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Abstract
Deep learning has become the de facto approach
in nearly all learning tasks. It has been observed
that deep models tend to memorize and sometimes
overfit data, which can lead to compromises in
performance, privacy, and other critical metrics.
In this paper, we explore the theoretical founda-
tions that connect memorization to sample loss,
focusing on learning dynamics to understand what
and how deep models memorize. To this end, we
introduce a novel proxy for memorization: Cu-
mulative Sample Loss (CSL). CSL represents the
accumulated loss of a sample throughout the train-
ing process. CSL exhibits remarkable similarity
to stability-based memorization, as evidenced by
considerably high cosine similarity scores. We
delve into the theory behind these results, demon-
strating that low CSL leads to nontrivial bounds
on the extent of stability-based memorization and
learning time. The proposed proxy, CSL, is four
orders of magnitude less computationally expen-
sive than the stability-based method and can be
obtained with zero additional overhead during
training. We demonstrate the practical utility of
the proposed proxy in identifying mislabeled sam-
ples and detecting duplicates where our metric
achieves state-of-the-art performance.

1. Introduction
Deep learning has become the de facto standard for almost
all machine learning tasks from image (Ho et al., 2020)
and text generation (Radford et al., 2019) to classification
(Krizhevsky et al., 2009; Soufleri et al., 2024a) and rein-
forcement learning (Shakya et al., 2023). While they have
been extremely successful, they tend to memorize and over-
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Figure 1. Visualizing our contributions linking cumulative sample
loss to memorization and learning time.

fit to the training data. While some memorization is indeed
needed to obtain generalization (Feldman, 2020), these deep
models can also memorize totally random images (Zhang
et al., 2017). Thus to understand memorization, researchers
have put in significant effort (Zhang et al., 2017; Arpit et al.,
2017; Carlini et al., 2019a; Feldman & Vondrak, 2019; Feld-
man & Zhang, 2020; Feldman, 2020). Such focus is crucial
due to the broad implications of memorization for multi-
ple connected areas, including generalization (Zhang et al.,
2021; Brown et al., 2021), noisy learning (Liu et al., 2020),
identifying mislabeled examples (Maini et al., 2022), recog-
nizing rare and challenging instances (Carlini et al., 2019a),
ensuring privacy (Feldman, 2020), and addressing risks
from membership inference attacks (Shokri et al., 2017;
Carlini et al., 2022; Ravikumar et al., 2024b).

Many approaches to study memorization have been pro-
posed (Carlini et al., 2019a; Jiang et al., 2021; Feldman,
2020). Notably, the stability-based measure proposed by
Feldman (2020) measures the change in expected output
probability when the sample under investigation is removed
from the training dataset. This measure offers a robust theo-
retical framework for understanding memorization, which
was subsequently validated empirically for deep neural net-
works (Feldman & Zhang, 2020). However, this approach
is impractical for most applications due to its high computa-
tional cost. Recent literature has introduced other proxies
for memorization, such as learning time (Jiang et al., 2021),
adversarial distance (Del Grosso et al., 2022), model confi-
dence (Carlini et al., 2019b), and input loss curvature (Garg
et al., 2024; Ravikumar et al., 2024a). While these proxies
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have been successful in understanding the memorization be-
havior of neural networks, most fail to capture certain prop-
erties of memorization such as bi-modality (Lukasik et al.,
2023). Thus, establishing a strong theoretical foundation of
memorization and its proxies is of critical importance.

While prior work (Ravikumar et al., 2024a) has investigated
the properties of the loss function, such as input curvature
post-training and its connection to memorization, we es-
tablish a theoretical framework that explains how learning
dynamics drive the similarity between loss, memorization
and learning time. We propose a new proxy for memoriza-
tion: Cumulative Sample Loss (CSL) to capture information
from training dynamics. CSL represents the loss of a sample
accumulated over the entire training process. The proposed
CSL proxy is 4 orders of magnitude less computationally
expensive than stability-based (Feldman & Zhang, 2020)
memorization and ≈ 14× less expensive than input loss
curvature (Garg et al., 2024). It is important to note that the
14× estimate is conservative. This is because CSL can be
obtained for free during training, making the computational
benefits even greater than these numbers suggest.

We validate our theory with experiments and show that the
proposed proxy has a very high cosine similarity with the
memorization score from (Feldman & Zhang, 2020). Fur-
ther, we show that CSL can be used to identify duplicates
and mislabeled examples; notably, the adoption of our pro-
posed proxy leads to achieving state-of-the-art performance
in these applications. In summary, our contributions are:

• We present a new theoretical framework that links
learning dynamics (e.g. sample learning time) and
memorization, to cumulative sample loss as visualized
in Figure 1.

• We propose a new memorization proxy: Cumulative
Sample Loss (CSL), which demonstrates very high
similarity to stability-based memorization methods and
is significantly more computationally efficient, offering
a reduction in computational cost by several orders of
magnitude.

• We validate our theory through experiments on deep
vision models, demonstrating the efficacy of CSL as a
strong memorization proxy.

• We showcase the practical applications of our proxy
in identifying mislabeled examples and duplicates
in datasets, achieving state-of-the-art performance in
these tasks.

2. Notation
We denote distributions using bold capital letters V, ran-
dom variables sampled from them as italic small letters v

for scalars, v⃗ for vectors, and capital letters V for matri-
ces. All constants are represented using Greek symbols
(with two exceptions L and Tmax). For simplicity and com-
pactness, we ignore the notation when vectors are in the
subscript, for example ∇w = ∇w⃗. Consider a learning
problem, where the task is learning the mapping f : x⃗ 7→ y
where x⃗ ∼ X ∈ Rn and y ∼ Y | X ∈ R. A dataset S =
(z⃗1, z⃗2, . . . , z⃗m) ∼ Zm consists of m samples, where each
sample z⃗i = (x⃗i, yi) ∼ Z. We also use a leave one out set
which the the dataset S with the ith sample removed denoted
by S\i = (z⃗1, . . . , z⃗i−1, z⃗i+1, . . . , z⃗m). We use gpS ∼ GS

to denote the function learnt by the neural network by the
application of a possibly random training algorithm A, on
the dataset S where p ∼ P denotes the randomness of the al-
gorithm. Let the row vector w⃗t = [w⃗

(1)
t , w⃗

(2)
t , · · · , w⃗(q)

t ] ∼
W denote the weights of a q-layered network at iteration
t, where w⃗

(k)
t =

[
w

(k)
t,1,1 w

(k)
t,1,2 · · · w

(k)
t,dk,dk−1

]
is a

flattened row vector representing the weights of the kth

layer at iteration t with input dimension dk−1 and out-
put dimension dk. Now, consider a single data sample
x⃗i =

[
xi1 xi2 · · · xin

]⊤
represented as a column

vector. Then, we represent a mini-batch with b exam-
ples as a matrix Xb =

[
x⃗1 x⃗2 · · · x⃗b

]
, whose cor-

responding labels are denoted as Yb = [y1 · · · yb]. Thus
a mini-batch is denoted as Zb = (Xb, Yb). A cost func-
tion c : Range(Y) × Range(Y) → R+, is used to eval-
uate the performance of the model. The cost at a sample
z⃗i is referred to as the loss ℓ evaluated at z⃗i, defined as
ℓ(g, z⃗i) = c(g(x⃗i), yi). In some cases, the loss function may
involve weights or parameters w⃗t, such as when the model
is parameterized by weights. In such cases, we may write
the loss function as ℓ(w⃗t, z⃗i). When working with a batch of
data, the loss function can be extended to a batch of samples
Zb = (Xb, Yb). In this case, the loss function may be written
as ℓ(w⃗t, Zb) where the loss for the batch is typically the av-
erage or sum of the losses for the individual samples within
the batch. Typically, we are interested in the loss of g over
the entire data distribution, called the population risk, which
is defined as R(g) = Ez[ℓ (g, z⃗)]. Since the data distribution
Z is generally unknown, we instead evaluate the empirical
risk as follows Remp(g, S) =

1
m

∑m
i=1 ℓ(g, z⃗i), z⃗i ∈ S.

3. Background
Memorization of the ith element z⃗i = (x⃗i, yi) in the
dataset S by an algorithm A is as:

mem(S, z⃗i) = Pr
p
[gpS(x⃗i) = yi]− Pr

p
[gp

S\i(x⃗i) = yi] (1)

where the probability is taken over the randomness of the
algorithm A. This definition of memorization is the from
Feldman (2020).

ρ-Lipschitz Gradient. The gradient of the loss function ℓ
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Figure 2. Visualizing peacock class learning in ImageNet. Average loss is shown for easy and hard-to-learn peacocks. The dashed line
represents average loss, while solid lines show actual loss. Easy images are less memorized, while hard images are memorized more.

is said to be ρ-Lipschitz on Range(W) if, for all w⃗1, w⃗2 ∈
Range(W), there exists a constant ρ > 0 such that:

∥∇w1
ℓ(w⃗1)−∇w2

ℓ(w⃗2)∥ ≤ ρ∥w⃗1 − w⃗2∥ (2)

Bounded Gradient. Suppose that for each iteration t, the
expected euclidean norm of the gradient with respect to the
parameters w⃗k

t is bounded by a constant Γ2, i.e.,

Et

[
∥∇̃wk

t
ℓ(w⃗k

t )∥22
]
≤ Γ2, (3)

Uniform Stability of a randomized algorithm A for some
β > 0 is defined as in Kearns & Ron (1997):∣∣ℓ(gpS , z⃗)− ℓ(gp

S\i , z⃗)
∣∣ ≤ β, ∀i ∈ {1, · · · ,m} (4)

L-Bounded Loss. We say that loss a loss function is L-
bounded if it satisfies 0 ≤ ℓ ≤ L.

4. Related Work
Memorization in deep neural networks has gained attention,
with recent works improving our understanding of its mech-
anisms and implications (Zhang et al., 2017; Arpit et al.,
2017; Carlini et al., 2019a; Feldman & Vondrak, 2019; Feld-
man, 2020; Feldman & Zhang, 2020; Lukasik et al., 2023;
Garg et al., 2024; Ravikumar et al., 2024a). This research
is driven by the need to understand generalization (Zhang
et al., 2017; Brown et al., 2021; Zhang et al., 2021; Kaplun
et al., 2022; Bayat et al., 2025), identify mislabeled ex-
amples (Pleiss et al., 2020; Maini et al., 2022), and detect
out-of-distribution or rare sub-populations (Carlini et al.,
2019a; Ravikumar et al., 2023; Pezeshki et al., 2023). Ad-
ditionally, memorization impacts robustness (Shokri et al.,
2017; Carlini et al., 2022), unlearning (Kurmanji et al., 2023;
Kodge et al., 2024) and privacy (Feldman, 2020; Soufleri
et al., 2024b).

Privacy is often tested using membership inference attacks
(MIA), which tests whether a particular sample was used in

training (Shokri et al., 2017; Carlini et al., 2022; Ravikumar
et al., 2024b). Learning dynamics has been used in this con-
text to build stronger privacy tests. Liu et al. (2022) leverage
loss trajectories and distilled models to improve MIA, while
Li et al. (2024) propose SeqMIA, an attention-based re-
current architecture that exploits intermediate model states.
Both approaches demonstrate how learning dynamics can
reveal training-set membership but at the cost of increased
computational overhead. Additionally, Nasr et al. (2021)
highlights how mean loss trajectories can reveal privacy
leakage under differentially private training establishing a
lower bound on leakage identification.

Learning Dynamics. Beyond privacy, learning dynamics
have been studied as proxies for memorization. Mangalam
& Prabhu (2019) showed simpler examples are learned first
while mislabeled or difficult samples may be repeatedly for-
gotten or relearned (Toneva et al., 2019; Pleiss et al., 2020;
Maini et al., 2022). Jagielski et al. (2023) explored how
memorization fades when examples are removed. Carlini
et al. (2019a) combine multiple metrics to understand data
retention, and Jiang et al. (2021) introduce the C-score to
capture hard examples. Other works have proposed loss-
sensitivity (Arpit et al., 2017), and sharpness of the loss
function (Krueger et al., 2017) as memorization signals.
More recently, Garg et al. (2024) used input loss curva-
ture as a proxy for stability-based memorization (Feldman,
2020), supported by theoretical analysis from Ravikumar
et al. (2024a). In contrast, this paper investigates sample
loss over training and its formal link to learning time and
memorization.

5. Learning Dynamics and Memorization
5.1. Proposed Memorization Proxy

To build intuition, let us explore the loss progression of two
samples, namely, an “easy” and a “hard” example, both
from the same class (peacock) in the ImageNet dataset (Rus-
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sakovsky et al., 2015), as illustrated in Figure 2. In this
context, loss refers to the per-sample cross-entropy loss,
which tracks how well the model predicts a specific exam-
ple at each epoch of training.

In Figure 2, let’s observe the behavior of an easy sample,
represented by the loss visualized in green. This sample
is learned early in the process. The loss follows a simple
pattern: it starts high, quickly drops, and stays low for
the rest of the training. The hard sample, on the other
hand, behaves differently. Its loss remains high for a much
longer period before eventually dropping, indicating that
it is learned much later. This contrast in loss dynamics’
patterns evidently shows how the cumulative per-sample
loss throughout training can distinguish between easy and
hard examples with precision. Figure 2 also illustrates that
using thresholds (i.e. loss threshold) to define learning
time and forgetting time, is less effective. This is because
learning is a noisy process, i.e. a sample might be learnt
in one epoch, unlearnt in the next. Thus traditional proxies
which rely on thresholds to determine when a sample is
learnt, may fall short of distinguishing between easy and
hard examples. To overcome this noise, we propose using
cumulative sample loss, CSL as more reliable proxy. The
proposed proxy CSL of a sample z⃗i can be formally defined
as:

CSL(z⃗i) =

Tmax−1∑
t=0

ℓ(w⃗t, z⃗i) (5)

where Tmax is the total number of iterations of SGD. This
smooths out the noise from fluctuations during learning. As
we will demonstrate, hard examples tend to be memorized
by the model, while easy examples are likely generalized;
the proposed cumulative proxy, tracked throughout the train-
ing process, is key to capturing this correlation.

5.2. Learning Condition and Learning Time

To formalize this intuition, we introduce the concept of the
sample learning condition. In optimization theory, the neces-
sary condition for optimality for an unconstrained problem
is typically expressed as ∇wtℓ(w⃗t) = 0. In the case of opti-
mizers like gradient descent or its extensions, convergence
is typically characterized in terms of gradient norm given
as ∥∇wt

ℓ(w⃗t)∥2 ≤ τ , where ℓ is the function to minimize
and τ denotes an arbitrarily small threshold. Thus, as a
extension of this perspective, we define the sample learning
condition as:

ER

[
∥∇xi

ℓ (w⃗R)∥22
]
≈

1

T

T−1∑
t=0

∥∇xi
ℓ(w⃗t)∥22 ≤ τ, (6)

where the gradient is with respect to the input x⃗i. We inter-
pret Equation 6 as follows: A sample is considered learnt if

the average per iteration sample gradient norm falls below
a threshold τ . Note that the approximation is justified by the
law of large numbers. Using this idea we formally define the
learning time Tzi of a sample z⃗i = (x⃗i, yi) as the smallest
time T at which the sample learning condition is satisfied.
Formally:

Tzi = min
T

{
T :

1

T

T−1∑
t=0

∥∇xi
ℓ(w⃗t)∥22 ≤ τ

}
(7)

where τ > 0 is a predefined threshold that determines the
acceptable magnitude of the average gradient norm. While
the definitions are non-intuitive, as we will demonstrate, this
formulation of sample learning condition and learning time
simplifies the mathematical expressions and analyses.

5.3. Input Gradient Convergence

In this section, we analyze the evolution of input-space
gradients during training. Specifically, we demonstrate that
the norm of the gradient with respect to the weights bounds
the norm of the gradient with respect to the input, ensuring
convergence of the input gradient. Consequently, the sample
learning condition defined in Eq. 6 also converges. To
establish this, we examine the gradient of the loss function
with respect to a sample, and relate it to the gradient with
respect to the network weights.

Lemma 5.1 (Input gradient norm is bound by weight gradi-
ent norm). For any neural network, given a mini-batch of
inputs Zb = (Xb, Yb), the Frobenius norm of the gradient
of the loss ℓ with respect to the input is bounded by the norm
of the gradient with respect to the network’s weights w⃗t.
Specifically:

∥∇Xb
ℓ(w⃗t, Zb)∥F ≤ kg∥∇wt

ℓ(w⃗t, Zb)∥F (8)

where kg =
∥W (1)

t ∥F ∥(X⊤
b )+∥F

sP
and sP denotes the smallest

singular value of P = X⊤
b (X⊤

b )+, where + denotes pseudo-
inverse.

Sketch of Proof. The proof utilizes the chain rule to com-
pute the gradients of the loss with respect to the inputs and
the with respect to first-layer weights, establishing the rela-
tion between the two. By leveraging the Frobenius norm,
the proof establishes an upper bound on the gradient with
respect to the inputs in terms of the gradient with respect to
the weights. The proof is available in Appendix C.1.

For convenience we group a set of assumptions as SGD
Convergence Assumptions. The convergence of SGD in
gradient norm holds under the ρ-Lipschitz continuity of the
loss function (Eq. 2), with a bounded variance norm (Eq.
16) and an unbiased gradient estimator.

Theorem 5.2 (Convergence in input gradient norm). Under
the SGD convergence assumptions, after T iterations of
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SGD with a learning rate η = 1/
√
T , the sample learning

condition converges as follows:

1

T

T−1∑
t=0

∥∇xi
ℓ(w⃗t)∥22 = O

(
1/
√
T
)

(9)

Sketch of Proof. The proof starts with SGD convergence
analysis. Subsequently, using Lemma 5.1, the proof relates
the weight gradient to the input gradient through a scaling
factor that depends on kg . By de-telescoping the result over
iterations, it follows that the cumulative input gradient is
bounded by the cumulative loss decrease and a term depend-
ing on the learning rate, Lipschitz constant and iterations T .
Using η = 1/

√
T we see that the cumulative input gradient.

converges in O(1/
√
T ). Full proof is in Appendix D.1.

Discussion. The theorem establishes the convergence of
the sample gradient norm when using SGD. It shows that
the input gradient converges in a manner similar to the
weight gradient. The difference being the upper bound has
a dependence on the scaling factor κg from Lemma 5.1.

Takeaways. (1) The big takeaway is that when we train a
model, even though we don’t optimize in the input space, we
do indirectly optimize it. (2) Sample learning condition (Eq.
6) is guaranteed to converge.

5.4. Learning Time, CSL and Memorization

Theorem 5.3 (Learning Time bounds Memorization). Un-
der the assumptions of SGD convergence, β-stability and
L-bounded loss, there exists a κT > 0 such that the expected
learning time for a sample z⃗i bounds expected memorization
score, i.e.

Ezi

[
mem(z⃗i)

]
≤ κT Ezi,p

[
Tzi

]
+ β/L, (10)

where p denotes the randomness of the algorithm.

Sketch of Proof. The key idea is to leverage the Theorem
5.2 to derive a closed-form expression for learning time. The
proof begins by relating Tzi to the cumulative reduction in
loss over training steps. The loss dynamics are decomposed
into two terms: the memorization score, and a residual term
capturing the generalization gap. By analyzing these compo-
nents and taking expectations over the data and randomness
of the training process, it is shown that the expected learning
time scales with the memorization score. The full proof is
available in Appendix D.2.

Interpreting Theory. Theorem 5.3 intuitively states that the
expected memorization of a group of samples is proportional
to their expected learning times. To make this clearer, con-
sider a subset U(T ) ⊆ S, where U(T ) = {z⃗i : Tzi ≤ T},
meaning U(T ) contains all samples that are learned within
a time threshold T . From the relationship between mem-
orization and learning time established in Equation 10, it

follows that the expected memorization of samples in this
subset is bounded by their learning times. Given that

κT =
τη

κmL
− η2ρΓ2

2L
≥ 0

where κm = maxt∈1,··· ,T (κ
t
g)

2, it can be assumed that κT

is constant across different subsets U(T ). Thus, we can state
that for any sample zi ∈ U(T ), the expected memorization
Ezi [mem(zi)] follows

Ezi∈U(T )[mem(zi)] ≤ κTT + β/L

In simpler terms, this means that if a group of samples is
learned early in the training process (i.e., they have smaller
learning times), their expected memorization will also be
lower compared to samples that are learned much later
during training. This provides an intuitive link between
learning time and the extent of memorization, suggesting
that samples requiring more training time are more likely
to be memorized. Additionally, it can be demonstrated
that Theorem 5.3 holds true for cross-entropy loss, by set-
ting L = 1 (see proof in Appendix D.2.1). Further, under
reasonable generalization assumption Et,zi,p

[
ℓ(w⃗0, z⃗i) −

ℓ\zi(w⃗∗, z⃗i)
]

≥ 0, the requirement for stability can be
dropped (see discussion in Appendix D.2.2), leading to:

Ezi

[
mem(z⃗i)

]
≤ κT Ezi,p

[
Tzi

]
(11)

Theorem 5.4 (Cumulative loss bounds learning time). Let
the assumptions for SGD convergence hold. Then, for any
L-bounded loss, the learning time Tzi for any sample z⃗i ∈ S
there exist a κT > 0 such that:

κT Ezi

[
Tzi

]
≤ Ezi [CSL(z⃗i)]− ξ

L
(12)

where ξ is an offset to scale CSL into the correct range.

Sketch of Proof. The proof begins by leveraging the input
gradient convergence result (Theorem 5.2), which allows us
to derive an expression for the learning threshold τ . By rear-
ranging this result, we establish a direct connection between
Tzi and CSL, demonstrating that the learning time scales
with the cumulative sample loss. To refine this relationship,
we define ξ as an offset representing the aggregate lower
bound of the cumulative loss. Finally, by combining these
results, we show that the expected learning time is propor-
tional to the expected cumulative sample loss. The proof is
detailed in Appendix D.3. Additionally, this theorem holds
for any unbounded loss with by setting L = 1 (see proof in
Appendix D.3.1).

Interpreting Theory. The theorem highlights that the learn-
ing time for a sample is directly tied to its Cumulative
Sample Loss (CSL), which quantifies the total loss over
time. This makes it possible to compare different subsets
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of samples based on their CSL and understand how it af-
fects their learning time. ξ is an offset such that CSL is
in the correct range, this is more clear when considering
the result for memorization (see Theorem 5.5), we observe
that ξ scales CSL so that it lies in the range ≈ (0, 1) when
β ≈ 0 (see more detailed discussion in Appendix D.3.2).
To build intuition, consider a subset U(C) ⊆ S, defined as
U(C) = {z⃗i : CSL(z⃗i) ≤ C}. According to Theorem 5.4,
which applies to any subset, the following holds:

Ezi∈U(C)[Tzi ] ≤
C − ξ′

L

Here ξ′ is the minimum ξ across various subsets, thus ξ′ is
the same across all subsets. Hence, we can compare subsets
by their CSL: subsets with lower CSL will have shorter
learning times. In simpler terms, if one group of samples
has a lower CSL than another, they are expected to be learnt
earlier during training. If the bounds are accurate, this rela-
tionship is close to linear, meaning lower CSL consistently
leads to shorter learning times.
Theorem 5.5 (Cumulative Sample Loss bounds Memoriza-
tion). Assume the loss function is L-bounded, and the as-
sumptions for the convergence of SGD and β-stability hold.
Then, the expected memorization score of any sample z⃗i ∈ S
satisfies the following inequality:

Ezi [mem(z⃗i)] ≤
Ezi,p [CSL(z⃗i)] + β − ξ

L
≤ 1 +

β

L
(13)

where p denotes the randomness of the algorithm.

Sketch of proof. The proof connects memorization to CSL
using Theorems 5.3 and 5.4. By taking the expectation
over the algorithm’s randomness in Theorem 5.4 and using
it to bound Theorem 5.3, the result follows. The proof is
provided in Appendix D.4.

Interpreting Theory. Consider a subset U(C) ⊆ S where
U(C) = {z⃗i : CSL(z⃗i) ≤ C}. For any two such sets, the
set with a higher CSL is likely to contain more memorized
examples. In simpler terms, if one group of samples has
a lower CSL than another, it is expected to be less mem-
orized and learned earlier during training. If the bounds
from this theorem are tight, we can expect a linear rela-
tionship between learning time and memorization. Under
a reasonable generalization assumption, similar to Eq. 11,
memorization is shown to be bounded by normalized CSL,
which is upper-bounded by 1. This demonstrates that the
CSL bound is non-trivial. Additionally, for cross-entropy
loss the following holds true (details in Appendix D.4.1):

Ezi [mem(z⃗i)] ≤ Ezi,p [CSL(z⃗i)] + β − ξ (14)

Remark on Assumptions. We briefly and qualitatively
evaluate the practicality of our assumptions. It has been

established that SGD methods are uniformly stable (Hardt
et al., 2016), supporting the plausibility of our assumptions
on stability (Eq. 4). Virmaux & Scaman (2018) provides
a general upper bound for the Lipschitz constant of any
differentiable deep learning model, validating the Lipschitz
continuity assumption in the context of deep models. The
assumptions of an unbiased gradient estimator, along with
bounded gradient norm, are widely used in the optimization
literature (Ghadimi & Lan, 2013; Aketi et al., 2024), making
these assumptions reasonable. In practice, loss functions
are often upper-bounded. Additionally, our results apply to
cross-entropy with minor changes as specified.

Key Theory Takeaways. If the theory bounds are tight, we
expect the following: (1) learning time to exhibit a linear
relationship with CSL, (2) stability-based memorization to
also follow a linear relationship with CSL, and (3) a linear
relationship between learning time and memorization.

6. Experiments
6.1. Validating Theory

In this section, we conduct experiments to empirically val-
idate the theoretical relationships established in the paper.
Specifically, we investigate the following connections: (1)
the relationship between learning time and our proxy CSL
(Cumulative Sample Loss), (2) the relationship between
memorization and learning time (3) the relation between
CSL and memorization.

Experiment. We trained a ResNet18 model on the CIFAR-
100 and ImageNet datasets, measuring learning time and
CSL for each training sample. For memorization scores, we
used precomputed stability-based scores from Feldman &
Zhang (2020). To analyze the relationship between the CSL,
learning time and memorization, we created a binned scatter
plot. Since the theorems apply to groups of samples (i.e.
under expectation), we grouped data by the x-axis metric
and calculated average scores for each bin. For instance,
in Figure 3, samples are grouped by memorization scores
on the x-axis, and the average learning time for each bin
is plotted to generate the scatter plot (additional details are
provided in Appendix B.4).

Results. The results are visualized in Figures 3, 4, 5, 6,
7, and 8. Figures 3 and 6 illustrate the relationship be-
tween learning time and memorization for CIFAR-100 and
ImageNet respectively, validating Theorem 5.3. Figures 4
and 7 plot learning time versus CSL for CIFAR-100 and
ImageNet, respectively, supporting Theorem 5.4. Figures
5 and 8 compare the memorization score from Feldman
& Zhang (2020) with CSL for CIFAR-100 and ImageNet,
respectively, validating Theorem 5.5.

Takeaways. Theorems 5.3–5.5 establish bounds under ex-
pectation over groups of samples, describing the relation-
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Figure 3. Learning Time vs Memorization
score on CIFAR-100 dataset.

Figure 4. Learning time vs. CSL on the
CIFAR-100 dataset.

Figure 5. Memorization score vs CSL on
CIFAR-100 dataset.

Figure 6. Learning Time vs Memorization
score on ImageNet dataset.

Figure 7. Learning time vs. CSL on the
ImageNet dataset.

Figure 8. Memorization score vs CSL on
ImageNet dataset.

ship between learning time, memorization, and cumulative
sample loss. Figures 3 to 8 illustrate these relationships,
showing an almost linear trend that suggests the bounds
from the theorems are likely tight. The slight non-linearity
between learning time and memorization likely arises from
the theoretical assumption of uniformly bounded loss, while
the cross-entropy loss used in practice does not have a uni-
form bound across all subpopulations (see Ravikumar et al.
(2024a) for a related discussion).

6.2. Similarity with Memorization

Experiment. In this section, we examine how well our
proposed proxy CSL correlates with the memorization score
defined by Feldman & Zhang (2020). We also compare
our proxy with those proposed by Garg et al. (2024), loss
sensitivity (Arpit et al., 2017), forgetting frequency (Toneva
et al., 2019), and final sample loss. This experiment trains
an Inception model on CIFAR-100 and a ResNet50 model
on ImageNet, using the same architectures as Feldman &
Zhang (2020). For each dataset, we compute the memoriza-
tion proxies and measure their cosine similarity with the
memorization scores publicly made available by Feldman
& Zhang (2020). This setup mirrors the approach used in
Garg et al. (2024). Additionally, to capture another aspect of
memorization, we plot the L2 adversarial distance against
both the memorization score and CSL for the CIFAR-100
dataset. Please see Appendix B.1 for more setup details.

Results. The results in Table 1 compare the cosine similarity
between the proxies and two sets of examples: all exam-

ples and the Top-K memorized examples. “Top 5K” refers
to the 5,000 most memorized examples, identified using
Feldman & Zhang (2020), for which the cosine similarity
is reported. For ImageNet, CSL proves to be the superior
proxy. On top 5k of CIFAR-100, loss sensitivity has a slight
edge over CSL. However, across all examples, CSL signif-
icantly outperforms other methods. Figure 9 plots the L2

adversarial distance against both the memorization score
and CSL for the CIFAR-100 dataset. Both exhibit similar
trends: as memorization and CSL decrease, larger adversar-
ial perturbations (i.e., greater distances) are required to flip
the network’s prediction.

Takeaways. CSL serves as an effective proxy for memoriza-
tion, as demonstrated on both the CIFAR-100 and ImageNet
datasets. Results across architectures (see Appendix B.2)
confirm that these findings are consistent across architec-
tures. CSL is computationally efficient, it is approximately
14× faster than curvature and 4 orders of magnitude faster
than stability-based memorization. A breakdown of com-
pute costs is provided in Appendix B.3. Additionally, CSL
also captures the bimodal property (Lukasik et al., 2023) of
memorization, as shown in Figures 12 and 13.

7. Theory to Practice
7.1. Mislabeled Detection

Experiment. In this section, we leverage insights from
our theoretical framework to develop a practical method
for detecting mislabeled examples in training datasets. We

7



Towards Memorization Estimation: Fast, Formal and Free

Figure 9. L2 Adversarial distance vs Mem. score (Feldman &
Zhang, 2020) and CSL on CIFAR-100. Clearly, memorization
and CSL increases for less robust samples (i.e. lower adv distance
∥x−xp∥2). Thus CSL captures similar properties as memorization

Table 1. CSL correlation and similarity with memorization com-
pared to other methods across CIFAR-100 and ImageNet datasets.
CS denotes cosine similarity and PC denotes Pearson correlation.

Dataset Arch. Subset Method CS PC

C
IF

A
R

-1
00

In
ce

pt
io

n

Top 5k

Final Sample Loss 0.33 0.06
Curv 0.87 0.16
Loss Sensitivity 0.97 0.39
Forget Freq. 0.96 0.29
CSL (Ours) 0.93 0.40

All

Final Sample Loss 0.24 0.17
Curv 0.69 0.49
Loss Sensitivity 0.81 0.76
Forget Freq. 0.76 0.59
CSL (Ours) 0.87 0.79

Im
ag

eN
et

R
es

N
et

50

Top 50k

Final Sample Loss 0.78 0.12
Curv 0.84 0.05
Loss Sensitivity 0.79 0.04
Forget Freq. 0.68 0.15
CSL (Ours) 0.94 0.21

All

Final Sample Loss 0.64 0.50
Curv 0.62 0.33
Loss Sensitivity 0.49 0.17
Forget Freq. 0.49 0.04
CSL (Ours) 0.79 0.64

evaluate the effectiveness of our approach by comparing
it to several state-of-the-art methods for label error detec-
tion. The experiments are conducted on CIFAR-10 and
CIFAR-100, where varying levels of symmetric label noise
are introduced. Specifically, labels are randomly flipped to
another class, uniformly across all classes, excluding the
true label. To assess performance, we employ the Area

Figure 10. 32 highest scores for CSL on clean CIFAR-100 reveal
conflicting labels, such as Crab and Spider outlined in red.

Under the Receiver Operating Characteristic (AUROC) met-
ric, which measures the ability of each method to correctly
identify mislabeled examples under different noise condi-
tions. Additional details of the experiments and the baseline
techniques are available in Appendix B.1 and B.5.

Results. The results are presented in Table 2, showcasing
the performance of each method on CIFAR-10 and CIFAR-
100 at symmetric label noise levels of 1%, 2%, 5%, and 10%.
The term Thr. LT (Threshold based Learning Time) refers
to the first epoch at which a sample is correctly classified
(Jiang et al., 2021; Maini et al., 2022), reflecting the epoch
at which the model learns a particular sample.

Takeaways. The proposed CSL proxy consistently out-
performs other methods in detecting mislabeled examples
across various label noise levels ranging from 1% to 10%.

Compute Cost. CSL incurs no additional computational
overhead, unlike Confidence Learning (CL) (Northcutt et al.,
2021), which requires training multiple models (3-folds in
this case), significantly increasing cost. SSFT (Maini et al.,
2022) approximately doubles training cost by training on
two subsets, while input loss curvature demands 14 × more
compute than CSL. Given that CSL and Thr. LT exhibit
comparable computational costs, the superior performance
and efficiency of CSL make it a highly compelling choice.

7.2. Duplicate Detection

Experiment. In this section, we apply the proposed memo-
rization proxy to identify duplicate examples in the dataset.
We conduct two types of analysis: first, a qualitative anal-
ysis of duplicate detection on the unmodified CIFAR-100
dataset; second, a quantitative experiment where we in-
tentionally introduce duplicates (250 duplicates) into the
dataset and use our proxy to identify them. We use a
ResNet18 (He et al., 2016) model for this experiment, and
the performance of our method is evaluated against other

8
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Table 2. Evaluating the performance of mislabeled detection of the proposed framework against existing methods on CIFAR-10 and
CIFAR-100 datasets under various levels of label noise.

Dataset Method 1% Noise 2% Noise 5% Noise 10% Noise

CIFAR-10

Thr. Learning Time (LT) 0.4951 ± 0.0248 0.4954 ± 0.0044 0.4911 ± 0.0071 0.4948 ± 0.0057
In Conf. (Carlini et al., 2019a) 0.8781 ± 0.0177 0.8072 ± 0.0130 0.7254 ± 0.0214 0.6528 ± 0.0042

CL (Northcutt et al., 2021) 0.8651 ± 0.0127 0.8905 ± 0.0115 0.8874 ± 0.0019 0.8551 ± 0.0030
SSFT (Maini et al., 2022) 0.9626 ± 0.0018 0.9551 ± 0.0020 0.9498 ± 0.0042 0.9360 ± 0.0020
Curv. (Garg et al., 2024) 0.9715 ± 0.0045 0.9776 ± 0.0033 0.9800 ± 0.0003 0.9819 ± 0.0006

CSL (Ours) 0.9845 ± 0.0026 0.9864 ± 0.0004 0.9870 ± 0.0003 0.9869 ± 0.0005

CIFAR-100

Thr. Learning Time (LT) 0.5256 ± 0.0012 0.5227 ± 0.0100 0.5161 ± 0.0051 0.5203 ± 0.0029
In Conf. (Carlini et al., 2019a) 0.7258 ± 0.0102 0.7236 ± 0.0047 0.7069 ± 0.0069 0.6884 ± 0.0053

CL (Northcutt et al., 2021) 0.8723 ± 0.0208 0.8838 ± 0.0006 0.8733 ± 0.0010 0.8536 ± 0.0006
SSFT (Maini et al., 2022) 0.8915 ± 0.0045 0.8893 ± 0.0013 0.8784 ± 0.0030 0.8664 ± 0.0024
Curv. (Garg et al., 2024) 0.9856 ± 0.0009 0.9865 ± 0.0011 0.9876 ± 0.0021 0.9892 ± 0.0012

CSL (Ours) 0.9891 ± 0.0003 0.9895 ± 0.0002 0.9895 ± 0.0001 0.9897 ± 0.0001

Table 3. Result of duplicate detection using the proposed methods
and other baselines on CIFAR-10 and CIFAR-100 datasets.

Method CIFAR-10 CIFAR-100

Thr. LT 0.7029 ± 0.0058 0.7419 ± 0.0059
In Conf. 0.9237 ± 0.0114 0.8623 ± 0.0131

CL 0.5533 ± 0.0031 0.5873 ± 0.0090
SSFT 0.8490 ± 0.0034 0.7938 ± 0.0045
Curv. 0.9536 ± 0.0030 0.9639 ± 0.0030

CSL (Ours) 0.9821 ± 0.0006 0.9886 ± 0.0008

techniques using AUROC (see Appendix B.1 for details).

Results. The qualitative analysis results are presented in
Figure 10, which demonstrates the detection of duplicates in
the clean CIFAR-100 dataset. The quantitative experimental
results are provided in Table 3, where we report the AUROC
scores for our method compared to other techniques.

Takeaways. As shown in Figure 10, CSL effectively iden-
tifies the majority of duplicates in the unmodified CIFAR-
100 dataset. This is further validated in Table 3, where
we evaluate the performance of the method after inten-
tionally introducing duplicates. Here, we observe that
CSL consistently achieves the best performance in identify-
ing duplicates across both the CIFAR-10 and CIFAR-100
datasets. To improve reproducibility, we have provided the
code for all the experiments at https://github.com/
DeepakTatachar/CSL-Mem.

8. Conclusion
This paper provides a comprehensive theoretical framework
that connects our memorization proxy, CSL, to learning
time and stability-based memorization. We formalize the
notion of learning time and our results demonstrate that CSL
is not only highly effective in capturing memorization be-
havior but also computationally efficient, being four orders
of magnitude faster than existing stability-based metrics.

We validate our framework through extensive experiments
and show its practical applications in identifying mislabeled
examples, and duplicates in datasets. The proposed proxy
achieves state-of-the-art performance in identifying dupli-
cate and mislabeled examples. By offering efficient tools to
understand memorization, our framework can lead to more
interpretable models across various machine learning tasks.
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Appendix

A. Stochastic Gradient Descent (SGD)
In SGD, model parameters w⃗t at iteration t are updated using the gradient of the loss function computed with a mini-batch
or a single random sample z⃗i. The update rule is

w⃗t+1 = w⃗t − ηt∇̃wtℓ(w⃗t, z⃗i) (15)

Here, ηt is the learning rate, and ∇̃wt
ℓ(w⃗t, z⃗i) is an unbiased stochastic gradient estimator.

Bounded Gradient Variance. Let ∇wt
ℓ(wt) denote the true gradient, and let ∇̃wt

ℓ(wt) be an unbiased estimator of this
gradient. The estimator is said to have variance bounded by Γ2

v if

E
[
∥∇̃wt

ℓ(w⃗t)−∇wt
ℓ(w⃗t)∥22

]
≤ Γ2

v (16)

B. Experimental Details
B.1. Setup

Datasets. We use CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009) and ImageNet (Russakovsky et al., 2015) datasets. For
experiments that use memorization scores, we use the pre-computed stability-based memorization scores from Feldman &
Zhang (2020) which have been made publicly available by the authors.

Architectures. For all of experiments we train ResNet18 (He et al., 2016) models from scratch, expect for the cross
architecture results in Table 4, where we train VGG16, MobileNetV2 and Inception (small inception as used by Feldman &
Zhang (2020)). All the architectures used the same training recipe as described below.

Training. When training models on CIFAR-10 and CIFAR-100 the initial learning rate was set to 0.1 and trained for 200
epochs. The learning rate is decreased by 10 at epochs 120 and 180. When training on CIFAR-10 and CIFAR-100 datasets
the batch size is set to 128. We use stochastic gradient descent for training with momentum set to 0.9 and weight decay set
to 1e-4. For both CIFAR-10 and CIFAR-100 datasets, we used the following sequence of data augmentations for training:
resize (32× 32), random crop, and random horizontal flip, this is followed by normalization. For ImageNet we trained a
ResNet18 for 200 epochs with the same setting except the resize random crop was set to 224× 224.

Testing. During testing no augmentations were used, i.e. we used resize followed by normalization. To improve
reproducibility, we have provided the code in the supplementary material.

B.2. Similarity with Memorization Scores across Architectures

Experiment. In this section, we present the results of measuring the cosine similarity between the proposed memorization
proxy (CSL) and the memorization score from Feldman & Zhang (2020) across different architectures. Specifically, we
tested VGG (Simonyan & Zisserman, 2014), MobileNetV2 (Sandler et al., 2018), and Inception (Szegedy et al., 2016).

Results. The results are shown in Table 4, which reports the cosine similarity between the CSL proxy and the memorization
score for the three architectures on the CIFAR-100 dataset. These models were trained using the methodology described in
Section B.1.

Takeaways. The results indicate that the top 5K i.e., the similarity between the metrics and the top 5000 most memorized
samples according to Feldman & Zhang (2020) is highly consistent across architectures, and the overall match across the
dataset is also quite high for CSL. However, two key observations are worth noting: (1) VGG16 shows a lower correlation
on the ‘All’ category, and (2) Results on CSL are similar to the findings for ResNet18 in the main paper.

B.3. Compute Cost Analysis

In this section, we provide a detailed analysis of the computational cost of the proposed proxies in comparison to other
techniques. We assume the cost of one forward pass through a neural network is F , and consequently, the cost of a
backpropagation step is 2F , making the total cost for one forward-backward pass 3F . Using previously defined notation, let
m represent the dataset size and T the total number of training epochs.
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Architecture Samples CSL

VGG16
Top 5K 1.00

All 0.61

MobileNetV2
Top 5K 0.95

All 0.73

Inception
Top 5K 0.97

All 0.70

Table 4. Cosine similarity between stability-based memorization score with CSL for different architectures on CIFAR-100 for Top 5K and
all samples.

Stability-Based Memorization. Feldman & Zhang (2020) trained between 2,000 and 10,000 models to compute the
stability-based memorization score. Thus, the total computational cost is 10, 000 · 3F · T ·m.

Cumulative Sample Curvature. Garg et al. (2024) trained a single model and proposed using sample curvature averaged
over training to estimate memorization. Hutchinson’s trace estimator was employed to calculate curvature, which requires 2
forward passes and 1 backward pass, repeated n times over the entire dataset for each epoch. While their results show that n
ranges from 2 to 10, we use n = 2 to provide the computational advantage in their favor, even though n = 10 produces
better results. Thus, the total cost consists of the training and curvature computation.

Cost = 3F · T ·m+ 4F · T ·m · n
= 3F · T ·m+ 4F · T ·m · 2
= 11F · T ·m

If n = 10 is used for optimal results, as reported in Tables 2 and 3, the total computational cost becomes 43F · T ·m.

CSL(Ours). CSL can be obtained without additional computational cost during training. Therefore, the only cost is that of
the training process, which is 3F · T ·m. The computational cost comparison is summarized in Table 5.

Method Absolute Cost Relative Cost
Stability-Based (Feldman & Zhang, 2020) 6000FTm− 30, 000FTm 2, 000×− 30, 000 ×

Cumulative Sample Curvature (Garg et al., 2024) 11FTm− 43FTm 3.6×− 14.33 ×
CSL (Ours) 3FTm 1 ×

Table 5. Summary of the compute cost of the proposed metric compared to existing methods.

B.4. Additional Details on Validating Theory Experiments

For the experiments described in Section 6.1, we provide additional details regarding the methodology. To generate the
graphs in Figures 3, 4 and 5 we collected all relevant proxies for each sample in the dataset and grouped them into bins based
on the x-axis metric (learning time or memorization score) in each figure. For instance, in Figure 4 samples were binned
based on their learning time. Similarly, in Figure 5, we binned samples based on their memorization scores as defined in
(Feldman & Zhang, 2020) and in Figure 3, the samples were again binned by learning time.

Since the theoretical framework is developed in terms of expected learning time, memorization, and the CSL paradigm, the
standard deviation is not directly relevant to the interpretation of the results. Nevertheless, for the sake of completeness,
we have visualized the standard deviation for each bin in Figure 11, even though it does not significantly contribute to the
theoretical insights derived from expected scores.

Learning Time Threshold τ : For this and all experiments where learning time is used, we follow the learning time
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Figure 11. Validating theory results, linking learning time, memorization and CSL with error bars plotted as shaded area for CIFAR-100
and ImageNet.

definition (Eq. 7) and set the threshold τ to the average of the per iteration sample gradient, i.e. for example for ImageNet

τImageNet = ET∈{0,···Tmax},xi∈ImageNet

[
1

T

T−1∑
t=0

∥∇xiℓ(w⃗t)∥22

]
(17)

Figure 12. Histogram of learning times on CIFAR-100 dataset.
Learning time captures the bimodal property of memorization
score.

Figure 13. Histogram of learning times on the ImageNet dataset.
Learning time captures the bimodal property of memorization
score.

B.5. Additional Details on Mislabelled Detection Experiments

In this section, we provide additional details regarding the setup for mislabel detection experiments. For all experiments, we
trained the models using the training procedure outlined in Appendix B.1.

In Confidence. In-confidence (Carlini et al., 2019a) is calculated as 1 - “the predicted probability” of the true class.

Confident Learning. For the implementation of confident learning (Northcutt et al., 2021), we utilized the cleanlab library,
which is available at https://github.com/cleanlab/cleanlab. We applied 3-fold cross-validation to compute
out-of-sample probability scores for the samples. These probability scores were then input into the cleanlab implementation
to generate the results reported.
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Figure 14. CSL Histogram on CIFAR100, captures long tail. Figure 15. CSL Histogram on ImageNet, captures long tail.

Figure 16. Lowest CSL Scores on CIFAR-100 captures easy-to-
learn, Typical (likely generalized) examples. Visualized for the
first 10 classes.

Figure 17. Highest CSL Scores on CIFAR-100 capture hard-to-
learn, Atypical (likely memorized) examples. Visualized for the
first 10 classes.

SSFT. Second Split Forgetting Time (SSFT) (Maini et al., 2022) is measured using two subsets, Set 1 and Set 2. A model is
first trained on Set 1 and subsequently fine-tuned on Set 2, during which we measure how quickly a sample from Set 1 is
misclassified or “forgotten”. This process is repeated for both subsets to cover the entire dataset. Specifically, after training
on Set 1 and measuring the forgetting time for samples in Set 1 during fine-tuning on Set 2, the model is then trained on Set
2, and the forgetting time for Set 2 is measured during fine-tuning on Set 1.

Thr. LT. (Threshold based Learning Time). Consider a sample’s correct predictions during training over 12 epochs in this
case. Let the correct predictions be [0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1]. Then Thr. LT would be calculated as epoch 3 (beginning
at 0). This is normalized so that it’s between 0 - 1.

Curvature. To calculate the curvature of a sample, we used the technique described in Garg et al. (2024). The hyperparame-
ters were set to n = 10 and h = 0.001, following the same configuration as outlined by Garg et al. (2024).
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Figure 18. Lowest CSL Scores on ImageNet captures easy-to-
learn, Typical (likely generalized) examples. Visualized for the
first 10 classes.

Figure 19. Highest CSL Scores on ImageNet capture hard-to-learn,
Atypical (likely memorized) examples. Visualized for the first 10
classes.

C. Proofs
C.1. Proof of Lemma 5.1

Lemma 5.1 For any neural network and a given mini-batch of inputs Zb = (Xb, Yb), the Frobenius norm of the gradient
of the loss ℓ with respect to the input is bounded by the norm of the gradient with respect to the network’s weights w⃗t.
Specifically:

∥∇Zb
ℓ(w⃗t, Zb)∥F ≤ kg∥∇wtℓ(w⃗t, Zb)∥F (18)

where kg =
∥W (1)

t ∥F ∥(X⊤
b )+∥F

sP
and sP denotes the smallest singular value of P = X⊤

b (X⊤
b )+, where + denotes

pseudo-inverse.

Proof

Let the row vector w⃗t = [w⃗
(1)
t , w⃗

(2)
t , · · · , w⃗(q)

t ] denote the weights of a q-layered neural network at iteration t, where

w⃗
(k)
t =

[
w

(k)
t,1,1 w

(k)
t,1,2 · · · w

(k)
t,dk,dk−1

]
∈ Rdk·dk−1 (19)

is a flattened row vector representing the weights of the kth layer at iteration t, with input dimension dk−1 and output
dimension dk. This vector can be reshaped into a matrix W

(k)
t ∈ Rdk×dk−1 by rearranging its elements into the specified

dimensions dk × dk−1 while maintaining the order of elements. The reshaping operation is formally defined as:

W
(k)
t = Reshape(w⃗(k)

t ) =


w

(k)
t,1,1 w

(k)
t,1,2 · · · w

(k)
t,1,dk−1

w
(k)
t,2,1 w

(k)
t,2,2 · · · w

(k)
t,2,dk−1

...
...

. . .
...

w
(k)
t,dk,1

w
(k)
t,dk,2

· · · w
(k)
t,dk,dk−1

 (20)

For our initial analysis, we consider a two-layer neural network given by:

IR(1) = σ(W
(1)
t Xb) (21)

Ŷ = W
(2)
t IR(1), (22)

where W
(1)
t ∈ Rd1×d0 and W

(2)
t ∈ Rd2×d1 are matrices constructed from w⃗

(1)
t and w⃗

(2)
t , respectively. Here, Xb ∈ Rd0×b

represents the input batch, IR(1) ∈ Rd1×b denotes the intermediate representation after applying the activation function
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σ(·), and Ŷ ∈ Rd2×m represents the predicted output. In our case d0 = n and d2 = 1. Let the labels for the batch Xb be
represented as Yb = [y1, · · · yb], the we can use chain rule to write the gradients with respect to input and weight parameters
as below

∇Xb
ℓ(w⃗t, Zb) = ∇Ŷ ℓ(w⃗t, Zb) ∇IR(1) Ŷ ∇Xb

IR(1)

= (W
(1)
t )T (W

(2)
t )T∇Ŷ ℓ(w⃗t, Zb)⊙ σ′(IR(1))

= (W
(1)
t )T (W

(2)
t )T∇Ŷ ℓ(w⃗t, Zb)⊙ σ′(W

(1)
t Xb) (23)

Similarly for the gradient w.r.t to W
(1)
t we have

∇
W

(1)
t

ℓ(w⃗t, Zb) = ∇Ŷ ℓ(w⃗t, Zb) ∇IR(1) Ŷ ∇
W

(1)
t

IR(1)

= (W
(2)
t )T∇Ŷ ℓ(w⃗t, Zb)⊙ σ′(IR(1)) XT

b

= (W
(2)
t )T∇Ŷ ℓ(w⃗t, Zb)⊙ σ′(W

(1)
t Xb) X

T
b (24)

From Equations 23 and 24 we have:

(W
(1)
t )T∇

W
(1)
t

ℓ(w⃗t, Zb) = ∇Xb
ℓ(w⃗t, Zb)X

T
b (25)

(W
(1)
t )T∇

W
(1)
t

ℓ(w⃗t, Zb)(X
T
b )

+ = ∇Xb
ℓ(w⃗t, Zb)X

T
b (X

T
b )

+

∥(W (1)
t )T∇

W
(1)
t

ℓ(w⃗t, Zb)(X
T
b )

+∥F = ∥∇Xb
ℓ(w⃗t, Zb)X

T
b (X

T
b )

+∥F (26)

Now note that Equations 25 and 26 hold for any deep neural network. Next if we let sP denote the smallest singular value
of P = XT

b (X
T
b )

+

∥(W (1)
t )T ∥F ∥∇

W
(1)
t

ℓ(w⃗t, Zb)∥F ∥(XT
b )

+∥F ≥ ∥∇Xb
ℓ(w⃗t, Zb)X

T
b (X

T
b )

+∥F

∥(W (1)
t )T ∥F ∥∇

W
(1)
t

ℓ(w⃗t, Zb)∥F ∥(XT
b )

+∥F ≥ ∥∇Xb
ℓ(w⃗t, Zb)X

T
b (X

T
b )

+∥F ≥ sP ∥∇Xb
ℓ(w⃗t, Zb)∥F

Thus we have

∥∇Xb
ℓ(w⃗t, Zb)∥F ≤

∥(W (1)
t )T ∥F ∥(XT

b )
+∥F

sP
∥∇

W
(1)
t

ℓ(w⃗t, Zb)∥F

∥∇Xb
ℓ(w⃗t, Zb)∥F ≤ kg∥∇W

(1)
t

ℓ(w⃗t, Zb)∥F

Now observe that ∥∇
W

(1)
t

ℓ(w⃗t, Zb)∥F ≤ ∥∇wtℓ(w⃗t, Zb)∥F where Wt is the weights of the entire network (see proof in
section C.1.1). Intuitively, the gradient with respect to a single layer is just a portion of the overall gradient vector, and
removing coordinates (the other layers’ gradients) cannot increase the Frobenius (or ℓ2) norm.

∥∇Xb
ℓ(w⃗t, Zb)∥F ≤

∥(W (1)
t )T )∥F ∥(XT

b )
+∥F

sP
∥∇Wt

ℓ(w⃗t, Zb)∥F

∥∇Xb
ℓ(w⃗t, Zb)∥F ≤ kg∥∇wt

ℓ(w⃗t, Zb)∥F ■

C.1.1. WEIGHT NORM RELATION PROOF

We aim to prove that

∥∇
W

(1)
t

ℓ(w⃗t, Zb)∥F ≤ ∥∇wtℓ(w⃗t, Zb)∥F , (27)

We consider a p-layer neural network whose entire weight vector at iteration t is

wt =
[
w⃗

(1)
t , w⃗

(2)
t , . . . , w⃗

(p)
t

]
,

where w⃗
(k)
t is the flattened vector of parameters in the kth layer.
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The gradient of the loss ∇wt
ℓ(w⃗t, Zb) can be viewed as the concatenation of the gradients with respect to each layer:

∇wt
ℓ(w⃗t, Zb) =


∇

w
(1)
t

ℓ

∇
w

(2)
t

ℓ

...
∇

w
(p)
t

ℓ

 .

In particular, ∇
W

(1)
t

ℓ is just the top block (corresponding to the first layer) of the entire gradient vector.

Let us denote

g(1) := ∇
w

(1)
t

ℓ(w⃗t, Zb), g(2) := ∇
w

(2)
t

ℓ(w⃗t, Zb), . . . , g(p) := ∇
w

(p)
t

ℓ(w⃗t, Zb).

Then the full gradient can be written as

G := ∇wtℓ(w⃗t, Zb) =


g(1)

g(2)

...
g(p)


By the definition of the Frobenius norm (which coincides with the Euclidean ℓ2 norm on the flattened vector), we have

∥G∥2F =
∥∥g(1)∥∥2

F
+
∥∥g(2)∥∥2

F
+ · · ·+

∥∥g(p)∥∥2
F

≥
∥∥g(1)∥∥2

F
. (28)

Taking the square root on both sides preserves the inequality:

∥G∥F =
√
∥g(1)∥2F + · · ·+ ∥g(p)∥2F ≥

√
∥g(1)∥2F = ∥g(1)∥F . (29)

Since g(1) = ∇
W

(1)
t

ℓ(w⃗t, Zb) and G = ∇wt
ℓ(w⃗t, Zb), we obtain

∥∇
W

(1)
t

ℓ(w⃗t, Zb)∥F ≤ ∥∇wtℓ(w⃗t, Zb)∥F ■ (30)

Intuitively, the gradient with respect to a single layer is just a portion of the overall gradient vector, and removing coordinates
(the other layers’ gradients) cannot increase the Frobenius (or ℓ2) norm.

D. Proofs
D.1. Proof of Theorem 5.2

Proof

Assumptions:

• Assume that the loss function ℓ is ρ-Lipschitz.

• Assume that the gradient estimator ∇̃wℓ is unbiased i.e., Et[∇̃wℓ(w⃗t)] = ∇wℓ(w⃗t)

• Assume bounded gradient variance E
[
∥∇̃wtℓ(w⃗t)−∇wtℓ(w⃗t)∥22

]
≤ Γ2

v .

• Assume Et [⟨∇wtℓ(w⃗t), δt⟩] = 0
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Proof

Let w⃗t denote the vector of the weight parameters at the tth iteration. For simplicity, we slightly abuse the notation by using
∇w = ∇w⃗t

throughout the paper for ease of reference. Using the ρ-Lipschitz assumption on the loss, for any vectors w⃗t and
w⃗t+1, the function ℓ satisfies the quadratic upper bound:

ℓ(w⃗t+1) ≤ ℓ(w⃗t) + ⟨∇wℓ(w⃗t), w⃗t+1 − w⃗t⟩+
ρ

2
∥w⃗t − w⃗t+1∥22 (31)

We know the SGD update equation is

w⃗t+1 = w⃗t − ηt∇̃wt
ℓ(w⃗t) (32)

Using the SGD update in Eq. 31 we get

ℓ(w⃗t+1) ≤ ℓ(w⃗t)− ⟨∇wℓ(w⃗t), ηt∇̃wtℓ(w⃗t)⟩+
ρη2t
2
∥∇̃wtℓ(w⃗t)∥22 (33)

ℓ(w⃗t+1) ≤ ℓ(w⃗t)− ηt⟨∇wℓ(w⃗t), ∇̃wt
ℓ(w⃗t)⟩+

ρη2t
2
∥∇̃wt

ℓ(w⃗t)∥22 (34)

Following the trick from the SGD convergence proof by (Ghadimi & Lan, 2013) (for randomized stochastic gradient
method), we have δk = ∇̃wℓ(w⃗t)−∇wℓ(w⃗t)

ℓ(w⃗t+1) ≤ ℓ(w⃗t)− ηt⟨∇wℓ(w⃗t),∇wtℓ(w⃗t)⟩ − ηt⟨∇wℓ(w⃗t), δt⟩+
ρη2t
2
∥∇̃wtℓ(w⃗t)∥22 (35)

ℓ(w⃗t+1) ≤ ℓ(w⃗t)− ηt⟨∇wℓ(w⃗t),∇wt
ℓ(w⃗t)⟩ − ηt⟨∇wℓ(w⃗t), δt⟩+

ρη2t
2
∥∇̃wt

ℓ(w⃗t)∥22 (36)

Taking conditional expectation at timestep t we get

Et [ℓ(w⃗t+1)] ≤ ℓ(w⃗t)− ηt∥∇wt
ℓ(w⃗t)∥22 − 0 +

ρη2t
2

Et

[
∥∇̃wt

ℓ(w⃗t)∥22
]

(37)

Et [ℓ(w⃗t+1)] ≤ ℓ(w⃗t)− ηt∥∇wtℓ(w⃗t)∥22 − 0 +
ρη2t
2

Et

[
∥∇wtℓ(w⃗t)∥22 + 2⟨∇wtℓ(w⃗t), δt⟩+ ∥δt∥22

]
(38)

Et [ℓ(w⃗t+1)] ≤ ℓ(w⃗t)−

(
ηt −

ρη2t
2

)
∥∇wt

ℓ(w⃗t)∥22 +
ρη2t
2

Et

[
2⟨∇wt

ℓ(w⃗t), δt⟩+ ∥δt∥22
]

(39)

Using the bounded variance assumption and Et [⟨∇wt
ℓ(w⃗t), δt⟩] = 0, we have

Et [ℓ(w⃗t+1)] ≤ Et[ℓ(w⃗t)]−

(
ηt −

ρη2t
2

)
Et

[
∥∇wt

ℓ(w⃗t)∥22
]
+

ρη2tΓ
2
v

2
(40)

Rearranging and telescoping we get(
ηt −

ρη2t
2

)
Et

[
∥∇wt

ℓ(w⃗t)∥22
]
≤ Et[ℓ(w⃗t)]− Et [ℓ(w⃗t+1)] +

ρη2tΓ
2
v

2
(41)

T−1∑
t=0

(
ηt −

ρη2t
2

)
Et

[
∥∇wt

ℓ(w⃗t)∥22
]
≤ Et [ℓ(w⃗0)− ℓ(w⃗T )] +

ρΓ2
v

2

T−1∑
t=0

η2t (42)

Let’s divide each side by
T−1∑
t=0

(
ηt −

ρη2t
2

)

20



Towards Memorization Estimation: Fast, Formal and Free

Now consider: ∑T−1
t=0

(
ηt −

ρη2t
2

)
Et

[
∥∇wtℓ(w⃗t)∥22

]
∑T−1

t=0

(
ηt −

ρη2t
2

)
This is nothing but a weighted sum i.e. expectation, since we hold the choice of the weights, we can chose them so that it is
uniformly randomly distributed. Thus we can write the following below where R is such a variable.

ER

[
∥∇wℓ(w⃗R)∥22

]
≤

1∑T−1
t=0

(
ηt −

ρη2t
2

)Et [ℓ(w⃗0)− ℓ(w⃗T )]

+
ρΓ2

v

2
·

∑T−1
t=0 η2t∑T−1

t=0

(
ηt −

ρη2t
2

) (43)

The above the is standard convergence result for SGD from Ghadimi & Lan (2013). Let us now consider Eq. 41.(
ηt −

ρη2t
2

)
Et

[
∥∇wt

ℓ(w⃗t)∥22
]
≤ Et[ℓ(w⃗t)]− Et [ℓ(w⃗t+1)] +

ρη2tΓ
2
v

2
(44)

From Lemma 5.1 we know the input and weight gradient are related by κg , this varies as a function of w⃗t. But there exists a
constant κtm

g which satisfies Lemma 5.1 for all t. Trivially, κtm
g = maxt κ

t
g, since κt

g > 0. Let κm = maxt(κ
t
g)

2. Now
multiply both sides by κm, we get(

ηt −
ρη2t
2

)
Et

[
∥∇xiℓ(w⃗t)∥22

]
≤ κm

(
Et[ℓ(w⃗t)]− Et [ℓ(w⃗t+1)]

)
+

(κt
gηt)

2ρΓ2
v

2
(45)

Summing over t = 0 to t = T − 1 we get

T−1∑
t=0

(
ηt −

ρη2t
2

)
Et

[
∥∇xi

ℓ(w⃗t)∥22
]
≤ κm

T−1∑
t=0

(
Et[ℓ(w⃗t)]− Et [ℓ(w⃗t+1)]

)
+

ρΓ2
v

2

T−1∑
t=0

(κt
gηt)

2 (46)

T−1∑
t=0

(
ηt −

ρη2t
2

)
Et

[
∥∇xiℓ(w⃗t)∥22

]
≤ κm

(
Et[ℓ(w⃗0)]− Et [ℓ(w⃗T )] +

ρΓ2
v

2

T−1∑
t=0

(κt
gηt)

2 (47)

Let us divide on each by
∑T−1

t=0

(
ηt −

ρη2t
2

)

∑T−1
t=0

(
ηt −

ρη2t
2

)
Et

[
∥∇xi

ℓ(w⃗t)∥22
]

∑T−1
t=0

(
ηt −

ρη2t
2

) ≤
κm∑T−1

t=0

(
ηt −

ρη2t
2

)(Et[ℓ(w⃗0)]− Et [ℓ(w⃗T )] +

(
ρΓ2

v

2

) ∑T−1
t=0 (κt

gηt)
2

∑T−1
t=0

(
ηt −

ρη2t
2

)
(48)

Using the weighted sum argument, we can write this as follows

ER[∥∇xi
ℓ(w⃗R)∥22] ≤

κm∑T−1
t=0

(
ηt −

ρη2t
2

)(Et[ℓ(w⃗0)]− Et [ℓ(w⃗T )] +

(
ρΓ2

v

2

) ∑T−1
t=0 (κt

gηt)
2

∑T−1
t=0

(
ηt −

ρη2t
2

) (49)

21



Towards Memorization Estimation: Fast, Formal and Free

Now let ηt =
1

√
T

, consider the first term on the right hand side

κm∑T−1
t=0

(
ηt −

ρη2t
2

)(Et[ℓ(w⃗0)]− Et [ℓ(w⃗T )]
)
= O

(
1

T/
√
T

)
= O

(
1

√
T

)
(50)

Let us now consider the second term(
ρΓ2

v

2

) ∑T−1
t=0 (κt

gηt)
2

∑T−1
t=0

(
ηt −

ρη2t
2

) = O

(
T
T
T√
T

)
= O

(
1

√
T

)
(51)

Thus we get the convergence result

ER [∥∇xiℓ(w⃗R)]∥22 = O

(
1

√
T

)
■ (52)

where R is the result iterate and T is an iterate greater than R. Additionally, see Corollary 2.2 from Ghadimi & Lan (2013)

where ηt = min

(
1

ρ
,

D̃

Γv

√
T

)
for some D̃ > 0, and taking the tower expectation over the iterate t (see Ghadimi & Lan

(2013) for more details) we get the above convergence result.

D.2. Learning Time and Memorization

Theorem 5.3 (Learning Time bounds Memorization) Under the assumptions of SGD convergence and L-bounded loss, there
exists a κT > 0 such that the expected learning time for a sample z⃗i bounds expected memorization score as follows.

Ezi

[
mem(z⃗i)

]
≤ κT Ezi,p

[
Tzi

]
(53)

Proof of Theorem 5.3

Assumptions:

• Assume that the loss function ℓ is ρ-Lipschitz.

• Assume that the gradient estimator ∇̃wℓ is unbiased i.e., Et[∇̃wℓ(w⃗t)] = ∇wℓ(w⃗t)

• Assume bounded gradient variance E
[
∥∇̃wt

ℓ(w⃗t)−∇wt
ℓ(w⃗t)∥22

]
≤ Γ2

v .

• Assume loss is bounded 0 ≤ ℓ ≤ L

• Assume β-stability as stated in Assumption 4.

Proof

Consider Equation 48:

ER [∥∇xiℓ(w⃗R)] ≤
κm∑T−1

t=0

(
ηt −

ρη2t
2

)(Et[ℓ(w⃗0)]− Et [ℓ(w⃗T )] +

(
ρΓ2

v

2

) ∑T−1
t=0 (κt

gηt)
2

∑T−1
t=0

(
ηt −

ρη2t
2

) (54)

Let

η = ηt −
ρη2t
2

(55)

ηs =

∑T−1
t=0 (ηt)

2

∑T−1
t=0

(
ηt −

ρη2t
2

) (56)
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Using the above we have, ηs is independent of T and for the worst case bound we can set η = mint

(
ηt −

ρη2t
2

)
. Thus we

can write the following

ER

[
∥∇xiℓ(w⃗R)∥22

]
≤

κm

Tη

(
Et [ℓ(w⃗0)− ℓ(w⃗T )]

)
+

κmηsρΓ
2

2
(57)

≤
κm

Tη

(
Et [ℓ(w⃗0)− ℓ(w⃗∗)]

)
+

κmηsρΓ
2

2
(58)

where w⃗∗ is a solution that is as good or better than a solution at iteration Tmax over the randomness of the algorithm.
Formally it can be defined as below

Definition D.1 (Optimal weight w⃗∗). Let p ∼ P represent the randomness of the training algorithm

p 7−→ w⃗Tmax
(p)

denote the mapping that, returns the weight vector w⃗Tmax(p) produced by a randomized learning algorithm at iteration Tmax.

Define the optimal seed

p∗ ∈ argmin
p

ℓ
(
w⃗Tmax

(p)
)
,

where ℓ(w⃗) is the loss function under consideration. Finally, let

w⃗∗ := w⃗Tmax

(
p∗
)
.

We call w∗ the optimal weight at time Tmax: it is the weight vector (among all realizations of the randomness) that achieves
the minimal loss ℓ(·) at iteration Tmax.

We can set τ to this worst case upper bound, thus we get

τ =
κm

ηTzi
Et

[
ℓ(w⃗0)− ℓ(w⃗∗)

]
+

κmηsρΓ
2
v

2
(59)

Rearranging:

Tzi

[
τη

κm
− η ηsρΓ

2
v

2

]
= Et

[
ℓ(w⃗0)− ℓ(w⃗∗)

]
(60)

= Et,zi

[
ℓ(w⃗0, z⃗i)− ℓ(w⃗∗, z⃗i)

]
(61)

= Et,zi

[
ℓ(w⃗0, z⃗i)− ℓ(w⃗∗, z⃗i)

]
± Et,zi

[
ℓ\zi(w⃗∗, z⃗i)

]
(62)

= Et,zi

[
ℓ\zi(w⃗∗, z⃗i)− ℓ(w⃗∗, z⃗i)

]
+ Et,zi

[
ℓ(w⃗0, z⃗i)− ℓ\zi(w⃗∗, z⃗i)

]
(63)

Taking expectation over the randomness of the algorithm p we get

Ep[Tzi ]

[
τη

κm
− η ηsρΓ

2
v

2

]
= Et,p,zi

[
ℓ\zi(w⃗∗, z⃗i)− ℓ(w⃗∗, z⃗i)

]
+ Et,zi,p

[
ℓ(w⃗0, z⃗i)− ℓ\zi(w⃗∗, z⃗i)

]
(64)

= Et,zi

[
Lmem(z⃗i)

]
+ Et,zi,p

[
ℓ(w⃗0, z⃗i)− ℓ\zi(w⃗∗, z⃗i)

]
(65)

Taking expectation over zi:

Ep,zi [Tzi ]

[
τη

κm
− η ηsρΓ

2
v

2

]
= Et,zi

[
Lmem(z⃗i)

]
+ Et,zi,p

[
ℓ(w⃗0, z⃗i)− ℓ\zi(w⃗∗, z⃗i)

]
Using Stability (Eq. 4) we have

Ep,zi [Tzi ]

[
τη

κm
− η ηsρΓ

2
v

2

]
≥ Ezi

[
Lmem(z⃗i)

]
+ Ezi,p

[
ℓ(w⃗0, z⃗i)− ℓ(w⃗∗, z⃗i)

]
− β
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Since Ep,zi

[
ℓ(w⃗0, z⃗i)− ℓ(w⃗∗, z⃗i)

]
≥ 0:

Ep,zi [Tzi ]

[
τη

κm
− η ηsρΓ

2
v

2

]
≥ Ezi

[
Lmem(z⃗i)

]
− β

Let:

κT =
τη

κmL
− η ηsρΓ

2
v

2L

Since

Tzi

[
τη

κmL
− η ηsρΓ

2
v

2L

]
=

1

L
Et

[
ℓ(w⃗0)− ℓ(w⃗∗)

]
≥ 0[

τη

κmL
− η ηsρΓ

2
v

2L

]
≥ 0, Since, Tzi ≥ 1

Finally we have:

Ezi [mem(z⃗i)] ≤ κT Ep,zi [Tzi ] +
β

L
■

D.2.1. PROOF OF THEOREM 5.3 FOR CROSS ENTROPY LOSS

Consider Eq. 64, we have

Ep[Tzi ]

[
τη

κm
− η ηsρΓ

2
v

2

]
= Et,p,zi

[
ℓ\zi(w⃗∗, z⃗i)− ℓ(w⃗∗, z⃗i)

]
+ Et,zi,p

[
ℓ(w⃗0, z⃗i)− ℓ\zi(w⃗∗, z⃗i)

]
Using the result A.4 from Ravikumar et al. (2024a) which states for cross-entropy loss we have the following result:

Ep

[
ℓ\zi(w⃗∗, z⃗i)− ℓ(w⃗∗, z⃗i)

]
≥ mem(z⃗i) (66)

Taking expectation w.r.t, z⃗i and following the same procedure as the proof above we get: Taking expectation over zi:

Ep,zi [Tzi ]

[
τη

κm
− η ηsρΓ

2
v

2

]
≥ Et,zi

[
mem(z⃗i)

]
+ Et,zi,p

[
ℓ(w⃗0, z⃗i)− ℓ\zi(w⃗∗, z⃗i)

]
Using Stability (Eq. 4) we have

Ep,zi [Tzi ]

[
τη

κm
− η ηsρΓ

2
v

2

]
≥ Ezi

[
mem(z⃗i)

]
+ Ezi,p

[
ℓ(w⃗0, z⃗i)− ℓ(w⃗∗, z⃗i)

]
− β

Since Ep,zi

[
ℓ(w⃗0, z⃗i)− ℓ(w⃗∗, z⃗i)

]
≥ 0:

Ep,zi [Tzi ]

[
τη

κm
− η ηsρΓ

2
v

2

]
≥ Ezi

[
mem(z⃗i)

]
− β

Let:

κTX =
τη

κm
− η ηsρΓ

2
v

2

Since

Tzi

[
τη

κm
− η ηsρΓ

2
v

2

]
= Et

[
ℓ(w⃗0)− ℓ(w⃗∗)

]
≥ 0[

τη

κm
− η ηsρΓ

2
v

2

]
≥ 0, Since, Tzi ≥ 1

Finally we have:

Ezi [mem(z⃗i)] ≤ κTX Ep,zi [Tzi ] + β ■

This is the same result as Theorem 5.3 but with L = 1.
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D.2.2. REMARK ON THE REQUIREMENT FOR β-STABILITY

Consider Eq. 64. We have:

Ep[Tzi ]

[
τη

κm
− η ηsρΓ

2
v

2

]
= Et,p,zi

[
ℓ\zi(w⃗∗, z⃗i)− ℓ(w⃗∗, z⃗i)

]
+ Et,zi,p

[
ℓ(w⃗0, z⃗i)− ℓ\zi(w⃗∗, z⃗i)

]
.

Assuming sufficient generalization, we can reasonably state that:

Et,zi,p

[
ℓ(w⃗0, z⃗i)− ℓ\zi(w⃗∗, z⃗i)

]
≥ 0.

Thus, we can write:

Ep[Tzi ]

[
τη

κm
− η ηsρΓ

2
v

2

]
≥ Et,p,zi

[
ℓ\zi(w⃗∗, z⃗i)− ℓ(w⃗∗, z⃗i)

]
,

Ep[Tzi ]

[
τη

κm
− η ηsρΓ

2
v

2

]
≥ Et,zi

[
mem(z⃗i)

]
Finally, we conclude:

Et,zi

[
mem(z⃗i)

]
≤ κT Ep[Tzi ]

Thus we can drop the requirement for stability.

D.3. CSL and Learning Time

Proof of Theorem 5.4

Assumptions:

• Assume that the loss function ℓ is ρ-Lipschitz.

• Assume that the gradient estimator ∇̃wℓ is unbiased i.e., Et[∇̃wℓ(w⃗t)] = ∇wℓ(w⃗t)

• Assume bounded gradient as stated in Assumption 3.

Proof

We know from Equation 59

τ =
κm

ηTzi
Et

[
ℓ(w⃗0)− ℓ(w⃗Tzi

)
]
+

κmηsρΓ
2
v

2

Rearranging:

Tzi

[
τη

κm
− η ηsρΓ

2
v

2

]
= Et

[
ℓ(w⃗0)− ℓ(w⃗Tzi

)
]

Tzi

[
τη

κm
− η ηsρΓ

2
v

2

]
≤ Tmax

[
τη

κm
− η ηsρΓ

2
v

2

]
≤

Tmax−1∑
t=0

Et

[
ℓ(w⃗t)− ℓ(w⃗t+1)

]
≤ L

≤
Tmax−1∑

t=0

Et

[
ℓ(w⃗t)

]
−

Tmax−1∑
t=0

Et

[
ℓ(w⃗t+1)

]
≤ L

≤
Tmax−1∑

t=0

Et,zi

[
ℓ(w⃗t, z⃗i)

]
−

Tmax−1∑
t=0

Et,zi

[
ℓ(w⃗t+1, z⃗i)

]
≤ L
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Taking expectation over zi we get:

Ezi

[
Tzi

] [ τη
κm

− η ηsρΓ
2
v

2

]
≤ Et,zi

[
Tmax−1∑

t=0

ℓ(w⃗t, z⃗i)

]
− Et,zi

[
Tmax−1∑

t=0

ℓ(w⃗t+1, z⃗i)

]
≤ L

≤ Et,zi [CSL(z⃗i)]− Et,zi

[
Tmax−1∑

t=0

ℓ(w⃗t+1, z⃗i)

]
≤ L

To identify a tight bound that is also more interpretable, we identify ξ as below:

ξ = Et,zi

[
Tmax−1∑

t=0

ℓ(w⃗t+1, z⃗i)

]

Thus ξ can be interpreted as a offset to scale CSL correctly. Putting this together we have

LκT Ezi

[
Tzi

]
≤ Et,zi [CSL(z⃗i)]− ξ ≤ L

κT Ezi

[
Tzi

]
≤ Et,zi [CSL(z⃗i)]− ξ

L
≤ 1 ■ (67)

D.3.1. NOTE ON UNBOUNDED LOSS

Note since the L-bounded loss is only used for the upper bound, this result hold true for cross entropy, but with out the
upper bound, i.e.

κTX Ezi

[
Tzi

]
≤ Et,zi [CSL(z⃗i)]− ξ ■ (68)

D.3.2. ξ - A LOWER BOUND FOR CSL

In this section, we build intuition on ξ. We will see that ξ can be interpreted as a lower bound on CSL, which scales CSL
into the appropriate range to bound learning time and memorization.

Consider ξ as defined by

ξ = Et,zi

[
Tmax−1∑

t=0

ℓ(w⃗t+1, z⃗i)

]

Now assume Ezi [ℓ(w⃗0, z⃗i)] ≥ Ezi [ℓ(w⃗Tmax , z⃗i)]. This assumption, which is empirically justified for most deep neural
networks, states that the loss at the beginning of training is higher than at the end. Under this assumption, we obtain:

ξ = Et,zi

[
Tmax−1∑

t=0

ℓ(w⃗t+1, z⃗i)

]

= Et−1,zi

[
Tmax−1∑

t=1

ℓ(w⃗t+1, z⃗i) + ℓ(w⃗Tmax , z⃗i)

]

≤ Et−1,zi

[
Tmax−1∑

t=1

ℓ(w⃗t+1, z⃗i) + ℓ(w⃗0, z⃗i)

]

≤ Et−1,zi

[
Tmax−1∑

t=0

ℓ(w⃗t+1, z⃗i)

]
ξ ≤ Et−1,zi [CSL(z⃗i)]

Since this holds for any z⃗i ∼ Z, we conclude that ξ is a lower bound on CSL. Moreover, when considering the result for
memorization (see Theorem 5.5), we observe that ξ scales CSL so that it lies in the range ≈ (0, 1) when β ≈ 0.
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D.4. Memorization and Loss

Proof of Theorem 5.5

Assumptions:

• Assume that the loss function ℓ is ρ-Lipschitz.

• Assume that the gradient estimator ∇̃wℓ is unbiased i.e., Et[∇̃wℓ(w⃗t)] = ∇wℓ(w⃗t).

• Assume bounded gradient as stated in Assumption 3.

• Assume loss is bounded 0 ≤ ℓ ≤ L

• Assume β-stability as stated in Assumption 4.

Proof

This proof results from Theorem 5.3 and taking expectation over p (randomness of the algorithm) on Theorem 5.4 we have:

Ezi [mem(z⃗i)] ≤
Ezi,p [CSL(z⃗i)]− ξ + β

L
≤ 1 +

β

L
■ (69)

D.4.1. NOTE ON CROSS ENTROPY LOSS AND NON-TRIVAL BOUND

Here we use the cross entropy results from Theorem 5.3 and 5.4. Specifically, using Equations 67 and 68. We take
expectation over the randomness of the algorithm p on Equation 68 and use this in Eq. 67 to get

Ezi [mem(z⃗i)] ≤ Ezi,p [CSL(z⃗i)] + β − ξ ■ (70)

Non-triviality. Here we would like to emphasize that the CSL bound on memorization is non-trivial. Specifically consider
the result from Appendix D.2.2. Re-stating the result for convenience we get:

Et,zi

[
mem(z⃗i)

]
≤ κT Ep[Tzi ]

This is under the reasonable generalization assumption:

Et,zi,p

[
ℓ(w⃗0, z⃗i)− ℓ\zi(w⃗∗, z⃗i)

]
≥ 0.

Using this result in the proof of Theorem 5.5 we get:

Ezi [mem(z⃗i)] ≤
Ezi,p [CSL(z⃗i)]− ξ

L
≤ 1 ■ (71)

Thus CSL is effectively bounded between the memorization score and the trivial upper bound (i.e. 1), showing the CSL
bound is non-trivial.
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