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Abstract
Constrained optimization problems arise in federated learning (FL) settings, where a global objec-
tive must be minimized subject to a functional constraint aggregated across clients. We introduce
Federated Switching Gradient Methods (FedSGM), a primal-only, projection-free algorithm for fed-
erated constrained optimization. By extending switching gradient methods to the federated setting,
FedSGM avoids the inner solves and penalty tuning required by dual or penalty-based methods,
enabling lightweight and scalable deployment. Our analysis addresses three practical challenges
simultaneously: (i) multi-step local updates to accommodate heterogeneous client compute, (ii)
unbiased uplink compression to mitigate communication costs, and (iii) both hard and soft switch-
ing between objective and constraint gradients. We provide the first convergence guarantees for
constrained FL that hold under these combined settings, recovering known centralized rates in
special cases. In particular, we show that soft switching, recently proposed in the centralized litera-
ture, retains convergence guarantees while offering improved empirical stability near the constraint
boundary.

1. Introduction

We study federated constrained optimization problems of the form

w∗ = argmin
w∈Rd

f(w) := 1
n

n∑
j=1

fj(w) s.t. g(w) := 1
n

n∑
j=1

gj(w) ≤ 0

 , (1)

where fj and gj represent the local objective and constraint functions on the client j. This frame-
work captures many real-world applications of federated learning [18, 22, 24], where models must
be trained across private or geo-distributed data without central collection. Constraints g(w) ≤ 0
encode feasibility conditions such as fairness mandates, energy budgets, or safety margins in au-
tonomous systems and battery management [1, 5, 19, 38].

Still, solving (1) in realistic deployment scenarios remains challenging. We highlight three pri-
mary difficulties that simultaneously shape the design space for federated constrained optimization:

(i) Functional constraints. Federated tasks increasingly involve feasibility criteria beyond min-
imizing a loss: fairness across subpopulations [1], bounding risk exposure in financial models, or
safety limits in batteries (e.g., maximum temperature rise). Enforcing such constraints requires
algorithms that provide guarantees on feasibility without resorting to expensive projections or inner
constrained solves each round.

© A. Upadhyay, S.B. Moon & A. Hashemi.



Switching Gradient Methods for Constrained Federated Optimization

(ii) Severe bandwidth limits. Deep neural network models involve millions of parameters, yet FL
often operates on commodity wireless or edge networks, where it is infeasible to send full-precision
parameter updates every round. Communication-efficient training requires compression techniques
such as Top-K, Rand-K, or quantization [2, 9, 33].

(iii) Heterogeneous on-device compute. Devices participating in FL varies in orders of magnitude
with their FLOPS, memory, and energy capacity. A common strategy is to allow clients to perform
multiple local updates (E > 1) before each communication round [20], amortizing latency and
increasing utilization. Yet, local updates cause drifts between client and global iterates, complicating
convergence analysis, especially when constraints must be satisfied globally.

Despite the importance of these challenges for real-world FL applications, no existing method
provides provable guarantees that addresses them simultaneously.

Limitations of existing approaches. Constrained versions of FedAvg [14] and primal–dual or
AL/ADMM methods [4, 6, 8, 13, 21, 25, 26, 39] can certify feasibility but rely on dual vari-
able tuning, penalty scheduling, or inner projection steps. These methods also typically assume
synchronous full participation and uncompressed updates, which is unrealistic in FL applications.
Error-feedback compression algorithms, such as EF-SGD and Safe-EF [2, 9, 17, 33], provide ro-
bustness against biased quantization, but do not incorporate local update drift (E > 1). Local-SGD
methods [20] directly address compute heterogeneity but are unconstrained, offering neither feasibil-
ity nor compression robustness. Finally, switching-gradient methods (SGM) [23, 27, 30, 36] provide
a primal-only, projection-free mechanism for constrained optimization: if wt is nearly feasible,
update along∇f ; if not, update along∇g. This design achieves the optimalO(ϵ−2) rate for convex,
possibly non-smooth problems, and recent work [7, 15] extends optimality guarantees to weakly
convex objectives. However, all existing analyses assume centralized, synchronous, full-gradient
access, which is not suitable for federated systems with compression and local updates.

Contributions.

• We investigate FedSGM as a unifying backbone for constrained FL by extending the primal-
only philosophy of SGM. Unlike AL/ADMM-based methods, FedSGM avoids dual-variable
tuning and penalty scheduling, ensuring lightweight per-round computation while certifying
the feasibility of the averaged iterate.

• We analyze FedSGM under multiple local steps (E > 1) by bounding the drift between local
and global iterates. This yields rates of the formO

(
DG

√
E√

T

√
1 + qu

n

)
, whereD := ∥w0−w∗∥,

T is the total number of rounds, G is the Lipschitz constant, and qu the uplink compression
factor. The analysis recovers the canonical 1/

√
T rate from centralized SGM, while explicitly

quantifying the impact of multi-step local updates and compression.

• We extend both hard switching, a binary choice of update, and soft switching [36], a smooth
interpolation between ∇f and ∇g via a smooth weighting function based on the magnitude
of violation. Theorem 2 recovers the hard switching regime while improving stability near
the feasibility boundary, without impacting the convergence rate.

Together, these results provide the first convergence guarantees for constrained FL with uplink-
unbiased compression, multiple local updates, and soft switching.
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2. Problem Setup and Preliminaries

Notation. We write [T ] := {0, 1, . . . , T − 1} for an index set of length T , and [n] := {1, 2, . . . , n}
for the set of all clients. For a set A, |A| denotes its cardinality. We use Id to denote the identity
mapping, i.e., Id(x) = x for all x. For a scalar z ∈ R, we define the positive part operator
[z]+ := max{0, z}. Additionally, 1{·} denotes the standard binary indicator function.

In this work, we consider the problem defined in (1), which is a standard constrained optimization
problem in the FL setting, where fj : Rd → R denotes the local objective of client j and gj : Rd → R
denotes its local constraint function. Here, n is the total number of clients and w ∈ Rd are the
model parameters. The functions f(·) and g(·) represent the global objective and global constraint,
respectively. The goal is to compute an ϵ-solution w̄ that satisfies f(w̄)− f(w∗) ≤ ϵ and g(w̄) ≤ ϵ.
Following are the assumptions used in our analysis.

Assumption 1 Each function fj and gj is convex and G-Lipschitz continuous in Rd. Consequently,
f and g are also convex and G-Lipschitz.

Assumption 2 (Unbiased Compression) Each client j ∈ [n] uses an independent stochastic op-
erator Cj : Rd→Rd such that for all w ∈ Rd, E[Cj(w)] = w,E[∥Cj(w) − w∥2] ≤ qu∥w∥2, where
qu ≥ 0 is the compression factor.

3. FedSGM: Federated Switching Gradient Methods

We introduce FedSGM, a projection-free and duality-free algorithm for constrained optimization
in FL. FedSGM combines Federated learning with the Switching Gradient Method, focusing here
on the setting with: (i) full client participation, (ii) both hard and soft switching between objec-
tive and constraint updates, (iii) multiple local updates per communication round, and (iv) uplink
compression.

At round t, the server collects constraint values {gj(wt)}nj=1 and broadcasts the global average
g(wt). Each client j initializes wt

j,0 = wt and performs E local steps. The update direction is

νtj,τ = (1− σβ(g(wt)− ϵ))∇fj(wt
j,τ ) + σβ(g(wt)− ϵ)∇gj(wt

j,τ ),

where σβ is the switching rule: hard switching σβ(z) = 1{z>0}, or soft switching σβ(z) =
min{1, [1 + βz]+}. Clients then set wt

j,τ+1 = wt
j,τ − ηνtj,τ . After E steps, each client transmits

the compressed difference ∆t
j,E = C((wt − wt

j,E)/η), with C ≡ Id denoting no compression. The
server updates

wt+1 ← wt − η · 1n
n∑

j=1

∆t
j,E .

This unified design (Alg. 1, see Appendix A) cleanly subsumes both hard and soft switching
under compression.

Motivation for Soft Switching. Hard switching enforces a binary rule: each client either optimizes
the objective or the constraint, depending on whether the global violation g(wt) is within the tolerance
ϵ. While simple, this approach is highly sensitive when g(wt) fluctuates around ϵ as already shown in
the centralized case [36]. Such fluctuations can trigger frequent back-and-forth updates, amplifying
client drift and resulting in unstable trajectories.
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Soft switching provides a remedy by introducing a smooth interpolation between the two gradi-
ents [36]. Specifically, the switching weight σβ(g(wt)−ϵ) ensures that near the feasibility boundary,
the update direction is a convex combination of ∇fj and ∇gj , rather than an abrupt choice. This
smooth relaxation suppresses oscillations while preserving convergence guarantees. Our analysis
demonstrates that, even under compression, soft switching attains the same order of convergence
as hard switching, while empirical validation confirms its superior stability near the feasibility
boundary. To the best of our knowledge, this is the first convergence guarantee establishing the
effectiveness of soft switching for constrained FL with compression, thereby extending beyond prior
results restricted to hard switching and single local updates [17]. Next, we state the theorems that
provide the convergence guarantees for FedSGM in Algorithm 1.

Theorem 1 (Hard switching FedSGM) Consider the problem in (1) and Algorithm 1, under
Assumptions 1 and 2 (only for compression). Let D := ∥w0 − w∗∥ and define

A := {t ∈ [T ] | g(wt) ≤ ϵ}, w̄ :=
1

|A|
∑
t∈A

wt.

Let
Γ = 2E2 +

Equ
2n

1{Unbiased Compression},

where qu is client-to-server compression factor. Now, set the constraint threshold and step size as

ϵ =

√
2D2G2Γ

ET
, η =

√
D2

2G2ETΓ
,

then A is nonempty, w̄ is well-defined, and w̄ is an ϵ-solution of (1).

Theorem 2 (Soft switching FedSGM) Consider the problem in (1) and Algorithm 1, under As-
sumptions 1 and 2 (only for compression). Let D := ∥w0 − w∗∥ and define

A = {t ∈ [T ] | g(wt) < ϵ}, w̄ =
∑
t∈A

αtwt, where αt =
1− σβ(g(wt)− ϵ)∑

s∈A
[
1− σβ(g(ws)− ϵ)

] .
Let

Γ = 2E2 +
Equ
2n

1{Unbiased Compression},

where qu is client-to-server compression factor. Now, set the constraint threshold and step size as

ϵ =

√
2D2G2Γ

ET
, η =

√
D2

2G2ETΓ
, and β ≥ 2

ϵ
,

then A is nonempty, w̄ is well-defined, and w̄ is an ϵ-solution of (1).

The details of the proof are present in the Appendix A. Now, we discuss the implications of the
statement of Theorems 1 and 2.
• n = 1, qu = 0, Cj ≡ Id, E = 1 , i.e., centralized with no compression: In this case, we can infer
from Theorems 1 and 2, that rates we receive is O

(
DG/

√
T
)

, corresponding to the rates present
in [23, 28, 36].
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• gj ≡ 0, ∀j ∈ [n], E = 1, i.e., no constraint: In this case, our algorithm reduces to the well-known
FedCOM method [12], where we recover the standard rate of O

(
DG

√
E√

T

√
1 + qu

n

)
.

• qu = 0, Cj = Id , i.e., FedSGM w/ full participation w/o compression: In this case, we can
infer from Theorems 1 and 2 that the sub-optimality gap and constraint value diminish at the rate
of O

(
DG

√
E√

T

)
. The scaling of

√
E captures the effect of client-drift in this federated constrained

setting, deviating from the previous centralized results.
• FedSGM with uplink compression: We focus on the case where only uplink transmissions are
compressed, which captures the dominant communication bottleneck in federated learning. Most
prior works on uplink compression have studied restricted classes of compressors—such as absolute
compression [34] or unbiased operators [10, 11, 29, 35]—and largely target unconstrained or single-
step settings. Recent progress on biased compressors [3, 16, 31] has established convergence
guarantees for unconstrained optimization, while constrained FL with compression has only been
addressed under hard switching and single local updates [17]. In this work, we analyze FedSGM
in the unbiased uplink regime, extending the scope to multiple local updates and, crucially, to
soft switching between objective and constraint updates. To the best of our knowledge, this is
the first convergence result showing that soft switching remains effective in constrained FL under
uplink-unbiased compression, thereby laying the groundwork for subsequent extensions to biased
and bi-directional compression.

4. Numerical Experiments

We evaluate the proposed method in a federated Neyman–Pearson (NP) classification setting with
constrained optimization objectives. The aim is to examine how different switching strategies behave
under uplink compression, with particular focus on convergence, stability, and feasibility.

4.1. NP Classification

We consider the constrained optimization problem in (1), where the objective is to minimize the
empirical loss on the majority class while ensuring that the loss on the minority class remains below
a prescribed tolerance. For each client j, the local objective and constraint are defined as

fj(w) :=
1

mj0

∑
x∈D(0)

j

ϕ(w; (x, 0)), gj(w) :=
1

mj1

∑
x∈D(1)

j

ϕ(w; (x, 1)), (2)

whereD(0)
j andD(1)

j denote local samples of class 0 and class 1, respectively, and mj0,mj1 are their
cardinalities. The function ϕ is the binary logistic loss,

ϕ(w; (x, y)) = −y w⊤x+ log
(
1 + ew

⊤x
)
, y ∈ {0, 1}. (3)

This captures the NP paradigm: f(w) enforces performance on the majority class, while the
constraint g(w) ≤ ϵ ensures the minority class loss does not exceed the tolerance.

We use the breast cancer dataset [37], containing 569 samples with 30 features. To simulate
the federated setting, the data is split in an IID fashion between n = 10 clients, such that each
client receives an equal number of samples and the same class ratio. Each client performs local
gradient descent updates for E = 5 epochs before communication, and the global model is updated
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Switching # Violations

Hard 32.00± 8.49
Soft (β = 50) 7.67± 2.62

Figure 1: Federated NP classification results under Rand-K compression with K = 9. Left:
evolution of the class-0 objective loss f(w); Middle: class-1 constraint loss g(w) relative to the
tolerance ε = 0.1; Right: number of constraint violations (out of 100 rounds). Results are averaged
over three random seeds and reported as mean ± standard deviation.

for T = 100 communication rounds. We compare both hard and soft switching using a tolerance
ε = 0.1.

For communication efficiency, we evaluate using Rand-K [12, 32] compressor, which transmits
a fraction K/d of coordinates with unbiased scaling. Performance is measured in terms of the
majority-class objective loss f(w), the minority-class constraint loss g(w), and the number of
rounds in which the feasibility condition g(w) ≤ ε is violated. Each experiment is repeated with
three random seeds, and we report mean trajectories with variance bands. From Figure 1, we observe
that both hard and soft switching achieve convergence of the majority-class objective f(w). However,
soft switching exhibits markedly improved stability in the constraint g(w): while hard switching
frequently oscillates around the tolerance, soft switching maintains feasibility more consistently.
This translates into a substantial reduction in the number of violations, with soft switching yielding
around 4× fewer violations compared to hard switching. Notably, this improvement in feasibility is
achieved without compromising the convergence behavior of the objective loss, and in fact ensures
more stable results as evident from the variance plots, highlighting the advantage of soft switching
in balancing accuracy and constraint satisfaction under communication compression.

5. Conclusion

FedSGM provides a unified algorithmic framework for constrained federated learning by integrating
projection-free and duality-free switching-gradient methods with multi-step local updates and uplink
compression. Our analysis provides the first convergence guarantees in this regime, yielding rates
of order O

(
DG

√
E√

T

√
1 + qu

n

)
with explicit dependence on the compression factor, and recovers

classical centralized and FedCOM bounds as special cases. Beyond hard switching, we demonstrated
that soft switching recovers the hard regime when β ≥ 2/ε, but is empirically more stable near the
feasibility boundary, suppressing oscillations without altering the rate. Overall, FedSGM robustly
balances feasibility, client drift, and communication efficiency, and lays the foundation for extensions
to biased/bidirectional compression and partial participation.
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Appendix A. Appendix

Algorithm 1: FedSGM(T,E, Cj , η, β)
Input: Number of rounds T ; local updates E; compression operator Cj (with Cj = Id denoting

no compression); learning rate η; initial model w0; switching rule σβ(·) (hard or soft)
for t← 0 to T − 1 do

foreach client j ∈ [n] // in parallel do
send gj(wt) to server // cheap single float communication

end
compute g(wt)← 1

n

∑n
j=1 gj(wt) and broadcast;

foreach client j ∈ [n] // in parallel do
set wt

j,0 ← wt;
for τ ← 0 to E − 1 do

compute switching weight αt ← σβ(g(wt)− ϵ);
update direction νtj,τ ← (1− αt)∇fj(wt

j,τ ) + αt∇gj(wt
j,τ );

update wt
j,τ+1 ← wt

j,τ − ηνtj,τ ;
end

send ∆t
j,E ← Cj

(
wt−wt

j,E

η

)
to server;

end
server computes wt+1 ← wt − η · 1n

∑n
j=1∆

t
j,E and broadcasts;

end

A.1. Lemmas

Lemma 3 (Bound on the Expected Norm of Compressed Aggregates) Under Assumptions 1 and
2, for all rounds t ∈ [T ], the following bound holds,

ECj

∥∥∥∥∥∥ 1n
n∑

j=1

Cj

(
E−1∑
τ=0

νtj,τ

)∥∥∥∥∥∥
2 ≤ (qu

n
+ 1
)
E2G2.

Proof Let Xt
j :=

∑E−1
τ=0 νtj,τ . We aim to bound:

ECj

∥∥∥∥∥∥ 1n
n∑

j=1

Cj(Xt
j)

∥∥∥∥∥∥
2 .

Using the identity for the second moment:

E[∥Y ∥2] = ∥E[Y ]∥2 + E[∥Y − E[Y ]∥2],
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we apply this to our setup:

ECj

∥∥∥∥∥∥ 1n
n∑

j=1

Cj(Xt
j)

∥∥∥∥∥∥
2 =

∥∥∥∥∥∥ 1n
n∑

j=1

Xt
j

∥∥∥∥∥∥
2

+ ECj

∥∥∥∥∥∥ 1n
n∑

j=1

(
Cj(Xt

j)−Xt
j

)∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥ 1n
n∑

j=1

Xt
j

∥∥∥∥∥∥
2

+
1

n2

n∑
j=1

ECj
[
∥Cj(Xt

j)−Xt
j∥2
]
,

where the inequality uses independence across j and linearity of expectation. Applying Assumption 2
(variance bound of the compression operator), ECj

[
∥Cj(Xt

j)−Xt
j∥2
]
≤ qu∥Xt

j∥2, we get,

ECj

∥∥∥∥∥∥ 1n
n∑

j=1

Cj(Xt
j)

∥∥∥∥∥∥
2 ≤

∥∥∥∥∥∥ 1n
n∑

j=1

Xt
j

∥∥∥∥∥∥
2

+
qu
n2

n∑
j=1

∥Xt
j∥2

Jensen′s
≤ 1

n

n∑
j=1

∥Xt
j∥2 +

qu
n2

n∑
j=1

∥Xt
j∥2

=
(qu
n

+ 1
)
· 1
n

n∑
j=1

∥Xt
j∥2.

Now substitute Xt
j =

∑E−1
τ=0 νtj,τ and apply Jensen’s inequality again,

1

n

n∑
j=1

∥Xt
j∥2 =

1

n

n∑
j=1

∥∥∥∥∥
E−1∑
τ=0

νtj,τ

∥∥∥∥∥
2

≤ 1

n

n∑
j=1

E
E−1∑
τ=0

∥νtj,τ∥2

G−Lip
≤ E2G2.

Hence,

ECj

∥∥∥∥∥∥ 1n
n∑

j=1

Cj(Xt
j)

∥∥∥∥∥∥
2 ≤ (qu

n
+ 1
)
E2G2.

Lemma 4 (Inner Product Bound under Compression and Switching) Under Assumptions 1 and 2,
for all rounds t ∈ [T ], the following bound holds,

ECj

−2η〈wt − w∗,
1

n

n∑
j=1

Cj

(
E−1∑
τ=0

νtj,τ

)〉 = −2η

〈
wt − w∗,

1

n

n∑
j=1

E−1∑
τ=0

νtj,τ

〉

≤ 1

n

n∑
j=1

E−1∑
τ=0


η

α
∥wt − wt

j,τ∥2 + ηαG2 + 2η(fj(w
∗)− fj(w

t
j,τ )), if t ∈ A,

η

α
∥wt − wt

j,τ∥2 + ηαG2 + 2η(gj(w
∗)− gj(w

t
j,τ )), if t ∈ B.

11
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Proof We now analyze the cross term in the squared distance recursion,

−2η

〈
wt − w∗,

1

n

n∑
j=1

E−1∑
τ=0

νtj,τ

〉
=

1

n

n∑
j=1

E−1∑
τ=0

−2η 〈wt − wt
j,τ , ν

t
j,τ

〉︸ ︷︷ ︸
TermA

−2η
〈
wt
j,τ − w∗, νtj,τ

〉︸ ︷︷ ︸
TermB

 .

We handle the second term by applying the convexity of fj or gj . For t ∈ A, where updates use
∇fj we apply:

fj(w
∗) ≥ fj(w

t
j,τ ) +

〈
∇fj(wt

j,τ ), w
∗ − wt

j,τ

〉
,

which implies:
−
〈
wt
j,τ − w∗,∇fj(wt

j,τ )
〉
≤ fj(w

∗)− fj(w
t
j,τ ).

Thus,
TermB = −2η

〈
wt
j,τ − w∗,∇fj(wt

j,τ )
〉
≤ 2η

(
fj(w

∗)− fj(w
t
j,τ )
)
.

A similar argument holds for t ∈ B with ∇gj , resulting in TermB ≤ 2η
(
gj(w

∗)− gj(w
t
j,τ )
)

.
Again, while upper bounding TermA, we need to deal with 2 cases depending on whether t ∈ A or
t ∈ B. Firstly, we start with the case where t ∈ A, for any α > 0

TermA = −2η
〈
wt − wt

j,τ ,∇fj(wt
j,τ )
〉 Young’s
≤ η

α
∥wt − wt

j,τ∥2 + ηα∥∇fj(wt
j,τ )∥2

G−Lip
≤ η

α
∥wt − wt

j,τ∥2 + ηαG2.

Similarly, for t ∈ B, we get

TermA = −2η
〈
wt − wt

j,τ ,∇fj(wt
j,τ )
〉
≤ η

α
∥wt − wt

j,τ∥2 + ηαG2.

Substituting the bounds for both TermA and TermB back into the original expectation furnishes
the proof.

Lemma 5 (Global-local iterate bound) Under Assumptions 1, for all rounds t ∈ [T ], the following
bound holds,

E−1∑
τ=0

∥wt − wt
j,τ∥2 ≤

1

3
η2E3G2

Proof

∥wt − wt
j,τ∥2 =

∥∥∥∥∥wt −

(
wt − η

τ−1∑
k=0

νtj,k

)∥∥∥∥∥
2

= η2

∥∥∥∥∥
τ−1∑
k=0

νtj,k

∥∥∥∥∥
2

Jensen′s
≤ η2τ

τ−1∑
k=0

∥νtj,k∥2

G−Lip
≤ η2τ2G2

12
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Therefore,

E−1∑
τ=0

∥wt − wt
j,τ∥2

sum of squares
≤ 1

3
η2E3G2.

A.2. Main Theorem FedSGM—Unbiased Compression

A.2.1. Hard Switching — Full Participation

Theorem 6 (FedSGCM) Consider the problem in eq. (1) and Algorithm 1, under Assumptions 1
and 2. Define D := ∥w0 − w∗∥ and

A = {t ∈ [T ] | g(wt) ≤ ϵ}, w̄ =
1

|A|
∑
t∈A

wt.

Then, if

ϵ =

√
2D2G2Γ

ET
, and η =

√
D2

2G2ETΓ
, where Γ = 2E2 +

Equ
2n

it holds that A is nonempty, w̄ is well-defined, and w̄ is an ϵ-solution for P .

Proof Using Algorithm 1, the update rule for the global model is

wt+1 = wt − η · 1
n

n∑
j=1

Cj

(
E−1∑
τ=0

νtj,τ

)
, (4)

where we define the compressed update using a stochastic compression operator Cj(·), and also

E−1∑
τ=0

νtj,τ =
wt − wt

j,E

η
.

We analyze the squared distance to the optimal point w∗ as follows,

∥wt+1 − w∗∥2 =

∥∥∥∥∥∥wt − η · 1
n

n∑
j=1

Cj

(
E−1∑
τ=0

νtj,τ

)
− w∗

∥∥∥∥∥∥
2

= ∥wt − w∗∥2 + η2

∥∥∥∥∥∥ 1n
n∑

j=1

Cj

(
E−1∑
τ=0

νtj,τ

)∥∥∥∥∥∥
2

−2η

〈
wt − w∗,

1

n

n∑
j=1

Cj

(
E−1∑
τ=0

νtj,τ

)〉

13
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Taking the expectation with respect to the compression operator Cj and using Lemmas 3 and 4, we
get

∥wt+1 − w∗∥2 ≤ ∥wt − w∗∥2 + η2
(qu
n

+ 1
)
E2G2 + ηαEG2

+
η

αn

n∑
j=1

E−1∑
τ=0

∥wt − wt
j,τ∥2

+
2η

n

n∑
j=1

E−1∑
τ=0

(fj(w
∗)− fj(w

t
j,τ ))1{t ∈ A}

+
2η

n

n∑
j=1

E−1∑
τ=0

(gj(w
∗)− gj(w

t
j,τ ))1{t ∈ B}. (5)

Now our goal is to handle the term fj(w
∗)− fj(w

t
j,τ ), so we first rewrite,

fj(w
t
j,τ ) ≥ fj(wt) + ⟨∇fj(wt), w

t
j,τ − wt⟩ (by convexity)

⇒ fj(w
∗)− fj(w

t
j,τ ) ≤ fj(w

∗)− fj(wt)− ⟨∇fj(wt), w
t
j,τ − wt⟩.

Using Young’s inequality with parameter α > 0, we get

−⟨∇fj(wt), w
t
j,τ − wt⟩ ≤

1

2α
∥wt

j,τ − wt∥2 +
α

2
∥∇fj(wt

t)∥2.

Thus, we get,

fj(w
∗)− fj(w

t
j,τ ) ≤ fj(w

∗)− fj(wt) +
1

2α
∥wt − wt

j,τ∥2 +
α

2
∥∇fj(wt)∥2

G−Lip
≤ fj(w

∗)− fj(wt) +
1

2α
∥wt − wt

j,τ∥2 +
α

2
G2.

Similarly, we can handle the other term with g and get,

gj(w
∗)− gj(w

t
j,τ ) ≤ gj(w

∗)− gj(wt) +
1

2α
∥wt − wt

j,τ∥2 +
α

2
G2.

So, putting these inequalities back in eq. (5) along with the use of Lemma 5 and eq. (1), we get

∥wt+1 − w∗∥2 ≤ ∥wt − w∗∥2 + η2
(qu
n

+ 1
)
E2G2 + 2ηαEG2 +

2

3α
η3E3G2

+ 2ηE(f(w∗)− f(wt))1{t ∈ A}+ 2ηE(g(w∗)− g(wt))1{t ∈ B}.

Now, for α = η, and rearranging the terms we get

(f(wt)− f(w∗))1{t ∈ A}+ (g(wt)− g(w∗))1{t ∈ B} ≤ ∥wt − w∗∥2 − ∥wt+1 − w∗∥2

2ηE

+
η

2

(qu
n

+ 1
)
EG2 + ηG2 +

1

3
ηE2G2.

14
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Defining D := ∥w0 − w∗∥ and summing the expression above for t = 0, 1, · · · , T − 1 and then
dividing by T , we get

1

T

∑
t∈A

(f(wt)− f(w∗)) +
1

T

∑
t∈B

(g(wt)− g(w∗)) ≤ D2

2ηET
+

η

2

(qu
n

+ 1
)
EG2 + ηG2 +

1

3
ηE2G2.

Now choosing η =
√

D2

2G2ETΓ
, where Γ = 1

2

( qu
n + 1

)
E + 1 + 1

3E
2, we get

1

T

∑
t∈A

(f(wt)− f(w∗)) +
1

T

∑
t∈B

(g(wt)− g(w∗)) ≤
√

2D2G2Γ

ET
.

Note that when ϵ is sufficiently large,A is nonempty. Assuming an emptyA, we can find the largest
“bad” ϵ:

ϵbad <
1

T

∑
t∈B

g(wt)− g(w∗) ≤
√

2D2G2Γ

ET

Thus, let us set ϵ = (N + 1)
√

2D2G2Γ
ET for some N ≥ 0. With this choice, A is guaranteed to be

nonempty.
Now, we consider two cases. Either

∑
t∈A f(wt)− f(w∗) ≤ 0 which implies by the convexity

of f and g for w̄ = 1
|A|
∑

t∈Awt we have

f(w̄)− f(w∗) ≤ 0 < ϵ, g(w̄) ≤ ϵ. (6)

Otherwise, if
∑

t∈A f(wt)− f(w∗) > 0, then√
2D2G2Γ

ET
≥ 1

T

∑
t∈A

f(wt)− f(w∗) +
1

T

∑
t∈B

g(wt)− g(w∗)

>
1

T

∑
t∈A

f(wt)− f(w∗) +
1

T

∑
t∈B

ϵ

=
|A|
T

1

|A|
∑
t∈A

f(wt)− f(w∗) + (1− |A|
T

)ϵ

≥ |A|
T

(
f(w̄)− f(w∗)

)
+ (1− |A|

T
)ϵ.

(7)

By rearranging

|A|
T

(
f(w̄)− f(w∗)− ϵ

)
<

√
2D2G2Γ

ET
− ϵ ≤ −N

√
2D2G2Γ

ET
, (8)

Implying f(w̄) − f(w∗) < ϵ and further by convexity of g for w̄ = 1
|A|
∑

t∈Awt, we also have
g(w̄) ≤ ϵ.
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A.2.2. Soft Switching — Full Participation

Theorem 7 (FedSSGCM) Consider the problem in (1) and Algorithm 1, under Assumption 1.
Define D := ∥w0 − w∗∥ and

A = {t ∈ [T ] | g(wt) < ϵ}, w̄ =
∑
t∈A

αtwt,

where
αt =

1− σβ(g(wt)− ϵ)∑
t∈A[1− σβ(g(wt)− ϵ)]

. (9)

Then, if

ϵ =

√
2D2G2Γ

ET
, η =

√
D2

2G2ETΓ
, and β =

2

ϵ
where Γ = 2E2 +

Eq

2n

it holds that A is nonempty, w̄ is well-defined, and w̄ is an ϵ-solution for P .

Proof Using Algorithm 1, the update rule for the global model is

wt+1 = wt − η · 1
n

n∑
j=1

Cj

(
E−1∑
τ=0

νtj,τ

)
,

where, νtj,τ = σβ(g(wt)− ϵ)∇gj(wt
j,τ ) + (1− σβ(g(wt)− ϵ))∇fj(wt

j,τ )

We analyze the squared distance to the optimal point w∗ as follows,

∥wt+1 − w∗∥2 =

∥∥∥∥∥∥wt − η · 1
n

n∑
j=1

Cj

(
E−1∑
τ=0

νtj,τ

)
− w∗

∥∥∥∥∥∥
2

= ∥wt − w∗∥2 + η2

∥∥∥∥∥∥ 1n
n∑

j=1

Cj

(
E−1∑
τ=0

νtj,τ

)∥∥∥∥∥∥
2

︸ ︷︷ ︸
Term−A

−2η

〈
wt − w∗,

1

n

n∑
j=1

Cj

(
E−1∑
τ=0

νtj,τ

)〉
︸ ︷︷ ︸

Term−B

Firstly, we start with upper-bounding Term − A. Taking the expectation with respect to the
compression operator Cj and using Lemmas 3 and the fact that σβ(·) ∈ [0, 1], we have

EC [Term−A] ≤ η2
(qu
n

+ 1
)
E2G2.

Now we aim to upper bound Term−B. First, we take the expectation with respect to Cj and

ECj [Term−B] = −2η

〈
wt − w∗,

1

n

n∑
j=1

E−1∑
τ=0

νtj,τ

〉

=
1

n

n∑
j=1

E−1∑
τ=0

−2η
〈
wt − w∗, νtj,τ

〉

=
1

n

n∑
j=1

E−1∑
τ=0

−2η 〈wt − wt
j,τ , ν

t
j,τ

〉︸ ︷︷ ︸
Term−B1

−2η
〈
wt
j,τ − w∗, νtj,τ )

〉︸ ︷︷ ︸
Term−B2


16
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Now we define σt
β = σβ(g(wt)− ϵ) before we start upper bounding Term−B1 for any α > 0.

Term−B1 = −2η
〈
wt − wt

j,τ , ν
t
j,τ

〉
= −2ησt

β

〈
wt − wt

j,τ , gj(w
t
j,τ )
〉
− 2η(1− σt

β)
〈
wt − wt

j,τ , fj(w
t
j,τ )
〉

Y oung′s
≤ σt

β

[ η
α
∥wt − wt

j,τ∥2 + ηα∥∇gj(wt
j,τ )∥2

]
+ (1− σt

β)
[ η
α
∥wt − wt

j,τ∥2 + ηα∥∇fj(wt
j,τ )∥2

]
G−Lip
≤ η

α
∥wt − wt

j,τ∥2 + ηαG2

Similarly, we start to upper bound Term−B2 as well.

Term−B2 = −2η
〈
wt
j,τ − w∗, νtj,τ )

〉
= −2ησt

β

〈
wt
j,τ − w∗, gj(w

t
j,τ )
〉
− 2η(1− σt

β)
〈
wt
j,τ − w∗, fj(w

t
j,τ )
〉

Cvx.
≤ 2ησt

β

(
gj(w

∗)− gj(w
t
j,τ )
)
+ 2η(1− σt

β)
(
fj(w

∗)− fj(w
t
j,τ )
)

≤2ησt
β

[
gj(w

∗)− gj(wt) +
1

2α
∥wt − wt

j,τ∥2 +
α

2
G2

]
(by Cvx., Young’s, & G-Lip)

+ 2η(1− σt
β)

[
fj(w

∗)− fj(wt) +
1

2α
∥wt − wt

j,τ∥2 +
α

2
G2

]
Putting Term−B1 and Term−B2 back in Term−B, we get

ECj [Term−B] ≤ 1

n

n∑
j=1

E−1∑
τ=0

[
2η

α
∥wt − wt

j,τ∥2 + 2ηαG2 + 2ησt
β (gj(w

∗)− gj(wt))

+2η(1− σt
β) (fj(w

∗)− fj(wt))
]

Lemma 5
≤ 2

3α
η3E3G2 + 2ηαEG2 + 2ηEσt

β (g(w
∗)− g(wt))

+ 2ηE(1− σt
β) (f(w

∗)− f(wt))

Substituting Term−A and Term−B back in the original expression after taking the expectation
w.r.t Cj , we get for α = η

∥wt+1 − w∗∥2 ≤ ∥wt − w∗∥2 + η2
(qu
n

+ 1
)
E2G2 + 2η2EG2 +

2

3
η2E3G2

+ 2ηEσt
β (g(w

∗)− g(wt)) + 2ηE(1− σt
β) (f(w

∗)− f(wt))

Let A = {t ∈ [T ]|g(wt) < ϵ} and B = [T ]\A = {t ∈ [T ]|g(wt) ≥ ϵ}. Note that for all t ∈ B it
holds that σβ(g(wt)− ϵ) = 1 and g(wt)− g(w∗) ≥ ϵ. Further, for all t ∈ A if σβ(g(wt)− ϵ) ≥ 0
it holds that g(wt)− g(w∗) ≥ g(wt) ≥ ϵ− 1/β. With these observations, using convexity of f and
g and decomposing the sum over t according to the definitions ofA and B and division by T yields,

D2

2ηE
+

η

2

(qu
n

+ 1
)
EG2T + ηG2T +

1

3
ηEG2T ≥

∑
t∈A

σt
β (g(wt)− g(w∗)) +

∑
t∈B

(g(wt)− g(w∗))

+
∑
t∈A

(1− σt
β) (f(wt)− f(w∗)) .
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Now choosing η =
√

D2

2G2ETΓ
, where Γ = 1

2

( qu
n + 1

)
E + 1 + 1

3E
2, we get√

2D2G2TΓ

E
≥
∑
t∈A

σt
β (g(wt)− g(w∗)) +

∑
t∈A

(1− σt
β) (f(wt)− f(w∗)) +

∑
t∈B

(g(wt)− g(w∗))

≥
∑
t∈A

(1− σt
β) (f(wt)− f(w∗)) + ϵ|B|+

(
ϵ− 1

β

)∑
t∈A

σt
β .

(10)
Similar to the previous proofs, we first need to find the smallest ϵ to ensure A is non-empty. So,
to find a lower bound on ϵ, assume A is empty in eq. (10) and observe that as long as condition√

2D2G2Γ
ET < ϵ is met, A is non-empty. We choose to set ϵ = 2

√
2D2G2Γ

ET . Now, like before, we
consider two cases based on the sign of

∑
t∈A

(
1− σt

β

)(
f(wt)− f(w∗)

)
. As before, when the sum

is non-positive we are done by the definition of A, which implies 0 < 1 − σβ(g(wt) − ϵ) ≤ 1 and
the convexity of f and g.

Assuming the sum is positive, dividing eq. (10) by
∑

t∈A
(
1 − σt

β

)
(which by the definition of

A is strictly positive), using convexity of f , and the definition of w̄, we have

f(w̄)− f(w∗) ≤
0.5ϵT − ϵ|B| − (ϵ− 1

β )
∑

t∈A σt
β

|A| −
∑

t∈A σβ(g(wt)− ϵ)

= ϵ+
−0.5ϵT + β−1

∑
t∈A σt

β

|A| −
∑

t∈A σt
β

,

where we used |B| = T − |A|.
Let us now find a lower bound on β to ensure the second term in the bound is non-positive.

Note this is done for simplicity, and as long as the second term is O(ϵ), an ϵ-solution can be found.
Immediate calculations show the second term in the bound is non-positive when

β ≥
2
∑

t∈A σt
β

ϵT
.

Since
∑

t∈A σt
β < T , a sufficient (and highly conservative) condition for all T ≥ 1 is to set β ≥ 2/ϵ.

Thus, we proved the suboptimality gap result. The feasibility result is immediate given the definition
of A and the convexity of g.

A.3. Main Theorem FedSGM

A.3.1. Hard Switching — Full Participation

Theorem 8 (FedHSGM) Consider the problem in eq. (1), under Assumption 1. Define D :=
∥w0 − w∗∥ and

A = {t ∈ [T ] | g(wt) ≤ ϵ}, w̄ =
1

|A|
∑
t∈A

wt.

Then, if

ϵ =

√
4D2G2E

T
, and η =

√
D2

4G2E3T

it holds that A is nonempty, w̄ is well-defined, and w̄ is an ϵ-solution for P .

18
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Proof Using Algorithm 1, the update rule for the global model is

wt+1 = wt − η · 1
n

n∑
j=1

E−1∑
τ=0

νtj,τ , (11)

We analyze the squared distance to the optimal point w∗ as follows,

∥wt+1 − w∗∥2 =

∥∥∥∥∥∥wt − η · 1
n

n∑
j=1

E−1∑
τ=0

νtj,τ − w∗

∥∥∥∥∥∥
2

= ∥wt − w∗∥2 + η2

∥∥∥∥∥∥ 1n
n∑

j=1

E−1∑
τ=0

νtj,τ

∥∥∥∥∥∥
2

︸ ︷︷ ︸
Term−A

−2η

〈
wt − w∗,

1

n

n∑
j=1

E−1∑
τ=0

νtj,τ

〉
︸ ︷︷ ︸

Term−B

Firstly, we start with upper-bounding Term−A.

Term−A = η2

∥∥∥∥∥∥ 1n
n∑

j=1

E−1∑
τ=0

νtj,τ

∥∥∥∥∥∥
2

Jensen′s
≤ η2

1

n

n∑
j=1

E

E−1∑
τ=0

∥∥νtj,τ∥∥2
G−Lip
≤ η2E2G2

Now we can use Lemma 4 to bound Term− B. So, putting Term− A and Term− B back into
the expression we get

∥wt+1 − w∗∥2 ≤ ∥wt − w∗∥2 + η2E2G2 + ηαEG2

+
η

αn

n∑
j=1

E−1∑
τ=0

∥wt − wt
j,τ∥2

+
2η

n

n∑
j=1

E−1∑
τ=0

(fj(w
∗)− fj(w

t
j,τ ))1{t ∈ A}

+
2η

n

n∑
j=1

E−1∑
τ=0

(gj(w
∗)− gj(w

t
j,τ ))1{t ∈ B}. (12)

Now our goal is to handle the term fj(w
∗)− fj(w

t
j,τ ), so we first rewrite,

fj(w
t
j,τ ) ≥ fj(wt) + ⟨∇fj(wt), w

t
j,τ − wt⟩ (by convexity)

⇒ fj(w
∗)− fj(w

t
j,τ ) ≤ fj(w

∗)− fj(wt)− ⟨∇fj(wt), w
t
j,τ − wt⟩.

Using Young’s inequality with parameter α > 0, we get

−⟨∇fj(wt), w
t
j,τ − wt⟩ ≤

1

2α
∥wt

j,τ − wt∥2 +
α

2
∥∇fj(wt

t)∥2.

Thus, we get,
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fj(w
∗)− fj(w

t
j,τ ) ≤ fj(w

∗)− fj(wt) +
1

2α
∥wt − wt

j,τ∥2 +
α

2
∥∇fj(wt)∥2

G−Lip
≤ fj(w

∗)− fj(wt) +
1

2α
∥wt − wt

j,τ∥2 +
α

2
G2.

Similarly, we can handle the other term with g and get,

gj(w
∗)− gj(w

t
j,τ ) ≤ gj(w

∗)− gj(wt) +
1

2α
∥wt − wt

j,τ∥2 +
α

2
G2.

So, putting these inequalities back in eq. (12) along with the use of Lemma 5 and eq. (1), we get

∥wt+1 − w∗∥2 ≤ ∥wt − w∗∥2 + η2E2G2 + 2ηαEG2 +
2

3α
η3E3G2

+ 2ηE(f(w∗)− f(wt))1{t ∈ A}+ 2ηE(g(w∗)− g(wt))1{t ∈ B}.

Now, for α = η, and rearranging the terms we get

(f(wt)− f(w∗))1{t ∈ A}+ (g(wt)− g(w∗))1{t ∈ B} ≤ ∥wt − w∗∥2 − ∥wt+1 − w∗∥2

2ηE

+
η

2
EG2 + ηG2 +

1

3
ηE2G2.

Defining D := ∥w0 − w∗∥ and summing the expression above for t = 0, 1, · · · , T − 1 and then
dividing by T , we get

1

T

∑
t∈A

(f(wt)− f(w∗)) +
1

T

∑
t∈B

(g(wt)− g(w∗)) ≤ D2

2ηET
+

η

2
EG2 + ηG2 +

1

3
ηE2G2.

Now choosing η =
√

D2

2G2ETΓ
, where Γ = 1

2E + 1 + 1
3E

2, we get

1

T

∑
t∈A

(f(wt)− f(w∗)) +
1

T

∑
t∈B

(g(wt)− g(w∗)) ≤
√

2D2G2Γ

ET
.

Note that when ϵ is sufficiently large,A is nonempty. Assuming an emptyA, we can find the largest
“bad” ϵ:

ϵbad <
1

T

∑
t∈B

g(wt)− g(w∗) ≤
√

2D2G2Γ

ET

Thus, let us set ϵ = (N + 1)
√

2D2G2Γ
ET for some N ≥ 0. With this choice, A is guaranteed to be

nonempty.
Now, we consider two cases. Either

∑
t∈A f(wt)− f(w∗) ≤ 0 which implies by the convexity

of f and g for w̄ = 1
|A|
∑

t∈Awt we have

f(w̄)− f(w∗) ≤ 0 < ϵ, g(w̄) ≤ ϵ. (13)
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Otherwise, if
∑

t∈A f(wt)− f(w∗) > 0, then√
2D2G2Γ

ET
≥ 1

T

∑
t∈A

f(wt)− f(w∗) +
1

T

∑
t∈B

g(wt)− g(w∗)

>
1

T

∑
t∈A

f(wt)− f(w∗) +
1

T

∑
t∈B

ϵ

=
|A|
T

1

|A|
∑
t∈A

f(wt)− f(w∗) + (1− |A|
T

)ϵ

≥ |A|
T

(
f(w̄)− f(w∗)

)
+ (1− |A|

T
)ϵ.

(14)

By rearranging

|A|
T

(
f(w̄)− f(w∗)− ϵ

)
<

√
2D2G2Γ

ET
− ϵ ≤ −N

√
2D2G2Γ

ET
, (15)

Implying f(w̄) − f(w∗) < ϵ and further by convexity of g for w̄ = 1
|A|
∑

t∈Awt, we also have
g(w̄) ≤ ϵ.

A.3.2. Soft Switching — Full participation

Theorem 9 (FedSSGM) Consider the problem in (1) and Algorithm 1, under Assumption 1. Define
D := ∥w0 − w∗∥ and

A = {t ∈ [T ] | g(wt) < ϵ}, w̄ =
∑
t∈A

αtwt,

where
αt =

1− σβ(g(wt)− ϵ)∑
t∈A[1− σβ(g(wt)− ϵ)]

. (16)

Then, if

ϵ =

√
4D2G2E

T
, η =

√
D2

4G2E3T
, and β =

2

ϵ

it holds that A is nonempty, w̄ is well-defined, and w̄ is an ϵ-solution for P .

Proof Using Algorithm 1, the update rule for the global model is

wt+1 = wt − η · 1
n

n∑
j=1

E−1∑
τ=0

νtj,τ ,

where, νtj,τ = σβ(g(wt)− ϵ)∇gj(wt
j,τ ) + (1− σβ(g(wt)− ϵ))∇fj(wt

j,τ )
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We analyze the squared distance to the optimal point w∗ as follows,

∥wt+1 − w∗∥2 =

∥∥∥∥∥∥wt − η · 1
n

n∑
j=1

E−1∑
τ=0

νtj,τ − w∗

∥∥∥∥∥∥
2

= ∥wt − w∗∥2 + η2

∥∥∥∥∥∥ 1n
n∑

j=1

E−1∑
τ=0

νtj,τ

∥∥∥∥∥∥
2

︸ ︷︷ ︸
Term−A

−2η

〈
wt − w∗,

1

n

n∑
j=1

E−1∑
τ=0

νtj,τ

〉
︸ ︷︷ ︸

Term−B

(17)

Firstly, we start with upper-bounding Term−A.

Term−A = η2

∥∥∥∥∥∥ 1n
n∑

j=1

E−1∑
τ=0

νtj,τ

∥∥∥∥∥∥
2

Jensen′s
≤ η2

1

n

n∑
j=1

E
E−1∑
τ=0

∥∥νtj,τ∥∥2
G−Lip & σβ(·)∈[0,1]

≤ η2E2G2

Now we aim to upper bound Term−B.

Term−B = −2η

〈
wt − w∗,

1

n

n∑
j=1

E−1∑
τ=0

νtj,τ

〉

=
1

n

n∑
j=1

E−1∑
τ=0

−2η
〈
wt − w∗, νtj,τ

〉

=
1

n

n∑
j=1

E−1∑
τ=0

−2η 〈wt − wt
j,τ , ν

t
j,τ

〉︸ ︷︷ ︸
Term−B1

−2η
〈
wt
j,τ − w∗, νtj,τ )

〉︸ ︷︷ ︸
Term−B2


Now we define σt

β = σβ(g(wt)− ϵ) before we start upper bounding Term−B1 for any α > 0.

Term−B1 = −2η
〈
wt − wt

j,τ , ν
t
j,τ

〉
= −2ησt

β

〈
wt − wt

j,τ , gj(w
t
j,τ )
〉
− 2η(1− σt

β)
〈
wt − wt

j,τ , fj(w
t
j,τ )
〉

Y oung′s
≤ σt

β

[ η
α
∥wt − wt

j,τ∥2 + ηα∥∇gj(wt
j,τ )∥2

]
+ (1− σt

β)
[ η
α
∥wt − wt

j,τ∥2 + ηα∥∇fj(wt
j,τ )∥2

]
G−Lip
≤ η

α
∥wt − wt

j,τ∥2 + ηαG2

Similarly, we start to upper bound Term−B2 as well.

Term−B2 = −2η
〈
wt
j,τ − w∗, νtj,τ )

〉
= −2ησt

β

〈
wt
j,τ − w∗, gj(w

t
j,τ )
〉
− 2η(1− σt

β)
〈
wt
j,τ − w∗, fj(w

t
j,τ )
〉

Cvx.
≤ 2ησt

β

(
gj(w

∗)− gj(w
t
j,τ )
)
+ 2η(1− σt

β)
(
fj(w

∗)− fj(w
t
j,τ )
)

≤2ησt
β

[
gj(w

∗)− gj(wt) +
1

2α
∥wt − wt

j,τ∥2 +
α

2
G2

]
(by Cvx., Young’s, & G-Lip)

+ 2η(1− σt
β)

[
fj(w

∗)− fj(wt) +
1

2α
∥wt − wt

j,τ∥2 +
α

2
G2

]
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Putting Term−B1 and Term−B2 back in Term−B, we get

Term−B ≤ 1

n

n∑
j=1

E−1∑
τ=0

[
2η

α
∥wt − wt

j,τ∥2 + 2ηαG2 + 2ησt
β (gj(w

∗)− gj(wt))

+2η(1− σt
β) (fj(w

∗)− fj(wt))
]

Lemma 5
≤ 2

3α
η3E3G2 + 2ηαEG2 + 2ηEσt

β (g(w
∗)− g(wt))

+ 2ηE(1− σt
β) (f(w

∗)− f(wt))

Substituting Term−A and Term−B back in eq. (17), we get for α = η

∥wt+1 − w∗∥2 ≤ ∥wt − w∗∥2 + η2E2G2 + 2η2EG2 +
2

3
η2E3G2 + 2ηEσt

β (g(w
∗)− g(wt))

+ 2ηE(1− σt
β) (f(w

∗)− f(wt))

Let A = {t ∈ [T ]|g(wt) < ϵ} and B = [T ]\A = {t ∈ [T ]|g(wt) ≥ ϵ}. Note that for all t ∈ B it
holds that σβ(g(wt)− ϵ) = 1 and g(wt)− g(w∗) ≥ ϵ. Further, for all t ∈ A if σβ(g(wt)− ϵ) ≥ 0
it holds that g(wt)− g(w∗) ≥ g(wt) ≥ ϵ− 1/β. With these observations, using convexity of f and
g and decomposing the sum over t according to the definitions ofA and B and division by T yields,

D2

2ηE
+

1

2
ηEG2T + ηG2T +

1

3
ηE2G2T ≥

∑
t∈A

σt
β (g(wt)− g(w∗)) +

∑
t∈A

(1− σt
β) (f(wt)− f(w∗))

+
∑
t∈B

(g(wt)− g(w∗)) .

Now choosing η =
√

D2

2G2ETΓ
, where Γ = 1

2E + 1 + 1
3E

2, we get√
2D2G2TΓ

E
≥
∑
t∈A

σt
β (g(wt)− g(w∗)) +

∑
t∈A

(1− σt
β) (f(wt)− f(w∗)) +

∑
t∈B

(g(wt)− g(w∗))

≥
∑
t∈A

(1− σt
β) (f(wt)− f(w∗)) + ϵ|B|+

(
ϵ− 1

β

)∑
t∈A

σt
β .

(18)
Similar to the previous proofs, we first need to find the smallest ϵ to ensure A is non-empty. So,
to find a lower bound on ϵ, assume A is empty in eq. (18) and observe that as long as condition√

2D2G2Γ
ET < ϵ is met, A is non-empty. We choose to set ϵ = 2

√
2D2G2Γ

ET .
Now, like before, we consider two cases based on the sign of

∑
t∈A

(
1− σt

β

)(
f(wt)− f(w∗)

)
.

As before, when the sum is non-positive we are done by the definition of A, which implies 0 <
1− σβ(g(wt)− ϵ) ≤ 1 and the convexity of f and g.

Assuming the sum is positive, dividing eq. (18) by
∑

t∈A
(
1 − σt

β

)
(which by the definition of

A is strictly positive), using convexity of f , and the definition of w̄, we have

f(w̄)− f(w∗) ≤
0.5ϵT − ϵ|B| − (ϵ− 1

β )
∑

t∈A σt
β

|A| −
∑

t∈A σβ(g(wt)− ϵ)

= ϵ+
−0.5ϵT + β−1

∑
t∈A σt

β

|A| −
∑

t∈A σt
β

,

23



Switching Gradient Methods for Constrained Federated Optimization

where we used |B| = T − |A|.
Let us now find a lower bound on β to ensure the second term in the bound is non-positive.

Note this is done for simplicity, and as long as the second term is O(ϵ), an ϵ-solution can be found.
Immediate calculations show the second term in the bound is non-positive when

β ≥
2
∑

t∈A σt
β

ϵT
.

Since
∑

t∈A σt
β < T , a sufficient (and highly conservative) condition for all T ≥ 1 is to set β ≥ 2/ϵ.

Thus, we proved the suboptimality gap result. The feasibility result is immediate given the definition
of A and the convexity of g.
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