' ,, in the it cluster.
For the coverage constraint, we adopt a best-effort approach
(lines 14-15), wherein we keep generating specifications till

either 7., is achieved or all options for 2 are exhausted.

5 EXPERIMENTS

In this section, we study the quality and utility of Spec-
TRA’s specifications. We illustrate SpecTRA’s specifica-
tions in two applications having reference algorithms and
their neural counterparts — Adaptive Bit Rate (ABR) al-
gorithms in video streaming and Congestion Control (CC)
algorithms. Pensieve (Mao et al., 2017) is a popular neu-
ral network (NN) based RL-agent for ABR that decides
the bit rate for the next video chunk. Pensieve needs
to choose from 6 possible bit rates for the next video
chunk — 300, 750, 1200, 1850, 2850, 4300 kbps. While
ABR has several traditional (reference) algorithms, there are
two salient ones, that we use as references for generating
specifications for Pensieve — the Buffer-based (BB) algo-
rithm (Huang et al., 2014) and the Model Predictive Control
(MPC) algorithm (Yin et al., 2015). Aurora (Jay et al., 2019)
is a popular NN-based RL-agent for CC that proposes real-
valued changes to the rate of sending packets over a network
to reduce congestion. The CC references that we consider
for generating specifications for Aurora are the BBR (Card-
well et al., 2017) and Cubic (Ha et al., 2008) algorithms.
Note that our framework is general to handle more than two
references. However, we expect to get fewer interesting
behavior regions with additional references, which may de-
teriorate the quality of the specifications. Hence, we choose
to limit to two references for each application. As Spec-
TRA uses several thresholds and parameters to generate
specifications, we show an ablation study (Appendix D) to
know their effects on the specifications’ quality and generate
specifications with the best settings.

5.1 Experimental setup

We conducted our experiments on a 12th Gen 20-core Intel
19 processor. We collect the observations from references
in the training environments of the NN, to generate relevant
specifications. For ABR, as we have the implementations of
the references readily available, we run them in the training
environment of the target model Pensieve, with its train-
ing traces that govern the network characteristics for video
streaming at each time step. We use the publicly available
training dataset of Pensieve consisting of 128 traces, each
having 100s of time steps. We test the specifications on Pen-
sieve’s test set that consists of 143 traces, also having 100s

of time steps each. For CC, however, the reference algo-
rithms are embedded in the operating system kernels, mak-
ing them less amenable to run in the target model Aurora’s
training environment. Hence, we obtain observations for
them from their execution logs in the Pantheon project (Yan
et al., 2018). We retrain the Aurora models using some of
the corresponding network traces from Pantheon so as to
align the reference observations with the training environ-
ment of the models. We use 75% traces for training and
remaining for testing the Aurora models. We describe the
details of the retraining and mention the specific traces used
in training and testing in Appendix B. We experiment with
both the retrained and original Aurora models. We generate
specifications for both applications with the observations
from references on the training traces and use the observa-
tions from the testing traces to evaluate the specifications.

As SpecTRA assumes a finite discrete set of outputs, which
is not the case for Aurora (output is real-valued change of
packet sending rate), we discretize the output using the sign
function, which gives the sign of the change resulting in
3 possible outcomes: ‘+’, ‘-’, and ‘0’. SpecTRA uses the
DBSCAN (Ester et al., 1996) clustering algorithm to solve
the optimization problem in (7). We detail the settings of
DBSCAN in Appendix C. SpecTRA develops the specifi-
cations on a subset of input features of the target NN for
which we empirically observe the best quality of specifica-
tions. For ABR, SpecTRA uses the current buffer size and
the download times observed in the last 3 time steps. For CC,
SpecTRA uses the history of the latency gradient, latency
ratio, and sending ratio features used by Aurora, over previ-
ous 4 time steps. We have selected these specific features
for the two applications following those in the manually-
designed specifications in Eliyahu et al. (2021) and selected
the history of the features in specifications with an ablation
study in Appendix D. We keep the coverage threshold, 7.,
to be 1, so as to get specification sets with the highest possi-
ble coverage. SpecTRA generates specifications for either
application in less than 30 seconds.

5.2 Quality of Specifications
5.2.1 Quantitative analysis

To evaluate the quality of the specifications, we check
them against the observations from the references over
the training and testing environments for the neural mod-
els. We use the specification evaluation metrics of support
and confidence inspired from prior specification mining
work, Lemieux et al. (2015) and data mining literature (Han
et al., 2011). We formally define these metrics next.

We want the specifications to cover most of the observations
D; from each reference R ; to correctly describe their be-
havior. For this, we measure the fraction of observations



Specification Generation for Neural Networks in Systems

Application | Reference Observation Support Confidence Support  Confidence
type (SpecTRA) (SpecTRA) (prior) (prior)

BB Training 0.95 1.0 0.03 1.0

ABR Test 0.96 1.0 0.01 0.99
MPC Training 0.64 0.87 0.09 0.87

Test 0.59 0.87 0.07 0.84

Pensieve (small) Training 0.17 0.99 0.27 0.86

) ’ Test 0.13 0.99 0.25 0.85

Pensieve (mid) Training 0.31 0.96 0.14 0.93

) Test 0.26 0.97 0.13 0.91

Pensieve (big) Training 0.26 0.97 0.22 0.93

& Test 0.21 0.98 0.18 0.92

BBR Training 0.89 0.75 0.01 0.43

cc Test 0.74 0.81 0.01 0.38
Cubic Training 0.97 0.82 0.001 0.29

Test 0.79 0.79 0.07 0.42

Training 1.0 1.0 0.01 1.0

Aurora (small) = oy 1.0 1.0 0.01 1.0

. Training 0.98 1.0 0.17 0.03

Aurora (mid) gy 0.96 1.0 0.34 0.01

.. Training 1.0 1.0 0.01 1.0

Original Aurora 0.99 1.0 0.05 0.05

Table 1: Support and confidence of SpecTRA’s specifications and that of the specifications in (Eliyahu et al., 2021) on the
training and testing observations of the references and NNs for both the ABR and Congestion Control (CC) applications

from D; that are accepted by the precondition s of any
specification S in SpecTRA’s generated specifications set W.
This quantity is the support Sup(¥, R ;) (8) of ¥ for R ;.

{zl(z,Rj(z)) € DjA U ps(@)}]

Sev
2

Sup(¥,R;) £ ®)

Let Dj gy 2 {z|(z,R;(x)) € Dj A Ugeqy ps(x)} denote
the observations from reference R ; contributing to the sup-
port for W. Alongside support, we want the specifications to
be correct on the observations. Thus, we check the fraction
of instances in D; ¢ where VS € V.ps — s, ie,
postconditions of all specifications are satisfied whose pre-
conditions hold for observations contributing to the support
of . We call this the confidence Con f(¥,R ;) for ¥ (9).

Conf(¥V,R;) 9
s {2z €Dju AVS € V. (0s(z) = ¥s(R;()))}|
Djwl

We report the support and confidence for SpecTRA’s speci-
fications for both applications in Table 1. We compare our
specifications with those given by prior works (Brix et al.,
2023; Eliyahu et al., 2021). We find that the specifications
in VNN-COMP 2023 (Brix et al., 2023) have O support
over the observations for the references in both applications.
Hence, we do not include them in our study. The speci-
fications in (Eliyahu et al., 2021) are temporal in nature
and, therefore, not directly comparable. Hence, we use the

negation of their specifications for bad system states for
individual transitions and compare with our specifications.
We present the support and confidence of the prior specifica-
tions in Eliyahu et al. (2021) in Table 1. The total number of
training and testing observations for the ABR algorithms are
77981 and 27837 respectively. We filter out the observations
for CC to consist of those that fall within the observation
space on which the Aurora models are typically trained. The
total number of training and testing observations for the CC
references are ~ 130k and ~ 40k respectively, and those
for the Aurora models are ~ 140k and ~ 200k respectively.

The specifications in the prior work have low support for the
observations from the references and similar confidence as
our specifications. These results indicate that our specifica-
tions correctly encode more of the trusted behaviors of the
references over the relevant (training and testing) input dis-
tributions of the NN than the existing specifications. The
existing specifications show comparable support over the
training and testing observations from Pensieve models but
lower confidence than our specifications.

5.2.2  Qualitative analysis with case studies

ABR. SpecTRA generates a specification set with 30 specifi-
cations for Pensieve models. We present some specifications
from the generated set next, to demonstrate their quality and
conformance with intuitively correct behavior. Note that all
specifications are in conjunction, so they need to hold simul-
taneously for the satisfaction of the generated specifications
set. We give the entire specification set for Pensieve in Ap-
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pendix E. Note that the ranges of buffer size (BS — duration
of pre-retrieved video stored in the buffer) and video chunk
download-time (DT) features are [4, 60] seconds and (0, c0)
respectively. Each video chunk is 4 seconds long.

Specification 1a shows the conditions for which the lowest
2 bitrates — 300 and 750 kbps are allowed by the postcon-
dition. These conditions consist of low BS and > 2 seconds
of DTs. Intuitively, the ABR algorithm should output low
bit rates for such states of video streaming systems, as the
buffer does not have enough video chunks to render and
there is some delay in downloading new video chunks. In
such scenarios, to prevent rebuffering, the video chunks
should be fetched at lower bit rates. Manually-designed
specifications, such as those in Eliyahu et al. (2021) capture
only extreme behaviors, such as situations when the lowest
bit rate must be output by the ABR algorithm. However,
SpecTRA’s specifications can encode intermediate behav-
iors, such as cases when the lowest 2 bit rates can be per-
missible, as well. Specification 1b shows cases where we
specify that the ABR algorithm does not output the lowest
bit rate. We specify that the buffer should contain more than
2 video chunks, each of which is 4 seconds long, and the
DT should be a moderate value for the lowest bit rate to
not get selected. Note that, this specification supplements
the intuitive specification about avoiding the lowest bit rate
in Eliyahu et al. (2021). The prior work’s specification for-
bids the lowest bit rate when BS is > 4 seconds and the
DTs are < 4 seconds, whereas SpecTRA’s specification
disallows the lowest bit rate even when DTs can be > 4
seconds, with large enough buffer. The prior work does not
specify the desirable behavior for > 4 seconds of DT with
BS > 4 seconds. Moreover, the permissible ranges of the
input features at different points in their history can vary
in the preconditions of automatically generated specifica-
tions, unlike those in manually-designed, intuition-based
specifications. Obtaining such fine-grained specifications is
beyond the scope of manually-designed specifications but
can be achieved using automated methods such as SpecTRA.

Precondition

BS €]10.9,12.3],

DT[-1] € [4.1,7.9],

DT[-2] € [1.5,6.6],

DT[-3] € [1.5,5.4]

Postcondition

BR € {750, 1200, 1850, 2850, 4300}

Precondition

BS € [4.0,5.0],
DT[-1] € [2.8,6.6],
DT[-2] € [2.8,6.6],
DT[-3] € [5.4,9.2]
Postcondition

BR € {300,750}

(a) (b)

Specifications 1: Conjunctive specifications for ABR. (BS:
Buffer Size, DT[—i]: ‘" last download time, BR: Bit Rate)

Precondition

LG[-1] € [-1.0,0.29], LG[-2] € [-0.78,0.07],
LG[-3] € [-0.78,0.29], LG[—4] € [-1.0,0.29]
LR[-1] € [1.0,1.88], LR[—2] € [1.0,1.88],
LR[-3] € [1.0,1.88], LR[—4] € [1.0,1.88]
SR[-1] € [0.0,17.18], SR[—2] € [0.0,17.18],
SR[-3] € [0.0,17.18], SR[—4] € [0.0,17.18]
Postcondition

Change in Sending Rate € {+,—}

Specifications 2: For CC. (LG: latency gradient, LR: latency
ratio, SR: sending ratio, X[—%]: it" last value of x)

CC. SpecTRA generates 1 specification, shown in Specifica-
tion 2, for Aurora models. Interestingly, this specification’s
precondition contains the precondition of the specification
allowing non-zero change of sending rate in its postcondi-
tion in Eliyahu et al. (2021). The latter specification com-
prises of a very small fraction of SpecTRA’s specification.
For example, all latency gradients are specified to be within
[—0.01,0.01], latency ratios in [1.0,1.01], and sending ra-
tios as only 1.0. Thus, the corresponding prior specification
is conservative, probably due to its manual design.

5.3 Utility of Specifications
5.3.1 NN Verification

Next, we explore a popular downstream application of NN
specifications — verifying trained NNs. We attempt to ver-
ify the NNs in each application for SpecTRA’s specifications
using the SOTA complete-verifier, «3-CROWN (Xu et al.,
2020). As the overall specification set is a conjunction of all
elements in the specification set generated by SpecTRA, we
attempt to verify each specification in the set individually
by encoding it in the VNN-Lib format (Demarchi et al.,
2023). SpecTRA generates a specification set containing
30 specifications for ABR and 1 specification for the CC
setting. We set a5-CROWN’s timeout as 10 minutes. We
use the more precise activation splitting for the Pensieve
models and input-splitting for Aurora models. This is be-
cause a3-CROWN does not support activation splitting for
regression models currently, to the best of our knowledge.
As our specifications encode only a subset of the inputs in
the preconditions, we specify the other input features as their
ranges as seen in the observations used to generate the speci-
fications. Table 2 presents our findings for both applications.
The Verified instances occur when the specification is satis-
fied by the model, the Falsified instances are when we can
find a successful attack for the specification on the model,
and Timeout is when the verifier times out. We find that
none of the Pensieve models satisfy the overall conjunctive
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Model Verified Falsified Timeout
Pensieve (small) 5 20 5
Pensieve (mid) 2 22 6
Pensieve (big) 1 28 1
Aurora (small) 0 0 1
Aurora (mid) 0 0 1
Original Aurora 0 0 1

Table 2: Verifying SpecTRA’s specifications sets consisting
of 30 specifications for ABR and 1 specification for CC.

specification, as some of the constituent specifications can
be falsified. This indicates that the models, while optimiz-
ing for average reward, may not be trustworthy for practical
usage. Moreover, we see that the SOTA verifier times out
for some of the specifications for both Pensieve and Aurora.
This suggests that the specifications are challenging for con-
temporary verifiers and can be used to guide the design of
customized verifiers for NNs in computer systems.

5.3.2 Targeted attacks on NNs

Next, we attack Pensieve to falsify SpecTRA’s specification
and study the attacks qualitatively. We generate Projected
Gradient Descent attacks (Madry et al., 2019) on the mod-
els to identify inputs that cause the models to give extreme
outputs (lowest/highest bit rates). As SpecTRA’s overall
specifications set is a conjunction of specifications, violat-
ing a single specification will falsify the specifications set.
Hence, we attack the specifications from the generated spec-
ifications set that does not allow the extreme outputs in their
postconditions. We show only the features of the attack
input specified by the specifications. These features are
sufficient to show the violation of intuitive behavior from
the models. We show attacks on the Pensieve (big) model
and note that similar attacks exist for other models too.

Input : Input :

BS =112, BS =4.0,
DT[-1] =6.9, DT[-1] =118,
DT[-2] = 2.9, DT[-2] =0.2,
DT[-3]=2.0 DT[-3]=0.2

Output : BR = 300 Output : BR = 4300

(@ (b)

Attack (a) consists of an input where the BS is high and only
the last DT is high, with the other DTs low. The model still
conservatively predicts the lowest bit rate, while a higher
bit rate could be supported by the system. The Buffer-based
(BB) algorithm, a simple ABR algorithm, can also predict a

higher bitrate (1850 kbps) for this case. Attack (b), on the
other hand, consists of an input where the buffer consists of
only 1 video chunk and the previous DT had been high. For
this input, the model predicts the highest bit rate, which may
result in rebuffering of the system and, therefore, affect the
quality of experience for the users. The simple BB reference
algorithm predicts 300 kbps for this instance.

6 RELATED WORK

Specifications for neural networks. The current approach
to generate specifications for neural networks (NNs) is
largely dependent on human design. Many existing works,
such as (Eliyahu et al., 2021; Wu et al., 2022; Wei et al.,
2023), rely on experts to design their specifications. Also,
in the International Verification of Neural Networks Compe-
tition, VNN-Comp (Brix et al., 2023), expert-designed spec-
ifications are used in benchmarks, including for Adaptive
Bit Rate and Congestion Control. However, the quality and
relevance of these expert-designed specifications remain un-
clear. Recent work (Geng et al., 2023) proposes to automati-
cally mine neural activation patterns (NAP) as specifications.
NAP refers to the pattern of activation functions—whether
they are activated or deactivated—given a specific neural
network and an input. Geng et al. (2024) introduces mul-
tiple approaches to mine NAPs for a given neural network.
SpecTRA differs from NAP mining as SpecTRA’s specifica-
tions can generalize beyond the target neural networks and
can be intuitively validated with domain knowledge.

Specification generation for programs. There is a long
history of work focused on synthesizing specifications for
traditional programs, which has inspired SpecTRA. Unlike
prior work (Ernst et al., 1999; Ammons et al., 2002; Park
et al., 2023; Astorga et al., 2019; 2021), SpecTRA targets
neural networks instead of traditional general programs. To
the best of our knowledge, SpecTRA is the first to mine spec-
ifications for neural networks in computer systems using
reference algorithms. Astorga et al. (2023) also synthesize
contracts for neural networks, but they operate in a setting
with query-access to an oracle, which is not practically ex-
tensible to the applications we study.

NN verification. NN verification formally verifies given
neural networks for desirable properties such as robustness
to input perturbations. It can be broadly classified as com-
plete (Jaeckle et al., 2021; Ferrari et al., 2022; Xu et al.,
2021) and incomplete (Xu et al., 2020; Singh et al., 2019)
verification. NN verification is NP-complete (Katz et al.,
2017), which is hard to scale to larger NNs. However, the
NN in computer systems are generally small due to effi-
ciency requirements and hence are conducive to verification.
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7 CONCLUSION

We present an automated approach for generating specifica-
tions for neural networks in applications where trustworthy
reference algorithms exist. We formalize specification gen-
eration as an optimization problem and propose an effective
algorithm SpecTRA. We show specifications for two impor-
tant applications — adaptive bit rate setting and congestion
control. We analyze the quality of SpecTRA’s specifications
and use them to verify and identify previously unknown
vulnerabilities in SOTA neural networks.
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A PENSIEVE’S ARCHITECTURAL DETAILS

Pensieve’s original architecture (Mao et al., 2017), that cor-
responds to our mid model has the following structure:

First Layer: 3 parallel fully connected layer, each contains
128 neurons, and an 1D convolution layer with 128 filters
and kernel size is 4. These 4 layers take the input features
in parallel.

Second Layer: A fully connected (linear) layer with 128
neurons.

Output Layer: A fully connected (linear) layer with 6
neurons.

Following the NN4Sys benchmarks in VNN Comp 2024
(https://sites.google.com/view/vnn2024),
we also include the small and big models for Pensieve,
having the following architectures.

Small

First Layer: 4 parallel fully connected layer, each contains
128 neurons.

Second Layer: A fully connected (linear) layer with 128
neurons.

Output Layer: fully connected (linear) layer with 6 neurons.

Big

First Layer: 3 parallel fully connected layer, each contains
128 neurons, and an 1D convolution layer with 128 filters
and kernel size is 4. These 4 layers are parallel.

Second Layer: A fully connected (linear) layer with 256
neurons.

Output Layer: fully connected (linear) layer with 6 neurons.

B TRAINING AURORA

Aurora model architectures. In this paper, we provide
two different architectures for the Aurora model: the small
model and the mid model. The mid model retains the same
architecture as the initial Aurora policy agent from the origi-
nal paper (Jay et al., 2019), which utilized a fully-connected
neural network with two hidden layers of 32 — 16 neurons
and employed a fanh nonlinearity function. We have also de-
veloped a small model with a similar architecture but scaled
down to two hidden layers of 16 — 8 neurons, also using
the tanh nonlinearity.

Training and testing setting. The original Aurora model
was trained in a gym simulation environment designed to
replicate network links, with bandwidth and latency ran-
domized to reflect real-world conditions.

To adapt Aurora for conditions similar to those experienced
by BBR and Cubic, we made slight modifications to the
simulation. This included using varied bandwidth from

Pantheon traces (11 in total, available at Pantheon Traces),
as well as adjusting loss rate, packet queue size, and one-way
delay. To ensure broad coverage of bandwidth scenarios,
we increased the training steps.

In training, we simulate network conditions using Pantheon
traces. Each condition includes:

Bandwidth Trace: Patterns of bandwidth over time.
* Loss Rate: Percentage of packets dropped.
* Delay: Time for a packet to travel one way.

* Queue Size: Maximum packets held in the network
buffer before forwarding or dropping.

Using 11 traces, we had 18 distinct network conditions by
varying loss, delay, and queue size. We split these con-
ditions, with 75% used for training and 25% for testing,
ensuring the RL-based Aurora model is not exposed to test
patterns during training. During training and testing, we
ensure that all testing network conditions are run at least
once.

In our experiment, with a fixed random seed of 0, the split
is as follows:

¢ Training Conditions: 13, 14,2, 5,9, 8,7, 15, 18, 6, 4,
11, 16

 Testing Conditions: 1, 3, 10, 12, 17

Network condition details can refer below:

No. Trace File Delay  Loss  Queue Size

1 0.57mbps-poisson 28 0.0477 14

2 2.64mbps-poisson 88 0 130
3 3.04mbps-poisson 130 0 426
4 100.42mbps 27 0 173
5  77.72mbps 51 0 94

6 114.68mbps 45 0 450
7 12mbps 10 0 1

8  60mbps 10 0 1

9 108mbps 10 0 1

10 12mbps 50 0 1

11 60mbps 50 0 1
12 108mbps 50 0 1

13 0.12mbps 10 0 10000
14 10-every-200 10 0 10000
15  12mbps 30 0 6
16  12mbps 30 0 20
17 12mbps 30 0 30
18  12mbps 30 0 60

Table 3: Mapping of Network Parameters to Trace Files
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More details can be found in our network simulation imple-
mentation.

Aurora Model Performance. We evaluate the Aurora
model on our testing network conditions. To benchmark
its performance, we include a random model, which is ran-
domly initialized and untrained. The Original model refers
to models trained in Aurora’s original RL environment,
while Current refers to the model we trained under net-
work conditions similar to BBR and Cubic, using Pantheon
traces, which we introduced above.

Model Random Original  Current

631.38 3195.15 3279.03
631.38 3273.63 1380.22

Aurora (small)
Aurora (mid)

Table 4: Aurora Model Rewards

C DBSCAN CLUSTERING SETTINGS

DBSCAN operates by identifying core points in given data.
Core points have a prespecified minimum number of points
in their neighborhood, specified by a given radius . We
set the minimum number of samples min, to the number
of points that make the cluster achieve the representation
threshold 7,.,. For a low volume of specifications, we
keep r as the minimum radius that can ideally contain the
minimum number of points, if densely packed.

D ABLATIONS

To select the best thresholds and SpecTRA’s parameters,
we study the variation in the support and confidence of
SpecTRA’s specifications over the training observations
with the various settings. Specifically, we consider the
history length of the features used in the specifications,
representation threshold 7,.,, the number of partitions (p)
of the input space X along each dimension, and the maxi-
mum permissible number of outputs in each specification
Tmaz- Figures 2a and 2b show the quality of the specifi-
cations for ABR and CC respectively. We select those pa-
rameters for our main experiments that yield specifications
with high support and confidence over all the references,
as observed in this ablation study. We select history = 3
(previous 3 download times will be used in specifications),
Trep = 0.01,p = 100, Tyq, = 5 for ABR and history = 4
(previous 4 observed features will be used in specifications),
Trep = 0.01,p = 50, Typqe = 2 for CC.

E SPECTRA’S GENERATED
SPECIFICATION SET FOR ABR

The following specifications 3 were generated by SpecTRA
for ABR, to be used in conjunction.

Specifications 3: Conjunctive specifications for ABR. (BS:
Buffer Size, DT[—i]: i*" last download time, BR: Bit Rate)

Precondition

BS €1]0.4,0.5],

DT[-1] € [0.15,0.66],

DT[-2] € [0.15,0.79],

DT[-3] € [0.54,1.05]
Postcondition

BR € {300.0, 750.0, 1200.0, 2850.0}

Precondition

BS € [0.4,0.5],

DT[-1] € [0.15,1.05],

DT[-2] € [0.02,0.79],

DT[-3] € [0.15,1.05]

Postcondition

BR € {300.0, 750.0, 1200.0, 2850.0, 4300.0}

Precondition

BS €1]0.4,0.5],

DT[-1] € [0.28,0.66],
DT[-2] € [0.15,0.66],
DT[-3] € [0.54,0.92]
Postcondition

BR € {300.0,750.0,2850.0}

Precondition

BS €1]0.4,0.5],

DT[-1] € [0.28,0.66],

DT[-2] € [0.15,0.79],

DT[-3] € [0.41,1.05]
Postcondition

BR € {300.0, 750.0, 1200.0, 4300.0}
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Figure 2: Ablation study for hyperparameters affecting the specifications
Precondition Precondition

BS €1]0.4,0.5],
DT[-1] € [0.28,0.66],
DT[-2] € [0.28,0.66],
DT[-3] € [0.54,0.92]
Postcondition

BR € {300.0,750.0}

Precondition

BS €1]0.4,0.5],

DT[-1] € ]0.28,0.66],

DT[-2] € ][0.54,1.05],

DT[-3] € [0.28,0.66]

Postcondition

BR € {300.0, 750.0, 1200.0, 2850.0, 4300.0}

Precondition

BS €[0.4,0.5],

DT[-1] € [0.28,0.66],
DT[-2] € [0.66,1.05],
DT[-3] € [0.28,0.66]
Postcondition

BR € {300.0, 750.0,1200.0}

BS €[0.4,0.5],

DT[-1] € [0.28,1.05],

DT[-2] € [0.15,0.79],

DT[-3] € [0.15,0.66]
Postcondition

BR € {300.0,750.0,1200.0, 2850.0}

Precondition

BS €1]0.4,0.5],
DT[-1] € [0.54,1.05],
DT[-2] € [0.15,0.66],
DT[-3] € [0.15,0.54]
Postcondition

Precondition

BS €0.4,0.5],
DT[-1] € [0.54,1.05],
DT[-2] € [0.15,0.66],
DT[-3] € [0.15,0.66]
Postcondition

BR € {300.0,750.0,1850.0} BR € {300.0,750.0,1200.0}

Precondition
BS € [0.4,0.54],

10

DT[-1] € [0.15,0.66],

DT[-2] € [0.15,0.79],

DT[-3] € [0.41,1.05]
Postcondition

BR € {300.0, 750.0, 1850.0, 2850.0}

11
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Precondition

BS € [0.4,0.54],

DT[-1] € [0.54,1.05],

DT[-2] € [0.15,0.66],

DT[-3] € [0.15,0.66]

Postcondition

BR € {300.0,750.0, 1850.0, 2850.0, 4300.0}

12

Precondition

BS €10.4,1.09],

DT[-1] € [0.02,1.18],

DT[-2] € [0.02,1.18],

DT[-3] € [0.02,1.18]

Postcondition

BR € {300.0,750.0, 1200.0, 1850.0, 4300.0}

13

Precondition

BS €1]0.4,1.48],

DT[-1] € ]0.02,1.18],

DT[-2] € ]0.02,1.18],

DT[-3] € [0.02,1.18]

Postcondition

BR € {300.0, 750.0, 1200.0, 1850.0, 2850.0}

14

Precondition

BS € [0.5,0.61],

DT[-1] € [0.54,0.92],

DT[-2] € [0.15,0.54],

DT[-3] € [0.15,0.54]

Postcondition

BR € {300.0,750.0, 1200.0, 2850.0, 4300.0}

15

Precondition

BS €1]0.61,0.75],

DT[-1] € [0.02,0.41],
DT[-2] € [0.41,1.05],
DT[-3] € [0.15,0.66]
Postcondition

BR € {300.0, 750.0, 1850.0}

16

Precondition

BS € [0.61,0.78],

DT[-1] € [0.02,0.41],

DT[-2] € [0.41,1.05],

DT[-3] € [0.15,0.66]
Postcondition

BR € {300.0,750.0, 1850.0, 4300.0}

17

Precondition

BS €1]0.61,0.78],

DT[-1] € [0.02,0.41],

DT[-2] € [0.41,1.18],

DT[-3] € [0.15,0.66]
Postcondition

BR € {300.0,750.0,1200.0, 4300.0}

18

Precondition

BS €]0.61,0.82],

DT[-1] € ]0.02,0.41],

DT[-2] € ]0.41,1.05],

DT[-3] € [0.15,0.66]

Postcondition

BR € {300.0, 750.0, 1850.0, 2850.0, 4300.0}

19

Precondition

BS € [0.61,1.06],

DT[-1] € [0.02,0.41],

DT[-2] € [0.02,1.18],

DT[-3] € [0.15,1.18]

Postcondition

BR € {300.0,750.0, 1200.0, 2850.0, 4300.0}

20

Precondition

BS €1]0.64,0.75],

DT[-1] € [0.02,0.41],
DT[-2] € [0.15,0.54],
DT[-3] € [0.54,1.18]
Postcondition

BR € {300.0, 750.0,1200.0}

21
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Precondition

BS € [0.64,0.78],

DT[-1] € [0.02,0.41],
DT[-2] € [0.15,0.54],
DT|[-3] € [0.54,0.92]

Postcondition

BR € {300.0,750.0, 1850.0, 2850.0}

22

Precondition

BS €10.75,0.82],
DT[-1] € [0.02,0.41],
DT[-2] € [0.15,0.54],
DT[-3] € [0.54,0.92)
Postcondition

Precondition

BS €10.78,0.92],
DT[-1] € [0.02,0.41],
DT[-2] € [0.54,0.92],
DT[-3] € [0.28,0.66]
Postcondition

BR € {300.0,750.0,1200.0} BR € {300.0,750.0, 1200.0}

23

Precondition

BS € [0.82,0.89],

24

DT[-1] € [0.02,0.41],
DT[-2] € [0.54,0.92],
DT[-3] € [0.28,0.66]

Postcondition

BR € {300.0,750.0, 1850.0, 2850.0}

25

Precondition

BS € [0.82,0.96],

DT[-1] € [0.02,0.41],
DT[-2] € [0.41,0.92],
DT[-3] € [0.15,0.66]

Postcondition

BR € {300.0,750.0,1200.0, 2850.0}

26

Precondition

BS €1]0.85,0.96],
DT[-1] € [0.02,0.41],
DT[-2] € [0.02,0.41],
DT[-3] € [0.28,0.66]
Postcondition

Precondition

BS €1]0.85,1.06],
DT[-1] € [0.02,0.41],
DT[-2] € [0.02,0.41],
DT[-3] € [0.54,1.05]
Postcondition

BR € {300.0,750.0,1200.0} BR € {300.0,750.0, 1200.0}

27

28

Precondition

BS €[1.09,1.2],

DT[-1] € [0.02,0.54],

DT[-2] € [0.02,0.54],

DT[-3] € [0.41,0.79]
Postcondition

BR € {300.0,750.0,1200.0, 1850.0}

29

Precondition

BS € [1.09,1.23],

DT[-1] € ]0.41,0.79],

DT[-2] € [0.15,0.66],

DT[-3] € [0.15,0.54]

Postcondition

BR € {750.0,1200.0, 1850.0, 2850.0, 4300.0}

30



