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SMALLEST GAPS BETWEEN EIGENVALUES OF REAL GAUSSIAN
MATRICES

PATRICK LOPATTO AND MATTHEW MEEKER

ABSTRACT. We consider an n X n matrix of independent real Gaussian random vari-
ables and determine the asymptotic distribution of the smallest gaps between complex
eigenvalues.

1. INTRODUCTION

1.1. Background. Random matrices have fascinated mathematicians and physicists for
decades due to their connections to quantum chaos, number theory, statistics, and numer-
ous other fields. A primary focus is the distribution of gaps between consecutive eigenvalues
in random Hermitian matrices, which underpins many of these links. Substantial empirical
evidence indicates that this distribution also arises in the spacings between energy levels
of disordered quantum systems and the zeros of the Riemann zeta function, to give just
two examples [6, 32].

While the distribution of a single eigenvalue gap is now mathematically understood for
a wide variety of matrix models, less is known about the smallest and largest gaps. As
motivation for their study, we note that the average-case performance of the Toda flow
algorithm for diagonalizing a symmetric matrix can be analyzed in terms of the smallest
eigenvalue gap of a Gaussian matrix [3,12]. Additionally, the correspondence between
eigenvalue gaps and spacings of zeta function zeros mentioned previously extends to the
largest and smallest spacings in a given interval [3].

The rigorous study of extremal eigenvalue gaps was initiated by Vinson in his 2001
Ph.D. dissertation [40]. Using the method of moments, Vinson determined the asymptotic
distribution of the smallest eigenvalue gap for the circular unitary ensemble (CUE), the
Gaussian unitary ensemble (GUE), and unitarily-invariant (-ensembles. For the CUE
and GUE, these results were extended by Ben Arous and Bourgade in [3], where they
obtained the joint limiting distributions for the k£ smallest eigenvalue gaps. Instead of the
method of moments, they drew on ideas developed by Soshnikov to study the smallest
gaps of determinantal point processes [38]. Further, they also determined the asymptotic
distribution of largest gaps for the CUE and GUE in the spectral bulk. The smallest gaps
distribution for the Gaussian orthogonal ensemble (GOE) was later established by Feng,
Tian, and Wei in [13]. We remark that determining the asymptotic distribution of the
largest gaps for the GOE remains an open problem.

All of the matrix models mentioned in the previous paragraph are exactly solvable,
in the sense that their eigenvalue correlation functions are given by explicit formulas.
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There has also been significant interest in studying extremal eigenvalue gaps for matrices
outside of this class. In [9], Bourgade studied the distributions of smallest and largest
gaps for a quite general set of random matrices, the generalized Wigner matrices, under
a smoothness assumption on the entry distributions. He showed that these extremal gaps
match those of the GOE/GUE (depending on whether the matrix is real symmetric or
complex Hermitian). Landon, Lopatto, and Marcinek provided an alternative comparison
argument for the largest gaps in [27], which does not require a smoothness hypothesis. As
a consequence of these universality results and the works on the GOE/GUE mentioned
previously, the largest gaps distribution is known for all Hermitian generalized Wigner
matrices, and the smallest gaps distribution is known for generalized Wigner matrices of
both symmetry classes with sufficiently smooth entries.

Further, lower bounds on the smallest gaps were established by Nguyen, Tao, and Vu in
[31] for Wigner matrices with arbitrary mean (without a smoothness hypothesis), and for
adjacency matrices of random graphs. Lopatto and Luh obtained similar lower bounds in
[28] for sparse matrices, including adjacency matrices for sparse random graphs. Feng and
Wei studied the smallest gaps for the circular S-ensemble, a generalization of the CUE,
for all positive integer 8 in [14]. In [15], Figalli and Guionnet extended the results of Ben
Arous and Bourgade from [3] to a several-matrix model.

So far, we have discussed only models with one-dimensional spectra, with eigenvalues
lying on either the real line or the unit circle. In [33], Shi and Jiang studied the distri-
bution of the smallest gaps for the complex Ginibre ensemble, a matrix of independent
complex Gaussian random variables, whose spectrum is asymptotically supported in the
unit disk in the complex plane. To the best of our knowledge, this is the only previous
work identifying the asymptotic distribution of extremal gaps for an ensemble possessing
a two-dimensional spectrum. (Shi and Jiang also consider Wishart matrices and unitarily-
invariant S-ensembles, which have one-dimensional spectra.)

In [20], Ge proved a high-probability lower bound on the size of the smallest eigenvalue
gap of any n X n random matrix with independent and identically distributed entries,
subject to a mild regularity condition on the the entry distribution (that is satisfied, for
example, by all distributions with finite variance). Luh and O’Rourke proved a stronger
lower bound in [29] and deduced that when such a matrix has sub-Gaussian entries, the
probability it does not have simple spectrum decays exponentially in n.

High-probability lower bounds for the smallest particle gap in a two-dimensional Coulomb
gas were proved by Ameur in [1], and by Ameur and Romero in [2]. In [39], Thoma studied
the smallest gap for Coulomb gases in two and three dimensions, providing upper and
lower bounds and proving asymptotic tightness. We remark that Thoma’s lower bound in
two dimensions improves on those in [1,2], and that he proves many other results on the
separation of particles that hold in arbitrary dimension.

In this work, we consider the smallest gaps distribution for the real Ginibre ensemble, a
matrix of independent real Gaussian random variables, whose spectrum is also asymptoti-
cally supported on the unit disk (but with a non-zero probability of real eigenvalues, unlike
its complex counterpart). Due to the strong correlations between eigenvalues, we find that
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the smallest gaps between complex eigenvalues are of order n~3/%. This contrasts with the
smallest gap between n independent points in the disk, which is of order n~!, and confirms
the general principle that random matrix eigenvalues act as mutually repelling particles
whose interactions suppress their fluctuations (relative to those of independent particles).

The methodology of Shi and Jiang in [33] was based on the fact that the eigenvalues of a
complex Ginibre matrix form a determinantal point process, which makes the study of their
smallest gaps amenable to the techniques developed in [3,38]. However, the eigenvalues of
real Ginibre matrices instead have a Pfaffian structure, which makes understanding their
smallest gaps substantially more complicated. This work is therefore the first to deter-
mine the smallest gaps distribution for a two-dimensional ensemble without determinantal
correlation functions.

1.2. Main Result. We begin by introducing some concepts necessary to precisely state
our main result. When possible, our notation and definitions are chosen to match the
previous works [22,33], for consistency with the existing literature.

Definition 1.1. For all n € N, let G}, = (g45)1<i,j<n denote a n x n random matrix whose
entries are independent Gaussian random variables such that E[g;;] = 0 and E[g?]] =1 for
all 4, j. The matrix G,, is called the real Ginibre matriz (GinOE) of dimension n. We also
define W,, = n=Y2@,,.

We refer the reader to [10], [11], and [16] for more information about the GinOE and
the related unitary and symplectic Ginibre ensembles.

Next, we recall two well-known facts about the spectrum of W,,. First, in the limit as
n tends to infinity, the empirical spectral distribution becomes uniformly distributed on
the unit disk D = {z € C : |z| < 1} [7]. Second, the non-real eigenvalues of W,, come in
conjugate pairs, since W, has real entries. This means that if A\ is an eigenvalue of W,
with non-zero imaginary part, then \ is also an eigenvalue of W,,, and the eigenvalues in
the upper half-plane H = {z € C : Imz > 0} completely determine those in the lower
half-plane.

Given these considerations, we restrict our attention to the eigenvalues of W, lying in a
given domain contained in the upper half disk

Dt ={z€C:|z|] <1,Imz > 0},

and study the asymptotic distribution of the smallest gaps among these eigenvalues.! Fur-
ther, to avoid boundary effects, we will consider only domains at a positive distance from
the boundary of DT. This restriction leads to the following definition.

Definition 1.2. A domain  is called admissible if Q C DT.

We will derive the distribution of the smallest gaps from a more general result about the
convergence of a certain point process built from these gaps to a Poisson limit. To define
this process, we begin with the definition of an order on points of C.

1We recall that a domain is is a non-empty connected open subset of C.
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Definition 1.3. For 21,29 € C, we say that z; < zo if Im(z1) < Im(2q), or if Im(z;) =
Im(z2) and Re(z1) < Re(z2).

Let {\;i}!"; denote the eigenvalues of W), indexed so that \; < --- < A, when all
eigenvalues are distinct. On the measure zero set where the eigenvalues are not distinct,
we label the eigenvalues in the same way, except we break ties between equal eigenvalues
arbitrarily.

Definition 1.4. Let © denote an admissible domain and set Rt = [0,00). We define a
point process ng ) on R+ as follows. First, for all 4 € N such that 1 < i < n, we define

i =argmin {|\; — Xi| 1 s < Aj, N\ € Q) (1.1)
J#i
if the set of indices j such that j # i and A; € 2 is nonempty. Otherwise, we set i* = 0.

We then set ®)

1N EQ
Remark 1.5. As noted in [33, Remark 1.1], the point of introducing the order < in
the definition of ¢* is to prevent the duplication of gaps in XgL ), to ensure good limiting
behavior. For example, if i* were defined as the index minimizing |\; — \;«| (without the
order condition), then the smallest gap would appear twice in the set {|\; —A;+| : 1 < i < n},
and ng ) could not converge to a Poisson process with an absolutely continuous intensity
measure.

We now state our main theorem on the Poisson convergence of ng ). For every set S C C,
let | S| denote the Lebesgue measure of C.
Theorem 1.6. Let €2 be an admissible domain. As n — oo, the processes ng ) converge

weakly to a Poisson point process yo on RT with intensity
E[xa(4)] = % /A 3 dr (1.3)
for any bounded Borel set A C RT.
For the next corollary, we let
£ = min{|\ — Aj[t A € QAN €QAG <} (1.4)
(n)

denote the smallest gap between eigenvalues in 2, and more generally we let ¢, denote
the /-th smallest value in this set. We then define the rescaled gaps

w_ s\
n 3/4 n
= —_ t, . 1.
A= () )
Corollary 1.7. For any real numbers 0 < 1 < y; < --- < x, < yi, we have
k—1
. n —SC4 _ .4
nll_)ngO]P’(a;g < wé ) < ye forall 1 <0 <k)= (e k—e yk) l_I(yz1 — 7).

(=1
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In particular, the previous result implies that for any fixed k € N, the rescaled gap w,gn)

converges in distribution to a random variable with density p(x) gih—le=" gy

Remark 1.8. The limiting intensity measure in (1.3) is identical to the one for the smallest
gaps process of the complex Ginibre ensemble (GinUE); see [33, Theorem 1.1].2

1.3. Proof Ideas. As mentioned in Section 1.1, the previous analysis of smallest gaps for
the GinUE in [33] is based on the determinantal structure of the eigenvalue correlation
functions, following ideas of [38] and [3]. Because the GinOE has Pfaffian correlation
functions, this methodology does not immediately apply. However, it was observed in
[22] and [25] that in the bulk of the spectrum, these Pfaffian correlation functions can be
approximated by determinantal ones up to exponentially small additive errors. Using this
idea, we are able to place ourselves back in the determinantal framework of (3,33, 38].

After we make the reduction to a determinantal process, we come to the primary obstacle
in adapting the strategy used for the smallest gaps of the GinUE in [33]. Their proof
relies heavily on the positive-definiteness of the determinantal kernel for the GinUE, while
the kernel in our determinantal approximation is not known to be positive-definite. To
overcome this difficulty, we prove a technical lemma showing that the approximating kernel
is positive-definite (or exponentially small) everywhere in the spectral bulk, except possibly
for a set of asymptotically vanishing measure (see Lemma 3.2). Using the determinantal
approximation in tandem with this lemma, we are able to complete the proof of our main
result by carefully tracking the contribution of the exceptional sets on which the kernel is
not positive definite.

It is natural to wonder whether Theorem 1.6 holds for more general domains. Indeed,
the analysis of the smallest gaps for the GinUE in [33] holds for any region of the complex
plane. The methods here should extend in a relatively straightforward way to any region
Q such that Q C H; that is, we require a positive distance from the real axis but permit
the region to extend beyond the unit circle. Specifically, one can augment the asymptotic
analysis of the Pfaffian kernel in Lemma 2.4, which holds in the interior of the unit disk,
with the asymptotics from [26, Remark 3.4] and [5, Theorem B.1] to access to the entire
interior of the upper half-plane. We omit this extension for brevity, since it requires lengthy
computations. Generalizing our result to regions that intersect the real line would require a
precise accounting of the contributions from the real eigenvalues, and seems more difficult.

1.4. Outline. In Section 2, we begin by recalling previous results on the correlation func-
tions for the GinOE, the Pfaffian, and the determinantal approximation, and state some
straightforward consequences of these results. We also recall some facts about convergence
to Poisson distributions and processes. In Section 3, we state a three key lemmas and show
how they imply our main theorem and its corollary. In Section 4, we prove each of these
key lemmas. Finally, in Section 5, we prove several auxiliary technical lemmas that we
require at various points throughout this work.

2Consequent1y, the distributions of the rescaled smallest gaps also match. We note for the convenience
of the reader that there is a misprint in the definition of the rescaled gaps Te(n) in [33, Corollary 1.1].
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2. PRELIMINARY RESULTS

2.1. Correlation Functions for the GinOE. We begin by recalling how to compute
(symmetrized) expectations of functions of the eigenvalues (w;)j; of G,. Let C* = C\R
denote the complex plane with the real line removed, and let Z;, C {1,...,n}" be the set of
pairwise distinct k-tuples of indices. By [8, (5.1)], for all k,n € N, there exists a function

p,i"): (C*)* — R* such that

/()kf(zl,...,zk>p,§"><z1,...,zk>dz1...dzk:E S fwi,ewy)|  (21)
C*)k

(11,0538 ) €Ty

for every compactly supported, bounded, and Borel-measurable function f: (C*)* — R.
We will use the shorthand pj = p,(gn), suppressing the n-dependence in the notation. For
more on correlation functions, including their definition for general random point fields,
we refer the reader to [37].

The next lemma identifies the correlation function pj as the Pfaffian of certain 2k x 2k

matrix. For the reader’s convenience, we begin by recalling the definition of a Pfaffian.

Definition 2.1. The Pfaffian of a 2n x 2n skew-symmetric matrix M = (sz)fglzl is
defined by

n

1
Pf(M) = on] Z Sgn(U)HMo(Zi—l),cr(2i)7

’ o€Sa, i=1

where Sy, is the symmetric group of degree 2n.

The statement below quotes [22, Theorem 1.1] exactly, which collected certain results
from [30, Appendix B.3]. However, we emphasize that these correlation functions were
originally identified explicitly in [18], and the Pfaffian form below was first derived in the
works [8,17,34,35].

Lemma 2.2. The k-point complex—complex correlation functions of the n-dimensional real
Ginibre ensemble G, are given by

pr(21s - 2k) = PEHK (2, 25) )1<i i<k, (2.2)

where (K (2, 25))1<i j<k is a 2k x 2k matrix composed of the 2 x 2 blocks

N D, (zi,25)  Sn (%, %)
K (z, ]) <—Sn(2j,zi) In(Zi,Zj)>’
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and D,, I,, and S,, are defined by
ie—(1/2)(z—w)?

Sp(z,w) = Ton (0 — 2)G(z,w)sy (zw),
e~ (1/2)(z—w)?

Dy (z,w) = T(u} — 2)G(z,w)s,(2w),
e—(1/2)(z—w)?

I(z,w) = ——— (2 — 0)G(z,w) s, (Zw),

Ver

where z,w € C* and

G(z,w) = \/erfc(\/ilm(z))erfc(\/iIm(w)), erfc(z) = % /Oo exp(—t?) dt,

n—1 Zj
sp(z) =€ % Z il
j=0
Remark 2.3. By a change of variables in the definition (2.1), it follows that the k-th
correlation function for the complex eigenvalues of W, is n*py(\/nz1, ... \/nzp).

The following lemma is useful for controlling the correlation functions of W,,. Its state-
ment is taken from [22, Lemma 2.3].

Lemma 2.4. Let © be an admissible domain, and let dg = inf{|z —w| : 2 € Q,w €
OD*} denote the distance between Q and the boundary of D*. There exist constants
C(dq),c(dq) > 0 such that

sup |Dp(v/nz, nw)| < Ce™", sup |I,(vnz,nw)| < Ce™",

zZ,we z,we

sup |Sn(\/ﬁz,\/ﬁw)‘ <C.

ERVISIYS

The statement of the next lemma is from [22, Lemma 2.4]. It was proved in [21, Appendix
B] (and appeared earlier in [19]).
Lemma 2.5. Let M = (Mlj)f?zl be a skew-symmetric 2n x 2n matrix such that M;; = 0
for every pair of indices (7, j) such that i = j mod 2. Let M= (]\7)?’]-:1 be the n x n matrix
defined by ]\Ajij = Mgi_l’gj. Then Pf(M) = det(]\/\j)

For all k € N, define the k x k matrix Q") (z1,...,2) = (Sn(v/nzi, v/nzj))1<ij<- The
following lemma provides a useful approximation of the correlation functions of W,, by a

determinant (see Remark 2.3). It follows from combining Lemma 2.2, Lemma 2.4, and
Lemma 2.5; we provide a detailed proof in Section 5.

Lemma 2.6. Fix k& € N. For every admissible domain 2, there exists a constant ¢(k, dg) >
0 such that for all n € N,

sup ‘nkpk(\/ﬁzl, nzE) = nFdet QW) (2, . 2)| < clemen,

21y 2 EQ
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The next lemma is a consequence of Lemma 2.6 and provides a useful estimate on
Sp(v/nz,v/nw) when z and w are close together. Its proof also appears in Section 5. We

define
je(—1/2)(z—w)?—n(Im(2)* +Im(w)?)

Vizw) = 27/ Im(z) Im(w) (@=2).

Lemma 2.7. Fix an admissible domain  and » € RT. Then there exists a constant
C(r,dq) > 0 such that

S|Q

sup |Sn(\/ﬁz, Vnw) — U(z,w)‘ <

2, wEQ:|z—w|<rn—3/4

. (2.3)

2.2. Poisson Convergence. We require two basic convergence results, one for Poisson
random variables and one for Poisson point processes, which are proved in Section 5.

Proposition 2.8. Let {X;}72, be a sequence of random variables taking values in the
non-negative integers, and let X be a Poisson random variable with rate A > 0. Suppose
that for all k£ > 0,

lim E[X(X —1)--- (X — k)] = Ak (2.4)

n—oo
Then the sequence X,, converges to X in distribution.

Proposition 2.9. Let {X(”)};’Ozl be a sequence of point processes on R, and let x be a
Poisson point process on R with a intensity measure p, which we suppose has no atoms.
If x(™)(.J) converges in distribution to x(J) for all bounded Borel sets J C R, then the
sequence of point processes X(") converges in distribution to Y.

3. PROOF OF MAIN RESULT

We now state a series a lemmas and show how they imply the main result. Their proofs
follow in the coming sections.

3.1. Modified Point Process. We begin by introducing a auxiliary point process, the
s-modified point process corresponding to the eigenvalues of W,,. This technique was
originally introduced in the works [36, 38].

Given a bounded Borel set A C RT, we define the corresponding set

B={2€C:|z| € A,0 <z}, (3.1)

omitting the dependence on A in the notation (since the choice of A will always be clear
from context). For all n € N, we set

A, ={na:ae A}, B,={n"":be B}, (3.2)
and define N
€M =3"6r, =" O Lmn sy (3.3)
1N EQ A ES)

where the set \; + B,, has the usual definition as \; + B, = {\; + 2 : z € B, }.
The following lemma implies that it suffices to study £ in order to prove our main
result. It is proved in Section 4.
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Lemma 3.1. Let Q be an admissible domain. For all bounded Borel sets A C RT, we
have
lim X" (4) — ¢™(Q) =0, (3.4)

n—o0

where the convergence is in distribution.

We let 7, denote the k-th correlation function for £ suppressing the dependence on
n in the notation. From the definition of a correlation function (see e.g. [37, Definition 2])
and Remark 2.3, it is straightforward to see that 7 is given by

Tk(zl, v ,Zk) = nkpk(\/ﬁzl, ceey \/ﬁzk)]lg(zl) e ]].Q(Zk). (35)

Further, we let 7. denote the k-th correlation function for the modified process gn The
function 7 can be written explicitly in terms of the functions {7;} ; using the inclusion—
exclusion principle; see [37, (4.5)] for details.

For every k € N, we define the set

U ={(21,...,26) €Q": (z;+ By) N (2j + By) =@ for all i # j,1 <i,j <k}. (3.6
The following lemma is proved in Section 4.

Lemma 3.2. Fix an admissible domain 2, a bounded Borel set A C R™, and k € N.

(1) There exists a set Z C QF such that u(Z) = 0 and the following holds. For all
(z1,...,2,) € QF\ Z with pairwise distinct entries,

L 1 s \"
HILH;OTk(ZI,---aZk) = (F/BM dz> . (3.7

(2) There exist constants C,c¢ > 0, depending only on A, k, and 2, such that the
following statements hold for all n € N. There exists a set W, C QF such that

POW,) < Ce ", (3.8)
and for all (zq,...,2;) € Ui \ W, we have
Tr(z1y ..., 28) < C, (3.9)
and for all (z1,...,25) € Wh,
Te(z1, .. z) < CnBE. (3.10)
(3) Set ), = QF\ W, Then
lim Tr(21, ..y 2k) dzy ... dz = 0. (3.11)

Proof of Theorem 1.6. By the definition of a correlation function [37, Definition 2], we have
Z )

(g(")(Q) — k)! (3.12)

/ ?k(zl,...,zk)dzl...dzk:E[
Ok
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Abbreviating W = W,,, we write

/ ?k(zl,...,zk)dzl...zk :/ ]l\yk\w?k(zl,...,zk)dzl...zk (313)
Qk QFk
—I—/ IwTk (21, .-y 2K)dzy - .. 2 (3.14)
Ok
—I—/ Ig, Tk(21, - - -5 26) d21 - . 2k (3.15)
Ok
Observe that by the Borel-Cantelli lemma and (3.8) we have

The integrand in the integral on the right-hand side of (3.13) is uniformly bounded, by
Lemma 3.2(1), so by the dominated convergence theorem, Lemma 3.2(2), and (3.16), we
conclude that

k k
lim Ly, 7k(21,. .5 28)d21 ... 2 = <i2/ |z|2dz> (/ dz> . (3.17)
nree Jok ™ JB Q

Using (3.8) and (3.10), we see that

lim IwTi(z1, ...y 2k)dzy ... 2z, = 0. (3.18)

n—oo Ok

Further, by (3.15), the limit as n tends to infinity of (3.15) also vanishes. Then combining

(3.12), (3.13), (3.18), and (3. 17) we find
</ \212d2> (W /dz>k. (3.19)

5 )
lim E
It follows from Proposition 2.8 that 5 )(€) converges in distribution to a Poisson random
variable with intensity equal to

() ([5)-12 o

(n)

Then Lemma 3.1 implies that x,” (A) converges in distribution to a Poisson random vari-
able with rate given by (3.20). Since this convergence holds for all bounded Borel sets

A C RT, Proposition 2.9 implies that ng ) converges to xq, as desired. O

For the proof of Corollary 1.7, we additionally require the next lemma, which says that it
is unlikely that three eigenvalues all bunch together on the scale of the smallest eigenvalue
gap. It is also proved in Section 4. We define the random measure

=26 = > O(Aiy Aig:his)? (3.21)

Aip s AigsAig pairwise distinct

on C3, and for all admissible domains 2 and all M > 0, we define
Bur = {(z,1,22) 1 2 € Q, w1 — 2| < Mn™3/4 |2y — 2| < Mn™3/4}. (3.22)
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Lemma 3.3. Fix M > 0 and an admissible domain 2. Then
i =03) —
lim E[E®)(By)] = 0. (3.23)

Proof of Corollary 1.7. Given Theorem 1.6, the proof of this corollary is essentially the
same as that of [33, Corollary 1.1]. We include it here for completeness.
Let t; < --- <t; denote the k smallest values in the set

{INi = Xis| : X\ € QAT #£ 0, (3.24)
and define the rescaled values
e 1/4

Observe that we have suppressed the n-dependence in the notation for the ¢, and &y. We

also use the shorthand t; = t,in). We will first show that the wy have the desired joint
limiting distribution, then transfer this result to the wy.
We begin by observing that the event

{zg <wp <ypforalll <l <k} (3.26)

can be written as the intersection of the events

1/4
{ng) ((@) (3557%)) > 1}, (3.27)
/
{XQ <<@>1 4(xk,yk)> =1 for all 1§€§k—1}, (3.28)

410\ 4
xo | (—— (yo—1,2z¢) | =0forall 1 <l <k, (3.29)

with the convention that yp = 0. Using this representation, and the fact that xq(S1)
and xq(S2) are independent when the sets S; and Sy are disjoint (since ygq is a Poisson
process), we have

and

lim Pz <@y <y forall 1 <l<k)=

n— o0
k—1 k k—1
(1 - e—(yé—x@) [[ i — ahye @i-=d T eti—=0 = ( —zh _ e—yé) (i —2b). (3.30)
(=1 /=1 =1
Next, we prove that
lim P(3¢ < k such that t; # t;) = 0. (3.31)

n— o0
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Let py < g¢ denote the indices such that [A,, — Ay, | = tg. To show (3.31), it suffices to show
that the probability that the 2k eigenvalues ()\,,, )‘Qe)?:l are distinct tends to 1 as n — oo.
Using the notation defined before Lemma 3.3, we find that for every M > 0,

P(3¢ < k such that #; # t;) < P(E® (Byy) £ 0) + P(fy > Mn~%/*/2) (3.32)
<E[E®(By)] + Pt > Mn=%1/2). (3.33)
By Lemma 3.3,
Tim E[=®)(Bar)] = 0. (3.34)
Therefore
1i7131_>solcl)p P(3¢ < k such that t, # t;) < lign_)solép Pt > Mn=%/%/2), (3.35)

and we conclude the left-hand side of (3.35) is zero by taking M to infinity and using
(3.30). O

4. PROOFS OF MAIN LEMMAS

We begin with the proof of Lemma 3.3, since it is used in the proof of Lemma 3.1. We
then prove Lemma 3.1 and Lemma 3.2. We use the convention that the letters C' and ¢
denote positive constants that may change line to line.

4.1. Proof of Lemma 3.3.

Proof of Lemma 3.3. For all z € C and r € RT, let
D(z,r)={w e C: |z —w| <r}.

Set M,, = Mn—3/*. We first note that, by the identification of the correlation functions for
W, in Remark 2.3, and Lemma 2.6, we have

E[E(?’)(BM)] = n3// p3(v/n\, V/nzy, V/nz) dzy dzo dX (4.1)
Q JD(\M,)?

= / / det Q(A, 21, 22) dz1 dzg dX + O(e™ "), (4.2)
0 JD(\ M)

where we abbreviate Q(wy,we, ws) = Q® (w1, we,ws). Here, and for the rest of this proof,
the implicit constants in the asymptotic O notation depend only on A and £2. We note
that

det Q(A, 21, 22) =Q11(Q22Q33 — Q23Q32) — Q12(Q21Q33 — Q23Q31) (4.3)
+ Q13(RQ21Q32 — Q31Q22). (4.4)

We begin by bounding the first term in (4.3). By Lemma 2.4, we have Q11 = O(1), so we
focus on the difference QQ22Q33 — Q23Q32.
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Using Lemma 2.7 with » = 7, we have

(e(—1/2)(z1~21)? —n(Im(z1)> +1m(21)?) L1 )
(Z1 —21)+O0(n ") ==+0(n""), (4.5)

O = 274/Im(z1) Im(z1) @

and similarly

Q33 = % +0(n™). (4.6)
Further,
e(=1/2)(21=22)*+(=n/2) (22— 21)* —2n(Im(z1)*+1m(22)?)
QR23Q32 = T Ty Im(a) 1z — 2>+ 0m™). (A7)
Define uy,uz € C by the relations
721 =AM+ n_3/4u1, 29 = A4+ n "3 . (4.8)
Note that

21— 22 =21— 21+ n_3/4(111 — ﬁg) =2i Im(zl) + n_3/4(211 — ﬁg) (4.9)

and similarly

29 — 71 = 2iIm(z2) — n™ ¥4 (g — ). (4.10)
Using (4.9), (4.10), and Im(z;) — Im(23) = O(n=%/*), we obtain
—g(zl —5H)? - g(@ — 21)% — 2n(Im(z1)? + Tm(29)?) (4.11)
= 2in'/* (Im(22) — Im(z1)) (@1 — @) + O(n~*?%) = O(n~"/?). (4.12)
Additionally, we have
21 — 2% = 4Tm(z1) Im(22) + O(n=3/%). (4.13)

Inserting (4.12) and (4.13) into (4.7), we obtain

O -1/2 1
Q23Q32 = D ( ETn ) +O(n=3) = —+ O(n~1/2). (4.14)
To control the error terms in (4.14), we used the fact that
sup U(z,w)| < C, (4.15)

2, WEN:|z—w|<Tn=3/4

which follows from Lemma 2.4 and Lemma 2.7.
Combining (4.5), (4.6), and (4.14), and recalling that we have Q11 = O(1) from Lemma 2.4,
we conclude that

Q11(Q22Q33 — Q23Q32) = O(n~1/2). (4.16)

Parallel reasoning (which we omit) yields

Q12(Q21Q33 — Q23Q31) = O(n™1/?), Q13(Q21Q32 — Q31Qa0) = O(n~Y/2).  (4.17)
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Inserting (4.16) and (4.17) into (4.3), and using (4.2), we have
E[Z® (Ba)] =n / / n"Y2)dzy dzy dX = O(nV/?). (4.18)
D(A\,M,)?

In the last equation, we use that the area of D(X\, M,,) is O(n~3/2). Finally, (4.18) implies
(4.21), which finishes the proof. O

4.2. Proof of Lemma 3.1. Given Lemma 3.3, the following proof is essentially the same
as the first part of the proof of [33, Lemma 3.3]. We give full details for completeness.

Proof of Lemma 3.1. Fix a constant 7 > 0 such that A C (0,7) and set 7, = n=3/47 for all
n €N. For all 2z € C and r € RT, let

DY (z,r)={weC:|z—w| <rz=<w}
We begin by showing that for all indices i such that \; € 2 and * # 0, if
Lxe —xeBa} # ]]‘{g(n)()\i-l,-Bn):l}) (4.19)

then £ (D*(\;,7,)) > 2. First, suppose that the left-hand side of (4.19) is 1, while the
right-hand side is 0. In this case, €™ ()\; + B,) > 2, which implies £ (DT ()\;, 7,)) > 2
by the definition of B,,. Next, suppose that the left-hand side of (4.19) is 0, while the
right-hand side is 1. Then there exists some j # ¢* such that \; € Q and \; € \; + B, C
DT (i, ). Since |\; — \i| < |\; — \j| by the definition of i*, we have £ (D¥(\;, 7)) > 2.
We conclude that (4.19) implies £ (DT (\;, 7,)) > 2. We also note that if i* = 0, then the

term corresponding to \; vanishes in both of the sums ng )(A) and 5")(9)
From the previous paragraph, we see that

n—1

xS (4) - €M (0 <D Lt umyzar < EP(E), (4.20)
i=1

where 2 denotes the 3-point measure defined in (3.21) and we define
&= {()\,21,22) A E Q, (21,22) S D+()\,Tn)2}.
By Lemma 3.3 and the inclusion & C B, we have

limsupE[E(g)(é’)] < hmsupE[ (3)(5’7)] =0. (4.21)
n—oo
By Markov’s inequality and (4.20), this implies (3.4) and completes the proof. O

4.3. Proof of Lemma 3.2. We begin by recalling the following lemma from [23, Theorem
7.8.5].

Lemma 4.1. Let M be an n X n positive-definite Hermitian matrix. For any Z C
{1,2,...,n}, let Mz be the submatrix of M formed by the rows and columns with in-
dices in Z. We have det(M) < det(Mz) det(Mze).
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The next lemma shows that Q(k)(zl, ..., 2)) s positive-definite, or exponentially small,
for all but an asymptotically vanishing set of (z1,...,2;). We will use it in conjunction
with (4.1) to bound the correlation functions 7. It is proved in Section 5.

Lemma 4.2. Fix an admissible domain 2. For all k£ € N, there exist constants Cy(12), ¢, (€2) >
0 such that the following holds. Define

Cr = {z € QF : QW (2) is not positive definite A [n*Qp(2)| > Cre™*"}, (4.22)
and let 1 denote Lebesgue measure on C¥. Then
wu(Cr) < Cre™ ™. (4.23)
We require the following consequence of Lemma 4.2.

Lemma 4.3. Fix an admissible domain €). For all k,m € N with m > k, there exist
constants Cp, ., (€2), ¢ m(€2) > 0 such that the following holds. For all zq,..., 2, €  and
m > k, define

Grom(21,. .., 2,) = {(Zk+1, czm) €EQMTR (21, m) € Cm}, (4.24)
and
Chom = {(21, cey2E) € 0k ,u(ghm(zl, ... ,zk)) > C’hme_ckvm"}. (4.25)
Then
1(Chm) < Cme Fm™. (4.26)

Proof. We consider C}, , cim as parameters that will be fixed at the end of the proof. By
Fubini’s theorem,

1(C) = / dz > / / dz > Chme™Em™N = 11(Chn) Che” %V (4.27)
Ck: Ck,m g

k,m Ck,m
We conclude from Lemma 4.2 that
C

Ck_ck,m)n > . 4.2

The conclusion follows after choosing ¢y, ,,, such that c;, > 2¢;, ,,, and Cy, ,, such that C’,f’m >
Cy. O

We also recall the well-known error function asymptotic

2

erfe(x) = c

N (1+0(z7?), (4.29)

which holds as z — oo.
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Proof of Lemma 3.2(1). By a standard computation using the inclusion—exclusion principle
(see [37, (4.5)]), we have

Aoz = 3 /21+B d:nl.../zﬁB da

m=0

/ T2k+m(z1’$1""’Zk?xkvylw"vym) dyldym (430)
((z1+Bn)U...U(z,+Bn))™

We note that [37, (4.5)] requires that z; ¢ z;+ B,, for all ¢ # j, which is true for sufficiently

large n by the assumption that (z1,...,z;) has pairwise distinct entries.
We begin by analyzing the m = 0 term, which is
/ / Tok(21, X1y« -« 2k, Tk ) A2 - . . dTg. (4.31)
21+ Bn 2 +Bn

By (3.5) and Lemma 2.6, we have uniformly for all zy,z1, ..., z;, xx € Q that
TZk(zla LTlyeees Zky They Y1y - - - 7ym) = n2k det Q(zk)(zly LlyeenyZhy $k) + O(e_cn)' (432)

Observe that Q) is 2k x 2k matrix that can be written as a k x k matrix of 2 x 2 blocks
(Qij)1<i j<k, where the Q;; have the form

@.. — <STL (\/ﬁzi’ \/ﬁzj) Sn (\/H:EM \/ﬁzj)> )
5= \Su (Vi Vi) Sa (Vis, i)
For 1 < a,b < 2, we will will use @ij(a, b) to denote the (a,b)-th entry in the (i, j)-th block
of Qh),
We will analyze the diagonal and off-diagonal blocks separately. Beginning with the
off-diagonal blocks where i # j, we claim that there exist constants C,c > 0, depending
only on € and the values z1,..., 2z, such that

A (ab) < Ce—cn. 4.33
Iggjxﬁfg%(a, ) < Ce (4.33)

We will consider only the case a = b = 1 in detail, since the others are nearly identical.
By (4.29), uniformly for all z;, z; € Q, we have the asymptotic expansion

Sn(Vnzi,Vnzj) = Uz, 2j)sn(nziZ;) (1 +O0(n™1)). (4.34)
By [22, Lemma 4.1], there exists a constant O(JQ) > 0 such that for all z;, z; € Q,
1 (ZiZjel_zizj)n

2mn 1 —2Z;

sp(nzizj) =1— (1+ R(zizj;n)), |R(zizj;n)| < Cnt.  (4.35)

Inserting this estimate into (4.34), we find
[Sn(Vnzi, iz;)| < Ce (/D Rezi=2)% g mnlim(z)* +Im(z)%) (4.36)
x(1+c ‘e—Q(l—Zﬂj)(z,zj)"D . (4.37)
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Next, we note that there exists a constant ¢(z1,. .., z,) > 0 such that
e~ (/2 Re(zi=2))? g—n(Im(z:)*+1m(2))*) — o=(n/2)lzi=z* < g=en (4.38)
and
e~ (/2) Re(A=2))? p—n(lm(=z:)+Im(2))%) | < o(n/2)(=|zi=2;]* +2+2 Re(2:%j) ~2In 22| (4.39)
— o~ (/2)(lzi*+]z|*~2—1n |2[*~In |2;]?)) (4.40)
<e (4.41)

where the last inequality follows from |z|2 — 1 —In|z|? > ¢ > 0 for z € Q (which holds by
the convexity of x — Inz). This completes the proof of (4.33).

We now consider the diagonal blocks, corresponding to the case i = j. By Lemma 2.7,
these take the form

() S = () Fom) roon ua

where the additive error term denotes a matrix such that each entry is O(n~!). Since
|U(z,w)| < C uniformly for z,w € Q, by Lemma 2.7 and Lemma 2.4, we have

Sn(zi,2i)  Sn(zi, i)\ . Uz z) Uz, i) -
det <Sn(xivzi) Sn(xi,xi)> = det <U($z‘,2‘i) U(mi,:ni)> +0(n™). (4.43)

We now compute the determinant on the right-hand side of (4.43). Beginning with the
term coming from the diagonal of this block, by direct substitution, we observe that

U(ZZ', Zi) = U(l‘l,iﬂz) = % (4.44)

For the term coming from the cross-diagonal, observe first that

B -1
* 4r2Tm(z;) Im(2) (

X exp (-g [(z — )2+ (z; — Zi)z] —2n [Im(zi)2 + Im(:z:l)z]) (4.45)

Uz, xi)U (4, 2;) zi — 2)(Zi — m;)

Following the same strategy as in (4.8), since z; € z; + B, we will define u; € C by the
equality
/4. (4.46)
We now return to (4.45) and analyze each factor separately. First, we have
-1 B -1
472 Im(z;) Im(z;)  4n2Im(z;) (Im(2;) +n=3/4 Im(u;))

_ -1 _3/4
= Ty O, (4.47)

T, =z +n
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Secondly, we have
(i — 2) (% — x;) = (—2iTm(z;) + n~3/4a;) (—2i Tm(z;) — n =3 ;)
= —4Tm(z)? + O(n=3/%). (4.48)

Next, in the exponent, we have

—§ ((ZZ — :ii)2 + (332 — Zi)z)

- _g <(2i Tm(z;) — n~3/4%;)? + (2i Im(z;) + n_3/4u2-)2>
- —g <—8 Im(z)2 — 8n~%4 Im(z;) Im(u;) + n~3/2(u? + af))
= 4nTm(z)? + 4n"* Tm(z;) Tm (u;) — n~ Y2 (Re(u;)? — Tm(ug)?), (4.49)
and, for the other term in the exponent,
—2n (Im(z;)* + Im(z;)?) = —2n <2 Im(z)? + 20~ Tm(z;) Im (u;) + n =/ Im(ui)2>
= —4nTm(z)? — 4n~ Y Tm(z) Tm(ug)? — 2072 Im(w;)?. (4.50)
Summing (4.49) and (4.50), we see that the exponent is
—n"V2(Re(u)? — Im(u)?) — 2072 Im(ug)? = —n~V2|uy)? (4.51)
= —nlz — )%, (4.52)
noting that u; = n®*(x; — 2;). So, (4.45) simplifies to
Ul(ziyx)U (x4, 2;) = % exp (—n\zi — mzlz) + O(n_3/4). (4.53)

Using (4.44) and (4.53), we compute the determinant on the right-hand side of (4.43) and
find

det () ) 40 =72 (1 expl-nlss — i) + 0. (450

Returning to (4.32), and using (4.33), we see that the only non-negligible contributions
to the determinant of Q(2%) are from the 2 x 2 blocks along the diagonal. Up to an additive
error of O(n=3/4), this is

ﬁ <n27r_2 /ZiJan(l — exp(—n|z; — x;]?) dmi> . (4.55)

i=1
It suffices to compute each integral from this product individually. Making the change of
variable u = n%/%(z; — z;), we compute

n2/ (1 — exp(—n|z — zi|?) do; = n'/? / (1- eXp(—n_1/2|u|2) du (4.56)

:/ ul? du + O(n~1/?). (4.57)
B
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We conclude that (4.55) equals
1 k
(-2 / 2 du> +Om112). (4.58)
™ JB
For future reference, we also note that (4.54) implies that
/ n?det Q¥ (z, z)
z+Bn

It remains to show that the contributions from the terms in (4.30) with m > 1 are
negligible. We begin with the indices m > k 4+ 5. We can bound such a term by

sup
zeQ)

<. (4.59)

(-pm
| 7—2k+m(z17$17---yzlmxkvy)dydm
m: 21+Bn 2+ Bn J ((z14+Bn)U...U(2,+Bn))™

1 C3k+2m
< — kamn—3m/2 . Ckn—3k/2 . C2k+mn2k+m — ' kmn(k—m)/27 (460)
m: m!:

where we bound the area of integration of y by (Clm_?’/ 2ym we bound the area of inte-
gration of & by C*n=3%/2 and we use the bound 7o, < C2F+Hmn2k+7 coming from (2.2),
Remark 2.3, and Lemma 2.4. (Observe that the C' in the last inequality is independent of
k and m.) We conclude that the sum of all terms in (4.30) with m > k + 5 is O(n~/2).

Next, we consider the terms with m < k+5. Fix m < k+5 and set £ = 2k +m. We use
the notation C’]g? to make the dependence of the set C}, , on n explicit. Using Lemma 4.3,
we compute

Z,u(C,(:’?) < CWZ e TN < oo, (4.61)
n=1 n=1

Therefore, by the Borel-Cantelli lemma, for every z € QF (except a set of measure zero),
there exists ng(z) such that z € Cf , for every n > ng. Since we are proving an asymptotic

statement, we suppose n > ng for the rest of the proof. Then, since Gy ¢(z1,...,2x) is
exponentially small for such z € QF (by the definition of Cky), it remains to bound the
integral over G ,(21,. .., 2) in the m-th term of (4.30).
Define
Ap = {(zhs1, -, 20 € Q78 QU (z) is positive definite}, (4.62)

and set By = le(zl, ..., 2) \Ag. By the definition of Gy, ¢, for (zx11,...,2¢) € By we have
né‘ det QU (z1, ... ,z)| < Cem (4.63)

for some constants C, ¢ > 0 depending only on k£ and 2. In particular, the constants are
uniform in ¢ (and hence m) by the assumed upper bound on m. Using (4.63), (4.32), and
that Tk, 1S Symmetric in its arguments, we can bound the portion of the integral in the
m-th term over the region B, by

/ det Q(2k+m)(21, ey 2y Ty ey Ty YLy ey Ym) de dy < Ce™ (4.64)
B,
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after increasing the value of C.
Finally, we consider the integral over A, where Q™) is positive-definite. We observe
that the integrand here can be estimated by

14, det Q(2k+m)(21, s 2k @, y) < 1y, det Q) (215, 2k, @) (H det Q(l)(yi)> (4.65)
i=1

by iteratively applying Lemma 4.1 since the matrices M7 and M7z as defined in Lemma 4.1
are positive-definite whenever M is (since all principal minors of a positive-definite matrix
are positive-definite). By Lemma 2.4, we have

<ﬁ det Q(l)(yi)) <cm, (4.66)

i=1

Bounding (4.65) using the estimates (4.65) and (4.66), we find

/ / / ]lAZn%er detQ(2k+m)(zl,...,zk,w,y) dx dy
((Zl-i-Bn)UU(Zk“an))m z1+Bn Zk+Bn

<Cn™ -n_?’m/z/ / ]1Azn2k det Q(zk)(zl,...,zk,m)

z

< Cn™-n73m2 = Cn T2 (4.67)

where the constant C' depends on m and 2, and changes at each appearance. The bound
in (4.67) is o(1), which completes the proof. O

Proof of Lemma 3.2(2). We retain the notations from the previous proof. Our goal is to
prove a uniform upper bound on (4.30). The same argument that gave (4.60) shows that
the that the sum of all terms in (4.30) with m > k + 5 is O(n~"/?). For the terms with
m < k + 5, the previous Borel-Cantelli argument no long suffices, as it is not uniform in

n. Therefore, we reason as follows. Define X} = Xén) c QF by

k+4
X, =Con ( N cg,m> . (4.68)
m=1

For z € X}, the same argument that gave (4.67) shows the the terms with 0 <m <k +4
in (4.30) are uniformly bounded by a constant C' > 0 (which depends on k and 2). By
(4.2) and (4.3), there exist constants C,c > 0 (depending on k) such that

P(Xg) < Ce™ ™. (4.69)

Then with the choice W,, = X,gn), we have established (3.8) and (3.9). For (3.10), we note

that (2.2) and (2.4) together show that that there exists a constant C' > 0 such that for
every k € N, we have

sup (2. .., 2) < CFnk, (4.70)
Zl,...,ZkEQ
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We emphasize that C' does not depend on k. Using (4.70) in the terms with 0 <m < k+4
in (4.30) shows that their sum is bounded by

Cn3F 1 < onBF (4.71)
for some C(k) > 0, where we use k > 1. This shows that (3.10) holds and completes the
proof. O
Proof of Lemma 3.2(3). Consider an arbitrary point (z1,...,2;) € ¥x. We begin by defin-
ing an equivalence relation ~ on the set {1,...,k} as follows. This equivalence relation is
determined by two conditions. First, we have i ~ j if z; — 2; € B, or z; — 2; € B,,. Second,
we also have i ~ j if there exists a sequence i1, ...,is of indices such that i; = i, iy = j,

and z;, ~ zm41 for all 1 <m < s. Let p denote the number of equivalence classes under
~. For each r € N with 1 < r < p, let i, denote the index in the r-th equivalence class
such that z;_ is the maximal element in this equivalence class under <. (The set of z € U,
where there is not a unique maximal element in each class has measure zero, and therefore
can be neglected.)

By the definition of £ and Lemma 2.6, there exist C(), ¢(Q) > 0 such that
Ti(215- s 2k) (4.72)

S/ / Thap(Z1, s 25, &1, ..., Tp) dxy ... dTp (4.73)

211+Bn Z»Lp+Bn

< nk+p/ / detQ(kﬂ’)(zl,...,Zkyxly---zxp) dey...dx, + Ce ", (4.74)
Zi1+Bn Zip+Bn

We define Y, € QF by
2k
Vi =Cin ( N cgm) . (4.75)
m=1

From (4.2) and (4.3), there exist constants C,c > 0 such that

P(Yi) >1—Ce " (4.76)
Note that by Lemma 2.4 and Lemma 2.6, there exists a constant C'(£2) > 0 such that
| det Q(k+p)(z1, R P ,:Ep)‘ < oM < 0%, (4.77)

since p < k by the definitions of p and ;. Then (4.76) and (4.77) together imply that

lim ?k(zl,...,zk) =0. (478)
n—oo ye
k
It remains to consider the analogous integral over the region ), N V.

Returning to (4.74), we let Ay, C Vi denote the set of points (21,..., 2x4p) such that
Q(k+p)(21,...,zk+p) is positive-definite, and set By, = Vi \ Agp. On By, we have
|Thtp(2)] < Ce™" uniformly for all z and all p < k, so the contribution from By is
negligible by the same argument that gave (4.78).
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On Ay, ,, we have after using Lemma 4.1 multiple times that

k k
n+p/ / lAk’pdetQ( +p)(z1,...,zk,:nl,...,xp)dznl...dznp
Ziq +Bn Zip +Bn

P
< H ndetQ(l)(zj)-H/ . nzdetQ@)(zij,xj)dxj. (4.79)
j=1 Z‘j+ n

j?éilw--ip j= g
It follows from the estimate (4.59) above that

P

sup H/ n?det Q¥ (z;,z;) dx;| < CP. (4.80)
217---7Zp€Q j=1 Zj‘l'Bn

We also have, using (2.2), Remark 2.3, and Lemma 2.5, that

k—p
sup H ndet QW (z;)| < (Cn)*=P. (4.81)

2l 5Rk—p ]:1

For a given p, the measure of the region of integration in (4.79) is bounded by Cpn_?’(k_p)/ 2,
Then inserting (4.80) and (4.81) into the right-hand side of (4.79), we find that the integral
is bounded is O(n_k/ 2+p/ 2). Since k > p by the definition of Uy, this finishes the proof. [

5. PROOFS OF AUXILIARY LEMMAS

The following proof is similar to the proof of [22, Lemma 3.3]. We give it here for the
reader’s convenience.

Proof of Lemma 2.6. We recall from (2.2) that pg(yv/nz1,...,\/nz;) can be written explic-
itly as a Pfaffian. Using Lemma 2.4, all terms in this expansion involving a factor D,, or
I,, are exponentially small. We conclude that

sup !nk,ok(\/ﬁzl, ... v/nzy) — nk Pt (IN((\/HZZ, \/ﬁzj))lgi,jgk’ | < ltemen,

21,2 €Q

where (K (2, 25))1<ij<k is a 2k x 2k matrix composed of the 2 x 2 blocks
Y 0 Sn (ZZ', Zj)
K(z“z]) = <_Sn (Zj,Zi) 0 .

The conclusion follows after noting that Lemma 2.5 implies

Pt (E(\/ﬁzu \/ﬁzj))lgi,jgk = det Q(k)(zly ce 7zk)'

Proof of Lemma 2.7. By (4.29), for all z,w € 2, we have the asymptotic expansion
Sn(vnz,v/nw) = U(z,w)sy (nzw) (1 + O(n™1)). (5.1)
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By [22, Lemma 4.1], there exists a constant O(JQ) > 0 such that for all z,w € Q,

1 (Zwel—zﬁ))n

Sp(nzw) =1-— (1+ R(zw;n)), |R(zw;n)| < Cn~t. (5.2)

2mn 1 —zw

Considering the case z = w, the exponential factor becomes
1.2

|2|2er 1 = exp (1 — |2 +1og(|z[*)).

There exists a constant () > 0 such that for all z € 2, we have € < |2/?> < 1 —¢. Then,
using concavity of the logarithm, we find that there exists 6(£2) > 0 such that for all z € €,

1 — 2% 4+ log(]2]?) < —0.
By continuity, it follows that there exists ng(r,2) > 0 such that for all z,w € 2 such that

|z —w| < rn=3/% and all n > ny,
Re (1 — zw — log(2w)) < —6/2, |zwe! ~#0|" < 7O/, (5.3)
Inserting (5.3) into (5.2) shows that
sp(nzw) =14+ 0(n™1), (5.4)

after noting that (1 — zw)~! is uniformly bounded above for all z,w € Q. Then inserting

(5.4) into (5.1) completes the proof (after recalling that the left-hand side of (5.1) is O(1),
by Lemma 2.4). O

Proof of Proposition 2.8. Note that X,, — x(J) in distribution is implied by the statement
that E[X"] — E[X"] for all 7 € N, by [4, Theorem 30.1] and [4, Theorem 30.2].> Conver-
gence of all moments E[y(™ (.J)"] is implied by the convergence of the factorial moments
on the left-hand side of (2.4), since the factorial moments of order at most r determine the
moment E[x(™ (.J)"], and this completes the proof after recalling the standard fact that the
r-th factorial moment of a Poisson random variable with rate A is A" (which follows from
a straightforward computation using the probability density function). O

Proof of Proposition 2.9. This follows directly from [24, Theorem 4.15]; see the comment
immediately before its statement. Note that our hypothesis on p implies that x is simple,
as required by theorem. We are also using that the collection of bounded Borel subset of
R forms a dissecting ring according to the definition of [24, p. 24]. O

For the proof of Lemma 4.2, we need the following lemma.

Lemma 5.1. Fix an admissible domain €2 and k, m,n € N such that m < k < n. Then
(n—k)!

m/mm k(215 ooy 2) dzmer - - d2g. (5.5)

Tm (21, oy Zm) =

3For the application of [4, Theorem 30.1], we recall that the moment generating function of a Poisson
distribution with rate X is given by exp(A(e’ — 1)), whose power series converges for all ¢ € R.
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Proof. Fix a bounded Borel function f : Q™ — R, and define ¢ : Q% — R by (21, ...,2;) =
f(z1,...,2m). We know that f satisfies the equality in (2.1) for 7,, and that ¢ satisfies
the analogous equality for 7;. Analyzing the term on the right-hand side of (2.1), we have
that

Z (Wi, ..., w;, ) = Z flwiy, ... wi,,) (5.6)

(11,0001 ) ETy (15eesi1 ) €L
n—m)!
(ily---7im)€I7rL '

Using (2.1), this implies that

/kgo(zl,...,zk)Tk(zl,...,zk)dzl...dzk =
Q

(n—m)!
Additionally, by Fubini’s theorem and the definition of ¢,

1y zm)Tm(21, oy 2m) dz1 o oo dzy,. (5.8)

/kcp(zl,...,zk)Tk(zl,...,zk)dzl...dzk =
Q

f(z1,. 0y 2m) (/ Ti(21y vy 2k) d2Zmett - - - dzk> dzy...dzp. (5.9)
Qm Qk—m
Since f was arbitrary, we conclude from comparing the right-hand sides of (5.8) and (5.9)
that (5.5) holds. O
Proof of Lemma 4.2. Define
A={z e QF: QW (z) is positive definite} (5.10)

and let D = QF\ A. We let M; denote the i-th leading principal minor of Q%) obtained
by removing the last k — ¢ rows and columns. For 1 < j < k, we define

D; = {z € QF | det M;(2z) < 0AVL < j det My(z) > 0}. (5.11)

In other words, Dj is the set of z where the smallest principal minor with a non-positive
determinant is the j-th one. By Sylvester’s criterion ([23, Theorem 7.2.5(b)]), we may
write D as the disjoint union of D; for j =1,... k:

D=D.UDp_1U...UDs. (5.12)

Note that membership in D,, is determined by the first m coordinates, meaning that if
(#1,...,2r) € Dy, then for all (wyp1,...,wp) € QF™, we have

(215« s Zm, Wing 1y - - -, W) € Dy (5.13)

With this in mind, we define
Dl o={(21,. s 2m) € Q" : I Zmsts - 26) € Q™ with (21,...,2;) € Dy (5.14)
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Fix m < k. By Lemma 2.6, there exists ¢(k, dq) > 0 such that for all (z1,...,2y,) € D),
we have
T(21, -y 2m) < e le™, (5.15)
because 7, > 0 and det Q™) (21,.+.,2m) < 0 on D, (since Q™ is the m-th principal
minor of Q).
By Lemma 5.1, it follows that there exists a constant ¢ > 0 such that ¢ > ¢, and for all
(21,...,2m) € D,

_ |
/ Tk(Z15 ooy Zmy Wing 1y« -+, WE) AWt - - . dwg, = M7',71(21,...,27,1), (5.16)
Qk—m (n — k)'
< nkTm(zla 7zm) (5'17)
<eteon (5.18)

Now, if we define
D(z1, - 2m) = {(Zmy1,- oy 2) € iz, 2) 2 6 e, (5.19)
then by (5.18) and since 73, > 0, we have for all (z1,..., z,) € Q™ that

1l —o
/ Ti(Z15 ooy Zmy Wing 1y - -+, W) AWt - - . dwg < ¢ e T
D(zlv"'vzm)

which implies by the definition of D(zy,...,2,,) that
WD 7)) < €2
Define C,(gm) C Dy by

C,(gm) = {(21,...,2) € Dp : Th(z1,. .., 21) > ¢ Le /2, (5.20)
Then
n(e™) = / / dz < Qe et < 2metemon, (5.21)
(215+-,2m)EDY, J D(21,....2m)
Since m < k, we deduce the existence of a constant ¢ > 0 such that ¢/2 > ¢ and
k ~
STy <@ teen, (5.22)
m=1

Then the desired conclusion holds after setting ¢; = ¢ and Cy = ¢ !

choices, we have

, since with these

k
ac e, (5.23)
m=1
and hence
k k _
p(Cr) < i ( U C,S“)) < ueM) <ete (5.24)
m=1 m=1

by (5.22) and a union bound. O
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