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ABSTRACT
Collaborative game-based learning o!ers opportunities for
students to participate in small group learning experiences
that foster knowledge sharing, problem solving, and engage-
ment. Student satisfaction with their collaborative experi-
ences plays a pivotal role in shaping positive learning out-
comes and is a critical factor in group success during learn-
ing. Gauging students’ satisfaction within collaborative learn-
ing contexts can o!er insights into student engagement and
participation levels while a!ording practitioners the ability
to provide targeted interventions or sca!olding. In this pa-
per, we propose a framework for inferring student collabo-
ration satisfaction with multimodal learning analytics from
collaborative interactions. Utilizing multimodal data col-
lected from 50 middle school students engaged in collabo-
rative game-based learning, we predict student collabora-
tion satisfaction. We first evaluate the performance of base-
line models on individual modalities for insight into which
modalities are most informative. We then devise a multi-
modal deep learning model that leverages a cross-attention
mechanism to attend to salient information across modali-
ties to enhance collaboration satisfaction prediction. Finally,
we conduct ablation and feature importance analysis to un-
derstand which combination of modalities and features is
most e!ective. Findings indicate that various combinations
of data sources are highly beneficial for student collaboration
satisfaction prediction.

Keywords
Multimodal Learning Analytics, Collaborative Learning,
Game-Based Learning

1. INTRODUCTION
Collaborative game-based learning environments represent
a dynamic approach for creating interactive and immersive
learning experiences, providing students with engaging op-
portunities for group work. In these environments, students
actively contribute to shared learning objectives [40], which
not only facilitates the development of critical thinking and
communication skills but also fosters the construction of a
robust knowledge base [41, 12, 25, 16]. Student satisfaction
derived from collaborative endeavors plays a pivotal role in
shaping teamwork dynamics, enhancing knowledge acquisi-
tion, and contributing to overall positive learning experi-
ences [40]. Understanding student collaboration satisfaction
can aid in the development of engaging learning environ-
ments that support positive learning outcomes. However,
much work relies on post-hoc analysis of survey informa-
tion with automated methods of assessment being relatively
under explored.

Multiple signals, including gaze synchronization and physi-
ological responses, o!er valuable insights into the dynamics
of collaboration, aiding in the understanding of student be-
haviors [31, 11]. Leveraging multimodal data sources o!ers
promise to enable researchers to better capture and analyze
student interactions within collaborative game-based learn-
ing environments. While previous studies have successfully
predicted peer satisfaction in dyadic settings [23] from multi-
modal data, there remains a gap in exploring the prediction
of student collaboration satisfaction in non-dyadic groups
from multimodal data.

Our study aims to address this gap by focusing on the pre-
diction of student satisfaction during collaborative learning
in small group scenarios. Specifically, we develop predictive
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models capable of discerning collaboration satisfaction levels
during interactions within a collaborative game-based learn-
ing environment. This entails leveraging a diverse array of
data channels, including visual cues and interaction logs, to
gain insights into the dynamics of student collaboration sat-
isfaction. By undertaking this endeavor, we seek to better
understand the complexities of collaborative learning expe-
riences and pave the way for enhanced support mechanisms
aimed at fostering positive educational outcomes. These ef-
forts can aid in our understanding of diverse types of collab-
oration that may be more di”cult to discern with conven-
tional methods of analysis. Our research seeks to address
the following three questions:

RQ1. What are the individual modalities that contribute
most significantly to the prediction of student collab-
oration satisfaction in collaborative game-based learn-
ing environments?

RQ2. How does the integration of multiple modalities through
a multimodal deep learning model, particularly em-
ploying a cross-attention mechanism, enhance the ac-
curacy of predicting student collaboration satisfaction?

RQ3. What specific combinations of modalities and features
within the multimodal deep learning model are most
e!ective in predicting student collaboration satisfac-
tion, and what insights can be gained from feature im-
portance analysis regarding their contribution to pre-
diction accuracy?

Motivated by our research questions, we conducted an in-
depth analysis of multimodal data gathered from interac-
tions among 50 middle school students within a collaborative
game-based learning setting. Video recordings from laptop
cameras captured facial expressions, eye gaze patterns, and
head pose information, while trace logs documented student
interactions within the learning environment. We tempo-
rally aligned and pre-processed the collected information for
subsequent analysis. Our investigation into collaboration
satisfaction was guided by Likert-scale survey responses col-
lected within the game-based learning environment at the
end of each game-play challenge. Addressing our first re-
search question, we delved into the performance of recur-
rent models across individual modalities, establishing base-
line benchmarks. In response to our second research ques-
tion, we formulated a deep learning architecture incorpo-
rating cross-attention mechanisms to bolster collaboration
satisfaction prediction. Answering our third research ques-
tion, we perform an ablation study to examine which specific
combination of modalities most contributes to the models
predictive performance. Additionally to answer our third re-
search question, a comprehensive SHAP value examination
[21] is conducted that elucidated the significance of features
within the multimodal model and shed light on the atten-
tion mechanism’s ability to discern relevant data channels.
Notably, our results demonstrate a marked enhancement
in predictive accuracy achieved by the multimodal model
compared to its unimodal counterparts. Furthermore, the
SHAP value analysis underscores the model’s capacity to
e!ectively leverage diverse data sources, despite variations
in feature importance across modalities and collaborative

cohorts. This improvement in predictive performance ac-
centuates the potential advantages of leveraging multitude
of data channels for predicting student collaboration satis-
faction in educational contexts. This paper is organized as
follows: Section 2 reviews relevant literature on collabora-
tive interactions in game-based learning environments, stu-
dent satisfaction, and multimodal learning analytics; Section
3 describes data collection, pre-processing, and alignment;
and Sections 4 through 8 cover the experimental setup, find-
ings from the study, discussion of results, limitations of the
work, and future research directions.

2. RELATED WORK
This research lies at the intersection of collaborative game-
based learning and student satisfaction analysis. We build
upon the following body of literature.

2.1 Collaborative Game-Based Learning
Collaborative game-based learning environments o!er signif-
icant promise in fostering collaborative learning experiences
while providing insights on student collaborative dynamics,
as extensively evidenced in the literature [7, 18, 20, 9]. By
engaging students actively and promoting teamwork, these
environments have proven instrumental in cultivating col-
laborative skills [29]. Moreover, digital games can serve as
a conduit to explore the relationship between learning out-
comes and students’ preferences for cooperative versus col-
laborative game-play [2]. Notably, research suggests that in
gender-balanced settings, collaborative game-play can sig-
nificantly enhance group learning outcomes [2]. However,
e!orts to delineate the theoretical underpinnings of collabo-
ration within game-based learning contexts have been frag-
mented. While some studies integrate specific frameworks
into their game design, a systematic framework elucidating
the elements of collaborative learning remains elusive [37].
Conversely, a recent systematic review conducted by [12] un-
derscores the role of game-based learning in fostering playful
and enjoyable activities that bolster individual cooperation
and collaboration skills. Crucially, the review highlights the
pivotal importance of student satisfaction and motivation in
the design of educational tools, emphasizing their impact on
learning outcomes.

2.2 Student Satisfaction
Prior work has investigated the intricate relationship be-
tween student satisfaction and learning processes, whether
facilitated through social media interfaces, online learning
platforms, or hybrid instructional settings [1, 17, 33]. This
research has shown that satisfaction with collaborative learn-
ing experiences can play a significant role in the perceived
e!ectiveness of students’ learning experiences and is often
associated with higher learning outcomes. A review of the
literature by Yunusa & Umar [39] elucidates critical predic-
tive factors (CPFs) that shape satisfaction and perceived
learning outcomes, drawing insights from a comprehensive
review of 53 research articles. Notably, collaborative engage-
ment and instructional quality emerge as pivotal determi-
nants influencing student satisfaction levels. While extant
research underscores the positive association between sat-
isfaction and academic achievement, recent inquiries have
delved deeper into the nuanced e!ects of di!erent learning
environments on student satisfaction. For instance, Yu et al.



[38] explore the impact of gamified elements on di!erent as-
pects of student satisfaction, emphasizing their significance
while also cautioning against premature conclusions regard-
ing the relative e!ectiveness of distinct game-based learning
environments. However, a significant gap exists in prior re-
search, which predominantly relies on post-hoc surveys and
overlooks automated methodologies for assessing learner sat-
isfaction. The first work in this direction [23] represents a
notable departure, focusing on predicting peer satisfaction
in dyadic learning contexts through the analysis of linguistic,
acoustic, and visual cues using regression models. Although
initial findings regarding the e”cacy of multimodal predic-
tion remain inconclusive, this research serves as a precur-
sor to our e!orts, which extend beyond dyadic interactions
to develop an automated framework for evaluating student
collaboration satisfaction in small group scenarios within a
collaborative game-based learning environment.

2.3 Multimodal Learning Analytics
Multimodal learning analytics can provide a broad range of
indicators pertinent to students’ collaborative engagement
[34, 22, 5, 35]. Multimodal data can be e!ective in pre-
dicting a!ective states during collaborative activities [10],
model cognitive load using physiological signals and be used
to uncover causal relationships between teacher actions and
student responses during one-on-one coaching sessions [6].
Notably, Gri”th et al. [13] undertake a comprehensive anal-
ysis of dialogue states and system interactions within dyadic
groups, shedding light on how models of co-creative pro-
cesses influence partner satisfaction. Their framework de-
lineates actionable insights, pinpointing areas where sup-
port interventions can foster a more positive creative cod-
ing experience. Moreover, investigations into group speech
and non-verbal audio cues exhibit promising potential in dis-
cerning quality collaborative interactions within co-located
environments [28]. Leveraging Epistemic Network Analy-
sis, researchers navigate epistemic and social spaces to un-
derstand role-to-role interactions and evolving collaboration
patterns. By harnessing a variety of multimodal data [27],
researchers demonstrated that integrating features at finer
time scales serves as precise predictors of students’ learning
gains. Despite the strides made in multimodal learning an-
alytics, particularly in delineating collaboration dynamics,
the exploration of student collaboration satisfaction within
collaborative game-based learning environments remains rel-
atively under explored.

3. DATASET
This work utilizes data from a collaborative game-based
learning environment to develop an automated framework
for predicting student satisfaction with their collaborative
experiences. We describe the data collection process, learn-
ing environment, and pre-processing procedures below.

3.1 EcoJourneys Learning Environment
EcoJourneys is a collaborative game-based learning en-
vironment where small groups of middle school students
work together to determine the cause of an unknown illness
spreading amongst the fish population on a small island in
the Philippines. At the start of the game, students learn
from local farmers—non-player characters in the game—
that the fish on their farms are showing signs of being ill.

Figure 1: Student interacting with a non-player character to
understand more about the illness a!ecting the fish.

The students are tasked with helping the local stakehold-
ers investigate why the fish are sick (Figure 1). EcoJour-
neys incorporates a problem-based learning (PBL) inquiry
cycle to guide students through the investigative process.
Students use the TIDE cycle—consisting of Talk, Investi-
gate, Deduce, and Explain—which serves as a sca!old for
students to engage in specific actions aimed at understand-
ing and solving the diagnostic problem presented in the
game. Throughout the cycle, students utilize a virtual app
for collaborative data analysis and a virtual whiteboard for
collaborative reasoning, facilitating group discussions and
decision-making processes. The incorporation of the PBL
framework enhances the educational value of the game by
promoting critical thinking, data analysis, and communica-
tion skills among students as they work together to solve
complex ecosystem problems.

The game-based learning environment engages middle school
students in understanding factors a!ecting ecosystems. Stu-
dents spend time conversing with non-playable characters,
who disseminate knowledge, and progress through the story
line while also exploring the island, collecting data, and an-
alyzing information. As more information is gathered stu-
dents discuss the evidence through the in-game chat inter-
face to negotiate and support their hypotheses and arrive
at a consensus on their conclusions regarding what is af-
flicting the fish (Figure 2a). At predetermined intervals in
the narrative, students come together at the virtual white-
board within the game environment to organize the informa-
tion they have collected and undertake collaborative discus-
sions focused on their findings (Figure 2b). Students must
progress through four distinct activities within the game (a
tutorial and 3 quests) to complete the game. After each ac-
tivity students respond to an in-game exit survey that gath-
ers information about students’ sentiments regarding their
interactions.

Additionally, EcoJourneys collects extensive game-play
data, including students’ interactions, decision-making pro-
cesses, and learning outcomes, which can be analyzed to
gain insights into students’ problem-solving strategies and
inform instructional design decisions for future iterations of
the game. Overall, EcoJourneys provides an immersive
and engaging learning experience that promotes collabora-
tion, critical thinking, and scientific inquiry skills in students
while exploring real-world environmental issues.



(a) Students communicating through the in-game chat interface. (b) Students using the in-game Deduce app to collaborate.

Figure 2: EcoJourneys in-game chat and Deduce apps.

3.2 Data Collection and Demographics
We collected multimodal data with consent from 55 middle
school students (6th-8th grade) aged 11-14 as they inter-
acted with the EcoJourneys learning environment. There
were 27 male, 22 female, and 6 non-binary students who par-
ticipated in the study. Students interacted with the game
environment over the period of 5-6 days and while most
students completed all activities, on average 3.2 of the 4
activities were completed by each student. After processing
and removing students with missing post-survey information
this resulted in 50 students having 164 activities containing
video and trace log information that were used to predict
their collaboration satisfaction at the end of each activity.

3.3 Data Alignment and Feature Processing
Prior work has shown the e”cacy of video-based features
with multimodal learning analytics. Facial action units have
enhanced a variety of student modeling approaches to iden-
tify confusion [24], detect impasses during collaboration [22],
and elucidate the social norms that underlie creative col-
laboration [30]. Eye gaze information has been shown to
perform well in assessing team collaboration [14], identify-
ing characteristics of successful versus non-successful group
collaborative recall [15], and can be an e!ective proxy for
cognitive mechanisms underlying collaboration [32]. There
has also been recent work that has utilized head pose infor-
mation in predicting student engagement levels [36] and has
been shown to be a valuable indicator of collaboration qual-
ity [8]. Our research utilizes video-based features extracted
using the OpenFace v2.0 toolkit [3] from video recordings
obtained via front-facing cameras. From OpenFace, we ex-
tracted features including head pose, eye gaze, and facial
action unit information.

Facial action units (AUs) refer to the contractions or relax-
ations of one or more facial muscles. OpenFace v2.0 derives
AU features in the form of continuous valued intensity infor-
mation ranging from 0 (no intensity) to 5 (high intensity) as
well as a binary valued AU presence data indicating whether
a particular AU is present or not. For the purposes of our
work, we utilize only the AU intensity information resulting
from 17 distinct facial action units. Head pose information
referring to students’ head location and direction contains
translation and rotation based 3-dimensional coordinates.
This information o!ers insights into the orientation and po-

sitioning of students’ heads with respect to the front-facing
camera resulting in 6 head pose based features. Finally, eye
gaze information details the direction that a person is look-
ing in relation to the camera. It consists of three direction-
based features (x, y, z) for each eye resulting in a total of 6
gaze-based features.

In tandem with facial analysis, students’ interactions within
the learning environment are captured in detail through
trace log data, documenting in-game actions such as non-
player character (NPC) interactions, locations visited, ev-
idence collected, and chat messages exchanged. Leverag-
ing this rich textual data as an additional modality, we em-
ploy a pre-trained sentence embedding model derived from a
BERT-based architecture, fine-tuned through unsupervised
learning to produce robust text embeddings specifically tai-
lored to the nuances of the trace log information. Employing
a byte-pair encoding-based tokenizer, we ensure the genera-
tion of unique encodings for trace log events, enhancing the
model’s capacity to capture semantic and contextual nu-
ances inherent in the data.

Following pre-training, the model weights are frozen, allow-
ing for the encoding of trace log information, wherein each
event is represented as a 768-dimensional vector, encapsu-
lating the semantic essence of student interactions during
game-play. This approach ensures a nuanced representation
of student interactions, facilitating comprehensive analysis
and interpretation within the context of collaborative learn-
ing. Since the trace log information and facial feature data
are sampled at di!erent rates, with the former being slower,
we performed synchronization to produce a uniform dataset.
Specifically, we treated trace log events as the base sampling
rate and averaged the facial feature values in between suc-
cessive events.

We generate an encoding for each trace log event arising
from students’ game-play. Given the disparate sampling
rates between trace log information and facial feature data,
we needed to apply synchronization to ensure dataset uni-
formity. To this end, we devised a methodical approach for
harmonizing these datasets by adopting trace log events as
the baseline sampling rate and employing averaging tech-
niques to synchronize facial feature values between succes-
sive events. Trace log information is used as the base sam-



pling rate to avoid up-sampling. Given two datasets repre-
senting trace log information (A) and facial feature data (B),
where the trace data has a lower sample rate than the facial
feature data, we align the datasets by identifying consecu-
tive events in A, (at→1, at), and the corresponding events in
B at timestamps t→ 1 and t. The facial feature values in B
occurring between these two trace events are averaged and
associated with at. This synchronization process is applied
to all events in A, resulting in a dataset where each trace
log event (at) is mapped to the average facial feature data
recorded between the current and previous trace events. The
initial trace event is considered to have no associated facial
feature data.

3.4 Collaboration Satisfaction Survey
Within the EcoJourneys collaborative learning environ-
ment, students navigate through four activities, compris-
ing one tutorial activity and three quests, culminating in
the administration of an exit ticket survey at the conclu-
sion of each activity. This survey encompasses five ques-
tions graded on a Likert scale, aimed at gauging students’
perceptions of their collaborative interactions. Referencing
Figure 3, we delineate the content of each question, with
our focus directed towards the following statements: 1) I
am satisfied with how group members listened, 2) I am sat-
isfied with how group members are building on each other’s
ideas, for the purposes of student collaboration satisfaction
prediction. The first statement probes students’ sentiments
regarding the e”cacy of group listening, whereas the sec-
ond delves into the group’s aptitude in building upon one
another’s ideas. for the purposes of student collaboration
satisfaction prediction. The first statement probes students’
sentiments regarding the e”cacy of group listening, whereas
the second delves into the group’s aptitude in building upon
one another’s ideas. These specific inquiries o!er valuable
insights into the dynamics of student collaboration within
the learning environment, serving as pivotal metrics in our
predictive framework.

We extend our problem formulation to encompass student
satisfaction prediction, achieved by categorizing their re-
sponses to both statements into four distinct categories. A
response scoring above 3 on both statement 1 and 2 de-
notes high satisfaction, whereas a score below 3 on both
statements signifies low collaboration satisfaction. In in-
stances where statement 1 scores below 3 but statement 2
scores above 3, students are classified as experiencing low lis-
tening/high building interactions, whereas the converse sce-
nario indicates high listening/low building interaction. De-
spite a slight imbalance in class distribution, with students
exhibiting high satisfaction levels constituting 59.7% of in-
teractions and those with low satisfaction levels comprising
22.5%, the data reveals a nuanced spectrum of collabora-
tive experiences. Interactions categorized as low listening or
low building account for only 7.9% and 9.7%, respectively,
out of a total of approximately 164 completed activities.
This classification framework provides a lens through which
to analyze and predict student satisfaction within the ed-
ucational context. Within this framework, we can develop
predictive models to anticipate these class labels, o!ering in-
sights into two pivotal factors: group listening behavior and
idea building, both crucial in shaping student collaboration
satisfaction. This annotation scheme focuses on collabora-

0

10

20

30

40

50

60

70

1 2 3 4 5

Likert Score

Distribution of Survey Responses

I am satisfied with how group members listened

I am satisfied with how group members are building on each other’s ideas

Figure 3: Distribution of student responses to each survey
question.

tive communication practices within each group, and lever-
aging automated methodologies to evaluate student collabo-
ration satisfaction empowers educators to pinpoint potential
shortcomings in group communication dynamics. This nu-
anced approach holds promise in enhancing the e”cacy of
collaborative learning environments, fostering more robust
and productive interactions among students.

4. METHODOLOGY
In the following sections we outline the setup of the unimodal
modeling approaches as wells as provide details on the ar-
chitecture of our proposed multimodal modeling technique
employing cross-attention mechanisms.

4.1 Unimodal Modeling
This research explores the assessment of various modalities’
e!ectiveness in predicting student collaboration satisfaction.
Initially, we investigate the predictive performance of each
modality employing baseline recurrent neural networks, par-
ticularly long short-term memory networks (LSTMs). These
baseline models are individually trained utilizing unimodal
features to anticipate student collaboration satisfaction. The
architectural schema of the unimodal models encompasses
an LSTM encoder comprising 200 hidden units and 2 RNN
neurons, with a dropout rate of 0.1. Additionally, a 2-layer
feedforward neural network with ReLU activation is inte-
grated as a classification head. The LSTM encoder pro-
cesses normalized inputs from a given modality, with the
final hidden state forwarded as input to the fully connected
classification head for collaboration satisfaction prediction.
Each model is trained on a single modality, and the resultant
predictive performance is documented in Table 1. Through
this line of inquiry, we aim to discern the optimal modalities
for bolstering student collaboration satisfaction prediction
within collaborative game-based learning contexts.

4.2 Multimodal Modeling
Recent research has illuminated the benefits of incorporat-
ing diverse data sources for student modeling and analysis.
This study seeks to expand upon this foundation by con-
ducting an analysis between unimodal deep learning models
and multimodal counterparts in predicting student collabo-
ration satisfaction. Our multimodal approach incorporates
a deep learning architecture with a cross-attention mecha-



nism, facilitating a deeper understanding of the interactions
among di!erent data sources, which in turn enhances pre-
dictive accuracy. The architecture, detailed in Figure 4, em-
ploys GRU-based encoders with 2 RNN neurons to project
data into a 32-dimensional embedding space for each video-
based feature. These embeddings are then fed into an initial
cross-attention layer. Formally, given video-based features
X = Xau, Xpose, Xgaze and trace log information Xtrace, we
derive modality-specific encodings.

Eau = GRU(Xau) (1)

Epose = GRU(Xpose) (2)

Egaze = GRU(Xgaze) (3)

The initial cross-attention layer utilizes two RNN-encoded
modalities, designating one as the key and the other as the
queries and values, which are then inputted into a multi-
head attention layer. It then passes the inverse combina-
tion of modalities before summing the two representations.
Formally, to generate the cross-attention representation for
(AU, Pose), Aap, the following operation is performed by
the first cross-attention layer:

Aap = softmax(
q(Epose)k(Eau)↑

dk
)v(Epose)

+ softmax(
q(Eau)k(Epose)↑

dk
)v(Eau)

(4)

Similarly, the representation for the (AU, Gaze) based fea-
tures can be obtained by:

Aag = softmax(
q(Egaze)k(Eau)↑

dk
)v(Egaze)

+ softmax(
q(Eau)k(Egaze)↑

dk
)v(Eau)

(5)

These two sets of learned features are generated by the same
cross-attention layer thus sharing the weights of this op-
eration. Subsequently, these attention representations are
combined utilizing a second cross-attention layer, this time
attending to the important features across all modalities,
culminating in a final attention map utilized for downstream
processing. The final attention maps are produced by:

Afinal = softmax(
q(Aap)k(Aag)↑

dk
)v(Aap)

+ softmax(
q(Aag)k(Aap)↑

dk
)v(Aag)

(6)

The attention map undergoes averaging along the sequence
dimension to yield a fixed-length embedding of the video
features. Concurrently, trace log information undergoes pro-
cessing through a feedforward layer to project the data into
a lower-dimensional space, aligning with the dimensions of
the attention matrix.

Etrace = FFNN(Xtrace) (7)

The projected trace log data and the derived attention map
are added together before being processed by a 2-layer feed-
forward classification head, mirroring the unimodal archi-
tecture.

Ŷ = softmax(FFNN(Afinal + Etrace)) (8)

Our architecture draws inspiration from the Self-Doc frame-
work [19], particularly in the implementation of the cross-

attention mechanism. However, we omit the self-attention
block immediately following each cross-attention layer due
to observed over-fitting which we attribute to the increased
model complexity relative to our dataset size. In low-resource
settings, where datasets may be limited, excessive model
complexity can lead to over-fitting, diminishing generaliza-
tion performance. Consequently, simplifying the architec-
ture by removing redundant components, such as the self-
attention block in our case proved to be beneficial. More-
over, as our architecture treats individual visual features as
their own modality we perform additive fusion by adding
cross-attention outputs from di!erent combinations of keys,
queries, and values to create the intermediate attention maps
in our cross-attention layer. This process helps the model to
learn two representations for each modality pair that when
aggregated together, impart to the model information about
how the two modalities are related and what parts of the
combined features should be attended to. We train the
model using cross-entropy loss and apply a dropout rate of
0.1 to the GRU encoders, serving as regularization for the
cross-attention outputs to further mitigate over-fitting risks.

5. RESULTS
All models were trained and evaluated using student level
10-fold cross validation with the average results reported in
Table 1 and Table 3. As a form of regularization models
employed early stopping with a patience of 3 for monitor-
ing the validation loss and were trained for a maximum of
500 epochs. All models utilized the Adam optimizer with a
learning rate of 1e-3 and utilized a scheduler to reduce the
learning rate when the loss plateaus.

5.1 Unimodal Results
The analysis depicted in Table 1 highlights the varying per-
formance of individual modalities, with pose and AU fea-
tures demonstrating relatively higher performance, with an
accuracy of 66% (F1-score = 0.66), compared to gaze and
trace features, which exhibit an accuracy of 65% (F1-score
= 0.65), on average. The observed improvement (p-value
< 0.05) in predictive performance compared to a majority
classifier underscores the e”cacy of these unimodal models
for collaboration satisfaction prediction. However, Wilcoxon
tests (Table 2) reveal no significant di!erence in performance
between the unimodal models across various cross-validation
folds, except for pose and gaze features (p-value < .05). No-
tably, the multimodal cross-attention model emerges as the
front runner, significantly outperforming all other unimodal
models, with an accuracy of 72%(F1-score = 0.72). These
results underscore the e!ectiveness of leveraging multiple
modalities for predicting student collaboration satisfaction.

5.2 Multimodal Results
Considering the enhanced performance observed in the mul-
timodal cross-attention model compared to the unimodal
baselines, we conducted an ablation study to pinpoint the
crucial feature combinations contributing to this improve-
ment. As depicted in Table 3, the full multimodal model sig-
nificantly outperforms (p-value < .01) various ablated mod-
els, including combinations of trace log with visual features
and other permutations of visual features alone. This un-
derscores the substantial enhancement in collaboration sat-
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Table 1: Comparison of unimodal models to the multimodal
cross-attention model.

Unimodal vs Multimodal
Model F1-Score Accuracy
AU 0.66 0.66
Pose 0.66 0.66
Gaze 0.65 0.65
Trace 0.65 0.65
Multimodal 0.72 0.72

Table 2: Results of Wilcoxon tests ran to compare the per-
formance of unimodal and multimodal models.

Wilcoxon Tests
AU Pose Trace Gaze Cross Attention

AU 1 0.69 0.27 0.105 0.003
Pose - 1 0.064 0.015 0.001
Trace - - 1 0.51 0.001
Gaze - - - 1 0.001
Cross Attention - - - - 1

isfaction prediction facilitated by the integration of multi-
ple modalities with the cross-attention mechanism. While
there exists no significant disparity in performance between
the full multimodal model and the trace log + AU only
model, notable di!erences (p-value < .05) emerge between
these two models and all other feature combinations except
trace+AU+gaze. Notably, it is important to highlight that
several models incorporating gaze features exhibit markedly
lower (p-value < .05) predictive performance (accuracy and
F1-score ranging from 0.64 to 0.65) compared to models ex-
cluding gaze features, except for the full multimodal model.

6. DISCUSSION
In this work we explored the e”cacy of using video and trace
log information in the task of student collaboration satisfac-
tion prediction. For this purpose, we utilized facial action
units, head pose, and gaze location information extracted
from students faces along with trace logs produced during
their interactions with the EcoJourneys game-based learn-
ing environment.

6.1 Role of Unimodal Features
RQ1: What are the individual modalities that contribute
most significantly to the prediction of student collaboration
satisfaction in collaborative game-based learning environments?

Upon deeper examination of our findings, we observe that
unimodal LSTM models exhibit a significant improvement
over a naive baseline (p-value < .05), demonstrating the
e!ectiveness of unimodal RNN models in predicting collab-



Table 3: Ablation analysis of modalities and their a!ect on the cross-attention model

Multimodal Ablation
Model F1-Score Accuracy
Full Multimodal 0.72 0.72
Trace+AU 0.70 0.70
Trace+Pose 0.69 0.69
Trace+Gaze 0.65 0.65
AU + Pose 0.68 0.67
AU+Gaze 0.65 0.65
Pose+Gaze 0.64 0.64
Trace+AU+Pose 0.70 0.70
Trace+AU+Gaze 0.67 0.66
Trace+Pose+Gaze 0.68 0.67
AU+Pose+Gaze 0.67 0.67

oration satisfaction from individual modalities. However,
when subjected to Wilcoxon tests during cross-validation,
the performance disparity among these models appears to
be insubstantial. Notably, the divergence between pose and
gaze-based features (p-value < .05) implies a potential infor-
mational asymmetry, suggesting that pose features, captur-
ing information on students’ body postures and movements,
may provide more discernible cues pertaining to collabo-
ration dynamics. This disparity underscores the potential
complementary nature of these two modalities.

Despite the higher accuracy of pose features, the signifi-
cant di!erences between gaze and pose modalities suggest
that both contribute distinct information to the predictive
task. Furthermore, these unique contributions potentially
hint at interactions between the modalities. The compara-
ble performance of AU and pose-based features may suggest
a similarity in the information captured by these features
for identifying student collaborative behaviors, while still
o!ering valuable insights from each modality. Our analy-
sis specifically addressing RQ1 reveals that each modality
demonstrates comparable predictive prowess, with no single
modality significantly outperforming others. The distinction
between pose and gaze features underscores their comple-
mentary nature, a trait leveraged in the multimodal setting,
as evidenced by its improved performance.

6.2 Multimodal Feature Ablation
RQ2: How does the integration of multiple modalities through
a multimodal deep learning model, particularly employing a
cross-attention mechanism, enhance the accuracy of predict-
ing student collaboration satisfaction?

To better understand the contribution of individual modali-
ties to the multimodal model, we initially performed an ab-
lation study comparing the complete multimodal model to
methods using di!erent permutations of modalities. From
Table 3 we see that the complete multimodal model con-
sistently outperformed or performed comparably to ablated
versions. Significant improvement is seen across all ablated
methods that do not include both trace log and facial action
units with the notable exceptions of the model that also in-
cluded the pose information. Synergistic contributions from
the combination of trace log, AU, and pose information may
be learned by the model that enhances its discriminative
ability. Specifically, this highlights the complementary na-

ture of di!erent modalities suggesting that each modality
captures di!erent aspects of collaborative interactions and
contributes to a more comprehensive understanding for the
model. A trend of poor performance is seen with all models
that included gaze features, indicating that they may not be
particularly suited for the task of collaboration satisfaction
prediction. Interestingly, the inclusion of gaze features into
the complete multimodal model did not impact its perfor-
mance. This shows that the cross-attention mechanism is
well suited for filtering out non-relevant information across
individual modalities.

In addressingRQ2 , we see that the multimodal cross-attention
model can identify key synergies within each modality to en-
hance its predictive performance. Moreover, the proposed
architecture can handle the incremental addition of modal-
ities and if given the correct combination of modalities, it
can allow it to identify a wider range of cues that are infor-
mative for collaboration satisfaction prediction. However,
some modality combinations decrease the performance of
the multimodal model, which highlights the importance of
e!ectively integrating features to ensure that the model can
leverage the diverse information provided by each modality.
Similarly, it highlights the importance of choosing comple-
mentary information that avoids redundancy and conflicting
signals. It is important to note that the observed decrease
in performance for some sets of modalities shows the impor-
tance of balancing model complexity with predictive perfor-
mance. While integrating more modalities may theoretically
improve the models predictive capabilities there is a trade-
o! between complexity and performance.

6.3 Feature Importance Analysis
RQ3: What specific combinations of modalities and features
within the multimodal deep learning model are most e!ective
in predicting student collaboration satisfaction, and what in-
sights can be gained from feature importance analysis regard-
ing their contribution to the prediction accuracy?

To further analyze the contribution of individual modalities
we choose to perform a feature importance analysis. Specif-
ically, we utilize Gradient SHAP to gather Shapley values
generated by the model on the cross-validation folds with
the highest and lowest performance (76% and 68% accuracy
respectively). Shapley values are a game theoretic approach
for identifying the contribution of di!erent factors towards a



(a) SHAP values for AU contributions 8
th

cross-validation fold. (b) SHAP values for AU contributions 6
th

cross-validation fold.

Figure 5: Comparison of SHAP values for lowest and highest performing cross-validation fold.

(a) SHAP values for gaze contributions 8
th

cross-validation fold. (b) SHAP values for gaze contributions 6
th

cross-validation fold.

Figure 6: Comparison of SHAP values for lowest and highest performing cross-validation fold.

(a) SHAP values for pose contributions 8
th

cross-validation fold. (b) SHAP values for pose contributions 6
th

cross-validation fold.

Figure 7: Comparison of SHAP values for lowest and highest performing cross-validation fold.

cooperative goal. Specifically, traditional SHAP values rep-
resent feature importance for linear models in the presence
of multicollinearity [21]. Since the proposed method utilizes
non-linear models, we employ Gradient SHAP to estimate
feature importance. Gradient SHAP approximates Shapley
values by sampling from the baseline distribution to compute
the expectations for gradients [21]. In Figure 5 we see the
expected value of the gradients with respect to the input
features for each modality used in the multimodal model.
These figures demonstrate the di!erence in feature impor-
tance for di!erent collaborative cohorts. We omit SHAP
values from the trace log information because it consists of
a 768-dimensional embedding where each dimension has no
human-readable mapping. A thorough investigation into the
quality of the textual embeddings within the trace log data
is beyond the scope of the present work but o!ers a valuable

avenue for future research.

In Figure 5 we see that for the 8th cross validation fold (Fig-
ure 5a) the model finds AU1, AU4, AU7, and AU25 are most
informative while other action units are not very informative
for this set of students. In contrast the model finds AU1,
AU6, AU7, and AU20 to be most informative in the 6th

cross validation fold (Figure 5b). Moreover, the model finds
many more features to negatively contribute to the over-
all prediction task. Variation in informative AUs suggests
that the importance of specific AUs may vary depending on
the student cohort or interaction context. Accordingly, this
variation may also show di!erences in student interaction
dynamics such as facial expressions associated with engage-
ment, attentiveness, or emotional states. Despite this vari-
ation there are specific AUs (AU1, AU7) that consistently



emerge as positively contributing to predictive performance
which may indicate that they capture essential facial expres-
sions or emotional cues that are indicative of collaboration
satisfaction. Prior work has observed that AU1 and AU7
can be associated with confusion, boredom, and surprise
[26, 4]. The presence of large negative contributions from
various action units underscores the importance of mitigat-
ing the impact of irrelevant features. Despite the challenge
of manually identifying which features are most informative
to predict student collaboration satisfaction, the proposed
multimodal cross-attention model can ignore irrelevant in-
formation even when presented with noisy data.

Examining the SHAP values for gaze features in Figure 6
we can clearly see why multimodal and unimodal methods
that were dependent on gaze performed worse than models
without, exclusive of the full multimodal model. For the 8th

cross validation fold (Figure 6a), we see the model finds sev-
eral features marginally important, x, y coordinates for each
eye, while finding the z coordinate to be uninformative. This
suggests that the horizontal and vertical positioning of gaze
may be marginally more informative than the depth compo-
nent (i.e., distance from the screen) of the data which may
not capture aspects of collaboration dynamics. In contrast,
none of the gaze features were found to be useful for the
6th cross-validation fold (Figure 6b) further elucidating the
lack of contribution of the gaze-based features. However, the
performance of the complete multimodal model compared to
the ablated models, suggests that the cross-attention mecha-
nism can adapt to the gaze contributions of di!erent interac-
tion cohorts in conjunction with highly informative features.
Finally, an examination of the SHAP values produced by
pose-based features (Figure 7) reveals that the z coordinate
corresponding to students’ head distance from the camera
is seen to be the most informative. This suggests that head
tilt or nodding behavior plays a crucial role in collaborative
dynamics and may convey significant cues regarding their
engagement or attentiveness during collaboration activities.

In addressing RQ3 , we have shown that there are specific
combinations of multimodal features that hold strategic im-
portance in enhancing their predictive performance. Specifi-
cally, we find that AU1, AU7 are common important features
across the best and worst performing multimodal models.
Additionally, the horizontal movement of eye gaze (x and y
coordinates for each eye) marginally contributed to model
performance although overall gaze features were not shown
to be particularly beneficial in predicting student collabora-
tion satisfaction. Head tilt and nodding behavior associated
with the z coordinate of head poses is consistently shown
to be an informative feature and enhances the predictive
capabilities of multimodal models.

7. LIMITATIONS
In this research we explore the task of predicting student
collaboration satisfaction in small groups using multimodal
data. However, there are a few limitations to our work. We
derive collaboration satisfaction through a rule-based dis-
cretization of student responses to Likert valued questions.
This measures an individual’s attitudes toward their group
interaction; however, it does not specifically measure how
well the group was satisfied with their collaborative e!orts.
It’s important to generate a holistic understanding of col-

laborative interactions by considering how each individual
member contributed to overall group satisfaction. Addi-
tionally, we utilize data from a single game-based learning
environment with 50 middle school students from 2 di!er-
ent schools with predominantly homogeneous ethnic back-
grounds therefore it is important to note that the proposed
method may not generalize well to learners in other pop-
ulations or learning environments. Finally, during feature
alignment we utilize trace data to discretize the facial fea-
ture information. The trace log information has an irregu-
lar temporal nature and therefore by averaging facial feature
data in between trace events can skew values if there are long
periods of time in between consecutive trace events. Small
changes in facial feature information may be subsumed by
long periods of time in between consecutive events leading
to information loss.

8. CONCLUSION
We contrasted unimodal and multimodal deep learning mod-
els to predict student collaboration satisfaction while they
interacted with a game-based learning environment. We
contribute to the current body of research by exploring how
various unimodal features contribute to the predictive per-
formance of multimodal models. Additionally, we devised a
multimodal deep learning model utilizing a cross-attention
mechanism to attend to the most salient parts of the mul-
timodal data that enhanced collaboration satisfaction pre-
diction. We concluded by performing feature importance
analysis for the highest and lowest performing multimodal
models utilizing gradient SHAP to estimate the expected
contribution of each input feature in relation to the final pre-
diction outcome. We find that within each modality there is
a smaller subset of features that are consistently important
to model performance. Moreover, we find that the proposed
cross-attention model can e!ectively mitigate the inclusion
of extraneous and possibly noisy inputs.

There are several promising avenues to explore in future
work. An important next step would be to investigate group
level measures of student satisfaction with their collabora-
tive experiences. As noted in the limitations above, this
work utilizes only individual responses from Likert valued
questions regarding their satisfaction levels. Deriving a group
level metric based on student responses can lead to a more
robust and holistic understanding of collaboration quality
within groups. From an architectural standpoint exploring
transfer learning of multimodal models to unimodal con-
text can help bridge the gap in scenarios where one or more
modalities are di”cult or prohibitive to obtain. In our work,
trace log information is a more stable modality as it is non-
intrusive to collect and does not contain identifying infor-
mation showing critical importance for privacy-preserving
educational platforms. Distilling knowledge gained from
the multimodal setting to the unimodal models addition-
ally provides the benefit of reducing model complexity and
increasing its range of deployment such as in low resource
environments.
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