
Optimistic Regret Bounds for Online Learning in

Adversarial Markov Decision Processes

Sang Bin Moon1 Abolfazl Hashemi1

1School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA

Abstract

The Adversarial Markov Decision Process

(AMDP) is a learning framework that deals with

unknown and varying tasks in decision-making

applications like robotics and recommendation

systems. A major limitation of the AMDP

formalism, however, is pessimistic regret analysis

results in the sense that although the cost function

can change from one episode to the next, the

evolution in many settings is not adversarial.

To address this, we introduce and study a new

variant of AMDP, which aims to minimize regret

while utilizing a set of cost predictors. For this

setting, we develop a new policy search method

that achieves a sublinear optimistic regret with

high probability, that is a regret bound which

gracefully degrades with the estimation power of

the cost predictors. Establishing such optimistic

regret bounds is nontrivial given that (i) as we

demonstrate, the existing importance-weighted

cost estimators cannot establish optimistic bounds,

and (ii) the feedback model of AMDP is different

(and more realistic) than the existing optimistic

online learning works. Our result, in particular,

hinges upon developing a novel optimistically

biased cost estimator that leverages cost predictors

and enables a high-probability regret analysis

without imposing restrictive assumptions. We

further discuss practical extensions of the proposed

scheme and demonstrate its efficacy numerically.

1 INTRODUCTION

Reinforcement learning studies the problem of sequential

decision-making modeled as a Markov Decision Process

(MDP), where a learner interacts with an environment and

solves the optimal policy that minimizes the cumulative

cost incurred by the environment. The learner interacts with

the environment by observing a state, choosing an action,

and suffering a cost, repeatedly for a finite number of time

steps. The process is sequential in the sense that the chosen

action affects the environment state, and thus the next state

is observed through a stochastic transition probability func-

tion, and the cost suffered by the learner is determined by

an unknown cost function accordingly. After a number of

episodes, one can measure the performance of the learner’s

policy with regret, i.e., how larger the total cost suffered by

the learner is compared to the total cost of a fixed optimal

policy in hindsight. MDPs are useful for decision-making

in various fields, such as robotics [Akkaya et al., 2019],

finance [Wei et al., 2019, Buehler et al., 2019], and health-

care [Tsoukalas et al., 2015]. However, in many real-world

applications, the tasks and environment may change over

time, leading to non-stationary dynamics. In such cases, the

assumptions of MDP may not hold, and the performance of

the decision-making system may deteriorate.

In this paper, we consider the problem of learning policies

in Adversarial MDP (AMDP) as a generalization of the tra-

ditional MDP model, where the environment can choose dif-

ferent cost functions for each episode. AMDP gives greater

flexibility to account for changing environments and even

the existence of other agents. For example, AMDP can

model an energy-efficient drone navigation problem [Hong

et al., 2021], where wind incurs higher energy consumption

while it is not observed in advance and changes arbitrarily.

Stochastic inventory control [Even-Dar et al., 2009] can also

be modeled as AMDP, because item price and inventory cost

change from time to time due to economic conditions. Even-

tually, AMDP can be extended to hierarchical or multi-agent

problems, because parent policy or other agents evolve and

incur different costs to a learner. Existing online learning

[Even-Dar et al., 2009, Yu et al., 2009, Zimin and Neu, 2013,

Neu et al., 2010a,b, 2014, Jin et al., 2020] and policy opti-

mization approaches [Shani et al., 2020, Luo et al., 2021] to

AMDP solves the optimization problem to minimize the cost

in hindsight. However, it can be too restrictive and result
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in conservative regret bounds. For instance, in multiplayer

games, the action, and in turn the policies of other players

may be predicted from simulation and historical observa-

tion; this insight if leveraged properly may lead to turning

the game to a specific player’s advantage [Vundurthy et al.,

2023].

Motivated by this shortcoming, we propose to study a new

formulation for RL with time-varying cost functions where

the aim is to learn a policy that minimizes its regret while

resorting to a given set of time-varying predictive estimators

of the cost functions, denoted by {ct}Tt=1 and {Mt}Tt=1,

respectively. We propose a novel policy search scheme that

utilizes the set of optimistic cost predictors and achieves sub-

linear regret bounds. Specifically, we make the following

contributions:

• We show the worst-case regret bound of

Õ
(√

d
(

{ct}Tt=1, {Mt}Tt=1

)

)

for the full-information

feedback setting1 and Õ
(

d({ct}Tt=1, {Mt}Tt=1)
2/3
)

in expectation for bandit feedback setting, where

d(·, ·) captures cumulative estimation error of the

cost predictors. It is also shown that with high

probability the algorithm achieves the regret bound

of Õ
(

d({ct}Tt=1, {Mt}Tt=1)
3/4
)

. These regret bounds

are optimistic in nature, i.e., the bound scales with the

prediction power of optimistic cost predictors, and can

lead to constant regret with perfect prediction. In the

worst case, on the other hand, the proposed scheme to

learn a policy satisfies sublinear regret bounds.

• Crucial to the establishment of these results is the de-

velopment of a new cost estimator. This new estimator

leverages the bandit information about the cost as well

as the set of predictive estimators to update the policy.

We show the proposed estimator has variance-reduction

benefits and thus it may be of independent interest in

similar problems.

• We also introduce the anytime extensions for continu-

ous training beyond the fixed number of episodes and

establish similar regret guarantees. Then we generalize

the setting to the unknown transition setting and estab-

lish high probability regret bounds by leveraging the

idea of transition estimation via confidence sets.

2 BACKGROUND AND RELATED WORK

We start with the precise definition of an AMDP. A standard

definition follows an episodic loop-free AMDP [Zimin and

Neu, 2013] or a loop-free stochastic shortest path [Neu et al.,

2012].

Definition 1. An episodic loop-free Adversar-

ial Markov decision process (AMDP) is a tuple

1Recall the notation Õ( · ) hides the logarithmic terms in its

argument.

M = (X ,A,P, L, {ct}Tt=1) which consists of a fi-

nite discrete state space denoted by X , a finite discrete

action space denoted by A, a probabilistic transition

function denoted by P : X ×A×X → [0, 1], and a

sequence of cost functions denoted by ct : X × A → R

such that:

• The cost functions are bounded, that is, ct ∈
[0, 1]|X |×|A| for t = 1, 2, . . . , T .

• The state space X is partitioned into L non-

overlapping layers X0,X1, . . . ,XL such that X =
∪Ll=0Xl and, it holds thatXl1∩Xl2 = ∅ for any l1 ̸= l2.

• The state transition function Pr(x′|x, a) is stationary.

• If for some x ∈ Xl and some layer l ∈ {0, . . . , L− 1},
Pr(x′|x, a) > 0, then x′ ∈ Xl+1; that is, state transi-

tion happens only between two consecutive layers.

• X0 and XL are singletons; that is, X0 = {x0} and

XL = {xL}.

Policy search in AMDP. Online learning approaches to

MDP, such as Follow-the-Regularized-Leader (FTRL) or

Online Mirror Descent (OMD), solve the linear optimization

problem with occupancy measure ρ. Occupancy measure

quantifies the joint probability of the probability of visiting

a state x and the probability of taking an action a given

the state. Thus, conversely, an occupancy measure controls

the behavior of an agent under a stationary, stochastic, and

known/unknown transition probability distribution. The be-

havior is governed by the policy π defined as

πt(a|x) =
ρt(x, a)

∑

a′∈A ρt(x, a′)
. (1)

Therefore, given an MDP, the optimization objective is to

minimize the total cost suffered by an occupancy measure.

Since occupancy measure quantifies the probability of a

specific state and action pair, the total (expected) cost can be

formulated by a linear objective function with respect to a

cost function c, i.e., ⟨ρt, ct⟩ =
∑

x∈X ,a∈A ct(x, a)ρt(x, a).
This leads to the following definition of regret (w.r.t. the

policy corresponding to ρ) that underlies the problem of

learning policies in AMDPs,

RT (ρ
∗, {ct}Tt=1) =

T
∑

t=1

⟨ρt − ρ∗, ct⟩. (2)

Here, ρ ∈ ∆(M) where ∆(M) denote the space of all oc-

cupancy measures over AMDPM, ⟨., .⟩ represents the Eu-

clidean inner product over the space of X × A, and ρt
denotes the agent’s selected occupancy measure in episode

t.

OREPS [Zimin and Neu, 2013] is the baseline algo-

rithm for learning policies in AMDPs that solves the

constrained, regularized regret minimization problem via
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a mirror descent update with stepsize η, i.e., ρt+1 =
argminρ∈∆(M) η⟨ρ, ct⟩+DR(ρ∥ρt), where R is negative

entropy

R(ρ) =
∑

x∈X ,a∈A

ρ(x, a) log ρ(x, a)−
∑

x∈X ,a∈A

ρ(x, a),

and DR is the unnormalized KL divergence being the cor-

responding Bregman divergence [Abernethy and Rakhlin,

2009, Lattimore and Szepesvári, 2018]

DR(ρ∥ρ′) =
∑

x∈X ,a∈A

ρ(x, a) log
ρ(x, a)

ρ′(x, a)

−
∑

x∈X ,a∈A

(ρ(x, a)− ρ′(x, a)) .
(3)

KL divergence regularizes the information loss from the

history that previous solutions were optimized for. OREPS

solves the unconstrained version of the original problem and

the dual formulation of the projection onto ∆(M).

Optimistic online learning. Let {Mt}Tt=1 be a sequence

of time varying predictive estimators such that Mt : X ×
A → [0, 1] for all t. For online linear optimization, Rakhlin

and Sridharan [2013] show that optimistic mirror descent

(OMD) [Chiang et al., 2012] equipped with a similar cost

predictor sequence can achieve optimistic regret bounds,

i.e., Õ(
√

d({ct}Tt=1, {Mt}Tt=1)), where d(·, ·) captures cu-

mulative estimation error of the cost predictors. This result

shows with perfect estimation the regret is Õ(1) while for

futile estimation, i.e., the worst case, the regret is Õ(
√
T ).

In this paper, we aim to establish optimistic regret bounds

for a class of policy search methods in AMDPs. In con-

trast to Rakhlin and Sridharan [2013], our setting is more

general in the sense that it accounts for the dynamic and

state-full nature of the interaction between the learner and

the environment which is captured by the notion of state

space. Further, although Rakhlin and Sridharan [2013] lever-

ages the method from Abernethy et al. [2012] to propose

a no-regret scheme for the bandit setting in online linear

optimization, their algorithm is not applicable in our set-

ting since the bandit feedback model of the present paper

is different from Rakhlin and Sridharan [2013] and more

meaningful in the sense that the learner observes the cost

of the chosen action, not the mixture of cost of all feasible

actions. Consequently, the proposed method and its analysis

differ considerably from Rakhlin and Sridharan [2013]. Fur-

ther, we leverage a single-projection method adopted from

Joulani et al. [2017] to reduce the computational cost of

optimistic policy search compared to OMD which requires

two projection steps.

Bandit cost estimation. Learning a policy in the bandit

case relies on estimating the unknown cost function for each

episode. Given the connection of AMDPs to adversarial

bandits, Zimin and Neu [2013] incorporate the celebrated

importance-weighted cost estimator in OREPS which was

originally exhibited in the EXP3 algorithm [Cesa-Bianchi

and Lugosi, 2006]. Recently, Jin et al. [2020], Ghasemi et al.

[2021] have utilized the implicit exploration estimator from

Neu [2015], i.e.,

ĉ
′
t(x, a) =

ct(x, a)

ρt(x, a) + γ
I{(x, a) ∈ ūL(t)}, (4)

in a similar OREPS-based update, where γ ≥ 0 is the ex-

ploration parameter and ūL(t) denotes the history of states

and actions up to and including the L
th

layer of episode

t. As we discuss later, such estimators fail to result in

optimistic regret guarantees that degrade gracefully with

d({ct}Tt=1, {Mt}Tt=1). Thus, we develop a new cost estima-

tor, characterize its properties, and show that it results in

optimistic bounds.

3 OPTIMISTIC LEARNING IN AMDPS

Given that in the bandit setting, we need to resort to cost

estimation, the estimation error of the estimator is an in-

tegral part of the regrets of the underlying algorithms. In

order to establish optimistic bounds, our regret analysis

shows that it is crucial to have an estimator whose error

is controlled with d({ct}Tt=1, {Mt}Tt=1). Let us consider

the estimator (4), define Et[ · ] = E[ · |u(t)], and examine

Et−1∥ĉ′t −Mt∥2 which can be thought of as some notion

of variance. Note that (4) with γ = 0 may suffer from an

unbounded variance.2 With γ > 0 immediate calculation

shows Et−1

[

(ĉ′t(x, a)−Mt(x, a))
2
]

cannot be written as a

function of |ct(x, a)−Mt(x, a)| which, as our regret anal-

ysis demonstrates, results in failure of achieving optimistic

expected regret bounds when utilizing (4) with γ ≥ 0.

We thus propose a new cost estimator that provably results

in an optimistic expected regret bound in conjunction with

a mirror descent-based update. The proposed estimator de-

fined for all γ ≥ 0 is as follows

ĉt(x, a) (5)

=
ct(x, a)−Mt(x, a)

ρt(x, a) + γ
I{(x, a) ∈ ūL(t)}+Mt(x, a).

Crucially, the proposed estimator ĉt(x, a) leverages the pre-

dictive estimators Mt(x, a). In particular, in contrast to (4)

the unexplored state and action pairs incur the cost predicted

by Mt(x, a) as opposed to incurring zero cost. Also, Wei

and Luo [2018] suggested a similar cost estimator as (5)

with γ = 0 for the multi-armed bandit problem. However,

our estimators in this paper address the problem of learning

in MDPs and exploration parameter γ > 0 is crucial to

2This property is known to be the underlying reason that EXP3

cannot satisfy sublinear regret with high probability in adversarial

bandits [Lattimore and Szepesvári, 2018].
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our analysis of high probability guarantee with Lemma 2 in

Appendix A.4.

Lemma 1 studies the statistical properties of the proposed

estimator.

Lemma 1. The proposed cost estimator (5) satisfies

Et−1[ĉt(x, a)] =
ρt(x, a)ct(x, a) + γMt(x, a)

ρt(x, a) + γ
,

Et−1

[

(ĉt(x, a)−Mt(x, a))
2
]

≤
(

ct(x, a)−Mt(x, a)
)2

ρt(x, a) + γ
.

Variance reduction property. This result shows that if

γ > 0 the variance is provably bounded. Furthermore,

if Mt(x, a) ≤ 2ct(x, a) for all (x, a) ∈ X × A and

t = 1, . . . T , immediate calculation shows |ct(x, a) −
Mt(x, a)|2 ≤ |ct(x, a)|2. That is, the proposed estimator

enjoys a lower variance compared to (4). Also if the predic-

tors {Mt}Tt=1 are optimistic, i.e., Mt(x, a) ≤ ct(x, a), for

all t = 1, . . . , T and (x, a) ∈ X ×A then the proposed cost

estimator (5) is an optimistically biased estimator given that

Et−1[ĉt(x, a)] =
ρt(x, a)ct(x, a) + γMt(x, a)

ρt(x, a) + γ
≤ ct(x, a).

Therefore, as long as Mt(x, a) ≤ ct(x, a), compared to (4),

the proposed estimator has the same bias while having a

lower variance. Note that the condition Mt(x, a) ≤ ct(x, a)
is very mild and may be ensured in a variety of non-

adversarial settings based on the observed cost signal. Fi-

nally, note that different from (4) the variance of the pro-

posed estimator is controlled by the estimation power of

the cost predictors. A feature we will leverage to achieve

optimistic regret bounds.

With the proposed cost estimator, we then utilize it in a

mirror-descent type update by adopting the result of Joulani

et al. [2017]. In particular, given ρt the agent runs an episode

exploration subroutine and subsequently employs

ρt+1 = arg min
ρ∈∆(M)

η⟨ρ, ĉt +Mt+1 −Mt⟩+DR(ρ∥ρt).
(6)

Please see Algorithm 1 for a detailed description of the learn-

ing process. We call the resulting scheme OREPS-OPIX.

Analogous to the standard MD and OREPS algorithms, this

update can be tackled efficiently through a well-known two-

step procedure [Abernethy and Rakhlin, 2009, Lattimore

and Szepesvári, 2018, Zimin and Neu, 2013]. Specifically,

by adopting the result of Zimin and Neu [2013],

ρt+1(x, a) =
ρt(x, a)e

β(x,a|v̂t,ĉt)

∑

x′∈Xl,a∈A ρt(x′, a)eβ(x′,a|v̂t,ĉt)
, (7)

where l denotes the layer in which state x belongs to, β is

defined as

β(x, a|v̂t, ĉt) = −η(ĉt(x, a) +Mt+1(x, a)−Mt(x, a))

−
∑

x′∈Xl+1

v̂t(x
′)Pr(x′|x, a) + v̂t(x),

Algorithm 1 OREPS with Optimistic Predictor and Implicit

eXploration (OREPS-OPIX)

Require: Learning rate η, exploration parameter γ
1: Initialize occupancy measure ρ1(x, a) as a uniform dis-

tribution over x ∈ Xl and a ∈ A for l = 1, 2, . . . , L−1
2: Initialize cost predictor as M1 = 0
3: for Episodes t = 1, 2, . . . , T do

4: Initialize cost estimator as ĉt = 0
5: for Time steps l = 1, 2, . . . , L− 1 do

6: Observe state xl ∈ Xl from the environment

7: Choose action al ∼ ρt(xl, ·)
8: Observe cost ct(xl, al)
9: Save xl, al and ct(xl, al) to ut

10: end for

11: for Tuples x, a, ct(x, a) in ut do

12: ĉt(x, a)← (ct(x, a)−Mt(x, a))/(ρt(x, a)+γ)+
Mt(x, a)

13: Update Mt+1(x, a)
14: end for

15: Solve ρt+1 = argminρ∈∆(M) η⟨ρ, ĉt + Mt+1 −
Mt⟩+DR(ρ∥ρt).

16: end for

and v̂t is defined as

v̂t = argmin
v

L
∑

l=0

ln







∑

x∈Xl,a∈A

ρt(x, a)e
β(x,a|v,ĉt)







.

Note that by setting Mt = Mt+1 = 0, one recovers the

OREPS algorithm. Further, in the full-information case, one

can replace ĉt with the observed cost vector ct.

4 OPTIMISTIC REGRET BOUNDS

In this section, we provide a detailed regret analysis of the

proposed OREPS-OPIX scheme in (6) equipped with the

proposed cost estimator in (5).

Theorem 1 establishes the regret bound under full informa-

tion. For compactness, we denote the prediction error in

episode t as σt = ct −Mt.

Theorem 1 (Full information). Under full information feed-

back, there exists a stepsize η such that OREPS-OPIX satis-

fies

RT (ρ
∗, {ct}Tt=1) = Õ





√

√

√

√L
T
∑

t=1

∥σt∥2∞



 . (8)

To understand the benefit of leveraging cost predictors, as-

sume
∑T

t=1 ∥ct −Mt∥2∞ = O(Tα) for some 0 ≤ α ≤ 1
where α = 0 and α = 1 correspond to perfect estimation

and futile estimation, respectively. Then, if η = O(T−α/2),
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we have RT (ρ
∗, {ct}Tt=1) = Õ(Tα/2). That is, the regret

can be constant while in the worst case, the regret is Õ(
√
T ).

A downside of Theorem 1 is the requirement of full in-

formation on ct ∈ [0, 1]|X |×|A| which is not a realistic

assumption. Therefore, we next establish a bound on the

expected regret of OREPS-OPIX under bandit feedback. As

we discussed before, establishing optimistic regret bounds

in the bandit setting for AMDPs seems to necessitate uti-

lizing an estimator with bounded variance. Following Neu

et al. [2010a], one could impose an assumption that ensures

ρt(x, a) > α and establish regret bounds that scales with

O(α−1). Instead, we set γ > 0 but impose the mild assump-

tion that the cost predictors {Mt}Tt=1 are optimistic, i.e.,

Mt(x, a) ≤ ct(x, a).

Fei et al. [2020] proposed an algorithm that directly esti-

mates a state-action value function instead of a cost function

that is used to exponentially update a policy. They further

extended the algorithm to alternately update policy and

value function twice, mirroring the two-step optimization of

OMD. Conceptually, it is analogous to having a predictor as

a Q-function that is updated with the previous episode’s cost

function. In the worst case, their static regret bound, where

PT = 0, scales as O(
√
T ). Zhao et al. [2022] investigated

ensemble algorithms and imposed a lower bound on the

occupancy measure for all states and actions. This regular-

ization serves to bound the difference between the losses

incurred by any two policies. They also explored optimistic

variants by incorporating the two-projection OMD as orig-

inally proposed by Rakhlin and Sridharan [2013], Chiang

et al. [2012]. By leveraging this optimistic algorithm, they

achieve static regret bounds of Õ(L
√

∑T ∥ct −Mt∥2∞) in

expectation, as opposed to 8. It is worth noting that both

works exclusively explored the full information setting. In

the subsequent discussion, we analyze the bandit feedback

setting.

Theorem 2 (Bandit – Expected). Under bandit feedback,

there exists a stepsize η and an exploration parameter γ such

that OREPS-OPIX utilizing the proposed cost estimator (5)

satisfies

E[RT (ρ
∗, {ct}Tt=1)]

= Õ



L
1
3

(

T
∑

t=1

∥σt∥22 + ∥σt∥1
)

2
3



 .
(9)

Note that the regret bound is optimistic as it scales with the

estimation power of the cost predictors. Further, leverag-

ing cost predictors is beneficial in the bandit feedback set-

ting. In particular, the result of Theorem 2 demonstrates if
∑T

t=1 ∥ct − Pt∥1 = O(Tα−1) for some 0 ≤ α ≤ 1 setting

η = O(T−2α/3) and γ = O(T−α/3), OREPS-OPIX with

the proposed cost estimator suffers Õ(T 2α/3) worst-case ex-

pected regret. Therefore, in the best case, the expected regret

is constant while in the worst case, the regret is Õ(T 2/3).
Note that here our theoretical results may be sub-optimal

in the worst-case as we cannot achieve Õ(
√
T ) worst-case

expected regret. Further study in this direction is a valuable

future work.

Also, Wei and Luo [2021] achieved the dynamic regret

bound of Õ(min{√QT,∆1/3T 2/3}), where Q and ∆ de-

note the number and amount of changes in the cost function

respectively. This is comparable to Theorem 2 when Q
grows faster than Õ(T 1/4). Still, the bound with the change

parameter satisfying ∆(t) ≥ maxπ∈Π |ct(π) − ct+1(π)|
is pessimistic while our results can still lead an optimistic

bound. To see this, consider a predictor designed with the

cost suffered in the last episode: i.e., Mt+1(πt) = ct(πt).
Then, the optimistic bound becomes σt = |Mt(π̄)− ct(π̄)|,
where π̄ is a policy that visits all state-action pair once, and

is a special case with the specific choice of the predictor.

Finally, we present our main result, which establishes a high

probability sublinear optimistic regret bound for OREPS-

OPIX.

Theorem 3 (Bandit – High probability). Under bandit feed-

back, there exists a stepsize η and an exploration parameter

γ such that with probability 1 − δ OREPS-OPIX utilizing

the proposed cost estimator (5) satisfies

RT (ρ
∗, {ct}Tt=1) = Õ

(

√

√

√

√

T
∑

t=1

∥σt∥21 (10)

+
(

Lmax
t
∥σt∥∞

)
1
4

(

T
∑

t=1

∥σt∥2∞ + ∥σt∥1
)

3
4
)

.

We point out that the regret is, again, optimistic as it scales

with the estimation power of the cost predictors. Therefore,

in the best case, i.e., under perfect estimation, the regret is

constant while in the worst case, the regret is Õ(T 3/4), with

high probability. Integral to establishing this result is the de-

velopment of tailored technical lemmas and a new concentra-

tion inequality to ensure each of the individual terms in the

regret remains optimistic. Further study to see the possibility

of improving the regret to Õ(
√
T ) is left as a future work.

Lee et al. [2020] studies the AMDP setting and achieves a

high probability guarantee with sublinear regret in the order

of
√
T using the log-barrier method instead of implicit ex-

ploration. However, their bound O
(

√

⟨ρ∗,∑T
t=1 ct⟩

)

is

in terms of the loss of the best policy as opposed to being

optimistic while our bound O
(

d({ct}Tt=1, {Mt}Tt=1)
3/4
)

diminishes with the estimation power of cost predictors.

Proof highlights. Here we highlight the key steps towards

establishing our main results stated in Theorem 3. The regret
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can be decomposed into

RT (ρ
∗, {ct}Tt=1)

=
T
∑

t=1

⟨ρt − ρ∗, ĉt⟩+
T
∑

t=1

⟨ρt, ct − Et−1[ĉt]⟩

+

T
∑

t=1

⟨ρt,Et−1[ĉt]− ĉt⟩+
T
∑

t=1

⟨ρ∗, ĉt − ct⟩.

(11)

The first term in (11) can be thought of as the regret of the

proposed algorithm with full information when the sequence

of the cost functions are {ĉt}Tt=1. Hence we can use Theo-

rem 1 as well as the result of Lemma 1 to upper bound it

with probability one according to

T
∑

t=1

⟨ρt − ρ∗, ĉt⟩ ≤
L

η
log
|X ||A|

L
+

η

2γ2

T
∑

t=1

∥σt∥2∞.

We then show that the second term can be bound with prob-

ability one using the definition of the proposed estimator (5)

and the result of Lemma 1 with

T
∑

t=1

⟨ρt, ct − Et−1[ĉt]⟩ ≤
T
∑

t=1

γ∥σt∥1.

To bound the third term, we show that it is the sum

of a martingale difference sequence, hence by using the

Azuma–Hoeffding inequality and a careful computation we

can bound it with probability at least 1−δ with an optimistic

term:

T
∑

t=1

⟨ρt,Et−1[ĉt]− ĉt⟩ ≤

√

√

√

√2 log
1

δ

T
∑

t=1

∥σt∥21.

Notably, this term is independent of η and γ and in the worst

case scales as O(
√
T ).

The last term in (11) requires the development of a new

Bernstein-type inequality (See Lemma 2 in the supplemen-

tary) to ensure this term can be bounded by an optimistic

term. Using this new result we show that with probability at

least 1− δ

T
∑

t=1

⟨ρ∗, ĉt − ct⟩ ≤
L

γ
log

L

δ
max

t=1,...,T
∥σt∥∞.

Finally, optimizing for η and setting γ = η1/3 furnishes the

proof of Theorem 3.

5 EXTENSION

5.1 ANYTIME OPTIMISTIC REGRET BOUNDS

In this section, we discuss the extension of OREPS-OPIX to

the anytime setting. To obtain the regret bounds in Section 4,

Algorithm 2 Anytime OREPS-OPIX with Doubling Trick

Require: Initial learning rate η0, κ = 2 (expected regret)

or κ = 3 (high probability regret)

1: Initialize phase number i = 1, starting episode num-

ber s1 = 1, learning rate η1 = η0/2 and optimistic

parameter γ1 = η1
1/κ

2: for Episodes t = 1, 2, . . . do

3: Interact with the environment and suffer the cost to

compute Ψsi:t

4: if ηi
−1D0 < ηi

1/κΨsi:t then

5: i← i+ 1
6: si ← t
7: ηi ← 2−iη0
8: γi ← ηi

1/κ

9: end if

10: Run the rest of Algorithm 1 to compute ĉt, Mt+1 and

ρt+1 using ηi and γi
11: end for

we have to utilize stepsize and exploration parameters that

require the knowledge of typically unknown quantities, e.g.,

the horizon T . We alleviate this issue by utilizing the dou-

bling trick technique [Besson and Kaufmann, 2018]. Note

that compared to typical applications of the doubling trick,

our setting necessitates further efforts. In particular, usually

in the doubling trick the learning is divided into phases that

double in length, and accordingly the stepsize is divided

in half to compensate for the growing phase lengths. That

is, the condition to decide when a particular phase ends is

apparent. In our setting, similar to Rakhlin and Sridharan

[2013], this condition is more involved as we outline next.

Additionally, compared to Rakhlin and Sridharan [2013],

given the more complicated setting of our problem and the

intricate nature of the regret bounds, carrying out the dou-

bling trick technique requires further innovations, especially

for the high probability results. As discussed, similar to the

standard doubling trick [Besson and Kaufmann, 2018, Latti-

more and Szepesvári, 2018, Rakhlin and Sridharan, 2013],

the learning rate ηi is reduced by half after every phase i
instead of a fixed η that depends on T . However, the length

of each phase does not necessarily double.

Let us first consider the setting of Theorem 2. Let

D0 = L log |X ||A|
L and c̄t(x, a) be an unbiased cost

estimator, i.e., Equation (5) with γ = 0. And define

Ψτ :τ ′ =
∑τ ′

t=τ

{

∥c̄t −Mt∥22/2 + ∥c̄t −Mt∥1
}

. Note that

E[Ψ1:T ] =
∑T

t=1
1
2∥ct −Mt∥22 + ∥ct −Mt∥1.

The reason to define Ψ in this way is to use it (in addition

to D0) to determine when to terminate each phase (see step

4 in Algorithm 2). Therefore, Ψ must only contain infor-

mation that is available to the learner. Since the optimistic

regret bounds, naturally, depend on ct which is unknown

in the bandit setting, directly utilizing the optimistic regret

bound from Theorem 2 is not feasible. This subtle reason as
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well as the different feedback model of our setting results

in significantly different anytime algorithms and analyses

compared to Rakhlin and Sridharan [2013].

The above discussion leads to an anytime extension of

OREPS-OPIX which is summarized in Algorithm 2. This

method satisfies the following expected regret bound under

bandit feedback, which is comparable to Theorem 2.

Theorem 4 (Anytime – Bandit – Expected). Under bandit

feedback, there exists an initial stepsize η0 such that Algo-

rithm 2 with the exploration parameter γi =
√
ηi satisfies

E[RT (ρ
∗, {ct}Tt=1)]

= Õ



L1/3

(

T
∑

t=1

∥σt∥22
2

+ ∥σt∥1
)2/3



 .
(12)

In the full information setting, a similar doubling trick can be

applied by comparing η−1
i D0 and ηiΨsi:t, where Ψτ :τ ′ =

∑τ ′

t=τ ∥ct − Mt∥2∞/2. Since here ct is observed by the

learner, we can directly leverage the bound from Theorem 1

Theorem 5 (Anytime – Full information). Under full infor-

mation feedback, there exists an initial stepsize η0 such that

Algorithm 2 satisfies

RT (ρ
∗, {ct}Tt=1) = Õ





√

√

√

√L

T
∑

t=1

∥σt∥2∞



 . (13)

5.2 HANDLING UNKNOWN TRANSITION

In this section, we extend our prior results to the unknown

transition setting. This allows the algorithm the flexibility

to be used when the dynamics of MDP is not revealed to

the learner. To model the unknown transition, we construct

a confidence set of transition functions using the count-

ing method as explored by Jaksch et al. [2010], Azar et al.

[2017], Rosenberg and Mansour [2019], Jin et al. [2020].

Specifically, we adopt a tighter confidence set from Jin et al.

[2020, Equation 5]:

P =

{

P̂ :
∣

∣

∣P̂ (x′|x, a)− P̄ (x′|x, a)
∣

∣

∣ ≤ ϵ(x′|x, a),

∀(x, a, x′) ∈ Xk ×A×Xk+1, k ∈ (0, L− 1)

} (14)

where P̄ is the count-based empirical transition probability

and the confidence margin ϵ(x′|x, a) is defined as

2

√

√

√

√

P̄ (x′|x, a) log
(

T |X ||A|
δ

)

max{1, N(x, a)− 1} +
14 log

(

T |X ||A|
δ

)

3max{1, N(x, a)− 1}

for δ ∈ (0, 1) and state-action visit counter N(x, a). And

we propose a cost estimator as

ĉt(x, a) (15)

=
ct(x, a)−Mt(x, a)

ut(x, a) + γ
I{(x, a) ∈ ūL(t)}+Mt(x, a),

where ut(x, a) = maxP∈P ρP,πt(x, a) is the upper occu-

pancy bound over P and ρP,πt is the occupancy measure

under the transition probability P and the induced pol-

icy πt from ρt as (1). Again, (15) is an optimistically bi-

ased estimator given that the predictor is optimistic and

ut(x, a) ≥ ρt(x, a) by definition. Utilizing this new estima-

tor in OREPS-OPIX, we obtain the following result.

Theorem 6 (Unknown transition – Bandit – High probabil-

ity). Under bandit feedback with unknown transition, there

exists a stepsize η and an exploration parameter γ such that

with probability at least 1− 7δ OREPS-OPIX utilizing the

proposed cost estimator (15) satisfies

RT (ρ
∗, {ct}Tt=1)

= O
(

L
1
4

(

log
|X ||A|

L
+ log

L

δ
max

t
∥σt∥∞

)
1
4

·
(

T
∑

t=1

∥σt∥2∞ + ∥σt∥1
)

3
4

+

√

√

√

√

T
∑

t=1

∥σt∥21

+ L|X |
√

|A|T log
T |X ||A|

δ

)

.

(16)

Notice that in an optimistic case, the bound is dominated

by the term O
(

L|X |
√

|A|T log T |X ||A|
δ

)

. Then the The-

orem 6 achieves the same bound as Jin et al. [2020] but

with higher probability. This term arises from a judicious

application of the Bennet’s concentration inequality [Maurer

and Pontil, 2009, Corollary 5] to study how the error of the

estimated occupancy measure ρP,πt with respect to ρt of

known transition setting is bounded within the confidence

set (14); it is nontrivial and therefore an interesting direction

of research to see if an optimistic version of this concentra-

tion inequality can be established, using, e.g., the techniques

that led to our new Bernstein-type inequality (See Lemma 2

in Appendix A.4).

6 NUMERICAL EXPERIMENTS

In this section, we perform a simple experiment to demon-

strate the benefit of implicit exploration and cost predictors.
3 We consider a drone navigation task modeled by a 2D grid,

where the goal of the agent is to move by one cell at a time

3The code for this experiment is accessible at this link:

https://github.itap.purdue.edu/moon182/OREPS-OPIX.git
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Fig. 1: The result of numerical experiment of OREPS, OREPS-IX and OREPS-OPIX with different predictors plotted versus

the number of episodes. Figure 1(a) shows the regret reduction benefit as well as the variance reduction property of the

proposed cost estimator (5). Figure 1(b) shows that the cost predictors comply with the optimistic prediction assumption.

to reach the goal with minimal cost. If a drone enters a cell

with turbulence or wind gust, it incurs higher cost due to

higher fuel consumption and possible damage to the aircraft.

The AMDP of the environment is described below:

• State space: X = {(l, Ax, Ay, Gx, Gy)},
where l ∈ {1, . . . , L} is time step, (Ax, Ay) is agent

location and (Gx, Gy) is goal location.

• Action space: A = {left, right, up, down}
• Cost function:

ct(x, a) =











0, if reaching the goal

1, if encountering a turbulence

ϵ, otherwise,
where 0 < ϵ < 1 is a small positive constant. ct
changes every tw episodes when the occurrence of

turbulence randomly move to one of its neighbors. It is

not observable to the agent but results in higher cost.

• Bandit feedback: agent observes ct(x, a) only for its

trajectory (x, a) ∈ u(t) in episode t.

• State transition is deterministic:

Pr(s′|s, a) =
{

1, when (x,a) results in s’

0, otherwise.

• Wind incurs cost but does not affect state transitions.

• Timeout L is the maximum time steps in an episode.

• When the agent reaches the goal, it remains in that

terminal state slterminal until the end of the episode re-

gardless of its action, that is, P(sl+1
terminal|slterminal,A) = 1

and XL = {sLterminal} is singleton.

The details of the experiment setting are provided in the

Appendix.

Figure 1(a) depicts the performance (in terms of cumulative

average regret) of OREPS-OPIX compared with vanilla

OREPS and OREPS with implicit exploration. For OREPS-

OPIX with perfect predictor, it is assumed that we have

access to a perfect predictor with full information (Mt = ct,
Mt+1 = ct+1). A more realistic latest predictor predicts the

cost based on the cost that the learner suffered in the last

visit to the state and the action. It mildly assumes that we

have access to the period tw and it resets its value to zero

every tw episodes to assure optimistic prediction.

There are two notable points to this result. First, OREPS

without implicit exploration (in blue) explodes as learning

progresses. This happens when the value of occupancy mea-

sure for some states and actions approach 0: ρt(x, a)→ 0.

Then, the unbiased cost estimator, i.e., (4) with γ = 0, which

divides cost signal by occupancy measure, grows infinitely

large and ρt(x, a) actually becomes 0 due to the precision of

the floating point. And it remains to be 0 for the remainder

of the episode, because the occupancy measure is updated

multiplicatively according to (7). This phenomenon is con-

sistent with the fact that the naive importance-weighted cost

estimator in OREPS which is based on EXP3 suffers from a

high variance. Secondly, OREPS-OPIX (in green and red)

improves both convergence and variance over OREPS-IX

(in orange), which is consistent with the result of Lemma 1

on the reduced variance of the proposed cost estimator (5)

while retaining the same bias.

Figure 1(b) demonstrates the error of optimistic cost predic-

tors with respect to the true cost. By observing the positive

values of error, we confirm that the formulation of cost pre-

dictors does not violate the optimistic prediction assumption.

Every tw = 1000 episodes, the error of the latest predictor

spikes, because it periodically resets its value to zero.

In Figure 2(a), we relax the optimistic prediction assump-

tion with inaccurate information about how frequently the

cost function changes. The latest predictor with more reset
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Fig. 2: The result of numerical experiment of OREPS-OPIX with different predictors plotted versus the number of episodes.

Figure 2(a) shows that less accurate information about tw do not cause significant harm in the performance of OREPS-OPIX.

Figure 2(b) shows the consequences on error when cost predictors are constructed based on inaccurate information about the

environment.

(in purple) and less reset (in brown) assumes shorter and

longer periods of change, respectively, than the true value of

tw. However, the results show that the performance degrada-

tion is not noticeable compared to the latest predictor with

accurate information about the period (in green). In fact, the

strict optimism of the predictor is introduced for mathemati-

cal convenience and it is sufficient to hold in a (weighted)

sum:
∑

x,a ω(x, a)(ct(x, a)−Mt(x, a)) ≥ 0 with ω(·) = 1
or ω(·) > 0. Intuitively, what is more critical is how far the

prediction is to the true cost function.

Figure 2(b) shows the error, i.e.,
∑

x,a ct(x, a)−Mt(x, a),
of different predictors. The latest predictor with more re-

set and less reset is built based on incorrect information of

the period of cost change, as t̂m = 500 and t̂m = 2000
respectively. Although Figure 2(a) demonstrates minimal

loss in the performance of OREPS-OPIX when predictor

design is based on a flawed information, Figure 2(b) shows

that the predictor error is actually aggravated by the flaws

(purple and brown as opposed to green). It even shows that

the latest predictor with less reset (brown) violates the op-

timistic prediction assumption when cost function changes

without the reset, observed at t = 1000, 3000, . . . , 9000.

The result hints at the practical success of our algorithm in

the presence of minor uncertainties in the predictor design.

Finally, Figures 1(b) and 2(b) also exhibits a tendency that

the error grows higher over time as the occupancy measure

converges. It is the result of slower convergence of Mt,

which is caused by the reduced entropy of the occupancy

measure. Equation (7) updates the occupancy measure by

discounting its value exponentially with respect to the loss

(estimate) and forces the value of a state-action pair with

relatively high loss (estimate) to approach to zero. From

the OREPS regret plot (blue) in Figure 1(a), the exploding

regret is also observed, that is due to the fact that a state-

action pair with near-zero occupancy measure cannot be

visited again without implicit exploration.

7 CONCLUSION

We studied the problem of establishing optimistic regret

bounds for online learning in AMDPs. Our theoretical anal-

ysis demonstrated that such bounds in the bandit feedback

setting necessitate cost estimators with a bounded variance

that scales with the estimation power of cost predictors. To

that end, we proposed a new estimator that benefits from

variance reduction and proved that this estimator in conjunc-

tion with a variant of mirror descent enjoys optimistic regret

bounds in both full information and bandit feedback settings.

Notably, we showed the proposed method and its anytime

extension enjoy high probability sublinear optimistic regrets,

a result which crucially relied on the characteristics of the

new cost estimator and the development of new technical

lemmas to ensure every term in the regret decomposition

can be bounded by optimistic terms. Finally, we provided an

extension to the unknown transition setting and established

similar results.

In MDP setting, the cost function remains constant over

time and direct optimization of the cost function without

bounding the relative entropy becomes feasible. In the case

of full information feedback, the cost function is fully ob-

served after the initial episode, resulting in zero regret from

the second episode onward. In bandit feedback case, we

have a bound with diminishing prediction error ct −Mt,

as costs are revealed for additional states and actions. The

rate at which the error reduces and efficient strategies for its

reduction present an interesting direction for future research.
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A PROOFS

A.1 PROOF OF LEMMA 1

By the definition of ĉ(x, a) as (5),

Et−1[ĉt(x, a)] = Et−1

[

ct(x, a)−Mt(x, a)

ρt(x, a) + γ
I{(x, a) ∈ ūL(t)}+Mt(s, a)

]

=
ct(x, a)−Mt(x, a)

ρt(x, a) + γ
ρt(x, a) +Mt(s, a)

=
ρt(x, a)ct(x, a) + γMt(x, a)

ρt(x, a) + γ
.

By (5), ρt(·) ≥ 0 and γ ≥ 0,

Et−1[(ĉt(x, a)−Mt(x, a))
2] = Et−1

[

(

ct(x, a)−Mt(x, a)

ρt(x, a) + γ
I{(x, a) ∈ ūL(t)}

)2
]

=

(

ct(x, a)−Mt(x, a)

ρt(x, a) + γ

)2

ρt(x, a)

≤ (ct(x, a)−Mt(x, a))
2

ρt(x, a) + γ
.

■

A.2 PROOF OF THEOREM 1

First, decompose the regret of ρt with respect to ρ∗ as

⟨ct, ρt − ρ∗⟩ = ⟨ct, ρt+1 − ρ∗⟩+ ⟨ct, ρt − ρt+1⟩. (17)

If ρt+1 is the solution of (6) with ct instead of ĉ, then for any other ρ∗ ∈ ∆(M), the gradient of the objective function is

negative in the direction of ρt+1 from ρ∗: i.e., ⟨∇ρ{η⟨ρ, ct +Mt+1 −Mt⟩+DR(ρ∥ρt)}ρ=ρt+1
, ρt+1 − ρ∗⟩ ≤ 0. Thus,

⟨η(ct +Mt+1 −Mt) +∇R(ρt+1)−∇R(ρt), ρt+1 − ρ∗⟩ ≤ 0.

The first term of the decomposition (17) is then bounded as

⟨ct, ρt+1 − ρ∗⟩ ≤ 1

η
⟨∇R(ρt)−∇R(ρt+1), ρt+1 − ρ∗⟩+ ⟨Mt −Mt+1, ρt+1 − ρ∗⟩.
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By the definition of Bregman divergence: DR(ρ∥ρ′) = R(ρ)−R(ρ′)− ⟨∇R(ρ′), ρ− ρ′⟩,

⟨ct, ρt+1 − ρ∗⟩ ≤ 1

η
{DR(ρ

∗∥ρt)−DR(ρ
∗∥ρt+1)−DR(ρt+1∥ρt)}+ ⟨Mt −Mt+1, ρt+1 − ρ∗⟩

=
1

η
{DR(ρ

∗∥ρt)−DR(ρ
∗∥ρt+1)−DR(ρt+1∥ρt)}+ ⟨Mt+1 −Mt, ρ

∗ − ρt+1⟩

=
1

η
{DR(ρ

∗∥ρt)−DR(ρ
∗∥ρt+1)−DR(ρt+1∥ρt)}

+ ⟨Mt+1 −Mt, ρ
∗ − ρt⟩+ ⟨Mt+1 −Mt, ρt − ρt+1⟩.

Plugging the result back to (17),

⟨ct, ρt − ρ∗⟩ ≤ 1

η
{DR(ρ

∗∥ρt)−DR(ρ
∗∥ρt+1)−DR(ρt+1∥ρt)}

+ ⟨Mt+1 −Mt, ρ
∗ − ρt⟩+ ⟨Mt+1, ρt − ρt+1⟩+ ⟨ct −Mt, ρt − ρt+1⟩

=
1

η
{D(ρ∗∥ρt)−D(ρ∗∥ρt+1)−D(ρt+1∥ρt)}

− ⟨Mt, ρ
∗ − ρt⟩+ ⟨Mt+1, ρ

∗ − ρt+1⟩+ ⟨ct −Mt, ρt − ρt+1⟩.
(18)

By Holder’s and Young’s inequalities,

⟨ct −Mt, ρt − ρt+1⟩ ≤
η

2
∥ct −Mt∥2∞ +

1

2η
∥ρt − ρt+1∥21.

Since negative entropy is 1-strongly convex with respect to L1 norm,

1

2
∥ρt − ρt+1∥21 ≤ R(ρt+1)−R(ρt)− ⟨∇R(ρt), ρt+1 − ρt⟩ = DR(ρt+1∥ρt).

Plugging the result back to (18),

⟨ct, ρt − ρ∗⟩ ≤ 1

η
{D(ρ∗∥ρt)−D(ρ∗∥ρt+1)−D(ρt+1∥ρt)}

− ⟨Mt, ρ
∗ − ρt⟩+ ⟨Mt+1, ρ

∗ − ρt+1⟩+
η

2
∥ct −Mt∥2∞ +

1

η
D(ρt+1∥ρt)

=
1

η
{D(ρ∗∥ρt)−D(ρ∗∥ρt+1)} − ⟨Mt, ρ

∗ − ρt⟩+ ⟨Mt+1, ρ
∗ − ρt+1⟩

+
η

2
∥ct −Mt∥2∞.

By summing over T episodes,

RT (ρ
∗, {ct}Tt=1) =

T
∑

t=1

⟨ct, ρt − ρ∗⟩

≤ 1

η
{D(ρ∗∥ρ1)−D(ρ∗∥ρT+1)} − ⟨M1, ρ

∗ − ρ1⟩+ ⟨MT+1, ρ
∗ − ρT+1⟩

+
T
∑

t=1

η

2
∥ct −Mt∥2∞.

Without losing generality, we can set M1 = MT+1 = 0. And by the non-negativity and definition of Bregman divergence,

RT (ρ
∗, {ct}Tt=1) ≤

1

η
D(ρ∗∥ρ1) +

T
∑

t=1

η

2
∥ct −Mt∥2∞

=
1

η
{R(ρ∗)−R(ρ1)− ⟨∇R(ρ1), ρ

∗ − ρ1⟩}+
T
∑

t=1

η

2
∥ct −Mt∥2∞.
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Since negative entropy R(·) ≤ 0 and ρ1 is initialized as a uniform distribution, of which∇R(ρ1) = 0,

RT (ρ
∗, {ct}Tt=1) ≤ −

1

η
R(ρ1) +

T
∑

t=1

η

2
∥ct −Mt∥2∞

=
1

η

L−1
∑

k=0

∑

x∈Xk

∑

a

(−ρ1(x, a) log(ρ1(x, a)) +
T
∑

t=1

η

2
∥ct −Mt∥2∞

=
1

η

L−1
∑

k=0

∑

x∈Xk

∑

a

1

|Xk||A|
log |Xk||A|+

T
∑

t=1

η

2
∥ct −Mt∥2∞

=
1

η

L−1
∑

k=0

log |Xk||A|+
T
∑

t=1

η

2
∥ct −Mt∥2∞

=
L

η
log
|X ||A|

L
+

T
∑

t=1

η

2
∥ct −Mt∥2∞.

If η =
√

2L∑
∥ct−Mt∥2

∞
log |X ||A|

L ,

RT (ρ
∗, {ct}Tt=1) ≤

√

√

√

√2L log
|X ||A|

L

T
∑

t=1

∥ct −Mt∥2∞.

■

A.3 PROOF OF THEOREM 2

The expected total regret with respect to ρ∗ ∈ ∆(M) can be decomposed into

E

[

T
∑

t=1

⟨ρt − ρ∗, ct⟩
]

= E

[

T
∑

t=1

⟨ρt − ρ∗, ĉt⟩
]

+ E

[

T
∑

t=1

⟨ρt, ct − ĉt⟩
]

− E

[

T
∑

t=1

⟨ρ∗, ct − ĉt⟩
]

. (19)

For the first term in (19), follow the same proof as Appendix A.2 with ct ← ĉt. Let ρt+1 be the solution of (6) and

decompose the term as

⟨ρt − ρ∗, ĉt⟩ = ⟨ρt+1 − ρ∗, ĉt⟩+ ⟨ρt − ρt+1, ĉt⟩.
For all ρ∗ ∈ ∆(M), the gradient of (6) is negative in the direction of ρt+1 from ρ∗: i.e., ⟨∇ρ{η⟨ρ, ĉt +Mt+1 −Mt⟩ +
D(ρ∥ρt)}ρ=ρ̃t+1

, ρt+1 − ρ∗⟩ ≤ 0. Thus, following Appendix A.2,

⟨ρt − ρ∗, ĉt⟩ ≤
1

η
⟨ρt+1 − ρ∗,∇R(ρt)−∇R(ρt+1)⟩+ ⟨ρt+1 − ρ∗,Mt −Mt+1⟩+ ⟨ρt − ρt+1, ĉt⟩

≤ 1

η
{D(ρ∗∥ρt)−D(ρ∗∥ρt+1)} − ⟨Mt, ρ

∗ − ρt⟩+ ⟨Mt+1, ρ
∗ − ρt+1⟩+

η

2
∥ĉt −Mt∥2∞.

Adding over t episodes, following Appendix A.2 again,

T
∑

t=1

⟨ρt − ρ∗, ĉt⟩ ≤
L

η
log
|X ||A|

L
+

T
∑

t=1

η

2
∥ĉt −Mt∥2∞.

Taking expectation over the randomness associated with u(T ),

E

[

T
∑

t=1

⟨ρt − ρ∗, ĉt⟩
]

≤ E

[

L

η
log
|X ||A|

L
+

T
∑

t=1

η

2
∥ĉt −Mt∥2∞

]

=
L

η
log
|X ||A|

L
+

η

2

T
∑

t=1

E
[

∥ĉt −Mt∥2∞
]

.
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By tower expectation,

E

[

T
∑

t=1

⟨ρt − ρ∗, ĉt⟩
]

≤ L

η
log
|X ||A|

L
+

η

2

T
∑

t=1

E
[

Et−1[∥ĉt −Mt∥2∞]
]

.

By ∥ · ∥2∞ ≤ ∥ · ∥22 and Lemma 1,

E

[

T
∑

t=1

⟨ρt − ρ∗, ĉt⟩
]

≤ L

η
log
|X ||A|

L
+

η

2

T
∑

t=1

E
[

Et−1[∥ĉt −Mt∥22]
]

=
L

η
log
|X ||A|

L
+

η

2

T
∑

t=1

E

[

∑

x,a

Et−1[(ĉt(x, a)−Mt(x, a))
2]

]

≤ L

η
log
|X ||A|

L
+

η

2

T
∑

t=1

E

[

∑

x,a

(ct(x, a)−Mt(x, a))
2

ρt(x, a) + γ

]

.

Since ρt(·) ≥ 0 and γ > 0,

E

[

T
∑

t=1

⟨ρt − ρ∗, ĉt⟩
]

≤ L

η
log
|X ||A|

L
+

η

2γ

T
∑

t=1

∥ct −Mt∥22. (20)

The second term in (19) can be decomposed into

⟨ρt, ct − ĉt⟩ = ⟨ρt, ct − Et−1[ĉt]⟩+ ⟨ρt,Et−1[ĉt]− ĉt⟩.

By Lemma 1,

⟨ρt, ct − Et−1[ĉt]⟩ =
∑

x,a

ρt(x, a)

{

ct(x, a)−
ρt(x, a)ct(x, a) + γMt(x, a)

ρt(x, a) + γ

}

=
∑

x,a

ρt(x, a)
γct(x, a)− γMt(x, a)

ρt(x, a) + γ
.

Since ρt(·) ≥ 0, γ > 0 and Mt(x, a) ≤ ct(x, a) for all x, a,

⟨ρt, ct − Et−1[ĉt]⟩ ≤
∑

x,a

γ|ct(x, a)−Mt(x, a)| = γ∥ct −Mt∥1.

Adding over T episodes and taking expectation with respect to the randomness associated with u(T ),

E

[

T
∑

t=1

⟨ρt, ct − Et−1[ĉt]⟩
]

≤
T
∑

t=1

γ∥ct −Mt∥1.

Also, since {Et−1[ĉt]− ĉt}t is a Martingale difference sequence (MDS),

E

[

T
∑

t=1

⟨ρt,Et−1[ĉt]− ĉt⟩
]

= 0.

Thus, the second term in (19) is bounded as

E

[

T
∑

t=1

⟨ρt, ct − ĉt⟩
]

≤ γ

T
∑

t=1

∥ct −Mt∥1. (21)

Finally, since ρ∗ is constant with respect to t and the randomness associated with u(T ),

E

[

T
∑

t=1

⟨ρ∗, ct − ĉt⟩
]

= ⟨ρ∗,E
[

T
∑

t=1

ct − ĉt

]

⟩.
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By tower expectation and Lemma 1,

E

[

T
∑

t=1

⟨ρ∗, ct − ĉt⟩
]

= ⟨ρ∗,E
[

T
∑

t=1

ct − Et−1[ĉt]

]

⟩

=
∑

x,a

ρ∗(x, a)E

[

T
∑

t=1

ct(x, a)−
ρt(x, a)ct(x, a) + γMt(x, a)

ρt(x, a) + γ

]

=
∑

x,a

ρ∗(x, a)E

[

T
∑

t=1

γ(ct −Mt(x, a))

ρt(x, a) + γ

]

Since ρt(·), ρ∗(·) ≥ 0, γ > 0 and Mt(x, a) ≤ ct(x, a) for all x, a,

E

[

T
∑

t=1

⟨ρ∗, ct − ĉt⟩
]

≥ 0 (22)

Applying (20), (21) and Equation (22) to Equation (19):

E

[

T
∑

t=1

⟨ρt − ρ∗, ct⟩
]

≤ L

η
log
|X ||A|

L
+

η

2γ

T
∑

t=1

∥ct −Mt∥22 + γ

T
∑

t=1

∥ct −Mt∥1

If η =
(

L∑
1
2
∥ct−Mt∥2

2
+∥ct−Mt∥1

log |X ||A|
L

)2/3

and γ =
√
η,

E[RT (ρ
∗, {ct}Tt=1)] ≤

(

L log
|X ||A|

L

)1/3(
∑ 1

2
∥ct −Mt∥22 + ∥ct −Mt∥1

)2/3

■

A.4 PROOF OF THEOREM 3

The total regret can be decomposed as (11). The first term in (11) can be thought of as the regret of the the proposed

algorithm with full information when the sequence of the cost functions are {ĉt}Tt=1. By Theorem 1,

T
∑

t=1

⟨ρt − ρ∗, ĉt⟩ ≤
L

η
log
|X ||A|

L
+

η

2

T
∑

t=1

∥ĉt −Mt∥2∞.

By (5),

∥ĉt −Mt∥2∞ = max
x,a

(

ct(x, a)−Mt(x, a)

ρt(x, a) + γ
I{(x, a) ∈ ūL(t)}

)2

= max
(x,a)∈ūL(t)

(

ct(x, a)−Mt(x, a)

ρt(x, a) + γ

)2

≤ max
x,a

(

ct(x, a)−Mt(x, a)

ρt(x, a) + γ

)2

.

By ρt(·) ≥ 0 and γ ≥ 0,

∥ĉt −Mt∥2∞ ≤
maxx,a (ct(x, a)−Mt(x, a))

2

γ2

=
∥ct −Mt∥2∞

γ2
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Thus, the first term is bounded with probability one as

T
∑

t=1

⟨ρt − ρ∗, ĉt⟩ ≤
L

η
log
|X ||A|

L
+

η

2γ2

T
∑

t=1

∥ct −Mt∥2∞. (23)

Using Lemma 1, the second term is rewritten as

T
∑

t=1

⟨ρt, ct − Et−1[ĉt]⟩ =
T
∑

t=1

∑

x,a

ρt(x, a)

(

ct(x, a)−
ρt(x, a)ct(x, a) + γMt(x, a)

ρt(x, a) + γ

)

=

T
∑

t=1

∑

x,a

ρt(x, a)

(

γct(x, a)− γMt(x, a)

ρt(x, a) + γ

)

By Mt(x, a) ≤ ct(x, a), ρt(·) ≥ 0 and γ ≥ 0, it is bounded with probability one with

T
∑

t=1

⟨ρt, ct − Et−1[ĉt]⟩ ≤
T
∑

t=1

∑

x,a

γct(x, a)− γMt(x, a)

= γ

T
∑

t=1

∥ct −Mt∥1. (24)

By Lemma 1 and (5),

Et−1[ĉt(x, a)]− ĉt(x, a) =
ρt(x, a)ct(x, a) + γMt(x, a)

ρt(x, a) + γ

−
(

ct(x, a)−Mt(x, a)

ρt(x, a) + γ
I{(x, a) ∈ ūL(t)}+Mt(x, a)

)

=
(ρt(x, a)− I{(x, a) ∈ ūL(t)})(ct(x, a)−Mt(x, a))

ρt(x, a) + γ
.

By Mt(x, a) ≤ ct(x, a), ρt(·) ≥ 0 and γ ≥ 0,

Et−1[ĉt(x, a)]− ĉt(x, a) ≤ |ct(x, a)−Mt(x, a)|

Thus,

T
∑

t=1

⟨ρt,Et−1[ĉt]− ĉt⟩ ≤
T
∑

t=1

⟨ρt, ∥ct −Mt∥1⟩.

Since {⟨ρt,Et−1[ĉt]− ĉt⟩}Tt=1 is a martingale difference sequence, by using the Azuma–Hoeffding inequality,

Pr

(

T
∑

t=1

⟨ρt,Et−1[ĉt]− ĉt⟩ ≥ ϵ

)

≤ exp

(

−ϵ2
2
∑T

t=1 ∥ct −Mt∥21

)

= δ.

Therefore, with probability at least 1− δ, the third term is bounded with

T
∑

t=1

⟨ρt,Et−1[ĉt]− ĉt⟩ ≤

√

√

√

√2 log
1

δ

T
∑

t=1

∥ct −Mt∥21. (25)

Lemma 2. Let {Xt}Tt=1 be an F-adapted sequence with the Filtration F = (Ft)t. Define Et[·] = E[·|F ]. Let {ηt}Tt=1 be an

F-predictable sequence. Then, if ηt ≥ 0 and ηt(Xt − Et−1[Xt]) ≤ 1.79, we have

Pr

(

T
∑

t=1

ηt(Xt − µt) ≥
T
∑

t=1

η2tEt−1[X
2
t ] + log

1

δ

)

≤ δ. (26)
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Proof. Let αt = Et−1[ηt(Xt − Et−1[Xt])
2] = ηtEt−1[(Xt − Et−1[Xt])

2] and µt = Et−1[Xt]. Since ηt is F-predictable,

by Markov inequality,

Pr

(

T
∑

t=1

ηt(Xt − µt − αt) ≥ log
1

δ

)

= Pr

(

exp

(

T
∑

t=1

ηt(Xt − µt − αt)

)

≥ 1

δ

)

≤ δE

[

exp

(

T
∑

t=1

ηt(Xt − µt − αt)

)]

. (27)

Let Zn = exp (
∑n

t=1 ηt(Xt − µt − αt)) and yn+1 = exp(ηn+1(Xn+1 − µn+1 − αn+1)). Since Zn+1 = Znyn+1 and Zn

is F-adapted,

E[Zn+1|Fn] = E[Znyn+1|Fn]

= ZnE[yn+1|Fn].

By the fact that ηnαn is F-predictable, exp(x) ≤ 1 + x+ x2 for x < 1.79 and 1 + x ≤ exp(x),

En−1[yn] = exp(−ηnαn)En−1[exp(ηn(Xn − µn))]

≤ exp(−ηnαn)En−1[1 + (ηn(Xn − µn)) + (ηn(Xn − µn))
2]

= exp(−ηnαn)(1 + ηnEn−1[Xn]− ηnµn + η2nEn−1[(Xn − µn)
2])

= exp(−ηnαn)(1 + η2nEn−1[(Xn − µn)
2])

(By µn = En−1[Xn])

≤ exp(−ηnαn) exp(η
2
nEn−1[(Xn − µn)

2])

= exp(−η2nEn−1[(Xn − µn)
2]) exp(η2nEn−1[(Xn − µn)

2]) = 1

(By αn = ηnEn−1[(Xn − µn)
2].

Therefore Zn is a supermartingale: i.e.

En[Zn+1] = ZnEn[yn+1] ≤ Zn.

By tower expectation,

E[Zn] = E [En−1[Zn]] ≤ E[Zn−1] ≤ ... ≤ E[Z1] = E[y1] ≤ 1.

Apply this result back to (27),

Pr

(

T
∑

t=1

ηt(Xt − µt − αt) ≥ log
1

δ

)

≤ δ

Since αt = ηtEt−1[(Xt − µt)
2] and Et−1[(Xt − µt)

2] ≤ Et−1[X
2
t ],

Pr

(

T
∑

t=1

ηt(Xt − µt) ≥ log
1

δ
+

T
∑

t=1

η2tEt−1[(Xt − µt)
2]

)

≤ δ

Pr

(

T
∑

t=1

ηt(Xt − µt) ≥ log
1

δ
+

T
∑

t=1

η2tEt−1[X
2
t ]

)

≤ δ

■

To use Lemma 2 for the last term in (11), let Xt =
∑

x∈Xl,a∈A ρ(x, a)[ĉt(x, a)−Mt(x, a)] and ηt = η = γ
∥c−M∥Xl

, where

∥c−M∥Xl
= maxt=1,...,T maxx∈Xl,a∈A |ct(x, a)−Mt(x, a)|. Then, by (5),

µt = Et−1





∑

x∈Xl,a∈A

ρ(x, a)[ĉt(x, a)−Mt(x, a)]





= Et−1





∑

x∈Xl,a∈A

ρ(x, a)
ct(x, a)−Mt(x, a)

ρt(x, a) + γ
I{(x, a) ∈ ūL(t)}





=
∑

x∈Xl,a∈A

ρ(x, a)
ρt(x, a)[ct(x, a)−Mt(x, a)]

ρt(x, a) + γ
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By Lemma 2, with probability 1− δ′,

T
∑

t=1

γ

∥c−M∥Xl





∑

x∈Xl,a∈A

ρ(x, a)

[

ĉt(x, a)−Mt(x, a)−
ρt(x, a)[ct(x, a)−Mt(x, a)]

ρt(x, a) + γ

]





≤ log
1

δ′
+

T
∑

t=1

(

γ

∥c−M∥Xl

)2

Et−1











∑

x∈Xl,a∈A

ρ(x, a)[ĉt(x, a)−Mt(x, a)]





2






By (5),

T
∑

t=1

γ

∥c−M∥Xl





∑

x∈Xl,a∈A

ρ(x, a)
ct(x, a)−Mt(x, a)

ρt(x, a) + γ
[I{(x, a) ∈ ūL(t)} − ρt(x, a)]





≤ log
1

δ′
+

T
∑

t=1

(

γ

∥c−M∥Xl

)2
∑

x∈Xl,a∈A

(

ρ(x, a)
ct(x, a)−Mt(x, a)

ρt(x, a) + γ

)2

ρt(x, a)

Since ρt(·) ≥ 0 and γ > 0,

γ

∥c−M∥Xl

T
∑

t=1

∑

x∈Xl,a∈A

ρ(x, a)
ct(x, a)−Mt(x, a)

ρt(x, a) + γ
[I{(x, a) ∈ ūL(t)} − ρt(x, a)]

≤ log
1

δ′
+

γ

∥c−M∥Xl

T
∑

t=1

∑

x∈Xl,a∈A

(

ρ(x, a)2
[ct(x, a)−Mt(x, a)]

2

ρt(x, a) + γ

)

γ

∥c−M∥Xl

γ

∥c−M∥Xl

T
∑

t=1

∑

x∈Xl,a∈A

ρ(x, a)
ct(x, a)−Mt(x, a)

ρt(x, a) + γ
[

I{(x, a) ∈ ūL(t)} − ρt(x, a)−
γρ(x, a)[ct(x, a)−Mt(x, a)]

∥c−M∥Xl

]

≤ log
1

δ′

Since ρ(x, a), ρt(x, a) ≥ 0, γ > 0 and Mt(x, a) ≤ ct(x, a), by ρ(x, a) ≤ 1 and ct(x, a)−Mt(x, a) ≤ ∥c−M∥Xl
,

γ

∥c−M∥Xl

T
∑

t=1

∑

x∈Xl,a∈A

ρ(x, a)
ct(x, a)−Mt(x, a)

ρt(x, a) + γ
[I{(x, a) ∈ ūL(t)} − ρt(x, a)− γ] ≤ log

1

δ′

By (5),

γ

∥c−M∥Xl

T
∑

t=1

∑

x∈Xl,a∈A

ρ(x, a)[ĉt(x, a)− ct(x, a)] ≤ log
1

δ

For each layer l, with probability 1− δ′,

T
∑

t=1

∑

x∈Xl,a∈A

ρ(x, a)[ĉt(x, a)− ct(x, a)] ≤
∥c−M∥Xl

γ
log

1

δ′
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By union bound on all layers, with probability 1− Lδ′,

T
∑

t=1

∑

x,a

ρ(x, a)[ĉt(x, a)− ct(x, a)] ≤
L
∑

l=1

∥c−M∥Xl

γ
log

1

δ′

≤ L

γ
log

1

δ′
max

l=1,...,L
∥c−M∥Xl

=
L

γ
log

1

δ′
max

t=1,...,T
∥ct −Mt∥∞

Setting δ′ = δ/L, with probability 1− δ, the last term in (11) is bounded as

T
∑

t=1

⟨ρ∗, ĉt − ct⟩ ≤
L

γ
log

L

δ
max

t=1,...,T
∥ct −Mt∥∞. (28)

Applying (23), (24), (25) and (28) back to (11),

RT (ρ
∗, {ct}Tt=1) ≤

L

η
log
|X ||A|

L
+

η

2γ2

T
∑

t=1

∥ct −Mt∥2∞ + γ
T
∑

t=1

∥ct −Mt∥1

+

√

√

√

√2 log
1

δ

T
∑

t=1

∥ct −Mt∥21 +
L

γ
log

L

δ
max

t=1,...,T
∥ct −Mt∥∞

≤ L

η
log
|X ||A|

L
+

η

2γ2

T
∑

t=1

∥ct −Mt∥2∞ + γ
T
∑

t=1

∥ct −Mt∥1

+

√

√

√

√2 log
1

δ

T
∑

t=1

∥ct −Mt∥21 +
L

η
log

L

δ
max

t=1,...,T
∥ct −Mt∥∞

(Since η ≤ γ if γ = η1/3 and η, γ ≤ 1)

Let η =

(

L log
|X||A|

L
+L log L

δ
maxt ∥ct−Mt∥∞

∑
T

t=1

∥ct−Mt∥
2
∞

2
+∥ct−Mt∥1

)3/4

and γ = η1/3.

RT (ρ
∗, {ct}Tt=1) ≤

(

L log
|X ||A|

L
+ L log

L

δ
max

t
∥ct −Mt∥∞

)1/4

·
(

T
∑

t=1

∥ct −Mt∥2∞
2

+ ∥ct −Mt∥1
)3/4

+

√

√

√

√2 log
1

δ

T
∑

t=1

∥ct −Mt∥21

■

A.5 PROOF OF THEOREM 4

The expected total regret can be decomposed into local regrets of each phase as below, where N > 1 denotes the number of

phases that T episodes are broken into.

E

[

T
∑

t=1

⟨ρt − ρ∗, ct⟩
]

= E

[

N
∑

i=1

si+1−1
∑

t=si

⟨ρt − ρ∗, ct⟩
]
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Since the randomness of the future does not affect the past,

E

[

T
∑

t=1

⟨ρt − ρ∗, ct⟩
]

=

N
∑

i=1

E
u(si+1−1)

[

si+1−1
∑

t=si

⟨ρt, ct⟩ −
si+1−1
∑

t=si

⟨ρ∗, ct⟩
]

≤
N
∑

i=1

E
u(si+1−1)

[

si+1−1
∑

t=si

⟨ρt, ct⟩ − min
ρ∈∆(M)

si+1−1
∑

t=si

⟨ρ, ct⟩
]

. (29)

Now we can consider solving for the upper bound as the problem of each phase independently, where the local regret of

each phase is expressed with respect to its local optimum: ρ∗i = argminρ∈∆(M)

∑si+1−1
t=si

⟨ρ, ĉt⟩. If ρt+1 is the solution of

(6) with η = ηi and t = si, . . . , si+1 − 1, by Theorem 2,

E

[

si+1−1
∑

t=si

⟨ρt − ρ∗i , ct⟩
]

≤ L

ηi
log
|X ||A|

L
+

ηi
2γi

si+1−1
∑

t=si

∥ct −Mt∥22 +
si+1−1
∑

t=si

γi∥ct −Mt∥1.

Note that the term L
ηi

log |X ||A|
L represents the initial suboptimality assuming that ρsi is initialized as the uniform distribution.

However, the logic behind regularizing the Bregman divergence (between the current and past occupancy measures) is

that the occupancy measure learned in an episode will suffer a lower cost in the next episode than random initialization.

Therefore the bound conservatively holds for ρsi learned from the previous phase instead of initializing it every phase.

By Algorithm 2, use γi =
√
ηi.

E

[

si+1−1
∑

t=si

⟨ρt − ρ∗i , ct⟩
]

≤ L

ηi
log
|X ||A|

L
+

ηi
2γi

si+1−1
∑

t=si

∥ct −Mt∥22 +
si+1−1
∑

t=si

γi∥ct −Mt∥1

=
L

ηi
log
|X ||A|

L
+
√
ηi

si+1−1
∑

t=si

{

1

2
∥ct −Mt∥22 + ∥ct −Mt∥1

}

.

Since E [|c̄t(x, a)−Mt(x, a)|] = |ct(x, a)−Mt(x, a)| with respect to the randomness of the trajectory ūL(t),

E

[

si+1−1
∑

t=si

⟨ρt − ρ∗i , ct⟩
]

≤ L

ηi
log
|X ||A|

L
+
√
ηiE

[

si+1−1
∑

t=si

{

1

2
∥c̄t −Mt∥22 + ∥c̄t −Mt∥1

}

]

.

By step 4 of Algorithm 2, η−1
i D0 ≥

√
ηiΨsi:si+1−1 for all i = 1, . . . , N .

E

[

si+1−1
∑

t=si

⟨ρt − ρ∗i , ct⟩
]

≤ 2L

ηi
log
|X ||A|

L

Adding over N phases, by Equation (29),

E

[

T
∑

t=1

⟨ρt − ρ∗, ct⟩
]

= L log
|X ||A|

L

(

2

N
∑

i=1

1

ηi

)

= D0

(

2

N
∑

i=1

1

ηi

)

.

From
∑N

i=1(1/2)
i ≤ 1 and ηN−1 = η0/2

N−1,

2

N
∑

i=1

1

ηi
=

2

η0

N
∑

i=1

2i =
2

η0
2N+1

N
∑

i=1

2i−N−1 =
2N+2

η0

N
∑

i=1

(
1

2
)i ≤ 2N+2

η0
=

8

ηN−1
. (30)

By
√
ηN−1ΨsN−1:sN > η−1

N−1D0 ≥ √ηN−1ΨsN−1:sN−1 and the monotonicity of Ψ,

η
−3/2
N−1 <

ΨsN−1:sN

D0
≤ Ψ1:T

D0
.
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Then,

E[RT (ρ
∗, {ct}Tt=1)] ≤ D0

8

ηN−1

< 8D0

(

Ψ1:T

D0

)2/3

= 8D
1/3
0 Ψ

2/3
1:T

= 8

(

L log
|X ||A|

L

)1/3
(

T
∑

t=1

1

2
∥c̄t −Mt∥22 + ∥c̄t −Mt∥1

)2/3

.

Taking expectation over the randomness of the trajectory ūL(T ),

E[RT (ρ
∗, {ct}Tt=1)] ≤ 8

(

L log
|X ||A|

L

)1/3
(

T
∑

t=1

1

2
∥ct −Mt∥22 + ∥ct −Mt∥1

)2/3

.

Note that determining η−1
i D0 <

√
ηiΨsi:t for each episode t does not require additional suffering of cost. As in Algorithm 2,

determining ηi and γi can come after the entire rollout of episode t, as they are only needed for computing ĉt, Mt+1 and

ρt+1. Therefore this is the final bound unlike Lemma 12 of Rakhlin and Sridharan [2013], which suffers additional cost for

finding Ψ. ■

A.6 PROOF OF THEOREM 5

The proof is similar to Appendix A.5 but simpler. Again, the total regret can be decomposed into local regrets of each phase.

T
∑

t=1

⟨ct, ρt − ρ∗⟩ =
N
∑

i=1

si+1−1
∑

t=si

⟨ρt − ρ∗, ct⟩

≤
N
∑

i=1

si+1−1
∑

t=si

⟨ρt, ct⟩ − min
ρ∈∆(M)

si+1−1
∑

t=si

⟨ρ, ct⟩

Now the upper bound is the problem of optimizing (6) with η = ηi and t = si, . . . , si+1 − 1. By Theorem 1,

si+1−1
∑

t=si

⟨ρt − ρ∗i , ct⟩ ≤
L

ηi
log
|X ||A|

L
+

T
∑

t=1

ηi
2
∥ct −Mt∥2∞

where ρ∗i = argminρ∈∆(M)

∑si+1−1
t=si

⟨ρ, ct⟩.

By η−1
i D0 ≥ ηiΨsi:si+1−1 according to our doubling trick algorithm,

si+1−1
∑

t=si

⟨ρt − ρ∗i , ct⟩ ≤
2L

ηi
log
|X ||A|

L
.

Adding over N phases,

T
∑

t=1

⟨ct, ρt − ρ∗⟩ ≤ L log
|X ||A|

L

(

2

N
∑

i=1

1

ηi

)
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By (30), η−1
N−1D0 < ηN−1ΨsN−1:sN and the monotonicity of Ψ,

RT (ρ
∗, {ct}Tt=1) ≤ D0

8

ηN−1

< 8D0

(

Ψ1:T

D0

)1/2

= 8D
1/2
0 Ψ

1/2
1:T

= 8

√

√

√

√

L

2
log
|X ||A|

L

T
∑

t=1

∥ct −Mt∥2∞

■

A.7 PROOF OF THEOREM 6

Since the constraint set of occupancy measure is unknown, the regret of OREPS-OPIX under unknown transition setting can

be decomposed as (31). Note the additional error term ρt − ρ̂t as opposed to (11) used for the analysis of Theorem 3.

RT (ρ
∗, {ct}Tt=1) =

T
∑

t=1

[⟨ρt − ρ̂t, ct⟩+ ⟨ρ̂t, ct − ĉt⟩+ ⟨ρ̂t − ρ∗, ĉt⟩+ ⟨ρ∗, ĉt − ct⟩] . (31)

Lemma 3 (Lemma 5 of Jin et al. [2020]). With probability at least 1 − 6δ, for ρ̂t estimated with ρP,πt under transition

probability P ∈ P , where the confidence set P is defined as (14),

T
∑

t=1

⟨ρt − ρ̂t, ct⟩ = O
(

L|X |
√

|A|T log

(

T |X ||A|
δ

)

)

.

By Lemma 3, with probability at least 1− 6δ, the first term is bounded as

T
∑

t=1

⟨ρt − ρ̂t, ct⟩ = O
(

L|X |
√

|A|T log

(

T |X ||A|
δ

)

)

. (32)

The second term can be decomposed further as

T
∑

t=1

⟨ρ̂t, ct − ĉt⟩ =
T
∑

t=1

⟨ρ̂t, ct − Et−1[ĉt]⟩+
T
∑

t=1

⟨ρ̂t,Et−1[ĉt]− ĉt⟩.

From the definition of our cost estimator with the upper confidence bound,

T
∑

t=1

⟨ρ̂t, ct − Et−1[ĉt]⟩ =
T
∑

t=1

∑

x,a

ρ̂t(x, a)

[

ct(x, a)−
ct(x, a)−Mt(x, a)

ut(x, a) + γ
ρt(x, a)−Mt(s, a)

]

=

T
∑

t=1

∑

x,a

ρ̂t(x, a)(ct(x, a)−Mt(x, a))

ut(x, a) + γ
(ut(x, a) + γ − ρt(x, a)).

By Mt(x, a) ≤ ct(x, a) ≤Mt(x, a) + 1, ρ̂t(·) ≥ 0 and ut(x, a) ≥ ρ̂t(x, a),

T
∑

t=1

⟨ρ̂t, ct − Et−1[ĉt]⟩ ≤
T
∑

t=1

∑

x,a

(ct(x, a)−Mt(x, a))(ut(x, a) + γ − ρt(x, a))

≤
T
∑

t=1

∑

x,a

|ut(x, a)− ρt(x, a)|+ (ct(x, a)−Mt(x, a))γ

=
T
∑

t=1

∑

x,a

|ut(x, a)− ρt(x, a)|+ γ
T
∑

t=1

∥ct −Mt∥1.
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Lemma 4 (Lemma 4 of Jin et al. [2020]). With probability at least 1− 6δ, for transition functions P x
t ∈ P for all states

x ∈ X , where the confidence set P is defined as (14), the cumulative error of occupancy measure with respect to ρt of

known transition setting is bouned as

T
∑

t=1

∑

x∈X ,a∈A

∣

∣

∣ρP
x

t
,πt(x, a)− ρt(x, a)

∣

∣

∣ ≤ O
(

L|X |
√

|A|T log

(

T |X ||A|
δ

)

)

Since ut(x, a) = maxP∈P ρP,πt(x, a), by Lemma 4, with probability at least 1− 6δ,

T
∑

t=1

⟨ρ̂t, ct − Et−1[ĉt]⟩ ≤ O

(

L|X |
√

|A|T log

(

T |X ||A|
δ

)

)

+ γ

T
∑

t=1

∥ct −Mt∥1

Since {⟨ρ̂t,Et−1[ĉt]− ĉt⟩}Tt=1 is a martingale difference sequence, by using the Azuma–Hoeffding inequality, with

probability at least 1− δ,

T
∑

t=1

⟨ρ̂t,Et−1[ĉt]− ĉt⟩ ≤

√

√

√

√2 log
1

δ

T
∑

t=1

∥ct −Mt∥21.

With probability at least 1− 7δ, the second term is bounded as

T
∑

t=1

⟨ρ̂t, ct − ĉt⟩ ≤ O



L|X |
√

|A|T log

(

T |X ||A|
δ

)

+

√

√

√

√log
1

δ

T
∑

t=1

∥ct −Mt∥21



+ γ

T
∑

t=1

∥ct −Mt∥1 (33)

Since ρ̂t optimizes for ĉt, from the analyses of Theorem 1 and 3, the third term is bounded as

T
∑

t=1

⟨ρ̂t − ρ∗, ĉt⟩ ≤
L

η
log
|X ||A|

L
+

T
∑

t=1

η

2
∥ĉt −Mt∥2∞

≤ L

η
log
|X ||A|

L
+

η

2γ2

T
∑

t=1

∥ct −Mt∥2∞. (34)

Since ut(x, a) ≥ ρt(x, a), from the analysis of Theorem 3 using Lemma 2, the fourth term is bounded as

T
∑

t=1

⟨ρ∗, ĉt − ct⟩ ≤
L

γ
log

L

δ
max

t=1,...,T
∥ct −Mt∥∞. (35)

Finally, applying 32, 33, 34 and 35 back to 31 and letting γ = η1/3, with probability at least 1− 7δ,

RT (ρ
∗, {ct}Tt=1) ≤ O



L|X |
√

|A|T log

(

T |X ||A|
δ

)

+

√

√

√

√log
1

δ

T
∑

t=1

∥ct −Mt∥21





+ η1/3
T
∑

t=1

[∥ct −Mt∥2∞
2

+ ∥ct −Mt∥1
]

+
L

η

[

log
|X ||A|

L
+ log

L

δ
max

t=1,...,T
∥ct −Mt∥∞

]
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Let η =

(

L log
|X||A|

L
+L log L

δ
maxt ∥ct−Mt∥∞

∑
T

t=1

∥ct−Mt∥
2
∞

2
+∥ct−Mt∥1

)3/4

,

RT (ρ
∗, {ct}Tt=1) ≤

(

L log
|X ||A|

L
+ L log

L

δ
max

t
∥ct −Mt∥∞

)1/4

·
(

T
∑

t=1

∥ct −Mt∥2∞
2

+ ∥ct −Mt∥1
)3/4

+O



L|X |
√

|A|T log

(

T |X ||A|
δ

)

+

√

√

√

√log
1

δ

T
∑

t=1

∥ct −Mt∥21





B EXPERIMENTS

B.1 EXPERIMENTAL DETAILS

We provide the details of the experiment in Section 6 as Table 1. Additionally, we specify tm = 1000 episodes between the

change of obstacle locations for better predictability. Also, agent’s starting location was randomly assigned at the beginning

of each episode and the goal location was fixed across episodes. And all three obstacles moved randomly every tm episodes,

but in a restricted manner so that they do not obstruct the way from the starting point to the goal: that is, there is always a

way from the start to the goal without encountering any obstacles. Lastly, the experiment was repeated ten times and the

mean and variance of ten repetitions are shown in Figure 1.

Table 1: Parameters used in the experiments

Parameter Description Value

ϵ Default cost 0.01

L Timeout (number of layers) 200

ηOREPS Learning rate for OREPS and OREPS-IX 2.1× 10−3

ηOREPS-OPIX Learning rate for OREPS-OPIX 0.2

From Zimin and Neu [2013], the learning rate for OREPS and OREPS-IX was determined as ηOREPS =

√

L
log

|X||A|
L

T |X ||A| .

However, since the perfect predictor we used for OREPS-OPIX has zero error for cost estimation, we can set an arbitrarily

high learning rate as long as it is less than 1 (for the high probability guarantee in Theorem 3). After a sparse exploration

of parameters, we chose ηOREPS-OPIX = 0.2. With a higher learning rate, the algorithm converges even faster at the cost of

higher variance. And the same learning rate was used for OREPS-OPIX with latest predictors.
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