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Abstract

Deep generative models, particularly diffusion models, have achieved remarkable
success but face significant challenges when trained on real-world, long-tailed
datasets- where few "head" classes dominate and many "tail" classes are underrep-
resented. This paper develops a theoretical framework for long-tailed learning via
diffusion models through the lens of deep mutual learning. We introduce a novel
regularized training objective that combines the standard diffusion loss with a mu-
tual learning term, enabling balanced performance across all class labels, including
the underrepresented tails. Our approach to learn via the proposed regularized
objective is to formulate it as a multi-player game, with Nash equilibrium serv-
ing as the solution concept. We derive a non-asymptotic first-order convergence
result for individual gradient descent algorithm to find the Nash equilibrium. We
show that the Nash gap of the score network obtained from the algorithm is upper
bounded by O( 1√

Ttrain
+ β) where β is the regularizing parameter and Ttrain is

the number of iterations of the training algorithm. Furthermore, we theoretically
establish hyper-parameters for training and sampling algorithm that ensure that we
find conditional score networks (under our model) with a worst case sampling error
O(ϵ+ 1), ∀ϵ > 0 across all class labels. Our results offer insights and guarantees
for training diffusion models on imbalanced, long-tailed data, with implications for
fairness, privacy, and generalization in real-world generative modeling scenarios.

1 Introduction

Successful integration of deep learning models into society requires working with real-world data.
This comes with many challenges: data quality issues such as inaccurate data, data bias, ethical issues
such as breach in privacy, transparency, technical issues such as data integration, generalization,
scalability, etc. Furthermore, real world class-labeled datasets are not uniform, but follow a skewed or
sometimes referred to as "long-tailed" distribution. It is characterized by a "head" classes that occurs
with high probability while the probability of the rest of the classes, often referred to as "tail" classes
fall off very quickly. It is well known that the performance of traditional deep learning ([14, 18]) and
generative models ([30]) suffer significantly when trained on long-tailed distributions.

One might be curious to ask, "Should deep learning or generative models be concerned with class
labels which occur with very low frequency?" The answer is Yes! Even though individually each
class occurs with low frequency, collectively these classes may occur with high probability. Diffusion
models, which are the focus of this work, are no exception to this phenomenon. Diffusion models
are latent variable generative models which learn diffusion process for a given dataset, such that the
process can generate new elements that are distributed similarly as the original dataset (See section
3 for more details). They have become popular techniques in image generation beating traditional
models such as GANs [3, 7, 38], natural language processing [39], time series forecasting [26]
and in fields of applied chemistry [1], biology [9] and medicine [15] to name a few. However, the
study of diffusion models for long-tailed learning is limited. [23] showed that when the traditional
conditional Diffusion Denoising Probabilistic Model (DDPM) is trained on a long-tailed distribution,

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



the conditional DDPM model as shown in [23, Figure 1], "generates head class images with satisfying
performance, whereas conversely, the generated images on tail classes are very likely to show
unrecognizable semantics". Moreover, there might be privacy and ethical concerns if the model
overfits (memorize) to the tail class label data and replicate them during generation.

Motivated by this, we develop a theory of Long-Tailed Learning for diffusion models in a mathe-
matically rigorous manner through the perspective of Deep Mutual Learning. Our main results are:

1. Under a suitable metric (KL- divergence) that captures the distance between the learnt class
distribution and the ground truth distribution, we derive an upper bound on the worst case
distance across all class labels. To do so, we employ Deep Mutual Learning along with the
score based diffusion model objective in literature [29, 32]. We present the formulation as a
game across conditional score networks and propose Nash equilibrium as the appropriate
solution concept.

2. Borrowing ideas from [13] on Deep Mutual Learning, we derive a non-asymptotic first
order convergence result for the individual gradient descent algorithm to find the Nash
Equilibrium of the proposed game. We show the Nash gap of the score network obtained
from the algorithm is upper bounded by O( 1√

Ttrain
+ β) where β is the regularizing

parameter and Ttrain is the number of iterations of the training algorithm. Finally, we
show we can find hyper-parameters for training and sampling such that the score networks
obtained from the algorithm enjoys a worst case error bound of O(ϵ+ 1) for any ϵ > 0 for
any class, tail and otherwise.

2 Related Works

Long-Tailed Learning for Diffusion Models. To tackle the issue with long-tailed distributions,
diverse techniques have been proposed such as re-sampling [27], re-weighting [27], transfer learning
[23], and feature augmentation [10]. The closest work to ours is that of [23] titled "Class- Balancing
Diffusion Models" or CBDM and its followups [33, 35]. The paper proposes a distribution adjustment
regularizer as a solution along with the usual DDPM objective. This represents a modification in the
training phase. Their experiments show that the images generated by CBDM exhibit greater diversity
and quality in both quantitative and qualitative ways when trained on CIFAR100/CIFAR100LT
datasets. As mentioned in [33], "CBDM [23] represents an inaugural inquiry into the performance
of DDPM within the context of long-tailed data scenarios". Motivated by CBDM and contrastive
learning, [33] propose adding a penalty function to demarcate the distribution boundaries of differ-
ent data categories. However, the derivation of the distribution adjustment regularizer in [23, 24,
Proposition 2, Appendix A] relies on strong assumptions. They follow a traditional machine learning
framework that optimizes over a single objective function with a single neural network and give
empirical verification of their method’s performance. On the other hand, we define a game across
conditional score networks and propose the Nash equilibrium of this game as the egalitarian solution
to learn a fair score function for equally good generation over all classes. Furthermore, our framework
and analysis do not rely on the strong assumptions made in [23, 24, Proposition 2, Appendix A].

Deep Mutual Learning. Deep Mutual Learning (DML) [36] is a knowledge distillation process that
allows the transfer of knowledge from a highly powerful model to a smaller faster efficient model.
In DML, an ensemble of students (models) learn collaboratively and teach each other throughout
the training process. DML has shown promise in visual object tracking [37], metric learning [22],
multi-modal recommender systems [16], and classification tasks trained on Long-Tailed distributions
[21]. The theoretical performance guarantees for models trained with DML are scarce. [13] gives a
non-asymptotic first order convergence result for training models for classification task using DML.
Deep Mutual Learning literature proposes various methods for optimizing Deep Mutual Learning
objectives without specifying the solution concept they seek. In contrast, we show that the individual
gradient descent (one method for DML) is seeking a Nash equilibrium of underling multiplayer game.
While this result of ours could be of independent interest, in this work we further leverage this result
to obtain a generalization result for diffusion models for long-tailed generation.

Training and Sampling of Score-based (Conditional) Diffusion Models. The performance of
score-based diffusion models have been rigorously studied in the literature of generative modeling.
[11, 17, 32] provided a full error analysis of training and sampling from a diffusion model. [11, 17]
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parametrize the score network using a random feature model and use gradient flow to train the
model. [11] leverages Neural Tangent Kernels to obtain an approximation and generalization error
for diffusion models. [32] parametrize the score network by a deep neural network and prove
exponential convergence of its gradient descent training dynamic on the empirical loss function. For
conditional diffusion models, [8] provides data- dependent approximation bounds of the conditional
score function by multi-layered neural network and also give an expected sampling error of the
approximated distribution over all class labels. Compared to [8, 32], we consider a finite label class
and make no assumption on how the data is distributed. While our result can readily be extended to
deeper neural network in line with [32], we parametrize the score function using a two-layer ReLU
network (as in [11, 17]) due to the nice properties it induces in the proposed game.

3 Basics of Score-Based Diffusion Generative Models

Notation Let ∥.∥ denote the ℓ2 norm for vectors and matrices, ∥.∥F be the Frobenius norm. For
the discrete time points, we use ti to denote time point for forward dynamics and t←i for backward
dynamics. σ(x) where x ∈ Rd refers to the ReLU activation function applied element-wise while σ̄t
refers to the variance of the forward dynamics. τ ∈ [Ttrain] represents the iteration of the training
algorithm, which in our case is gradient descent. θy is the training parameter for score for label y ∈ Y
while θ−y is the training parameter for score for all label y′ ∈ Y − {y}. Given two distributions p
and q, the KL divergence from q to p is defined as DKL(p||q) =

∫
Rd p(x) log

p(x)
q(x)dx.

In subsequent sections, we introduce the basics of diffusion model training and generation. Denote
the initial conditional distribution as P0(X0 = x|y), ∀x ∈ A ⊂ Rd,A is a compact set of all possible
features and y ∈ Y where Y is the finite set of class labels.

3.1 Forward and Backward Processes

The use of diffusion model in generative modeling involves two processes:

1. Forward Process: The forward process pushes an initial distribution P0(.|y) to Gaussian
by adding noise progressively to X0, and is usually described as an Ornstein-Uhlenbeck
(OU) process,

dXt = −ftXtdt+ gtdWt, with X0 ∼ P0(.|y), ∀y ∈ Y, (1)
where ft, gt are functions of t ∈ [0, T ] and dWt is the incremental Brownian motion or
Wiener process, Xt is a d− dimensional random variable with Xt ∼ Pt(.|y). The choice of
ft, gt results in various diffusion model schemes such as Variance Preserving (VP), Variance
Exploding (VE) SDE (see [29] for more details).

2. Backward Process: To generate a new sample, the forward dynamics can be reversed
conditioned on the final distribution X←T ∼ P0(.|y) to get the backward or reverse diffusion
process defined as:

dX←t =

[
fT−tX

←
t + g2T−t∇x log pT−t(X

←
t |y)

]
dt+ gT−tdW̄t, X

←
0 ∼ PT (.|y), (2)

where X←0 ∼ PT and pt is the density of Pt. Then X←T−t and Xt have the same distribution
with density Pt(.|y), which means that the dynamics will push near-Gaussian distributions
back to the initial distribution P0(.|y), ∀y ∈ Y .

3.2 Training via Denoising Score Matching

From (2), to generate samples conditionally, one needs access to∇x log pT−t(X
←
t |y), the conditional

score function, which is unknown. Let st,θ(x, y) be an estimator of∇x log pt(x|y). To estimate the
conditional score function, a natural loss function to train a model would be the following objective:

Lconti(θ) = Ey[Ly
conti(θ)] := Ey

[
1

2

∫ T

t0

λ(t)Ex(t)

[∥∥∇x(t) log pt(x(t)|y)− st,θ(x(t), y)
∥∥2
2

]]

:=
1

2

∫ T

t0

λ(t)E(x(t),y)

[∥∥∇x(t) log pt(x(t)|y)− st,θ(x(t), y)
∥∥2
2

]
dt.
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Once the conditional score function is learnt, a datum from class label y ∈ Y is sampled using the
reverse diffusion process given below:

dX̃←t =

[
fT−tX̃

←
t + g2T−tst,θ(x(T − t), y)

]
dt+ gT−tdW̄t, with X̃←0 ∼ N (0, I). (3)

To measure how well the learnt score function approximates the ground truth distribution, KL-
divergence is employed as the metric. To assess the goodness of the learnt score function through
the optimization of Ly

conti(θ), we have to relate the KL-divergence between the learnt distribution
and the ground truth to the training objective. Informally, the KL divergence between the learned
distribution and the ground truth distribution is bounded by the score based diffusion model objective
(Lconti(θ)) as (see [28, Theorem 1] or [8, Appendix D] for detailed proof)

Ey

[
DKL(P0(.|y)||P0,θ(.|y))

]
≲ Lconti(θ) (4)

Achieving a bound on the expectation as [8, Theorem 4.1] gives no insights into the worst case
sampling error over all y ∈ Y . In this work, we provide a methodology to achieve an upper bound on
maxy∈Y DKL(P0(.|y)||P0,θ(.|y)), thereby addressing the long-tailed issue in generative modeling.

4 Long-Tailed Learning

4.1 Egalitarian Solution Concept

Previous work in conditional diffusion models [8] have focused on optimizing the following objective

Lconti(θ) = Ey

[
Ly
conti(θ)

]
=

∑
y∈Y

p(y)Ly
conti(θ) (5)

for classifier guided sampling [29] or the unconditional score function along with the conditional
score function from 5 for classifier free guidance. The above objective is sound when the marginal
density of the classes p(y) itself is uniformly distributed. Observe that when optimizing Lconti(θ)
(eq. 5), an optimization algorithm will give more weight towards reducing Ly(θ) for head classes
(classes with high p(y), appearing with higher frequency in the data). Thus, the trained model overfits
the head class, while performing poorly on the tail classes. One way of ensuring that each class label
is equally weighted during the training process is to re-weigh each class objective function by a factor
inversely proportional to the class marginal density p(y). This ensures that both head and tail classes
receive equal weighting during the training process.

Lconti,balanced(θ) = Ey

[
1

p(y)
Ly
conti(θ)

]
=

∑
y∈Y
Ly
conti(θ). (6)

However, in many real world scenarios the marginal density p(y) is unknown and hence such an
accurate reweighting is not possible. For Long-Tailed Learning, as we desire to perform well
(in terms of generation quality) for every class label, the natural objective would be to minimize
maxy∈Y DKL(P0(.|y)||P0,θ(.|y)), that is, minimize the worst-case KL divergence over all y ∈ Y .
Suppose Ly

conti(θ) is convex in the training parameter θ, then so is f(θ) = maxy∈Y Ly
conti(θ) as

maximum of finite convex functions is again convex. f(θ) may not be differentiable even if Ly
conti(θ)

are differentiable in θ for all y ∈ Y . One could use sub-gradient methods to optimize the worst
case class loss maxy Ly(θ). However, in practice one has to work with the empirical version of
these losses which might be noisy and lead to parameters that are sub-optimal with respect to the
population loss.

4.2 Nash Equilibrium as a Solution Concept

To enable diffusion models for Long-tailed learning, we modify the DM objective to add the mutual
learning objective defined as

Ly
conti,mut(θy, θ−y, ω(.)) =

1

2

∫ T

t0

ω(t)Ex(t)∼pt
Ey′∼Q

[ ∥∥∥st,θy (x(t))− st,θy′ (x(t))∥∥∥2
2

]
dt, (7)
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to obtain a regularized version of the DM objective function denoted as Ly
cont,reg(θy, θ−y). In the

setting of Mutual Learning, the distribution Q is uniform. But, the distribution can be a hyperparame-
ter over which one could optimize. From now on, we will drop the weighting arguments λ(.), ω(.) in
the objective functions, leading to the following regularized objective for each class:

Ly
conti,reg(θy, θ−y) = L

y
conti(θy) + βLy

conti,mut(θy, θ−y). (8)

Learning the score ∇x(t) log pt(x(t)|y) is difficult as it is intractable. Conditioning on X0 and using
law of iterated expectation, one can rewrite the objective function as (see [32, Appendix A] for
detailed proof) with discretized time points as 0 < t0 < t1 < · · · tN = T to get the training objective

Ly
reg(θy, θ−y) = Ly(θy) + βLy

mut(θy, θ−y)

=
1

2

N∑
j=1

λ(tj)(tj − tj−1)EX0EXtj
|X0

[ ∥∥∇x(tj) log pt(xi(tj)|x0)− stj ,θy (xi(tj))
∥∥2
2

]
+

C̄(y) + β
1

2

N∑
j=1

ω(tj)(tj − tj−1)EX0EXtj
|X0

Ey′∼Q

[ ∥∥∥stj ,θy (xi(tj))− st,θy′ (xi(tj))∥∥∥2
2

]]
, (9)

where C̄(y) = 1
2

∑N
j=1 λ(tj)(tj − tj−1)Ctj (y) and Ct(y) = EXt

∥∇ log pt(.|y)∥2 −
EX0

EXt|X0
∥∇ log pt(xt|x0, y)∥2. [32, Remark 1] point out that C(y) < 0 and hence the first

summand in Eq. 9 is always bound below by −C(y). C̄(y) along with the entire first summation
in 9 correspond to Ly(θy) while the third term is Ly

mut(θy, θ−y). As C̄(y) doesn’t depend on θ, we
can ignore it for the purpose of training. But we note that C(y) will appear in our final worst case
sampling error. When the drift and diffusion coefficient of the forward dynamics satisfy some nice
properties, the distribution of pt(xt|x0) is normally distributed, whose mean and variance (σ̄t) can be
explicitly computed. Exploiting this knowledge, one can rewrite the objective function in eq 9 as
(See Appendix B.3 for details)

L̄ny
reg(θy, θ−y) = L̄ny (θy) + βL̄ny

mut(θy, θ−y)

=
1

2ny

ny∑
i=1

N∑
j=1

λ(tj)(tj − tj−1)
σ̄tj

[ ∥∥σ̄tjstj ,θy (xi(tj)) + ξij
∥∥2
2

+ βω(tj)(tj − tj−1)Ey′∼Q

[ ∥∥∥stj ,θy (xi(tj))− st,θy′ (xi(tj))∥∥∥2
2

]]
(10)

where L̄ny
reg(θy, θ−y) is the empirical version of Ly

reg(θy, θ−y) with ny samples, {xi}
ny

i=1 with
xi ∼ P0(.|y) denotes the initial data, {ξij}Nj=1 where ξij ∼ N (0, Id) denotes the noise and input

data of the neural network is {tj , xi(tj)}
ny,N
i=1,j=1, where xi(tj) ∼ Ptj (.|y) is obtained from the

forward diffusion process.

4.2.1 Neural Network Architecture for Score Parametrization

The approximation power of two-layer ReLU network with randomly sampled input layer are well
understood from numerous works [12, 25] and has been used to study the generalization properties
of Diffusion Models in [11, 17]. We also parametrize the score function st,θy for each label y ∈ Y
using a random feature model

st,θy (x) :=
1

m
Ayσ(Wyx+ Uye(t)) =

1

m

m∑
i=1

ay,iσ(w
T
y,ix+ uTy,ie(t)) (11)

where σ(·) = max{0, ·} is the ReLU activation function, Ay = (ay,1, · · · , ay,m) ∈ Rd×m is the
trainable parameter, Wy = (wy,1, · · · , wy,m)T ∈ Rm×d and Uy = (uy,1 · · · , uy,m)T ∈ Rd×de are
randomly initialized embedding matrices that are frozen during training, e : R≥0 → Rde is the
embedding function for the time. The above model represents a neural network with one hidden
layer with m neurons and a d− dimensional vector as an output. Suppose ay,i, wy,i and uy,i are i.i.d.
sampled from an underlying distribution ρ. Then as m→∞, we can view

st,θy (x)→ s̄t,θ̄y (x) := Eay,wy,uy

[
ayσ(w

T
y x+ uTy e(t))

]
= Ew,u

[
ay(w, u)σ(w

T
y x+ uTy e(t))

]
,
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Algorithm 1 Individual Gradient Descent(IGD)

Input parameters: Learning rate ητ
Initialize: (Wy, Uy)y∈Y and θ0y, ∀y ∈ Y
for τ = 0...Ttrain do

for y = 0...|Y| do
θτ+1
y ← θτy − ητ∇θy L̄

ny
reg(θτy , θ

τ
−y)

end for
end for
Output: (θy, θ−y) = minτ∈[Ttrain] NE-gap(θτy , θ

τ
−y)

with ay(w, u) := 1
ρ0(w,u)

∫
Rd ayρ(a,w, u)day and ρ0(w, u) :=

∫
Rd ρ(a,w, u)da. The above relation

represents st,θy (x) as an approximation of the continuous version s̄t,θ̄y (x), which can be viewed as a
neural network with infinite width, i.e., infinite number of neurons in the hidden layer (m → ∞).
Furthermore, we assume the embedding matrices Wy and Uy are sampled independently for every
y ∈ Y from a set with bounded support.

Having defined our loss function, we define the strategy space as Θy = {Ay ∈ Rd×m : ∥Ay∥F ≤
B}, ∀y ∈ Y . Now, consider the |Y|-player game ⟨Y , (L̄ny

reg)y∈Y , (Θy)y∈Y⟩,
Definition 1 (Nash Gap). Let By : Θ−y → Θy represent the best response function for label y ∈ Y
defined as By(θ−y) ∈ argminθ∈Θy

L̄ny
reg(θ, θ−y). Using the best response function, we define the

Nash gap of a strategy profile (θy)y∈Y ∈ ×y∈YΘy as:

NE-gap((θy)y∈Y) = max
y∈Y
L̄ny
reg(θy, θ−y)− L̄ny

reg(By(θ−y), θ−y). (12)

Definition 2 (Nash Equilibrium). A strategy (θ
′

y)y∈Y ∈ ×y∈YΘy is an ϵ- Nash equilibrium of
the game ⟨Y , (L̄ny

reg)y∈Y , (Θy)y∈Y⟩ if NE-gap((θ
′

y)y∈Y) ≤ ϵ. When NE-gap((θ
′

y)y∈Y) = 0, then
(θ∗y)y∈Y is a Nash equilibrium.

The ability to find an ϵ- Nash equilibrium of the game ⟨Y , (L̄ny
reg)y∈Y , (Θy)y∈Y⟩ is crucial in our

analysis to bound the worst case sampling error.

4.3 Algorithm

In this section, we propose the individual gradient descent algorithm 1 to find an approximate Nash
equilibrium of the game ⟨Y , (L̄ny

reg)y∈Y , (Θy)y∈Y⟩. The input parameter for the algorithm is the
step-size ητ where τ is the τ th step of the individual gradient descent algorithm. The initializa-
tion step samples the embedding matrices and fixes an initial condition for the training parameter
(Wy, Uy, θ

(0)
y )y∈Y . The individual gradient proceeds for Ttrain steps and within each step an individ-

ual gradient update is performed by computing the gradient∇θy L̄
ny
reg(θτy , θ

τ
−y).

The complexity of finding Nash equilibrium: One of the most celebrated results in game theory
[6] proved that the computational complexity of the problem of computing of a Nash equilibrium
in an arbitrary game lies in the complexity class PPAD. So far, there does not exist an polynomial
time algorithm that can find an approximate or exact solution to problems in PPAD. The game
⟨Y , (L̄ny

reg)y∈Y , (Θy)y∈Y⟩ is a convex minimization game (See B.5). [20] showed that concave
maximization games (convex minimization games) also lie in the class PPAD. We present a positive
result that in our game ⟨Y , (L̄ny

reg)y∈Y , (Θy)y∈Y⟩, individual gradient descent finds an approximate
Nash equilibrium whose NE-gap is bounded by O( m2

√
Ttrain

+ β).

5 Main Result

We now present the main result of the capability of diffusion models in long-tailed learning through
deep mutual learning. We derive a data-independent worst-case bound for DKL(p0(.|y)||p0,θy,t

(.|y)).
Let θ∗y = argminθy L

y(θy), ∀y ∈ Y and let θ̄∗y be the optimal solution when the true score function

6



st,θy (x) is replaced in the class-label objective function Ly(θy) (equation 9) by its approximation
s̄t,θ̄y (x). We make one assumption on the support of data distribution (justified in Remark 1).

Assumption 1. We assume that the target distribution P0(x|y) is continuously differentiable in x
and has compact support for every y ∈ Y . Let for any y ∈ Y , x ∈ A ⊂ Rd, ∥x∥∞ ≤ K

Generation Algorithm. We consider the DDPM sampling scheme. Under this scheme ft = 1 and
gt =

√
2 in Eq. 1. Denote the backward time schedule as {t←j }0≤j≤N such that 0 = t←0 < t←1 <

· · · , t←N = T − α. To simulate the backward SDE, we use the exponential integrator scheme [34]
which can be piecewisely expressed as a continuous-time SDE: for any t ∈ [t←j , t

←
j+1). .

dȲt = (Ȳt + 2sT−t←j ,θy (Ȳt←j ))dt+
√
2dW̄t. (13)

Denote qt(.|y) := Law (Ȳt), ∀t ∈ [0, T − α]. γk = t←k+1 − t←k and assume there exists κ > 0 such
that γk ≤ κmin{1, T − t←k+1}. Let u22 be such that Ex0∼P0(.|y)[∥x∥

2
] ≤ u22 <∞, ∀y ∈ Y .

Remark 1. Assumption 1 ensure the data belong to a bounded set and the score is well defined. This
also ensures the second moment of the data distribution are bound which is necessary for convergence
of forward SDE. Some works [4, 32] do not require the existence of score function for the data
distribution P0(.|y). These works employ early stopping of the reverse (sampling) process. They do
so because for non-smooth data distributions ∇ log qt can blow up as t→ T . This means that the
model will approximate qT−α rather than qT = P0(.|y), which is acceptable since for small α the
distance (e.g. in Wasserstein-p metric) between qT−α and P0(.|y) is small [4].

We now present the main result of the paper.
Theorem 1. Given Assumption 1, for 0 < δ ≪ 1, we have with probability 1−N(

∑
y∈Y ny)δ that

1. The empirical loss functions L̄ny
reg(θy, θ−y), are Ly

m2 smooth w.r.t to their own parameter
θy∀y ∈ Y (See Lemma 3 in Appendix B.5)

2. If one runs individual gradient descent with step-size ητ ≤ m2

maxy∈Y Ly

√
Ttrain

for Ttrain
iterations and selects the parameter from (θτy , θ

τ
−y)τ∈[Ttrain] that minimizes the Nash Gap

of the game ⟨Y , (L̄ny
reg)y∈Y , (Θy)y∈Y⟩ and samples according to Eq.13, the sampling error

max
y∈Y

DKL(Pα(.|y)||qT−α(.|y)) ≲ max
y∈Y
Ly(θ̄∗y) + Õ

(
m2

√
Ttrain

+ β

)
+

Õ( 1√
mn∗

+
1

m
) + C0(κ

2Nu22 + κTu22 + exp (−2T )u22) + C̄ (14)

where n∗ = miny∈Y ny, C̄ = maxy∈Y −C̄(y) as in Eq. 9, κ2Nu22 + κTu22 is an upper
bound on the discretization error due to the reverse SDE, exp (−2T )u22 is the error due to
the convergence of the forward SDE and constant C0 is some constant. Õ hides the log 1

δ

factors, |Y|2 and bounds on strategy space, embedding matrices and other constants.
Corollary 1 (Full Error Analysis). Fix ϵ > 0 arbitrarily. If T ≥ 1, α < 1 and N > log 1

α ,

then there exists 0 = to < t1 < · · · tN = T − α such that for some κ = Θ(
T+log 1

α

N ) and

γk ≤ κmin{1, T − tk + 1}∀k = 0, 1, · · · , N − 1. If we take T = 1
2 log

d
ϵ , N = Θ(

d(T+log 1
α )2

ϵ ),
β = Θ̃(ϵ), Ttrain = Θ̃( 1

ϵ6 ) and m = Θ̃( 1
ϵ2 ), then under similar conditions as Theorem 1, we achieve

max
y∈Y

DKL(Pα(.|y)||qT−α(.|y)) ≲ max
y∈Y
Ly(θ̄∗y) + C̄ + ϵ (15)

where Õ, Θ̃ and ≲ hides the polynomial of log 1
δ , |Y|2 and bounds on strategy space, embedding

matrices and other constants. Ly(θ̄∗y) is the universal approximation error of approximating the
score with two layer network with random ReLUs.

Corollary 1 gives us the range of hyper-parameters such as width of hidden-layer, number of training
steps, discretization of sampling, etc. to achieve worst case sampling error ofO(ϵ+1). TheO(1) term
C(y) in Eq. 9, can be viewed as the error incurred due to diffusion model’s nature in approximating
∇ log pt(xt|y) which is intractable by∇ log pt(xt|x0, y) with reverse SDE.
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5.1 Proof sketch of Theorem 1

We provide a sketch for the proof and defer the details to the Appendix. We use a slight variant of
[4, Theorem 1] (See Appendix B for more details) to upper bound the KL-divergence between the
distribution approximated by our model and the ground truth to get

max
y∈Y

DKL(Pα(.|y)||qT−α(.|y)) ≤ max
y∈Y
Ly(θy) + C0(κ

2Nu22 + κTu22 + exp (−2T )u22). (16)

We then perform the following decomposition for maxy∈Y Ly(θy) (See Appendix B.1), where

min
τ∈[Ttrain]

max
y∈Y
Ly(θτy ) ≤ max

y∈Y
Ly(θ∗y) + +2max

y∈Y
sup

(θy,θ−y)

| Ly
reg(θy, θ−y)− L̄ny

reg(θy, θ−y) |

+ min
τ∈[Ttrain]

NE-gap(θτy , θ
τ
−y) + βmax

y∈Y
sup

(θy,θ−y)

Ly
mut(θy, θ−y).

(17)

Proposition 1 (Training and bounding the Nash Gap). Suppose L̄ny
reg(θτy , θ

τ
−y) is Ly

m2 smooth for all

y ∈ Y . Then by selecting a constant learning rate ητ ≤ η√
Ttrain

≤ m2

maxy∈Y Ly

√
Ttrain

that depends

on the total iteration Ttrain, and using Õ to hide the log 1
δ factors, we have

min
τ∈[Ttrain]

NE-gap(θτy , θ
τ
−y) ≲ min

τ∈[Ttrain]
max
y∈Y

∥∥∇θy L̄ny
reg(θ

τ
y , θ

τ
−y)

∥∥2 = Õ( m2

√
Ttrain

+ β). (18)

The proof is presented in Appendix B.6. Proposition 1 gives a non-asymptotic first order convergence
of individual gradient descent. When no further assumption on the gradient mapping (e.g., (strong)
monotonicity of the game ⟨Y , (L̄ny

reg)y∈Y , (Θy)y∈Y⟩) is considered, this is the best we can hope for.
The iterate at which the minimum Nash Gap is achieved can be tracked by storing the parameters
(θτy , θ

τ
−y) for which the maxy∈Y

∥∥∇θy L̄
ny
reg(θτy , θ

τ
−y)

∥∥2 is the least.

Monte-Carlo Estimate. To bound maxy∈Y Ly(θ∗y), we employ ideas from [17, Lemma 6]. Infor-
mally (See Prop 2 in Appendix B.7 ), for 0 < δ ≪ 1, with probability 1− 2N |Y|δ, we achieve

max
y∈Y
Ly(θ∗y) ≲ max

y∈Y
Ly(θ̄∗y) + Õ

(
1

m

)
, (19)

where Õ hides the log 1
δ factors. Ly(θ̄∗y) is the error associated with approximating the score of the

data using a two layer networks of random ReLUs.

Rademacher Complexity. Finally, we bound the generalization error (See Lemma 9 in Appendix
B.8 for the derivation) by the Rademacher Complexity

max
y∈Y

sup
(θy,θ−y)

| Ly
reg(θy, θ−y)− L̄ny

reg(θy, θ−y) |= Õ
(

1√
mn∗

)
+ C̄ (20)

where n∗ = miny∈Y ny, C̄ = maxy∈Y −C̄(y). Õ hides the log 1
δ factors, |Y|2 and bounds on

strategy space, embedding matrices and other constants.

Bound on Mutual Learning Loss The final term in Eq. 17 maxy∈Y sup(θy,θ−y) L
y
mut(θy, θ−y) is

O(1) (See Lemma 6 in Appendix B.8).

5.2 Interpretation of the Main Result and Implications for Long-tailed Learning

Firstly, when the training objective function are nice, Proposition 1 shows that individual gradient
descent employed in Deep Mutual Learning literature is seeking a Nash Equilibrium of an underlying
game across different models. Second, when diffusion models are employed for long-tailed generation,
Theorem 1 shows that a Nash equilibrium of an underlying game across conditional score network
achieves an egalitarian solution w.r.t to sampling error. Our result give insight into the bottleneck
process in diffusion generative modeling when faced with limited computing resources and long-tailed
data. To the best of our knowledge, our result is the first to provide a comprehensive view of Deep
Mutual Learning and long-tailed generation(learning) with diffusion models.
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Figure 1: Fitting error on a toy demo with and without mutual learning. Top row represents the tail
class and bottom row represents head class. The middle column represents mutual learning and the
right column represents without mutual learning (β = 0). Lighter areas represent higher probability
region (left column) and larger fitting error (middle and right column)

6 Numerical Experiments

6.1 Toy Model

Diffusion models are trained to learn the score function ∇ log pt(xt|x0, y) of the forward process
which is then used in the reverse SDE to sample. From Figure 1 (left column), the score model works
well when pt(x|y) is large but suffers from large error when pt(x|y) is small. This observation can be
explained by examining the training loss on Figure 1(middle and right columns). Since the training
data is sampled from pt(x|y), in regions with a low pt(x|y) value, the learned score network is not
expected to work well due to the lack of training data. As a consequence, to ensure Ȳ0 is close to
x0, one need to make sure Ȳt stays in the high pt(x|y) region ∀t ∈ [0, T ]. The mutual learning term
aligns the score network for the tail classes with the high confidence scores of head classes at the
high noise regime area (t≫ 0) decreasing the fitting error. This can be seen from a comparison of
the heatmap of the tail class (top row middle column) with mutual learning having larger portion of
area with low fitting error compared to the case with no mutual learning (top row right column). 1

6.2 Real World Datasets

Method FID(↓) IS(↑)

Vanilla DDPM (β = 0) 16.58 8.78± 0.15

Mutual Learning 14.58 8.92± 0.19

CBDM 15.28 8.11± 0.14

Table 1: Best Performance for Various Methods

Datasets We perform empirical validation of
our theoretical findings with the widely used CI-
FAR10 dataset in the domain of image synthesis,
specifically its long-tailed versions CIFAR10LT.
The construction of CIFAR10LT follows from
[5], where the size decreases exponentially with
its class label index according to the imbalance
factor imb = 0.01. We also perform exper-
iments on synthetic dataset such as Gaussian
Mixture Model and include them in Appendix
C.

Implementation Details We take the code from [23] and modify the training procedure according
to individual gradient descent. The Neural network Architecture employed is U-net as in [23]. To

1The code is available at https://github.com/pranoydas51/IGD-ML
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be able to make direct comparisons to DDPM and a rudimentary comparison to CBDM, we modify
the code of CBDM and employ error networks for mutual learning (individual gradient descent)
instead of score networks as above. We run both CBDM and Individual Gradient Descent(IGD) for
Ttrain = 60k training steps. We generate 15k samples per class and make the comparison at the 60k
training step mark. We provide FID, IS across various parameter settings in Appendix C.2.

Comparison with baselines The baseline model for us is DDPM models trained individually on each
class label dataset (β = 0). We also make a comparison of mutual learning with Class Balancing
Diffusion Models. While empirical experiments on CIFAR10LT shows Mutual Learning perform
better than CBDM, we do not make any claim such as mutual learning outperforms CBDM. Since
our contribution is theoretical in nature, comprehensive numerical comparison with CBDM is left as
a future direction.

7 Discussion

Choice of λ(t) and ω(t). We choose ω(t) as an increasing function of t (as in [23]) and λ(t) such
that λ(t)

σ̄t
is non-increasing in t. The motivation behind this is to ensure that the training process

gives more weight to fitting to the data distribution for smaller 0 < t < T and give more weight to
the mutual learning objective for high noise regions i.e. larger 0 < t < T of the forward diffusion
process. There might exist a better weighting function. Our analysis doesn’t involve the investigation
of an optimal weighting function. We leave this as a future direction to pursue.

Bound on Approximation Error Ly(θ̄∗y). Given universal approximation results for two-layer
networks of Random ReLUs such as [11, Theorem 3.6] and assuming∇ log pt(xt|y) to be Lipschitz
continuous w.r.t. xt, we can follow [11] to achieve an upper bound for maxy∈Y Ly(θ̄∗y). This bound
can be made arbitrarily small by controlling hyperparameters such as bound on RKHS norm of s̄t,θ̄y
and 0 < δ ≪ 1.

Extension of Theoretical Results to Deeper Neural Networks Following [2], which proves that
stochastic gradient descent (SGD) can find global minima in Deep Neural Networks (DNN) in
polynomial time (given that the inputs are non-degenerate and the network is over-parameterized),
and [32], which extends [2] to determine the training complexity for diffusion models and determine
the generalization error of sampling with DNNs, our theoretical analysis can be extended to Deeper
Neural Network architecture in three steps. First, we can use [31] to obtain the generalization
bound using Rademacher Complexity for DNNs with ReLU activation function. Then, using the
fact that L̄ny

reg(θy, θ−y) = L̄ny (θy) + βL̄ny

mut(θy, θ−y), we observe that [32, Lemma 9] proves the
semi-smoothness of L̄ny (θy) with high probability. Thus, we can use [2, Theorem 3] to obtain
the semi-Smoothness of L̄ny

mut(θy, θ−y). The only thing that one needs to compute are the various
hyperparameter dependent constants. The final step would be to derive a PL like inequality as in [2,
Theorem 3] [32, Lemma 1(Appendix D.1)] with high probability. Proving whether L̄ny

reg(θy, θ−y)
satisfies a PL like inequality is challenging. [32, Lemma 1(Appendix D.1)] considers the case without
mutual learning. Even though L̄ny (θy) and L̄ny

mut(θy, θ−y) individually satisfy a PL like inequality,
their sum may not. We leave this as a conjecture for future work.

Application to Federated Learning. Consider the following scenario, each class label y ∈ Y is
thought of as a client that holds private training data with variable number of training sample points.
Individual Gradient Descent then represents local training of score network with global sharing of
updated score network parameters while preserving the privacy of local client data. This allows fair
learning and generalization among all classes and prevents overfitting (memorization) for class labels
with low training data frequency.

Limitations. While we achieve a bound on the worst case generalization (sampling) error, the current
analysis should be extended to provide insight into whether the performance of the head class score
networks is preserved upon adding the mutual learning loss. Further, we set Q = Uniform(Y)
and further investigation is warranted on the effect of the distribution Q on the worst-case sampling
error. It is worth examining if generalization (sampling) error can be made arbitrarily small (also
noted in [32, Section 3.3]) i.e. the O(1) bias be removed. Finally, while we support our analysis
with empirical experiments, validating our findings on larger real world datasets CIFAR100LT and a
detailed comparison with CBDM [23] could further strengthen the approach.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We discuss under related works, the scope and how our work differs from
those in existing literature. Theorem 1, Proposition 1, Corollary 1 along with numerical
experiments reflect the theoretical contribution of our paper and support the claims
made in the abstract and introduction .
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes]
Justification: In discussion section, we highlight limitations of our theoretical analysis.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We clearly state the assumptions we make and cite references that use
existing literature. We provide a proof sketch of the Main Theorem of the paper. The
complete proof and supporting lemmas have been cited are provided in the suppleman-
tary material.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
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Justification: We provide the hyper-parameter values and provide additional graphs in
Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide a github link to the code within the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We clearly state the dataset chosen and the hyper-parameters used for the
experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide error bar of 1 standard deviation and provide the experimental
setting in the main text.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
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Justification: We provide the details of our computing resources in the supplementary
material in Appendix C
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We confirm that our research is in line with NeurIPS Code of Ethics. We
perform our experiments on synthetic datasets.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We point out in our abstract, introduction and discussion the broader
impacts of our work to privacy, copyright related issues in generative modeling and
existing literature on diffusion models for Long-tailed generation.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We provide the link to github repository where we include the code used
for the numerical experiments in our paper.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We modify the code in CBDM [23] from their github repository and we
provide a link to the github repository for our numerical experiments. We use the
probability flow ODE sampler used in [17] and we mention this in the main text under
numerical experiments.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We use simple synthetic data to verify our theoretical findings along with
experiments on empirical real world datasets such as CIFAR10LT. We provide link to
the github repository where our code is.
Guidelines:

• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowd sourcing experiments or research with human subjects were
conducted for this work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The numerical experiments were performed on synthetic data. There
were no subjects on which experiments were conducted.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM wasn’t use for any task during the development of the research or
the preparation of the manuscript.
Guidelines:
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• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Appendix / supplemental material

Notations
Symbol Meaning
m Number of neurons in hidden-layer of score network
Cwy,uy

Upper bound on ∥wy,i∥1 , ∥uy,i∥1
F 2
T Upper bound on EX0

Eξj

[
∥σ(Wx(t) + Ue(t))∥22

]
, 0 ≤ t ≤ T

Ly L̄ny
reg(θy, θ−y) is Ly

m2 smooth w.r.t. θy
ϕy Lipschitz constant of L̄ny

mut(θy, θ−y) w.r.t. θy
σy L̄ny

reg(θy, θ−y) is σy Lipschitz in θy
B Upper Bound of the Frobenius norm of Ay

B Sampling

Denote the backward time schedule as {t←j }0≤j≤N such that 0 = t←0 < t←1 < · · · , t←N = T − α.
Lower case pt represents the density of Pt. We consider the exponential integrator scheme for
simulating the backward SDE with

The generation algorithm can be expressed as a piecewise continuous-time SDE: for any t ∈
[t←j , t

←
j+1).

dȲt = (Ȳt + 2sT−t←j ,θy (Ȳt←j ))dt+
√
2dW̄t (21)

Denote qt := Law (Ȳt), ∀t ∈ [0, T − δ].
Theorem 2. [4, Theorem 1] Let Assumption 1 hold. Then there exists a numerical constant C0 > 0,
such that

DKL(pα(.|y)||qT−α(.|y)) ≤ C0(ES + ED + EF ) (22)

where ED ≤ κ2Nu22+κTu22 is the discretization error due to the reverse SDE, EF ≤ exp (−2T )u22
is the error due to the convergence of the forward SDE and ES is the score estimation error

ES(θy) =

N−1∑
j=0

γjEx∼pT−t←
j

[ ∥∥∥∇ log pT−t←j (x|y)− sT−t←j ,θy (x)
∥∥∥2
2

]
(23)

where γj := t←j+1 − t←j , ∀j = 0, 1, · · ·N − 1 is the step-size of the generation algorithm.

When the training is done over the forward discretization given by (tN−j = T − t←j )N−1j=0 , we have

ES =
N−1∑
j=0

σ̄tN−j
λ(tN−j)

λ(tN−j)σ̄tN−j

(tN−j − tN−j−1)EX0
EXtN−j

|X0

∥∥σ̄tN−j
stN−j ,θy (XtN−j

) + ξ
∥∥2

+
N−1∑
j=0

σ̄tN−j

λ(tN−j)
λ(tN−j)(tN−j − tN−j−1)CtN−j

≤2max
j

σ̄tN−j

λ(tN−j)
Ly(θy)

where

Ly(θy) =
1

2

N−1∑
j=0

EX0
EXtN−j

|X0

[
λ(tN−j)(tN−j − tN−j−1)

∥∥∇x(tN−j) log ptN−j
(x(tN−j)|x0)− stN−j ,θy (x(tN−j))

∥∥2
2

]
+

1

2

N−1∑
j=0

λ(tN−j)(tN−j − tN−j−1)CtN−j
(y)

(24)
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Theorem 3. (Appendix B and [4, Theorem 1]) Let Assumption 1 hold. Then there exists a numerical
constant C0 > 0, such that

DKL(pα(.|y)||qT−α(.|y)) ≤ C0(Ly(θy) + ED + EF ) (25)

where ED ≤ κ2Nu22+κTu22 is the discretization error due to the reverse SDE, EF ≤ exp (−2T )u22
is the error due to the convergence of the forward SDE.

B.1 Decomposition of Ly(θy)

Let θ∗y = argminθy L
y(θy). We further decompose Ly(θy) as

max
y∈Y

(
Ly(θy)− Ly(θ∗y)

)
≤max

y∈Y

(
Ly(θy) + βLy

mut(θy, θ−y)− (Ly(θ∗y) + βLy
mut(θ

∗
y, θ−y)))

+β(Ly
mut(θ

∗
y, θ−y)− L

y
mut(θy, θ−y))

)
(a)

≤ max
y∈Y

(
Ly(θy) + βLy

mut(θy, θ−y)− (Ly(B(θ−y))

+ βLy
mut(B(θ−y), θ−y))

)
+ βmax

y∈Y
Ly
mut(B(θ−y), θ−y)

≤max
y∈Y

(
Ly
reg(θy, θ−y)− Ly

reg(B(θ−y), θ−y)

)
+ βmax

y∈Y
sup

(θy,θ−y)

Ly
mut(θy, θ−y)

where (a) follows from the fact that Ly
reg(B(θ−y), θ−y) ≤ Ly

reg(θy, θ−y). We further decompose
this to obtain an upper bound on maxy∈Y mint Ly(θty)

max
y∈Y
Ly(θy) ≤max

y∈Y
Ly(θ∗y) + max

y∈Y

(
Ly
reg(θy, θ−y)− Ly

reg(B(θ−y), θ−y)

)
+ βmax

y∈Y
sup

(θy,θ−y)

Ly
mut(θy, θ−y)

(a)

≤ max
y∈Y
Ly(θ∗y) + max

y∈Y
| Ly

reg(θy, θ−y)− L̄ny
reg(θy, θ−y) |

+max
y∈Y

| L̄ny
reg(θy, θ−y)− L̄ny

reg(B(θ−y), θ−y) |

+max
y∈Y

| Ly
reg(B(θ−y), θ−y)− L̄ny

reg(B(θ−y), θ−y) |

+ βmax
y∈Y

sup
(θy,θ−y)

Ly
mut(θy, θ−y)

(b)

≤ max
y∈Y
Ly(θ∗y) + 2max

y∈Y
sup

(θy,θ−y)

| Ly
reg(θy, θ−y)− L̄ny

reg(θy, θ−y) |

+ NE-gap(θy, θ−y) + βmax
y∈Y

sup
(θy,θ−y)

Ly
mut(θy, θ−y)

=⇒ min
τ∈[Ttrain]

max
y∈Y
Ly(θτy )

(c)

≤ max
y∈Y
Ly(θ∗y)+

+ 2max
y∈Y

sup
(θy,θ−y)

| Ly
reg(θy, θ−y)− L̄ny

reg(θy, θ−y) |

+ min
τ∈[Ttrain]

NE-gap(θτy , θ
τ
−y) + βmax

y∈Y
sup

(θy,θ−y)

Ly
mut(θy, θ−y)
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where (a) follows from adding and subtracting the empirical losses L̄ny
reg(θy, θ−y) and

L̄ny
reg(By(θ−y), θ−y) and using triangle inequality of the max norm, (b) follows from the gradi-

ent domination property for strongly convex functions, (c) follows from taking the minimum over
the iterates of the algorithm.

B.2 Boundedness of Forward Dynamics

Lemma 1. Consider the forward diffusion process with linear drift coefficients. For any δ > 0, δ ≪ 1,
w.p. (with probability) of atleast 1− δ. we have

∥x(t)∥∞ ≤ CT

(
∥x(0)∥∞ +

√
log

2

πδ2

)
(26)

where CT := maxt∈[0,T ] r(t), r(t)v(t).

Proof: The proof is similar to [17, Lemma 1] When the drift coefficient f(., t) : Rd → Rd is linear
in x i.e. f(x, t) = −f(t)x, the transition kernel pt|0 has a closed form

pt|0(x(t)|x(0)) = N (x(t);µ(t)x(0), σ̄2(t)Id) (27)

where µ(t) := exp (
∫ t

0
f(ξ)dξ), σ̄2(t) := 2

∫ t

0
exp (2µs − 2µt)σ

2
sds. Together we get,

x(t) = µ(t)x(0) + σ̄(t)z, z ∼ N (0, Id) (28)

For any ϵ ∼ N (0, 1), c > 1, we have

P{ϵ : |ϵ| > c} = 2

∫ ∞
c

1√
2π
e−

x2

2 dx ≤ 1√
2π

∫ ∞
c

2xe−
x2

2 dx =
1√
2π

∫ ∞
c2

e−
x
2 dx =

√
2

π
e−

c2

2

(29)

Let δ =
√

2
π e
− c2

2 , then

P{ϵ : |ϵ| ≤
√
log

2

πδ2
} ≥ 1− δ (30)

Hence, for any δ ∈ (0, 1) with δ ≪ 1, w.p. at least 1− δ, we have

∥x(t)∥∞ ≤ CT

(
∥x(0)∥∞ +

√
log

2

πδ2

)
(31)

where CT := maxt∈[0,T ]{µ(t), σ̄(t)}. Let CT,δ = CT (K +
√
log 2

πδ2 )

B.3 Boundedness of Loss function L̄ny
reg(θy, θ−y)

In this section, study some properties of the game defined by ⟨Y , (L̄ny
reg)y∈Y , (Θy)y∈Y⟩. From Eq. 8,

we have
Ly
conti,reg(θy, θ−y) = L

y
conti(θy) + βLy

conti,mut(θy, θ−y) (32)
where

Ly
conti,mut(θy, θ−y, ω(.)) =

1

2

∫ T

t0

ω(t)Ex(t)∼pt
Ey′∼Q

[ ∥∥∥st,θy (x(t))− st,θy′ (x(t))∥∥∥2
2

]
dt

and

Ly
conti(θy, θ−y) =

1

2

∫ T

t0

λ(t)E(x(t),y)

[ ∥∥∇x(t) log pt(x(t)|y)− st,θ(x(t), y)
∥∥2
2

]
dt

Conditioning on X0 and using law of iterated expectation, we can write [32, Appendix A], we get

Ly
conti,reg(θy, θ−y) =

1

2

∫ T

t0

EX0
EXt|X0,y

[
λ(t)

∥∥st,θy (x(t))−∇x(t) log pt(x(t)|x0)
∥∥2
2

+ βω(t)Ey′∼Q

[ ∥∥∥st,θy (x(t))− st,θy′ (x(t))∥∥∥2
2

]]
dt+

1

2

∫ T

t0

[
λ(t)Ct(y)

]
dt
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where Ct(y) = EXt ∥∇ log pt(Xt|y)∥2 − EX0EXt|X0
∥∇ log pt(Xt|X0, y)∥2 to learn the score

∇x(t) log pt(x(t)|x0, y).
Furthermore, we discretize the time points 0 = t0 < t1 < · · · < tN = T to the objective function

Ly
reg(θy, θ−y) = Ly(θy) + βLy

mut(θy, θ−y)

=
1

2

N∑
j=1

λ(tj)(tj − tj−1)EX0
EXtj

|X0

[ ∥∥∇x(tj) log pt(xi(tj)|x0)− stj ,θy (xi(tj))
∥∥2
2

]
+

+ C̄(y) + β
1

2

N∑
j=1

ω(tj)(tj − tj−1)EX0EXtj
|X0

Ey′∼Q

[ ∥∥∥stj ,θy (xi(tj))− st,θy′ (xi(tj))∥∥∥2
2

]]
(33)

where C̄(y) = 1
2

∑N
j=1 λ(tj)(tj − tj−1)Ctj (y) From [32, Appendix A], we have Xt|X0 ∼

N (e−µtX0, σ̄
2
t I) and its density function is

pt(x|x0) = (2πσ̄2
t )
− d

2 exp(−∥x− e
−µtx0∥

2σ̄2
t

)

Then,

∆ =EX0
EXt|X0

∥∥stj ,θy (xi(tj))−∇x(tj) log pt(x(tj)|x0)
∥∥

=EX0EXt|X0

∥∥∥∥stj ,θy (xi(tj))−∇x

(
− ∥Xt − e−µtX0∥

2σ̄2
t

)∥∥∥∥2
=EX0EXt|X0

∥∥∥∥stj ,θy (xi(tj)) + Xt − eµtX0

σ̄2
t

∥∥∥∥2
=EX0

Eϵt

∥∥∥∥stj ,θy (xi(tj)) + ϵt
σ̄2
t

∥∥∥∥2
Let ξ = ϵt

σ̄t
∼ N (0, I)

∆ =
1

σ̄t
EX0

Eξ

∥∥σ̄tstj ,θy (xi(tj)) + ξ
∥∥2 (34)

Finally putting all of it together, we get the empirical loss function

L̄ny
reg(θy, θ−y) =

1

2ny

ny∑
i=1

N∑
j=1

λ(tj)(tj − tj−1)
σ̄tj

[ ∥∥σ̄tjstj ,θy (xi(tj)) + ξij
∥∥2
2

+ βω(tj)(tj − tj−1)Ey′∼Q

[ ∥∥∥stj ,θy (xi(tj))− st,θy′ (xi(tj))∥∥∥2
2

]] (35)

We will show that the empirical loss function for the label y ∈ Y , L̄ny
reg(θy, θ−y) that is optimized is

convex and smooth in θy with high probability.
Lemma 2. For δ > 0, δ ≪ 1, wp.1− nyNδ, the empirical loss function

L̄ny
reg(θy, θ−y) =

1

2ny

ny∑
i=1

N∑
j=1

λ(tj)(tj − tj−1)
σ̄tj

[ ∥∥σ̄tjstj ,θy (xi(tj)) + ξij
∥∥2
2

+ βω(tj)(tj − tj−1)Ey′∼Q

[ ∥∥∥stj ,θy (xi(tj))− st,θy′ (xi(tj))∥∥∥2
2

]] (36)

is bounded i.e.

L̄ny
reg(θy, θ−y) = O(

N∑
j=1

λ(tj)(tj − tj−1)
σ̄tj

+ βω(tj)(tj − tj−1))
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Proof: From Lemma 1, we have δ > 0, δ ≪ 1

P{|ξij | >
√

2

πδ2
} ≤ δ (37)

Thus, w.p. 1−nyNδ, we have |ξij | ≤
√

2
πδ2 and hence we have ∥x(tj)∥∞ ≤ CtN ,δ , ∀i = 1, · · · , ny

and j = 1, , · · · , N
Thus, w.p. 1− nyNδ

L̄ny
reg(θy, θ−y) =

1

2ny

ny∑
i=1

N∑
j=1

λ(tj)(tj − tj−1)
σ̄tj

[ ∥∥σ̄tjstj ,θy (xi(tj)) + ξij
∥∥2
2

+ βω(tj)(tj − tj−1)Ey′∼Q

[ ∥∥∥stj ,θy (xi(tj))− st,θy′ (xi(tj))∥∥∥22
]]

≤ 1

ny

ny∑
i=1

N∑
j=1

λ(tj)(tj − tj−1)
σ̄tj

(σ̄2
tj

∥∥stj ,θy (xi(tj))∥∥22 + ∥ξij∥2)
+ βω(tj)(tj − tj−1)(

∥∥stj ,θy (xi(tj))∥∥22 +max
y′∈Y

∥∥∥stj ,θy′ (xi(tj))∥∥∥2
2
)

For a bound on
∥∥stj ,θy (x(tj))∥∥2

∥∥stj ,θy (x(tj))∥∥2 =

∥∥∥∥∥ 1

m

m∑
i=1

ay,iσ(w
T
y,ix(tj) + uTy,ie(tj))

∥∥∥∥∥
2

(38)

(a)

≤ 1

m

m∑
i=1

∥ay,i∥2 |σ(w
T
y,ix(tj) + uTy,ie(t))| (39)

(b)

≤ 1

m

m∑
i=1

∥ay,i∥2 (∥wy,i∥1 ∥x(tj)∥∞ + ∥uy,i∥1 ∥e(t))∥∞) (40)

≤ 1

m

m∑
i=1

∥ay,i∥2 (CtN ,δ ∥wy,i∥1 +max
j
∥e(tj)∥∞ ∥uy,i∥1) (41)

(c)

≤ (Ctn,δ + CtN ,e)Cwy,uyB (42)

where (a) follows from triangle inequality for norms, (b) follows from the fact that the ReLu function
satisfies |σ(x)| ≤ |x| and Holder inequality and (c) follows from the bounds on the embeddings and
x(tj) with ∥wy,i∥1 , ∥uy,i∥1 ≤ Cwy,uy , ∀i ∈ [m]. Thus, for δ > 0, δ ≪ 1, we have w.p. 1− nyNδ

L̄ny
reg(θy, θ−y) ≤C1

N∑
j=1

λ(tj)(tj − tj−1)
σ̄tj

+ βω(tj)(tj − tj−1) (43)

where C1 = (σ̄2
tN + 2)(Ctn,δ + CtN ,e)

2C2
wy,uy

B2 + 2
πδ2 . Since σ̄tj is non-decreasing in j, so

maxj σ̄tj = σ̄tN .
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B.4 Boundedness of Gradient of Loss function L̄ny
reg(θy, θ−y)

∥∥∇Ay
L̄ny
reg(θy, θ−y)

∥∥2
F
=

d∑
k=1

∥∥∇(Ay)k L̄
ny
reg(θy, θ−y)

∥∥2
=

d∑
k=1

∣∣∣∣∣∣∣∣ 1ny
ny∑
i=1

N∑
j=1

λ(tj)(tj − tj−1)(σ̄tjstj ,θy (x(tj)) + ξij)kσ(Wyx(tj) + Uye(tj))

+βω(tj)(tj − tj−1)Ey′ [(stj ,θy (x(tj))− stj ,θy′ (x(tj)))kσ(Wyx(tj) + Uye(tj))]

∣∣∣∣∣∣∣∣2
≤ 2

d∑
k=1

∥∥∥∥ 1

ny

ny∑
i=1

N∑
j=1

λ(tj)(tj − tj−1)(σ̄tjstj ,θy (x(tj)) + ξij)kσ(Wyx(tj) + Uye(tj))

∥∥∥∥2

+2β2
d∑

k=1

∥∥∥∥ 1

ny

ny∑
i=1

N∑
j=1

ω(tj)(tj − tj−1)Ey′ [(stj ,θy (x(tj))− stj ,θy′ (x(tj)))k.

σ(Wyx(tj) + Uye(tj))]

∥∥∥∥2
≤ 2

N

ny

ny∑
i=1

N∑
j=1

λ(tj)
2(tj − tj−1)2

d∑
k=1

∥∥σ̄stj ,θy (x(tj)) + ξij
∥∥2 ∥σ(Wyx(tj) + Uye(tj))∥2

+2β2 N

ny

ny∑
i=1

N∑
j=1

ω(tj)
2(tj − tj−1)2.

d∑
k=1

Ey′ [
∥∥∥stj ,θy (x(tj))− stj ,θy′ (x(tj))∥∥∥2] ∥σ(Wyx(tj) + Uye(tj))∥2

≤ 4Nd ∥σ(Wyx(tj) + Uye(tj))∥22 max
j
{λ(tj)(tj − tj−1)σ̄tj , βω(tj)(tj − tj−1)}L̄ny

reg(θy, θ−y)

≤ 4Nd2(CtN ,δ + CtN ,e)
2C2

wy,uy
max

j
{λ(tj)(tj − tj−1)σ̄tj , βω(tj)(tj − tj−1)}L̄ny

reg(θy, θ−y)

Since w.p.1− nyNδ the empirical loss function L̄ny
reg(θy, θ−y) is bounded,

∥∥∇Ay
L̄ny
reg(θy, θ−y)

∥∥2
F

is bounded with the same probability.

This also shows that for fixed θ−y, (Wy, Uy)y∈Y ,w.p.1−nyNδ, L̄ny
reg(θy, θ−y) is a Lipschitz function

in θy with Lipschitz constant σy such that σ2
y = 4C1Nd

2(CtN ,δ +CtN ,e)
2C2

wy,uy
maxj{λ(tj)(tj −

tj−1)σ̄tj , βω(tj)(tj − tj−1)}
(∑N

j=1
λ(tj)(tj−tj−1)

σ̄tj
+ βω(tj)(tj − tj−1)

)

B.5 Smoothness of Loss Function L̄ny
reg(θy, θ−y)

Lemma 3. Let (Wy, Uy)y∈Y , θ−y, {tj}Nj=1 be fixed. Let Ly = d(CtN ,δ +

CtN ,e)
2C2

wy,uy

∑N
j=1

(
λ(tj)(tj − tj−1)σ̄tj + βω(tj)(tj − tj−1)

)
. Then for δ > 0, δ ≪ 1,

w.p. 1− nyNδ, L̄ny
reg(θy, θ−y) is Ly

m2 smooth and convex in θy .

Proof We have,

L̄ny
reg(θy, θ−y) =

1

2ny

ny∑
i=1

N∑
j=1

λ(tj)(tj − tj−1)
σ̄tj

[ ∥∥σ̄tjstj ,θy (x(tj)) + ξij
∥∥2
2

+ βω(tj)(tj − tj−1)Ey′∼Q

[ ∥∥∥stj ,θy (x(tj))− st,θy′ (x(tj))∥∥∥2
2

]] (44)
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To show smoothness, we will show that the function f(θy) =
∥∥σ̄tjstj ,θy (x(tj)) + ξij

∥∥2
2

and

g(θy) =
∥∥∥stj ,θy (xtj )− stj ,θy′ (x(tj))∥∥∥2

2
are individually smooth. Once we prove this, it is easy

to show L̄ny
reg(θy, θ−y) is smooth as the linear combination of smooth functions is again smooth.

To show smoothness, we need to show that
∥∥∥∇2

θy
f(θy)

∥∥∥ and
∥∥∥∇2

θy
g(θy)

∥∥∥ have a bounded norm.

Recall that st,θy (x) = 1
mAyσ(Wyx(t) + Uye(t). Let h1(x, t) := σ(Wyx + Uye(t)), h2(x, t) :=

st,θy′ (x), h3(i, j) = ξij , we have

f(θy) =
∥∥σ̄tjstj ,θy (x(tj)) + ξij

∥∥2 (45)

=
σ̄2
tj

m2
hT1 (x(tj), tj)A

T
yAyh1(x(tj), tj)− 2σ̄tjh

T
3 (i, j)

(
Ay

m

)
h1(x(tj), tj) (46)

+ hT3 (i, j)h3(i, j) (47)

a
=
σ̄2
tj

m2
trace(AT

yAyB1)−
2σ̄tj
m

trace(AyB3) + constant (48)

b
=
σ̄2
tj

m2
vec(Ay)

T (B1

⊗
I)vec(Ay)−

2σ̄tj
m

vec(BT
3 )

T vec(Ay) + constant (49)

where (a) follows from the identity xTAy = trace(ByxT ), (b) follows from the following identities

trace(ATAB) =trace(ABAT ) = vec(A)T (B
⊗

I)vec(A)

trace(AB) =vec(A)T vec(BT )

and B3 = h1(x(tj), tj)h
T
3 (i, j).

Similarly, we have for g(θy)

g(θy) =
∥∥∥st,θy (x(tj))− st,θy′ (x(tj))∥∥∥2

=
1

m2
hT1 (x(tj), tj)A

T
yAyh1(x(tj), tj)− 2hT2 (x(tj), tj)

(
Ay

m

)
h1(x(tj), tj)

+ hT2 (x(tj), tj)h2(x(tj), tj)

a
=

1

m
trace(AT

yAyB1)−
2

m
trace(AyB2) + constant

b
=

1

m2
vec(Ay)

T (B1

⊗
I)vec(Ay)−

2

m
vec(BT

2 )
T vec(A) + constant

where B1 := h1(x(tj), tj)h
T
1 (x(tj), tj) and B2 := h1(x(tj), tj)h

T
2 (x(tj), tj). Thus,

1

σ̄2
tj

∇2
θyf(θy) = ∇

2
θyg(θy) = ∇

2
vec(Ay)

g(θy) =
2

m2
(B1

⊗
I) (50)

The eigenvalues of (B1

⊗
I) is the same as B1 with multiplicity. Thus, to show smoothness, we

need to bound the maximum eigenvalues of B1. For any v ∈ Rm

0 ≤ vTB1v = (vTh1(x(tj), tj))
2 ≤ d ∥h1(x(tj), tj)∥2∞ vT v (51)

Now,

∥σ(Wyx(tj) + Uye(tj))∥∞ = max
i=1,··· ,m

σ(wT
y,ix(tj) + uTy,ie(tj)) (52)

≤ max
i=1,··· ,m

|wT
y,ix(tj) + uTy,ie(tj)| (53)

≤ max
i=1,··· ,m

∥wy,i∥1 ∥x(tj)∥∞ + ∥uy,i∥1 ∥e(tj)∥∞ (54)

≤ (CtN ,δ + CtN ,e)Cwy,uy (55)
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Thus, we have for any v ∈ Rm

0 ≤ vTB1v ≤ d(CtN ,δ + CtN ,e)
2C2

wy,uy
vT v (56)

Since w.p. 1− nyNδ we have {∥xij∥∞ ≤ CtN ,δ}
ny,N
i=1,j=1, we have with the same probability f(θy)

and g(θy) are smooth in θy for every Wy, Uy, x(tj), θ−y .

Thus, L̄ny
reg(θy, θ−y) is Ly

1
m2 = 1

m2 d(CtN ,δ + CtN ,e)
2C2

wy,uy

∑N
j=1

(
λ(tj)(tj − tj−1)σ̄tj +

βω(tj)(tj − tj−1)
)

smooth.

B.6 Proof: First order convergence of the algorithm

Proof Our proof follows closely along the lines of [13]. Let L̄ny
reg(θy, θ−y) be the empirical version

of Ly
reg(θy, θ−y) with ny samples. By Ly smoothness of L̄ny

reg(θy, θ−y) we have, for any y ∈ Y ,

L̄ny
reg(θ

τ+1
y , θτ−y) ≤ L̄ny

reg(θ
τ
y , θ

τ
−y) + ⟨∇θy L̄ny

reg(θ
τ
y , θ

τ
−y), θ

τ+1
y − θτy ⟩

+
Ly

2

∥∥θτ+1
y − θτy

∥∥2 (57)

=⇒ L̄ny
reg(θ

τ+1
y , θτ−y) ≤ L̄ny

reg(θ
τ
y , θ

τ
−y)− ητ

∥∥∇θy L̄ny
reg(θ

τ
y , θ

τ
−y)

∥∥2
+
Ly

2
η2τ

∥∥∇θy L̄ny
reg(θ

τ
y , θ

τ
−y)

∥∥2 (58)

=⇒ ητ
∥∥∇θy L̄ny

reg(θ
τ
y , θ

τ
−y)

∥∥2 ≤ L̄ny
reg(θ

τ
y , θ

τ
−y)− L̄ny

reg(θ
τ+1
y , θτ−y)

+
Ly

2
η2τ

∥∥∇θy L̄ny
reg(θ

t
y, θ

t
−y)

∥∥2 (59)

=⇒
Ttrain∑
τ=1

ητ
∥∥∇θy L̄ny

reg(θ
τ
y , θ

τ
−y)

∥∥2 ≤ L̄ny (θty)− L̄ny (θτ+1
y ) + β

Ttrain∑
τ=1

ψ(θτ+1
y , θτy , θ

τ
−y)

+

Ttrain∑
τ=1

Ly

2
η2τ

∥∥∇θy L̄ny
reg(θ

τ
y , θ

τ
−y)

∥∥2 (60)

=⇒
Ttrain∑
τ=1

ητ
∥∥∇θy L̄ny

reg(θ
τ
y , θ

τ
−y)

∥∥2 ≤ L̄ny (θ1y)− L̄ny (θτ+1
y ) +

Ttrain∑
τ=1

Ly

2
η2τσ

2
y

+ β

Ttrain∑
τ=1

ψ(θτ+1
y , θτy , θ

τ
−y)

(61)

=⇒ min
τ∈[Ttrain]

∥∥∇θy L̄ny
reg(θ

τ
y , θ

τ
−y)

∥∥2 ≤ L̄ny (θ1y)− L̄ny (θ∗y) +
Ly

2 σ
2
y

∑Ttrain

τ=1 η2τ∑Ttrain

τ=1 ητ

+ β

∑Ttrain

t=1 ψ(θτ+1
y , θτy , θ

τ
−y)∑T

τ=1 ητ

(62)

where ψ(θτ+1
y , θτy , θ

τ
−y) = L̄

ny

mut(θ
τ
y , θ

τ
−y)− L̄

ny

mut(θ
τ+1
y , θτ−y).

B.6.1 Analyzing the Bias Term

Lemma 4. Suppose θ−y, (Wy, Uy)y∈Y are fixed. Let ϕy = d1.5N(CtN ,δ +
CtN ,e)

2C2
wy,uy

Bmaxj ω(tj)(tj − tj−1). Then for δ > 0, δ ≪ 1, w.p.1− nyNδ, we have

L̄ny

mut(θy, θ−y) =
1

2ny

ny∑
i=1

N∑
j=1

ω(tj)(tj − tj−1)Ey′∼Q

[ ∥∥∥stj ,θy (x(tj))− st,θy′ (x(tj))∥∥∥2
2

]]
(63)

is ϕy Lipschitz in θy .
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Proof:

∥∥∇Ay L̄
ny

reg,mut(θy, θ−y)
∥∥2
F
=

d∑
k=1

∥∥∇(Ay)k L̄
ny

mut(θy, θ−y)
∥∥2

=
d∑

k=1

∣∣∣∣∣∣∣∣ 1ny
ny∑
i=1

N∑
j=1

ω(tj)(tj−tj−1)Ey′ [(stj ,θy (x(tj))−stj ,θy′ (x(tj)))kσ(Wyx(tj)+Uye(tj))]

∣∣∣∣∣∣∣∣2

≤ N

ny

ny∑
i=1

N∑
j=1

ω(tj)
2(tj − tj−1)2.

d∑
k=1

Ey′ [
∥∥∥stj ,θy (x(tj))− stj ,θy′ (x(tj))∥∥∥2] ∥σ(Wyx(tj) + Uye(tj))∥2

≤ ∥σ(Wyx(tj) + Uye(tj))∥2Ndmax
j
ω(tj)(tj − tj−1)L̄

ny

mut(θy, θ−y)

≤ 4d2N(CtN ,δ + CtN ,e)
2C2

wy,uy
max

j
ω(tj)(tj − tj−1)L̄

ny

mut(θy, θ−y)

≤ d3N(CtN ,δ + CtN ,e)
4C4

wy,uy
B2 max

j
ω(tj)(tj − tj−1)

N∑
j=1

ω(tj)(tj − tj−1)

Since L̄ny

mut(θy, θ−y) ≤ L̄
ny
reg(θy, θ−y) and w.p.1 − nyNδ, L̄ny

reg(θy, θ−y) is bounded. Thus,∥∥∇Ay
L̄ny

mut(θy, θ−y)
∥∥2
F

is bounded and hence L̄ny

mut(θy, θ−y) is Lipschitz in θy with ϕy =

d1.5N(CtN ,δ + CtN ,e)
2C2

wy,uy
Bmaxj ω(tj)(tj − tj−1) Here,

ψ(θτ+1
y , θτy , θ

τ
−y) =

∣∣∣∣L̄ny

mut(θ
τ
y , θ

t
−y)− L̄

ny

mut(θ
τ+1
y , θτ−y)

∣∣∣∣ (64)

≤ϕy
∥∥θτy − θτ+1

y

∥∥ (65)

≤ϕyηt
∥∥∇Ay L̄ny

reg(θ
τ
y , θ

τ
−y)

∥∥ (66)

≤ϕyητσy (67)

By taking ητ ≤ m2

maxy∈Y Ly

√
Ttrain

, ∀y ∈ Y

max
y∈Y

min
τ∈[Ttrain]

∥∥∇θy L̄ny
reg(θ

τ
y , θ

τ
−y)

∥∥2 = max
y∈Y
O
(
2(L̄ny (θ0y))− L̄ny (θ∗y))

maxy∈Y Ly

√
Ttrain

+
σ2
y√

Ttrain
+ βϕyσy

)
(68)

= O
(

m2

√
Ttrain

+ β

)
(69)

For (θy, θ−y), we have

NE-gap(θy, θ−y) = max
y∈Y

| L̄ny
reg(θy, θ−y)− L̄ny

reg(B(θ−y), θ−y) | (70)

≤ max
y∈Y

∥∥∇θy L̄ny
reg(θy, θ−y)

∥∥2 ∥θy −B(θ−y)∥22 (71)

Since the strategy space for θy is bounded in norm. We have

NE-gap(θy, θ−y) ≲ max
y∈Y

∥∥∇θy L̄ny
reg(θy, θ−y)

∥∥2 (72)

=⇒ min
τ∈[Ttrain]

NE-gap(θτy , θ
τ
−y) = O

(
m2

√
Ttrain

+ β

)
(73)
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B.7 Monte Carlo Error of the Finite Neural Network

Observe that

Ly(θy) =
1

2

N∑
j=1

λ(tj)(tj − tj−1)EX0
EXtj

|X0

[ ∥∥∇x(tj) log pt(xi(tj)|x0)− stj ,θy (xi(tj))
∥∥2
2

]

+
1

2

N∑
j=1

λ(tj)(tj − tj−1)Ctj

=
1

2

N∑
j=1

λ(tj)(tj − tj−1)Ex(tj)∼ptj

[ ∥∥stj ,θy (x(tj))−∇x log ptj (x(tj))
∥∥2
2

]]

For each y ∈ Y , Ly(θ∗y) is the optimal loss function for the unregularized version under the current
hypothesis class. Let Ly(θ̄∗y) be the optimal unregularized loss function under the continuous version
of the random feature model. Then,

Ly(θ∗y) =
1

2

N∑
j=1

λ(tj)(tj − tj−1)Ex(tj)∼ptj

[ ∥∥∥stj ,θ∗y (x(tj))−∇x log ptj (x(tj))
∥∥∥2
2

]]
(74)

≤2
(
1

2

N∑
j=1

λ(tj)(tj − tj−1)Ex(tj)∼ptj

[ ∥∥∥s̄t,θ̄∗y (x(t))−∇x log pt(x(t))
∥∥∥2
2

]
(75)

+
1

2

N∑
j=1

λ(tj)(tj − tj−1)Ex(tj)∼ptj

[ ∥∥∥s̄tj ,θ̄∗y (x(tj))− stj ,θ∗y (x(tj))∥∥∥22
])

(76)

≤2Ly(θ̄∗y) + ErrMC(θ
∗
y, θ̄
∗
y; {tj}Nj=1, {λ(tj)}Nj=1) (77)

Proposition 2. Monte Carlo estimates. Define the Monte Carlo error

ErrMC(θ, θ̄, {tj}Nj=1, {λ(tj)}Nj=1) :=
N∑
j=1

λ(tj)(tj − tj−1).

Ex(tj)∼ptj

[ ∥∥∥s̄tj ,θ̄∗y (x(tj))− stj ,θ∗y (x(tj))∥∥∥22
] (78)

Suppose that ∥X(0)∥∞ ≤ K and the trainable parameter a and embedding functions W,U, e(.) are
both bounded. Then. given any θ̄. for any δ > 0, δ ≪ 1, with probability of at least 1− 2Nδ, there
exists θ such that

ErrMC(θ, θ̄, {tj}Nj=1, {λ(tj)}Nj=1) ≤
2C2

w,uB
2(CtN ,δ + CtN .e)

2d2

m
log (

2

δ
)

N∑
j=1

λ(tj)(tj − tj−1)

(79)

Proof. The proof closely along the line of [17]. Fix any θ̄. For notational convenience, we will drop
y from θy and θ̄y . For k = 1, 2, · · · d, define

Zt,k(W,U) :=
∥∥st,θ,k(x)− s̄t,θ̄,k(x)∥∥L2(pt)

= E1/2
x∼pt

[
|st,θ,k(x)− s̄t,θ̄,k(x)|2

]
(80)

= Ex∼pt

[∣∣∣∣ 1m
m∑
i=1

ai,kσ(w
T
i x+ uTi e(t))− E(w,u)[ak(w, u)σ(w

Tx+ uT e(t))]

∣∣∣∣2]
(81)
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Then, we have

Ex∼pt

[ ∥∥∥st,θy (x)− s̄t,θ̄y (x)∥∥∥2
2

]
=

d∑
k=1

Ex∼pt

[
|st,θy,k(x)− s̄t,θ̄y,k|

2

]
(82)

=
d∑

k=1

Z2
t,k(W,U)

≤
d∑

k=1

(
|Zt,k(W,U)− EW,U [Zt,k]|+ |EW,U [Zt,k(W,U)]|

)2

(a)

≤2
d∑

k=1

(
|Zt,k(W,U)− EW,U [Zt,k(W,U)]|2

+ EW,U [Z
2
t,k(W,U)]

)
(83)

where (a) follows from the fact that (a+b)2 ≤ 2(a2+b2) and Jensen’s Inequality E2[Zt,k(W,U)] ≤
EW,U [Z

2
t,k(W,U)]. According to Lemma 1. for any δ > 0, δ ≪ 1, w.p. atleast 1− δ, we have

∥x(t)∥∞ ≤ CtN ,δ (84)

If (W̃ , Ũ) is different from (W,U) at only one component indexed by i, we have w.p. 1− δ

|Zt,k(W,U)− Zt,k(W̃ , Ũ)| (85)

=

∣∣∣∣ ∥∥st,θ,k(x)− s̄t,θ̄,k(x)∥∥L2(pt)
−
∥∥∥st,θ̃,k(x)− s̄t,θ̄,k(x)∥∥∥

L2(pt)

∣∣∣∣ (86)

(a)

≤
∥∥∥st,θ̃,k(x)− st,θ,k(x)∥∥∥

L2(pt)
(87)

=
1

m

∥∥ai,kσ(wT
i x+ uTi e(t))− ãi,kσ(w̃T

i x+ ũTi e(t))
∥∥
L2(pt)

(88)

(b)

≤ 1

m

(
|ai,k|

∥∥σ(wT
i x+ uTi e(t))

∥∥
L2(pt)

+ |ãi,k|
∥∥σ(w̃T

i x+ ũTi e(t))
∥∥
L2(pt)

)
(89)

(c)

≤ 1

m

(
|ai,k|

∥∥wT
i x+ uTi e(t))

∥∥
L2(pt)

+ |ãi,k|
∥∥(w̃T

i x+ ũTi e(t))
∥∥
L2(pt)

)
(90)

(d)

≤ 1

m

(
|ai,k|(∥wi∥1 CtN ,δ + ∥ui∥1 ∥e(t)∥∞) + |ãi,k|(∥w̃i∥1 CtN ,δ + ∥ũi∥1 ∥e(t)∥∞)

)
(91)

(e)

≤ 2

m
BCw,u(CtN ,δ + CtN ,e) (92)

where (a) and (b) follows from triangle inequality | ∥a∥−∥b∥ | ≤ ∥a− b∥ and ∥a− b∥ ≤ ∥a∥+∥b∥,
(c) follows from the fact that |σ(y)| ≤ |y|, (d) follows from Lemma 1 and Holder Inequality, (e)
follows from the bounds on ∥wi∥1 , ∥ui∥1 , x, |ai,k|, e(tj).
Thus, w, p.1 − δ, Zt,k(W,U) has bounded increment property. Using McDiarmid’s inequality,
w.p.1− 2δ, we have

|Zt,k(W,U)− EW,U [Zt,k(W,U)]| ≤ B

m
Cw,u(CtN ,δ + CtN .e)

√
d log (

2

δ
) (93)
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Now we compute

EW,U [Z
2
t,k(W,U)]

=EW,U

[
Ex∼pt

[|st,θ,k(x)− s̄t,θ̄,k(x)|2]
]

(b)
=Ex∼pt

[
EW,U [|st,θ,k(x)− s̄t,θ̄,k(x)|2]

]
=

1

m2
Ex∼pt

[
EW,U

[∣∣∣∣ m∑
i=1

(
ai,kσ(w

T
i x+ uTi e(t))− Ew,u[ak(w, u)σ(w

Tx+ uT e(t))]
)∣∣∣∣2]]

+
1

m2
Ex∼pt

[
EW,U

[∑
i̸=j

(ai,kσ(w
T
i x+ uTi e(t))− Ew,u[ak(w, u)σ(w

Tx+ uT e(t))])

× (aj,kσ(w
T
j x+ uTj e(t))− Ew,u[akσ(w

Tx+ uT e(t))])

]]
(c)
=

1

m2
Ex∼pt

[
EW,U

[ m∑
i=1

(
ai,kσ(w

T
i x+ uTi e(t))− Ew,u[ak(w, u)σ(w

Tx+ uT e(t))]
)2]]

+
1

m2
Ex∼pt

[∑
i̸=j

Ewi,ui

[
(ai,kσ(w

T
i x+ uTi e(t))− Ew,u[ak(w, u)σ(w

Tx+ Ue(t))])

× Ewj ,uj

[
(aj,kσ(w

T
j x+ uTj e(t))− Ew,u[ak(w, u)σ(w

Tx+ Ue(t))])

]]
(d)
=

1

m2
Ex∼pt

[ m∑
i=1

EW,U

[(
ai,kσ(w

T
i x+ uTi e(t))− Ew,u[ak(w, u)σ(w

Tx+ uT e(t))]
)2]]

(e)

≤ 1

m
Ex∼pt

[
Ew,u

[
(ak(w, u)σ(w

Tx+ uT e(t)))2
]]

(f)

≤ 1

m
Ex∼pt

[
Ew,u

[
(|ay,k(w, u)|(∥w∥1 CtN ,δ + ∥u∥1 ∥e(t)∥∞))2

]]
≤ 1

m
(CtN ,δ + CtN ,e)

2C2
w,uB

2

where (b) is due to Fubini’s theorem, (c) is due to independence of sampling (wi, ui) and (wj , uj),
(d) is due to aj,kσ(wT

j x+ uTj e(t)) being an unbiased estimator of the continuous version of score
network, (e) follows from V ar(X) ≤ E[X2], (f) follows from |σ(y)| ≤ |y| and Holder’s inequality.
Thus. w.p.1− 2δ,

Ex∼pt

[ ∥∥∥st,θy (x)− s̄t,θ̄y (x)∥∥∥2
2

]
≤

2C2
w,uB

2(CtN ,δ + CtN .e)
2d2

m
log (

2

δ
) (94)

Finally, we have w.p.1− 2Nδ

ErrMC(θ, θ̄, {tj}Nj=1, {λ(tj)}Nj=1) ≤
2C2

w,uB
2(CtN ,δ + CtN .e)

2d2

m
log (

2

δ
)

N∑
j=1

λ(tj)(tj − tj−1)

(95)

B.8 Radamacher Complexity

In this section, we will bound the term related to the generalization bound

sup
(θy,θ−y)

| Ly
reg(θy, θ−y)− L̄ny

reg(θy, θ−y) | (96)
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The Rademacher complexity of a real valued function class F is defined as:

Rn(F) := Ex1,··· ,xn
Eσ1,··· ,σn

[
sup
f∈F

1

n

n∑
i=1

σif(xi)

]
, (97)

The variables σ1, · · · , σm are iid Bernoulli random variables that take values {+1,−1} with equal
probability and are independent of x1, · · · , xm. However, for our random feature model, we have a
vector valued function class

F̂W,U :=

{
f(x) =

A

m
Φ(x,W,U) =

1

m

m∑
k=1

αkϕ(x,wk, uk)

∣∣∣∣ ∥A∥F ≤ B}
(98)

Theorem 4. [19, Theorem 3] Let X be nontrivial, symmetric and subgaussian. Then there exists a
constant C < ∞, depending only on the distribution of X , such that for any countable set S and
functions ψi : S → R, ϕi : S → l2, 1 ≤ i ≤ n satisfying

∀s, s′ ∈ S, ψi(s)− ψ(s′i) ≤ ∥ϕi(s)− ϕi(s′)∥ (99)

we have

E sup
s∈S

∑
i

ϵiψi(s) ≤ CE sup
s∈S

∑
i,k

Xikϕi(s)k (100)

where the Xik are independent copies of X for 1 ≤ i ≤ n and 1 ≤ k ≤ ∞ and ϕi(s)k is the k-th
coordinate of ϕi(s). If X is a Rademacher variable we may choose C =

√
2, if X is a standard

normal C =
√

π
2 .

Corollary 2. [19, Corollary 4] Let X be any set, (x1, · · · , xn) ∈ Xn, let F be a class of functions
f : X → l2 and let hi : l2 → R have Lipschitz norm L. Then

E sup
f∈F

∑
i

ϵihi(f(xi)) ≤
√
2LE sup

f∈F

∑
i,k

ϵikfk(xi) (101)

where ϵik is an independent doubly indexed Rademacher sequence and fk(xi) is the k-th component
of f(xi).

Lemma 5. [19] Consider the function class F = {x→ A
mϕ(x,W,U) : A ∈ B(H,R), ∥A∥F ≤ B}.

Then the empirical Rademacher complexity of F is

ˆRadn(F) = E sup
f∈F

∑
i,k

ϵikfk(xi) ≤
B√
m

√∑
i

∥ϕ(x,W,U)∥2 (102)

Moreover, if Ex ∥ϕ(x,W,U)∥2 ≤ C2, the Rademacher Complexity of F is

Rn(F) ≤
BC√
mn

(103)

Proof:

ˆRadn(F) = E sup
f∈F

∑
i,k

ϵikfk(xi) =
1

m
E sup
∥A∥F≤B

∑
k

⟨ak,
∑
i

ϵikxi⟩ (104)

=
1

m
E sup
∥A∥F≤B

tr(D∗A) ≤ BE ∥D∗∥∗ (105)

where D ∈ B(H,RK) is the random transformation

v →
(
⟨v,

∑
i

ϵi1xi⟩, · · · , ⟨v,
∑
i

ϵiKxi⟩
)

(106)

Thus,

E∥D∗∥∗ = E

√√√√∑
m

∥∥∥∥∥∑
i

ϵikϕ(xi,W,U)

∥∥∥∥∥
2

≤
√
m

∑
i

∥ϕ(xi,W,U)∥2 (107)
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Thus,

Rn(F) = Ex1,··· ,xn

1

n
ˆRadn(F) ≤

B√
mn

Ex1,··· ,xn

√∑
i

∥ϕ(xi,W,U)∥2 (108)

≤ B

n
√
m

√∑
i

Ex1,··· ,xn
∥ϕ(xi,W,U)∥2 (109)

≤ BC√
mn

(110)

Suppose 0 < t1 < · · · < tN = T are the chosen points of discretization for training, we have from
the forward process

X(t) = e−tX(0) +
√
1− e−2tZ,Z ∼ N(0, 1) (111)

=⇒ EZ [X
2(t)] = e−2tx2(0) +

1− e−2t

2
(112)

=⇒ EX(0)EZ [X
2(tj)] ≤ K2 +

1− e−2T

2
, ∀0 < tj < T (113)

Using the above bounds along with bounded support of embedding matrices W,U and embedding
function e(t) and Assumption 1, it is easy to show that

EX0
Eξj

[
∥σ(Wx(t) + Ue(t))∥22

]
≤ F 2

T , ∀0 < t ≤ T (114)

for some constant F 2
T and x(t) = e−tx(0) +

√
1− e−2tξj , ξj ∼ N (0, I)

Lemma 6. The term

Ly
mut(θy, θ−y) =

N∑
j=1

ω(tj)(tj − tj−1)EX0EXtj
|X0

Ey′∼Q

[ ∥∥∥stj ,θy (xi(tj))− st,θy′ (xi(tj))∥∥∥2
2

]]
(115)

is O
(
FTB

∑N
j=1 ω(tj)(tj − tj−1)

)
Proof: Using the fact of bounded support of embedding matrices W,U and embedding function
e(t), bounded strategy space and Assumption 1 and eq 114, we get the desired bounded.

Lemma 7. Suppose LC1 = σ̄2
tjBFT +

√
d
√
log 2

πδ2 ). Then, with probability 1 − δ, the function

h : A ⊂ Rd → R

h(x) =
∥∥σ̄tjx+ ξij

∥∥2 (116)

is Lipschitz in x, where A = {x ∈ Rd : ∥x∥2 ≤ FTB}.

Proof. It is sufficient to show the norm of the gradient of h(x) is bounded for x ∈ A. With
probability 1− δ,

∥∇xh(x)∥2 =σ̄tj
∥∥σ̄tjx+ ξij

∥∥
2
≤ σ̄2

tjFTB +
√
d

√
log

2

πδ2
) (117)

(118)

Lemma 8. Suppose LC2
= 2FTB|Y|. Define g : AY ⊂ Rd|Y| → R where

g(x1, x2, · · · , x|Y|) = Ey′ [∥xi − xy′∥2], y′ ∈ {1, 2, · · · , |Y|} − i (119)

is Lipschitz in x, where A = {x ∈ Rd : ∥x∥2 ≤ FTB}.
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Proof:

∇xig(x1, x2, · · · , x|Y|) =2Ey′ [(xi − xy′)] (120)

∇xj
g(x1, x2, · · · , x|Y|) =2p(xj)(xj − xi), j ̸= i (121)

∥∇xg(x)∥ ≤
∥∥∇xig(x1, x2, · · · , x|Y|)

∥∥+
∑
j ̸=i

∥∥∇xjg(x1, x2, · · · , x|Y|)
∥∥ (122)

≤2Ey′ [∥xi − xy′∥] + 2
∑
k ̸=i

∥xk − xi∥ ≤ 2FTB|Y| (123)

We know

Ly(θy) =
1

2

N∑
j=1

λ(tj)(tj − tj−1)
σ̄tj

EX0Eξj

[ ∥∥σ̄tjstj ,θy (x(tj)) + ξj
∥∥2
2

]
(124)

+
1

2

N∑
j=1

λ(tj)(tj − tj−1)Ctj (y) (125)

where Ct(y) = EXt
∥∇ log pt(.|y)∥2 − EX0

EXt|X0
∥∇ log pt(xt|x0, y)∥2. Let C̄(y) =

1
2

∑N
j=1 λ(tj)(tj − tj−1)Ctj (y)

Lemma 9. With probability 1−Nnyδ, an upper bound for the generalization gap i.e.

sup
(θy,θ−y)

| Ly
reg(θy, θ−y)− L̄ny

reg(θy, θ−y) | (126)

is

2
√
2BFT√
mny

LC1

N∑
j=1

λ(tj)(tj − tj−1)
σ̄tj

+
2
√
2BFT |Y|2√
mny

LC2

N∑
j=1

ω(tj)(tj − tj−1) + C̄ (127)

where LC1 = σ̄2
tjBFT +

√
d
√

log 2
πδ2 ),LC2 = 2FTB|Y|,C̄ = maxy∈Y |C̄(y)|

Proof. Observe that, we can rewrite Eq. 126 using triangle inequality as

sup
(θy,θ−y)

| Ly
reg(θy, θ−y)− L̄ny

reg(θy, θ−y) |≤ sup
θy

|Ly(θy)− L̄ny (θy)|

+ β sup
(θy,θ−y)

|Ly
mut(θy, θ−y)− L̄

ny

mut(θy, θ−y)|

(128)

Further decomposing them, we get

sup
θy

|Ly(θy) − L̄ny (θy)| ≤
N∑
j=1

λ(tj)(tj − tj−1)
σ̄tj

sup
θy

|Ly(θy)(j) − L̄ny (θy)(j)| + C̄ (129)

where |Ly(θy)(j) − L̄ny (θy)(j)| =| 1
2ny

∑ny

i=1

[ ∥∥σ̄tjstj ,θy (xi(tj)) + ξij
∥∥2
2
−

EX0
Eξj

∥∥∥σ̄tjstj ,θy (e−tjX0 +
√
1− e−2tjξj) + ξj

∥∥∥2 ] | and

sup
(θy,θ−y)

|Ly
mut(θy, θ−y)− L̄

ny

mut(θy, θ−y)| ≤

N∑
j=1

ω(tj)(tj − tj−1) sup
(θy,θ−y)

|Ly
mut(θy, θ−y)(j)− L̄

ny

mut(θy, θ−y)(j) | (130)
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where

|Ly
mut(θy, θ−y)(j)−L̄

ny

mut(θy, θ−y)(j) |=|
1

2ny

ny∑
i=1

[
Ey′∼Q

[ ∥∥∥stj ,θy (xi(tj))− st,θy′ (xi(tj))∥∥∥2
2

− EX0
EξjEy′∼Q[

∥∥∥stj ,θy (e−tjX0 +
√
1− e−2tjξj)− stj ,θy′ (e

−tjX0 +
√
1− e−2tj )

∥∥∥2]] |
(131)

Finally using Corollary 2, Lemmas 5 7,8, [19, Section 4.1] we have

sup
θy

|Ly(θy)− L̄ny (θy)| ≤
2
√
2BFT√
mny

LC1

N∑
j=1

λ(tj)(tj − tj−1) + C̄ (132)

and

sup
(θy,θ−y)

|Ly
mut(θy, θ−y)− L̄

ny

mut(θy, θ−y)| ≤
2
√
2BFT |Y|2√
mny

LC2

N∑
j=1

ω(tj)(tj − tj−1) (133)

C Numerical Experiments

Computing resources. The numerical experiments were conducted on a MacBook Air (2023) and
Gilbreth. Gilbreth has heterogeneous hardware comprising of Nvidia V100, A100, A10, and A30
GPUs in separate sub-clusters. All the nodes are connected by 100 Gbps Infiniband interconnects.
We used sub-cluster B with 16 nodes, 24 cores per node, 192 GB memory per node, 3 A30 (24 GB)
per node. For more information follow this link.

C.1 Gaussian Mixture Models

Dataset We perform empirical experiments on synthetic datasets to verify our theoretical findings.
The synthetic dataset is randomly generated under the true distribution and fixed. We detail out the
underlying distribution on a case by case basis.

Implementation Details We employ the random feature model with the width of network m = 16,
learning rate ητ = 10−4, ∀τ, Ttrain = 5000 is fixed for Adam optimizer. We set λ(t) = σ̄t, ω(t) =
et, total number of training samples is 50.

Case one We perform more empirical experiments on d = 1, imbalance ratio r = 2.5, β = 0.01.
We compute the KL-divergence between the ground truth distribution and the learned model using the
procedure in [17]. P (x|y = 1) ∼ N (−µ, σ2) and class 2 is P (x|y = 2) ∼ N (µ, σ2). We observe
Fig. 2 the worst case KL divergence for the mutual learning case is lower than the vanilla when we
change the distance between mean and the variance of each class label. The performance of head
class doesn’t worsened for small µ. However, the head class performance suffers for mutual learning
case when the distance between the mean increases. This might be because when the support of class
distribution are farther apart mutual learning is not advantageous as transfer of knowledge between
the class is not useful.

Case two We now consider a case with two classes with imbalance ratio r = 2.5, β = 0.01. Class 1
itself is a uniform mixture of two Gaussian i.e P (x|y = 1) ∼ 1

2N (−4, 3) + 1
2N (4, 3) and class 2 is

P (x|y = 2) ∼ N (0, 2) as in Fig. 3. We observe the Mutual Learning objective with our formulation
have lower KL-divergence for both the classes compared to the vanilla diffusion models trained on
each class. In this case, mutual learning allows useful transfer of knowledge between the classes
increasing the performance for both. We hypothesize that under some notion of similarity between
various class distributions, mutual learning is advantageous in improving the performance of all
classes.
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Figure 2: Case one: (Left) The first plot shows the KL-divergence for each class with and without
mutual learning objective as µ is varied. (Right) shows the KL-divergence for each class with and
without mutual learning objective as σ is varied (µ = 2 fixed).

Figure 3: Case two: (Top) The first plot shows class 1 as a gaussian mixture with class 2 as Gaussian.
(Bottom Left) Shows the KL-divergence for each class with and without mutual learning objective.
(Bottom Right) Shows minτ maxy∈Y

∥∥∇L̄ny
reg(θτy , θ

τ
−y)

∥∥ decreasing with training epoch.
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Different β Values (η = 2× 10−4)

Method FID(↓) IS(↑)

β = 0.0 16.58 8.78± 0.15

β = 0.1 18.61 8.94± 0.10

β = 1.0 16.74 8.55± 0.21

Different η Values (β = 0.1)

Method FID(↓) IS(↑)

η = 2× 10−4 18.61 8.94± 0.10

η = 10−4 14.58 8.92± 0.19

η = 10−5 18.62 8.62± 0.21

Figure 4: FID and IS Scores for Different β and η Values

Figure 5: Visualization of image generated from Vanilla DDPM (β = 0) (Left) and Mutual Learning
(Right)

C.2 Experiments on CIFAR10LT

In this section, we present the numerical results for varying hyperparamters η and β values. Further-
more, for completeness, we provide visualization of the images generated from various methods.
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Figure 6: Image Visualization of CBDM
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