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Abstract

Distributional reinforcement learning (DRL) has emerged in recent years as a
powerful paradigm that aims to learn the full distributions of returns starting from
different state-action pairs under a policy, rather than only their expected values.
The existing DRL algorithms learn the return distribution independently for each
action at a state. However, we establish that in many environments, the returns
for different actions at the same state are statistically dependent due to shared
transition and reward structure, and that learning only per-action marginals discards
potentially exploitable information. We formalize a joint MDP view that lifts
and MDP into a POMDP whose hidden states encode coupled potential outcomes
across actions, and we derive joint distributional Bellman equations together with a
joint iterative policy evaluation (JIPE) scheme with convergence guarantees. On
the algorithmic side, we introduce a deep learning method that represents joint
returns with homoscedastic Gaussian mixture models and trains them by matching
a multivariate TD target. Empirically, we validate the proposed framework on two
custom MDPs with known correlation structure (a bandit with shared randomness
in rewards, and a windy gridworld environment), and illustrate the learned joint
structure in the classic control task CartPole and the Arcade Learning Environment
game Pong. Together, these results demonstrate that modeling cross-action return
dependence yields accurate joint moments and informative joint distributions that
can support safer, more sample-efficient control.

1 Introduction

Classic RL. Reinforcement learning (RL) has long been utilized as a powerful framework for
sequential decision-making problems where the interaction of the agent and the environment follows
a Markov decision process (MDP). An MDP M = (S, <, A, R, P,7) is a quintuple where S is a
finite set designating the space of states, o € A(S) is the initial distribution of states, A is the set
of actions that the agent may take, R : S x A — A(R) is a stochastic, real-valued reward function,
P:S8xA— A(S) is the transition kernel, and 0 < « < 1 is the discount factor [1]. In conventional
RL, the learning objective is to maximize the expected utility, called return, which captures the
agent’s cumulative reward throughout its interaction. A policy 7 for MDP M may be thought of as a
decisionrule 7 : S — A.!

To evaluate the merit of a given policy 7, one may consider the expected sum of discounted rewards
over the time horizon obtained by the policy, denoted E[Z7 (s, a)] := E[>_;° 7' R(s¢, ar) | so =

'A celebrated result in RL states that in the discounted and infinite-horizon setting, one can find an optimal
policy 7™ that is stationary and deterministic [2], and we will direct our attention to this case.
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Figure 1: Joint distributions of returns learned by our method in the CartPole environment. On the
left: When the pole is perfectly balanced, the returns of both actions are perfectly correlated and
the joint distribution is basically a ridge. On the right: When the pole starts to lose balance to one
side, the joint distribution becomes less degenerate. The degenerate ridge structure, in the case of
a bivariate Gaussian distribution, is observed when the correlation coefficient of the two marginal
random variables approaches 1 (or —1). This indicates that the two marginals are extremely correlated
(or extremely negatively correlated, respectively). We anticipate this to be the case when the pole is
already perfectly balanced and stable, as the system is in near-complete symmetry and thus pushing
the cart to either side should have nearly the same exact returns. The curves on the edge of the plot
show the two marginal distributions, which would have been learned by a conventional DRL method.

s,ag = a, also known as the Q-function or the state-action value function. We remark that Z™ (s, a)
is the random variable which we will refer to as the state-action returns.

The objective in RL, then, is to find an optimal policy m* with an optimal state-action value function,
ie., tofind 7* € argmax c; Q™ (s, a), forall (s,a) € S x A, where II denotes the set of all possible
policies for M. Famously, an optimal state-action value function Q* satisfies the Bellman optimality
equation [3]

Q" (s,a) = E[R(&a)] +7E[£I,1?§Q*(S,val)}’ ey

a premise which many RL algorithms have been built upon [4, 5, 6,7, 8, 9, 10, 11, 12, 13].

Distributional RL. More recently, a new paradigm called distributional reinforcement learning (DRL)
[14] has emerged, partly based on the argument that reducing the return to its average value can
obscure important aspects of uncertainty, variability, and risk, often leading to suboptimal exploration
or brittle policies in highly stochastic settings. DRL augments the RL paradigm by modeling the full
probability distribution over returns rather than only its expectation, capturing higher-order moments
and tail behavior. This richer characterization aims to enable agents to reason about variability and
risk, with the end goal of improving the agent’s performance, alongside secondary objectives such as
sample efficiency and policy robustness.

Every DRL method up to now has been built around the same central tenet of trying to estimate
marginal return distributions for each action independently. Although different methods estimate
different characterizations for these marginal distributions, at the end of the day, the entity they
propose to model and estimate is some characterization of the #-parameterized marginal state-action
return Zy(s, a) for a given state s and for each action a € A. While their differences in approach
naturally bring about changes in the modeling and estimation processes due to the change in the
parametrization of the distributions, the fact that all methods are still only interested in estimating a
single, independent marginal distribution for each of the |.4| actions remains unchanged.

1.1 Novelty

In this paper, we argue for the rationality, or at least the theoretical interest, in pursuing a more
unifying approach: It is only natural, we think, to be curious about the joint distribution of these
state-action returns (see Figure 1).

We argue that there is a nontrivial set of MDPs where, given a state s, there is dependence to
be discovered between the returns of different actions. We present the following two motivating
examples, after which a formal explanation follows:

Example 1 (Dependence due to rewards). Consider an MDP with bounded S C R?, A = {1,2},
and with stochastic reward defined as R(s,a) := x4 for a € A, where v ~ N(s,%), and ¥ is a
nondiagonal positive definite matrix. It is self-evident, in this case, that at any state s, the rewards
R(s,1) and R(s,2) will be dependent random variables, and their covariance will be %1 5. Because
the return Z™ (s, a) of any policy 7 for any state-action pair is a weighted sum of such dependent



rewards, the returns will also have a nontrivial joint distribution, where by nontrivial we mean a joint
distribution which is not simply the product of its marginal distributions.

Example 2 (Dependence due to transition dynamics). Consider an MDP with S = R and A =
{—1,1}. Let X be a Bernoulli random variable. Let the next state be determined in terms of a
state-action-dependent measurable function of X as

s+a—1, ifX=1
S = X) = ’ 2
f(s,a,X) {s +a, otherwise, 2)
and P(- | s,a) := Law(S’). The stochasticity of the transition dynamics of the environment is

dependent on the random variable X. Clearly, the next state random variables S| = f(s,—1,X)
and S5 = f(s,1, X) will be dependent random variables.

In this example, X might be thought of as modeling the presence of an environmental factor such
as wind, which pushes the agent towards the left. Other examples of such factors may include a
market fluctuation, or a system-wide latency spike, factors which simultaneously affect the results of
all possible actions an agent could take at that moment.

The fact that these examples are specifically constructed to have dependencies should not give the
impression that they do not arise in regular RL problems. The dependence of action returns is highly
intrinsic even in the presence of a deterministic reward function, a key feature in practical applications
of RL, particularly those involving function approximation.

1.2 Related Work

An early formulation of the DRL paradigm was introduced by [15, 16], who developed parametric and
nonparametric estimators for return distributions via the distributional Bellman equations, preceding
deep learning methods. Following the success of DQN [4], several DRL approaches emerged. [17]
proposes a taxonomy based on return distribution parameterization and choice of optimization metric,
which we adopt. C51 [14] and its extension Rainbow [18] model each state-action return distribution
as a 51-bin categorical distribution, trained using KL divergence. In contrast, QR-DQN [19], IQN [17],
and FQF [20] model the quantile function with increasing flexibility and train using Huber quantile
regression. MoG-DQN [21], most related to our work, uses Gaussian mixture models (GMMs) and
minimizes the Jensen-Tsallis divergence. Similarly, [22] employ GMMs but optimize the Cramér-2
distance, which we adopt in our experiments. Lastly, DRL methods addressing multivariate rewards
relate to our approach. Bellman GAN [23] leverages GANs to model multivariate return distributions,
while [24] introduces MD3QN to jointly model returns from multiple reward sources and their
correlations.

2 Joint Distributional RL: A Principled Framework

2.1 Principled Modeling of Correlations via Joint DRL

Having established the existence of actions’ interdependency, in this section we develop a principled
framework to facilitate studying this phenomenon. We start by stating two assumptions which are
common in RL literature [25, 26].

Assumption 1. We assume that the action space A is finite and |A| = N. Since there exists a
bijection between A and [N|, in the rest of the work, we will directly think A = [N] for ease of
notation, so each action will be referred to by an integer 1 < n < N.

Assumption 2. For all (s,a), it holds that Ty < R(s,a) < rmax almost surely for some
Tmin, "max S R.

Now, in light of the motivating examples of the previous section, we formalize our analysis of the
phenomena at play with the following definition.

Definition 1 (Joint MDP). Let M be an MD j\gS S0, A, R, P v). Forany s € S, let Cp(s) be some
coupling on SN with marginals {P(- | s,i)}¥.| and Cr(s) some coupling on RN with marginals
{R(s,i)},. Consider the partially observable MDP (POMDP) J = (X,¢), A P R ,Q,0,7),
which we will refer to as the joint MDP behind M, where



1. X := 8N x RN. We write a typical element x € X as x = (s,r), where s = (s1,...,5N)
andr = (r1,...,TN).

5(0), ifs; =sforalli€ [N]
2 — So(s) x )
%0() {0, otherwise,

where 0 indicates a vector of N zeros. In other words, the initial distribution over X only
assigns nonzero probability to configurations which initialize all N states in s at the same
state, with all “initial rewards” being 0.

3. P'(- | x,a) := Cp(sqa) X Cr(sa), the product measure of the transition and reward
couplings.

4. R'(x,a) := ry, deterministic.
5. 0:=8xR
6. O(o| x,a) = 6, r,)(0)

At each decision time ¢ within the POMDP (7, the hidden state is a pair of vectors x; = (s¢,r¢),
withs; = (s¢.1,...,8.n) €SN andry = (r41,...,5,n) € RY. The i entries s; ; and r; ; denote
the next state and reward that would be obtained if action ¢ were to be taken from the current base
state. After the agent selects a;, the environment reveals (s q,, 7+ 4, ) and the base state updates to
S¢+1 = S¢,q,, and a fresh pair (St+1,r¢+1) is drawn at s;11 according to the specified couplings. For
initialization, a state s ~ ¢y is sampled and sg = (s,...,s) is set. rop = 0 is set as a placeholder,
since the reward at the initial state is a reward obtained before any actions have been played, and
hence has no meaning and is unused.

This representation is observationally equivalent to the original MDP M: For any (s, a), the revealed
pair (sq,7,) has exactly the same distribution as (S’, R) under the kernels P(- | s,a) and R(s, a) of
M. The only change is that the POMDP’s hidden state preserves the joint and potentially dependent
counterfactual outcomes across actions at each step. This makes it possible to state and learn joint
statistics and to write joint Bellman relations, without altering the agent’s observed interaction
process.

In practice, how do we attempt to model this joint MDP? The following two definitions formalize
the vector-valued random variable of joint returns whose distribution we aim to estimate.

Definition 2. Let Z™ (s, a) denote the state-action return of policy 7 at (s, a). Then, the N -variate
Jjoint return of policy m at s is defined as

Z™(s) = [Z™(s,1),...,Z(s,N)]T. 3)

Definition 3. Let ™ (s,a) = Law(Z7 (s, a)). Then, the joint return distribution of policy w at s € S
. . T . N o, .
is a coupling of {n™ (s, 1) };L. Additionally, we use

0 (s36,4) = / 7" (s)dza 4

th

to denote the bivariate marginal distribution of 0™ (s) over the i"™ and j™ dimensions. The notation

dza denotes that the integral is over dimensions A\{i, j }.

We now refer to the following simple example for intuition about an additional problem we face in
trying to estimate these joint distributions through samples.

Example 3. Suppose a simple scenario where we want to estimate a simple bivariate Gaussian
distribution but we are limited to only observing samples from its marginals. We observe samples
T1,...,TN for the first marginal dimension, and samples y1,...,yn for the second marginal
dimension, each an element of R. We can then use sample statistics to naively estimate i, =

1 N Ao 1NN 2 1 N ny2 52 1 N n o2
N Zizl Ti P2 = Zizl Yi, 01 = N1 Zizl(xi — 1), 05 = N_1 21:1(% — fi2)*. We can
then attempt to estimate the joint, bivariate Gaussian distribution as N'(ji, ), where
~ ,\2 A A
N H1 & o pPO102
] s-[ g, o]

fi po102 03

4



It is at this point that we must stop and ask a question: If we suspect a nondiagonal covariance matrix,
how does one estimate the value for p without ever observing a sample from the joint distribution?
Although it is possible to make educated estimates for every marginal statistical, it is impossible to
have an informed estimate of p without having at any point been exposed to joint samples from the
bivariate distribution.

In this work, we will be interested in learning the joint distribution 7)™ (s) associated with a reference
policy 7, or certain statistical functionals that could aid us in inferring it. Conventional RL is
concerned with learning the mean functional 1™ (s) € R4, i.e., the state-action value function Q. As
we are interested in inferring the correlations, a natural functional to consider in addition to ™ (s) is
the N x N covariance matrix derived from 7™ (s) which we denote by X7 (s).

However, as illustrated by Example 3, since any off-diagonal element X7 (s), o of X7 (s) relates
knowledge about the joint returns of two actions at state s, the customary transition structure of
7:=(s,a,r,s',a’) will no longer suffice to estimate these elements. Indeed, if we hope to learn a
meaningful joint distribution of the returns of multiple actions at a state, we must change the structure
of our saved and sampled experience replays to be 72 := (s, a1, as,71,72, 81, 85, a}, ab), where a;
and a- are two distinct actions that can potentially be played at state s, 1 and r5 the ensuing rewards,
s and s} the respective next states, and a and a the actions chosen by 7 in the next states. Much
like how, in the conventional DRL setting, we would expect the observation of the transition 7 to lend
us guidance in updating our estimate of ™ (s, a), we would now expect to leverage the observation
of 72 to update our estimates of (17 (5)4,, 4™ (8)a,, the diagonal covariance elements X7 (5)q4, 4,
27(8)as,a, and finally the off-diagonal covariance element 37 (s)q, q,. Obviously, this would result
in updating our estimate of the bivariate marginal distribution " (s; a1, az).

In the formalism of Definition 1, to get access to such samples as 72, we must modify our observation
space and kernel to allow us a look into the joint structure. Specifically, letting  := S? x R? and
Oo | z,a1) := (50, 5ag):(ra; ,,a2)(o) suffices. Namely, at any decision time of the joint MDP, the
observation model lets us peek into the next state and reward of the played action a; (dictated by a
policy 7), and the next state and reward of one additional, counterfactual action as # a4 that could
have been played instead.

Can we obtain such joint samples from an MDP in practice, and if yes, how? Many applications
of RL are increasingly relying on digital twin technologies, enabling a near-perfect simulation of the
reality. Consider, for instance, a robotics task. It is not implausible to assume that we would have
access to a perfect simulation of the system, in which, at a state, we can take an action, observe its
consequences, rewind the simulation to the previous state and then take another action to observe
its consequences. In programming terms, this process can be thought of as saving a state of the
environment and the random number generator before playing an action, and then restoring these
states to play another action.

We now introduce the joint Bellman equations.

Definition 4. Let Z™(s) be the N-variate joint return of policy w. Consider a sample transition
(S =s,A1 = a1, Ry, 51, A, As = ag, Ra, Sh, AL). Then, the 2nd-order N-variate joint Bellman
equations are given as

Z7(s,a1) 2 Ry + 727 (S}, A}),
(27 (s,01))° 2 (R + 727 (51, A7) ®)
Z7(s,a1) - 27 (s,a2) 2 (R1 + 727 (S1, A7) - (Ra +7Z7(Sh, A4Y)).
Proposition 1. Consider a sample transition (S = s, A1 = a1, R1, 51, A}, Aa = az, Ra, 54, AS).
Then, the 2nd-order N -variate joint Bellman distributional equations are given as follows
E[Z7(s,a1)] = E[R1 +~vZ™(S],A}) | S = s, A1 = a1],
E[(Z7(s,01))°] = E[(Ry +7Z7(S], 41))" | § = 5, 41 = an],
E[Z7(s,a1) - Z7(s,a2)] =
E[(R1+7 Z7(S1,A})) - (Re +727(53, A43)) | S = 5, A1 = a1, A2 = as],

where E[-] denotes the expectation with respect to the joint distribution over all random variables
involved.

(6)



Evidently, these equations provide us with consistency conditions that the first and second moments
of the return Z™ (s, a) must satisfy, in distribution and in expectation.

2.2 Joint Iterative Policy Evaluation (JIPE)

We can compactly represent the 2nd-order /NV-variate joint Bellman equations by defining a suit-
able operator. For each (s, a), let M, ,) € RNT! be a vector that concatenates E[Z™ (s, a)] and
E[(Z™(s,a))?] as its first and second coordinates and E[Z™ (s, a) - Z™(s,a)], where @ € A, a # a,
as its last N — 1 coordinates. With this notation, let us define, for all (s, a),

MN(S’ Cl) = M(S,a)717 Mu € RSXA
M0(87 a) = M(s,a),27 M, € RSXA

(7
MC(S7 CL) = [M(S,a)#’) M(s,a),N—i—l]T s M, e R(Nil)XSX‘A

M= [MT MT MT]T, M e ROVEDXSXA
M describes the collection of the first moment (mean) and the second moments of the N-variate
joint return, collected by M, and M, M., respectively. Furthermore, we can represent the 2nd-order

N-variate joint Bellman equations by the following 2nd-order N-variate joint Bellman operator

7-27,TN . R(N+1)><S><A N R(N+1)><S><A’ M= 7'27;&'NM

®)

Based on this notation, we propose the following dynamic programming approach, referred to as the
N -variate joint iterative policy evaluation (JIPE) scheme, which repeatedly applies the 2nd-order
N-variate joint Bellman operator 757y

Mk+1 — 7'27I'NMIC, MO c R(N+1)><S><.A. (9)

Theorem 1 (proved in Appendix A) states the convergence of the scheme in (9). Note that, for the
simplicity of notation, the theorem is stated in terms of learning the uncentered matrix of second
moments, 37 (s), from which the covariance can be derived easily as 37 (s) = %7 (s) — u™ (s)u™ (s)%.

Theorem 1 (Convergence of JIPE). Suppose Assumptions 1 and 2 hold. Consider the JIPE scheme
in (9). Forany s € S, let 1i*(s) and $*(s) denote the mean and the second moment matrix recovered
from MPF. Then,

k
115 (s) = 1™ (8)[loo = O (4F),  ||ZF(s) = Z™(8)[|oc = O <7) .

L=~
3 Learning Optimal Joint Distributions via Neural Networks

We are now ready to present an algorithmic approach to

learning the joint distribution, leveraging the deep learning
paradigm. We propose to model the state-action return as a
Gaussian mixture model with K components (K-GMM),
whose parameters are estimated by a neural network with
weights 6. We note that [21] and [22] have previously sug-
gested such an approach, however, as usual, these works
only consider the estimation of the marginal returns and
not of the joint. For reasons such as reduced computa-
tional complexity and feasibility, we choose to only deal
with homoscedastic K-GMMs, i.e., for a given s € S,
Y0(s) = X9 (s) forall i € [K].

Firstly, we would like to remind the reader of the discus-
sion in Section 2 of how our experience replay transitions
must have the form 72 = (s, ay,az, 1,72, 5, s5) for us
to have any hope of learning the correlation structure of

the joint returns. (See Figure 2 for a way to gather trajec-

()
g @

Figure 2: Demonstrating the state tran-
sitions stored as a tree. Starting at state
S0, wWe store two possible next states s;
and s} reached by playing two actions.
Afterwards, s; is considered to be the
base state, that is, the next two states
to be stored so and s/, are only possible
next states reachable from s;. The next
states reachable from s/ are not consid-
ered. This prevents the number of stored
states from increasing exponentially.

tories 72 without the number of states exponentially increasing.) We now propose the following



Table 1: SRB joint moments, calculated analytically and estimated by JIPE.

True JIPE 1A oo

pt [1.8 2.0] [1.8 2_0] 1.849¢—12
1.000 0.942 1.000 0.942

Corr 4.441e—16
0.942  1.000 0.942  1.000

Table 2: WGW joint moments in the starting cell for actions RIGHT, LEFT, UP, DOWN.

True JIPE [PAN|PS

" [0.771 0.732 0.792 0.732] [0.771 0.732 0.792 0.732] 2.004e—6
1.000 0.833 0.866 0.833 1.000 0.833 0.866 0.833
0.833 1.000 0.866 1.000 0.833 1.000 0.866 1.000

Corr 1.612e—4
0.866 0.866 1.000 0.866 0.866 0.866 1.000 0.866
0.833 1.000 0.866 1.000 0.833 1.000 0.866 1.000

distributional variant of the standard Q-learning algorithm, utilizing transitions of form 72 for the
learning of joint state-action returns: At each update step, for a sampled experience replay transition
72, we calculate the distributional temporal difference error between the current state’s bivariate
marginal return distribution where all the actions @ € A\ {a1, a2} have been marginalized out, i.e.,
n9(s; a1,as2), and a TD target distribution 7 (s, s5), which will be the distribution of a random
variable we denote by r + vZ (s}, s5). In other words, we take our temporal difference error to be
L (no(s;a1,a2), ni(s),ss)), which then gets used to update the neural network weights 6 through
backpropagation and stochastic gradient descent-based methods.” Any statistical distance may in
theory be used for L.

The nature of 1, (s}, sb) = Law(r+~vZ% (s}, s5)) must now be specified. This distribution resembles
the familiar TD target of both the conventional distributional and non-distributional RL settings, but
due to its multivariate nature, some clarifications must be made. In truth, 0% (s}, s) is a coupling: It
is a bivariate joint distribution whose univariate marginal distributions are the TD target distributions
for {ng (s, a;)}2_,. ie., Law(r; + vZ, (s}, a})), where af € argmax, ¢ 4 E[Z,(s;a’)]. Going back
to GMM terminology, the i univariate marginal dimension of 7 (s}, s5) is a K-GMM with mixing
coefficients p,,(s}) and means 7; + Y, k (s}, a}).

We have now specified the mixing coefficients and the means of the TD target K-GMM n* (], s5),
and only the covariance remains to be specified. The covariance requires more special consideration.
Let us now refer to that covariance matrix as X, (s}, s5). Given our previous logic for how we
construct the coupling target distribution, our covariance matrix must now satisfy

Y (81, 85) = cov(ri +vZu (s}, a7),r5 + 7 Zu(s); a3)) (10)

as a sample-based estimate of the true covariance cov(R(s, a;) +vZ (S}, a} ), R(s, a;) +vZ(S}, a})).
We remark that with the provision that the TD target distribution 1 (s}, s5) must be a coupling of the
TD target distributions of the two univariate marginal distributions 7y (s, a1) and 7s(s, az), it must,
at its most general form, be the distribution of a K2-GMM. Letting (k1, ko) € {1,..., K}? index
the K2 components of the target mixture, and referring back to the homoscedasticity assumption

*We remind that the target random variable is calculated with a separate set of parameters w (as opposed to
0), the parameters of the so-called target network [4].



mentioned in the beginning of the section, we finally have

K K ’ «
(505 = 53 (o (51) - s (51) N([“*WW’MS““”] ,Ew<sa,s;>). an

! k
To + Ylhw ko (SS9, @
ki1=1ko=1 Vo ez (85, @3)

In practice, this implies that we are perpetually fitting a -GMM to a K 2-GMM, at each update step.
This is not to be seen as a nuisance, however. In fact, this might be seen as favorable if one envisions
the process as distilling the most prominent features of the K2-GMM down to a K-GMM, keeping
the model size reasonably bounded at all times. Notably, in the case of 1-GMMs, both 74(s; a1, as)
and 7 (s, s4) have the same number of components.

4 Experimental Results

We now concretize the methodology presented in Sections 2 and 3 further with experimental results.

4.1 Joint Iterative Policy Evaluation (JIPE) leftward gust

We report two minimal, fully-specified MDPs that mani- <
fest correlated state-action returns.

Shared-Randomness Bandit. A one-state, two-action

MDP with per-step reward vector Ry ~ N (pi,-, ¥,.), in the — —» Goal
spirit of Example 1. The shared Gaussian draw at each step
induces dependence between the two actions’ rewards. We A

set p, = [0.0 OQ]T. The variance of the first action is
0.8, the second action is 1.0 and the covariance of the two
actions is 0.6. The discount factor is 0.9. The evaluated

policy plays action 2 for all time steps.

Windy Gridworld. A 3x3 gridworld environment with a
leftward gust of wind, the presence of which is dictated by
a Bernoulli random variable with parameter p = 0.35. The — —r
discount factor is 0.95. The wind perturbs the transition
dynamics irrespective of the chosen action. At any state,
two different actions experience the same gust, leading to Figure 3: Deterministic policy evaluated
dependent successive states and hence dependent returns, i, the windy gridworld environment with
akin to Example 2. The evaluated policy is presented in  [eftward gust. The gust is shared each

Figure 3. time step between all actions.

For each setup we evaluate a fixed policy using our N-

variate joint iterative policy evaluation operator from Sec-

tion 2.2 to compute the means, the uncentered second moments and the cross moments to recover
the covariance matrix. For the bandit environment, we derive closed-form ground truth values for
these quantities and observe machine-precision agreement in terms of maximum absolute distance.
For the gridworld environment, we compute the ground truth values by Monte Carlo estimation. Our
proposed policy evaluation scheme matches in the order of 10~3 for means and 10~ for covariances
in terms of maximum absolute distance. The results of these experiments are presented in Tables 1
and 2. These experiments directly validate that the iterative policy evaluation scheme recovers both
the means and covariances implied by the coupled dynamics and rewards.

4.2 Optimal Control with Deep Learning

Firstly, we present the learned joint distributions of near-optimal state-action returns for two states
from the classic control problem of CartPole, obtained after 50K training frames. Because this is an
environment with N = 2, we are able to plot the full joint distribution of state-action returns. Figure
1 shows plots of these distributions for the given frames.

To showcase our method’s ability to learn covariance matrices, we present Figure 4, which shows
three correlation matrices coefficients (covariance matrices normalized by the standard deviations)
belonging to an estimate of an optimal return distribution of the game Pong after 7.5M training frames.
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Figure 4: Three examples of covariance matrices of a near-optimal return at the shown states of the
game Pong. The arrows are added by the authors to give the reader context as to where the ball is
headed and are not part of the game.

0.997 | 1.000 | 0.988 o 990 | 0.979 | 0.988

0.995 | 0.988 1.000 | 0.996 | 0.995 | 0.996

0.995 | 0.990 0.996 | 1.000 | 0.992 | 0.994

0.989 | 0.979 0.995 | 0.992 | 1.000 | 0.993

0.994 | 0.988 0.996 | 0.994 | 0.993 | 1.000

On the left is what we dub a noncritical state. The game has just initialized, the ball is heading
towards the opponent, and there is no urgency to take any action as the agent has not observed how
the ball will be heading towards them. The corresponding correlation matrix shows that the returns
of actions are almost completely uncorrelated. In the middle is a critical state. The ball has almost
reached the agent but the agent is not yet in position to return it. The correlation matrix shows clear
correlations and inverse correlations between the returns of actions, as taking some actions at this
point will lead to conceding a score. On the right is a post-critical state. By this point, the agent has
taken the correct actions and has full belief that they have returned the ball with a perfectly placed
shot. They already know that they have scored, and any actions taken while they wait for the ball to
pass the opponent’s boundary have no effect on the outcome of the episode. All actions after this
point are perfectly correlated, because they will lead to the same score.

All of these examples showcase the possible uses of learning the joint distribution of returns, in terms
of deriving possibly safer, more explainable and interpretable policies in sequential decision-making
problems.

5 Conclusion

We argued that action-wise return dependencies are intrinsic in many MDPs and developed a princi-
pled way to capture them by learning joint (rather than marginal) return distributions. Concretely,
we cast the problem as a POMDP whose hidden states store coupled potential outcomes across
actions, derived joint Bellman equations and a JIPE operator with convergence guarantees to the
mean and second moments, and proposed a practical deep learning method that fits homoscedastic
GMNMs to estimate optimal joint return distributions. Empirical results on synthetic environments
with known correlations and on standard control benchmarks showed that the approach recoverse
accurate moments and brings into light interpretable cross-action structure.

We argued that the conventional single-action transitions of form 7 = (s, a, r, s’) are insufficient to
identify off-diagonal moments, motivating joint obvservations of form 72 = (s, ay,as, r1, 72, s}, 55)
that reveal the consequences of one played action and one counterfactual at the same state. In practical
settings with high-fidelity simulators or digital twins, these joint samples are feasible.

We envision that the limitations of the current work and directions of future research include but are
not limited to scaling beyond second moments, exploring richer parametrizations of joint distributions
such as normalizing flows or copulas, estimating joint distributions as couplings of existing acclaimed
DRL methods (e.g., C51), and extending the methodology to continuous action spaces. On the control
side, leveraging information on cross-action dependencies for risk-aware planning and safer and more
sample-efficient exploration strategies is a promising direction.
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A Proof of Theorem 1

We first state a simple lemma which is used to derive the convergence results.
Lemma 1. Consider two non-negative sequences ay and by. Assume aj < ’ykao and by <
k
aoBy* + ~2by, for some B > 0 and v € [0, 1). Then, by, < v* by + %.
Proof. We proceed by unrolling the recurrence
bepr < ¥br + ao By,
<P (y°br—1 + aoBY*) + agB~* (12)
=v*bk—1 + aoBY* + ag By".
Thus, by induction we have

k k
by <78 Fbg +agB Y Py = 2y £ agBY "2 40 (13)
j=0 j=0

Using a change of variable ¢« = k — j we can calculate the second geometric sum:

k k k 1 ,ykJrl
2(k—j) 0§ _ 2 k—i _ k ik T
Zv 7—277 =7 Zv—v 11— (14)
7=0 =0 1=0
Using this in the previous equation furnishes the proof. [

We now state the proof of the main result. We re-state the theorem for convenience.

Theorem 1 (Convergence of [V-variate joint iterative policy evaluation). Suppose Assumptions 1 and
2 hold. Consider the N-variate joint iterative policy evaluation scheme in (9). Let 1u*(s) and ¥ (s)
denote the mean and the uncentered matrix of second moments recovered from M*. Then,

) =i e =0 (1) 150 - Tl =0 (7). as)

Proof. We adopt and strengthen an argument from Chapter 8 in [25]. We will first define the following

semi-norms
[M|loo,u = sup [My(s,a)

(s,a)

[Mlle.r = s (M (5, (16)

[M|[oc,c = sup |[Mc(s,a)j|
5,,]
Next, we demonstrate that the second-order N-variate joint Bellman operator 75"y is a contraction

with respect to || - ||oc,,, With constant . To see this, we remark that by the definition of M,,, M, and
* loo, . We have that
(Ton M) =T"M,, (17)

where 7™RS*A — RSX4 i the usual Bellman operator. Furthermore, note that ||M||s,, =
|1 M,]|oo- Thus,

HTzWNM - 7—27,TNM/||oo,u = H(TzT,rNM)u - (ETNM/)MHOO
= |77 M, — T Mo

(18)
< FY”M,LL - M/IL”OO
=M = Mo
where we used the y-contraction of 77 with respect to || - || . Now recall, by linear convergence of

the regular Bellman update Mf*+! = T7 M}, we have

IME = Mooy = My = M7 loe < APIM = M lloo =7 IM° = M™||oc,u- (19)
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This result establishes that the iterative policy evaluation scheme in (9) which repeatedly applies the
second order [V-variate joint Bellman operator TQWN converges linearly to the mean of the /V-variate

joint return distribution ™ (s).

To prove the rest of the statement, recall that for any (s,a), by Assumption 2, |[E[R(s,a)]| <
max{|"min|; |["max|} < B and |E[R(s,a)?]| < max{|rmin|?, [Fmax|?} < B for some B > 0.

Furthermore, by the definition of M,,, My, M, || - ||oc, 4> and || - ||oc, ., for all (s, a), we have

(T M) (s,0)2 — (TEnM')(s,a)2] <2By| > P(s' | s,a)m(d | &')(M — M')(s',a'),
(s",a’)ESX A

++2 Y P | s.a)m(a | )M~ M)(s,a)s
(s’,a’)ESXA
< 2By||My, — M) || + 72| My — M|
=2By||M — M'||o0 s + 7| M = M| 00,0
(20)
Hence,
TN M = TN M oo < 2BY|M = M| oo, + 72| M = M'|| 00,0 21

Similarly, we can establish a recursive inequality for the cross covariance M. In particular, for all
(s,a,7) € S x Ax{3,...,N +1},

(T M)(s.a); — (TInM')(s,0);| < By | Y- P(s) | s,a)m(al | s)(M — M')(s},aih
(s1,a])ESXA

+By| Y Plsy|sag)m(ay | sy)(M —M')(sy,ap)
(sh,a5)eSxA

42| X P [ sa(a | )M = M),
(s",a")eSxA

< 2B7[|My = My lloe + 7| Me = Moo

= 2B M = Moo+ 72 M = M|
(22)
where a; denotes the action used to calculate the cross covariance term for (s, a) which is stored
in M.(s,a);, and we use the definition of the joint MDP, notably the fact that P'(- | z,a) :=
Cp(sa) X Cr(8q4), to bound the term in the bound (that is, the next state transition is dictated by a,
not a;). Hence,
TSN M = TN M (oo < 2BAIM = Moo o +7*[[M = M[|oc,c. (23)

Thus, by invoking Lemma 1, one can readily establish

9/[MO — M™||.. , B
0% = M7 o < AP0 = M7 4+ 2] oo, By

L 4)
2| M° — M™|| s . BY*
||Mk _ MW”OO,C S "}/2kHM0 o Mﬂ”oo,c + || : || wBY
-

These results establish that the iterative policy evaluation scheme in (9) which repeatedly applies the
2nd order N-variate joint Bellman operator 7"y converges linearly to the second moment (shifted

covariance) of the N-variate joint return distribution 17 (s). O
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