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Abstract

Extractive opinion summarization involves automatically producing a summary of text about
an entity (e.g., a product’s reviews) by extracting representative sentences that capture
prevalent opinions in the review set. Typically, in online marketplaces user reviews accumulate
over time, and opinion summaries need to be updated periodically to provide customers with
up-to-date information. In this work, we study the task of extractive opinion summarization
in an incremental setting, where the underlying review set evolves over time. Many of
the state-of-the-art extractive opinion summarization approaches are centrality-based, such
as CentroidRank (Radev et al., 2004; Chowdhury et al., 2022). CentroidRank performs
extractive summarization by selecting a subset of review sentences closest to the centroid
in the representation space as the summary. However, these methods are not capable of
operating e!ciently in an incremental setting, where reviews arrive one at a time. In
this paper, we present an e!cient algorithm for accurately computing the CentroidRank
summaries in an incremental setting. Our approach, CoverSumm, relies on indexing review
representations in a cover tree and maintaining a reservoir of candidate summary review
sentences. CoverSumm’s e!cacy is supported by a theoretical and empirical analysis of
running time. Empirically, on a diverse collection of data (both real and synthetically created
to illustrate scaling considerations), we demonstrate that CoverSumm is up to 36x faster than
baseline methods, and capable of adapting to nuanced changes in data distribution. We also
conduct human evaluations of the generated summaries and find that CoverSumm is capable
of producing informative summaries consistent with the underlying review set.

1 Introduction

Opinion summarization (Hu & Liu, 2004; Medhat et al., 2014; Pang, 2008) is the process of automatically
generating summaries of user reviews about entities (such as e-commerce products). The summarized text
is useful in many ways, including assisting customers in making informed purchasing decisions and aiding
sellers in understanding user feedback. Incremental opinion summarization is particularly important as online
marketplaces continue to grow and the e!ciency and accurate evolution of product summaries is paramount.
Most of the current opinion summarization systems operate in a static setup – generating a summary based
on the complete set of reviews. Updating opinion summaries with such static systems is expensive, as the
entire set of reviews must be processed each time a new review arrives. This necessitates the development of
techniques that can e!ciently update summaries with changes in the review set. Even when utilizing the
LLMs, such as GPT-4 (Bubeck et al., 2023), performing opinion summarization still poses challenges due to
constraints like token limit as well as high computational cost in incremental settings (Bhaskar et al., 2023).

Code available here: https://github.com/brcsomnath/CoverSumm.
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Opinion summarization systems can produce either abstractive (Isonuma et al., 2021; Kim Amplayo et al., 2022)
or extractive summaries (Kim et al., 2011). While abstractive summaries allow for novel phrasing, they often
su"er from hallucination (Ji et al., 2022), lack of faithfulness (Maynez et al., 2020) and interpretability (Saha
et al., 2022), especially for larger review sets. Extractive summaries, which are the focus of this work, reduce
concerns about hallucination and lack of faithfulness (Zhang et al., 2023) by producing a summary consisting
only of a carefully selected subset of review sentences. Most extractive opinion summarization systems
operate in an unsupervised setup due to the large volume of reviews in real-world settings. In the incremental
setup, providing supervision becomes even more challenging, as it necessitates having oracle or human-written
summaries at each time step, which is expensive. Therefore, we focus on unsupervised approaches to perform
incremental extractive opinion summarization.

Unsupervised extractive summarization approaches assign saliency scores to review sentences and extract
the ones with the highest scores as the summary (Peyrard, 2019; Angelidis et al., 2021). The quality and
e!ciency of producing the summary depend on the extractive summarization method. While previous work
presented complex graph-based objectives that use lexical features to extract summarizing sentences (Erkan &
Radev, 2004; Mihalcea & Tarau, 2004; Nenkova & Vanderwende, 2005), recent work has demonstrated that a
simple centrality-based approach with learned representations for the input reviews produces state-of-the-art
results across a wide variety of datasets (Chowdhury et al., 2023; 2022; Chu & Liu, 2019). This objective,
known as CentroidRank (Radev et al., 2004), functions by calculating the centroid of review sentences in
the representation space, and selecting the nearest neighbors of the centroid as the summary. Note that
CentroidRank’s objective is closely related to classic problems in machine learning such as finding the central
nodes in a graph (Okamoto et al., 2008) or medoid(s) within a dataset (Bagaria et al., 2018; Baharav &
Tse, 2019). Previous work (Chowdhury et al., 2022; 2023) has advanced the state-of-the-art in extractive
summarization using CentroidRank approaches by improving the representation learning method for the
input reviews. There is less work focusing on the algorithmic aspects of these methods. In particular, there is
limited work in adapting these methods to incremental settings, where reviews are added over time. and a
summary needs to be kept up-to-date with each addition.

In this paper, we focus on the task of incremental extractive opinion summarization, which involves the
extraction of salient sentences from a continuous stream of reviews as they arrive. We propose a novel
algorithm CoverSumm, that executes on centroid-based extractive summarization (Chowdhury et al., 2022; Li
et al., 2023; Gholipour Ghalandari, 2017; Radev et al., 2004; Rossiello et al., 2017) in an incremental setup.
Centroid-based incremental extractive summarization requires computing the k-nearest neighbours of the
centroid (where k is the number of sentences in the summary) at each point in time. CoverSumm e!ciently
performs incremental summarization by maintaining a small reservoir of input samples (reviews) without
processing the entire review set at every time step. Empirical evaluation shows that CoverSumm is up to 36x
faster than baselines. The speedup occurs as CoverSumm limits most of the nearest neighbour search queries
to the reservoir instead of the entire review set. We perform experiments on large real-world review sets and
show that generated summaries align with the aggregate user reviews. Our primary contributions are:

• We study the problem of extractive opinion summarization in an incremental setup, where a system
generates an updated summary with each incoming user review (Section 2).

• We extend the paradigm of centroid-based summarization to an incremental setup, and propose CoverSumm
that performs extractive summarization using cover trees (Section 3).

• We perform theoretical analyses to show that CoverSumm generates exact nearest neighbours (NN) and
provide bounds for the number of NN queries, as well as maximum storage required (Section 3.1).

• We evaluate CoverSumm to show that it is significantly faster than baselines (up to 36x), and requires
minimal additional space. We also perform experiments to gauge the quality of the generated summaries,
and if the content of the summaries aligns with the aggregate user reviews (Section 4).

2 Preliminaries & Background
In this section, we first describe centroid-based extractive summarization in the incremental setting. Then,
we present the data structures used for e!cient nearest neighbor and range search in CoverSumm. Following
that, we will outline some simple baselines that utilize these data structures.
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2.1 Problem Formulation

In this section, we formally describe the problem of extractive summarization and then its extension in
an incremental setting. Given a set of review sentences for a product, the objective of the extractive
summarization system is to select a subset of sentences as the summary. Similar to prior works, we compute
the saliency score for each review sentence and select a subset of sentences with high salience scores as the
summary. We build on the paradigm of centroid-based extractive summarization techniques (Radev et al.,
2004; Rossiello et al., 2017), where the saliency score of a review sentence is quantified as its distance to the
centroid in the representation space. We assume access to a representation model that yields a numerical
representation for input texts. In this paradigm of summarization, the system greedily selects k-nearest
neighbours of the centroid as the output summary. Mathematically, given a set of n sentence representations
in D-dimensional space, X = [x1, x2, . . .] → Rn→D, the summary representation with budget k is S → Rk→D

and is computed as:
S = knn(X , µ) → Rk→D

, µ = 1
n

∑

i

xi → RD
. (1)

The final summary is a concatenation of review sentences whose representations are present in S.

Incremental Summarization Task. We study this paradigm of summarization in an incremental setup,
where at every time step t, a new representation xt arrives and we have the representation set Xt = [xj ]tj=1.
Using this set, the system should generate a summary St consistent with the formulation in Equation 1. We
aim to develop e!cient algorithms that accurately estimate St. In this work, we primarily focus on reducing
computation overhead, not storage space, as storing text representations is relatively inexpensive.

2.2 E!cient Nearest Neighbour Data Structures

E!cient retrieval of nearest neighbors of a centroid can be performed using index-based data structures. In
this work, we will focus on cover tree-based index structures (Beygelzimer et al., 2006; Zaheer et al., 2019).

Cover Trees (Beygelzimer et al., 2006). Each node in a cover tree is associated with a representative point
x → X . The nodes of the tree are arranged into a series of levels. Nodes in level ω, denoted Cω, have an
associated parameter ε

ω used to define the the following set of invariants:

• Covering: For each representation x → Cω, there exists at least a representation y → Cω↑1 such that distance
d(x, y) ↑ ε

ω. One such representation y that satisfies the condition must be a parent of x.
• Separation: Any pair of representations x, y → Cω are separated by at least d(x, y) > ε

ω.
• Nesting: If x appears at level ω, it must appear at all lower levels. Therefore, Cω ↓ Cω↑1.

Cover trees support e!cient nearest neighbor search using the algorithms presented by Beygelzimer et al.
(2006) and modified for use in our method (Algorithm 2). The construction operations (e.g., insert) of the
cover tree can be performed in an incremental manner. For a detailed discussion of the running time of search
and construction of cover trees, we refer readers to (Elkin & Kurlin, 2022; 2023).

Stable Greedy (SG) Trees (Zaheer et al., 2019). SG trees are defined similarly to cover trees, with a
modified separation property. Rather than requiring all nodes in the level to be separated, only sibling nodes
in the tree structure are required to be separated, e.g., all pairs of siblings x, y → Cω are at least d(x, y) > ε

ω

apart. An illustration of an SG Tree is shown in Figure 1 (bottom left). Zaheer et al. (2019) demonstrated
that SG trees empirically improve on the online construction time compared to cover trees. In the following
sections, we will observe that in our proposed algorithm, construction poses more of a bottleneck than search
queries. Therefore, in practice, we will use SG trees for our experiments. In presenting our proposed methods,
we will refer to the tree structures as cover trees (since the results are general to the broader class of cover
tree data structures of which SG trees are an instance).

2.3 Baselines

In this section, we will discuss baseline approaches for performing incremental centroid-based summarization
before introducing our proposed algorithm, CoverSumm.
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Figure 1: Overview of the incremental CentroidRank-based summarization task and the utility of nearest
neighbour (NN) data structures. (Top): We show the CentroidRank task in the incremental setting, where the
centroid (µi) evolves over time. Additionally, we illustrate the benefits of maintaining a reservoir of candidate
samples for NN retrieval. (Bottom): We show how utilizing e!cient NN retrieval data structures, such as
the SG Tree, can enhance the e!ciency of incremental summarization using reservoir search (discussed in
Section 3), particularly in scenarios where the reservoir does not have all the NNs the centroid.

Brute Force Algorithm. In this approach, we compute the centroid representation at every time step
µt = 1/t

∑t
i=1 xi → RD. Then, we compute the summary at step t: St = knn(Xt, µt). Brute-force computation

of nearest neighbours (Equation 1) requires O(t) time at each summarization step. Assuming a total of n

text representations in the input stream, the time complexity is O(n2).

Naive Algorithm with Cover Tree. The bulk of the computation in the brute force algorithm relies
on knn queries (as centroid is updated in O(1) w.r.t. the number of instances). The running time of the
k-nearest neighbor operation can be reduced by using any exact or approximate nearest neighbour retrieval
data structures. We use cover trees (Beygelzimer et al., 2006) to improve the performance of the brute-force
algorithm. At each time step t, we execute the following queries on a cover tree insert(xt) and knn(µt).
For a total of n reviews, this yields an overall time complexity of O(n log n). While our work uses cover
tree because of its theoretical properties illustrated above, the index could be replaced with any e!cient
nearest neighbour retrieval index (e.g., kd-tree (Bentley, 1975), quad tree (Samet, 1984), r-tree (Guttman,
1984), HNSW (Malkov & Yashunin, 2018b), etc.) that supports similar kinds of incremental operations like
insertions, nearest neighbour, and range search.

3 Cover Tree based Summarization (CoverSumm)

In this section, we present an e!cient algorithm, CoverSumm, for performing centroid-based extractive
summarization in an incremental setup. CoverSumm builds on the observation that as the number of reviews
increases, there are smaller perturbations in their centroid, µt (assuming that the representations belong
to the same distribution with a fixed centroid), thereby resulting in infrequent changes to the k-nearest
neighbours of µt. Motivated by this observation, we improve upon the Naive CT algorithm (Section 2.3) by
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reducing the number of knn(µt) queries executed. This is achieved by maintaining a small reservoir R of
representations that we anticipate to be the k-nearest neighbours of future centroids µ>t. This allows us to
work with a small number of representations in R without having to execute expensive nearest neighbour
queries on the entire set, X . To describe our algorithm precisely, we first define the following propositions:
Proposition 1 (Bounding distance to centroid). Let x1, x2, . . . , xt be i.i.d. samples from a distribution with

centroid µ supported on [↔b/2, b/2]D and µt =
∑t

i=1 xi/t. Then, the Euclidean distance of any sample x

from µt can be bounded with probability (1 ↔ ϑ)D
as:

d(µt, x) ↑ d(µ, x) +
√

Db2 log(2/ϑ)
2t

, ↗x → [↔b/2, b/2]D. (2)

We obtain the above result by applying the Hoe"ding-Azuma inequality (Hoe"ding, 1963) (more details in
Appendix A.1) to each dimension of the vector followed by triangle inequality (proof in Appendix A.2). Next,
we use the result from Proposition 1 to derive a bound on how much subsequent centroids shift over time.
The detailed proof of Proposition 2 is provided in Appendix A.3.
Proposition 2 (Bounding distance between subsequent centroids). Let x1, x2, . . . , xt be i.i.d. samples from a

distribution with centroid µ supported on [↔b/2, b/2]D and µt =
∑t

i=i xi/t. Then, we can bound the Euclidean

distance between subsequent centroids µt and µt+i with probability (1 ↔ ϑ)2D
:

d(µt, µt+i) ↑
√

2Db2 log(2/ϑ)
t

, ↗t → [n ↔ 1], i → [n ↔ t]. (3)

Outline. Equipped with these results, we present our summarization algorithm, CoverSumm (Algorithm 1).
The main idea behind our approach is to maintain a small reservoir of sentences R (with a maximum capacity
of cmax) along with the cover tree index (ct). The reservoir’s capacity R is set to be more than the summary
budget k. R facilitates the computation of k-nearest neighbours of µt+i (i > 0), in the subsequent time steps
instead of executing expensive knn queries on the entire cover tree. We initialize R with points close to the
current centroid µt from the cover tree, ct. Naively applying a range search query in the cover tree can
return all representations within a radius of r to the input query µt. To have more than k representations in
R, the range search radius r, should be at least r ↘ dk (where dk is the distance of the k-th nearest neighbour
from µt). We use Proposition 2 (which provides an estimate of how far the centroid may shift) to set the
radius of the range search query as shown below:

r = dk +
√

2ϖDb2 log(2/ϑ)/t︸ ︷︷ ︸
ε

, (4)

where ϖ is a hyperparameter. We set the confidence ϑ = O(1/t). The size of the reservoir R is proportional
to the radius r, as more samples would be selected with a higher r. Depending on the reservoir budget cmax,
the radius can be tuned using the parameter, ϖ.

Therefore, re-initializing the reservoir requires the following queries to the cover tree: (a) k-nearest neighbour
query to estimate dk (required in computing r in Eqn. 4) and (b) range search query with the radius r. These
queries are executed for the same point µt and their sequential execution involves quite a bit of redundant
computation. A naive way to reduce this computation is through memorization. Instead, we present an
elegant algorithm, reservoir search, to retrieve the reservoir elements given a threshold ϱ and summary budget
k in Algorithm 2. This algorithm can retrieve the reservoir in a single tree traversal in O(log n).

Reservoir Search. In Algorithm 2, we use a modified version of the nearest neighbour search algorithm
in SG Trees to populate the reservoir R whenever the distance to a node is within the range search radius
(Line 13). This algorithm does not miss out on any potential reservoir candidates because at any time the dk

estimate is more than the exact distance to the k-th neighbour. We perform a filtering step at the end to
remove points outside the actual range search radius (Line 21). We also use the range radius to ignore nodes
that do not have any children within the search radius (Line 15). We use the reservoir search method to
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Algorithm 1 CoverSumm Algorithm
1: function CoverSumm(Sentence xt)
2: Hyperparameters ϖ and cmax.
3: Xt = Xt↑1 ≃ xt

4: µt = E[Xt] // updated in O(1)
5: // insert xt in the cover tree
6: ct.insert(xt)
7: // drift of µt from the last query µlast
8: ! = ⇐µt ↔ µlast⇐
9: if ! ↘ ϱ/2 ⇒ |R| ↘ cmax then

10: ϑ = O(1/t) // set confidence
11: // compute threshold acc. to Eqn. 4
12: ϱ =

√
2ϖDb2 log(2/ϑ)/t

13: // reinitialize reservoir from cover tree
14: R = ct.ReservoirSearch(µt, ϱ, k)
15: // compute the radius of R
16: r = max{d(µt, q)|q → R}
17: µlast = µt // update µlast
18: else
19: // add xt to R if it is within radius r

20: if ⇐µlast ↔ xt⇐ ↑ r then R = R ≃ xt

21: end if
22: // form summary using kNN search in R
23: St = knn(R, µt)
24: return St

25: end function

Algorithm 2 CoverTree Reservoir Search
1: function ReservoirSearch(Query µt, Threshold

ϱ, Summary Budget k):
2: Candidate NN List N = {}, Reservoir R = {}
3: Queue Q = {ct.root()}
4: while Q is not empty do
5: q = Q.pop()
6: // N .max: max distance of any neighbour

from µt. At start N .max = ⇑.
7: if d(µt, q) ↑ N .max then
8: Insert (q, d(µt, q)) into Sorted List N
9: if N .size() > k then N .pop()

10: dk = N .max // update dk

11: end if
12: r = dk + ϱ // set search radius
13: if d(µt, q) ↑ r then R = R ≃ q

14: // don’t explore nodes outside search range
15: if d(µt, q) ↔ q.max > r then continue
16: for each child c of q do
17: if d(µt, c) ↔ c.max ↑ r then Q = Q ≃ c

18: end for
19: end while
20: // filter out points outside of range
21: R = {r → R|d(µt, r) ↑ N .max + ϱ}
22: return R
23: end function

e!ciently update the reservoir, R, during incremental summarization in Algorithm 1. Next, we describe the
outline of our incremental summarization algorithm, CoverSumm.

CoverSumm Algorithm. In Algorithm 1, at every time step t, we update the current centroid µt (Line 4)
and insert xt into the cover tree ct (Line 6). We also compute the drift !, which measures how much µt has
shifted from µlast (Line 8), when the last time reservoir search was performed. If the drift ! was more than
the threshold ϱ/2 or the reservoir is at capacity, it implies that the current reservoir R does not contain all
the k-nearest neighbours of µt (proof in Proposition 4). In this case, we reinitialize the reservoir by executing
reservoir search query on the cover tree (Line 14). If ! is within the threshold, we update the R with current
point xt if needed (Line 20). Finally, we compute the summary St by performing k-nearest neighbour search
in the reservoir. The review text corresponding to the k-nearest neighbours is the output extractive summary.
An illustration of the overall summarization algorithm is shown in Figure 1.

We can improve the e!ciency of CoverSumm even further, by delaying the cover tree insertions (Line 6) to
only when the drift exceeds the threshold (Line 9) as the cover tree is not utilized in the other computation
flow. CoverSumm can also facilitate the deletion of reviews in cases where certain reviews need to be deleted
due to spam or o"ensive content (more details in Appendix D). In the following section, we present several
theoretical properties of CoverSumm.

3.1 Theoretical Analysis

In this section, we analyze properties of the e!ciency and accuracy of CoverSumm, including its ability to
produce the correct nearest neighbors for CentroidRank, the number of reservoir search queries required, the
size of the reservoir used, and the rate of change of search queries.
Proposition 3 (Correctness of Reservoir Search). If ct is a SG Tree, then ReservoirSearch(µ, ϱ, k) returns

all the neighbours of µ within a distance of (dk +ϱ), where dk is the distance of µ to its k-th nearest neighbour.
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dk

λ

μlast
μt

λ/2

dk

λ

μlast

μt+1

dk

λ

dk + λ/2 + ϵ

μlast
μt+2

λ/2

Figure 2: An illustration of CoverSumm’s operation over three consecutive time steps. Red circles represent
centroids at di"erent times, green circles indicate current nearest neighbors in reservoir R, and blue circles

denote representations outside R. The figure displays the last query µlast with radius (dk + ϱ). In the first
two cases, the current centroid is within distance ϱ of µlast, and the summary can be retrieved from the
reservoir. The rightmost figure shows a boundary case where a representation is just outside the reservoir’s
boundary and summary computation requires querying the cover tree.

Proof. First, we note that N .max = ⇑ at the beginning and dk (Line 10) is always more than or equal to
the exact distance to the k-th NN during the algorithm. This means that Line 17 cannot throw away any
grandparent of a nearest neighbour within distance r = dk + ϱ. Similarly, Line 13 cannot ignore a nearest
neighbour within distance r. Since, the reservoir R now contains all the possible NN candidates, Line 21
returns the set of exact nearest neighbours within distance r of query µ.

Proposition 4 (Exact nearest neighbours). The k-nearest neighbours returned by Algorithm 1, St are the

exact k-nearest neighbours of µt, the mean at every time step t, i.e., St = knn(X , µt).

Proof. We first note that R is initialized using reservoir search with radius r = dk + ϱ, where dk is the
distance of µt to its k-th neighbour. Therefore, for any radius r ↘ dk, the reservoir size is always |R| ↘ k.

Next, we consider the case when the updated centroid µt is within distance ⇐µt ↔ µlast⇐ < ϱ/2. In this case,
the distance from µt of any representation not in the reservoir (blue circles in Figure 2 (left & center)) is at
least d(x, µt) > dmin = dk + ϱ/2, ↗x → Xt \ R. Now, note that all points in Slast → R, as the R has not been
updated after that (also |Slast| = k). Next, we can show that:

↗x → Slast, d(x, µt) ↑ d(x, µlast) + d(µt, µlast)
< dk + ϱ/2 = dmin

(5)

This shows that the reservoir has at least k points within dmin of µt. Therefore, performing knn within R is
exact. When the updated mean µt drifts more ! ↘ ϱ/2 (shown in Figure 2 (right)), we perform a reservoir
search query on the entire cover tree which is also exact.

Now that we know that CoverSumm generates the exact nearest neighbours at all time steps. We focus on
estimating the number of reservoir search queries (Line 14 in Algorithm 1) required to achieve it in the
following proposition (proof in Appendix A.5).
Proposition 5 (Number of reservoir search queries). Assuming incoming points xt → [↔b/2, b/2]D, the

number of reservoir search queries on the cover tree executed nrs = O(D log n), where n is the total number

of points (e.g., review sentences) and D is the dimensionality of the data.

We observe that the reservoir search query count grows with the logarithm of the total number of representa-
tions n, unlike baseline approaches that execute nearest neighbour queries at every step. Although the overall
complexity of our algorithm is O(n log n), since we perform insertions (O(log n) complexity) at each step, the
constants involved for nearest neighbour and range search queries on cover trees are significantly larger. As a
result, limiting the number of nearest neighbour queries leads to substantial speed improvements in practice.

Next, we investigate the storage cost involved in maintaining the reservoir R (detailed proof in Appendix A.6).
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Proposition 6 (Maximum reservoir size). For points arriving from a metric space (X , d), the upper bound

of the reservoir size (|R|) at large time steps (t ⇓ 0) is O(k).

The above result shows that the storage cost of the reservoir at large time steps is relatively low and does not
scale with the number of points or dimensions of the data. We provide additional theoretical results about
the interval between consecutive nearest neighbour cover queries in Appendix A.7.

4 Evaluation
In this section, we describe the dataset and baseline approaches used in our experiments.

Datasets. We evaluate CoverSumm on both synthetic and real-world datasets. For synthetic data, we
experiment with two di"erent setups: (a) we sample representations x from a uniform distribution, where
each representation serves as a proxy text representation, and (b) we sample synthetic data from an LDA
process (more details in Appendix C) to mimic data from the textual domain. We use 10K vectors of
x → R100 for all experiments using synthetic data. We also perform experiments on two real-world datasets:
(a) Space dataset (Angelidis et al., 2021) has ↘ 3K hotel reviews per entity with a total of ↘ 50K review
sentences. We use sentence representations, x → R8192, from the state-of-the-art extractive summarization
system SemAE (Chowdhury et al., 2022) on Space. (b) Amazon US reviews (He & McAuley, 2016) have
product reviews along with their temporal order. We only consider products with more than 1000 reviews in
this setup. To simulate an incremental setup, we present an algorithm with one review sentence at a time
and evaluate its performance by reporting the computation time and quality of the generated summaries.

Baselines. We compare the e!ciency gains of CoverSumm with the following centroid-based baselines:

• Brute force: computes the kNN from the updated mean µt at every step.
• Naive CT: performs nearest neighbour query on the cover tree at each step.
• Naive HNSW: performs NN query on an HNSW (Malkov & Yashunin, 2018a) index at each step.
• Naive FAISS: performs NN query on a FAISS (Johnson et al., 2019) index at each step.
• CoverSumm (knn+range): uses a modification of the proposed algorithm (Algorithm 1), where a separate

knn and range search query is executed on the cover tree instead of the reservoir search.
• CoverSumm (reservoir): implements the proposed online summarization approach in Algorithm 1.
• CoverSumm (lazy reservoir): modifies the CoverSumm’s summarization routine by delaying the insertions

into the cover tree only when required (Line 9 is satisfied). This is the most e!cient version of our proposed
algorithm, and we will often refer to it as simply CoverSumm.

The above baselines can produce the exact nearest neighbours at every time step. We also compare CoverSumm
with some naive variants that approximate the nearest neighbors to assess the trade-o"s between nearest
neighbor accuracy and runtime. The variants are listed below:

• CoverSumm (random): randomly decides whether an incoming point should be included in the reservoir R.
• CoverSumm (decay ϱ): uses an exponential decay term as the threshold (independent of the current points)

to decide whether a new point should be part of the reservoir. Specifically, we change Line 6 of the
CoverSumm algorithm to ! ↑ c1 exp↑c2T , where c1, c2 are hyperparameters.

We also compare the quality of CoverSumm’s summaries with di"erent extractive summarization algorithms:
SumBasic (Vanderwende et al., 2007), LexRank (Erkan & Radev, 2004), TextRank (Mihalcea & Tarau, 2004),
Centroid-OPT (Ghalandari, 2017), and Latent Semantic Analysis (LSA) (Ozsoy et al., 2011). Centroid OPT is
the most similar to CentroidRank. CentroidOPT constructs the summary by greedily selecting sentences that
maximize the similarity of the constructed summary with the centroid. While CentroidRank measures the
similarity between a sentence and the centroid, CentroidOPT does so for the summary. In our experiments,
we use the SG Tree implementation available in graphgrove library (more details in Appendix E.1). We set
hyperparameters by using grid search on a held-out development set for each dataset.

4.1 Main Results

We evaluate CoverSumm on several opinion summarization datasets and perform additional experiments to
analyze its performance.
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Uniform LDA Space Amazon
Algorithm Time (s) Acc. (%) Time (s) Acc. (%) Time (s) Acc. (%) Time (s) Acc. (%)

E
x
a
c
t

Brute force 28.23 100.0 26.09 100.0 7.78 100.0 49.82 100.0
Naive CT 26.37 100.0 25.21 100.0 3.23 100.0 17.53 99.6
Naive Faiss 2.22 100.0 2.25 100.0 1.30 100.0 4.81 99.6
CoverSumm (knn+range) 1.08 100.0 1.34 100.0 1.43 100.0 2.30 99.7
CoverSumm (reservoir) 0.91 100.0 0.96 100.0 1.25 100.0 1.47 99.7
CoverSumm (lazy reservoir) 0.87 100.0 0.92 100.0 1.14 100.0 1.36 99.7

A
p

p
x
. Naive HNSW 5.35 4.9 4.44 26.6 3.25 72.3 7.07 81.2

CoverSumm (random) 0.53 0.2 0.59 0.2 1.02 2.3 0.62 0.5
CoverSumm (decay ϱ) 1.28 1.0 0.70 8.9 1.35 10.7 0.53 2.3

Table 1: Total incremental summarization runtime (per entity) and nearest neighbour (NN) accuracy for
di"erent centroid-based algorithms for representations from synthetic (Uniform & LDA) and opinion review
(Space & Amazon) datasets. We observe that CoverSumm outperforms baseline approaches, showcasing up
to 36x speedup. We also observe that reservoir search achieves up to 28% speedup compared to sequentially
performing knn and range queries on the tree. Among the algorithms that retrieve exact NNs, we highlight
the best time achieved in bold.

In Table 1, we compare the computation e!ciency of CoverSumm with other centroid-based baseline methods
in the incremental setting. Since centroid-based summarization relies on kNN retrieval, we evaluate the
accuracy that the generated nearest neighbours exactly match the actual nearest neighbours. We report the
average time required to complete the incremental summarization process per entity across 5 runs. For the
synthetic dataset, we consider all 10K presentations belonging to a single entity. We consider an output
to be incorrect if either any of the elements or their order does not match. We retrieve k = 20 nearest
neighbours in our experiments. This serves as a proxy for the quality of the generated summary. We observe
that CoverSumm outperforms baseline approaches by a significant margin, showcasing up to 36x speed gains
while generating exact nearest neighbours. Moreover, we observe that CoverSumm (lazy reservoir) achieves
the best time performance. This is expected as the implementation of performing insertions in a batch can
be parallelized using SG Trees. In Figure 3, we show an illustration of how CoverSumm’s runtime fares with
baselines during the online summarization process on a synthetic dataset. In Table 1, we also observe that
the speed gains on Space dataset are lower than others. This is due to the higher data dimension (R8192), as
the confidence bound in Proposition 2 weakens with an increase in data dimension D, leading to more kNN
queries. We analyze this phenomenon further in Section 4.2.

Speedup. We compare CoverSumm’s runtime with other paradigms of extractive summarization in Table 4
on samples from the Space and Amazon datasets.1 These algorithms are quite expensive and some of them
ran out of time for synthetic benchmarks (with >10K samples) reported in Table 1. A few algorithms like
TextRank require access to text inputs and cannot be applied to synthetic data. We observe that our proposed
algorithm, CoverSumm, obtains significantly better runtime compared to baseline approaches. This is because
centroid-based algorithms are generally much faster, brute force algorithm has a time complexity O(n2) with
knn search being O(n) per step. While the other extractive summarization paradigms utilize either the
PageRank algorithm (O(n3) complexity) or eigen-decomposition (O(n4) complexity). Note that although
we refer to extractive summarization systems by their approach (e.g., centroid-based), these algorithms are
being used in state-of-the-art systems, like SemAE (Chowdhury et al., 2022) (e.g., Brute Force in Table 1 on
Space is identical to SemAE).

Automatic Evaluation of Summary Quality. In this experiment, we probe the quality of the generated
online summaries. Since we do not have access to human-written summaries at every time step, we construct
silver extractive summaries by greedily selecting sentences (seen till time step t) with high ROUGE overlap
with final human-written ones. We perform this experiment on the SPACE (Angelidis et al., 2021) dataset
and report the ROUGE overlap with the silver summaries. We measure di"erent ROUGE scores after every
20 steps and report the average score.

1Exact methods on Amazon US reviews achieve slightly less than 100% due to numerical stability issues in the cover tree
implementation in edge cases, which can handle up to 32 bit numbers.

9



Published in Transactions on Machine Learning Research (03/2024)

Figure 3: Time required by CoverSumm com-
pared to baseline algorithms with an increas-
ing number of reviews. We observe that the
processing time of brute-force CentroidRank
and Naive CT gradually increases, while the
processing time of CoverSumm only slightly
increases during summarization.

Algorithm R1 R2 RL Time (s)
LSA 25.04 4.66 15.34 825.57
CentroidOPT 27.74 4.82 16.39 263.84
TextRank 30.84 5.27 17.40 1147.89
LexRank 30.04 5.70 17.59 160.63
SumBasic 31.55 5.00 15.66 287.80
Naive HNSW 43.53 14.61 26.17 3.25
Naive Faiss 43.48 14.51 25.99 1.30
CoverSumm (random) 39.19 11.64 22.92 1.02
CoverSumm (decay ϱ) 41.03 12.18 24.03 1.35
CoverSumm 42.46 14.06 25.15 1.14

Figure 4: Average ROUGE scores obtained by di"erent incre-
mental summarization systems on SPACE dataset. R1, R2,
RL denote the average ROUGE-1, ROUGE-2, and ROUGE-L
scores respectively. We also report the time taken for incremen-
tal summarization per entity by di"erent algorithms.

In Table 4, we observe that CoverSumm achieves the best tradeo" between summarization performance (in
terms of ROUGE scores) and runtime in the incremental setting. Here, we would like to emphasize that the
focus behind designing CoverSumm is on improving the e!ciency of centroid-based summarization systems,
not on enhancing summary quality. Apart from ROUGE scores, we further evaluate the quality of the
generated summaries by their ability to track content in user reviews and human evaluation. We report these
experiments in the following section.

4.2 Analysis

In this section, we analyze the functioning of CoverSumm through various experiments. First, we gauge
the quality of CoverSumm’s summaries using Amazon US reviews (He & McAuley, 2016), which contains
real-world review sets. Since gold summaries are infeasible for such large review sets, we evaluate if the
summaries mimic proxy measures like sentiment polarity and user ratings of the aggregate reviews.

User ratings. In Figure 5(a), we report the overall user rating (in green) and the summary rating (in blue),
where the reviews arrive in a temporal order provided by the dataset. We observe that the summary ratings
mimic the overall trends in the user ratings. The absolute di"erence between user and summary ratings was
0.42. In Figure 5(b) & (c), we simulate a drift in the user reviews by ordering them according to ratings from
low to high or vice-versa. We observe that CoverSumm is able to tackle such scenarios where the summary
ratings still track the aggregate ratings.

Sentiment Polarity. In this experiment, we probe the sentiment polarity of the generated summaries and
verify if they are consistent with the sentiment of the aggregate reviews. We use the VADER (Hutto &
Gilbert, 2014) to extract sentiment polarity. We assign summaries a sentiment polarity score based on the
average polarity score of their individual sentences. In Figure 6(a) & (b), we report the summary polarity (in
green), the average review polarity (in blue), and human-written summary’s polarity (in black). We report
the scores for two distinct entities in the Space dataset. We observe that the generated summaries’ sentiment
polarity generally follows trends in the overall review polarity while achieving a polarity score close to the
human-written summary with an increase in reviews. In general, the summary’s polarity doesn’t exactly
track the aggregate review polarity as many reviews are neutral, and selecting them would result in less
informative summaries (more details in Appendix E.3).

Aspect discovery. In this experiment, we assess if CoverSumm can capture the underlying aspects in user
reviews. To investigate this, we progressively fed the system reviews from each aspect (e.g., hotel reviews
about food first, followed by service, and so on). In Figure 6(c), we compute the number of unique aspects
in the summaries and reviews at di"erent time steps. We found that summaries successfully captured new
aspects as they were introduced in the review stream. Additionally, we calculated the average absolute
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Figure 5: Evolution of user ratings in CoverSumm’s summary and user reviews during summarization in an
incremental setting. The goal of this experiment is to determine if the user ratings can be accurately reflected
in the incremental summaries from CoverSumm. We report the results in three settings when reviews arrive in
their: (a) original temporal order; (b) ascending order of their ratings; (c) descending order of their user
ratings. We observe that CoverSumm’s summary can track drifts in the ratings.

Figure 6: (a) & (b) Evolution of sentiment polarity in CoverSumm’s summaries in an incremental setting (for
2 entities in Space dataset), and (c) the number of unique aspects found in the CoverSumm’s summary and
aggregate reviews. Random denotes the CoverSumm (random) baseline. These experiments show that the
generated summaries can track finer aspects of the user reviews like sentiment polarity and aspects.

di"erence between the number of unique aspects in the reviews and summaries to be 0.32. This demonstrates
that CoverSumm e"ectively captures the underlying semantics and selects relevant aspects from reviews.

Number of reservoir search queries (nrs). In this experiment, we probe the number of reservoir search
queries (the most expensive step in Algorithm 1) executed by CoverSumm. In Figure 7 (a), we visualize the rs
queries using data sampled from a uniform distribution and observe that CoverSumm performs a small number
of queries (e.g., less than 150 queries when the number of points is 10K). We also observe that with an
increasing number of points, the gap between subsequent reservoir search queries increases. This is expected
as the nearest neighbours of the centroid change less frequently. We repeat the same experiment with di"erent
data dimensions and observe an increase in reservoir search queries with increasing data dimension, D. This
is expected as the confidence for the bound in Proposition 2 is (1 ↔ ϑ)2D decreases for higher data dimension,
D. Therefore, nearest neighbour candidates can be outside the reservoir more frequently.

Reservoir size (|R|). In this experiment, we investigate the size of R during summarization. We perform a
synthetic experiment where points are randomly sampled from a uniform distribution. In Figure 7(b), we
observe that the reservoir size at any time step is significantly small (< 100) compared to the number of
points (⇔10K). We also experiment by varying the summary budget, k, and observe a nearly linear increase
in reservoir size as predicted by Proposition 5.

Data distribution ablations. In this experiment, we investigate CoverSumm’s performance (time) when
the input samples arise from a multi-modal distribution. Specifically, we sample x ⇔

∑m
i=1 aiN (µi, I) from

multi-dimensional gaussian distributions, where ai = 1/m, µi = i1 and m is the number of modes. In
Figure 7(c), we observe that the time required by CoverSumm gradually increases with the number of modes
in the input distribution. This behavior is expected as the number of representations near the centroid may
change frequently as the number of modes increases.

Human Evaluation. To assess the quality of the summaries generated by CoverSumm, we perform a human
evaluation of the generated summaries from Space and Amazon US reviews dataset. We compare CoverSumm
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Figure 7: Plots showcasing (a) the cumulative number of reservoir search queries (nrs), (b) the variation in
reservoir size |R|, and (c) compute time when points are sampled from a multi-modal distribution.

with its two variants: CoverSumm (random) and CoverSumm (decay ϱ). We perform human evaluation
experiments on Amazon MTurk. Since evaluating the entire set of summaries is expensive, we selected
consecutive summary pairs, which had at least one change in them. Specifically, given a summary pair, we
ask the annotator to judge whether the change was: (a) redundant: if the information was already provided in
the previous summary, and (b) informative: if the new selected review sentence is informative or “summary
worthy” (e.g., a sentence like ‘The boots wore o" after a month’ is summary worthy while a sentence like ‘I
do not like them’ is not). We provide more details about the human evaluation setup in Appendix E.2.

Amazon Space
Algorithm Redund. ↖ Info. ↙ Redund. ↖ Info. ↙

CoverSumm (random) 28.2% 54.0% 21.6% 78.2%
CoverSumm (decay ϱ) 12.3% 63.4% 25.8% 79.9%
CoverSumm 8.8% 65.4% 24.1% 80.7%

Table 2: Human evaluation results evaluating the redundancy and infor-
mativeness of generated summaries from CoverSumm and its variants.

In Table 2, we report the percentage
of summary pairs marked as redun-
dant or informative. On Amazon,
we observe that CoverSumm gener-
ates the least redundant summaries
(only 8.8% are marked as redundant)
while making the most informative
changes (around 65% of the time).
On Space, we observe that di"erent
systems achieve similar performance
with CoverSumm achieving the best results in informativeness. To put these results in perspective, we need to
consider some of the key di"erences between Amazon and Space datasets. Space reviews have a similar
structure with sentences like “The room was great”, “The sta" was helpful”, etc. On the other hand, Amazon
US Reviews have a much more diverse set of reviews e.g., “Overall I’m very pleased with the purchase”,
“When I got it I was surprised how soft the lamb skin is, very nice”. We see these properties manifest in
the human evaluation results. In the Space dataset, we hypothesize that when reviews are altered with
similar positive information, this is generally seen as informative, yielding high informative scores. CoverSumm
(random) algorithm may be less sensitive to redundancy scores in this setup as it randomly chooses instances
to be in the reservoir thereby encouraging diversity in the final summary. Overall, this experiment illustrates
the need for evaluation on a diverse set of reviews to e"ectively gauge the system’s performance.

5 Conclusion

In this paper, we proposed CoverSumm, an e!cient algorithm to perform centroid-based extractive summariza-
tion in an incremental setup. CoverSumm leverages cover trees to perform nearest neighbour search e!ciently,
thereby obtaining up to 36x speed improvement over naive baselines. We perform extensive theoretical
and empirical analysis to show that CoverSumm generates high-quality opinion summaries that accurately
track the semantics in the review set. Detailed analysis shows that CoverSumm’s performance is dependent
on the underlying data distribution, and its e!ciency can su"er in adversarial scenarios. Most works use
empirical evaluations on specific datasets to choose a summarization technique. In this work, we focus on
centrality-based measures for extractive summarization. Nevertheless, determining the optimal summarization
paradigm for di"erent domains remains an open question. Future work could explore the use of e!cient data
structures like CoverSumm or improved confidence intervals (Waudby-Smith & Ramdas, 2024) to further
improve e!ciency/accuracy trade-o"s across a broad class of summarization methods.
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A.1 Hoe"ding’s Inequality

Theorem 1 (Hoe"ding-Azuma inequality (Hoe"ding, 1963)). Let x1, . . . , xt be i.i.d. random variables

supported on [↔b/2, b/2]. Define µ = E[x1] and µ̂ = 1
t

∑t
i=1 xi. Then, for any ϑ → (0, 1], with probability at

least (1 ↔ ϑ), it holds that

|µ ↔ µ̂| <

√
b2 log(2/ϑ)

2t
(6)

A.2 Proof of Proposition 1

Proof. We proceed by applying the Hoe"ding inequality (Theorem 1) to individual dimensions of the estimated
centroid vector as shown below:

µ
(i)
t = µ

(i) ±
√

b2 log(2/ϑ)
2t

.

Using triangle inequality, we can bound the Euclidean distance to µt from any point x → RD:

⇐µt ↔ x⇐ = ⇐µ ↔ x + ς⇐, where ς
(i) = ±

√
b2 log(2/ϑ)

2t

↑ ⇐µ ↔ x⇐ + ⇐ς⇐

= ⇐µ ↔ x⇐ +
√

Db2 log(2/ϑ)
2t

.

Therefore, for an Euclidean distance metric d(·, ·), we have obtained the following result:

d(µt, x) = d(µ, x) +
√

Db2 log(2/ϑ)
2t

.

The above proof can be extended to any distance metric that follows triangle inequality. The new bound can
be written as: d(µt, x) ↑ d(µ, x) + ⇐ς⇐, where ς =

[
±

√
b2 log(2/ϑ)/2t

]D
.

A.3 Proof of Proposition 2

Proof. We estimate the distance between subsequent centroids using the triangle inequality of Euclidean
distance and use the results from Proposition 1 as follows:
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d(µt, µt+i) ↑ d(µt, µ) + d(µt+i, µ)

↑ d(µ, µ) +
√

Db2 log(2/ϑ)
2t

+ d(µ, µ) +

√
Db2 log(2/ϑ)

2(t + i)

↑ 2
√

Db2 log(2/ϑ)
2t

=
√

2Db2 log(2/ϑ)/t.

A.4 Proof of Proposition 4

Proof. To prove this proposition, we first note that R is initialized using reservoir search with radius r = dk +ϱ,
where dk is the distance of µt to its k-th neighbour. Therefore, for any radius r ↘ dk, the reservoir size is
always |R| ↘ k.

Next, we consider the case when the updated centroid µt is within distance ⇐µt ↔ µlast⇐ < ϱ/2. In this case,
the distance from µt of any representation not in the reservoir (blue circles in Figure 2 (left & center)) is at
least d(x, µt) > dmin = dk + ϱ/2, ↗x → Xt \ R. Now, note that all points in Slast → R, as the R has not been
updated after that (also |Slast| = k). Next, we can show that:

↗x → Slast, d(x, µt) ↑ d(x, µlast) + d(µt, µlast)
< dk + ϱ/2 = dmin

(7)

This shows that the reservoir has at least k points within dmin of µt. Therefore, performing knn within R is
exact. When the updated mean µt drifts more ! ↘ ϱ/2 (shown in Figure 2 (right)), we perform a reservoir
search query on the entire cover tree which is also exact.

A.5 Proof of Proposition 5

Proof. First, we note that reservoir search queries on the cover tree are executed when the bound obtained in
Proposition 2 is violated. This happens with probability pt = 1 ↔ (1 ↔ ϑ)2D at each time step t. Therefore,
the expected value of nrs can be obtained as follows:

nrs =
∑

t

pt

=
∑

t

1 ↔ (1 ↔ ϑ)2D

=
∑

t

2Dϑ ↔ D(2D ↔ 1)ϑ2 + . . .

↑
∫ n

t=1

[
2D

t
+ D(2D ↔ 1)(2D ↔ 2)

3t3 + . . .

]
dt

∝
∫ n

t=1

[
2D

t
+ D(2D ↔ 1)(2D ↔ 2)

3t3 + . . .

]
dt

= 2D log n + D(2D ↔ 1)(2D ↔ 2)
6n2 ↔ . . .

= O(D log n).

We set ϑ = ”(1/t) as used in our algorithm and assume that n ⇓ D in the above proof.

A.6 Proof of Proposition 6

Proof. For a metric space (X , d), we assume the doubling constant to be c. The size of the reservoir |R| is
given by the maximum number of elements in the ball B(µn, dk(1 + ς)), where µn is the last query for range
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search in the cover tree, and dk(1 + ς) is the radius used for the same. We know that |B(µn, dk)| = k. Using
this, we proceed to formulate the bound as follows:

|R| ↑ |B(µn, dk(1 + ς))|
↑ c

↓log2(1+ε/dk)↔|B(µn, dk)|

↑ c
↓log2(1+

′
ϑD log(2t)/2t/dk)↔

k.

(8)

From Equation 8, we observe that we can control the reservoir size using the hyperparameter ϖ. Next, we
show that the reservoir size bound is only dependent on data dimension D, number of nearest neighbour
k, and aspect ratio ! of X. For large t ⇓ 0, we have the limit: limt↗↘

log(2t)
2t ∞ 0. Plugging this result in

Equation 8, we get the following
|R| ↑ c

↓log2(1+ϖ)↔
k = ck, (9)

where for large t ⇓ 0, ς ∞ 0 is a small constant.

Discussion. Therefore, at later time steps, we observe that |R| is directly proportional to the number of
nearest neighbours, k. For a metric space (X, d), the doubling constant (c) can be bounded as c ↑ 2D↓1+log2 !↔,
where ! is the aspect ratio of the space. The aspect ratio ! is defined as the ratio of the largest to the
smallest interpoint distance in that space.

A.7 Additional Theoretical Results

Proposition 7 (Interval between reservoir search queries). The number of steps (interval) between two

consecutive reservoir search queries (m) grows linearly with the time step, i.e., m = O(t).

Proof. The evolving centroid is computed in O(1) time as shown below:

µt+1 =
(

1 ↔ 1
t + 1


µt + 1

t + 1xt+1.

In a similar manner, we can compute µt+2 as follows:

µt+2 =
(

1 ↔ 1
t + 2


µt+1 + 1

t + 2xt+2

=
(

1 ↔ 1
t + 2

 (
1 ↔ 1

t + 1


µt

+
(

1 ↔ 1
t + 2


1

t + 1xt+1 + 1
t + 2xt+2

= t

t + 2µt + xt+1 + xt+2
t + 2 .

Inductively, we have the following:

µt+m = t

t + m
µt +

∑m
i=1 xt+i

t + m
.

Now let us consider that the last reservoir search query was executed at time step t (µlast = µt). We compute
the drift from µlast after m steps as follows:

! = ⇐µlast ↔ µt+m⇐

=


(
1 ↔ t

t + m


µlast ↔

∑m
i=1 xt+i

t + m



= m

t + m

µlast ↔
m∑

i=1
xt+i/m



= m

t + m
⇐µlast ↔ µt+1:t+m⇐ ,
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where µt+1:t+m is the mean of m representations observed after the last reservoir search query. Now, let us
consider the scenario where the centroid drift just exceeds the threshold, ! ∝ ε

2 :

m

t + m
⇐µlast ↔ µt+1:t+m⇐ ∝ ϱ

2

m ∝ ϱt

2⇐µlast ↔ µt+1:t+m⇐ ↔ ϱ

m ⇔ O(t),

where ϱ is confidence bound defined in Equation 4.

Discussion. We observe that the interval between consecutive reservoir search queries m is directly
proportional to the time step of the last query t (ϱ remains constant for any reasonably large t). This shows
that the reservoir search queries become infrequent as more samples are processed. We also observe that
m reduces as the ⇐µlast ↔ µt+1:t+m⇐ increases, which implies that the reservoir search queries become more
frequent whenever there is a shift in the underlying input distribution.

Proposition 8 (Interval between reservoir search during distribution drift). The number of steps (interval)

between two consecutive reservoir search queries (m) when the centroid of the distribution drifts, increases

with the number of representations processed m = O(
′

t log t).

Proof. Let us consider the scenario where the centroid of the distribution from which representations are
sampled shifts from µ1 to µ2 (where µ1, µ2 → Rd). The unit vector in the direction of the drift is given as
v̄ = µ1↑µ2

≃µ1↑µ2≃ . During the drift, we assume that representations are sampled from the dynamic distribution
x ⇔ N (µt + φv̄, ςI), where ς ∈ φ and µt is the current mean of all samples seen so far. We assume a specific
form of distribution shift as shown below:

µt+1 =
(

1 ↔ 1
t + 1


µt + xt

t + 1

=
(

1 ↔ 1
t + 1


µt + µt + φv̄ ± ς1

t + 1

= µt + φv̄ ± ς1
t + 1 .

Extending this for m steps, we get the following:

µt+m = µt + (φv̄ ± ς1)
t+m∑

i=t

1
i + 1

µt+m ↔ µt = (φv̄ ± ς1)


t+m∑

i=1

1
i

↔
t∑

i=1

1
i



⇐µt+m ↔ µt⇐ ↑ φ


t+m∑

i=1

1
i

↔
t∑

i=1

1
i


.

Incorporating the upper bound on the harmonic series,
∑m

k=1
1
k = log(m)+ςm, with ςm ↘ 0, and monotonically

decreasing.

⇐µt+m ↔ µt⇐ ↑ φ (log(t + m) ↔ log(t))

= φ log


1 + m

t


.
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Now assuming µlast = µt is the last time the reservoir search query was executed. We compute the number of
steps till the centroid drift ! ↘ ε

2 exceeds the threshold:

φ log(1 + m

t
) ↘ ϱ

2
m ↘ t (exp(ϱ/2φ) ↔ 1)

= t


exp


1

2φ

√
ϖD log(2t)

2t


↔ 1



∝ t


1 + 1

2φ

√
ϖD log(2t)

2t
↔ 1



= 1
2φ

√
ϖDt log(2t)

2

⇔ O

√
t log t


.

In this derivation, for large t ⇓ 0, the term ϱ/2φ is quite small allowing us to write the exponent term as
e

x = 1 + x, which provides a final complexity of O(
′

t log t).

Discussion. The above result shows that the interval between consecutive reservoir search queries is smaller
when there is a distribution drift. We also observe that m is inversely proportional to the amount of drift φ,
which implies that reservoir search queries are called more frequently when the amount of drift is large.
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B Additional Related Work

Extractive Opinion Summarization. The task of extractive opinion summarization has been extensively
researched by a long line of work (Kim et al., 2011; Zhong et al., 2019; Zhao & Chaturvedi, 2020; Zhong et al.,
2020; Gu et al., 2022; Hosking et al., 2023; Mao et al., 2023; Siledar et al., 2023; Jiang et al., 2023; Sosea
et al., 2023; Li & Chaturvedi, 2024). Most systems operate in an unsupervised setup, where saliency scores
are assigned to review sentences and a subset of sentences are selected based on their saliency scores. Several
forms of saliency computation methods have been explored by prior works using: raw textual frequency
features (Nenkova & Vanderwende, 2005; Nenkova & Bagga, 2003), distance from centroid (Radev et al., 2004),
graph-based approaches (Erkan & Radev, 2004; Mihalcea & Tarau, 2004), among others. More recent neural
approaches (Angelidis et al., 2021; Chowdhury et al., 2022; 2023; Li et al., 2023) perform summarization
in a two-step process by learning review representations followed by an inference algorithm to generate the
summary using the learned representations. In our algorithm, we follow the centroid-based summarization
paradigm and use a similar saliency scoring mechanism to perform opinion summarization incrementally.

Timeline Summarization. Our work on incremental opinion summarization is closely related to the task
of timeline summarization. Timeline summarization, which is a form of temporal summarization similar
to our setup, has been studied extensively for news articles (Allan et al., 2001; McCreadie et al., 2014; Ge
et al., 2016; Ghalandari & Ifrim, 2020; Pratapa et al., 2023) and in multi-document settings (John & Asharaf,
2014; Manuvinakurike et al., 2021; Yoon et al., 2023; Laskar et al., 2023). This task involves generating a
sequence of summaries that reflect the timeline of long-ranging news topics. Timeline summaries (Yan et al.,
2011b;a; Steen & Markert, 2019; Chen et al., 2023) are expected to have the following features: summaries
should discuss important events in a time segment and consecutive summaries should not be redundant.
Recently, (Cheang et al., 2023) has shown several challenges involved in using language models for timeline
summarization as pre-training of LMs a"ect the faithfulness of future summaries. In contrast to timeline
summaries, opinion summaries in an incremental setup should capture the dominant opinions at each time
step without any redundancy constraints, as only one summary is presented to the user at a time.
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C Synthetic Data Generation

In this section, we describe the process of sampling synthetic representations from the LDA (Blei et al., 2003)
process. The overall algorithm is presented in Algorithm 3. First, we sample the word distribution about
each topic. Secondly, for every document or review, we estimate its length. Thirdly, we select the words
within each review by initially sampling a topic, and subsequently, picking a word from that topic’s specific
word distribution. We consider 10 di"erent topics (can be considered as aspects for opinion summarization),
vocabulary size |V | = 100, average review length L̄ = 150, and generate a total of n = 104 reviews. We
consider one-hot vectors for each word as the repr(·) function and retrieve the mean of all words as the
review representation ei. Finally, the entire set of synthetic representations E is returned to the user.

Algorithm 3 Synthetic LDA data generation
1: function LDA(Topic Count k, Vocabulary Size |V |, Average review length L̄, Reviews Count n).
2: ϖ = 11→k, φ = 11→|V |

3: // sample word distribution per topic
4: ↼ = Dir(φ) → Rk→|V |

5: E = {} // empty representation set
6: for i = 1 . . . n do
7: // sample topic distr. and review length
8: ↽ ⇔ Dir(ϖ), li ⇔ Pois(L̄)
9: Wi = {} // words in the i-th review

10: for j = 1 . . . li do
11: // sample new word
12: t ⇔ Multinomial(↽)
13: w ⇔ Multinomial(↼t)
14: Wi = Wi ≃ w // add the new word
15: end for
16: // mean word representation
17: ei = Ew⇐Wi [repr(w)]
18: Ei = Ei ≃ ei // add representation
19: end for
20: return E
21: end function
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D Review Deletion Using CoverSumm

In this section, we show that we can use CoverSumm to update summaries when a subset of reviews is deleted.
This scenario may be useful when some reviews are flagged for their reliability or foul language. In this
setting, the user provides the system with a set of sentences xdel to be deleted and expects the updated
summary as the output. In Algorithm 4, we present the algorithm to retrieve the updated summary when
a set of sentences are deleted. First, we remove the sentences from the overall sentence set Xt, cover tree
ct, and reservoir R. Next, we observe that we need to perform reservoir search on the entire cover tree if
either of the conditions is met: the reservoir size is less than k, or the new mean has drifted beyond ϱ/2
(Line 11). If neither of the above conditions are met, the algorithm can generate the summary from the
existing reservoir R. We observe that the most expensive step in Algorithm 4 is deletion from cover trees
(Line 4), therefore executing the Delete(·) function should at least take O(m log |Xt|) time (where m is the
number of sentences to be deleted and |Xt| is the total number of elements in the cover tree during deletion).

Algorithm 4 CoverSumm Deletion Routine
1: function Delete(Sentences to delete xdel, last centroid µlast, reservoir R)
2: Xt = Xt↑1 \ xdel // remove xdel
3: // delete xdel from the cover tree
4: ct.delete(xdel)
5: // computed incrementally in O(|xdel|)
6: µt = E[Xt]
7: // drift of µt from the last query µlast
8: ! = ⇐µt ↔ µlast⇐
9: R = R \ xdel // delete xdel from R

10: // check if drift exceeds threshold or R has less than k elements
11: if ! > ϱ/2 ⇒ |R| < k then
12: ϱ =


ϑD log(2/ϱ)
2(t↑|xdel|)

13: R = ct.ReservoirSearch(µt, r, ϱ)
14: µlast = µt

15: end if
16: St = knn(R, µt)
17: return St

18: end function
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E Experiments

E.1 Implementation Details

We implemented all our experiments in Python 3.6 on a Linux server. The experiments were run on a single
Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz processor. In our experiments, we set ϑ = 1/t and perform a
grid search on a small held-out set to determine ϖ, for each dataset. The summary budget in all experiments
was k = 20. In our experiments, we use the SG Tree implementation available in graphgrove library.2
We will make the codebase, along with detailed instructions on how to replicate our experiments, publicly
available after the double-blind review phase. We used the default set of hyperparameters available with
HNSW and FAISS.

E.2 Human Evaluation Details

We performed human evaluation experiments on Amazon MTurk. We considered entities from the Amazon
US reviews dataset where the number of reviews was more than 1000. In Table 2, we report the percentage of
summary pairs marked as redundant or informative. All the datasets used for the evaluation were in English
language and we did not perform additional data collection on our own. Human judges were compensated at
a wage rate of $15 per hour.

E.3 Additional Experimental Results

Algorithm Time (s) ↖

Brute force 25.51
Naive CT 14.75
CoverSumm (reservoir) 15.36
CoverSumm (reservoir + lazy) 15.39

Table 3: Runtime of di"erent algorithms
when the points are sampled from an adver-
sarial distribution.

Adversarial distributions. A limitation of CoverSumm is
that its performance is dependent on the input data distribu-
tion. If the input points are not bounded, and the centroid of
the input representations shifts frequently, CoverSumm’s perfor-
mance worsens as we need to perform kNN queries on the cover
tree quite often. To simulate this scenario, we sample points
from a dynamic distribution where the mean shifts continuously.
Specifically, we sample the i-th representation xi ⇔ N (µi, #),
where µi = (i/n)1 and n is a hyperparameter. In Table 3,
we observe that CoverSumm is quite slow in this scenario and
obtains similar time complexity to the brute force method. We
also observe that the Naive CT is the fastest algorithm in this setting, as it does not have additional range
search and reservoir computations. However, adversarial distributions are rare in real-world settings. In such
scenarios, we recommend using Naive CT instead of CoverSumm.

Figure 8: Evolution of ROUGE scores during incremental summarization. CoverSumm achieves the best scores
with a gradual increase over time as more reviews are observed. CoverSumm is abbreviated as CS.

Summarization Quality. In this experiment, we investigate how the quality of the generated summaries
improves in the incremental setup. Specifically, we measure the ROUGE scores of the generated summaries
with the human-written summaries for all the reviews and report their evolution over time. In Figure 8, we
observe a gradual improvement in summary quality (in terms of ROUGE overlap with the human-written

2https://github.com/nmonath/graphgrove/
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Figure 9: Evolution of average user ratings in the summary and user reviews for di"erent products in the
Amazon US reviews dataset. We observe that the user ratings in CoverSumm’s summaries can track the
aggregate review ratings closely for all products.

summary) across di"erent summarization systems. We also observe that CoverSumm and its variants achieve
the best ROUGE scores throughout the incremental summarization process.

User ratings. We report the evolution of average user ratings and summary ratings using CoverSumm
during the incremental summarization process. In Figure 9, we showcase the summary rating trajectory for 9
di"erent product entities from the Amazon dataset. We observe that for all instances the average summary
rating mimics the aggregate user ratings across all time steps during summarization.

Generated Summaries. In Table 4, we report the summaries generated by CoverSumm over time for an
entity in the SPACE dataset. We observe that the extracted summaries can be uninformative or redundant
when there are only a few reviews, but the quality of summaries improves as more reviews pour in over time.

Sentiment Polarity. We report the evolution of sentiment polarity of CoverSumm’s summaries and aggregate
reviews in Figure 10 for 21 di"erent products from the Space dataset. For all products, we observe that the
summary is able to capture the trends of sentiment polarity change in the original reviews. The generated
summary also achieves sentiment polarity scores that are close to the aggregate user reviews.
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Time Step CoverSumm Summaries

t = 10 I’ve been at all three of the Key West Marriott Hotels and this is my favorite for value and relaxation.

Has a great relaxing pool layout, full continental+ breakfast and on this last visit a sta! which

worked harder than most travel agents finding some last minute activities and making the bookings

for our family. I did complain about the room at reception and they apologised and we were only

staying the one night.

t = 50 We took a 2 night 3 day vacation and stayed at the Fairfield Inn in January 2012. The bathroom

smelled like sewer water, the front door couldn’t open wider, it felt like we were in a motel. The

location was good and the price reasonable for Key West. The Fairfield Inn is the absolute best

value and the sta! is nothing short of fantastic. Rooms nothing special; not very spacious and

"weird" bathroom. Good location.

t = 100 The sta! is so hospitable, and the hotel was very reasonably priced and a good location. We had a

good time at the pool and the bar is great. We took a 2 night 3 day vacation and stayed at the

Fairfield Inn in January 2012. The location was good and the price reasonable for Key West. The

sta! was very Friendly and helpful. The room was very clean. Good location.

t = 300 The hotel sta! was very friendly and accommodating. The front desk people were very helpful and

friendly. Sta! was friendly and helpful. We would definitely stay here again. Rooms were nice and

clean. We would definitely stay there again and would highly recommend this hotel. The pool area

is very nice. Breakfast was more than adequate and the pool area was very enjoyable. The room

was very clean. They succeeded! This hotel is great.

t = 500 The hotel sta! was very friendly and accommodating. The front desk people were very helpful and

friendly. Sta! was friendly and helpful. Rooms were nice and clean. We would definitely stay here

again. Sta! are very courteous and professional. The pool area is very nice. Breakfast was more

than adequate and the pool area was very enjoyable. We would definitely stay there again and

would highly recommend this hotel. They succeeded! The rooms are loud.

t = 915 (final) Sta! was friendly and helpful. The front desk people were very helpful and friendly. The hotel sta!

was very friendly and accommodating. The pool was nice, but we did not use it. Rooms were nice

and clean. We would definitely stay here again. The pool area was very nice. A big plus was the

free parking and large selection for continental breakfast. Sta! are very courteous and professional.

We were not disappointed! They succeeded!

Table 4: Generated summaries from CoverSumm at di"erent time steps for an entity from the SPACE dataset.
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Figure 10: Evolution of sentiment polarity in CoverSumm’s summaries and aggregate user reviews for di"erent
products in the Amazon US reviews dataset. We observe that CoverSumm’s summaries can track the trends in
sentiment polarity of the aggregate review set while achieving scores similar to the human-written summary.
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