Adversarial Perturbations Are Formed by Iteratively Learning Linear
Combinations of the Right Singular Vectors of the Adversarial Jacobian

Thomas Paniagua' Chinmay Savadikar' Tianfu Wu !

Code:

Abstract

White-box targeted adversarial attacks reveal core
vulnerabilities in Deep Neural Networks (DNNGs),
yet two key challenges persist: (i) How many
target classes can be attacked simultaneously in
a specified order, known as the ordered top-K
attack problem (K > 1)? (ii) How to com-
pute the corresponding adversarial perturbations
for a given benign image directly in the image
space? We address both by showing that ordered
top-K perturbations can be learned via itera-
tively optimizing linear combinations of the right
singular vectors of the adversarial Jacobian (i.e.,
the logit-to-image Jacobian constrained by target
ranking). These vectors span an orthogonal, infor-
mative subspace in the image domain. We intro-
duce RisingAttacK, a novel Sequential Quadratic
Programming (SQP)-based method that exploits
this structure. We propose a holistic figure-of-
merits (FoM) metric combining attack success
rates (ASRs) and £,-norms (p = 1, 2, co). Exten-
sive experiments on ImageNet-1k across six or-
dered top-K levels (K = 1,5, 10, 15, 20, 25, 30)
and four models (ResNet-50, DenseNet-121, ViT-
B, DEiIT-B) show RisingAttacK consistently sur-
passes the state-of-the-art QuadAttacK.

1. Introduction

Deep Neural Networks (DNNs) have witnessed tremendous
progress across numerous applications, enabling the recent
development of large foundation models (such as Deep-
Mind’s AlphaZero and AlphaFold and OpenAI’s ChatGPT)
that are widely recognized to pave a promising way to-
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wards Artificial General Intelligence (AGI). Despite of the
remarkable achievement, adversarial vulnerability (Szegedy
et al., 2013; Goodfellow et al., 2014) remains the Achilles
heel of all DNNs, particularly in computer vision, as re-
vealed by white-box adversarial attacks, especially targeted
white-box attacks (Carlini & Wagner, 2017) that can fool
trained DNNs towards arbitrarily specified targets. With
the access to network architectures and pretrained weights,
white-box attacks can expose their deep vulnerabilities and
test their robustness. In practice, white-box attacks are also
used as surrogate models in learning transferrable black-
box (Inkawhich et al., 2019; Li et al., 2020a; Naseer et al.,
2021; Zhao et al., 2023; Fang et al., 2024) and no-box (Li
et al., 2020b) attacks. So, seeking more powerful white-
box attacks will provide a foundation both for learning po-
tentially stronger black-box and no-box attacks. In this
paper, we focus on learning white-box targeted attacks in
ImageNet- 1k (Russakovsky et al., 2015) classification tasks.

We consider the generalized setting of targeted attacks, or-
dered top-K attacks (Zhang & Wu, 2020; Paniagua et al.,
2023), that relax the traditional top-1 targets (e.g., to fool a
DNN to classify a dog image as a cat) to K targets (K > 1)
in any given orders (e.g., to fool a DNN to classify a dog
image with [car, tree, table] as the ordered top-3 predic-
tion, see the middle in Fig. 1). Ordered top-K targeted
attacks expose deeper vulnerabilities of DNNs, since they
show the manipulability of the decision boundary of DNNs
at the logits subspace levels, especially when K is large
(e.g., K > 20). These attacks are particularly impactful
in applications where the order of predictions significantly
influences outcomes, such as recommendation systems or
multi-class decision-making, and adversaries can exploit
decision hierarchies to disrupt critical processes. Partic-
ularly, safety-critical systems (e.g., face unlock, medical
triage, content moderation) reason over entire ranked lists.
An attacker dictating all top predictions (similar in spirit to
[cat, car, fish] vs only “cat”) obtains finer control and evades
simple “Top-1 changed” detectors.

In the meanwhile, security evaluations now recommend
K > 1. For example, in the new differential-privacy eval-
uation guideline, NIST SP 800-226 (March 2025) (Near
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Figure 1. Workflow comparisons between our proposed image space based RisingAttacK (top) and the prior art (bottom), CWX and
AdvDistill (Zhang & Wu, 2020) and QuadAttacK (Paniagua et al., 2023) for learning ordered top-K targeted adversarial attacks (Zhang &
Wu, 2020) for a benign image """ € [0,1]” (e.g., D = 3 x 224 x 224). See text for details.

et al., 2025) devotes an entire discussion to “Practical
differentially-private Top-K selection” and cites (Durfee &
Rogers, 2019) as its canonical example which repeatedly
frames robustness/utility checks around whether the entire
ordered set of the highest-scoring items is preserved under
noise—not just the single best—underscoring regulators’
need for Top-K mis-ranking tests. Ordered top-K attacks
thus supply the stress-test regulators and practitioners
request but that Top-1-only methods cannot deliver.

Ordered top-K attacks can be straightforwardly formulated
as an optimization problem with highly non-linear con-
straints, which is intractable in the vanilla form (see Eqn. 4).
Thus, learning ordered top-K attacks poses a unique chal-
lenge as they require the perturbations to precisely influence
the model’s ranking mechanism across multiple outputs
(K > 1), not just a single decision (KX = 1). Addressing
ordered top-K attacks offers valuable insight into how mod-
els distribute their confidence across multiple classes and
the vulnerabilities associated with this ranking structure. To
address this challenge, there are two main approaches in the
prior art (see the bottom of Fig. 1):

+ Designing surrogate loss functions, such as the CW*
(extended from the CW method (Carlini & Wagner,
2017)) and the Adversarial Distillation method proposed
in (Zhang & Wu, 2020), that transform the constrained
optimization problem to an unconstrained one.

* Reformulating the non-linear constraints to linear
ones, such as the recently proposed QuadAttacK (Pa-
niagua et al., 2023), by first solving the optimization prob-
lem in the feature space of the DNN backbone (i.e., the
input space to the linear head classifier), and then back-

propagating the optimized features through the backbone
to compute adversarial perturbations.

QuadAttacK has shown significant improvement in compar-
ison with methods based on surrogate loss functions. While
QuadAttacK is effective, its effectiveness diminishes signifi-
cantly when K > 20 and the computing budget is restricted
(e.g., 30 steps). It relies on backpropagation to map the
optimized feature space perturbation back to the original
input image space. This introduces an indirect connection
between the optimization problem and the resulting image
space perturbation, leading to limitations as-follows:

» Feature vs. Image Space Misalignment: Minimizing
the perturbation in the feature space does not always cor-
respond to minimizing it in the image space due to the
nonlinear mapping between the two spaces.

* Suboptimal Visual Perturbations: The resulting adver-
sarial examples may not fully align with the visual charac-
teristics of the image, as perturbations that minimize the
distance in feature space may not correspond to minimal
or visually coherent changes in the image space, due to
the nonlinear relationship between the two spaces.

To the best of our knowledge, no existing approaches have
been proposed for learning ordered top- K attacks (K > 1)
directly in the image space due to the complexities of high-
dimensional, non-linear optimization. Potentially due to
this, it remains unresolved to seek an explicit formula for
“seeing” what adversarial perturbations are formed, if pos-
sible. In this paper, we propose a Sequential Quadratic
Programming (SQP) formulation to address the non-
linear optimization challenge of learning ordered top-K
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Figure 2. Examples of adversarial examples and associated perturbations learned for a benign image (ILSVRC2012_val_00002633
with the ground-truth label, redshank) by our RisingAttacK using a list of randomly sampled 30 targets in the order of: mask,
analog-clock, slide-rule, Siberian-husky, harmonica, African-chameleon, dowitcher, hyena,
wing, pillow, garter-snake, Great-Pyrenees, puffer, banana, West-Highland-white-terrier,
whippet, brown-bear, snowplow, tarantula, space-heater, sports-car, jean, sandbar,

perfume, papillon, triceratops, barrow, peacock, digital-watch, carton. The adversarial pertur-
bations are normalized to [0, 1] for the sake of visualization. Some of them are treated as being “visually imperceptible” based on the
commonly used threshold 8/255 = 0.0314 for £« (‘linf’) norms. For the benign image, the top-30 predictions by the four models
respectively are:

« ResNet50: redshank, ruddy turnstone, red-backed sandpiper, dowitcher, oystercatcher, grey whale, red-breasted merganser, crane, sea lion, chainlink fence, lakeside, wreck, quail, partridge, screwdriver,
plastic bag, pelican, parachute, killer whale, sulphur-crested cockatoo, African crocodile, white stork, pole, bucket, caldron, hummingbird, sandbar, king penguin, nail, syringe.

* DenseNet121: redshank, ruddy turnstone, red-backed sandpiper, oystercatcher, breakwater, dowitcher, sea lion, academic gown, abaya, mortarboard, red-breasted merganser, lifeboat, cloak, espresso,
lipstick, theater curtain, wood rabbit, umbrella, refrigerator, ruffed grouse, king penguin, partridge, sandbar, diamondback, hen-of-the-woods, wine bottle, mailbox, stone wall, volcano, redbone.

* ViT-B: redshank, red-backed sandpiper, ruddy turnstone, dowitcher, oystercatcher, water ouzel, Madagascar cat, chain saw, apiary, red-breasted merganser, Tibetan mastiff, cicada, seat belt, American egret,
wall clock, mask, snow leopard, schipperke, potter’s wheel, lycaenid, mud turtle, curly-coated retriever, dumbbell, television, strainer, feather boa, buckle, junco, boa constrictor, volcano.

* DEiT-B: redshank, ruddy turnstone, red-backed sandpiper, dowitcher, oystercatcher, red-breasted merganser, warthog, worm fence, Indian elephant, African crocodile, maze, badger, snowplow, American

black bear, stone wall, king penguin, car wheel, rock python, water ouzel, guillotine, wild boar, centipede, diamondback, apiary, barrow, horned viper, sundial, guenon, bustard, skunk.
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attacks directly in the image space, as illustrated in Fig. 1
(top), which can address the drawbacks of QuadAttacK (Pa-
niagua et al., 2023). Our approach efficiently solves the
SQP problem by iteratively computing the singular value
decomposition (SVD) of the adversarial Jacobian (i.e., the
attack-targets-ranking constrained logit-to-image Jacobian
matrix), obtained from linearizing the DNN during opti-
mization. This direct optimization in image space provides
deeper insights into the learned adversarial perturbations:
ordered top-K adversarial perturbations can be learned
by iteratively optimizing linear combinations of the right
singular vectors (corresponding to non-zero singular val-
ues) of the adversarial Jacobian. The proposed method is
thus dubbed as RisingAttackK (see examples in Fig. 2).
Our proposed RisingAttacK achieves significant better per-
formance than the prior state-of-the-art method, QuadAt-
tacK (Paniagua et al., 2023) in experiments.

2. Related Work and Our Contributions

Adversarial Attacks. Adversarial attacks aim to expose
the vulnerabilities of DNNs by introducing small, often vi-
sually imperceptible perturbations to input data that cause
the model to produce incorrect or adversary-specified out-
puts. Foundational work in adversarial machine learning
introduced methods for generating adversarial examples
under various norms and constraints, including the Fast
Gradient Sign Method (FGSM) (Goodfellow et al., 2014),
Projected Gradient Descent (PGD) (Madry et al., 2017), and
the Carlini-Wagner (CW) attack (Carlini & Wagner, 2017).
These early approaches primarily targeted top-1 classifica-
tion outputs, seeking to force the model to misclassify an
input into a specific target class.

Beyond top-1 attacks, researchers have investigated adver-
sarial perturbations that manipulate the top-K predictions
of a model. (Zhang & Wu, 2020) introduced one of the
earliest methods for addressing ordered top- K adversarial
attacks, focusing on creating an optimal target class distri-
bution aided by word embedding vectors, and minimizes
KL divergence to this optimal distribution that satisfies the
ordered top-K objective. (Tursynbek et al., 2022) explored
the geometry of unordered top- K adversarial attacks, high-
lighting the complexities of crafting perturbations that ad-
here to top-K constraints. (Reza et al., 2025) proposed
GSBAX, a geometric score-based unordered top- K black-
box attack method built on (Reza et al., 2023). (Paniagua
et al., 2023) advanced this area by formulating the ordered
top- K adversarial attack problem as a quadratic program-
ming (QP) optimization in the feature space. This approach
efficiently enforced the desired ordering of logits but re-
quired back-propagation to map feature space solutions to
the image space. Our proposed JacAttacK builds upon these
foundations by extending the idea in QuadAttacK (Pani-

agua et al., 2023) to directly address the ordered top-K
adversarial attack problem in the image space.

Sequential Quadratic Programming (SQP). SQP is a
widely used framework for solving nonlinear constrained
optimization problems (Nocedal & Wright, 1999). By iter-
atively solving QP subproblems that linearize constraints
and use a quadratic approximation of the objective, SQP
effectively handles problems involving nonlinearities and
complex constraint sets (Boggs & Tolle, 2000). This ap-
proach is particularly relevant in high-dimensional settings,
such as adversarial attacks, where the constraints often in-
volve intricate relationships between model outputs. How-
ever, applying SQP to large-scale problems, such as those in
image space, can be computationally expensive due to the
need to repeatedly compute gradients and solve large QPs
(Gill et al., 2005). Our method adapts SQP for adversarial
optimization by leveraging subspace splitting to reduce the
dimensionality of the optimization problem, thereby over-
coming scalability challenges while preserving accuracy.

Our Contributions. The main contributions of this paper
are as-follows: (i) Novel Theoretical Insights: It introduces
explicit derivations connecting adversarial perturbations to
singular vectors of the adversarial Jacobian, providing new
theoretical clarity. (ii) Methodological Innovation: It is
the first method to directly optimize ordered top-K adversar-
ial attacks in image space via SQP, significantly improving
alignment between optimized solutions and visually coher-
ent perturbations. (iii) Empirical Advances: It provides
comprehensive evaluation across multiple architectures and
attack levels, consistently outperforming the previous state-
of-the-art, QuadAttacK using a proposed holistic metric,
Figure of Merits (FoM) covering both success rates and
perturbation magnitudes.

3. Approach

In this section, we first define the problem of learning or-
dered top-K attacks (Zhang & Wu, 2020), and then present
details of our proposed RisingAttacK.

3.1. Problem Definition

Model Under Attack. Let (" y) € [0, 1]2*H>XW x y
be a pair of a benign RGB image 2™ with spatial height
and width, H and W respectively, and its ground-truth label
y with the C-class label space Y = {1,--- ,C}. Let D =
3 x H x W be the dimension of the input image space. In
ImageNet-1k (Russakovsky et al., 2015) classification, we
have C' = 1000 and D = 3 x 224 x 224 ~ 1.5¢5.

A DNN trained for image classification is a highly-nonlinear
mapping from the image space to the logit space:

0(+0):[0,1]” = R, M
where O collects all learned parameters of the DNN. We
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will omit © in notations and use ¢(-) for simplicity.

We consider validation or testing images that can be cor-
rectly classified by a trained DNN such as ResNet-50 (He
et al., 2016) in learning attacks, i.e., y = arg max /(z""ien),
The DNN is frozen in learning attacks.

The Adversarial Region of Ordered Top-K Targeted
Attacks for (zP"i#" ). Let 7 € Y\ {y} be a randomly
sampled sequence of ordered top-K targets for attacking
xbenign K — | T|. The adversarial region is defined by,

R($benign,7-) _ {:L,adv c [0’ ]_]D; satisfying
g(wadv>ti > f(xadv)ti+l,ti S T7Z € [LK - 1]’ (2)
f(xadv)tK > f(.’tadv)jﬂf[( € T, vJ ey \ T}7 3)

where the subscript represent the entry index of the logit
vector. We often expect the perturbation energy, defined
by ly-norm, ||z — xbenisn|| s as small as possible to
be visually imperceptible for p = 1,2, 00. An adversarial
perturbation § = 224 — xPMien jg treated as being “visu-
ally imperceptible” based on the commonly used threshold
l < 8/255 = 0.0314.

Encoding Ordered Top-K Targeted Attack Constraints
in the Logit Space. Denote by K € {+1,0, —1}(¢-1)xC
the matrix that encodes ordered top- K constraints subject
to 7, with which the adversarial region can be rewritten by,

R, T) = {2 € [0,1]7; satistying K-((a"") > 0}.

Learning ordered top- K attacks for a benign image x"e"
can be posed as a constrained minimization problem,

minimize 11611, 4)

subjectto K- g(xperturb) >0,

mperturb — Clamp(xbenign T (S),
where 0 is the adversarial perturbation variables, || - ||, rep-
resents the /,-norm (typically, lo-norm is used). Clamp(-)
ensures the perturbed example zP*™™ is in the input im-
age space (i.e., 2P ¢ [0,1]7) via element-wise pixel
value clipping. The challenge of solving Eqn. 4 lies in the
nonlinear constraints caused by the highly non-linear
DNN (Eqn. 1). In practice, we also expect the learning of
a8 (= ghenisn 4 §*) € R(zb"&" T') is efficient subject to
a predefined and limited budget such as 30 or 60 iterations.

3.2. Our Proposed RisingAttacK

Inspired by the QP approach in QuadAttacK (Paniagua et al.,
2023) (see a brief overview in Appendix A), but different
from its feature space QP formulation, we aim to solve
Eqn. 4 directly in the image space under the SQP frame-
work (Boggs & Tolle, 2000). The core idea is to iteratively
linearize the nonlinear constraints in Eqn. 4. Due to the
large number of constraints, C' — 1 and the high dimension-

ality of the image space, D, which make the optimization
with constraints linearized still infeasible in practice, we
streamline yet retain the solutions of Eqn. 4.

Eqn. 4 can be re-expressed as,
ST benign
minimize ||z —«x o)
wel0a)D | Ilps

subjectto K- ¢(x) > 0,

Similar in spirit to QuadAttacK (Paniagua et al., 2023) and
all other attack methods, our proposed RisingAttacK is an
iterative optimization algorithm starting from the initial per-
turbed image 2P = Clamp(z""i2" + §5(0) (e.g., §(0) =
0). At the i-th iteration, let 2P = Clamp(z""e" 4 §(9)
be the current perturbed image. We omit the iteration index
in 2P for simplicity. To solve Eqn. 5, our RisingAttacK
is streamlined as follows:

» We linearize the DNN /(+) around the current perturbed
image 2P, 5o the nonlinear constraints K - £(x) > 0
become linear. We use the first-order Taylor expansion,

K(I) ~ g(zperturb) + J(l,perturb) . (l‘ o xperturb)7 (6)
where J(zPe™) € RE* P is the logit-to-image Jacobian
matrix of the DNN, which represents the sensitivity
of the DNN logits with respect to changes in PP,
Each row of J(2P*™™) corresponds to the gradient of
a particular logit with respect to the input pixels.

» After the linearization, there is a gap between the objec-
tive function (i.e., = should be as close as possible to
the benign image), and the linearized constraints which
entails x to be sufficiently close to the perturbed image
aPe o ensure the linearization is sufficiently approx-
imately accurate to retain the ordered top-K constraints.
We re-express the objective function ||z — x®"e"|| to
be ||z — 2@h°r||, where 22""°r represents the anchor in
optimization, manchor — xbcnign or manchor — xperturb (the
current perturbed image). We propose an anchor selection
strategy: we start with z3"ho" — gPerturb g6 the algorithm
can quickly reach the adversarial region, that is to find
x € R(x™Me T). We then seek better adversarial im-
ages with smaller perturbation energies by letting the
anchor x@°hr = pbenien The two steps may iterate based
on monitoring the improvement with respect to a thresh-
old (see Sec. 3.2.4). Consider ly-norm for the objective,
Eqn. 5 is re-expressed as,

|| — 2|3, @)

minimize
z€[0,1]P

K () 3@ (1 — ) > 0,

» Eqn. 7 is theoretically solvable, but not practically feasible
since the number of constraints, C' — 1 is large (e.g., C' =
1000) and the dimension of variables, D is extremely
high (e.g., D = 3 x 224 x 224), especially given the
limited budgets in learning attacks. We propose methods
to address these challenges.
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3.2.1. COMPACT ORDERED TOP-K CONSTRAINTS

We introduce a mapping that condenses the logit space with-
out compromising the ordered top- K constraints, but allows
the number of rows of the Jacobian matrix to only depend
on the nubmer of targets, K.

To that end, we first notice that Eqn. 3 can be simplified to
reduce the number of constraints from C' — K to 1 without
breaking the overall ordered top- K constraints,

U(x)e,e > max({€(z);}jemT), ®
where max(-) introduces nonlinearity in the constraints with
a gradient switching effect in learning that is not desirable,
however. We tackle this by introducing a mapping,

G:0(-) € RY — I(-) € RIZKHMAL )
where M is a multiplicative of K suchas M =5 K. The
mapping G reorders the logits and augments them with a
differentiable nonlinear term (see Appendix B for details
due to space limit).

Denote by K € {+1,0, —1}(4=1*d the compact encoding
matrix using the mapping G, which has a nice form with
rows rotating from [1 —1 0 0] (i.e., the logits
in 1(-) are expected to decreasingly ordered). K remains
unchanged in the optimization.

With the mapping G reordered and condensed logits 1(-),
Eqn. 6 is redefined by,

l(l‘) ~ l(manchor) + J(xanchor) . (x o xanchor)’ (10)
where the Jacobian matrix J(zhr) ¢ R4*D with d =
K + M + 1 only dependent on the number of attack targets,
K, and often d < C' (e.g., d = 101 for K = 20 with
C = 1000 in ImageNet-1k).

3.2.2. JACOBIAN SUBSPACE QP

With the compact encoding matrix K and the updated Tay-
lor expansion (Eqn. 10), the constraints in Eqn. 7 are then
simplified and we have,

minimize ||z — z*hor||2 11
iniuize | 2 a

subjectto A -x < b,

where A = —K - J(2%M°r) incorporates the ordered top-K
ranking constraints into the logit-to-image sensitivity analy-
sis (i.e., the adversarial Jacobian), b = K - (1(z*"r) —
J (z#nehor). ganchor) 4 m defines the constraint boundaries and
the feasibility of the optimization, with m being margins
introduced to control the target separability and to change
from strict ‘<’ to ‘<’ in optimization constraints. Here,
A€ RUDXD [ e RIT {z € RP; A -z < b} defines
a high-dimensional polyhedron in the image space.

Directly solving Eqn. 11 is still computationally challenging
and does not meet the low budget in learning attacks. We
exploit the structure of the polyhedron via projection.

Exploiting the Subspace Structure of A. We utilize the

structure of A revealed by its SVD,
A=U-2- V' =U-%,- V", (12)
where U € R@-Dx(d=1) v ¢ RE-DXD and V €

RP*D ¥ = 2(){ g] is a diagonal matrix with singular
values, diag(cy,--- ,04-1). U (and V) provide orthogo-

nal bases for the column (and the row) spaces of A. And,
U-UT =Tand VT .V = I (where I represents the identity
matrix). The rows of U corresponding to large singular
values identify the most sensitive ranking constraints. The
row space of A corresponds to the input image space, and
each column of V represents a principle direction in the
image space. Since we have d < D, we can drop the
last D — (d — 1) columns of V' to form the reduced SVD,
ie., V. € RPx(d=1) the first d — 1 columns of V, which
consists of the d — 1 orthogonal bases in the image space,
and spans the entire solution space of the polyhedron de-
fined by A - < b. The columns of V,. span a subspace
in which adversarial perturbations are most effective
towards satisfying ordered top-K constraints. Learn-
ing ordered top-K attacks can be achieved in the subspace
accordingly, as we solve it in the following.

Let § =  — ganchor Eqn. 11 is rewritten as,

. NI "
mlénelﬂ{i%lze 10113, (13)
subjectto A-0<b-—A- granehor,

With the change of variables 6 = V' - €, we have,
[16]l2 = ||V - €||2 = ||€]|2, (since V is orthogonal)  (14)
A6=U-Z- V. V.e=U-X-¢, (15)
So, Eqn. 13 is rewritten as,
e 2
16
minimize |ef[3, (16)

subjectto L-e< U . (b _A. xanchor)7
where due to the block diagonal structure of 3, we can split

o
thus can be ignored and set ¢, = 0 since we are minimizing

||€l|3. We further have,

e . 2
minimize ller] 125 (17)

€= ZT} , 6 € R91 and ¢, lies in the null space of A and

subjectto ¥, -e. < U - (b —A- xamh"r),

which is now a low-dimensional optimization problem
with linear constraints, and can be solved by many QP
solvers efficiently, such as the cvxpy package (Diamond &
Boyd, 2016; Agrawal et al., 2018). Letb = U " - (b —
A- xa"Ch"r) which represents the projection of the constraint
boundary onto the orthogonal basis formed by the left sin-
gular vectors. Then, the constraint X, - ¢, < b also shows
the feasibility and constraint satisfaction: the smaller the
ratio %for a singular value o; (1 = 1,--- ,d — 1) is, the
easier it is to satisfy the corresponding constraint.
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Denote by € the optimized solution of Eqn. 17. The optimal
solution of € is €* = {GOT] by definition. Thus, §* =V - ¢*.

We can directly recover the optimal solution z* in the
image space by,
ot = xanchor + 5*
)

*

67‘
0
which can be understood from the QP perspective in the
Appendix C, and is used in updating the perturbation and
the perturbed image for the next, (¢ 4+ 1)-th iteration of our
RisingAttack,

60+ = Clamp(z*) — zbenien, (19)

xperturb _ xbenign + §(i+1), (20)

_ xanchor +V. I: ] — xanchor +V.. 6:, (18)

3.2.3. {oo PERCENTILE PROJECTION

For the solution §* = V,. - € based on Eqn. 17, we observe
that it often exhibits disproportionately high /., norms. We
observe this large /., is driven by very few components
(pixel values) of our solution and the overall quality of our
solution is not contaminated by these extreme values (or
outliers). We hypothesize that the outliers might be caused
by the first-order Taylor linearization that is not sufficiently
accurate at those pixels. To alleviate this issue, we resort
to a {, Percentile Projection as the post-processing step.
Specifically, we compute
7 = Percentile(]6*|, 0.995) (21)
where 7 indicates 99.5th percentile of magnitudes in our so-
lution. We then element-wisely project 6* to this percentile,
07 « Sign(6}) x min(|d]|, 7), (22)
where i is the entry index.

3.2.4. ANCHOR POINT SELECTION

When the number of iterations is infinite (or very high),
choosing x¢hor — gbenien in Eqn. 11 yields the lowest en-
ergy solution upon convergence. This is because each step
of the optimization directly minimizes the distance from z
to 2°"e" aligning the solution trajectory with the global
objective. However, in practice, the number of iterations
is limited, and zP"" does not lie within the adversarial re-
gion during intermediate iterations. As a result, only using
xPeMen a5 the anchor point can significantly delay reaching
the adversarial region, especially when the constraint set is
complex (when K is large).

On the other hand, choosing 2P™™ (the current perturbed
image), as the anchor point ensures rapid progress toward
the adversarial region. Since the optimization minimizes
the distance from x to zP°™™ at each step, the solution
quickly adjusts to satisfy the constraints. However, this may
lead to suboptimal solutions in terms of perturbation energy,

as the optimization prioritizes feasibility over minimizing
perturbation energy.

Alternating Anchor Point Strategy. To balance the trade-
offs between rapid feasibility and minimal energy, we im-
plement an alternating anchor point strategy. This approach
dynamically switches between 2P°"2" and 2P ag the an-
chor point based on the current optimization state.

* If the number of iterations since the last feasible solu-
tion exceeds (8 (a predefined threshold), we set ganehor —
2P o prioritize reaching the adversarial region.

o Otherwise, we set zachor — pbenign 4 +ontinue minimiz-
ing the perturbation energy while staying within the ad-
versarial region.

3.2.5. INTERPRETATION OF RISINGATTACK

Eqn. 18 provides an intuitive interpretation for the optimized
perturbation 6* = V;.-€} at each iteration of the optimization.
The perturbation is the learned linear combination with
coefficients in € € Ré1ofd—1 image bases, i.e., columns
in V. € RP*(@=1) Recall that each column in V. represents
a principle direction in the image space that can affect logit
ranking the most subject to how large the corresponding
singular value is. The learned weighted sum of the columns
of V,. can provide most efficient perturbation, as shown by
the consistently smaller perturbation energy obtained in our
experiments.

Potential Defensive Insights. By analyzing which singular
vectors in V,. correspond to large singular values, defensive
strategies can be developed by reinforcing robustness in
those vulnerable directions against ordered top- K attacks.
Meanwhile, adversarial training can be guided to target
these critical subspaces. We leave those for future work.

4. Experiments

In this section, we evaluate our RisingAttacK in the
ImageNet-1k benchmark (Russakovsky et al., 2015), and
compare with QuadAttacK (Paniagua et al., 2023).

Models Under AttacK. Following QuadAttacK, we use two
representative ConvNets (ResNet-50 (He et al., 2016) and
DenseNet-121 (Huang et al., 2017)) and two Vision Trans-
formers (ViT-B (Dosovitskiy et al., 2020) and DEiT-B (Tou-
vron et al., 2021)). Their ImageNet-1k pretrained check-
points are from the timm package (Wightman, 2019).

Data and Attack Targets. We use ImageNet-1k val im-
ages from which we select and sample a subset consist-
ing of class-balanced 1000 images (i.e., one image per
class). The 1000 benign images can be correctly clas-
sified by all the four models. For each image, five or-
dered target sets are randomly sampled for each value of K
(K =1,5,10, 15,20, 25, 30), see Appendix D for details.
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Table 1. Ordered top-K attack results averaged across 5 different seeds. Overall, our RisingAttacK shows a big leap forward in
advancing ordered top-K attacks, outperforming the prior state-of-the-art method, QuadAttacK (Paniagua et al., 2023) by a large margin

in most cases (higher ASRs with lower £, norms). {.-norms in red is to show they are treated as being “

imperceptible” based on

the commonly used threshold 8/255 = 0.0314. The subscripts of methods (30 and 60) represent the computing budgets.

(a) ResNet-50 (He et al., 2016)

. ‘ Mean . .
Top-K ‘ Method ‘ ASRT 71 ) =7 ‘ Time (s/img) | ‘ FoM1 ‘
QuadAttacKg, 02076 11.8070 3654.9139 0.1349 | 3.3947 64793
Top-30 RisingAttacKgo | 0.6642  7.0271  2081.8960  0.0511 | 17.0013 o
op QuadAttacKs, Failed 1.6539 ot
RisingAttacK3o | 0.0022 62378  1844.3013  0.0470 | 8.5619
QuadAttacKgo 0.6018  11.6214 3599.8101 0.1301 3.4167 3.6439
Ton-25 RisingAttacKgy | 0.8420  5.2960 1561.6462  0.0393 | 14.0839 o
P-4 QuadAttacKsg 0.0018  10.4263 3259.2773 0.0991 1.7058 48.9628
RisingAttacKsp | 0.0392  5.1218 1511.3347  0.0388 | 7.0999 :
QuadAttacKg, 0.8344  10.0891 3133.6199 0.1079 | 3.4039 31100
Top-20 RisingAttacKgo | 0.8306  3.7474  1101.1521 0.0281 6.7267 B
op- QuadAttacKs, 0.0978 9.0948  2850.0433  0.0858 1.7264 1.9481
RisingAttacK3o | 0.0666 3.4854  1022.5585 0.0269 | 3.7216 )
QuadAttacKgo 0.9440 8.3368  2600.7510 0.0822 | 3.4839 32229
Ton-15 RisingAttacKg) | 0.9868  3.0150  878.9222  0.0233 5.1634 o
Op-1 QuadAttacK3, 0.4922  7.8296  2451.8036 0.0717 1.7382 33674
RisingAttacKsp | 0.5856 2.9944 873.3877  0.0234 2.8794 -
QuadAttacKg, 0.9866  6.5228  2044.5753 0.0576 | 3.7396 33482
Top-10 RisingAttacKgo | 0.9936  2.0825 602.1784  0.0167 | 3.3991 B
OP1Y MQuadAttacKy, | 0.8460 63547  1994.8023 0.0544 | 1.7593 > ora
RisingAttacK3o | 0.8064 2.1748  630.0922  0.0175 1.7965 :
QuadAttacKgo 0.9968  4.0029 1261.2314 4.5257 33373
Top-5 RisingAttacKgy | 0.9558  1.1534  330.1495  0.0098 1.8225 o
P~ QuadAttacK3, 0.9590 3.9539 1246.4929 2.1458 26681
RisingAttacKsp | 0.9504 1.4693  420.0254  0.0124 | 0.9517 .
QuadAttacKgo 0.9996 1.4443  467.1178 5.3373 21564
Top-1 RisingAttacKgo | 0.9992 0.6144 165.8517  0.0064 | 0.6114 )
P QuadAttacKg, | 0.9772 14244 461.1199 26411 14638
RisingAttacK3o | 0.9986 09155 251.6174  0.0088 0.3201 T

(c) ViT-B (Dosovitskiy et al., 2020)

‘ Top-K ‘ Method } ASRT 0T Mezl =T } Time (s/img) | ‘ FoM 1 ‘
| QuadAttacKgo | 0.3272  9.6708 29382587 0.1032 | 5.2135 31589
Top-30 RisingAttacKgo ~ 0.9534 97262  2721.2876  0.0876 | 43.3954 )
7" [ QuadAttacKs Failed 2.7870 inf
RisingAttacKzy  0.5568  11.4132 3206.4565 0.1029 | 21.7179
‘ QuadAttacKg ‘ 0.6872  9.4331 2860.6667 0.1002 | 5.2723 26425
Top-25 RisingAttacKgo ~ 0.9944  5.5706  1520.5703  0.0526 | 36.0486 -
[QuadAttacKz | Failed 27354 ot
RisingAttacK,  0.7536  7.7050 21263211  0.0721 | 18.0775
‘ QuadAttacKg ‘ 0.7828  7.9108 2393.0875  0.0815 5.0069 28308
Top-20 RisingAttacKgo ~ 0.9864  3.7609  1007.6887  0.0360 | 15.8230 |
[ QuadAttacKso | 0.0004  6.3770 19927502 0.0533 | 2.6210 1610.8632
RisingAttacKs,  0.4956  4.9482 13432135 0.0473 | 7.9615 e
| QuadAttacKgy | 0.8404  6.2661 1893.5173  0.0620 | 4.7622 27231
Top-15 RisingAttacKgo ~ 0.9988  2.8751  753.1852  0.0284 | 11.9841 T
[ QuadAttacKz, | 0.0056  4.7982 14958188 0.0385 | 2.4245 164.8583
RisingAttacK3, ~ 0.7510  3.8944  1038.7394  0.0379 | 6.0305 T
| QuadAttacKgo | 0.9130 45246 13742282 0.0410 | 4.6368 25047
Top-10 RisingAttacKgp 09936 19915  508.8791  0.0206 8.2583 N
[ QuadAttacKs, | 0.0252 3.4999 1094.6987 2.3034 36.7947
RisingAttacK3y  0.7112  2.6247  684.1576  0.0267 4.1602 .
| QuadAttacKgo | 0.9980 3.6439 1128.3054 4.3981 17630
Top-5 RisingAttacKgp  0.5712 11650  292.6494  0.0128 | 4.4038 T
[ QuadAttacK3, | 0.5024  3.2930 1029.8490 2.1108 23688
RisingAttacKz,  0.5980 1.6101  406.4644  0.0174 | 22197 -
| QuadAttacKgo | 0.9998 1.5736  509.7575 2.6007 32121
Top-1 RisingAttacKgy  0.9388  0.4365 96.0745 0.0060 1.2715 T
‘ QuadAttacK3g ‘ 0.9958 1.5681 508.0591 1.3040 21102
RisingAttacKzp  0.9362  0.6578  149.1661  0.0086 | 0.6417 -

Metrics. The metrics used to evaluate the attack methods
include the Attack Success Rate (ASR), as well as the /1,
{5, and £, norms of the perturbations. ASR quantifies the
fraction of adversarial examples satisfying the ordered top-
K constraints (larger is better). £, norms are computed
based on successful adversarial examples (lower is better,
indicating less visually-perceptible). We note that £, norms
are compatible between different methods only when their
ASRs are similar. For example, a method may show very
low £, norms when the ASR is also very low (i.e., it can only

(b) DenseNet-121 (Huang et al., 2017)

Mean
Top-K | Method Time (s/im FoM

P [ASRT 41 61 77| Time g”‘ T ‘

QuadAttacKey | Failed | 4.5409 inf
Top.30 | RisingAttacKso 04074 14.7263 4393.8482  0.1051 203156

P QuadAttacKs | Failed [ 23266 o
RisingAttacKzo | Failed 10.2335
QuadAttacKgy | 01734 13.1825  4053.5759 0.1531 | 4.1657 §.5496

Top.as | RisingAttacKso 09370 99898 29453574 0.0747 _ 16.8643 -

P QuadAtiacKz, | Failed [ 22016 ot
RisingAttacKsy  0.1094  9.9203  2921.6770  0.0756  8.5279
QuadAttacKgy | 0.8340  11.6266 35833589 0.1268 | 4.0066 26290

Top20 | RisingAttacKso 09812 59921  1744.8239  0.0468 82901 ’

P QuadAttacKy, | 0.0330 9.8564  3072.6790 0.0923 | 2.0206 37723
RisingAttacK) ~ 0.4500 6.1377 17865613  0.0485  4.6070 :
QuadAttacKgy | 0.9866 92713 28842755 0.0887 | 3.8963 23310

Top.15 | RisingAttacKen 10000 43657 12529889 0.0359 62878

Pl MQuadAttacKs, | 0.5088 8.6281 26979823 00771 | 1.8919 35504
RisingAttacKs)  0.9362 4.7380 13627350  0.0387  3.5501 >
QuadAttacKgy | 0.9986 67558 21234894 0.0545 | 3.8256 25458

Top-10 | RisingAttacKgy 10000  2.6903  759.1986 00235  4.2223 -

P QuadAttacKy, | 09392 6.6701  2098.0095 0.0531 | 1.8918 2472
RisingAttacKso  0.9880 2.9210  827.1606  0.0253  2.2937 -
QuadAttacKgy | 0.9998 39671  1258.1706 | 3.8644 30870

Top.s | RisingAttacKeo 09994 12169 3316714 0.0119 22643 :

P QuadAttacKy, | 0.9924 39526  1253.5745 [ 1.8502 22708
RisingAttacKzo 09982  1.6603  457.9204  0.0156  1.2082 -
QuadAttacKgy | 1.0000  1.5191  503.0047 | 3.0413 1.9466

Top.1 | RisingAttacKeo 10000 07001  177.1356  0.0085 08046 j
P QuadAttacKs, | 09960 15144 5014779 [ 15519 12739
RisingAttacKzo  1.0000  1.0708  280.0300 0.0116  0.4255 .
(d) DEIiT-B (Touvron et al., 2021)
Top-K | Method ‘ Mean | Time (sfime) | | Fomt
ASRT 61 &1 [
QuadAttacKey | 0.0640 93734 2860.9240 0.0997 | 4.1792 68333
Top30 | RisingAttacKso 05150 94432 2697.9176  0.0804 | 433521 :

P QuadAttacK3g ‘ Failed 2.3032 inf
RisingAttacKsy ~ 0.0600 11.0771 31656910  0.0957 | 21.6930 m
QuadAttacKgy | 0.8644  9.3780  2849.8222  0.0960 | 4.0966 21975

Top2s | RisingAttacKeo 09854 51921 14346160  0.0482 | 36.1084 -

P2 TQuadAttacKs, | Failed 22173 of
RisingAttacKzy ~ 0.6748 63220  1763.4334  0.0581 | 18.1108
QuadAttacKey | 09612 7.6974  2343.5441 0.0735 | 4.1868 28466

Top.20 | RisingAttacKso 09956 29174 7812607 0.0282 | 158331 :

P QuadAttacKyo | 0.0032 62491 19500525 00524 | 2.1503 1257059
RisingAttacKsy  0.6348  3.8373 10453953  0.0366 | 7.9624 o
QuadAttacKgy | 0.9750  6.0671 18524958 0.0544 | 3.9525 28819

Topis | RisingAttacKey 10000 22015 5733811  0.0223 | 119810 ’

P> "QuadAttacKs, | 0.0338 49874 15581460 0.0386 | 20234 128983
RisingAttacKzy  0.9278  3.1490  838.2295  0.0310 | 6.0263 -
QuadAttacKgy | 0.9762 43693  1346.6326 00353 | 3.8755 20455

Top.10 | RisingAttacKso 09996 15076  379.6582  0.0162 | 82610 o

P QuadAttacKyo | 0.1298 35782 1123.3760 1.9552 114300
RisingAttacKsy  0.9200 2.1465 5562741  0.0222 | 4.1613 e
QuadAttacKgy | 0.9984 33975 10647252 3.4381 31378

Top.s | RisingAttacKgo 09992 10575 2545953  0.0121 | 44027

P> "QuadAttacKs, | 0.7794 32526 1024.0607 17718 26286
RisingAttacKy,  0.8800 1.3450  334.9398  0.0149 | 22165 g
QuadAttacKgo | 1.0000 13910  459.6084 2.9955 30437

Top.i | RisingAttacKso 09794 03340 685738  0.0052 | 12708 :

P QuadAttacKy, | 09994 13899  459.3060 1.4404 24502

RisingAttacKsy  0.9772  0.5249 1142980  0.0073 | 0.6426 o

attack a few images). To compare the relative improvement
of one method (with ASR! and Ezl, norms) against another
one (with ASR? and Kfj norms), we propose to use a holistic
figure of merits (FoM),

FOMzﬂRl.l. @7 (23)
where when the opponent method fails, i.e., ASR? = 0,

we set FoM= +oo. Similarly, we set FoOM= —oo if the
primary method fails while the opponent method succeeds,
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and FoM= 0 if both methods fail. When the FoM> 1,
we say the primary method is holistically better than the
opponent method. We report the Mean metrics across the
five sampled targets for each K. We also adopt the com-
monly used o, = 8/255 as the threshold to characterize
the “visual imperceptibility” of learned adversarial pertur-
bations (Croce et al., 2020). See Appendix E for details of
metrics including Best, Mean and Worst comparisons.

Baselines. We mainly compare with QuadAttacK (Paniagua
et al., 2023) since it is the prior state-of-the-art method,
significantly outperforming the CW* and AD (Adversarial
Distillation) (Zhang & Wu, 2020). For a fair comparison,
both methods are tested under identical experimental con-
ditions. For all experiments, each attack is evaluated at 30
and 60 optimization iterations to analyze its performance
under varying computational budgets. The initial perturba-
tion for all attacks is set to zero, ensuring consistent starting
conditions across methods.

Results and Analyses. Our proposed RisingAttacK shows
a big leap forward in advancing ordered top-K attacks,
which in turn verifies the significant advantages of learn-
ing attacks directly in the image space by our proposed
SQP formulation. Results of ordered top- K attacks for the
four models are shown in Table 1(a), 1(b), 1(c) and 1(d).

* Based on the FoM evaluation (Eqn. 23), our RisingAt-
tacK consistently outperforms the previous state-of-the-
art method, QuadAttacK across all K (=1,5,10,20, 25,30)
and all four models. It achieves FoMs greater than 2 in
most cases (i.e., holistically 2x better than QuadAttacK).

* Our RisingAttacK facilitates learning visually-
imperceptible perturbations up to K = 20 for
ResNet50 and DEiT-B, K = 15 for ViT-B, and K = 10
for DenseNet121, based on the ¢, threshold, significantly
outperforming QuadAttacK.

Fig. 2 show examples of learned adversarial examples and
perturbations using RisingAttacKgy. More examples are
provided in the Appendix F.

More Results. We also show results of using the lowest-
K predictions of each benign image by each model as the
ordered top-K attack targets (Table 6 in the Appendix E).
Ordered top-K targets by this image- and model-specific
selection method are intuitively deemed as more difficult to
attack, as empirically shown in (Zhang & Wu, 2020). Coun-
terintuitively, our results show they are not more difficult
than randomly sampled targets using both QuadAttacK and
our RisingAttacK.

The Average Speed (second/image). We note that for K =1
our RisingAttacK is consistently faster than QuadAttacK.
For K > 1, QuadAttacK is mostly faster than our RisingAt-
tacK. The main reason is due to the current implementation
of computing the logit-to-image Jacobian matrix in PyTorch,

for which we used PyTorch 2.6 and the jacrev and vmap
(with chunk size 100) functions in the torch. func li-
brary. When K is larger than 1, based on Eqn. 9, we main-
tain K + M + 1 logits with M = 5 - K. We did not test
other factors for M (e.g., 2- K or a predefined constant such
as 5). We will address this speed limitation in future work.

5. Conclusion

This paper presents RisingAttack, a novel method for learn-
ing ordered top-K targeted white-box adversarial attacks
by directly solving the non-linearly constrained optimiza-
tion problem in image space under the sequential quadratic
programming framework. Our RisingAttacK provides a
simple yet elegant solution: ordered top-K adversarial per-
turbations can be learned via iteratively optimizing linear
combinations of the right singular vectors (corresponding
to non-zero singular values) of the attack-targets-ranking
constrained logit-to-image Jacobian matrix. Through ex-
periments on four ImageNet-1k trained DNNs, our Risin-
gAttacK shows a big leap forward in advancing ordered
top- K attacks in terms of a proposed figure-of-merits met-
ric, significantly outperforming the previous state-of-the-art
method, QuadAttacK.

Impact Statement

This work advances the field of adversarial machine learning
by introducing RisingAttacK. By improving the efficiency
and scalability of ordered top-K adversarial attacks, partic-
ularly for large K values, this research highlights critical
vulnerabilities in modern DNNs. However, adversarial at-
tack methods also pose risks, as they may be misused to
compromise real-world systems. For example, attacks on
ranking-based systems could be exploited to manipulate
search engine results or recommendation algorithms. To
mitigate these risks, this work should be viewed as a tool for
potentially strengthening defenses (e.g., as critics for them)
rather than enabling malicious use. In addition, this work
contributes to the broader exploration of optimization in
machine learning by integrating techniques from traditional
nonlinear programming into neural network-based problems.
This direction holds promise for both adversarial research
and other optimization tasks in machine learning, offering a
foundation for solving increasingly complex challenges.
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A. Background on QuadAttacK

QuadAttacK (Paniagua et al., 2023) addresses the challenge of optimizing Eqn. 4 by first “lifting” it into the feature space,
i.e., the output space of f(-), see the left-bottom of Fig 1. At a given iteration 4, let () be the current perturbation, and
pperturd — gbenign 4 5(9) the current perturbed image with 2P = f(zPert®) jtg DNN features. QuadAttacK aims to
iteratively find the optimal perturbed features z around 2P°"' to satisfy the constraints by,

minimize ||z — 2P| |2 (24)
4

subjectto K- (W .-z+4b) >0,
where the nonlinear backbone f(-) is eliminated from the constraints. Eqn. 24 can be solved by a QP package (Amos &
Kolter, 2017). With the optimized z*, the adversarial perturbation is updated by back-propagating the feature distance to the
image space through the highly non-linear DNN backbone f(-),
e Tl = 118 g, ©3)
where 7 is the learning rate, and A the trade-off parameter between feature distance and image perturbation. The perturbed
image is updated by,

S+ — 50

pperturb _ Clamp(ﬂ?benign 4 5(1+1)) (26)

QuadAttacK is executed iteratively with respect to a predefined computing budget (e.g., 30 or 60 iterations). As aforemen-
tioned, there is a gap between the optimized z* (Eqn. 24) in the feature space and the computed 6¢*1) (Eqn. 25) in the
image space in terms of satisfying the ordered top-K constraints, which leads to suboptimal adversarial examples (Eqn. 26).

B. Details on Compact Ordered Top-K Constraints

In Sec. 3.2.1, we introduce the mapping G (Eqn. 9) that reorders the logits and augments them with a differentiable nonlinear
term, reproduced here,

G:l(-) €RY = I(-) € RIEEFMAL
where K = |T | is the number of attack targets, M is the number of highest non-target logits to include explicitly (e.g.,
M =5 - K), and the final term is the soft-maximum of the remaining logits. We have,

* The ordered top-K targets: 1(x); = €(x)y,, fori € {1,..., K}, where t; € T is the i-th target class. These targets remain
the same during the optimization.

* The ordered top-M non-targets: 1(x) g yj = £(x),,,, where j € [1,---, M], and m; = argsort;{{(x);;i € Y\ T}, ie.,
£(x)m, is the j-th largest non-target logit. For example, M = 5 x K. Denote by M the ordered top-) non-target classes,
which are dynamic during the optimization.

* The Soft-Maximum of logits of the Remaining Classes: 1(x)q = SmoothMaX({E(x)j;j e Y\ (TU ./\/l)}), where
d = K+ M +1, and SmoothMax(-) is differentiable and enables gradient distribution (rather than switching) in learning,
which is defined by,

SmoothMax(v) = Sum(Softmax(v) ® v), 27

where © represents element-wise (Hadamard) product. It is straightforward to show that mean(v) < SmoothMax(v) <
max(v) for any real vectors v.

We note that the inclusion of the top-)/ non-target logits is to ensure that the compact constraints remain robust, even in
cases where the SmoothMax(-) function introduces significant nonlinearity.

C. QP for Recovering Perturbation in the Image Space

We show the solution (Eqn. 18) can be understood from the QP perspective. Basedon § = V - e and § = x — 22", we
have,

€ = VT . (.17 _ xanchor)7 (28)

€ = VrT - VTT .xanchor A Ty — xinchor’ (29)

where z,. is the projection of x, and """ the projection of the anchor image.

Minimizing ||e,.||2 is to find the optimal % that is closest to z3""°", We have, z = 23" + ¢ with which the QP for
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recovering the optimal perturbation in the original image space is to,

minimize ||z — 22hor||2 30
inimize | 3 G0)

subjectto V.| -z =¥,
which only involves equality constraints, making it computationally efficient to solve, even though z is in the high-
dimensional image space. We show that Eqn. 30 has a closed-form solution, reproducing the result in Eqn. 18.

Recall € is the solution from solving Eqn. 17, xhor = |/ T . ganchor apd g% — panchor 1 ex "Fqn. 30 is reproduced here,
minimize ||z — z*"||2,
z€[0,1]P
: T ok
subjectto V. -z =z,

which can be re-expressed by expanding the objective function and removing the constant term as,

minimize 7 -z — 2. gachor | x, 31
z€[0,1]P
subjectto V.| -z =z,
And the Lagrangian is,
Lz, \)=xz" cr— 2ol g T V.l oz —a). (32)
We obtain estimating equations from the derivatives as follows,
0 .
Lz, N)=2-2—2- 2" LV . \=0, (33)
ox
. 1
= =" SV, (34)
a T *
aﬁ(x, N=V ' -z—z =0, (35)
= V' .z=uz, (36)
‘We have,
1
VvTT . (manchor o 5‘/} . )\) — x: 37
= A=2- (VYTT . xanchor _ .T:) =9. (:L,z;nchor _ (mz;nchor + 6:)) =_9. 6:, (38)
So, we have,
1
T = manchor _ 5‘/7‘ . (_2 . 6:) — J:anchor + Vr . 6:, (39)

which reproduces Eqn. 18.

D. Details of Attack Targets
We use 5 random seeds (42, 52, 62, 72 and 82) and sample 5 lists of ordered top-30 targets as follows:

* seed=42: (643): mask, (409): analog-clock, (798): slide-rule, (250): Siberian-husky, (593): harmonica, (47): African-
chameleon, (142): dowitcher, (276): hyena, (908): wing, (721): pillow, (57): garter-snake, (257): Great-Pyrenees,
(397): puffer, (954): banana, (203): West-Highland-white-terrier, (172): whippet, (294): brown-bear, (803): snowplow,
(76): tarantula, (811): space-heater, (817): sports-car, (608): jean, (977): sandbar, (711): perfume, (157): papillon, (51):
triceratops, (428): barrow, (84): peacock, (531): digital-watch, (478): carton

e seed=52: (523): crutch, (330): wood-rabbit, (743): prison, (611): jigsaw-puzzle, (613): joystick, (810): space-bar,
(634): lumbermill, (203): West-Highland-white-terrier, (217): English-springer, (816): spindle, (926): hot-pot, (275):
African-hunting-dog, (337): beaver, (33): loggerhead, (264): Cardigan, (862): torch, (755): radio-telescope, (949):
strawberry, (162): beagle, (488): chain, (251): dalmatian, (292): tiger, (440): beer-bottle, (638): maillot, (722):
ping-pong-ball, (349): bighorn, (592): hard-disc, (409): analog-clock, (584): hair-slide, (701): parachute

* seed=62: (45): Gila-monster, (224): groenendael, (274): dhole, (54): hognose-snake, (759): reflex-camera, (931):
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bagel, (1): goldfish, (478): carton, (51): triceratops, (649): megalith, (117): chambered-nautilus, (652): military-
uniform, (601): hoopskirt, (571): gas-pump, (520): crib, (221): Irish-water-spaniel, (869): trench-coat, (102):
echidna, (14): indigo-bunting, (670): motor-scooter, (975): lakeside, (511): convertible, (8): hen, (840): swab, (156):
Blenheim-spaniel, (928): ice-cream, (24): great-grey-owl, (567): frying-pan, (668): mosque, (866): tractor

* seed=72: (678): neck-brace, (329): sea-cucumber, (731): plunger, (829): streetcar, (565): freight-car, (628): liner,
(331): hare, (376): proboscis-monkey, (787): shield, (622): lens-cap, (402): acoustic-guitar, (225): malinois, (487):
cellular-telephone, (858): tile-roof, (94): hummingbird, (991): coral-fungus, (808): sombrero, (95): jacamar, (649):
megalith, (35): mud-turtle, (215): Brittany-spaniel, (246): Great-Dane, (222): kuvasz, (88): macaw, (586): half-track,
(424): barbershop, (553): file, (302): ground-beetle, (363): armadillo, (793): shower-cap

e seed=82: (280): grey-fox, (942): butternut-squash, (457): bow-tie, (810): space-bar, (811): space-heater, (388):
giant-panda, (121): king-crab, (974): geyser, (432): bassoon, (969): eggnog, (633): loupe, (399): abaya, (438): beaker,
(329): sea-cucumber, (563): fountain-pen, (661): Model-T, (552): feather-boa, (256): Newfoundland, (859): toaster,
(539): doormat, (949): strawberry, (157): papillon, (410): apiary, (569): garbage-truck, (496): Christmas-stocking,
(207): golden-retriever, (591): handkerchief, (806): sock, (372): baboon, (219): cocker-spaniel

We use those targets sequentially for K = 1, 5,10, 15, 20, 25, 30 for the four models. The targets are shared by the 1000
testing images. For each testing image, if its ground-truth label is in any ordered top-K targets, we replace it with a different
randomly sampled targets.

In addition to the randomly sampled targets, we also test a special case in which the lowest-K predictions by a model for a
benign image are used as the ordered top-K attack targets (i.e., the first target is the class of the lowest logit for the benign
image, and so far so on). The results are shown in Table 6 in the Appendix E.

E. Details of Metrics and Full Results

We report the Mean metrics (ASRs and ¢, norms) in the paper. Here, we also report results in terms of Best and Worst
metrics in Tables 2, 3, 4, 5, where FoMs are computed using Mean.

For a model and a given K, there are five different lists of ordered top- K targets. For each image, its Best (Worst) ASR
is 1 if any (all) of the five lists of targets can be successfully attacked, and the Mean ASR is the fraction of successful
attacks over the total five runs. The overall Best, Mean, Worst ASRs are then averaged over the 1000 testing images.
Corresponding to the three types of ASRs, their £, norms are computed using successfully attacked images only.

F. More Qualitative Results

We show examples learned by both our RisingAttacK and QuadAttacK for each of the five random seeds. Fig. 3 shows the
examples by QuadAttacK, corresponding to those by our RisingAttacK in Fig. 2 and the seed is 42

More examples are in Figs. 4 and 5 (for seed=52).

Due to the file size limit (20M), we will show examples using other seeds in our released code repository.
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Table 2. Full results including the three metrics (Best, Mean, Worst) for ResNet50 in Table 1(a). FoM is based on the Mean
performance.

. Best Mean Worst . .
‘ Top-K | Method } ASRT 61 G [ } ASRT 61 61 [ } ASRT 61 61 [ | Time i) 4 ‘ FoM ‘
QuadAttacKgy | 04590  11.6907 36206876 0.1307 | 02076  11.8070 3654.9139 0.1349 | 0.0330 11.9156 3686.5432 0.1394 | 3.3947 64793
Top30 | RisingAtacKe | 0.8770 65011 1922.6780 00475 | 0.6642 7.0271 20818960 0.0511 | 03900 7.5992 22550249 00550 | 17.0013 -
QuadAttacKsp Failed Failed Failed 1.6539 .
RisingAttacKso | 0.0110  6.2378 18443013  0.0470 | 0.0022 62378 1844.3013  0.0470 Failed 8.5619 inf
QuadAttacKgy | 0.8460 113686 35263618 0.1219 | 0.6018  11.6214 3599.8101 0.1301 | 0.3060 11.8774 36742965 0.1388 | 3.4167 36439
Top2s | RisingAtacKey | 0.9580 48257 1419.8702 00361 | 0.8420 52960 15616462 00393 | 06700 58040 17155532 0.0427 | 140839
QuadAttacKz, | 0.0090 104263 3259.2773 0.0991 | 0.0018 104263 3259.2773 0.0991 Failed 17058 18,9628
RisingAttacKso | 0.1270  5.0430  1487.4868  0.0382 | 0.0392 51218 1511.3347 0.0388 | 0.0010 52031 15359489 0.0394 | 7.0999 :
QuadAttacKgy | 0.9560 9.7368 30303407 0.0984 | 0.8344 10.0891 3133.6199 0.1079 | 0.6500 104514 3239.8729 0.1183 | 3.4039 31100
Top-20 | RisingAttacKey | 09500 33880 9924068 00257 | 08306 37474  110LIS21 0.0281 | 06520 41005 12079307 00305 | 67267 >
QuadAttacKz, | 0.2620 9.0111 28244299 0.0839 | 0.0978 9.0948  2850.0433 0.0858 | 0.0080 0.1756  2874.5937 0.0876 | 1.7264 Loas!
RisingAttacKso | 02040 3.4129 10003753 0.0264 | 0.0666 3.4854 1022.5585 0.0269 | 0.0010 3.5609 10457229 0.0274 | 3.7216 :
QuadAttacKgy | 0.9870  7.9013  2470.1343 0.0729 | 0.9440 83368  2600.7510 0.0822 | 0.8460 8.8010  2739.1058 0.0932 | 3.4839 39929
Top-15 | RisingAtacKeo | 0.9990 26335 7636941 0.0208 | 09868 30150 8789222 00233 | 09610 34246 1003.1229 0.0260 | 5.1634
QuadAttacKz, | 0.7540  7.5962 23803027 0.0674 | 04922 7.8296  2451.8036 0.0717 | 0.2000 8.0427  2517.2334 0.0759 | 1.7382 23674
RisingAttacKso | 0.8310 27910 812.1335  0.0219 | 0.5856 2.9944 8733877  0.0234 | 0.2970 32057 9369361  0.0249 | 2.8794 :
QuadAttacKgo | 0.9970  6.1074  1917.6238 00504 | 09866 65228  2044.5753 0.0576 | 0.9660 6.9893 21861273 0.0666 | 3.73% 33480
Top-10 | RisingAttacKey | 09980 18077  519.1006 00149 | 0.9936 20825 602.1784  0.0167 | 09800 23735 690.1587 00187 | 3.3991 :
QuadAttacKz, | 0.9520 6.0248 18932294 00491 | 0.8460 63547  1994.8023 0.0544 | 0.6600 66744  2093.2491 0.0598 | 1.7593 5 0204
RisingAttacKso | 0.9410 1.9697 568.1198  0.0160 | 0.8064 21748 630.0922 0.0175 | 0.5990 23743 6903320  0.0188 | 1.7965 g
QuadAttacKgo | 1.0000 3.6813  1161.6413 09968 4.0029  1261.2314 09900 43529  1369.4046 0.0362 | 4.5257 23373
Tops | RisingAtacKe | 0.9890 09567 2704779  0.0085 | 09558 11534 330.1495 00098 | 08980 13547 39L1246 00112 | 18225
QuadAttacKs, | 0.9880 3.6540  1153.1996 0.9590 39530 12464929 0.8950 42646 13433064 0.0344 | 2.1458 5 6681
RisingAttacKso | 0.9860 1.2737 361.3176  0.0110 | 09504 14693 420.0254 0.0124 | 08910 1.6607 4773890  0.0138 | 0.9517 ’
QuadAttacKgy | 1.0000 1.1548 3814498 09996 14443  467.1178 09980 17222 550.7556 53373 5 1564
Top1 | RisingAtiacKa | 10000 04136 1047782 0.0049 | 09992 06144 1658517 00064 | 09990 0.8364 2335616  0.0079 | 0.6114 :
QuadAttacKz, | 0.9980 1.1521  380.6522 09772 14244 461.1199 09340 1.6861  540.0446 2.6411 L4638
RisingAttacKso | 1.0000  0.6218 163.8710  0.0066 | 0.9986 0.9155 251.6174  0.0088 | 0.9950 12054 3383424 00110 | 0.3201 ’

Table 3. Full results including the three metrics (Best, Mean, Worst) for DenseNet121 in Table 1(b).

FoM is based on the Mean

performance.
. ‘ Best ‘ Mean ‘ Worst . .
‘T"P‘K ‘Me‘h"d ES Sy o1 [ASRT 41 Gl o1 [ASRT 41 Gl | Time (/img) | ‘ FoM ‘
QuadAttacKgo Failed Failed Failed 4.5409 inf
Top30 | RisingAttacKeo | 07490 138191 4117.4537 00991 | 04074 14.7263 43938482 0.1051 | 0.0730 156581 4677.7359 0.1114 | 20.3156

P QuadAttacKsg Failed Failed Failed 2.3266 inf
RisingAttacKsg Failed Failed Failed 10.2335
QuadAttacKgo | 0.4600 13.0098  4002.5555 0.1489 | 0.1734  13.1825 4053.5759 0.1531 | 0.0050 133529 4103.6056 0.1573 | 4.1657 85496

Top.s | RisingAttacKey | 0.9860 8.8114  2589.4709 0.0666 | 0.9370 9.9898 29453574 0.0747 | 08340 112310 33209942 0.0830 | 16.8643 -

P> " QuadAttacK s Failed Failed Failed 22016 of
RisingAttacKs, | 0.3150 9.6484 28404239 0.0736 | 0.1094 99203  2921.6770 0.0756 | 0.0010 10.1868 3001.6276 0.0775 | 8.5279
QuadAttacKeo | 0.9730  11.0446 34129160 0.1140 | 0.8340 11.6266 3583.3589 0.1268 | 0.5840 12.1967 3749.9306 0.1403 | 4.0066 56290

Top20 | RisingAttacKeo | 09970 51080  1480.5618  0.0406 | 0.9812 59921 17448239 0.0468 | 0.9450 69129 20208591 0.0532 | 82901 :

P QuadAttacKs, | 0.1240 9.7962  3054.7057 0.0914 | 0.0330 9.8564  3072.6790 0.0923 Failed 2.0206 37723
RisingAttacKs | 07320 57318 16647979  0.0456 | 0.4500 6.1377 1786.5613 0.0485 | 0.1460 6.5680 1915.5893 0.0516 | 4.6070 :
QuadAttacKso | 0.9970  8.6591 27017797 0.0774 | 0.9866 9.2713  2884.2755 0.0887 | 0.9610 9.8890  3067.5058 0.1011 | 3.8963 23310

Top.15 | RisingAttacKeo | 1.0000 38050  1086.1460 0.0318 | 10000 4.3657 12529889 0.0359 | 1.0000 49640 1431.3256 0.0402 | 6.2878 -

P QuadAttacKs, | 0.7780 8.3044 25994287 0.0720 | 0.5088 8.6281  2697.9823 0.0771 | 0.2380 8.9352  2791.7948 0.0821 | 1.8919 3550
RisingAttacKs) | 0.9900 4.2188  1207.4247 0.0350 | 0.9362 47380  1362.7350 0.0387 | 0.8350 52677 1521.6817 0.0425 | 3.5501 >
QuadAttacKgy | 1.0000 62172  1957.3529 0.0469 | 0.9986 6.7558  2123.4894 0.0545 | 0.9970 7.3050  2291.5986 0.0629 | 3.8256 5 5458

Top.10 | RisingAtiacKeo | 10000  2.3212  649.6995  0.0208 | 10000 2.6903 7591986  0.0235 | 1.0000 3.0749  874.1637  0.0263 | 4.2223 -

P QuadAttacKz, | 0.9900 6.1801 19464525 0.0464 | 0.9392 6.6701  2098.0095 0.0531 | 0.8380 7.1563 22482525 0.0602 | 1.8918 51072
RisingAttacKs, | 0.9980 2.4880  698.6799  0.0221 | 0.9880 2.9210 827.1606  0.0253 | 0.9690 3.3607 958.0512  0.0285 | 2.2937 -
QuadAttacKgo | 1.0000 3.6045  1143.1525 0.9998 3.9671  1258.1706 0.9990 43422 1377.3171 3.8644 30870

Top.s | RisingAttacKeo | 10000 10122 2709332 0.0103 | 09994 12169 3316714  0.0119 | 0.9980 14422  398.9840  0.0136 | 22643 :

OP "QuadAttacKz, | 0.9980 3.6019  1142.1894 0.9924 39526  1253.5745 09820 43229 1371.6348 1.8502 52704
RisingAttacKso | 1.0000 1.3896 3783550  0.0135 | 0.9982 1.6603 457.9204  0.0156 | 0.9940 1.9524 544.3561 0.0178 | 1.2082 -
QuadAttacKgy | 1.0000 1.1724  397.8131 1.0000 15191  503.0047 1.0000 18544  606.7211 3.0413 19466

Top.i | RisingAttacKeo | 1.0000 04732 1124793  0.0063 | 10000 07001 1771356 00085 | 1.0000 09566 2518730  0.0108 | 0.8046 :

P QuadAttacKs, | 1.0000 1.1728  397.9329 09960 1.5144  501.4779 09880 1.8426  603.0238 15519 12739
RisingAttacK3o | 1.0000 0.7032 1752027  0.0084 | 1.0000 1.0708  280.0300 0.0116 | 1.0000 14523 390.3135 0.0149 | 0.4255 :
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Table 4. Full results including the three metrics (Best, Mean, Worst) for ViT-B in Table 1(c). FoM is based on the Mean perfor-
mance.
. | Best Mean Worst | .
‘ Top-K ‘ Method [ASRT 6T G =l [ASRT G 61 =1 [ASRT Al &F ey | metime ‘ FoM1 ‘
QuadAttacKgo | 0.6720 94223 2864.1279 0.0996 | 03272  9.6708 29382587 0.1032 | 0.0590 9.9254 30145189 0.1067 | 5.2135 31589

Ton.30 | RisingAttacKeo 10000 67803 18817456 0.0613 | 09534 97262  2721.2876 00876 | 0.8260 142641 4001.9670 0.1299 | 433954 :

P QuadAttacK3g ‘ Failed Failed Failed 2.7870 inf
RisingAttacKso  0.8080 103031 2880.8575 0.0934 | 0.5568 114132 32064565 0.1029 | 0.2430 12,6194 35585805 0.1134 | 21.7179 !
QuadAttacKgy | 09350 9.0105  2737.0924 0.0935 | 0.6872 9.4331  2860.6667 0.1002 | 03490 9.8582 29852203 0.1070 | 5.2723 5 6425

Top.s5 | RisingAtiacKeo 10000 40101 10849150 0.0382 | 09944 55706  1520.5703 00526 | 09740 8.1685 22324551 0.0782 | 36.0486 ’

P QuadAttacK3g \ Failed Failed Failed 2.7354 inf
RisingAttacKs,  0.9330  6.8418  1877.8280 0.0643 | 07536 7.7050 21263211 0.0721 | 0.5000 8.8041 24387838 0.0825 | 18.0775
QuadAttacKgo | 0.9710 74811 22682729 0.0748 | 07828 7.9108  2393.0875 0.0815 | 04910 83426 25197231 0.0884 | 5.0069 28308

Top.20 | RisingAttacKeo ~ 0.9980  3.0033  792.6934  0.0294 | 09864 37609  1007.6887 0.0360 | 09560 45804 12419193 0.0432 | 158230 o

P QuadAttacKsy | 0.0020 63770  1992.7502 0.0533 | 0.0004 63770  1992.7502 0.0533 Failed 2.6210 1610.8632
RisingAttacKsy 07380  4.5276  1221.1645 0.0436 | 0.4956 4.9482 13432135 0.0473 | 02490 53892 1471.1873 0.0511 | 7.9615 -90-
QuadAttacKgo | 0.9730  5.8803  1780.9271 0.0558 | 0.8404 62661  1893.5173 0.0620 | 0.5980 6.6687 20114965 0.0684 | 4.7622 27231

o 15 | RisingAttacKeo 10000 23069  593.4747  0.0235 | 0.9988 28751 7531852  0.0284 | 09940 35373  939.6227  0.0343 | 119841 e

P QuadAttacKzy | 0.0240 47795  1490.0706 0.0382 | 0.0056 4.7982  1495.8188 0.0385 Failed 2.4245 164.8583
RisingAttacKsp ~ 0.9270  3.4401 9082324  0.0339 | 07510 3.8944 10387394 0.0379 | 0.5310 4.4471 1197.6996 0.0427 | 6.0305 :
QuadAttacKgy | 0.9900  4.1855  1274.5181 0.0363 | 0.9130 45246 13742282 0.0410 | 0.7510 4.8729 14769954 0.0459 | 4.6368 55047

o 10 | RisingAttacKo 10000 15872 397.2939  0.0169 | 0.9936 19915 SO08.8791  0.0206 | 09750 24423  634.1043  0.0247 | 82583 i

P QuadAttacKy, | 0.0810 3.4468  1078.1791 00252 34999  1094.6987 Failed 2.3034 367947
RisingAttacKsp  0.9010  2.3233  599.0848  0.0240 | 07112 2.6247  684.1576  0.0267 | 0.4810 29492 7758982  0.0297 | 4.1602 -
QuadAttacKgo | 1.0000 32461  1010.5003 09980 3.6439  1128.3054 09930 40423 12460157 0.0338 | 4.3981 1 7630

Top.s | RisingAttacKgy 08280 09934 2453329 0.0111 | 0.5712 11650 292.6494 00128 | 02910 13395 3409352  0.0144 | 44038 ;

P~ MQuadAttacKz, | 0.8120 3.0024  968.7317 05024 32930  1029.8490 0.1780 34820  1087.7387 2.1108 5 3688
RisingAttacKsy  0.8420 13886 3455126  0.0153 | 0.5980 1.6101 4064644  0.0174 | 0.3310 1.8357 468.6344  0.0195 | 22197 =
QuadAttacKgo | 1.0000 12537  410.8221 09998 15736  509.7575 09990 19042  612.7661 2.6007 39101

fop.1 | RisingAtiacKeo 0.9940 02978 603734 0.0045 | 0.9388 04365 960745  0.0060 | 0.8260 0.6048 139.9744  0.0078 | 12715 >

P QuadAttacKz, | 1.0000 12541 4109606 0.9958 15681  508.0501 0.9900 18935  609.5179 1.3040 21100
RisingAttacKsp  0.9950 04270 90.9070  0.0060 | 0.9362 0.6578  149.1661  0.0086 | 0.8180 09318 219.6820 00115 | 0.6417 g

Table 5. Full results including the three metrics (Best, Mean, Worst) for DEiT-B in Table 1(d). FoM is based on the Mean
performance.
. ‘ Best ‘ Mean ‘ Worst . .
‘ Top-K ‘ Method [ASRT 61 61 Tl [ASRT 61 61 1 [ASRT 61 61 P ‘ ot
| QuadAttacKgo | 0.2350 93006  2840.2109 0.0985 | 0.0640  9.3734  2860.9240 0.0997 | 0.0010  9.4465 28817991 0.1009 | 4.1792 8333

Top.30 _RisingAttacKey ~ 0.9860  7.9531 22633389 00678 0.5150 94432 26979176  0.0804 | 0.0340 117557 3365.5665 01007 | 433521 ’

P % MQuadAttacKsy | Failed | Failed Failed 2.3032 o
RisingAttacKso  0.2160  10.8323 3092.9352  0.0937 0.0600 11.0771 31656910  0.0957 Failed 21.6930
| QuadAttacKgy | 0.9900 8.8805  2703.0149 0.0886 | 0.8644 9.3780  2849.8222 0.0960 | 0.5880 9.9093 30065687 0.1039 | 4.0966 21975

Topas RisingAtacKso 10000 36473  1002.9836 00337 09854 51921 14346160  0.0482 | 09360 79650  2187.8969 0.0768 | 36.1084 :

P | QuadAttacKsy | Failed | Failed Failed 2.2173 inf
RisingAttacKs, ~ 0.9100  5.6674 15759766 0.0520 ~ 0.6748 63220 17634334 0.0581 | 0.3620 7.1691  2002.6759 0.0662 | 18.1108
| QuadAttacKgo | 0.9990 7.2048  2199.2260 0.0665 | 09612 7.6974  2343.5441 0.0735 | 0.8540 82263  2499.1404 0.0811 | 4.1868 5 8466

Topao _RisingAtacKsy 10000 23202 6111048  0.0230  0.9956 29174 7812607  0.0282 | 09850 35733  968.9946  0.0339 | 158331 ’

P> [QuadAtacKs, | 00160 62491 19500525 0.0524 | 00032 62491  1950.0525 0.0524 Failed 2.1503 3257059
RisingAttacKso  0.8560  3.5031  946.6320  0.0338 0.6348 3.8373 10453953 0.0366 | 0.3810 4.1863  1148.5782  0.0395 | 7.9624 o
| QuadAttacKgy | 1.0000 55928  1713.0918 0.0481 | 0.9750 6.0671  1852.4958 0.0544 | 09100 6.5599 19975902 0.0611 | 3.9525 58819

Top.15 _RisingAtacKso 10000 17594 4486124  0.0184 10000 22015 5733811 00223 | 10000 27017 7152705  0.0266 | 11.9810 ’

P10 [[QuadAttacKs, | 0.1350 49541  1548.1232 0.0383 | 0.0338 49874  1558.1460 0.0386 Failed 2.0234 128983
RisingAttacKs, ~ 0.9870 27227  714.8364  0.0273 09278 3.1490 8382295 0.0310 | 0.8140 35773  963.3399  0.0346 | 6.0263 078

| QuadAttacKgy | 0.9980 3.9545  1222.8665 | 09762 43693  1346.6326 0.0353 | 0.9150 4.7999 14754252 0.0406 | 3.8755 50455

Top.10 _RisingAtacKso 10000 11885 2915197  0.0132 0.999 15076  379.6582  0.0162 | 09980 18825 4844438  0.0195 | 8.2610 :

P [QuadAuacKy, | 03540 34965  1097.7370 [0.1298 35782 11233760 00100 3.6597 11489145 1.9552 11,4300
RisingAttacKs,  0.9800 17993  458.0865  0.0191  0.9200 2.1465 556.2741  0.0222 | 0.8000 25030 658.8665 0.0253 | 4.1613 -
| QuadAttacKgo | 1.0000 29872  940.1374 | 0.9984 33975  1064.7252 09950 3.8203 11927754 3.4381 31378

Top.s _RisingAtacKso 10000  0.8108  189.0044  0.009% 09992 10575 2545953  0.0121 | 09970 13365 329.6166 00148 | 44027 o

P> [QuadAttacKz, | 0.9700 29571  932.7132 [0.7794 32526  1024.0607 04770 35452 1114.4266 17718 5 6286
RisingAttacKs ~ 0.9760  1.0890 2644306  0.0125  0.8800 13450 334.9398  0.0149 | 0.7110 16168 4108617  0.0174 | 22165 g

| QuadAttacKgy | 1.0000 1.1376  381.0736 | 1.0000 13910  459.6084 10000 16659 5452655 2.9955 30437
topy _RisingAtacKsy 09990 02450 461936 0.0041 09794 03340  68.5738  0.0052 | 09420 04472 977384  0.0065 | 12708 :

P QuadAtacKs, | 10000 1.1372 3809527 [0.9994 13899  459.3060 0.9970 1.6631  544.4684 14404 5 4500
RisingAttacKs ~ 1.0000 03367  67.5065  0.0052 09772 05249 1142980 00073 | 09240 0.7524 1719542  0.0099 | 0.6426 g
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Table 6. Ordered top-K attack results using the lowest-K predictions of benign images as attack targets. Overall, our RisingAttacK
shows a big leap forward in advancing ordered top-K attacks, outperforming the prior state-of-the-art method, QuadAttacK (Paniagua
et al., 2023) by a large margin in most cases (higher ASRs with lower £, norms). ¢-norms in red is to show they are treated as being
imperceptible” based on the commonly used threshold 8/255 = 0.0314. The subscripts of methods (30 and 60) represent the
computing budgets. The FoM (figure of merits) of our RisingAttacK against QuadAttacK is computed by Eqn. 23 to show its holistic
improvement in terms of how many times it is better.

(a) ResNet-50 (He et al., 2016)

13

. N ‘ Single-Run ‘ o
‘ Top-K ‘ Method ‘ ASRT G0 Tl =T ‘ Time (s/img) | | FoMt
‘ QuadAttacKgy | 0.3250  11.7308 3640.1040 0.1292 | 4.7020 38464
Top-30 RisingAttacKgp | 0.5340 59437 1762.7836  0.0433 | 38.9733 -

P> QuadAtacKy, | 00010 10.6442 3329.8271 O.1T11 | 2.2976 e
RisingAttacK3p | 0.0040  6.3581  1870.2285  0.0490 | 19.6176 :

‘ QuadAttacKso | 0.6240  11.5386 3585.0978 0.1250 | 4.5973 31978
Top-25 RisingAttacKgo | 0.7070  4.7898  1415.3054  0.0355 | 32.0203 )

P ‘ QuadAttacK3o 0.0320 10.3092  3233.3005 0.0954 | 2.2886 22899
RisingAttacK3o | 0.0280 4.2926  1263.4319  0.0330 | 16.1438 :

‘ QuadAttacKeo 0.8090 10.0532 3129.2405 0.1050 | 4.5393 28243
Top-20 RisingAttacKgo | 0.7300 3.6953  1088.5812 0.0277 14.1311 i

P QuadAttacK3 0.1270  9.1247  2863.4929 0.0830 | 2.2579 12784
RisingAttacK3; | 0.0560 3.3960 993.0273  0.0265 7.4246 )

‘ QuadAttacKgy | 0.9370  8.4982  2653.1828 0.0840 | 4.5458 31157
Top-15 RisingAttacKeo | 0.9620  3.1353  917.7340  0.0240 | 10.7638 )

P ‘ QuadAttacK3 0.3980 7.8166  2453.6085 0.0696 | 2.2794 26514

RisingAttacK3o | 0.3880  3.0805 900.1031  0.0240 | 5.6529 :
| QuadAttacKg 0.9840 6.7946  2130.0686 0.0610 | 4.6965 3.1959
Top-10 RisingAttacKgo | 0.9840 2.2788  661.9469  0.0180 | 7.6067 B

op- ‘ QuadAttacK3q 0.7670  6.4958  2040.6640 0.0554 | 2.3425 25281

RisingAttacK3, | 0.6590 2.3197 674.2584  0.0185 | 3.9934 -
| QuadAttacKg 0.9910 42898  1351.5930 0.0339 | 5.1849 2.9681
Top-5 RisingAttacKgg | 0.9290 1.3772  397.4290  0.0114 | 4.3419 )

0p- ‘ QuadAttacK3q 0.9210 4.1759 1316.8696  0.0323 | 2.5234 24573

RisingAttacKso | 0.9070  1.6905 486.2660  0.0140 | 2.2706 e
| QuadAttacKgy | 0.9990  1.6902  542.3103 6.1673 21155
Ton-1 RisingAttacKgy | 1.0000  0.7436  203.6175  0.0074 1.6483 )
op- [ QuadAttacKy, | 0.9620 1.6317  523.8288 3.0124 1.4446
RisingAttacKso | 1.0000 1.0940  303.8991  0.0102 | 0.8588 )
(c) ViT-B (Dosovitskiy et al., 2020)
. Single-Run ‘ . o
‘ Top-K ‘ Method }mT T ol T ‘ Time (s/img) | ‘ FoM?T ‘
QuadAttacKego ‘ 0.2400  9.2933  2828.3158 0.0997 | 6.5384 6.0806
Top-30 RisingAttacKgo ~ 0.9980  6.9512  1923.6753  0.0631 | 107.4773 )

P QuadAttacK3o ‘ Failed 3.6705 inf
RisingAttacK3p ~ 0.5200  9.2443  2576.2629  0.0842 | 54.5843
QuadAttacKg ‘ 0.5220  9.2439  2813.6584 0.0980 | 6.3901 39297

Top-25 RisingAttacKgo ~ 0.9960  4.8564 1318.3544  0.0458 | 90.1623 )

P2 MQuadAtiacKsy | Failed 35624 of
RisingAttacK3p  0.5860  6.8079 1869.8754  0.0640 | 46.2905 !
QuadAttacKgo ‘ 0.6870  7.7073  2337.6029 0.0803 | 6.1960 32785

Top-20 RisingAttacKgp ~ 0.9680  3.5511 945.7173 0.0343 | 43.4669 )

P QuadAttacKy, | 0.0010 5.6397 17450922 00501 | 3.4596 4502016
RisingAttacK3,  0.3810  4.8757 1316.7148  0.0472 | 24.6167 o
QuadAttacKgo ‘ 0.7880  6.0980  1849.0582 0.0606 | 6.0093 8951

Top-15 RisingAttacKgp ~ 1.0000  2.8185 734.7598  0.0280 | 32.9165 i

P "QuadAttacKz, | 00130 4.5583 14229767 00378 | 3.2740 27339
RisingAttacKzp ~ 0.6740  3.7918 1009.0854  0.0372 | 18.6537 T
QuadAttacKeo ‘ 0.8900  4.4073  1342.7171 0.0401 5.7166 25217

Top-10 RisingAttacKgp ~ 0.9940  1.9987 508.1560  0.0208 | 22.5797 i

op- QuadAttacK3 ‘ 0.0310  3.2038  1007.5255 3.0683 249115
RisingAttacK3y  0.6540  2.6736 696.4219  0.0273 12.7669 :
QuadAttacKgo ‘ 0.9970 3.6834  1140.4541 5.3490 1.6908

Top-5 RisingAttacKgo ~ 0.5460  1.1798 295.8843  0.0129 12.1849 )

P QuadAttacKs, | 0.4230 3.1510 987.3517 2.8011 23368
RisingAttacK3, ~ 0.5450 1.6973 429.3175  0.0183 | 6.8619 ”
QuadAttacKgy | 1.0000 17206 5552969 3.4851 30815

Top-1 RisingAttacKgo ~ 0.9260  0.4883 109.9290  0.0065 | 3.7639 T

P QuadAttacK3o ‘ 0.9970 1.7137  553.1291 1.7672 20013

RisingAttacK3p ~ 0.9250  0.7459  172.3669  0.0094 | 2.0927 :
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(b) DenseNet-121 (Huang et al., 2017)

. Single-Run ‘ . "
Top-K ‘ Method }mT T 1 =T ‘ Time (s/img) | ‘ FoM?T ‘
QuadAttacKgy | 0.1370  13.3362  4119.1202  0.1466 | 5.3182 0.4906
Top-30 RisingAttacKgo ~ 0.8520  10.2572  3029.0433  0.0764  40.2688 )

P QuadAttacKsz, | Failed [ 2.8216 inf
RisingAttacK3,  0.0850 8.7632  2561.6755 0.0683  20.1358
QuadAttacKg ‘ 0.6760 131121  4052.3545 0.1417 | 5.0749 30375

Top-25 RisingAttacKgo ~ 0.9840  7.2225  2110.8964  0.0561  32.7520 o

P2 MQuadAttacKs, ] 0.0080 11.1429  3430.9835 0.1047 | 2.6689 94.7409
RisingAttacK3, ~ 0.4730  7.5557  2203.2915  0.0597 16.4573 )
QuadAttacKgo | 0.9360  11.3239  3513.0089 0.1142 | 4.8813 26289

Top-20 RisingAttacKgy ~ 0.9900  5.0476  1460.8408  0.0407  14.5282 i

P QuadAttacKzy | 0.1710  9.9557 31185042 0.0886 | 2.5958 75775
RisingAttacK3,  0.6840 5.5711  1612.6615  0.0451  7.4920 -
QuadAttacKgo | 0.9910  9.2727 2898.0552  0.0840 | 4.8481 23800

Top-15 RisingAttacKgy ~ 1.0000  4.1631  1190.6402  0.0348  11.1324 i

P QuadAttacKzy ] 0.6320 8.6222  2707.6770 0.0731 | 2.4824 29579
RisingAttacK3y ~ 0.9540  4.5707  1310.9248  0.0380  5.7205 o
QuadAttacKgo | 0.9980  7.0847 22329939 0.0559 | 4.7497 24674

Top-10 RisingAttacKgp ~ 1.0000  2.8950  817.3569 7.9408 i

P QuadAttacKzp ] 0.9230  6.8696  2167.0029 0.0531 | 2.4163 23308
RisingAttacKs,  0.9830  3.1446  890.9174  0.0272  4.0917 i
QuadAttacKgo ‘ 0.9990  4.3886 1396.2655 4.4818 2.8989

Top-5 RisingAttacKgp  0.9980  1.4362 3943187  0.0138  4.6659 i

P QuadAttacK3, | 0.9810 43306 1377.5596 [ 22109 20768
RisingAttacK,  0.9930  2.0112  558.1958  0.0185  2.3818 :
QuadAttacKgy ‘ 1.0000 1.7865 587.0397 3.6998 20325

Top-1 RisingAttacKgo ~ 1.0000  0.7916  201.4099  0.0093  2.0500 T
P QuadAttacKz, ] 0.9910 17586  577.6225 1.8592 13071
RisingAttacKz,  1.0000  1.2213 3211319  0.0130  1.0587 :
(d) DEIiT-B (Touvron et al., 2021)
- Single-Run ‘ . o
Top-K ‘ Method }mT T ol T ‘ Time (s/img) | ‘ FoM?T ‘
QuadAttacKg ‘ 0.3660 9.6171 29277147 0.0983 | 5.3128 42723
Top-30 RisingAttacKgo ~ 0.9850  6.5547 1846.3443  0.0575 | 107.3817 T

P QuadAttacKsz, | Failed 3.0631 inf
RisingAttacKs,  0.2920  7.8282 22134546  0.0694 | 54.7059
QuadAttacKg ‘ 0.8810 9.3748 28584162 0.0933 | 5.2609 29615

Top-25 RisingAttacKgo  0.9980  3.7927 1035.3009  0.0357 | 90.7822 i

P2 MQuadAtiacKsy | Failed 2.9321 o
RisingAttacK3y ~ 0.7090  5.4817 15213469  0.0508 | 46.5786 !
QuadAttacKgy | 0.9480  7.7045  2353.1867 0.0729 | 5.2085 31254

Top-20 RisingAttacKgy 09910  2.6716 707.9259  0.0264 | 43.5567 )

P QuadAttacKzp | 0.0040  6.1241  1920.0202 0.0490 | 2.8225 246.9753
RisingAttacK3y ~ 0.5990  3.6926 1001.5668  0.0357 | 24.6677 R
QuadAttacKgy | 09710  6.0495  1855.0592  0.0536 | 4.9720 30621

Top-15 RisingAttacKgy ~ 1.0000  2.0686 532.7703  0.0213 | 32.9756 )

P QuadAttacKzy | 0.0240 47361 14928217 0.0364 | 2.7253 60.2646
RisingAttacKzp ~ 0.9050 29258 774.8312  0.0291 18.6605 -
QuadAttacKgy | 0.9830  4.3244  1340.7801 0.0344 | 4.7669 3.0775

Top-10 RisingAttacKgo 09990  1.4164 351.9301  0.0155 | 22.6131 T

P QuadAttacKy, | 0.0940 3.3065  1037.0081 2.6114 15.6515
RisingAttacKsy ~ 0.9220  2.0227 5204555  0.0212 | 12.7832 :
QuadAttacKgo ‘ 0.9980  3.4488  1085.9038 4.5690 33363

Top-5 RisingAttacKgp 09990  1.0086  240.3898  0.0117 | 12.1753 T

P QuadAttacKy, | 0.7800 32362 1023.7461 2.3610 26224
RisingAttacKs,  0.8700  1.3222 328.4794  0.0147 | 6.8720 :
QuadAttacKg ‘ 1.0000 1.5513  509.9606 3.8654 40412

Top-1 RisingAttacKgo ~ 0.9860  0.3632  76.0298  0.0054 | 3.7549 )

P QuadAttacKz, | 0.9970 1.5428  507.5080 1.9139 54961

RisingAttacK3, ~ 0.9800  0.5707 126.7541  0.0077 | 2.0951 !
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Flg ure 3. QuadAttacK examples of adversarial examples and associated perturbations learned for a benign image (ILSVRC2012_val_00002633 with the ground-truth label, redshank) using a list of
randomly sampled 30 targets (see the list for seed=42 in the Appendix D) in the order of: mask, analog-clock, slide-rule, Siberian-husky, harmonica, African-chameleon,
dowitcher, hyena, wing, pillow, garter-snake, Great-Pyrenees, puffer, banana, West-Highland-white-terrier, whippet, brown-bear,

snowplow, tarantula, space-heater, sports-car, jean, sandbar, perfume, papillon, triceratops, barrow, peacock, digital-watch, carton.
The adversarial perturbations are normalized to [0, 1] for the sake of visualization. Some of them are treated as being “visually imperceptible” based on the commonly used threshold 8 /255 = 0.0314
for oo (‘linf”) norms. If QuadAttacK fails using a model for a K (e.g. topK=25 for DenseNet121), we leave it blank. For the benign image, the top-30 predictions by the four models respectively are:

* ResNet50: redshank, ruddy turnstone, red-backed sandpiper, dowitcher, oystercatcher, grey whale, red-breasted merganser, crane, sea lion, chainlink fence, lakeside, wreck, quail, partridge, screwdriver,
plastic bag, pelican, parachute, killer whale, sulphur-crested cockatoo, African crocodile, white stork, pole, bucket, caldron, hummingbird, sandbar, king penguin, nail, syringe.

« DenseNet121: redshank, ruddy turnstone, red-backed sandpiper, oystercatcher, breakwater, dowitcher, sea lion, academic gown, abaya, mortarboard, red-breasted merganser, lifeboat, cloak, espresso,
lipstick, theater curtain, wood rabbit, umbrella, refrigerator, ruffed grouse, king penguin, partridge, sandbar, diamondback, hen-of-the-woods, wine bottle, mailbox, stone wall, volcano, redbone.

* ViT-B: redshank, red-backed sandpiper, ruddy turnstone, dowitcher, oystercatcher, water ouzel, Madagascar cat, chain saw, apiary, red-breasted merganser, Tibetan mastiff, cicada, seat belt, American egret,
wall clock, mask, snow leopard, schipperke, potter’s wheel, lycaenid, mud turtle, curly-coated retriever, dumbbell, television, strainer, feather boa, buckle, junco, boa constrictor, volcano.

* DEIT-B: redshank, ruddy turnstone, red-backed sandpiper, dowitcher, oystercatcher, red-breasted merganser, warthog, worm fence, Indian elephant, African crocodile, maze, badger, snowplow, American

black bear, stone wall, king penguin, car wheel, rock python, water ouzel, guillotine, wild boar, centipede, diamondback, apiary, barrow, horned viper, sundial, guenon, bustard, skunk.
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Figure 4. RisingAttacK examples of adversarial examples and associated perturbations learned for a benign image (ILSVRC2012_val_00002266 with the ground-truth label, dogsled) using
a list of randomly sampled 30 targets (see the list for seed=52 in the Appendix D) in the order of: crutch, wood-rabbit, prison, jigsaw-puzzle, joystick, space-bar,
lumbermill, West-Highland-white-terrier, English-springer, spindle, hot-pot, African-hunting-dog, beaver, loggerhead, Cardigan, torch,
radio-telescope, strawberry, beagle, chain, dalmatian, tiger, beer-bottle, maillot, ping-pong-ball, bighorn, hard-disc, analog-clock,
hair-slide, parachute. The adversarial perturbations are normalized to [0, 1] for the sake of visualization. Some of them are treated as being “visually imperceptible” based on the commonly used
threshold 8 /255 = 0.0314 for £~ (‘linf’) norms. For the benign image, the top-30 predictions by the four models respectively are:

* ResNet50: dogsled, Eskimo dog, bobsled, Ibizan hound, Labrador retriever, EntleBucher, beagle, Weimaraner, Greater Swiss Mountain dog, bloodhound, stretcher, Cardigan, Walker hound, redbone,
Leonberg, Siberian husky, English foxhound, Chihuahua, shovel, Bernese mountain dog, malinois, ski mask, groenendael, Chesapeake Bay retriever, curly-coated retriever, drum, cocker spaniel, Gordon
setter, Saluki, cowboy hat.

* DenseNet121: dogsled, Ibizan hound, Chesapeake Bay retriever, American Staffordshire terrier, whippet, Weimaraner, bobsled, vizsla, snowmobile, drum, malinois, Rhodesian ridgeback, Saluki, Eskimo
dog, ski, Labrador retriever, mountain tent, Irish terrier, toyshop, shovel, muzzle, ski mask, dingo, alp, Irish wolfhound, Greater Swiss Mountain dog, Brittany spaniel, hog, Staffordshire bullterrier, Siberian
husky.

* ViT-B: dogsled, Ibizan hound, Eskimo dog, American Staffordshire terrier, whippet, Greater Swiss Mountain dog, snowmobile, EntleBucher, boxer, Saluki, bobsled, Siberian husky, Norfolk terrier,
Staffordshire bullterrier, basenji, Great Dane, Rhodesian ridgeback, Irish terrier, Brittany spaniel, Tibetan terrier, Chihuahua, muzzle, vizsla, beagle, rugby ball, Walker hound, Norwich terrier, Italian
greyhound, Cardigan, Weimaraner.

« DEiT-B: dogsled, Eskimo dog, EntleBucher, Ibizan hound, whippet, Chihuahua, Weimaraner, Siberian husky, bearskin, Greater Swiss Mountain dog, Italian greyhound, bobsled, manhole cover, beagle,

snowmobile, coffeepot, scabbard, bald eagle, langur, wing, espresso, stethoscope, mortarboard, dingo, suit, cowboy hat, piggy bank, carpenter’s kit, basenji, zucchini.

19



RisingAttacK

DenseNet121

DEIT-B

Flg ure 5. QuadAttacK examples of adversarial examples and associated perturbations learned for a benign image (ILSVRC2012.val_-00002266 with the ground-truth label, dogsled) using
a list of randomly sampled 30 targets (see the list for seed=52 in the Appendix D) in the order of: crutch, wood-rabbit, prison, jigsaw-puzzle, joystick, space-bar,
lumbermill, West-Highland-white-terrier, English-springer, spindle, hot-pot, African-hunting-dog, beaver, loggerhead, Cardigan, torch,
radio-telescope, strawberry, beagle, chain, dalmatian, tiger, beer-bottle, maillot, ping-pong-ball, bighorn, hard-disc, analog-clock,
hair-slide, parachute. The adversarial perturbations are normalized to [0, 1] for the sake of visualization. Some of them are treated as being “visually imperceptible” based on the commonly used
threshold 8 /255 = 0.0314 for £~ (‘linf’) norms. If QuadAttacK fails using a model for a K (e.g. topK=25 for DenseNet121), we leave it blank. For the benign image, the top-30 predictions by the four
models respectively are:

« ResNet50: dogsled, Eskimo dog, bobsled, Ibizan hound, Labrador retriever, EntleBucher, beagle, Weimaraner, Greater Swiss Mountain dog, bloodhound, stretcher, Cardigan, Walker hound, redbone,
Leonberg, Siberian husky, English foxhound, Chihuahua, shovel, Bernese mountain dog, malinois, ski mask, groenendael, Chesapeake Bay retriever, curly-coated retriever, drum, cocker spaniel, Gordon
setter, Saluki, cowboy hat.

* DenseNet121: dogsled, Ibizan hound, Chesapeake Bay retriever, American Staffordshire terrier, whippet, Weimaraner, bobsled, vizsla, snowmobile, drum, malinois, Rhodesian ridgeback, Saluki, Eskimo
dog, ski, Labrador retriever, mountain tent, Irish terrier, toyshop, shovel, muzzle, ski mask, dingo, alp, Irish wolfhound, Greater Swiss Mountain dog, Brittany spaniel, hog, Staffordshire bullterrier, Siberian
husky.

* ViT-B: dogsled, Ibizan hound, Eskimo dog, American Staffordshire terrier, whippet, Greater Swiss Mountain dog, snowmobile, EntleBucher, boxer, Saluki, bobsled, Siberian husky, Norfolk terrier,
Staffordshire bullterrier, basenji, Great Dane, Rhodesian ridgeback, Irish terrier, Brittany spaniel, Tibetan terrier, Chihuahua, muzzle, vizsla, beagle, rugby ball, Walker hound, Norwich terrier, Italian
greyhound, Cardigan, Weimaraner.

« DEiT-B: dogsled, Eskimo dog, EntleBucher, Ibizan hound, whippet, Chihuahua, Weimaraner, Siberian husky, bearskin, Greater Swiss Mountain dog, Italian greyhound, bobsled, manhole cover, beagle,

snowmobile, coffeepot, scabbard, bald eagle, langur, wing, espresso, stethoscope, mortarboard, dingo, suit, cowboy hat, piggy bank, carpenter’s kit, basenji, zucchini.
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