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Abstract

Tenant evictions threaten housing stability and are a major
concern for many cities. An open question concerns whether
data-driven methods enhance outreach programs that target
at-risk tenants to mitigate their risk of eviction. We pro-
pose a novel active geospatial search (AGS)modeling frame-
work for this problem. AGS integrates property-level infor-
mation in a search policy that identifies a sequence of rental
units to canvas to both determine their eviction risk and pro-
vide support if needed. We propose a hierarchical reinforce-
ment learning approach to learn a search policy for AGS that
scales to large urban areas containing thousands of parcels,
balancing exploration and exploitation and accounting for
travel costs and a budget constraint. Crucially, the search
policy adapts online to newly discovered information about
evictions. Evaluation using eviction data for a large urban
area demonstrates that the proposed framework and algorith-
mic approach are considerably more effective at sequentially
identifying eviction cases than baseline methods.

Introduction
Evictions can have a profound impact on tenants, causing
instability in the rental market and exacerbating the already
significant crisis of affordable housing and homelessness in
many large urban areas. While the response to the COVID-
19 pandemic in the United States was to impose morato-
ria on evictions at federal, state, and local levels, these have
now been lifted. Moreover, most of the $46 billion allocated
in housing assistance for low-income households through
the Emergency Rental Assistance (ERA) program has now
been spent. As a result, eviction rates in the US are rising,
with an average of 3.6 million eviction cases filed annually
(Gromis et al. 2022; Marçal, Fowler, and Hovmand 2023).
Eviction concerns are especially acute due to the inequitable
impact on marginalized communities. Female, Black, and
families with children disproportionately experience evic-
tion (Collinson et al. 2022; Graetz et al. 2023). Exposure to
unstable and substandard housing can be particularly hard
on children, leading to developmental effects that can fol-
low them for the rest of their lives (Desmond, Gershenson,
and Kiviat 2015).
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While one way to mitigate the risks and consequences of
evictions is through policy, a complementary approach can-
vasses households at risk of eviction to provide resources
to help tenants avoid it. For example, providing information
about the availability of effective legal representation can
be instrumental, as far fewer tenants than landlords have le-
gal representation in eviction proceedings (Desmond 2016).
Legal representation for renters has a significant impact,
reducing the likelihood of eviction warrants and posses-
sory judgments while also imposing smaller monetary judg-
ments (Cassidy and Currie 2023; Greiner, Pattanayak, and
Hennessy 2013).In addition, subsidies that help low-income
tenants with utility payments (HHS 2023), along with low-
income housing programs such as Section 8 vouchers (HUD
2023), can improve their ability to pay rent and avoid evic-
tion. Proactively providing information about these pro-
grams can thus also significantly mitigate eviction risk.

Canvassing tenants at risk of eviction, however, is la-
bor intensive. Canvassers working individually or in teams
struggle to reach the vast number of low-income housing
units behind on rent. It is, consequently, crucial to make ef-
ficient use of such limited resources to provide the maximum
benefit possible. However, another important challenge is
that we do not know, a priori, the risk of eviction for any
given household. We can use past data to learn a predictive
model for eviction risk, as demonstrated by Mashiat et al.
(2024). However, such predictions can rapidly become stale,
and data we can use to train is not equally available every-
where. Thus, we need to effectively use a limited canvassing
budget to identify at-risk households while improving the
quality of predictions we make in identifying such house-
holds. This ultimately necessitates effectively trading off ex-
ploration, which allows us to improve predictions of house-
holds likely to be evicted and exploitation aimed at reaching
the most at-risk households.

We introduce a novel active geospatial search (AGS)
framework to model this problem. In AGS, an agent (e.g.,
canvasser) has a limited budget C that can be used to query
a series of locations (rental units, buildings) embedded in a
geographical area. Each query returns a signal whether or
not the location has a target property (an impending evic-
tion, high eviction risk, etc), but incurs a cost which may de-
pend on the previous query (for example, representing travel
time between two locations). The goal in AGS is to find a
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search policy to maximize the total number of locations with
the target property (henceforth, targets) identified within the
limited search budget. Additionally, some eviction data is
available—for example, from past court filings, or evictions
in a specific geographical region—but not directly applica-
ble to the search problem at hand. For example, we may have
data for past evictions but need to identify impending evic-
tions (effectively, evictions that have yet to occur).

AGS builds conceptually on two closely related mod-
els: conventional active search and visual active search. In
conventional active search (Garnett et al. 2015; Jiang et al.
2017a; Jiang, Garnett, and Moseley 2019), one sequentially
queries labels for a given dataset of inputs, but no prior la-
beled data or relationship topology that relates inputs to one
another in a semantically meaningful way is provided. Thus,
typical approaches use myopic and non-myopic heuristics
for balancing exploration (to learn a model that predicts la-
bels given inputs) and exploitation coupled with relatively
simple predictive models (such as k-nearest neighbors). Vi-
sual active search (VAS) (Sarkar et al. 2022; Sarkar, Jacobs,
and Vorobeychik 2023) was recently developed to address
active search in which queries are associated with small re-
gions within a large-scale overhead image, with labels corre-
sponding to the existence of a target object within the region.
However, the VAS model is intimately tied to a visual repre-
sentation of the search area, and therefore, solutions to this
problem cannot be directly applied in the AGS setting.

We propose a hierarchical reinforcement learning (RL)
approach for scalable AGS. Our first step is a key building
block: composing prediction and search modules, with the
latter trained using RL loss, while the parameters of the pre-
diction module are updated using the supervised loss using
labels obtained from queries. The technical challenge is that
this approach scales poorly as we consider large geograph-
ical areas with thousands of parcels (as our experiments
demonstrate). To address this, we propose a hierarchical pol-
icy and learning framework, hierarchical AGS (HAGS). In
HAGS, the area is divided into regions. We then learn a
shared region-level prediction module, a shared region-level
search policy that determines the next parcel to query within
a relatively small geographical region (as in the first ap-
proach), and the high-level policy, which is trained to select
which region to query.

We evaluate the proposed approach using eviction data
for a large urban area. First, we show that in settings with
uniform query costs and those in which query costs depend
on inter-location distance, HAGS outperforms all baselines,
including the reinforcement learning approach for small-
area AGS, often by a large margin. Second, we show that
structural (tabular) features are slightly more useful in iso-
lation than overhead images of parcels, and the combination
provides a tangible improvement, demonstrating the value
of multimodal information in this context. In summary, we
make the following contributions:

• We propose a novel model of geospatial exploration, ac-
tive geospatial search (AGS), motivated by the problem
of mitigating eviction risk.

• We develop an end-to-end deep reinforcement learning

pipeline to solve AGS in small-area search problems.
• We develop a hierarchical framework to tackle AGS,
HAGS, in large-area search problems.

• We demonstrate the efficacy of HAGS using eviction
data from a large urban area, showing that it outperforms
all baselines, including conventional active search and a
naive application of RL for small-area AGS.

Related Work
Our work is part of a larger body of literature focusing on
geospatial applications of optimization and artificial intelli-
gence in nonprofit and humanitarian domains. This includes
developing solutions for collaborative recycling (Hemmel-
mayr, Smilowitz, and de la Torre 2017), the sequential redis-
tribution of food donations (Balcik, Iravani, and Smilowitz
2014), the routing of disaster relief (de la Torre, Dolin-
skaya, and Smilowitz 2012), predicting micronutrient defi-
ciency (Bondi-Kelly et al. 2023), and anti-poaching mea-
sures (Fang et al. 2016; Fang, Stone, and Tambe 2015; Bondi
et al. 2018a, 2020, 2018b; Xu et al. 2020). However, none
of these modeling and solution approaches can be directly
applied to the AGS framework in mitigating eviction risk
through canvassing and information distribution.

Active Search AGS builds on conventional active search,
first proposed by Garnett et al.. Previous work in ac-
tive search has focused on developing nonmyopic algo-
rithms (Jiang et al. 2017b), minimizing the cost to find a
given number of examples of the target class (Jiang, Garnett,
and Moseley 2019).Recently, visual active search (VAS) has
been proposed as a variation of active search in which the
search region is a satellite image (Sarkar et al. 2022; Sarkar,
Jacobs, and Vorobeychik 2023). However, VAS is focused
on visual data and is not directly applicable to AGS.

Geospatial Applications of Visual Data Geospatial in-
formation linked with images has proved useful for the dy-
namic modeling of traffic (Workman and Jacobs 2020) and
the enhancement of near/remote sensing (Workman et al.
2022). The use of imagery as a source of property infor-
mation is motivated by the work of Lee, Zhang, and Cran-
dall (2015) who use images from Flickr to predict geo-
informative attributes of the location being photographed,
Gebru et al. (2017) who estimate socioeconomic characteris-
tics of neighborhoods based on Google Street View images,
and Archbold et al. (2023) who develop fine-level estimates
of property value at the pixel level from overhead images.

Eviction and Tenant Harassment Prediction Work by
Ye et al. (2019) and Mashiat et al. (2024) in the hous-
ing domain has shown promise in utilizing machine learn-
ing to predict tenant harassment, but lacks the utilization
of high-dimensional visual information as well as a se-
quential decision-making policy. On the other hand, Tabar
et al. (2022b) have used satellite imagery data to predict
whether a given census tract is an eviction hot spot for the
county in which it sits, but their model yields a high-level
picture of eviction risk, with census tracts covering 4,000
people on average. Other efforts to harness data science

28341



methods to predict and understand evictions include fore-
casting the number of tenants at risk of formal eviction in
the next month in a census tract (Tabar et al. 2022a), and
understanding the predictors of eviction and future eviction
hot spots in San Francisco (Tan 2020).

Active Geospatial Search for Eviction
Prevention

In this work, we consider the problem of discovering prop-
erties with tenants at risk of an upcoming eviction filing,
with the goal of reducing this risk, for example, by pro-
viding information about financial and legal resources. We
model this as a active geospatial search (AGS) problem. At
the high level, AGS involves sequential exploration and dis-
covery, with the ultimate goal of identifying as many loca-
tions with a pre-specified target property as possible given
limits on time and resources. Formally, a geospatial search
task consists of a set of K parcels (e.g., rental buildings)
embedded as points in a geographic region. Each parcel i
is associated with a feature vector xi as well as a geospa-
tial location li ∈ R2. Attributes in xi can include visual data
(such as satellite imagery) as well as tabular data (such as the
number of units in the building, year built, and so on). Let
x = (x1, . . . , xK) aggregate all of this parcel-level attribute
information. Each parcel i is also associated with a binary
label yi ∈ {0, 1}, where yi = 1 iff parcel i has the property
of interest (e.g., a likely eviction filing in the near future, for
example, over the next three months). Let y = (y1, . . . , yK)
denote the vector of labels over all parcels.

A central feature of AGS is that at the beginning of the
search, we have label information for a subset of parcels
obtained, for example, using a recent history of evictions.
For the rest, our task amounts to both learning (exploration)
and discovery (exploitation). Specifically, we generate a se-
quence of location queries {qt}, where each qt queries a
label yi at location i = qt. Let c(i, j) as the cost associ-
ated with querying parcel j when initiating the query process
from parcel i. To account for the initial query, we introduce
a dummy starting parcel d, where c(d, k) is the initial query
cost. Let C be the query budget constraint. The objective of
AGS is to identify as many target parcels as we can within
the total budget constraint, which we represent as the fol-
lowing optimization problem:

max
{qt}

∑

t

yqt s.t. :
∑

t≥0

c(qt−1, qt) ≤ C (1)

where c(q−1, q0) = c(d, q0) is the cost of the first query.

Proposed Approach
We begin by considering AGS in a small area; this will pro-
vide key building blocks for addressing large-area AGS that
we deal with below. Specifically, we propose an approach
for learning a search policy from past query results for a
subset of locations, which is then deployed to solve Prob-
lem (1), balancing exploration (using queries to improve
our ability to predict likely target locations) and exploita-
tion (identifying locations that are subject to eviction pro-
ceedings, either ongoing or impending). Our first step to this

Figure 1: Policy network architecture.

end is to model AGS as a budget-constrained Markov deci-
sion process (MDP), akin to Sarkar, Jacobs, and Vorobey-
chik (2023). In this MDP, the input state at time t includes:
1) aggregated feature vectors of theK parcels, xt, which are
crucial in providing a broad perspective on the current search
state, 2) the outcomes of past search queries ot, and 3) the
remaining budget Bt ≤ C. We represent outcomes of search
query history o as follows. Each element of o corresponds to
a parcel index i, so that ot = (ot1, . . . , otK), where oti = 0
if i has not been previously queried, and oti = 2(yi) − 1, if
parcel i has been previously queried.

In this MDP, the actions are choices over which parcels
to query next. In particular, we denote the set of parcels by
A = {1, ...,K}. Since, in our model, there is never any
value to querying a parcel more than once, we restrict ac-
tions available at each step to only parcels that have not yet
been queried. We assign an immediate reward for query a
parcel i as R(x, i) = yi. Finally, state transitions involve
updating the remaining budget by subtracting the current
query cost and incorporating the result of the most recent
search query into the outcomes of past search queries.

We begin by proposing a reinforcement learning (RL) ap-
proach for learning a search policy when the set of locations
available (that is, K) is small, limiting the number of ac-
tions our search needs to consider. However, this approach
fails to scale to large geographical regions. Therefore, we
subsequently tackle the scalability challenge by proposing
an approach for learning hierarchical search policies.

Small-Area Search
Suppose that we consider a relatively small geographical
area so that the total number of parcelsK, and therefore, the
number of actions |A| that we need to consider, is relatively
small. We propose a RL approach for solving this problem.
Specifically, we use the REINFORCE algorithm to directly
learn a search policy ψθ(x, o,B), where θ are the parameters
of the policy that we learn (Williams 1992).

In order to utilize the information we acquire during
search, following Sarkar, Jacobs, and Vorobeychik (2023),
we propose a search policy comprised of two key compo-
nents: 1) the prediction module represented by fφ(x, o) and
2) the search module denoted as gζ(p, o,B), where φ and ζ
represent trainable parameters and p = fφ(x, o) is the vec-
tor of predicted eviction probabilities with pi the predicted
probability of at least one eviction in parcel index i. Concep-
tually, fφ generates predictions by exclusively considering
the task features x and previous search outcomes o, whereas
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gζ depends solely on information pertinent to the search pro-
cess itself, including the predicted eviction probabilities p,
previous search outcomes o, and the remaining budget B.
The resulting search policy is a combination of these mod-
ules, expressed as ψ(x, o,B) = gζ(fφ(x, o), o, B) (Fig. 1).

Throughout the episode, we keep the search module gζ
fixed, using it to generate a sequence of queries, which in-
herently incorporates an element of exploration due to the
stochastic nature of the policy. As we observe labels yj for
each queried parcel j during the episode, we update the pre-
diction function fφ using binary cross-entropy loss (LBCE).
Once the episode concludes (when we have exhausted the
search budget C) we update both the search policy parame-
ters ζ and the initial prediction function parameters φ. This
update involves a combination of RL and supervised loss. In
the case of the search module, we calculate the cumulative
sum of rewards R =

∑
i yi for the parcels i queried during

the episode, and employ the RL loss LRL based on the RE-
INFORCE algorithm. For the prediction module, we utilize
the collected labels yi from the episode and apply LBCE

loss. The proposed approach explicitly balances the RL and
supervised loss through the loss function:

LAGS = (LRL + λLBCE). (2)

This ensures that the policy is trained to adapt to the evolv-
ing prediction dynamics during the episode. Here λ is a
hyperparameter. A detailed presentation of the complete
method is provided in Algorithm 2 in Supplement. During
the inference phase, we fix the parameters of the search mod-
ule ζ, and udpate the parameters of the prediction module φ
after each query outcome is observed using the LBCE loss.

Large-Area Search
The key assumption in the approach above is that the num-
ber of candidate parcels is relatively small. In practice, that is
unrealistic, since even a reasonable target geographical area
may contain tens of thousands of parcels. Since the archi-
tecture described above requires a policy output per action
(parcel), it cannot scale to such problems (see Section ).

To address this issue, we propose a hierarchical search
framework, Hierarchical AGS (HAGS). The key insight be-
hind HAGS is that we can leverage shared structure—in par-
ticular, symmetry and geospatial locality—of the geospatial
domain to introduce inductive bias that significantly reduces
learning and decision complexity.

Specifically, let the geospatial area of interest be com-
prised of N regions, where each region is, in turn, com-
prised of (at most) K parcels. This induces a hierarchi-
cal decomposition of the area first into regions (first level),
and then (within each region) into parcels (second level).
In HAGS, the first level of decision making will therefore
correspond to choosing a region, while the second will en-
tail choosing a parcel within the selected region. Conse-
quently, a level-1 (higher-level) policy will choose among
the N regions, whereas a level-2 policy for each region r
will, in turn, choose among the K parcels. For a region r,
let xr = (xr1, . . . , xrK) denote the collection of attributes
for each parcel in r, and let x = (x1, . . . , xN ) aggregate all
of these into a single global feature vector over all regions.

Similarly, or is a vector of observed query responses over
the parcels in region r, with o combining them into a single
global vector.

In HAGS, as in our approach for small-area search above,
we decompose the search problem into two pieces: 1) a pre-
diction module fφ(xr, or) which outputs parcel-level pre-
dictions given region-level inputs xr and or, and 2) a hi-
erarchy of search policies, as visualized in Figure 2. The
main idea in our HAGS architecture is to leverage geospa-
tial structure by a) learning a single prediction module
fφ(xr, or)with parameters φ shared across both the first and
second levels of decision making, and b) learning a single
level-2 policy gh2θ (xr, or, B) shared by all regions. This in-
troduces an inductive bias, taking advantage of geospatial
structure to significantly reduce the number of parameters
we need to learn.

Specifically, let p = fφ(x, o) denote predictions for all re-
gions, aggregated from individual region-level predictions,
with pri the predicted probability that parcel i in region r
has the target property (e.g., an impending eviction proceed-
ings). Let p̄r =

∑
i pri be the predicted expected number of

parcels with the target property in region r ( where i ranges
over parcels in region r). Let gh1ζ (p̄, o, B) denote the level-
1 policy that outputs a distribution over regions to query
next, given inputs p, o (aggregated over all regions) and re-
maining budget B. Similarly, let gh2θ (pr, or, B) be a shared
level-2 policy (shared across all regions) that given region-
specific inputs pr, or, along with B outputs a distribution
over parcels in the associated region. At training time, ac-
tions are sampled from these distributions, whereas at search
time we choose the action with the highest probability.

We jointly train the parameters of the prediction module,
as well as both the level-1 and level-2 policies, using the RE-
INFORCE policy gradient framework, with the loss function

LHAGS = (Lh1
RL + Lh2

RL + λLBCE), (3)

where Lh1
RL and Lh2

RL are the standard REINFORCE loss
functions for level-1 and level-2 policies, respectively, and
LBCE the supervised binary cross-entropy loss used to train
the prediction module. The RL rewards for the level-2 poli-
cies are just as in AGS, that is, 1 if the queried parcel has
the target property and 0 otherwise. For level-1 policies, the
reward associated with a chosen parcel is 1 if the query ac-
cording to the level-2 policy within this region yields the
target property, and 0 otherwise. Note that LBCE plays an
identical role as it did in small-area search AGS framework,
that is, we dynamically modify the parameters of the pre-
diction module (φ) following the observation of each query
outcome both during training and inference. This adjust-
ment is achieved through the utilization of the LBCE loss,
which computes the binary cross-entropy loss between the
predicted label and the observed label y for the queried par-
cel. During gradient descent steps, we backpropagate Lh1

RL
and LBCE through the prediction module and backpropa-
gate Lh2

RL through the level-2 policy, updating parameters of
both f and the associated search policy. A detailed formal
presentation of the method is provided in Algorithm 1.
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Figure 2: HAGS policy network architecture.

Search Budget 15 20 25 50 75 100 200 300 400

Random 1.00 1.75 2.00 2.25 2.50 2.75 9.75 12.50 21.75
Conventional AS 2.25 3.25 4.50 5.75 6.50 7.50 15.75 22.00 32.50
Greedy by Unit Count 5.25 5.50 7.00 12.50 20.00 25.75 36.25 46.00 55.25
Greedy 7.50 9.25 10.50 17.75 21.00 29.50 44.50 59.00 65.75
Greedy Adaptive 8.75 10.75 14.00 22.25 27.50 34.75 54.50 65.50 72.25
AGS 8.00 10.25 11.50 18.75 22.00 31.50 46.25 61.25 68.25
HAGS 10.25 12.75 14.50 25.75 29.50 38.50 57.75 70.50 77.75

Table 1: ANT as a function of search budget for uniform query cost; average eviction rate is 5%.

Search Budget 15 20 25 50 75 100 200 300 400

Random 1.25 2.25 2.75 5.50 7.75 9.50 16.25 29.75 46.75
Conventional AS 3.50 5.50 6.75 11.25 15.50 18.00 27.50 43.50 65.50
Greedy by Unit Count 8.00 11.25 14.25 23.25 32.25 42.25 50.00 72.00 105.50
Greedy 9.75 12.75 17.00 28.75 38.25 51.00 74.25 103.50 119.75
Greedy Adaptive 10.50 14.50 18.75 34.50 49.25 57.50 86.75 117.75 144.50
AGS 10.50 14.00 17.25 29.25 41.50 53.25 79.25 106.75 128.25
HAGS 13.25 18.00 22.25 38.50 51.75 60.00 91.75 124.50 151.75

Table 2: ANT as a function of search budget for uniform query cost; average eviction rate is 10%.

Experiments
We evaluate the efficacy of the AGS framework and the pro-
posed HAGS approach using observed eviction filings in a
mid-sized region. Our evaluation metric is the average num-
ber of targets (ANT) found within a given budget (averaged
over search runs). We consider two query cost settings: (i)
uniform query costs, i.e., c(i, j) = 1 for all parcels i, j, and
(ii) distance-based cost, where c(i, j) is proportional to the
distance between i and j. Next, we describe in detail the data
we use, as well as the baseline methods, before presenting
our results. Our focus here is on large-area search; we defer
most results involving small-area search to the Supplement.
Data We construct features associated with parcels from
two sources: tabular data and overhead (satellite) images.
The tabular features are based on those in Mashiat et al.
(2024), and encompass eviction court filings, owner in-
formation, property-level attributes, and neighborhood fea-
tures. These data are originally derived from a collection
of municipal sources across St. Louis City and County, ex-

cluding neighborhood features, which are obtained from the
American Community Survey (ACS) (acs 2021). Court evic-
tion filings are aggregated over the previous year, as well
as semiannually, quarterly, and monthly. Property informa-
tion includes the number of housing units and whether it
is owner-occupied. Properties are linked to owners, and in-
formation on linked owners is included, such as the num-
ber of properties owned, in- versus out-of-state residence,
and whether the owner has worked with a moderate- or
high-filing attorney (defined as a filing rate above one and
three standard deviations above the mean for attorneys dur-
ing that period, respectively). Neighborhood features are at
the Census block-group level, and describe areas of 600-
3000 households in terms of average rent as a percentage
of household income, the median household income, the ra-
tio of income to the poverty level, racial and ethnic compo-
sition, the number of total housing units, the proportion of
occupied and vacant units, and the proportion of owner and
renter-occupied units. We restrict our analysis to residential,
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Algorithm 1: The proposed HAGS algorithm for training.
Require: A search task (x = [x1, . . . , xN ]; y = [y1, . . . , yN ]),

where xr = [xr1, . . . , xrK ] and yr = [yr1, . . . , yrK ] ; budget
C; Hierarchy 1 policy: gh1ζ (p = fφ(x, o), B) with parameters
ζ; Hierarchy 2 policy: gh2θ (pr, or, B) with parameters θ; o =
[o1, . . . , oN ] with or = [or1, . . . , orK ];

1: Initialize or = [0...0] for r ∈ {1, . . . , N}; Bt = C; t = 0
2: while Bt > 0 do
3: p = fφ(x, o); here p = [p1, . . . , pN ] with pr =

[pr1, . . . , prK ]
4: j ←− Samplej∈{1 ,...r,...,N}Softmax [p̄]; here p̄ =

[p̄1, . . . , p̄N ] and p̄r =
∑

i pri with i ∈ {1, . . . ,K}.
5: Explore region with index j at time t.
6: s̃ = gh2θ (pj , oj , B

t) ; r←− Sampler∈{1 ,...i,...,K}[s̃]
7: Query parcel r within region j and observe true label yjr .
8: Update φt to φt+1 using LBCE loss between p and pseudo

label ŷt, each component of ŷt is defined as

9: ŷt
jr ←−

{
yjr if r’th parcel within region j has been queried
pjr if yjr is Unobserved.

10: Set Rt = yjr , Update ot to ot+1 with ojr = 2yjr − 1,
update Bt+1 = Bt − c(k, j), k is the parcel queried at t− 1.

11: Collect transition tuple, τ t =
(
state = (x, ot, Bt), level 1

policy action = j, level 2 policy action = r, reward of both poli-
cies = Rt, next state of level 1 policy = (x, ot+1, Bt+1), next
state of level 2 policy = (pz, o

t+1
z , , Bt+1)

)
assuming level 1

policy selects region z at (t+1).
12: t←− t+ 1
13: end while
14: Update hierarchy 1 policy parameters using (Lh1

RL) based on
(τ t) collected throughout the episode and also update φ using
(LBCE ) based on the collected labels (yjr) over the episode.

15: Update hierarchy 2 policy parameters θ using (Lh2
RL) based on

the collected transition tuples (τ t) throughout the episode.
16: Return Updated hierarchy 1 and 2 policy parameters.

non-vacant parcels with at least two rental units, yielding a
total of 26700 properties across St. Louis City and County.
The time period used for training all AGS and baseline ap-
proaches is July 1, 2021, to September 30, 2022. Testing
covers the period between October 1, 2022, and December
31, 2022, where the target is positive if an eviction filing
occurred at the property during that period.

Satellite imagery data comes from the National Agricul-
ture Imagery Program (NAIP) (NAIP 2023). Images were
captured during June 2022 at a resolution of 60 centime-
ters. We extracted 214×214 patches such that these patches
fully covered 95% of the properties. Since we possess vi-
sual data for each individual parcel as well as tabular fea-
tures containing past eviction records for the correspond-
ing parcels, we utilize methods from multi-modal represen-
tation learning (Ngiam et al. 2011; Tsai et al. 2019). This
enables us to seamlessly amalgamate information from both
modalities, culminating in a latent representation for each
parcel. We leverage a multi-modal architecture as in (Tsai
et al. 2019). We depict the Multi-Modal Feature Extraction
(MMFE) module in the Appendix in Fig. ??. The parameters
of MMFE modules are shared across the parcels.
Baseline Methods We compare the proposed approach to
the following baselines:

1. Random: Each parcel is chosen uniformly randomly
among those not yet explored.

2. Greedy: we train a classifier fgreedy to predict whether a
particular property will have at least one eviction filing
within the next three months and search the most likely
properties until the search budget is exhausted.

3. Greedy by unit count: query the parcel with the largest
number of units.

4. Greedy adaptive: similar to Greedy except the prediction
model f is updated at each step based on query outcomes.

5. Conventional active search, an active search method by
Jiang et al. (2017a), using a low-dimensional feature rep-
resentation for each parcel from the same MMFE feature
extraction network as in our approach.

In addition, we use the simple small-area AGS approach as
a baseline in the large-area search setting (involving 16000
parcels; see below for further details).

Results
Starting with the original 26700 parcels, we randomly se-
lect 16000 properties for evaluation, averaging the results
over four such random selections to compute ANT. The se-
lected properties are bootstrapped to have a particular av-
erage number of positive targets (that is, properties with
eviction filings during the prediction period) to enable us to
study the impact of target sparsity. We consider mean posi-
tive rates of 5% and 10%, with s.t.d. of 0.01%, and 0.02%,
respectively. In HAGS, we divide the entire search space into
N = 160 regions, each containingK = 100 parcels.
Uniform-Cost Search We first consider uniform-cost set-
tings. In this case, we consider search budgets C of 15, 20,
25, 50, 75, 100, 200, 300, and 400 queries. The results are
presented in Tables 1 and 2 for positive rates of 5% and 10%,
respectively. In all cases, HAGS outperforms all baselines,
often by a large margin. In particular, improvement ranges
from 3%-17% over the most competitive baseline. Particu-
larly noteworthy is the poor performance of “flat” AGS de-
signed for small-area search. While AGS outperforms most
baselines, it nevertheless exhibits poor efficacy compared to
HAGS and, indeed, is slightly worse than the simple greedy
adaptive search heuristic. This suggests the inductive bias in-
troduced in the hierarchical architecture of HAGS is crucial
to obtaining high efficacy at scale. We also observe a gen-
eral pattern of greatest improvement from HAGS in settings
with lower budgets (greatest improvement is for C = 15),
although neither pattern is monotonic. Additionally, a lower
overall target (eviction) rate has a greater average improve-
ment (average improvement for 5% target rate is∼7%, com-
pared to ∼5% for 10% target rate), although this pattern is
not uniform across budgets. The general pattern is that the
significance of efficient balancing between exploration and
exploitation as exhibited by HAGS is most notable when
there is scarcity in either budget or availability of targets to
discover.
Distance-Based Search Costs Next, we consider HAGS
compared to baselines in the case when search costs
are not uniform, but instead are based on relative dis-
tances between parcels. Specifically, we determine the po-
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Search Budget 300 600 1200 2400 4800 10000 20000 40000 80000

Random 0.00 0.25 0.25 0.50 0.50 0.75 0.75 1.00 2.25
Conventional AS 0.00 0.00 0.25 0.75 1.00 1.00 1.25 1.50 2.00
Greedy by Unit Count 0.00 0.00 0.00 1.00 1.25 1.25 1.75 2.00 2.75
Greedy 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.75 2.75
Greedy Adaptive 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.75 2.75
AGS 1.25 1.50 1.50 1.50 1.50 1.75 1.75 2.00 2.50
HAGS 2.00 2.50 2.50 2.50 2.75 2.75 2.75 3.50 4.50

Table 3: ANT as a function of budget for distance-based query cost; average eviction rate is 5%.

Search Budget 300 600 1200 2400 4800 10000 20000 40000 80000

Random 0.00 1.00 1.00 1.25 1.25 1.25 1.50 1.75 2.25
Conventional AS 0.00 0.00 0.50 1.00 1.75 1.75 2.00 2.00 2.75
Greedy by Unit Count 1.00 1.00 1.00 1.00 1.50 1.75 2.25 2.75 3.75
Greedy 1.25 1.25 1.50 1.50 1.50 2.00 2.50 3.00 3.75
Greedy Adaptive 1.25 1.25 1.50 1.50 1.50 2.00 2.50 3.00 3.75
AGS 1.50 1.75 1.75 1.75 1.75 2.00 3.00 3.50 4.25
HAGS 2.25 2.50 2.75 2.75 3.00 3.25 4.00 5.75 6.25

Table 4: ANT as a function of budget for distance-based query cost; average eviction rate is 10%.

Average Positive Rate of 2.5% Average Positive Rate of 5% Average Positive Rate of 10%

Search Budget 15 20 25 15 20 25 15 20 25

AGS-VIS 0.932 1.092 1.268 1.840 2.216 2.532 3.496 4.100 5.044
AGS-TAB 1.008 1.184 1.340 1.972 2.336 2.640 4.216 5.004 5.501
AGS 1.052 1.288 1.352 2.240 2.596 2.828 4.372 5.204 5.632

Table 5: Ablation Study Average Number of Targets (ANT) Found by Search Task Parameters and Solution Method

sition of each parcel using GPS coordinates and calcu-
late the query cost as the Manhattan distance in meters
between parcel locations. We vary search budgets C ∈
{300, 600, 1.2k, 2.4k, 4.8k, 10k, 20k, 40k, 80k}, and again
consider 5% and 10% positive rate in the area. The re-
sults are presented in Tables 3 and 4. In this setting, we
see an even greater improvement of HAGS over the base-
lines (including, again, AGS), with improvement over the
most competitive baseline ranging from approximately 42%
to 70%. Notably, when the average positive rate is low (5%),
the greedy (exploitation-only) baselines have trouble finding
any targets within the available budget.

Ablation Study of Visual and Structured Data Finally,
we address an important qualitative question in the partic-
ular context of tenant eviction data analytics: to what ex-
tent is visual and structured (tabular) data contribute to de-
cision efficacy? We study this in a small-area search setting,
where we randomly select a region containing 100 parcels.
In particular, we train AGS (no need for HAGS here) using
visual-only data (AGS-VIS), tabular-only data (AGS-TAB),
and both (standard AGS). We also provide results of random
queries for calibration purposes. The results are provided in
Table 5. First, note that both AGS-VIS and AGS-TAB outper-
form random search by a large margin. Second, the results
suggest that while tabular features tend to be more infor-
mative than visual features individually in this setting, inte-

grating visual and tabular features through multi-modal rep-
resentation learning meaningfully (albeit not dramatically)
enhances search performance across various search tasks in
different settings. These results demonstrate the importance
of leveraging the multi-modal representation that combines
tabular and imagery-based features.

Conclusion
We introduce the novel AGS framework to identify prop-
erties with renters who are at risk of imminent eviction.
Through extensive experiments, we demonstrate that our ap-
proach increases the number of at-risk properties discovered
as compared to several strong baselines by at least 5% and,
in some settings, over 50%. This is achieved through a pre-
training phase combined with an exploration phase that al-
lows for test-time adaptation. These methods have the poten-
tial to dramatically increase both the effectiveness and time-
liness of door-to-door outreach by social service agencies,
thereby increasing the number of tenants who are connected
with legal aid, landlord mediation, one-time financial assis-
tance, time-limited case management, or moving assistance.
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