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ABSTRACT
A key challenge in e-learning environments like Intelligent
Tutoring Systems (ITSs) is to induce e!ective pedagogi-
cal policies e”ciently. While Deep Reinforcement Learn-
ing (DRL) often su!ers from sample ine!ciency and re-
ward function design di”culty, Apprenticeship Learning
(AL) algorithms can overcome them. However, most AL al-
gorithms can not handle heterogeneity as they assume all
demonstrations are generated with a homogeneous policy
driven by a single reward function. Still, some AL algo-
rithms which consider heterogeneity, often can not gener-
alize to large continuous state space and only work with
discrete states. In this paper, we propose an expectation-
maximization(EM)-EDM, a general AL framework to induce
e!ective pedagogical policies from given optimal or near-
optimal demonstrations, which are assumed to be driven
by heterogeneous reward functions. We compare the e!ec-
tiveness of the policies induced by our proposed EM-EDM
against four AL-based baselines and two policies induced by
DRL on two di!erent but related tasks that involve peda-
gogical action prediction. Our overall results showed that,
for both tasks, EM-EDM outperforms the four AL baselines
across all performance metrics and the two DRL baselines.
This suggests that EM-EDM can e!ectively model complex
student pedagogical decision-making processes through the
ability to manage a large, continuous state space and adapt
to handle diverse and heterogeneous reward functions with
very few given demonstrations.

Keywords
Student strategy modeling, Pedagogical strategy, Appren-
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1. INTRODUCTION
Reinforcement Learning (RL) and Deep RL (DRL) have ex-
perienced significant development in recent years and have
been successfully applied in e-learning systems such as intel-

ligent tutoring systems (ITSs) [2, 10, 11, 26, 28, 48]. More
specifically, in an ITS, the pedagogical agent leverages RL
to learn a decision-making policy to maximize the expected
cumulative rewards over an extended period, with the over-
arching aim of benefiting students in the long run [3, 25,
30]. Despite DRL’s great success, several obstacles prevent
the broader application of DRL to educational systems in
practice. One is sample ine!ciency . For example, it
takes Deep Q-Networks (DQN), one type of classic DRL
algorithm, hundreds of millions of interactions with the en-
vironment to learn a good policy and generalize to unseen
states. In many previous studies on RL and DRL in ITSs,
a prevalent practice involves generating an exploratory cor-
pus. This is typically done by training a cohort of students
on an ITS that produces random, yet reasonable, decisions.
Subsequently, RL is applied to derive pedagogical policies
from this training corpus. However, it is noteworthy that
despite this approach, a significant portion of prior research
aims to derive pedagogical policies from fewer than 3000 logs
of student-tutor interactions; the resultant RL policies may
sometimes be proven ine!ective [7, 48].

Another major obstacle is reward function design. As
a fundamental element in RL, the reward function defines
the goals to achieve when the agent interacts with the envi-
ronment, which provides the agent incentive to adopt bet-
ter decision-making behaviors [32]. Specifically, the reward
function maps each perceived state (or state-action pair) of
the environment to a scalar value and gives it as a credit
or punishment to the RL agent, and the agent will learn
a decision-making policy accordingly to maximize the ex-
pected cumulative rewards. Just as supervised models de-
pend heavily on accurate labels for the training dataset,
the e!ectiveness and robustness of RL approaches depend
heavily on an accurate reward function. Despite the im-
portance of the reward function in RL, it is usually di”-
cult to design, especially for human-centric tasks like edu-
cation, where multiple factors need to be covered and traded
o!. Generally, the reward function is hand-crafted before-
hand, separate from the policy induction. However, man-
ually designing an appropriate reward function is always
labor-intensive and time-consuming [21]. It commonly de-
pends on the domain knowledge, and it is hard to avoid the
expertise blind spots [1]. Moreover, the manually specified
reward function will likely be miss-specified, which can be
inconsistent with the expected policy [4].

To overcome the two obstacles, Apprenticeship Learning
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(AL) algorithms have been proposed. Instead of inducing
the policy under the guidance of a pre-defined reward func-
tion and using a large amount of training data, AL aims at
learning via observing and imitating a few demonstrations
provided by expert agents, who make decisions optimally

or near-optimally with respect to an unknown underlying
reward function [1]. By learning from demonstrations,
the learner agent, i.e., the apprentice, aims to learn a
decision-making policy to behave as well as the experts.
Getting rid of the di”culties in reward function design in
RL, AL has been widely applied in various applications [6,
27, 41, 43, 51].

AL approaches have been categorized as being either online
or o#ine. In the former category, the agent learns while in-
teracting with the environment; the latter learns the policy
from pre-collected data. The existing AL are commonly on-

line, requiring interacting with the environment iteratively
for collecting new data and then updating the model accord-
ingly [1, 57, 16]. Online AL algorithms are generally appro-
priate for domains where interacting with simulations and
actual environments is computationally cheap and feasible.
On the other hand, for domains such as e-learning, build-
ing accurate simulations or simulated students is incredi-
bly challenging because human learning is a rather complex,
poorly understood process; moreover, learning policies while
interacting with students can not only be unethical but not
allowed. Therefore, we focus on o#ine AL approaches. A re-
cently proposed energy-based distribution matching (EDM)
approach [29] has advanced the state-of-the-art in o!ine

AL. However, EDM assumes all demonstrations are gener-
ated using a homogeneous policy with a single reward func-
tion. In real-world scenarios, the reward function can be
heterogeneous across the demonstrations. For example, in
the education domain, when students make decisions during
learning, their reward functions can be learning-oriented,
e”cient-oriented, or not learning [55]. Therefore, in this
work, to handle the heterogeneous reward functions, we pro-
pose an expectation-maximization(EM)-EDM, a general AL
framework to induce pedagogical policies from given optimal

or near-optimal demonstrations, which are assumed to be

driven by multiple heterogeneous reward functions.

While EM-Inverse Reinforcement Learning (EM-IRL) was
introduced in [55], it is limited because it can only handle
relatively small discrete state representation (17 discrete fea-
tures involved in [55]). In contrast, our proposed EM-EDM
can handle over 140 continuous features. In this study, we
focused on the decisions on whether to present the next prob-
lem as a Worked Example (WE), a Problem Solving (PS),
or a Faded Worked Example (FWE). In WE, students were
given a detailed example showing how the tutor solves a
problem; in PS, by contrast, students were tasked with solv-
ing the same problem on their own on the ITS; in FWEs, the
students and the tutor co-construct in that their solutions
are intertwined.

In AL, it is usually assumed that the demonstrations are
optimally or near optimally executed by experts [1]. Thus,
the quality of the demonstrations matters in order to induce
more e!ective policies. In this study, rather than gathering
exploratory data in DRL, our EM-EDM will derive peda-
gogical policies directly from the pedagogical decisions and

behaviors demonstrated by students while interacting with
the ITS. In this study, we involve 53 “optimal” or “near-
optimal” demonstrations, which empower students to make
their own pedagogical decisions during learning, leading to
positive learning outcomes (see details in Section 4.3).

We compare the e!ectiveness of the policies induced by our
proposed EM-EDM against four AL-based baselines using
the 53 demonstrations and two policies induced by DRL
using 2,716 and 1,819 student-ITSs interactive trajectories,
respectively. This evaluation is conducted on two tasks
that are related but distinct from each other. For Task 1,
we adhere to standard AL research practices by conduct-
ing training and evaluation of the methods for pedagogi-
cal action prediction. This is accomplished through 5-fold
cross-validation, utilizing all selected demonstrations. Task
2 holds greater relevance and practical significance in the
educational data mining field. It involves using trajectories
from a previous semester as training data and trajectories
from a subsequent semester as testing data. The objective
is to assess whether the clustering results obtained from the
training data of the previous semester can e!ectively predict
students’ actions in the later semester. Our overall results
showed that, for both tasks, EM-EDM outperforms the four
AL baselines across all performance metrics as well as the
two DRL baselines. This suggests that EM-EDM is more
data e”cient and e!ective in learning students’ heteroge-
neous strategies in ITSs.

In summary, our contributions can be outlined as follows:

1. The key contribution lies in the capability of
EM-EDM to e!ectively model complex student
pedagogical decision-making processes through the
ability to manage a large, continuous state space and
its adaptability in handling diverse and heterogeneous
reward functions.

2. The empirical evaluation of EM-EDM involves com-
paring four state-of-the-art AL baselines and two DRL
baselines on two significant tasks.

3. The results obtained from EM-EDM showed that stu-
dents’ demonstrations exhibit heterogeneous reward
functions. Notably, EM-EDM can induce distinct ped-
agogical policies for di!erent reward functions even
with as few as 24 demonstrations.

2. RELATED WORK
2.1 RL and DRL for Pedagogical Policy In-

duction
In general, there have been two types of prior research on
using Reinforcement Learning (RL) to educational policy
induction: classic RL and DRL approaches. With the ul-
timate goal of helping students in the long run, the peda-
gogical agent in an ITS uses RL to learn a decision-making
policy that maximizes the predicted cumulative benefits over
a prolonged period [30]. Despite DRL’s enormous success,
several challenges are preventing its wider implementation
in actual educational institutions; sample ine”ciency is one.
For instance, learning a suitable policy and generalizing to
unknown states requires hundreds of millions of interactions



with the environment for Deep Q-Networks (DQN), one kind
of classic DRL method.

The design of reward functions is another significant bar-
rier. They are a key component of reinforcement learning
and establish objectives for the agent to meet when inter-
acting with the environment. This motivates the agent to
make better decisions [32]. In particular, the reward func-
tion assigns a credit or punishment to each perceived state
(or state-action combination) of the environment. Based on
this, the RL agent learns a decision-making policy that max-
imizes the expected cumulative rewards. An accurate re-
ward function is critical to the e”cacy and robustness of re-
inforcement learning techniques, much as supervised models
rely significantly on accurate labels for the training dataset.

Even though the reward function is crucial to reinforcement
learning, designing one is typically challenging, particularly
for tasks that focus on people, like teaching, and require bal-
ancing various considerations. Usually, the policy induction
is done separately from the reward function, which is man-
ually created previously. However, creating a suitable re-
ward function by hand is usually time-consuming and labor-
intensive [21].

To summarize, previous research indicates that RL and
DRL-induced pedagogical policies can be sample ine”cient
and require handling the challenge of reward function
design.

2.2 Apprenticeship Learning (AL)
Behavior cloning [49, 44] is a traditional o#ine AL technique
that learns a mapping from states to actions by avariciously
copying the best practices of experts who have been shown
[42]. Several inverse reinforcement learning (IRL)-based [1,
57] and adversarial imitation learning-based [23] techniques
have been developed to better capture the data distribution
in experts’ presentations.

In general, iterative loops are used in IRL-based approaches
to 1) infer a reward function, 2) induce a policy using tradi-
tional reinforcement learning, 3) roll out the learned policy,
and 4) update the reward parameters in response to discrep-
ancies between the roll-out behaviors and expert demon-
strations. The technical and theoretical drawbacks of the
original IRL approaches that adhere to the aforementioned
online model will be retained when applied to an o#ine en-
vironment. Furthermore, the reward is typically modeled by
IRL-based approaches using a certain tractable format, such
as a linear function that maps states and state-action pair-
ings to reward values [1, 57, 8]. Moreover, certain batch-IRL
have been proposed in order to prevent the learned policy
from being implemented.

Typically, adversarial imitation learning-based techniques
involve learning a discriminator to discern learned behaviors
from expert demonstrations and a generator to implement
the policy iteratively. Some o!-policy learning techniques
based on o!-policy actor-critic have been developed under
the batch setting in order to avoid rolling out the policy [33,
34]. However, according to [23], these techniques inherit the
complicated alternating max-min optimization from general
adversarial imitation learning.

Jarrett et al. proposed and evaluated the EDM [29] on a
wide range of benchmarks, online environments like e.g.,
Acrobot, LunarLander, and BeamRider, as well as o#ine
environment MIMIC-III. It was shown that EDM can out-
perform both IRL-based and adversarial imitation learning-

based methods. In this work, EDM serves as one of our
baselines.

2.3 AL with Multiple Intentions
A few AL methods have been proposed to consider multiple
reward functions. A Bayesian multi-task IRL was proposed,
which models the heterogeneity of reward functions by for-
malizing it as a statistical preference elicitation via a joint
reward-policy prior [15]. Choi and Kim integrated a Dirich-
let process mixture model into Bayesian IRL to cluster the
demonstrations [12]. Using a Bayesian model, they incorpo-
rated the domain knowledge of multiple reward functions.
Similarly, Arora et al. combined the Dirichlet process with
a maximum entropy IRL to learn the clusters of demonstra-
tion with di!erent reward functions [5].

Babes et al. derived an EM-based IRL approach that clus-
ters trajectories based on their di!erent reward functions
[8]. As a component of the EM-based IRL, a maximum-
likelihood IRL uses a gradient ascent method to optimize
the reward parameters, which has successfully identified un-
known reward functions. Xi et al. used EM-Inverse Re-
inforcement Learning (EM-IRL) to subtype students from
their pedagogical behavior data [55]. Still, as most other
multiple intentions works, it is limited because it can only
handle discrete state representation (17 discrete features in-
volved in [55]) and can not generalize to large continuous
state space.

2.4 WE, PS, and FWE
Many studies have examined the e!ectiveness of WE, PS,
and FWE, as well as their di!erent combinations [50, 45,
40]. Renkl et al. [45] compared WE-FWE-PS with WE-PS
pairs, and the results showed that the WE-FWE-PS con-
dition significantly outperformed the WE-PS condition on
posttest scores. Similarly, Najar et al. [40] compared adap-
tive WE/FWE/PS with WE-PS pairs and found that the
former is significantly more e!ective than the latter on im-
proving student learning. Overall, it is demonstrated that
adaptively alternating amongst WE, PS, and FWE is more
e!ective than hand-coded expert rules in improving student
learning. However, when students make decisions among
WE, PS, and FWE, there’s no significant di!erence with
tutors making decisions on students’ learning performance
[56]. As far as we know, no prior research has explored how
to combine students’ decision-making with RL-induced pol-
icy decision-making to facilitate learning.

3. METHODS
3.1 Our Methodology: EM-EDM
AL generally follows the procedure of 1) taking the demon-
strations as input to infer the latent reward function, based
on which a policy can be induced, then 2) rolling out the
learned policy to update the reward function by minimiz-
ing the divergence between the rolled-out behaviors versus
the demonstrations. This procedure will be conducted iter-
atively until convergence.



The input of EM-EDM contains N demonstrated trajecto-
ries {ωn} = {(snt , an

t )|t = 1, ..., Tn;n = 1, ..., N} provided by
experts, where snt → Rm is the t-th multivariate state with m

features, and a
n
t is the corresponding action in the n-th tra-

jectory with the length of Tn. In this work, we assume that
{ωn} are carried out with multiple policies. EM-EDM would
cluster the trajectories first and then induce policies for each
cluster to induce e!ective policies. Taking our ITSs as an
example, EM-EDM will cluster student trajectories and in-
duce di!erent policies or strategies over learned clusters (as
shown in Figure 1).

Algorithm 1 EM-EDM

1: Input: Expert trajectories {ωn}, number of clusters {K}
2: Initialize: Prior probability εj and policy parameter ϑj ,

j = 1, ...K randomly
3: repeat

4: E Step: Compute the uij , i = 1, ...N , j = 1, ...K
5: M Step: Update εj and learn ϑj via EDM, j = 1, ...K
6: until stop criteria is True
7: Output : Cluster-wise policies {$ω

j |j = 1, ...K}

3.1.1 EDM
As a strictly o!ine AL, energy-based distribution matching
(EDM) [29] can learn the policy merely based on the experts’
demonstrations, not requiring any knowledge of model tran-
sitions or o!-policy evaluations. It assumes that the demon-
strations {ωn} are carried out with a policy $ω parameter-
ized by ϑ, driven by a single reward function.

We denote the state-action pair as (s, a). The occupancy
measures for the demonstrations and the learned policy are
denoted as ϖε and ϖ!ω , respectively. The probability density
for each state-action pair can be measured as: ϖ!ω (s, a) =
E!ω [

∑→
t=0 ϱ

t1{st = s, at = a}], where ϱ is a discount factor,
then the probability density for each state can be measured
by: ϖ!ω (s) =

∑
a ϖ!ω (s, a). To induce the policy $ω, our

goal is minimizing the KL divergence between ϖε and ϖω:

argmin
ω

DKL(ϖε||ϖω) = argmin
ω

↑Es,a↑ϑε log ϖω(s, a) (1)

Since $ω(a|s) = ϖ!ω (s, a)/ϖ!ω (s), we can formulate the ob-
jective function as:

argmin
ω

↑Es↑ϑε log ϖ!ω (s)↑ Es,a↑ϑε log$
ω(a|s) (2)

When there is no access to roll out the policy $ω in an online

manner, ϖ!ω (s) in the first term of Eq.(2) would be challeng-
ing to estimate. EDM can handle this issue by utilizing an
energy-based model [22].

According to energy-based model, the probability density
ϖ!ω (s) ↓ e

↓E(s), with E(s) being an energy function. Then
the occupancy measure for state-action pairs can be repre-
sented as: ϖ!ω (s, a) = e

f
!ω (s)[a]

/Z!ω , and the occupancy
measure for states can be obtained by marginalizing out the
actions: ϖ!ω (s) =

∑
a e

f
!ω (s)[a]

/Z!ω . Herein, Z!ω is a parti-

Figure 1: EM-EDM framework

tion function, and f!ω : R|S| ↔ R|A| is a parametric function
that mapping each state to A real-valued numbers.

The parameterization of $ω implicitly defines an energy-
based model over the state’s distribution, where the energy
function can be defined as: E!ω (s) = ↑ log

∑
a e

f!ω(s)[a].
Under the scope of the energy-based model, the first term
in Eq.(2) can be reformulated as an “occupancy” loss:

Lϑ(ϑ) = Es↑ϑεEω(s)↑ Es↑ϑ
!ωEω(s) (3)

where ↗ωLϑ(ϑ) = ↑Es↑ϑε↗ω log ϖ!ω (s) can be solved by ex-
isting optimizers, e.g., stochastic gradient Langevin dynam-
ics [53]. Therefore, by substituting the first term in Eq.(2)
as Eq.(3) via energy-based model, we can derive a surrogate

objective function to get the optimal solution without the
need of online rolling out the policy.

3.1.2 EM-EDM
To deal with multiple reward functions varying across the
demonstrations, Babes-Vroman et al. proposed an EM-
based inverse reinforcement learning [8] by iteratively clus-
tering the demonstrations in E-step and inducing policies
for each cluster by IRL in M-step. Specifically, in the M-

step, they explored several IRL methods based on the dis-

crete states, which is not scalable for large continuous state
spaces, e.g., ITSs logs. Enlightened by this EM framework
and the success of EDM, we proposed an EM-EDM (Algo-
rithm 1) [54].

Taking trajectories {ωi|i = 1, ..., N} as input, with N be-
ing the number of trajectories, EM-EDM aims to cluster
these trajectories and learn the cluster-wise policies {$j |j =
1, ...K}, where K is the number of clusters. εj and ϑj , de-
note the prior probability and the policy parameter for each
cluster, and both are randomly initialized. The objective
function of EM-EDM is to maximize the log-likelihood de-
fined in Eq.(4):



argmax
ωj

K∑

j=1

N∑

i=1

log(uij) (4)

where uij denotes the probability that trajectory ω
i follows

the policy of the j-th cluster. It is defined in Eq.(5), with U

being a normalization factor.

uij = Pr(ωi|ϑj) =
∏

(s,a)↔εi

$ωj (s, a)εj

U
(5)

During the EM process, in the E-step, the probability that
trajectory ω

i belonging to cluster j is calculated by Eq.(5).
Then in the M-step, the prior probabilities are updated via
εj =

∑
i uij/N , and the policy parameters ϑj is learned by

EDM. The E-step and M-step are iteratively executed until
converged. Finally, the output of EM-EDM is the clustered
trajectories with their respective policies.

3.2 Apprenticeship Learning Baselines
3.2.1 Behavior cloning (BC)
Behavior cloning [49, 44] is a traditional o#ine AL technique
that learns a mapping from states to actions by avariciously
copying the best practices of experts who have been shown
[42]. It is a supervised learning approach used in AL where
an agent learns to imitate an expert by directly mapping ob-
servations to actions based on the expert’s demonstrations.
The objective is to mimic the expert’s behavior. The learn-
ing process involves minimizing the di!erence between the
agent’s actions and those demonstrated by the expert [9].

In a simplified form, let’s consider a dataset of expert demon-
strations where each example consists of an observation-
action pair: (si, ai), where si is an observation and ai is the
corresponding action. The behavior cloning objective is to
learn a policy ςω(a|s) parameterized by ϑ that approximates
the expert’s behavior.

The loss function for behavior cloning can be defined as the
standard supervised learning loss:

L(ϑ) =
1
N

N∑

i=1

↘ςω(ai|si)↑ ai↘2 (6)

Where N is the length of trajectories. The goal is to min-
imize this loss, and the optimal ϑ corresponds to a policy
that imitates the expert’s actions.

It’s important to note that while BC is straightforward, it
can be sensitive to distribution shifts and compounding er-
rors, especially when the learned policy deviates from the
expert’s demonstrations.

3.2.2 Generative Adversarial Imitation Learning
(GAIL)

Generative Adversarial Imitation Learning (GAIL) is an-
other AL approach that uses a generative adversarial net-
work (GAN) [20] to model the reward function, making
the learned policy less sensitive to di!erences between the
demonstrator and the learner [24]. GAIL aims to generate
a reward function that encourages the learner’s policy to
match the demonstrated behavior.

Given a set of expert trajectories φE ≃ ςE , and initial policy
and discriminator parameter to be ϑ0, w0, GAIL iteratively
updates the discriminator parameters from wi to wi+1 with
the gradient as per Equation 7.

Êϖi [↗w log(Dw(s, a))] + ÊϖE [↗w log(1↑Dw(s, a))] (7)

And then, take a KL-constrained natural gradient step with
Equation 8.

Êϖi [↗ω log ςω(a|s)Q(s, a)]↑ ↼↗ωH(ςω),

where Q(s̄, ā) = Êϖi

[
log(Dwi+1(s, a)) | s0 = s̄, a0 = ā

]

(8)

Where ςω is the policy of the learner, and ςE is the expert
policy. The discriminator aims to maximize this objective,
while the learner’s policy minimizes it. The reward function
is derived from the discriminator’s output.

GAIL addresses distribution shift issues in AL and is more
robust than behavior cloning. However, it may face chal-
lenges such as mode collapse during GAN training.

3.2.3 Adversarial Inverse Reinforcement Learning
(AIRL)

Adversarial Inverse Reinforcement Learning (AIRL) is an
adversarial approach in AL similar to GAIL that adversar-
ially trains a policy against a discriminator that aims to
distinguish the expert demonstrations from the learned pol-
icy. Unlike GAIL, AIRL recovers a reward function more
generalizable to changes in environment dynamics [18].

Given a set of expert demonstrations: φ
E
i , initial policy ς

and discriminator Dω,ϱ, AIRL iteratively collect trajectories
φi by executing ς, train the discriminator via binary logistic
regression to classify expert data from samples. The reward
is updated in each step following the Equation 9. Later, the
policy is updated with respect to reward using any policy
optimization method.

rω,ϱ(s, a, s
↗) = logDω,ϱ(s, a, s

↗)↑ log(1↑Dω,ϱ(s, a, s
↗)) (9)

where ςω is the policy of the learner, and ςexpert is the expert
policy. Like GAIL, the discriminator aims to maximize this
objective while the learner’s policy minimizes it. The reward
function is derived from the discriminator’s output.

AIRL o!ers advantages such as handling distribution shifts



and being less sensitive to suboptimal demonstrations. How-
ever, it may be computationally expensive.

3.3 Two Deep RL Baselines : CQL & CQL-T
3.3.1 CQL
A good number of prior research has explored the Deep RL
(DRL) (e.g., [31, 37, 46]), and it has shown that they can
be used to induce e!ective pedagogical policies for ITSs [37,
52]. As a DRL baseline, we choose Conservative Q-Learning
(CQL) [35], known for addressing overestimation issues in
comparison to various existing RL methods, including Deep
Q-learning, which is extensively explored in prior DRL stud-
ies within ITSs.

CQL represents a Q-learning or actor-critic algorithm de-
signed to learn Q-functions, ensuring that the anticipated
policy value under the learned Q-function provides a con-
servative estimate of the actual policy value. To achieve Q-
values with lower bounds, CQL goes beyond standard mini-
mization by concurrently minimizing the Q-function under a
selected distribution and maximizing it under the data dis-
tribution [35]. The training objective for the Q-function is
accordingly structured to attain this goal:

Q̂
ς
CQL := argmin

Q
↽ · (Es↑D,a↑µ(a|s)[Q(s,a)]

︸ ︷︷ ︸
minimize Q-values

↑ Es↑D,a↑ς̂ϑ(a|s)[Q(s,a)]
︸ ︷︷ ︸

maximize Q-values under data

)

+
1
2
Es,a,s→↑D

[(
Q(s, a)↑

(
R(s, a) + ϱ

[
max
a↔A

Q
(
s↗, a

)2


︸ ︷︷ ︸
standard Bellman error

(10)

Then, the optimization of the policy is done w.r.t:

Q̂
ς
CQL : ς ⇐ argmax

ς
Eς


Q̂

ς
CQL


(11)

The o#ine training process continues until it hits conver-
gence, a predetermined error threshold, or the maximum
number of iterations. As the amount of accessible data in-
creases, the magnitude of ↽ may decrease, so over here, ↽
> 0 represents a trade-o! factor [35]. Here, ς̂φ denotes the
behavior policy, ϱ → [0, 1] denotes the discount factor, s is
the current state, s↗ is the next state and R corresponds to
the reward function.

3.3.2 CQL-T
CQL-T refers to the same methodology for policy induction
as CQL except that it utilizes a combined reward function of
both student training time and Normalized Learning Gain
(NLG) motivated by prior research that response time re-
veals student proficiency [47]. In particular, there was a
significant negative correlation between student average re-
sponse time and student final exam score taken at the end
of the semester [19].

Figure 2: The interface of our probability tutor

4. EXPERIMENT
We gathered our data by letting undergraduate students
from the same major and same year complete an online in-
telligent tutoring system (ITS) (Figure 2) that introduced
them to probability concepts like Bayes’ Theorem and Ad-
dition Theorem. Using training problems, the students were
guided through the instruction. The tutor gave detailed in-
structions, quick responses, and on-demand assistance for
every problem. The assistance was given in the form of pro-
gressively more detailed hints. The bottom-out hint, the
final one in the sequence, gave the students precise instruc-
tions. Students could decide throughout training how to
solve the next stage pedagogically by either working through
it alone, watching the tutor work through it, or doing it col-
laboratively. The tutor will ask questions to get the answer
if they want to solve it independently; if not, the instructor
will show or tell.

4.1 Data Collection
Our experiment involves 128 students from two semesters,
Spring 21 (67 students) and Spring 22 (61 students). The
textbook, pre-test, training, and post-test were the four
stages every student taking part in our data collection pro-
cess went through. All students studied the domain funda-
mentals from a textbook on probability during the textbook.
They studied examples of each principle, read a general ex-
planation, and worked through various single- and multi-
principle problems. After that, the students completed a
pretest with 8 problems. They would not receive feedback
on their responses during this phase and would not be per-
mitted to revisit previous questions (this also applied to the
post-test). During training, twelve problems are shown in
a fixed sequence, allowing students to practice by choos-
ing to solve it alone (PS), solving it collaboratively with the
ITS (FWE), or seeing the solution as a worked-out exam-
ple (WE). Students work through the problem step-by-step,
define variables, type equations, etc. The fewest steps re-
quired to complete each training problem varied between 20
and 50. While making decisions on how to solve the next
problem in training, if PS is chosen, the ITS asks questions
to elicit the next step’s answer from the student; if FWE is
chosen, the ITS chooses to elicit or tell the answer; if WE
is chosen, the ITS tells the answer. There were between
three and eleven domain principles needed to address each
problem. At last, every student completed the post-test,
which comprised 12 questions. Four problems were more



complex, non-isomorphic multiple-principle problems, and
the remaining 8 were isomorphic to the problems provided
in the pre-test phase.

Students had to write and solve one or more equations to
arrive at an answer for the pre and post-tests. Three scoring
criteria were applied: binary, partial credit, and one point
for each premise. A solution received one point under the
binary rubric for being entirely correct and zero points for
being incorrect. The percentage of correctly applied prin-
ciples seen in the solution determined each problem’s score
under the partial credit rubric. For example, learners would
receive a 0.8 score if they correctly implemented 4 of the 5
potential principles. A point was awarded under the one-
point-per-principle rubric for every correctly applied prin-
ciple. Each student’s answers to all the pre-test and post-
test problems were double-blind, graded by 2 experienced
graders, and then aggregated into one final grade by resolv-
ing disagreements if there were any. All test scores were
normalized to the range of [0 - 100] for comparison purposes.

Moreover, all students’ data were obtained anonymously
through an exempt IRB-approved protocol, and we scored
them using double-blinded grading rubrics. All data were
de-identified, and no demographic data or grades were col-
lected. This research seeks to remove societal harms from
lower engagement and retention of students who need more
personalized interventions for introductory Computer Sci-
ence Courses.

4.2 States & Actions
4.2.1 142 Continuous State Space
142 continuous state features were extracted from the stu-
dent system interaction log data. Here is a brief description
of the features:

• Autonomy(10 features): the amount of work done by a
student, such as the number of elicits since the last tell;
• Temporal (29 features): time-related information about
the student’s behavior, such as the average time per step;
• Problem Solving (35 features): information about the cur-
rent problem-solving context, such as problem di”culty;
• Performance (57 features): information about the student’s
performance so far, such as the percentage of correct entries;
• Hints (11 features): information about the student’s hint
usage, such as the total number of hints requested.

4.2.2 Three Pedagogical Action Space
The students can take three decisions which can be inter-
preted as actions which are elicit(PS), tell(WE) or collabora-
tion(FWE), i.e., to elicit the solution by themselves through
asking questions, to let the tutor tell them the solution di-
rectly or to work with the tutor collaboratively towards the
solution respectively.

4.3 Selecting Demonstrations (A total of 53)
To enhance the selection of high-quality demonstrations for
inducing more accurate yet e!ective AL policies, it is typ-
ically believed that the experts are performing the demon-
strations in an optimal or near-optimal manner [1]. Our
original dataset contains 128 students from two semesters,
Spring 21 (67 students) and Spring 22 (61 students). Each

Figure 3: Quantized Learning Gain

Table 1: No. of Students in High QLG Group

Category Spring 21 Spring 22

Highpre ↔ Highpost 9 13

Mediumpre ↔ Highpost 8 9

Lowpre ↔ Highpost 3 2

Lowpre ↔ Mediumpost 4 5

Total 24 29

student spent 2̃ hours on the probability ITS and completed
around 400 steps. To select higher-quality trajectories from
all students’ interaction with the ITS, we use a qualita-
tive measurement called Quantized Learning Gain (QLG)
[36], which is a binary qualitative measurement of students’
learning gains from the pretest to the posttest to determine
whether a student has benefited from a learning environment
[39].

To calculate QLG, first, students were split into low,
medium, and high-performance groups based on whether
they scored below the 33rd percentile, between the 33rd and
66th percentile, or higher than the 66th percentile in pre-test
and post-test, respectively. Once a student’s pre-test and
post-test performance groups (high, medium, or low) are
decided, the student is a “High” QLG if he/she moved from
a lower performance group to a higher performance group
from pre-test to post-test or remained in“high”performance
groups; whereas a “low” QLG is assigned to the student
if he/she either moved from a higher performance group
to a lower performance group from pre-test to post-test or
stayed at a “low” or “medium” groups (as shown in Figure
3). In Figure 3, solid lines represent the formation of the
High QLG groups, and dashed lines represent the formation
of the Low QLG groups. Following this procedure, Table
1 illustrates the number of trajectories in each category
across the two semesters. This procedure resulted in a total
of 53 “high-quality” student trajectories, which are treated
as optimal or near-optimal demonstrations in the following
analysis.

4.4 Trajectories for DRL policy Induction



Our two DRL policies are induced using pre-collected train-
ing data collected by tutor making decisions, and many
times, the tutor would produce random yet reasonable deci-
sions. All students used the same probability tutor, followed
the same general procedure as described above, studied the
same training materials, and worked through the same train-
ing problems. It has the same 142 features described above
and the same three types of pedagogical decisions but made

by the tutor. The two DRL policies di!er in the reward
function.

The CQL policy induction was o#ine, containing 2,716 stu-
dents’ interaction logs over 13 semesters of classroom stud-
ies (Fall 2015 to Spring 2022). Its reward function is based
on the students’ Normalized Learning Gain (NLG), which
measures their learning gain irrespective of their incoming
competence. NLG is defined as posttest↓pretest↘

1↓pretest
, where 1 is

the maximum score for both pre- and post-test.

The CQL-T policy induction was done o#ine using pre-
collected training data containing 1,819 students’ interaction
logs over 7 semesters of classroom studies (Spring 2020 to
Spring 2023). Its reward function balances NLG and time
spent on the tutor.

4.5 Experimental Settings
To evaluate the e!ectiveness of EM-EDM, we compared it
against four AL and two DRL baselines, which include:

• CQL [35], While DQN is one of the most widely applied
DRL methods, it can su!er from overestimation bias. But
Conservative Q-Learning (CQL) [35] is designed to address
this overestimation bias in Q-learning. This is why we chose
CQL as a DRL baseline.

• CQL-T [35], which has the same method as CQL except
utilizing a reward function that balances performance and
time on task. So when two students learn the same, those
who spend less time would get higher rewards.

• BC [49, 44, 9], which directly learns a policy using su-
pervised learning on state-action pairs from expert demon-
strations. It is a simple approach to learning a policy, but
the policy often generalizes poorly and does not recover well
from errors.

• GAIL [24], which is a model-free AL algorithm that learns
a policy by simultaneously training it with a discriminator
that aims to distinguish expert trajectories against trajec-
tories from the learned policy.

• AIRL [18], similar to GAIL, adversarially trains a policy
against a discriminator that aims to distinguish the expert
demonstrations from the learned policy. Unlike GAIL, AIRL
recovers a reward function more generalizable to changes in
environment dynamics.

• EDM [29], the state-of-the-art o#ine AL. It has been
demonstrated that EDM can outperform many competitive
cutting-edge AL methods with a single reward function, thus
we will not repetitively conduct all those comparisons here.

• EM-EDM [54], our proposed method, which assumes the

demonstrations follow multiple reward functions varying
across trajectories (while remaining the same within each
trajectory).

We compare the e!ectiveness of the policies induced by our
proposed EM-EDM against four AL-based baselines using
the 53 demonstrations and two policies induced by DRL us-
ing 2,716 and 1,819 student-ITS interactive trajectories, re-
spectively. All the methods were trained and tested on stu-
dent interaction trajectories through 5-fold cross-validation;
as we do not have access to ground truth rewards, we eval-
uate performance according to action-matching on held-out
test data. We used the same held-out test data to evaluate
the performance of CQL and CQL-T-induced policies. We
employed the metrics of Accuracy (Acc), Recall (Rec), Pre-
cision (Prec), F1-score (F1), AUC, APR, and Jaccard score
for evaluation. All the model parameters were determined
by cross-validation. For EM-EDM, the optimal cluster num-
ber was determined heuristically as 4 for Task 1 and as 5
for Task 2 by iteratively implementing the EM until empty
clusters were generated or the log-likelihood of the clustering
results varied smaller than a pre-defined threshold. Based
on our observation, the clustering likelihood for EM-EDM
converges within 80 iterations. For fair comparisons, the op-
timal parameters in other baselines and ablations were also
determined by cross-validation.

4.6 Evaluation Metrics
We evaluate and compare performance using Accuracy, Pre-
cision, Recall, F1 Score, AUC (Area Under the ROC Curve),
APR (Area Under the Precision-Recall Curve), and Jaccard
score. Jaccard score is used to assess the similarity between
the predicted set and the true set of labels, calculated by
the size of the intersection divided by the size of the union
of two label sets. Because of our task’s nature, we consider
AUC and Jaccard Score the most crucial metrics, as they
are thought to be generally robust.

5. RESULTS
We compare our proposed EM-EDM against the six base-
lines (two DRL-based and four AL-based) on predicting stu-
dent pedagogical actions. More specifically, they are com-
pared on two related but di!erent tasks. In Task 1, we
follow the standard AL research by training and evaluat-
ing all models on all the 53 good trajectories through 5-fold
Cross-validation [29]. Task 2 is more relevant and practical
to the educational data mining field by using Spring 21’s
good trajectories (24) as training and Spring 22’s good tra-
jectories (29) trajectories as testing. Our goal in Task 2 is to
check whether our clustering results trained from the previ-
ous semester can be used to predict future semester students’
actions. We also investigate the distribution of the clusters
learned from both tasks and check for significant di!erences
among them.

5.1 Modeling Heterogeneous Student Peda-
gogical Strategies

5.1.1 Comparing Seven Approaches on Student Ped-
agogical Action Prediction

Table 2 reports our results from Task 1, comparing the seven
approaches to student pedagogical action prediction using



Table 2: Comparing EM-EDM to baselines on predicting student pedagogical actions (5-fold Cross-validation). The best
methods are in bold, and the overall best is highlighted with *

Category Methods Acc Rec Prec F1 AUC APR Jaccard

DRL
CQL-T 0.296(0.05) 0.274(0.07) 0.369(0.06) 0.259(0.03) 0.454(0.06) 0.357(0.03) 0.161(0.03)

CQL 0.376(0.02) 0.358(0.04) 0.329(0.04) 0.325(0.03) 0.526(0.02) 0.382(0.01) 0.221(0.02)

AL

BC 0.354(0.02) 0.342(0.02) 0.346(0.02) 0.333(0.02) 0.508(0.02) 0.339(0.01) 0.204(0.01)

GAIL 0.387(0.05) 0.355(0.03) 0.360(0.07) 0.311(0.04) 0.515(0.02) 0.343(0.01) 0.197(0.03)

AIRL 0.365(0.03) 0.375(0.02) 0.382(0.02) 0.330(0.02) 0.533(0.01) 0.353(0.01) 0.204(0.02)

EDM 0.737(0.05) 0.708(0.05) 0.723(0.06) 0.705(0.06) 0.836(0.04) 0.700(0.05) 0.563(0.06)

EM-EDM 0.795(0.05)* 0.774(0.06)* 0.776(0.05)* 0.769(0.06)* 0.877(0.02)* 0.762(0.05)* 0.639(0.08)*

Table 3: Comparing EM-EDM to baselines on predicting future students’ pedagogical actions. The best methods are in
bold, and the overall best is highlighted with *

Category Methods Acc Rec Prec F1 AUC APR Jaccard

DRL
CQL-T 0.217 0.203 0.313 0.199 0.391 0.332 0.115

CQL 0.321 0.354 0.284 0.308 0.506 0.366 0.198

AL

BC 0.328 0.334 0.344 0.317 0.501 0.335 0.190

GAIL 0.393 0.362 0.387 0.337 0.522 0.345 0.210

AIRL 0.341 0.355 0.351 0.331 0.517 0.343 0.202

EDM 0.669 0.654 0.663 0.656 0.789 0.656 0.498

EM-EDM 0.745* 0.740* 0.745* 0.740* 0.871* 0.765* 0.589*

all 53 good trajectories by 5-fold cross-validation. The best
results among baselines are in bold, and the overall best
results are highlighted with *.

To better illustrate our results, we use the Critical Di!erence
(CD) diagram, a powerful tool to statistically compare sev-
eral classifiers’ performance on multiple datasets in a robust
way [14]. At first, we conducted the Friedman test to check
if there is any significant di!erence among the models across
the folds of cross-validation in terms of AUC and Jaccard
scores. If there is a significant di!erence, then we conduct
the pairwise Conover post hoc test [17], [13] to get the ranks
and plot the CD diagrams (Figure 4). In the CD diagrams
in Figure 4, the position of the models represents their mean
ranks according to the corresponding metric across all folds,
where low ranks indicate that a model wins more often than
its competitors with higher ranks. Two or more models are
connected with each other if we can not tell their perfor-
mances apart, in the sense of statistical significance, with a
confidence level of 0.05.

As shown in Table 2, EM-EDM outperforms all the base-
lines across all evaluation metrics and the pairwise di!er-
ences in terms of AUC and Jaccard score are significant
according to the CD diagram in Figure 4. EDM outper-
forms all other baselines except EM-EDM assuming a sin-

gle reward function across the trajectories which proves it’s
strength in inducing policy from demonstrations as a state-
of-the-art o#ine AL method. But when EM-EDM outper-
forms EDM, it indicates that there is heterogeneity among
the 53 students’ pedagogical strategies and considering the
heterogeneity would be a better way for modeling complex
human-centric tasks, such as student strategy recognition in

(a) AUC

(b) Jaccard Score

Figure 4: Critical di!erence diagram with Conover Friedman
test over (a) AUC and (b) Jaccard Score.

education. Besides, probably the reason behind the other
AL methods did not perform as good as the EDM, is be-
cause they cannot take the state distribution into account
when learning the policy.

However, among the DRL baselines, CQL performs better
than CQL-T, which suggests that the students are more
likely to be learning e”ciency-oriented rather than time
e”ciency-oriented as the reward function of CQL-T has time
in it while CQL does not.

Though among the DRL methods, CQL performs better, it
falls short when compared to EDM and EM-EDM even after
being trained with a large amount of data, which shows us
that EM-EDM is a much more data-e”cient approach for
modeling student pedagogical strategies.



Table 4: Distribution among the Discovered Clusters in
Task 2 (C0-C4 refers to the 5 clusters)

Semester C0 C1 C2 C3 C4 Total

Spring 21 3 9 8 2 2 24

Spring 22 6 5 11 3 4 29

5.1.2 Distribution of the Discovered Clusters
When applied to Task 1, EM-EDM discovered 4 clusters
or subgroups among all the 53 good student trajectories.
The number of students per subgroup are 25(47.17%),
13(24.53%), 11(20.75%) and 4(7.55%) which shows an
imbalance distribution. A one-way ANOVA test showed
no significant di!erence in the subgroups’ learning perfor-
mances like post-test score, NLG, Iso NLG, and Training
Time. First, since we used only the good trajectories, it is
likely that the students would not have much di!erence in
their learning performances.

5.2 Future Student’s Pedagogical Action Pre-
diction leveraging the Past

5.2.1 Clustering Prediction Tasks
Table 3 reports our findings from semester-based evaluation
where we trained the models on Spring 21 semester’s 24
good trajectories to learn the clusters and using them to
predict Spring 22 semester’s 29 good trajectories pedagogical
actions. The best results among baselines are in bold, and
the overall best results are highlighted with *.

As shown in Table 3, EM-EDM outperforms all baselines
across all evaluation metrics in predicting future students’
pedagogical actions too. The pairwise performance compar-
ison outcomes among the seven methods are similar to Task
1. However, it is important to emphasize that this task of
future students’ pedagogical action prediction using a past
one is a much stricter approach than the standard cross-
validation [38]. This result indicates that we can model stu-
dent strategies over time despite population change, prob-
ably because there are strategies that have followers from
both populations.

5.2.2 Distribution among the Discovered Clusters
When applied on Task 2, EM-EDM discovered 5 clusters or
subgroups among Spring 21 semester’s 24 good trajectories.
Using the clustering results obtained, Spring 22 semester’s
29 good trajectories were clustered. Table 4 shows both the
semesters’ distribution of students across those 5 clusters.
We found no significant di!erence between two semester’s
cluster distributions, ⇀2(1, 5) = 3.038, p = .551.

6. DISCUSSIONS
Results suggest that our proposed EM-EDM framework out-
performs all the chosen baselines on both tasks for students’
next pedagogical action prediction. The baselines we uti-
lized are considered state-of-the-art and su”ciently fair for
the prediction task at hand. In a related paper [29], BC was
employed as the initial baseline for a similar prediction task
involving the real-world healthcare dataset MIMIC-III. No-
tably, BC outperformed other baselines in 2-Action settings
based on AUC metrics. However, GAIL and AIRL exhibit

superior capabilities compared to BC, as they employ ad-
versarial training techniques against a discriminator tasked
with distinguishing expert demonstrations from learned poli-
cies, thus justifying their selection as better baselines [24,
18]. We posit that the under-performance of the baselines
may be attributed to the irregular and noisy nature of the
student-interaction log data, which is inherently challeng-
ing to model. Nevertheless, EDM and EM-EDM demon-
strate proficiency in handling such complexities owing to
their strengths in energy-based modeling and consideration
of heterogeneity. Moreover, our proposed EM-EDM frame-
work is built upon the premise of recognizing the hetero-
geneity in student pedagogical decision-making strategies.
Clustering allows us to group students who follow similar
strategies together, thereby enabling cluster-based statisti-
cal analyses. As detailed in Sections 5.1.2 and 5.2.2 of our
paper, these analyses provide additional insights that can
inform future research directions.

7. CONCLUSIONS
In this study, we investigated heterogeneous student ped-
agogical strategy modeling via our proposed EM-EDM, a
general AL framework, which induces e!ective pedagogical
policies from given optimal or near-optimal demonstrations.
To evaluate the performance of EM-EDM, we apply it on
two di!erent but related tasks which involves pedagogical
action prediction and compare against four AL-based base-
lines and two policies induced by DRL. The results showed
that, for both tasks, EM-EDM outperforms the four AL
baselines across all performance metrics as well as the two
DRL baselines. We believe, the key impact of this study
lies in the capability of EM-EDM to e!ectively model com-
plex student pedagogical decision-making process through
the ability to manage a large, continuous state space and
its adaptability in handling diverse and heterogeneous re-
ward functions. The results obtained from EM-EDM showed
that students’ demonstrations exhibit heterogeneous reward
functions. Moreover, EM-EDM can induce distinct peda-
gogical policies for di!erent reward functions even with as
few as 24 demonstrations. In the future, we will carry out
this study for upcoming semesters. We will also investigate
evolving reward function across demonstrations.
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