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Abstract

Recent studies have shown promising results on utilizing large pre-trained image-
language models for video question answering. While these image-language models
can e!ciently bootstrap the representation learning of video-language models, they
typically concatenate uniformly sampled video frames as visual inputs without
explicit language-aware, temporal modeling. When only a portion of a video input
is relevant to the language query, such uniform frame sampling can often lead to
missing important visual cues. Although humans often find a video moment to
focus on and rewind the moment to answer questions, training a query-aware video
moment localizer often requires expensive annotations and high computational costs.
To address this issue, we propose Self-Chained Video Localization-Answering
(S!V"LA), a novel framework that leverages a single image-language model (BLIP-
2) to tackle both temporal keyframe localization and question answering on videos.
S!V"LA framework consists of two modules: L#$%&"’!( and A)*+!(!(, where
both are parameter-e!ciently fine-tuned from BLIP-2. We propose two ways of
chaining these modules for cascaded inference and self-refinement. First, in the
forward chain, the L#$%&"’!( finds multiple language-aware keyframes in a video,
which the A)*+!(!( uses to predict the answer. Second, in the reverse chain, the
A)*+!(!( generates keyframe pseudo-labels to refine the L#$%&"’!(, alleviating
the need for expensive video moment localization annotations. Our S!V"LA
framework outperforms several strong baselines/previous works on five challenging
video question answering and event prediction benchmarks, and achieves the state-
of-the-art in both fine-tuning (NExT-QA and STAR) and zero-shot (NExT-QA,
STAR, How2QA, and VLEP) settings. We show a comprehensive analysis of our
framework, including the impact of L#$%&"’!(, comparisons of L#$%&"’!( with
other temporal localization models, pre-training/self-refinement of L#$%&"’!(, and
varying the number of keyframes.!

1 Introduction
The recent success of large-scale pre-trained language models [2, 7, 65] has led to a burst of
multimodal vision-and-language models that can jointly understand visual (image/video) and language
data [64, 6, 60]. However, due to higher computational and annotation costs, video-language models
(video-LMs) are more challenging to scale in terms of model and data size than image-language models
(image-LMs). Hence, recent studies have explored e!cient training of video-LMs by leveraging
pre-trained image-LMs [44, 14, 23, 85, 70, 31, 19, 82]. While such a warm-start strategy facilitates
visual representation learning of video-LMs, they typically concatenate uniformly/randomly sampled
video frames as visual inputs without explicit language-aware, temporal modeling. However, such a
simple uniform/random sampling of frames can lead to losing important visual cues, resulting in the
video-LMs focusing on frames that are unimportant/irrelevant to language queries [42].

!Our code and checkpoints are available at: https://github.com/Yui010206/SeViLA
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Figure 1: Self-Chained Video Localization-Answering (S!V"LA) consists of a L#$%&"’!( and an
A)*+!(!(. Left: Forward chain for language-aware temporal keyframe localization and question
answering. Right: Reverse chain for L#$%&"’!( self-refinement with keyframe pseudo-labels.

To address this, we introduce Self-Chained Video Localization-Answering (S!V"LA), a novel
video-language framework where we adopt a single image-LM to handle both temporal local-
ization and question answering on videos, while avoiding expensive language-aware, temporal
grounding annotations (plus self-refinement [48] between the two modules). Our S!V"LA frame-
work obtains two modules, a L#$%&"’!( and an A)*+!(!( through parameter-e!cient fine-
tuning [62] of BLIP-2 [35], a recent state-of-the-art image-LM. S!V"LA tackles video-language
tasks by chaining the output of L#$%&"’!( to the input of A)*+!(!( (forward chain, Fig. 1
left), while the A)*+!(!( gives feedback to refine the L#$%&"’!( (backward chain, Fig. 1
right). In the forward chain, L#$%&"’!( leverages the original image-language understanding
of the BLIP-2 backbone and chooses the important language-aware video keyframes via the
localization prompt “Does the information within the frame provide the necessary
details to accurately answer the given question?” for each video frame. Then A)-
*+!(!( takes the concatenation of selected keyframes as visual input to predict video-level answers.
In the backward chain, we generate keyframe pseudo-labels [26] to refine the L#$%&"’!(, where we
label a video frame as a keyframe if A)*+!(!( can output the correct answer using that frame. This
self-refinement improves the language-aware temporal localization accuracy and alleviates the need
for expensive keyframe annotations.
We demonstrate the e"ectiveness of S!V"LA framework on five challenging video question answering
and event prediction benchmarks (NExT-QA, STAR, How2QA, TVQA, and VLEP) [75, 77, 36, 27, 28],
where S!V"LA outperforms several strong baselines/previous works, and achieves the state-of-the-art
in both fine-tuning (NExT-QA and STAR) and zero-shot (NExT-QA, STAR, How2QA, and VLEP)
settings. We also show that our L#$%&"’!( can be used as a strong stand-alone moment retrieval model.
We present a comprehensive analysis to elaborate the design choices of the proposed framework,
including the impact of temporal localization, the impact of the self-refinement process (backward
chain), and varying the number of keyframes. Our contributions are summarized as follows:

• A novel video-language framework S!V"LA, where the L#$%&"’!( and A)*+!(!( are initialized
from a single image-language model to handle temporal localization and question answering on
videos, respectively.

• A new self-refinement method for language-aware temporal keyframe localization, where the
A)*+!(!( generates keyframe pseudo-labels to refine the L#$%&"’!(, without expensive temporal
grounding annotation.

• Strong empirical performance with state-of-the-art on multiple video-language benchmarks.
• Comprehensive analysis elaborating the design choices of the proposed framework.

2 Related Work
Image-Language Pre-trained Models. As the demand for cross-modal applications continues to
grow, image-language pre-training studies have received tremendous attention and success. Image-
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language pre-trained models [55, 12, 69, 5, 36, 64, 31, 34, 86] have advanced more rapidly than
video-language pre-trained models [71, 90, 45, 17, 80, 67, 81, 83, 87, 37, 88], both in terms of
model [61, 38, 35, 1, 70, 43] and pre-training data scale [61, 1, 89, 21] (more detailed model size
and pre-training data scale comparisons are in Appendix). This can be attributed to the increased
accessibility of image data and the comparatively simpler data structures, which makes scaling up
image-language learning easier [58]. In our paper, S!V"LA is built on the recent state-of-the-art
image-LM BLIP-2 [35] and extends it to adopt video input for video-language tasks. We also compare
our S!V"LA framework with the current state-of-the-art video-LM, InternVideo [71], to demonstrate
the superiority of a large image-LM that incorporates keyframe localization.
Image-to-Video Transfer Learning. The gap between image- and video-language models has
inspired numerous useful methods focusing on image-to-video transfer learning, which leverage a
limited number of video frames to enhance learning e!ciency [80, 32, 23, 46, 15, 44, 14, 31, 4, 82, 68].
Luo et al. [44] adapt pre-trained CLIP [55] backbone to solve video clip retrieval. Yang et al. [85]
extend frozen bidirectional language models [66] to incorporate multiple images and apply additional
video-level pre-training to facilitate model adaptation [62]. Wang et al. [72] convert multiple
images into hierarchical captions, arranged with a temporal order prompt to help language models
comprehend video-level events. However, these works employ a uniform sampling strategy that is not
language-aware. This can lead to the loss of key visual cues for temporal modeling and even burden
the models with irrelevant information [31, 76]. In this paper, we propose a L#$%&"’!( to provide
language-aware visual information to video-language tasks.
Language-aware Keyframe Localization. Many methods [42, 3, 18, 54, 24, 42, 41, 73, 9] have
been proposed to address the challenge of language-aware keyframe localization. Buch et al. [3]
optimized an end-to-end pipeline using answer labels to select a single keyframe for downstream
tasks. Lu et al. [42] selects frames with separate image and language models, and answers questions
by a QA model with multiple training objectives. Qian et al. [54] designed a video clip proposal
model with predefined ranges, iteratively training it with a QA model. Kim et al. [24] utilized a
semi-parametric retriever to obtain keyframes based on frame and language feature similarity. We
adopt a large image-LM as our L#$%&"’!( and chain it with an A)*+!(!(. Our L#$%&"’!( can help
to fine-tune A)*+!(!( in the forward chain and be refined with pseudo-labels in the reverse chain.

3 Method: S!V"LA

In this section, we introduce the method details of our Self-Chained Video Localization-Answering
(S!V"LA) framework. First, we provide BLIP-2 preliminaries, which serve as the foundation for
our framework. Then we elaborate our design of the BLIP-2 L#$%&"’!( and BLIP-2 A)*+!(!( for
temporal localization and question answering on videos. Finally, we present the S!V"LA framework’s
training and inference processes in the forward and reverse chain.

3.1 Preliminaries: BLIP-2

We adopt BLIP-2 [35] as the backbone of our S!V"LA framework. BLIP-2 is a recent state-of-the-art
pre-trained image-language model (image-LM) comprising of: (1) a frozen image encoder [11, 16];
(2) a frozen large language model (LLM) [7, 91]; and (3) a Q-former, which is a trainable transformer
[66] module that bridges the image encoder and LLM, similar to acting as an adapter [62, 20]. It takes
as input visual features h from the image encoder and learnable query embeddings q, and outputs
fixed-length visual features v. The BLIP-2 Q-Former undergoes a two-stage pre-training. First, it
connects to the image encoder to perform image-to-text pre-training. This stage enables the Q-Former
to extract the most informative visual information for the text and remove any irrelevant details in v.
Subsequently, the Q-Former is connected to the LLM to leverage its generative language capabilities.
This is achieved using a fully-connected layer to project query embeddings into the LLM’s dimension
with image-to-text pre-training. As a result, these query features serve as soft visual prompts [22] for
the LLM. With the two-stage pre-trained Q-former and LLM, BLIP-2 shows advanced performance
on various image-language tasks. In our S!V"LA framework, we adopt BLIP-2 as the basic building
block for both video temporal localization and question answering modules. We retain the visual
encoder and the LLM from BLIP-2 by keeping them frozen during training. In this case, only these
two Q-formers are updated during the L#$%&"’!( and A)*+!(!( training (see Sec. 3.3).
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Figure 2: In S!V"LA framework, L#$%&"’!( (top) selects top-K video frames, which guides
A)*+!(!( (bottom) to focus on important language-aware video moments and predict answers.
Both L#$%&"’!( and A)*+!(!( are initialized from a single pre-trained BLIP-2 model, where only
Q-formers and a linear layer (2.5% of total parameters) are tuned for each module. We omit the linear
layer after the Q-former for simplicity.

3.2 Self-Chained Video Localization-Answering

Adapting BLIP-2 to Temporal Localization and Question Answering on Videos. As illustrated
in Fig. 2, our S!V"LA framework adopts BLIP-2 to tackle both video temporal localization and
question-answering. We assign BLIP-2 two roles of being a L#$%&"’!( and an A)*+!(!( by using
di"erent Q-formers. We first elaborate our L#$%&"’!( and A)*+!(!( in detail as follows:
L#$%&"’!(. We first extract frame features via the frozen image-encoder ViT [16], referred
to Ev. Given the video, we uniformly sample n frames {f1, ..., fn}. We then obtain ith frame
feature hi as hi = Ev(fi). Finally, we represent the video as a set of frame features V =
{h1, ..., hn}. These features are extracted once and then saved to be subsequently reused by the
L#$%&"’!( and the A)*+!(!(. The primary objective of the L#$%&"’!( is to select k language-aware
keyframe features from V , where k is typically much smaller than n. As illustrated in Fig. 2
(top), we then independently extract visual query features vi from original frame features in V
via a Q-Former Qloc. Next, visual query features vi and language contexts L are concatenated
and fed into the LLM (Flan-T5 [7]), where we create L by combining question, options, and
localization prompt “Does the information within the frame provide the necessary
details to accurately answer the given question?”. The L#$%&"’!( outputs the score
for each frame si, which is the probability of generating a word ‘yes’, given the visual features vi
and language context L: si = LLM(concat(vi, L)). We can localize language-aware keyframes
K = {vk1 , ..., vkK}, based on the top-k frame scores. Our L#$%&"’!( can be formulated as:

K = L#$%&"’!((V, L), |K| = k → n (1)

A)*+!(!(. With the keyframe set K obtained from the L#$%&"’!(, as illustrated in Fig. 2 (bottom),
we can proceed to generate answers using the A)*+!(!(. We first obtain keyframe query features vi
by processing them through Qans, following the same procedure used in the L#$%&"’!(. Next, we
feed the LLM with all query features and language contexts by concatenating them and obtain the
video-level answer a = LLM(concat(vk1 , ..., v

k
K , L))". Then, the frozen LLM can conduct temporal

modeling with multiple frame inputs. Our A)*+!(!( can be formulated as:

a = A)*+!(!((K,L) (2)

"We also insert a frame ID token before each frame, where we omit the notations from the equation for
simplicity.
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Figure 3: Top: In the forward chain, the L#$%&"’!( finds multiple language-aware keyframes, then the
A)*+!(!( utilizes these keyframes to predict answers. We use the forward chain for both inference
and A)*+!(!( fine-tuning. Bottom: In the reverse chain, we generate keyframe pseudo-labels by
using the A)*+!(!( to refine the L#$%&"’!(.

3.3 Training A)*+!(!( and L#$%&"’!( via Self-Chaining

Fine-tuning A)*+!(!( in forward chain. As illustrated in Fig. 3 (top), we fine-tune the A)*+!(!(
on downstream tasks using keyframes from L#$%&"’!( via the forward chain. A)*+!(!( takes the
keyframes generated by L#$%&"’!(. We compare the default setting to other settings (e.g., input
frames are uniformly selected) in Appendix.
Refining L#$%&"’!( in reverse chain. We adopt pseudo-labeling [26] in our reverse chain to address
the costly frame-level localization annotations. We use binary pseudo-labels, where we label a video
frame as a keyframe if A)*+!(!( can output the correct answer using that frame. As shown in Fig. 3
(bottom), The frozen A)*+!(!( is first prompted by a QA task prompt and generates a frame-level
answer, then we obtain pseudo labels by comparing this prediction with the ground-truth answer. The
L#$%&"’!( is trained to locate language-aware pseudo-label keyframes.
Pre-training L#$%&"’!( with moment retrieval label. To enhance our L#$%&"’!(, we conduct
transfer learning from a video moment retrieval/grounding task [56, 30] via pre-training. We use
videos, queries, and video-level temporal span labels from QVHighlights [30], and assign a binary
localization label to each frame by comparing its timestamp to the span annotations. We provide
more details of pre-training in Appendix.

4 Experiments
In this section, we first outline our experimental setup (Sec. 4.1). Then, we demonstrate the superiority
of S!V"LA framework on 5 challenging long-form video question answering and event prediction
benchmarks in both fine-tuning (Sec. 4.2) and zero-shot (Sec. 4.3) settings. we also conduct ablation
studies on S!V"LA framework to show the e"ectiveness of each of its components on downstream
tasks (Sec. 4.4). Next, We report the performance of our L#$%&"’!( on video moment retrieval
(Sec. 4.5). Lastly, we perform in-depth quantitative, and qualitative analyses on our L#$%&"’!( to
show the e"ect of our design for temporal keyframe localization (Sec. 4.6 and Appendix). More results
on single v.s. multi-frame L#$%&"’!(, pre-training strategies, iterative self-refinement, computational
cost, and extension to another Image-LM model are in Appendix.

4.1 Experimental setup
Benchmarks. We evaluate our S!V"LA framework on 3 video-language tasks, including multi-choice
Video Question Answering (NExT-QA [77], STAR [75], How2QA [36], TVQA [27]), Video Event
Prediction (VLEP [28]), and Moment Retrieval (QVHighlights [30]). See Appendix for details.
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Table 1: Fine-tuning results on video question answering (NExT-QA, STAR, How2QA, TVQA) and
video event prediction (VLEP). We gray out the methods take extra speech input or use dense frames.
We bold the best numbers, and underlined the second-best numbers. dense/1fps: the model takes
dense (1fps) video frames instead of a fixed number of frames. 32 ↑ 4: our L#$%&"’!( selects 4
keyframes from 32 frames. → represents the results tested by ourselves. S!V"LA† uses the zero-shot
L#$%&"’!( without refining on pseudo-labels via the reverse chain.

Model (# Frames) NExT-QA STAR How2QA TVQA VLEP
Tem. Cau. Des. Avg. Int. Seq. Pre. Fea. Avg.

(w/ speech input or use dense frames)
HERO (dense/1fps) [36] - - - - - - - - - 73.8 73.6 -
JustAsk (20) [84] 51.4 49.6 63.1 52.3 - - - - - 84.4 - -
FrozenBiLM (10) [85] - - - - - - - - - 86.7 82.0 -
VidIL 4-shot (12) [72] - - - - - - - - - - - 72.0
T+T (dense/1fps) [40] - - - - - - - - - 92.4 - -
T+T (+ASR, dense/1fps) [40] - - - - - - - - - 93.2 - -
Flamingo-80B 32-shot (30) [1] - - - - - - - - 42.2 - - -
FrozenBiLM (10) [85] - - - - - - - - - 81.5 57.5 -
All-in-One (32) [67] 48.6 48.0 63.2 50.6 47.5 50.8 47.7 44.0 47.5 - - -
Temp[ATP] (32) [3] 49.3 48.6 65.0 51.5 50.6 52.8 49.3 40.6 48.3 - - -
VGT (32) [78] 55.0 52.2 64.0 55.0 - - - - 44.2 - - -
MIST (32) [18] 56.6 54.6 66.9 57.1 55.5 54.2 54.2 44.4 51.1 - - -
VFC (32) [50] 53.3 57.6 72.8 58.6 - - - - - - - -
CoVGT (32) [79] 57.4 58.8 69.3 60.0 - - - - 45.9 - - -
SeViTFiD (10) [24] - - - 60.6 - - - - - - - -
HiTeA (16) [87] 58.3 62.4 75.6 63.1 - - - - - - - -
InternVideo→ (8) [71] 58.5 62.5 75.8 63.2 62.7 65.6 54.9 51.9 58.7 79.0 57.2 63.9
BLIP-2voting (4) 65.2 70.1 80.1 70.1 52.3 54.8 49.0 51.2 51.8 79.6 54.5 67.0
BLIP-2concat (A)*+!(!() (4) 68.1 72.9 81.2 72.6 65.4 69.0 59.7 54.2 62.0 82.2 59.8 68.6

S!V"LA† (32 → 4) 68.8 73.4 83.5 73.4 63.2 66.6 61.3 60.0 62.7 83.7 59.7 69.0
S!V"LA (32 → 4) 69.4 74.2 81.3 73.8 63.7 70.4 63.1 62.4 64.9 83.6 61.6 68.9

Baselines. We compare our S!V"LA framework with the state-of-the-art video-language pre-trained
model, InternVideo [71] as well as our backbone BLIP-2 [35]. We extend BLIP-2 to adapt videos
in two settings: (1) BLIP-2voting, which processes each uniformly sampled frame independently and
obtains the final answer by majority voting on all frame-level answers, and (2) BLIP-2concat, where
Q-former processes each frame and Flan-T5 takes the concatenation of visual features as a prefix.
BLIP-2concat is equivalent to our A)*+!(!( with uniformly sampled frames. See Appendix for details.
Implementation Details. S!V"LA framework adopts BLIP-2 [35], an image-language model with
4.1B parameters and pre-trained on 129M images in total, including COCO [39], Visual Genome
[25], CC12M [59], SBU [52], and 115M images from LAION400M [57]. See Appendix for details.

4.2 Fine-tuning Comparison to SOTA on Video QA and Event Prediction
We compare our S!V"LA framework to recent state-of-the-art models on 4 video QA benchmarks and
1 video event prediction dataset. We show results in Table 1, and summarize our findings as follows.
(a) Temporal modeling matters. BLIP-2voting underperforms our BLIP-2concat (A)*+!(!() and other
video-LM models on STAR, How2QA, TVQA, and VLEP. Especially on STAR-Sequence, a task
demanding heavy temporal understanding, our BLIP-2concat (A)*+!(!() outperforms BLIP-2voting

significantly by 13.1% (69.0% vs. 54.8%). As BLIP-2voting processes frames independently and lacks
temporal modeling among frames, the result indicates that temporal modeling is essential to tackle
video-language tasks and the e"ectiveness of our temporal modeling design.
(b) Keyframe selection helps. Our S!V"LA† framework, featuring a zero-shot L#$%&"’!(, leads on
all tasks with an average advantage of 5.3% over the top video-LM (InternVideo). It also surpasses
BLIP-2concat (A)*+!(!() that uses uniform frame sampling on NeXT-QA (+1.2%), STAR (+0.7%),
How2QA (+1.5%), and VLEP (+0.4%). This highlights the importance of keyframe selection in
video-language tasks, even when using a zero-shot L#$%&"’!(.
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Table 2: Zero-shot results on video question answering and video event prediction.

Model (# Frames) NExT-QA STAR How2QA TVQA VLEP
Tem. Cau. Des. Avg. Int. Seq. Pre. Fea. Avg.

(w/ speech input or use dense frames)
JustAsk (20) [84] - - - - - - - - - 51.1 - -
FrozenBiLM (10) [85] - - - - - - - - - 58.4 59.2 -
ViperGPT (dense/1fps) [63] - - - 60.0 - - - - - - - -
Flamingo-80B (30) [1] - - - - - - - - 39.7 - - -
FrozenBiLM (10) [85] - - - - - - - - - 41.9 29.7 -
VFC (32) [50] 45.4 51.6 64.1 51.5 - - - - - - - -
InternVideo→ (8) [71] 43.4 48.0 65.1 49.1 43.8 43.2 42.3 37.4 41.6 62.2 35.9 58.7
BLIP-2voting (4) 59.1 61.3 74.9 62.7 41.8 39.7 40.2 39.5 40.3 69.8 35.7 63.8
BLIP-2concat (A)*+!(!() (4) 59.7 60.8 73.8 62.4 45.5 41.8 41.8 40.0 42.2 70.8 36.6 64.0

S!V"LA† (32→4) 61.3 61.5 75.6 63.6 48.3 45.0 44.4 40.8 44.6 72.3 38.2 64.4

(c) Self-refinement improves temporal localization. For S!V"LA, we refine the L#$%&"’!( with
pseudo-labels (see Sec. 3.3). Compared with S!V"LA†, S!V"LA further increases performance
on NExT-QA (0.4%), STAR (+2.2%), and TVQA (+1.9%). S!V"LA framework achieves new
state-of-the-art fine-tuning performance on NExT-QA, STAR, TVQA, and VLEP, using only visual
and language modalities. This illustrates the significance of temporal localization and the e!cacy of
our self-refinement method for keyframe localization.
4.3 Zero-shot Comparison to SOTA on Video QA and Event Prediction
We further compare our S!V"LA framework to recent state-of-the-art models in the zero-shot setting.
We show the zero-shot results in Table 2, then discuss the findings in the following.
(a) Image-LM outperforms Video-LM, without video pretraining. Surprisingly, BLIP-2voting,
without inter-frame temporal modeling, outperforms the previous state-of-the-art video-LM, Intern-
Video on several datasets that require temporal reasoning. BLIP-2voting outperforms InternVideo
on NExT-QA (+13.6%), How2QA (+7.6%), and VLEP (+5.1%). On How2QA, BLIP-2voting even
surpasses FrozenBiLM which performs extra speech and video pre-training by 11.4%. It highlights
the potential of image-LM for video-language tasks due to its model size and su!cient pre-training.
(b) Keyframe selection is more e!ective than uniform sampling. Our S!V"LA† framework,
combining the zero-shot L#$%&"’!( and the zero-shot A)*+!(!(, outperforms the BLIP-2concat

(A)*+!(!() with uniformly sampled frames on NExT-QA (+1.2%), STAR (+2.4%), How2QA
(+1.5%), TVQA (+1.6%), and VLEP (+0.4%), achieving new state-of-the-art zero-shot performance
on NExT-QA, STAR, How2QA, and VLEP, and new state-of-the-art on TVQA with only visual and
language modalities. On STAR, our S!V"LA† framework even outperforms zero-shot Flamingo [1]
with 80B parameters by 4.9%. The result demonstrates the e"ectiveness of our S!V"LA framework to
adapt video-language tasks and the importance of language-aware keyframe selection.

4.4 Ablation Studies on S!V"LA Framework

We conduct ablation studies on our S!V"LA framework about the e"ectiveness of L#$%&"’!( and
A)*+!(!(. We show the results in Table 3. We summarize our findings as follows:
(a) Sparse frames outperform dense frames: We observe performance declines when the A)*+!(!(
adopts more frames (A v.s. B), confirming that sparse frames work better due to the original Image-LM
model’s limited temporal modeling ability, while too dense frames may distract the model.
(b) Keyframes outperform uniformly sampled frames: We compare A)*+!(!( with L#$%&"’!(
(S!V"LA framework) and A)*+!(!( that takes uniformly sampled frames. We observed significant
performance gains in the zero-shot A)*+!(!( setting when utilizing the zero-shot L#$%&"’!( (B v.s.

C), with improvements on NExT-QA (+1.0%), STAR (+2.4%), How2QA (+1.5%), TVQA (+1.6%),
and VLEP (+0.4%) . And pseudo-label refinement for L#$%&"’!( further increased performance
by an average of 2.1% across all tasks (B v.s. D). In the fine-tuned A)*+!(!( setting, the benefits
of the L#$%&"’!( remained evident. Our S!V"LA framework, which utilized keyframes from the
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Table 3: Ablation studies on S!V"LA framework. ‘uniform’ refers to the uniform sampling of video
frames. L#$%&"’!(† refers to the zero-shot L#$%&"’!( without refining on pseudo-labels.

A)*+!(!( Keyframe NExT-QA STAR How2QA TVQA VLEP
# frame finetuned? Tem. Cau. Des. Avg. Int. Seq. Pre. Fea. Avg.

A. 32 ! uniform 54.7 56.7 67.8 57.7 46.2 43.6 40.7 41.0 42.8 67.0 33.2 54.0
B. 4 ! uniform 59.7 60.8 73.8 62.4 45.5 41.8 41.8 40.0 42.2 70.8 36.6 64.0
C. 4 ! L#$%&"’!(† 61.3 61.5 75.6 63.6 48.3 45.0 44.4 40.8 44.6 72.3 38.2 64.4
D. 4 ! L#$%&"’!( 62.3 63.1 74.9 64.6 49.0 46.4 45.2 41.6 45.5 72.9 39.1 64.6

E. 4 " uniform 68.1 72.9 81.2 72.6 65.4 69.0 59.7 54.2 62.0 82.2 59.8 68.6
F. 4 " L#$%&"’!(† 68.8 73.4 83.5 73.4 63.2 66.6 61.3 60.0 62.7 83.7 59.7 69.0
G. 4 " L#$%&"’!( 69.4 74.2 81.3 73.8 63.7 70.4 63.1 62.4 64.9 83.6 61.6 68.9

Table 4: Comparison on QVHighlights test split.
We aggregate frame-level results of our L#$%&"’!(
for video-level evaluation (see Appendix).

Model R1@0.5 R1@0.7 mAP
CAL [13] 25.4 11.5 9.8
XML [29] 41.8 30.3 32.1
Moment-DETR [30] 52.8 33.0 30.7
QD-DETR [51] 62.4 44.9 39.8
L#$%&"’!( (Ours) 54.5 36.5 32.3

Table 5: The impact of QVHighlights Pre-
Training (PT) and Self-Refinement (SR) for
our L#$%&"’!( in Sec. 3.3.

PT SR NExT-QA How2QA
Tem. Cau. Des. Avg.

- - 60.4 61.0 74.6 62.9 70.7
↭ - 61.3 61.5 75.6 63.6 72.3
- ↭ 62.1 62.6 75.1 64.3 72.8
↭ ↭ 62.3 63.1 74.9 64.6 72.9

L#$%&"’!(, outperformed the 4-frame A)*+!(!( by an average of 0.7% across tasks (E v.s. F).
Pseudo-label refinement continues to be e"ective in this setting, providing an average boost of 1.5%
across all tasks (E v.s. G). These results demonstrate that keyframe selection contributes to non-trivial
improvements in video-language tasks for zero-shot and fine-tuning settings.

4.5 Comparison to State-of-the-Art on Video Moment Retrieval

In this section, we evaluate our L#$%&"’!( on the video moment retrieval task. We pre-train the
L#$%&"’!( on the QVHighlights [30] dataset, as discussed in Sec. 3.3, and then assess its performance
on the same dataset. To test on QVHighlights, we first extract video frames at 0.5 fps, following
Moment-DETR [30] and pass them through our L#$%&"’!( to obtain binary frame-level predictions
that indicate whether a frame matches the query sentence. Next, we combine these predictions into
video-level temporal span predictions. We aggregate frame-level predictions into video-level spans by
merging adjacent positive predictions with intervals not exceeding a threshold. These merged results
are then consolidated into a single video-level span. More information on the aggregation process can
be found in Appendix. Interestingly, as shown in Table 4, our L#$%&"’!(, which has no temporal
modeling/training and operates on frame-level, outperforms many previous methods [13, 30, 29] with
complex temporal modeling and video data training. It demonstrates our L#$%&"’!( can further work
as a standalone model for certain tasks. It also suggests large image-LM with temporal designs may
be a promising study for video moment retrieval. This is evidenced by our L#$%&"’!(’s superior
performance compared to Moment-DETR, despite the absence of temporal modeling.
4.6 Detailed Analysis on the Localizer
In this section, we first analyze the impact of pre-training and self-refinement on our L#$%&"’!(.
Then, we compare our L#$%&"’!( with other keyframe selection methods in both zero-shot and
fine-tuning settings. Next, we experiment with di"erent keyframe selection ranges and quantities in
our L#$%&"’!( to assess the impact of temporal localization on the overall performance. We further
show the impact of L#$%&"’!( in A)*+!(!( fine-tuning. We also present upper-bound analysis
based on BLIP-2 and oracle keyframe localization. Lastly, we provide visualization results of our
L#$%&"’!(. Additional experiments are in Appendix.
Ablation on L#$%&"’!( pre-training and self-refinement. We performed these ablation studies
with the zero-shot 4-frame A)*+!(!(. As shown in Table 5, the untrained BLIP-2 L#$%&"’!(
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results in only a minor improvement to the A)*+!(!(. Moreover, both QVHighlights pre-training
and self-refinement via the reverse chain independently provide significant performance boosts.
The optimal results are achieved when both pre-training and self-refinement are applied. It further
demonstrates our method is label-e!cient for keyframe temporal localization.

Table 6: Comparison of our L#$%&"’!( with
other keyframe localization methods.

Method NExT-QA
Tem. Cau. Des. Avg.

A)*+!(!( 59.7 60.8 73.7 62.4
(zero-shot)
+ CLIP [55] 59.2 60.0 72.5 61.8
+ Moment-DETR [30] 59.5 60.6 72.1 62.0
+ L#$%&"’!(† 61.3 61.5 75.6 63.6
(fine-tuning)
+ ATP [3] 60.4 61.3 73.4 62.8
+ Di"erentiable Top-K [8] 59.5 59.7 72.7 61.6
+ L#$%&"’!( 62.3 63.1 74.9 64.6

Comparison with other keyframe selection meth-
ods. In Table 6, we compare our L#$%&"’!( with
di"erent keyframe localization methods, including
CLIP [55], Moment-DETR [30] which are zero-shot,
and ATP [3], Di"erentiable Top-K [8] which are
fine-tuned with answer-label. We combine those
keyframe localization methods with our zero-shot
A)*+!(!(. Those methods select 4 keyframes from
32 uniformly sampled frames. We find that keyframes
from neither CLIP nor Moment-DETR can not help
A)*+!(!(. It may be due to their CLIP pre-training
on images and short declarative sentences, which fail
to produce question-aware visual features, and distract
A)*+!(!( with irrelevant features. In contrast, our
zero-shot L#$%&"’!(† improves on NExT-QA by aver-
aging 1.2%. Furthermore, our L#$%&"’!( refined on
pseudo-labels outperforms fine-tuned ATP and Dif-
ferentiable top-K, with a 2.2% average improvement
across all question types. Overall, our L#$%&"’!( shows superior e"ectiveness in both settings.

Table 7: Ablation of di"erent numbers of input frames
and output keyframes.

Settings NExT-QA How2QA
Tem. Cau. Des. Avg.

BLIP-2voting (8) 59.9 60.2 72.4 62.0 69.8
8→1 59.8 61.1 76.0 62.9 72.4
16→1 59.2 62.6 74.9 63.4 73.2
16→4 60.7 61.5 75.8 63.4 72.4
32→4 61.3 61.5 75.6 63.6 72.3
32→8 59.4 60.9 74.7 62.5 71.3
64→8 58.9 60.9 74.0 62.2 71.8

Impact of keyframe selection ranges
and quantities. In Table 7, we evalu-
ate temporal keyframe localization in a
zero-shot setting using various keyframe
selection ranges and quantities. Even
with one keyframe selected, our L#$%&-
"’!( shows significant improvements over
the BLIP-2voting based on majority vote
on 8 frame-level answers: NExT-QA-
Causal (+2.4%), NExT-QA-Description
(+3.6%), and How2QA (+2.6%). This
highlights our L#$%&"’!(’s e"ectiveness
in localizing selective keyframes. We
also note that multiple keyframes ben-
efit NExT-QA-Temporal questions, but
denser frames result in worse perfor-
mance. It supports our finding in Sec. 4.4, that using too dense frames may distract image-LM.
Impact of di!erent frame sampling during A)*+!(!( fine-tuning. In Sec. 3.3, we discussed
how the A)*+!(!( in the S!V"LA framework can be further fine-tuned in the forward chain using
keyframes from the L#$%&"’!(. Table 8 compares fine-tuning in di"erent frame sampling strategies,
and indicates S!V"LA framework performs optimally when utilizing L#$%&"’!( in both A)*+!(!(
training and evaluation. This is likely due to the provision of more informative keyframes and milder
domain shifts between the training and evaluation.
Upper-bound performance analysis on oracle keyframes. We further explore the upper-bound
performance with the assumption of a ‘perfect’ localizer, capable of always providing the right
keyframes for the A)*+!(!(. To achieve this, we uniformly sample four frames from each video, input
them into BLIP-2 individually, and generate four frame-level answers. The upper-bound performance
is represented by the oracle accuracy, which considers a question correctly answered if at least one of
the four frames yields the right answer. As shown in Table 9, significant gaps exist between BLIP-2
majority voting and oracle accuracy in both settings. These gaps emphasize the need for more future
work in temporal localization to e"ectively harness image-LM for video-language tasks.
Qualitative analysis on L#$%&"’!(. In Fig. 4, we present an example from NExT-QA (more in
Appendix), showcasing the QA pairs, our L#$%&"’!( results, and the ground truth task-related video
clips that we manually annotated. Our L#$%&"’!( more accurately matches human annotations than
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Frame Sampling NExT-QA
Training Inference Temp. Cau. Des. Avg.
Random Uniform 68.1 72.9 81.2 72.6
Random L#$%&"’!(† 67.6 73.4 84.0 73.1

L#$%&"’!(† Uniform 68.2 72.7 80.0 72.3
L#$%&"’!(† L#$%&"’!(† 68.8 73.4 83.5 73.4

Table 8: Comparing di"erent frame sampling during
A)*+!(!( fine-tuning. The L#$%&"’!(† is frozen
during fine-tuning. We use 4 frames for A)*+!(!(
training, while the L#$%&"’!(† is the default 32↑4.

Datasets BLIP-2voting (Oracle)
Zero-Shot Fine-tuned

NExT-QA (Avg.) 62.7 (70.1) 70.1 (79.7)
STAR (Avg.) 40.3 (52.9) 51.8 (72.2)
How2QA 69.8 (77.8) 79.6 (86.4)
TVQA 35.7 (45.4) 54.5 (69.0)
VLEP 63.8 (70.5) 67.0 (79.1)

Table 9: BLIP-2voting and oracle (in brackets)
performance analysis across datasets. We use
4 frames for each video question. Oracle: at
least 1 of 4 frames can give the right answer.

Question: why did the two ladies put their hands above their eyes while staring out? 
A: practicing cheer.  B: posing for photo.  C: to see better.  D: dancing.  E: wiping their face.  

19s-30s

✅ ✅ ✅ ✅ ❌ ❌ ❌ ❌                        ❌                         ❌
[Human Temporal Localization Annotation]

[Our Localizer Selection]

✅ ❌ ❌ ✅ ✅ ❌ ❌ ✅                        ❌                         ❌
[Uniform Selection]

Question: What did both of them do after completing skiing? 
A: jump and pose.  B: bend down.  C: raised their hands.  D: turn around.  E: take off clothes.       

[Human Temporal Localization Annotation]

36s-55s

[Our Localizer Selection]
❌ ✅ ✅ ✅❌                        ❌ ❌

❌ ✅ ❌ ❌ ❌ ✅ ❌ ❌                       ✅                         ❌
[Uniform Selection]

 ❌                        ❌                         ❌

Figure 4: Visualization of our L#$%&"’!(. We use zero-shot A)*+!(!( with di"erent frame sampling
(uniform v.s. L#$%&"’!() to answer the question. Red options are answered wrongly with uniformly
sampled frames. Green options are answered correctly with our L#$%&"’!(. Best viewed in color.

uniform selection. This accurate localization enables the A)*+!(!( to correctly answer questions,
while uniform selection leads to incorrect responses. These results demonstrate that our L#$%&"’!(
can e"ectively locate task-related keyframes in a video, thus benefiting downstream tasks.

5 Conclusion and Future Work

In this paper, we introduced S!V"LA, a novel video-language framework. S!V"LA adapts an image-
language model to obtain two modules: (1) L#$%&"’!( for language-aware temporal localization
and (2) A)*+!(!( for question answering on keyframes. S!V"LA tackles video-language tasks by
chaining the output of L#$%&"’!( to the input of A)*+!(!( (forward chain), while A)*+!(!( can
give feedback to refine the L#$%&"’!( (backward chain) via pseudo labeling. The proposed temporal
localization allows a more focused understanding of videos and improves the accuracy of video-
language tasks, while the pseudo-labeling process alleviates the need for expensive language-aware
keyframe annotations. Compared with state-of-the-art baselines, S!V"LA achieves competitive or
better performance on five video questions answering and event prediction benchmarks. We also
provide a comprehensive analysis elaborating on the design of the proposed two-stage self-chaining.
Our research encourages future work to improve temporal localization in video understanding.
Limitations & Broader Impacts. See Appendix for limitations and broader impacts discussion.
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Appendix

In this Appendix, we present the following:

• Additional comparison between image-language models (image-LMs) and video language models
(video-LMs) in terms of model size and pre-training data size (Sec. A).

• Additional information about our experimental setup (Sec. B), including benchmarks details and
task definitions (Sec. B.1), metrics (Sec. B.2), baseline implementation details (Sec. B.3), and
S!V"LA implementation details (Sec. B.4).

• Additional experiments (Sec. C), including the single-frame v.s. multi-frame L#$%&"’!( (Sec. C.1),
iterative self-refinement results (Sec. C.2), di"erent L#$%&"’!( pre-training settings (Sec. C.3),
S!V"LA framework with another Image-LM (MiniGPT4) (Sec. C.4), computational cost of
S!V"LA (Sec. C.5), the impact of prompt designs (Sec. C.6) and more qualitative visualization
(Sec. C.7).

• Limitation and broader impact of this work (Sec. D), as well as license information (Sec. E) for
the datasets, codes, and models that we used in this paper.

A Comparison Between Image-LMs and Video-LMs

In this section, we further provide a more visualized comparison between Image-LMs [55, 35, 43,
61, 70] and Video-LMs [71, 87, 37, 67, 17], in terms of model size and pre-training data size.
As illustrated in Fig. 5, recent video-LMs generally have smaller scales in model and pre-training
data sizes. This is because video-level annotations are more costly than image-level annotations,
as discussed in the main paper Sec. 2 The gap between image-LMs and video-LMs has driven
extensive research into image-to-video transfer learning to e"ectively leverage powerful image-LMs
for video-language tasks. In this paper, we adopt this image-to-video transfer strategy by employing
the state-of-the-art pre-trained image-LM, BLIP-2 [35].
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Figure 5: Comparison between image-LMs and video-LMs, in terms of model size and pre-training
data size.

B Experimental Setup

In this section, we present additional information on the used datasets/benchmarks and task definitions
(Sec. B.1), metrics (Sec. B.2), baseline implementations (Sec. B.3), and our S!V"LA framework
implementations (Sec. B.4).
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Dataset # frames Batch Size
per GPU

Learning
Rate Epoch Gradient

Accumulation Step
NExT-QA 8 4 1e-5 10 32
STAR 8 4 1e-5 10 32
How2QA 8 4 1e-5 10 32
TVQA 8 4 1e-5 10 32
VLEP 8 4 1e-5 10 32

Table 10: InternVideo fine-tuning hyperparameters.

B.1 Benchmarks

Video Question Answering (Video QA). We test models on four challenging long-form multi-choice
benchmarks: (1) NExT-QA [77], a benchmark for causal and temporal reasoning. It contains 5440
videos with an average length of 44s and approximately 52K questions. NExT-QA contains 3 di"erent
question types: Temporal (Tem.), Causal (Cau.), and Descriptive (Des.). (2) STAR [75], a benchmark
for situated reasoning, which contains 22K video clips with an average length of 12s, along with 60K
questions. STAR contains 4 di"erent question types: Interaction (Int.), Sequence (Seq.), Prediction
(Pre.), and Feasibility (Fea.). (3) How2QA [36], a benchmark containing 44k questions along with 22
thousand 60-second clips selected from 9035 videos. (4) TVQA [27], another benchmark contains
152K questions along with 21k video clips (76 seconds on average) from TV shows.
Video Event Prediction (Video EP). We test models on VLEP [28], a benchmark that requires the
model to predict two future events based on the video premise. Thus, we can formulate this task as a
multi-choice QA. VLEP contains 28,726 future event prediction cases from 10,234 diverse TV Shows
and YouTube Lifestyle Vlog video clips.
Video Moment Retrieval. We test our L#$%&"’!( performance on QVHighlights [30], where a
model predicts the temporal span in a video corresponding to a human-generated language description.
QVHighlights consists of 10,148 videos with a duration of 150s, 18,367 moments, and 10,310 queries.

B.2 Metrics

For video question answering and video event prediction, we adopt the standard answer accuracy.
For video moment retrieval, we follow Lei et al. [30] and report the standard mean average precision
(mAP) over multiple IoU thresholds [0.5: 0.05: 0.95], and the standard Recall@1 (R@1) where we
define a prediction to be positive if it has a high IoU (>= 0.5 or >= 0.7) with one of the ground truth
moments. For NExT-QA, STAR, How2QA, TVQA, and VLEP we report the performance on the
validation set whereas QVHighlights we report on the hidden test set.

B.3 Baseline Implementations

Baseline Architecture. For InternVideo [71], we adopt the released largest MM-L-14 variant
that initialized from CLIP-L/14 [55] with 1B parameters and follow its default 8-frame setting for
comparison. We fine-tuned InternVideo on downstream tasks by ourselves. For BLIP-2voting and
BLIP-2concat (A)*+!(!(), we use the same BLIP-2 ViT-G Flan-T5 XL to our S!V"LA framework.
Baseline Training. In Table 10, we show the setup of InternVideo [71] fine-tuning on downstream
tasks. we adopt the released largest MM-L-14 variant with 1B parameters and follow its default
8-frame setting. We conduct experiments with 4 × 48GB A6000 GPUs. It takes about 4h on
NExT-QA, 8h on STAR, 4h on How2QA, 12h on TVQA, and 2h on VLEP.
Implementation Details of Other Keyframe Selection Methods.. In the main paper Sec. 4.6, we
compare our L#$%&"’!( with other keyframe selection methods in both zero-shot and fine-tuning
settings. Specifically, in zero-shot setting, we compare our L#$%&"’!( with CLIP [55] and Moment-
DETR [30], utilizing the same A)*+!(!( (32↑4) for each. For CLIP one, we calculate the pre-trained
CLIP-ViT-B/32 image-language similarity between each frame’s visual feature and the corresponding
question and option features. We then select the top-4 similarity keyframes from 32 uniformly
sampled frames for the A)*+!(!(. In the case of Moment-DETR, we apply the Moment-DETR
pre-trained on QVHighlights to first detect a temporal span corresponding to the question and option
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Dataset Batch Size
per GPU

Learning
Rate

Warmup
Step Epoch Gradient

Accumulation Step
L#$%&"’!( Pre-Training

QVHighlights 64 3e-5 1000 80 1
A)*+!(!( Fine-tuning in Forward Chain

NExT-QA 8 3e-5 1000 10 2
STAR 8 3e-5 1000 10 2
How2QA 4 3e-5 3000 10 4
TVQA 4 3e-5 8000 10 4
VLEP 4 1e-5 1200 10 4

L#$%&"’!( Self-Refinement in Reverse Chain
NExT-QA 64 3e-5 500 10 1
STAR 64 3e-5 500 10 1
How2QA 64 3e-5 500 10 1
TVQA 64 3e-5 2000 10 1
VLEP 64 3e-5 500 10 1

Table 11: S!V"LA framework training hyperparameters.
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Figure 6: Left: For L#$%&"’!( pre-training, we utilize the video moment retrieval labels for the
keyframe localization task. Right: we aggregate L#$%&"’!(’s frame-level predictions into video-level
span predictions.

sentence. Subsequently, we uniformly sample 4 frames within this span for the A)*+!(!( to predict
answers. Next, we compare our L#$%&"’!( with the fine-tuned ATP and the Di"erentiable Top-K
plugin. Both ATP [3] and Di"erentiable Top-K [8] utilize the BERT-base encoder [66], which is of
the same size as the Q-former in our L#$%&"’!(. Both ATP and Di"erentiable Top-K modules are
inserted after the Q-former to learn salient frame feature selection in an end-to-end manner.

B.4 S!V"LA Implementation Details

S!V"LA Architecture. S!V"LA framework adopts BLIP-2 [35], an image-language model with
4.1B parameters. We freeze its visual encoder (ViT-G [16]; 1B) and large language model (Flan-T5
XL [7]; 3B), and only fine-tune the Q-former (including its learnable queries), and a fully connected
layer after Q-former for each of both L#$%&"’!( and A)*+!(!(. There are 106M trained parameters,
which is 2.5% of the total parameters of BLIP-2.
S!V"LA Framework Training. We conduct experiments with 4 × 48GB A6000 GPUs. For L#$%&"’!(
per-training, we pre-train L#$%&"’!( on the QVHighlights for 80 epochs, taking approximately 12
hours with 4 ↓ 29GB on A6000 GPUs. For L#$%&"’!( self-refinement, we train L#$%&"’!( on

19



A)*+!(!( # frames of L#$%&"’!( NExT-QA (Average)

zero-shot 1 64.6
4 63.6

fine-tuned 1 73.4
4 71.3

Table 12: Comparison between single-frame and multi-frame L#$%&"’!(.

each downstream dataset with pseudo-labels for an additional 10 epochs with 4 ↓ 29GB on A6000
GPUs. It takes about 7h on NExT-QA, 8h on STAR, 6h on How2QA, 17h on TVQA, and 3h on
VLEP. For A)*+!(!( fine-tuning, we fine-tune A)*+!(!( on each downstream dataset with answer
labels and frozen pre-trained L#$%&"’!( for 10 epochs with 4 ↓ 48GB on A6000 GPUs. It takes
about 13h on NExT-QA, 15h on STAR, 13h on How2QA, 48h on TVQA, and 8h on VLEP. We
employ standard cross-entropy loss between the model outputs and the target values. We report
S!V"LA framework training hyperparameters in L#$%&"’!( pre-training, A)*+!(!( fine-tuning, and
L#$%&"’!( self-refinment, in Table 11.
Prompt Engineering. We write multiple QA and Loc prompts shown in the main paper and choose
the prompt yielding the best zero-shot performance on the downstream task (see Sec. C.6).
L#$%&"’!( Pre-training Details. As illustrated in Fig. 6 (left), we provide the visualization on our
L#$%&"’!( pre-training. As discussed in the main paper Sec. 3.3, we adopt QVHighlighs [30] to
pre-train our L#$%&"’!(, we transfer its temporal span annotations to keyframe localization labels by
comparing frame time-stamp with spans. We further design a prompt template and fill in it with query
sentences in QVHighlighs. It makes the pre-training and downstream video QA and event prediction
tasks with a similar input format and can further benefit downstream tasks.
Details of Aggregation for Video Moment Retrieval. We elaborate on the aggregation of frame-level
predictions from our L#$%&"’!(, as discussed in the main paper Sec. 4.5. As illustrated in Fig. 6
(right), we use a hyperparameter called ‘span threshold’, a maximum number of continuing ‘0’s
(continuing ‘no’ prediction for frame-level localization) inside a single span. If there are more ‘0’s
than the value in a row, we split the frames into separate spans. We use the span threshold=6. We
determined this value based on statistics of QVHighlights training data. In QVHighlights, a query
sentence has multiple grounding spans in a video. We calculate the average interval among those
spans as our span threshold.

C Experiments

In this section, we present extra in-depth analysis on our A)*+!(!( and L#$%&"’!(, including the
single-frame v.s. multi-frame L#$%&"’!( (Sec. C.1), iterative self-refinement results (Sec. C.2),
di"erent L#$%&"’!( pre-training settings (Sec. C.3), S!V"LA framework with another Image-LM
(MiniGPT4) (Sec. C.4), computational cost of S!V"LA (Sec. C.5), the impact of prompt designs
(Sec. C.6) and more qualitative visualization (Sec. C.7)

C.1 Single-frame v.s. Multi-frame L#$%&"’!(

Even though our single-frame L#$%&"’!( in S!V"LA can locate language-aware keyframes, temporal
modeling for video-level tasks cannot be overlooked. In this section, we’ve expanded our L#$%&"’!(
to a multi-frame mode by concatenating frames into a long image before Q-Former. This allows
for full attention across all frames, enabling temporal modeling. As shown in Table 12 we find
that the 4-frame L#$%&"’!( performs worse than the single-frame L#$%&"’!( in both zero-shot and
fine-tuning settings. We suspect that this is because our backbone model (BLIP-2) has not seen video
data during its pre-training. We think that a multi-frame L#$%&"’!( could be more powerful once we
have enough temporal grounding annotations or enough pre-training on large-scale video dataset [10].
We leave the improvement of the multi-frame L#$%&"’!( to future work.
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L#$%&"’!( NeXT-QA (Average)
w/o Localizer 62.4
+ Moment-DETR 62.0
+ Our Localizer (without pre-training) 62.9
+ Our Localizer (weakly pre-trained with QVH ASR) 63.2
+ Our Localizer (pre-trained with QVH) 63.6

Table 13: Comparison among di"erent pre-training settings of L#$%&"’!(.

Iteration NeXT-QA (Average)
1 73.8
2 74.2
3 73.7

Table 14: Iterative self-refinement results of S!V"LA framework.

C.2 Iterative Self-refinement on L#$%&"’!( and A)*+!(!(

Madaan et al. [48] introduces the ‘Self-Refine’ framework, where an LLM iteratively generates initial
output, provides feedback, and refines the outputs. We experiment with iterative self-refinement,
where the A)*+!(!( gives pseudo labels to train L#$%&"’!(, and then the L#$%&"’!( provides
more accurate language-aware frames to fine-tune A)*+!(!(, iteratively. As shown in Table 14,
we find that two iterations of self-refinement slightly increase performance compared to the single
self-refinement, but the performance saturates from three iterations. We leave further analysis with
self-refinement to future work.

C.3 Di!erent Pre-training Settings of L#$%&"’!(

We explored weakly-supervised pre-training using ASR similar to Moment-DETR [30]. As shown
in Table 13, our L#$%&"’!( performance improves with the weakly supervised pre-training, closing
the gap with the pre-training with manual annotations (QVHighlights [30]).

C.4 S!V"LA Framework with Another Image-LM (MiniGPT4)

We experimented with extending the S!V"LA framework with another recent Image-Language model
(MiniGPT4 [92]). On NeXT-QA, zero-shot MiniGPT4 A)*+!(!( achieves 52.7% average accuracy
and obtains 0.7% boost with zero-shot MiniGPT4 L#$%&"’!(. We find our proposed self-chaining
scheme can also improve the performance of zero-shot MiniGPT4, and we expect that fine-tuning the
model will even improve the performance.

Model Memory (GB) Running Time (sec./sample) Parameter (B)
Answerer (4) 7.56 1.79 4.1
SeViLA (32->4) 7.98 3.28 4.2

Table 15: Computational cost of S!V"LA framework.

C.5 Analysis on Computational Cost of S!V"LA Framework

In Table 15, we show memory, running time, and parameter size (ViT + FlanT5 + Qformer) comparison
between our A)*+!(!( and our S!V"LA (L#$%&"’!(+A)*+!(!(). As the L#$%&"’!( and A)*+!(!(
share the most parameters, adding Localizer has a very small additional memory footprint.

C.6 Impact of Prompt Design

We write several localization prompts and choose the one giving the best performance. We examine
the impact of various localization prompts as shown in Table 16. For this experiment, we employ a
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Localization Prompt NExT-QA
Temporal Casual Descriptive Average

Does the frame have the information
needed to answer the question correctly? 59.9 61.1 74.2 62.7

Does the provided frame contain the necessary
information to accurately answer the given question? 59.9 60.8 75.0 62.7

Does the information within the frame provide
the necessary details to accurately answer the given question? 60.4 61.0 74.6 62.9

Table 16: Impact of di"erent localization prompts on the zero-shot Video QA performance

zero-shot A)*+!(!( and an untrained L#$%&"’!( to choose the most e"ective localization prompt
based on performance. It demonstrates that our model is insensitive to the changes in the prompt.

Question: what did the black dog on the sofa do after it dropped the red toy? 
A: jump on man’s leg.  B: jump onto couch.  C: push dog away.  D: put it on boy in red.  E: jumps down.       

[Human Temporal Localization Annotation]

8s-19s

[Our Localizer Selection]
✅ ❌ ✅ ❌❌                        ❌ ❌

✅ ❌ ❌ ✅ ✅ ❌ ❌ ✅                        ❌                         ❌
[Uniform Selection]

✅                        ❌                         ✅

Question: What room was Wilson breaking into when House found him? 
A: the bedroom.  B: the bathroom.  C: the kitchen.  D: the living room.  E: the dining room.       

[Human Temporal Localization Annotation]

28s-95s

[Our Localizer Selection]
❌ ❌ ✅ ❌❌                        ❌ ❌

❌ ❌ ❌ ❌ ✅ ❌ ❌ ❌                         ❌                         ✅
[Uniform Selection]

❌                        ✅                         ❌

Figure 7: Visualization of our L#$%&"’!(. We show various keyframe amounts in those examples.
We use zero-shot A)*+!(!( with di"erent frame sampling (uniform v.s. L#$%&"’!() to answer the
question. Red options are answered wrongly with uniformly sampled frames. Green options are
answered correctly with our L#$%&"’!(. Best viewed in color.

C.7 Visualization

As illustrated in Fig. 7, we provide more visualization examples from di"erent datasets, and with
various selected keyframe amounts. Compared with uniform sampling, our L#$%&"’!( can locate
relevant frames that match human annotations well regardless of keyframe amounts. And such a good
keyframe localization also brings the correct answers to corresponding questions.

D Limitations and Broader Impacts

Limitations. Although our S!V"LA framework can help locate language-aware keyframes in
many real-world video tasks, e.g., video content analysis and event detection, our L#$%&"’!( uses
frame-level keyframe localization and might not handle well some complex, fine-grained temporal
events (e.g., open the door vs. close the door). Future work can explore structured prediction for
temporal localization beyond the frame level.
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Broader impacts. S!V"LA framework leverages a large image-language model trained on massive
internet-scale data. Similar to most such large models, this might occasionally yield unexpected or
inappropriate responses, potentially reflecting societal biases related to gender, race, or sexuality [47].
More studies in the large image-language model are needed to evaluate and mitigate these negative
biases, and toxic output.

E License
We will make our code and models publicly accessible. We use standard licenses from the community
and provide the following links to the licenses for the datasets, codes, and models that we used in this
paper. For further information, please refer to the specific link.
NExT-QA [77]: MIT
STAR [75]: Apache
How2QA [36]: MIT
TVQA [27]: MIT
VLEP [28]: MIT
QVHighlights [30]: CC BY-NC-SA 4.0

LAVIS [33]: BSD 3-Clause

PyTorch [53]: BSD-style

Huggingface Transformers [74]: Apache

Torchvision [49]: BSD 3-Clause
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https://github.com/doc-doc/NExT-QA/blob/main/LICENSE
https://github.com/csbobby/STAR/blob/main/LICENSE
https://github.com/VALUE-Leaderboard/StarterCode/blob/main/LICENSE
https://github.com/jayleicn/TVQA/blob/master/LICENSE
https://github.com/VALUE-Leaderboard/StarterCode/blob/main/LICENSE
https://github.com/jayleicn/moment_detr/blob/main/data/LICENSE
https://github.com/salesforce/LAVIS/blob/main/LICENSE.txt
https://github.com/pytorch/pytorch/blob/master/LICENSE
https://github.com/huggingface/transformers/blob/master/LICENSE
https://github.com/pytorch/vision/blob/master/LICENSE
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