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Abstract

White-box targeted adversarial attacks reveal core

vulnerabilities in Deep Neural Networks (DNNs),

yet two key challenges persist: (i) How many

target classes can be attacked simultaneously in

a specified order, known as the ordered top-K
attack problem (K ≥ 1)? (ii) How to com-

pute the corresponding adversarial perturbations

for a given benign image directly in the image

space? We address both by showing that ordered

top-K perturbations can be learned via itera-

tively optimizing linear combinations of the right

singular vectors of the adversarial Jacobian (i.e.,

the logit-to-image Jacobian constrained by target

ranking). These vectors span an orthogonal, infor-

mative subspace in the image domain. We intro-

duce RisingAttacK, a novel Sequential Quadratic

Programming (SQP)-based method that exploits

this structure. We propose a holistic figure-of-

merits (FoM) metric combining attack success

rates (ASRs) and ℓp-norms (p = 1, 2,∞). Exten-

sive experiments on ImageNet-1k across six or-

dered top-K levels (K = 1, 5, 10, 15, 20, 25, 30)

and four models (ResNet-50, DenseNet-121, ViT-

B, DEiT-B) show RisingAttacK consistently sur-

passes the state-of-the-art QuadAttacK.

1. Introduction

Deep Neural Networks (DNNs) have witnessed tremendous

progress across numerous applications, enabling the recent

development of large foundation models (such as Deep-

Mind’s AlphaZero and AlphaFold and OpenAI’s ChatGPT)

that are widely recognized to pave a promising way to-
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wards Artificial General Intelligence (AGI). Despite of the

remarkable achievement, adversarial vulnerability (Szegedy

et al., 2013; Goodfellow et al., 2014) remains the Achilles

heel of all DNNs, particularly in computer vision, as re-

vealed by white-box adversarial attacks, especially targeted

white-box attacks (Carlini & Wagner, 2017) that can fool

trained DNNs towards arbitrarily specified targets. With

the access to network architectures and pretrained weights,

white-box attacks can expose their deep vulnerabilities and

test their robustness. In practice, white-box attacks are also

used as surrogate models in learning transferrable black-

box (Inkawhich et al., 2019; Li et al., 2020a; Naseer et al.,

2021; Zhao et al., 2023; Fang et al., 2024) and no-box (Li

et al., 2020b) attacks. So, seeking more powerful white-

box attacks will provide a foundation both for learning po-

tentially stronger black-box and no-box attacks. In this

paper, we focus on learning white-box targeted attacks in

ImageNet-1k (Russakovsky et al., 2015) classification tasks.

We consider the generalized setting of targeted attacks, or-

dered top-K attacks (Zhang & Wu, 2020; Paniagua et al.,

2023), that relax the traditional top-1 targets (e.g., to fool a

DNN to classify a dog image as a cat) to K targets (K ≥ 1)

in any given orders (e.g., to fool a DNN to classify a dog

image with [car, tree, table] as the ordered top-3 predic-

tion, see the middle in Fig. 1). Ordered top-K targeted

attacks expose deeper vulnerabilities of DNNs, since they

show the manipulability of the decision boundary of DNNs

at the logits subspace levels, especially when K is large

(e.g., K > 20). These attacks are particularly impactful

in applications where the order of predictions significantly

influences outcomes, such as recommendation systems or

multi-class decision-making, and adversaries can exploit

decision hierarchies to disrupt critical processes. Partic-

ularly, safety-critical systems (e.g., face unlock, medical

triage, content moderation) reason over entire ranked lists.

An attacker dictating all top predictions (similar in spirit to

[cat, car, fish] vs only “cat”) obtains finer control and evades

simple “Top-1 changed” detectors.

In the meanwhile, security evaluations now recommend

K > 1. For example, in the new differential-privacy eval-

uation guideline, NIST SP 800-226 (March 2025) (Near
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Figure 1. Workflow comparisons between our proposed image space based RisingAttacK (top) and the prior art (bottom), CWK and

AdvDistill (Zhang & Wu, 2020) and QuadAttacK (Paniagua et al., 2023) for learning ordered top-K targeted adversarial attacks (Zhang &

Wu, 2020) for a benign image xbenign
∈ [0, 1]D (e.g., D = 3× 224× 224). See text for details.

et al., 2025) devotes an entire discussion to “Practical

differentially-private Top-K selection” and cites (Durfee &

Rogers, 2019) as its canonical example which repeatedly

frames robustness/utility checks around whether the entire

ordered set of the highest-scoring items is preserved under

noise—not just the single best—underscoring regulators’

need for Top-K mis-ranking tests. Ordered top-K attacks

thus supply the stress-test regulators and practitioners

request but that Top-1-only methods cannot deliver.

Ordered top-K attacks can be straightforwardly formulated

as an optimization problem with highly non-linear con-

straints, which is intractable in the vanilla form (see Eqn. 4).

Thus, learning ordered top-K attacks poses a unique chal-

lenge as they require the perturbations to precisely influence

the model’s ranking mechanism across multiple outputs

(K > 1), not just a single decision (K = 1). Addressing

ordered top-K attacks offers valuable insight into how mod-

els distribute their confidence across multiple classes and

the vulnerabilities associated with this ranking structure. To

address this challenge, there are two main approaches in the

prior art (see the bottom of Fig. 1):

• Designing surrogate loss functions, such as the CWK

(extended from the CW method (Carlini & Wagner,

2017)) and the Adversarial Distillation method proposed

in (Zhang & Wu, 2020), that transform the constrained

optimization problem to an unconstrained one.

• Reformulating the non-linear constraints to linear

ones, such as the recently proposed QuadAttacK (Pa-

niagua et al., 2023), by first solving the optimization prob-

lem in the feature space of the DNN backbone (i.e., the

input space to the linear head classifier), and then back-

propagating the optimized features through the backbone

to compute adversarial perturbations.

QuadAttacK has shown significant improvement in compar-

ison with methods based on surrogate loss functions. While

QuadAttacK is effective, its effectiveness diminishes signifi-

cantly when K > 20 and the computing budget is restricted

(e.g., 30 steps). It relies on backpropagation to map the

optimized feature space perturbation back to the original

input image space. This introduces an indirect connection

between the optimization problem and the resulting image

space perturbation, leading to limitations as-follows:

• Feature vs. Image Space Misalignment: Minimizing

the perturbation in the feature space does not always cor-

respond to minimizing it in the image space due to the

nonlinear mapping between the two spaces.

• Suboptimal Visual Perturbations: The resulting adver-

sarial examples may not fully align with the visual charac-

teristics of the image, as perturbations that minimize the

distance in feature space may not correspond to minimal

or visually coherent changes in the image space, due to

the nonlinear relationship between the two spaces.

To the best of our knowledge, no existing approaches have

been proposed for learning ordered top-K attacks (K ≥ 1)

directly in the image space due to the complexities of high-

dimensional, non-linear optimization. Potentially due to

this, it remains unresolved to seek an explicit formula for

“seeing” what adversarial perturbations are formed, if pos-

sible. In this paper, we propose a Sequential Quadratic

Programming (SQP) formulation to address the non-

linear optimization challenge of learning ordered top-K
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Figure 2. Examples of adversarial examples and associated perturbations learned for a benign image (ILSVRC2012 val 00002633

with the ground-truth label, redshank) by our RisingAttacK using a list of randomly sampled 30 targets in the order of: mask,

analog-clock, slide-rule, Siberian-husky, harmonica, African-chameleon, dowitcher, hyena,

wing, pillow, garter-snake, Great-Pyrenees, puffer, banana, West-Highland-white-terrier,

whippet, brown-bear, snowplow, tarantula, space-heater, sports-car, jean, sandbar,

perfume, papillon, triceratops, barrow, peacock, digital-watch, carton. The adversarial pertur-

bations are normalized to [0, 1] for the sake of visualization. Some of them are treated as being “visually imperceptible” based on the

commonly used threshold 8/255 = 0.0314 for ℓ∞ (‘linf’) norms. For the benign image, the top-30 predictions by the four models

respectively are:

• ResNet50: redshank, ruddy turnstone, red-backed sandpiper, dowitcher, oystercatcher, grey whale, red-breasted merganser, crane, sea lion, chainlink fence, lakeside, wreck, quail, partridge, screwdriver,

plastic bag, pelican, parachute, killer whale, sulphur-crested cockatoo, African crocodile, white stork, pole, bucket, caldron, hummingbird, sandbar, king penguin, nail, syringe.

• DenseNet121: redshank, ruddy turnstone, red-backed sandpiper, oystercatcher, breakwater, dowitcher, sea lion, academic gown, abaya, mortarboard, red-breasted merganser, lifeboat, cloak, espresso,

lipstick, theater curtain, wood rabbit, umbrella, refrigerator, ruffed grouse, king penguin, partridge, sandbar, diamondback, hen-of-the-woods, wine bottle, mailbox, stone wall, volcano, redbone.

• ViT-B: redshank, red-backed sandpiper, ruddy turnstone, dowitcher, oystercatcher, water ouzel, Madagascar cat, chain saw, apiary, red-breasted merganser, Tibetan mastiff, cicada, seat belt, American egret,

wall clock, mask, snow leopard, schipperke, potter’s wheel, lycaenid, mud turtle, curly-coated retriever, dumbbell, television, strainer, feather boa, buckle, junco, boa constrictor, volcano.

• DEiT-B: redshank, ruddy turnstone, red-backed sandpiper, dowitcher, oystercatcher, red-breasted merganser, warthog, worm fence, Indian elephant, African crocodile, maze, badger, snowplow, American

black bear, stone wall, king penguin, car wheel, rock python, water ouzel, guillotine, wild boar, centipede, diamondback, apiary, barrow, horned viper, sundial, guenon, bustard, skunk.
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attacks directly in the image space, as illustrated in Fig. 1

(top), which can address the drawbacks of QuadAttacK (Pa-

niagua et al., 2023). Our approach efficiently solves the

SQP problem by iteratively computing the singular value

decomposition (SVD) of the adversarial Jacobian (i.e., the

attack-targets-ranking constrained logit-to-image Jacobian

matrix), obtained from linearizing the DNN during opti-

mization. This direct optimization in image space provides

deeper insights into the learned adversarial perturbations:

ordered top-K adversarial perturbations can be learned

by iteratively optimizing linear combinations of the right

singular vectors (corresponding to non-zero singular val-

ues) of the adversarial Jacobian. The proposed method is

thus dubbed as RisingAttacK (see examples in Fig. 2).

Our proposed RisingAttacK achieves significant better per-

formance than the prior state-of-the-art method, QuadAt-

tacK (Paniagua et al., 2023) in experiments.

2. Related Work and Our Contributions

Adversarial Attacks. Adversarial attacks aim to expose

the vulnerabilities of DNNs by introducing small, often vi-

sually imperceptible perturbations to input data that cause

the model to produce incorrect or adversary-specified out-

puts. Foundational work in adversarial machine learning

introduced methods for generating adversarial examples

under various norms and constraints, including the Fast

Gradient Sign Method (FGSM) (Goodfellow et al., 2014),

Projected Gradient Descent (PGD) (Madry et al., 2017), and

the Carlini-Wagner (CW) attack (Carlini & Wagner, 2017).

These early approaches primarily targeted top-1 classifica-

tion outputs, seeking to force the model to misclassify an

input into a specific target class.

Beyond top-1 attacks, researchers have investigated adver-

sarial perturbations that manipulate the top-K predictions

of a model. (Zhang & Wu, 2020) introduced one of the

earliest methods for addressing ordered top-K adversarial

attacks, focusing on creating an optimal target class distri-

bution aided by word embedding vectors, and minimizes

KL divergence to this optimal distribution that satisfies the

ordered top-K objective. (Tursynbek et al., 2022) explored

the geometry of unordered top-K adversarial attacks, high-

lighting the complexities of crafting perturbations that ad-

here to top-K constraints. (Reza et al., 2025) proposed

GSBAK , a geometric score-based unordered top-K black-

box attack method built on (Reza et al., 2023). (Paniagua

et al., 2023) advanced this area by formulating the ordered

top-K adversarial attack problem as a quadratic program-

ming (QP) optimization in the feature space. This approach

efficiently enforced the desired ordering of logits but re-

quired back-propagation to map feature space solutions to

the image space. Our proposed JacAttacK builds upon these

foundations by extending the idea in QuadAttacK (Pani-

agua et al., 2023) to directly address the ordered top-K
adversarial attack problem in the image space.

Sequential Quadratic Programming (SQP). SQP is a

widely used framework for solving nonlinear constrained

optimization problems (Nocedal & Wright, 1999). By iter-

atively solving QP subproblems that linearize constraints

and use a quadratic approximation of the objective, SQP

effectively handles problems involving nonlinearities and

complex constraint sets (Boggs & Tolle, 2000). This ap-

proach is particularly relevant in high-dimensional settings,

such as adversarial attacks, where the constraints often in-

volve intricate relationships between model outputs. How-

ever, applying SQP to large-scale problems, such as those in

image space, can be computationally expensive due to the

need to repeatedly compute gradients and solve large QPs

(Gill et al., 2005). Our method adapts SQP for adversarial

optimization by leveraging subspace splitting to reduce the

dimensionality of the optimization problem, thereby over-

coming scalability challenges while preserving accuracy.

Our Contributions. The main contributions of this paper

are as-follows: (i) Novel Theoretical Insights: It introduces

explicit derivations connecting adversarial perturbations to

singular vectors of the adversarial Jacobian, providing new

theoretical clarity. (ii) Methodological Innovation: It is

the first method to directly optimize ordered top-K adversar-

ial attacks in image space via SQP, significantly improving

alignment between optimized solutions and visually coher-

ent perturbations. (iii) Empirical Advances: It provides

comprehensive evaluation across multiple architectures and

attack levels, consistently outperforming the previous state-

of-the-art, QuadAttacK using a proposed holistic metric,

Figure of Merits (FoM) covering both success rates and

perturbation magnitudes.

3. Approach

In this section, we first define the problem of learning or-

dered top-K attacks (Zhang & Wu, 2020), and then present

details of our proposed RisingAttacK.

3.1. Problem Definition

Model Under Attack. Let (xbenign, y) ∈ [0, 1]3×H×W ×Y
be a pair of a benign RGB image xbenign with spatial height

and width, H and W respectively, and its ground-truth label

y with the C-class label space Y = {1, · · · , C}. Let D =
3×H ×W be the dimension of the input image space. In

ImageNet-1k (Russakovsky et al., 2015) classification, we

have C = 1000 and D = 3× 224× 224 ≈ 1.5e5.

A DNN trained for image classification is a highly-nonlinear

mapping from the image space to the logit space:

ℓ(·; Θ) : [0, 1]D → R
C , (1)

where Θ collects all learned parameters of the DNN. We
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will omit Θ in notations and use ℓ(·) for simplicity.

We consider validation or testing images that can be cor-

rectly classified by a trained DNN such as ResNet-50 (He

et al., 2016) in learning attacks, i.e., y = argmax ℓ(xbenign).
The DNN is frozen in learning attacks.

The Adversarial Region of Ordered Top-K Targeted

Attacks for (xbenign, y). Let T ∈ Y \ {y} be a randomly

sampled sequence of ordered top-K targets for attacking

xbenign, K = |T |. The adversarial region is defined by,

R(xbenign,T ) =
{

xadv ∈ [0, 1]D; satisfying

ℓ(xadv)ti > ℓ(xadv)ti+1
, ti ∈ T , i ∈ [1,K − 1], (2)

ℓ(xadv)tK > ℓ(xadv)j , tK ∈ T , ∀j ∈ Y \ T
}

, (3)

where the subscript represent the entry index of the logit

vector. We often expect the perturbation energy, defined

by lp-norm, ||xadv − xbenign||p, is as small as possible to

be visually imperceptible for p = 1, 2,∞. An adversarial

perturbation δ = xadv − xbenign is treated as being “visu-

ally imperceptible” based on the commonly used threshold

ℓ∞ < 8/255 = 0.0314.

Encoding Ordered Top-K Targeted Attack Constraints

in the Logit Space. Denote by K ∈ {+1, 0,−1}(C−1)×C

the matrix that encodes ordered top-K constraints subject

to T , with which the adversarial region can be rewritten by,

R(xbenign, T ) = {xadv ∈ [0, 1]D; satisfying K·ℓ(xadv) > 0}.

Learning ordered top-K attacks for a benign image xbenign

can be posed as a constrained minimization problem,

minimize
δ∈RD

||δ||p, (4)

subject to K · ℓ(xperturb) > 0,

xperturb = Clamp(xbenign + δ),

where δ is the adversarial perturbation variables, || · ||p rep-

resents the lp-norm (typically, l2-norm is used). Clamp(·)
ensures the perturbed example xperturb is in the input im-

age space (i.e., xperturb ∈ [0, 1]D) via element-wise pixel

value clipping. The challenge of solving Eqn. 4 lies in the

nonlinear constraints caused by the highly non-linear

DNN (Eqn. 1). In practice, we also expect the learning of

xadv(= xbenign + δ∗) ∈ R(xbenign, T ) is efficient subject to

a predefined and limited budget such as 30 or 60 iterations.

3.2. Our Proposed RisingAttacK

Inspired by the QP approach in QuadAttacK (Paniagua et al.,

2023) (see a brief overview in Appendix A), but different

from its feature space QP formulation, we aim to solve

Eqn. 4 directly in the image space under the SQP frame-

work (Boggs & Tolle, 2000). The core idea is to iteratively

linearize the nonlinear constraints in Eqn. 4. Due to the

large number of constraints, C − 1 and the high dimension-

ality of the image space, D, which make the optimization

with constraints linearized still infeasible in practice, we

streamline yet retain the solutions of Eqn. 4.

Eqn. 4 can be re-expressed as,

minimize
x∈[0,1]D

||x− xbenign||p, (5)

subject to K · ℓ(x) > 0,

Similar in spirit to QuadAttacK (Paniagua et al., 2023) and

all other attack methods, our proposed RisingAttacK is an

iterative optimization algorithm starting from the initial per-

turbed image xperturb = Clamp(xbenign + δ(0)) (e.g., δ(0) =
0). At the i-th iteration, let xperturb = Clamp(xbenign + δ(i))
be the current perturbed image. We omit the iteration index

in xperturb for simplicity. To solve Eqn. 5, our RisingAttacK

is streamlined as follows:

• We linearize the DNN ℓ(·) around the current perturbed

image xperturb, so the nonlinear constraints K · ℓ(x) > 0
become linear. We use the first-order Taylor expansion,

ℓ(x) ≈ ℓ(xperturb) + J(xperturb) · (x− xperturb), (6)

where J(xperturb) ∈ RC×D is the logit-to-image Jacobian

matrix of the DNN, which represents the sensitivity

of the DNN logits with respect to changes in xperturb.

Each row of J(xperturb) corresponds to the gradient of

a particular logit with respect to the input pixels.

• After the linearization, there is a gap between the objec-

tive function (i.e., x should be as close as possible to

the benign image), and the linearized constraints which

entails x to be sufficiently close to the perturbed image

xperturb to ensure the linearization is sufficiently approx-

imately accurate to retain the ordered top-K constraints.

We re-express the objective function ||x − xbenign|| to

be ||x − xanchor||, where xanchor represents the anchor in

optimization, xanchor = xbenign or xanchor = xperturb (the

current perturbed image). We propose an anchor selection

strategy: we start with xanchor = xperturb so the algorithm

can quickly reach the adversarial region, that is to find

x ∈ R(xbenign, T ). We then seek better adversarial im-

ages with smaller perturbation energies by letting the

anchor xanchor = xbenign. The two steps may iterate based

on monitoring the improvement with respect to a thresh-

old (see Sec. 3.2.4). Consider l2-norm for the objective,

Eqn. 5 is re-expressed as,

minimize
x∈[0,1]D

||x− xanchor||22, (7)

s.t. K ·
(

ℓ(xanchor) + J(xanchor) · (x− xanchor)
)

> 0.

• Eqn. 7 is theoretically solvable, but not practically feasible

since the number of constraints, C − 1 is large (e.g., C =
1000) and the dimension of variables, D is extremely

high (e.g., D = 3 × 224 × 224), especially given the

limited budgets in learning attacks. We propose methods

to address these challenges.
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3.2.1. COMPACT ORDERED TOP-K CONSTRAINTS

We introduce a mapping that condenses the logit space with-

out compromising the ordered top-K constraints, but allows

the number of rows of the Jacobian matrix to only depend

on the nubmer of targets, K.

To that end, we first notice that Eqn. 3 can be simplified to

reduce the number of constraints from C −K to 1 without

breaking the overall ordered top-K constraints,

ℓ(x)tK > max
(

{ℓ(x)j}j∈Y\T

)

, (8)

where max(·) introduces nonlinearity in the constraints with

a gradient switching effect in learning that is not desirable,

however. We tackle this by introducing a mapping,

G : ℓ(·) ∈ R
C → l(·) ∈ R

d=K+M+1, (9)

where M is a multiplicative of K such as M = 5 ·K. The

mapping G reorders the logits and augments them with a

differentiable nonlinear term (see Appendix B for details

due to space limit).

Denote by K ∈ {+1, 0,−1}(d−1)×d the compact encoding

matrix using the mapping G, which has a nice form with

rows rotating from
[

1 −1 0 · · · 0
]

(i.e., the logits

in l(·) are expected to decreasingly ordered). K remains

unchanged in the optimization.

With the mapping G reordered and condensed logits l(·),
Eqn. 6 is redefined by,

l(x) ≈ l(xanchor) + J(xanchor) · (x− xanchor), (10)

where the Jacobian matrix J(xanchor) ∈ Rd×D with d =
K +M +1 only dependent on the number of attack targets,

K, and often d ≪ C (e.g., d = 101 for K = 20 with

C = 1000 in ImageNet-1k).

3.2.2. JACOBIAN SUBSPACE QP

With the compact encoding matrix K and the updated Tay-

lor expansion (Eqn. 10), the constraints in Eqn. 7 are then

simplified and we have,

minimize
x∈[0,1]D

||x− xanchor||22, (11)

subject to A · x ≤ b,

where A = −K · J(xanchor) incorporates the ordered top-K

ranking constraints into the logit-to-image sensitivity analy-

sis (i.e., the adversarial Jacobian), b = K ·
(

l(xanchor)−

J(xanchor)·xanchor
)

+m defines the constraint boundaries and

the feasibility of the optimization, with m being margins

introduced to control the target separability and to change

from strict ‘<’ to ‘≤’ in optimization constraints. Here,

A ∈ R(d−1)×D, b ∈ Rd−1. {x ∈ RD;A · x ≤ b} defines

a high-dimensional polyhedron in the image space.

Directly solving Eqn. 11 is still computationally challenging

and does not meet the low budget in learning attacks. We

exploit the structure of the polyhedron via projection.

Exploiting the Subspace Structure of A. We utilize the

structure of A revealed by its SVD,

A = U · Σ · V ⊤ = U · Σr · V
⊤
r , (12)

where U ∈ R(d−1)×(d−1), Σ ∈ R(d−1)×D, and V ∈

RD×D. Σ =

[

Σr 0

0 0

]

is a diagonal matrix with singular

values, diag(σ1, · · · , σd−1). U (and V ) provide orthogo-

nal bases for the column (and the row) spaces of A. And,

U ·U⊤ = I and V ⊤ ·V = I (where I represents the identity

matrix). The rows of U corresponding to large singular

values identify the most sensitive ranking constraints. The

row space of A corresponds to the input image space, and

each column of V represents a principle direction in the

image space. Since we have d ≪ D, we can drop the

last D − (d− 1) columns of V to form the reduced SVD,

i.e., Vr ∈ RD×(d−1), the first d − 1 columns of V , which

consists of the d− 1 orthogonal bases in the image space,

and spans the entire solution space of the polyhedron de-

fined by A · x ≤ b. The columns of Vr span a subspace

in which adversarial perturbations are most effective

towards satisfying ordered top-K constraints. Learn-

ing ordered top-K attacks can be achieved in the subspace

accordingly, as we solve it in the following.

Let δ = x− xanchor, Eqn. 11 is rewritten as,

minimize
δ∈RD

||δ||22, (13)

subject to A · δ ≤ b−A · xanchor,

With the change of variables δ = V · ϵ, we have,

||δ||2 = ||V · ϵ||2 = ||ϵ||2, (since V is orthogonal) (14)

A · δ = U · Σ · V ⊤ · V · ϵ = U · Σ · ϵ, (15)

So, Eqn. 13 is rewritten as,

minimize
ϵ∈RD

||ϵ||22, (16)

subject to Σ · ϵ ≤ U⊤ ·
(

b−A · xanchor
)

,

where due to the block diagonal structure of Σ, we can split

ϵ =

[

ϵr
ϵo

]

, ϵr ∈ Rd−1 and ϵo lies in the null space of A and

thus can be ignored and set ϵo = 0 since we are minimizing

||ϵ||22. We further have,

minimize
ϵr∈Rd−1

||ϵr||
2
2, (17)

subject to Σr · ϵr ≤ U⊤ ·
(

b−A · xanchor
)

,

which is now a low-dimensional optimization problem

with linear constraints, and can be solved by many QP

solvers efficiently, such as the cvxpy package (Diamond &

Boyd, 2016; Agrawal et al., 2018). Let b̃ = U⊤ ·
(

b −

A · xanchor
)

which represents the projection of the constraint

boundary onto the orthogonal basis formed by the left sin-

gular vectors. Then, the constraint Σr · ϵr ≤ b̃ also shows

the feasibility and constraint satisfaction: the smaller the

ratio b̃i

σi
for a singular value σi (i = 1, · · · , d − 1) is, the

easier it is to satisfy the corresponding constraint.
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Denote by ϵ∗r the optimized solution of Eqn. 17. The optimal

solution of ϵ is ϵ∗ =

[

ϵ∗r
0

]

by definition. Thus, δ∗ = V · ϵ∗.

We can directly recover the optimal solution x∗ in the

image space by,

x∗ = xanchor + δ∗,

= xanchor + V ·

[

ϵ∗r
0

]

= xanchor + Vr · ϵ
∗
r , (18)

which can be understood from the QP perspective in the

Appendix C, and is used in updating the perturbation and

the perturbed image for the next, (i+ 1)-th iteration of our

RisingAttacK,

δ(i+1) = Clamp(x∗)− xbenign, (19)

xperturb = xbenign + δ(i+1). (20)

3.2.3. ℓ∞ PERCENTILE PROJECTION

For the solution δ∗ = Vr · ϵ
∗
r based on Eqn. 17, we observe

that it often exhibits disproportionately high ℓ∞ norms. We

observe this large ℓ∞ is driven by very few components

(pixel values) of our solution and the overall quality of our

solution is not contaminated by these extreme values (or

outliers). We hypothesize that the outliers might be caused

by the first-order Taylor linearization that is not sufficiently

accurate at those pixels. To alleviate this issue, we resort

to a ℓ∞ Percentile Projection as the post-processing step.

Specifically, we compute

τ = Percentile(|δ∗|, 0.995) (21)

where τ indicates 99.5th percentile of magnitudes in our so-

lution. We then element-wisely project δ∗ to this percentile,

δ∗i ← Sign(δ∗i )×min(|δ∗i |, τ), (22)

where i is the entry index.

3.2.4. ANCHOR POINT SELECTION

When the number of iterations is infinite (or very high),

choosing xanchor = xbenign in Eqn. 11 yields the lowest en-

ergy solution upon convergence. This is because each step

of the optimization directly minimizes the distance from x
to xbenign, aligning the solution trajectory with the global

objective. However, in practice, the number of iterations

is limited, and xbenign does not lie within the adversarial re-

gion during intermediate iterations. As a result, only using

xbenign as the anchor point can significantly delay reaching

the adversarial region, especially when the constraint set is

complex (when K is large).

On the other hand, choosing xperturb (the current perturbed

image), as the anchor point ensures rapid progress toward

the adversarial region. Since the optimization minimizes

the distance from x to xperturb at each step, the solution

quickly adjusts to satisfy the constraints. However, this may

lead to suboptimal solutions in terms of perturbation energy,

as the optimization prioritizes feasibility over minimizing

perturbation energy.

Alternating Anchor Point Strategy. To balance the trade-

offs between rapid feasibility and minimal energy, we im-

plement an alternating anchor point strategy. This approach

dynamically switches between xbenign and xperturb as the an-

chor point based on the current optimization state.

• If the number of iterations since the last feasible solu-

tion exceeds β (a predefined threshold), we set xanchor =
xperturb to prioritize reaching the adversarial region.

• Otherwise, we set xanchor = xbenign to continue minimiz-

ing the perturbation energy while staying within the ad-

versarial region.

3.2.5. INTERPRETATION OF RISINGATTACK

Eqn. 18 provides an intuitive interpretation for the optimized

perturbation δ∗ = Vr ·ϵ
∗
r at each iteration of the optimization.

The perturbation is the learned linear combination with

coefficients in ϵ∗r ∈ Rd−1 of d−1 image bases, i.e., columns

in Vr ∈ RD×(d−1). Recall that each column in Vr represents

a principle direction in the image space that can affect logit

ranking the most subject to how large the corresponding

singular value is. The learned weighted sum of the columns

of Vr can provide most efficient perturbation, as shown by

the consistently smaller perturbation energy obtained in our

experiments.

Potential Defensive Insights. By analyzing which singular

vectors in Vr correspond to large singular values, defensive

strategies can be developed by reinforcing robustness in

those vulnerable directions against ordered top-K attacks.

Meanwhile, adversarial training can be guided to target

these critical subspaces. We leave those for future work.

4. Experiments

In this section, we evaluate our RisingAttacK in the

ImageNet-1k benchmark (Russakovsky et al., 2015), and

compare with QuadAttacK (Paniagua et al., 2023).

Models Under AttacK. Following QuadAttacK, we use two

representative ConvNets (ResNet-50 (He et al., 2016) and

DenseNet-121 (Huang et al., 2017)) and two Vision Trans-

formers (ViT-B (Dosovitskiy et al., 2020) and DEiT-B (Tou-

vron et al., 2021)). Their ImageNet-1k pretrained check-

points are from the timm package (Wightman, 2019).

Data and Attack Targets. We use ImageNet-1k val im-

ages from which we select and sample a subset consist-

ing of class-balanced 1000 images (i.e., one image per

class). The 1000 benign images can be correctly clas-

sified by all the four models. For each image, five or-

dered target sets are randomly sampled for each value of K
(K = 1, 5, 10, 15, 20, 25, 30), see Appendix D for details.
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Table 1. Ordered top-K attack results averaged across 5 different seeds. Overall, our RisingAttacK shows a big leap forward in

advancing ordered top-K attacks, outperforming the prior state-of-the-art method, QuadAttacK (Paniagua et al., 2023) by a large margin

in most cases (higher ASRs with lower ℓp norms). ℓ∞-norms in red is to show they are treated as being “visually imperceptible” based on

the commonly used threshold 8/255 = 0.0314. The subscripts of methods (30 and 60) represent the computing budgets.

(a) ResNet-50 (He et al., 2016)

Top-K Method
Mean

Time (s/img) ↓ FoM↑
ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓

Top-30

QuadAttacK60 0.2076 11.8070 3654.9139 0.1349 3.3947
6.4793

RisingAttacK60 0.6642 7.0271 2081.8960 0.0511 17.0013

QuadAttacK30 Failed 1.6539
inf

RisingAttacK30 0.0022 6.2378 1844.3013 0.0470 8.5619

Top-25

QuadAttacK60 0.6018 11.6214 3599.8101 0.1301 3.4167
3.6439

RisingAttacK60 0.8420 5.2960 1561.6462 0.0393 14.0839

QuadAttacK30 0.0018 10.4263 3259.2773 0.0991 1.7058
48.9628

RisingAttacK30 0.0392 5.1218 1511.3347 0.0388 7.0999

Top-20

QuadAttacK60 0.8344 10.0891 3133.6199 0.1079 3.4039
3.1100

RisingAttacK60 0.8306 3.7474 1101.1521 0.0281 6.7267

QuadAttacK30 0.0978 9.0948 2850.0433 0.0858 1.7264
1.9481

RisingAttacK30 0.0666 3.4854 1022.5585 0.0269 3.7216

Top-15

QuadAttacK60 0.9440 8.3368 2600.7510 0.0822 3.4839
3.2229

RisingAttacK60 0.9868 3.0150 878.9222 0.0233 5.1634

QuadAttacK30 0.4922 7.8296 2451.8036 0.0717 1.7382
3.3674

RisingAttacK30 0.5856 2.9944 873.3877 0.0234 2.8794

Top-10

QuadAttacK60 0.9866 6.5228 2044.5753 0.0576 3.7396
3.3482

RisingAttacK60 0.9936 2.0825 602.1784 0.0167 3.3991

QuadAttacK30 0.8460 6.3547 1994.8023 0.0544 1.7593
2.9244

RisingAttacK30 0.8064 2.1748 630.0922 0.0175 1.7965

Top-5

QuadAttacK60 0.9968 4.0029 1261.2314 0.0309 4.5257
3.3373

RisingAttacK60 0.9558 1.1534 330.1495 0.0098 1.8225

QuadAttacK30 0.9590 3.9539 1246.4929 0.0300 2.1458
2.6681

RisingAttacK30 0.9504 1.4693 420.0254 0.0124 0.9517

Top-1

QuadAttacK60 0.9996 1.4443 467.1178 0.0083 5.3373
2.1564

RisingAttacK60 0.9992 0.6144 165.8517 0.0064 0.6114

QuadAttacK30 0.9772 1.4244 461.1199 0.0080 2.6411
1.4638

RisingAttacK30 0.9986 0.9155 251.6174 0.0088 0.3201

(b) DenseNet-121 (Huang et al., 2017)

Top-K Method
Mean

Time (s/img) ↓ FoM↑
ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓

Top-30

QuadAttacK60 Failed 4.5409
inf

RisingAttacK60 0.4074 14.7263 4393.8482 0.1051 20.3156

QuadAttacK30 Failed 2.3266
0

RisingAttacK30 Failed 10.2335

Top-25

QuadAttacK60 0.1734 13.1825 4053.5759 0.1531 4.1657
8.5496

RisingAttacK60 0.9370 9.9898 2945.3574 0.0747 16.8643

QuadAttacK30 Failed 2.2016
inf

RisingAttacK30 0.1094 9.9203 2921.6770 0.0756 8.5279

Top-20

QuadAttacK60 0.8340 11.6266 3583.3589 0.1268 4.0066
2.6290

RisingAttacK60 0.9812 5.9921 1744.8239 0.0468 8.2901

QuadAttacK30 0.0330 9.8564 3072.6790 0.0923 2.0206
23.7723

RisingAttacK30 0.4500 6.1377 1786.5613 0.0485 4.6070

Top-15

QuadAttacK60 0.9866 9.2713 2884.2755 0.0887 3.8963
2.3310

RisingAttacK60 1.0000 4.3657 1252.9889 0.0359 6.2878

QuadAttacK30 0.5088 8.6281 2697.9823 0.0771 1.8919
3.5524

RisingAttacK30 0.9362 4.7380 1362.7350 0.0387 3.5501

Top-10

QuadAttacK60 0.9986 6.7558 2123.4894 0.0545 3.8256
2.5458

RisingAttacK60 1.0000 2.6903 759.1986 0.0235 4.2223

QuadAttacK30 0.9392 6.6701 2098.0095 0.0531 1.8918
2.4272

RisingAttacK30 0.9880 2.9210 827.1606 0.0253 2.2937

Top-5

QuadAttacK60 0.9998 3.9671 1258.1706 0.0264 3.8644
3.0870

RisingAttacK60 0.9994 1.2169 331.6714 0.0119 2.2643

QuadAttacK30 0.9924 3.9526 1253.5745 0.0262 1.8502
2.2794

RisingAttacK30 0.9982 1.6603 457.9204 0.0156 1.2082

Top-1

QuadAttacK60 1.0000 1.5191 503.0047 0.0070 3.0413
1.9466

RisingAttacK60 1.0000 0.7001 177.1356 0.0085 0.8046

QuadAttacK30 0.9960 1.5144 501.4779 0.0070 1.5519
1.2739

RisingAttacK30 1.0000 1.0708 280.0300 0.0116 0.4255

(c) ViT-B (Dosovitskiy et al., 2020)

Top-K Method
Mean

Time (s/img) ↓ FoM↑
ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓

Top-30

QuadAttacK60 0.3272 9.6708 2938.2587 0.1032 5.2135
3.1589

RisingAttacK60 0.9534 9.7262 2721.2876 0.0876 43.3954

QuadAttacK30 Failed 2.7870
inf

RisingAttacK30 0.5568 11.4132 3206.4565 0.1029 21.7179

Top-25

QuadAttacK60 0.6872 9.4331 2860.6667 0.1002 5.2723
2.6425

RisingAttacK60 0.9944 5.5706 1520.5703 0.0526 36.0486

QuadAttacK30 Failed 2.7354
inf

RisingAttacK30 0.7536 7.7050 2126.3211 0.0721 18.0775

Top-20

QuadAttacK60 0.7828 7.9108 2393.0875 0.0815 5.0069
2.8308

RisingAttacK60 0.9864 3.7609 1007.6887 0.0360 15.8230

QuadAttacK30 0.0004 6.3770 1992.7502 0.0533 2.6210
1610.8632

RisingAttacK30 0.4956 4.9482 1343.2135 0.0473 7.9615

Top-15

QuadAttacK60 0.8404 6.2661 1893.5173 0.0620 4.7622
2.7231

RisingAttacK60 0.9988 2.8751 753.1852 0.0284 11.9841

QuadAttacK30 0.0056 4.7982 1495.8188 0.0385 2.4245
164.8583

RisingAttacK30 0.7510 3.8944 1038.7394 0.0379 6.0305

Top-10

QuadAttacK60 0.9130 4.5246 1374.2282 0.0410 4.6368
2.5247

RisingAttacK60 0.9936 1.9915 508.8791 0.0206 8.2583

QuadAttacK30 0.0252 3.4999 1094.6987 0.0261 2.3034
36.7947

RisingAttacK30 0.7112 2.6247 684.1576 0.0267 4.1602

Top-5

QuadAttacK60 0.9980 3.6439 1128.3054 0.0288 4.3981
1.7630

RisingAttacK60 0.5712 1.1650 292.6494 0.0128 4.4038

QuadAttacK30 0.5024 3.2930 1029.8490 0.0242 2.1108
2.3688

RisingAttacK30 0.5980 1.6101 406.4644 0.0174 2.2197

Top-1

QuadAttacK60 0.9998 1.5736 509.7575 0.0081 2.6007
3.2121

RisingAttacK60 0.9388 0.4365 96.0745 0.0060 1.2715

QuadAttacK30 0.9958 1.5681 508.0591 0.0081 1.3040
2.1102

RisingAttacK30 0.9362 0.6578 149.1661 0.0086 0.6417

(d) DEiT-B (Touvron et al., 2021)

Top-K Method
Mean

Time (s/img) ↓ FoM↑
ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓

Top-30

QuadAttacK60 0.0640 9.3734 2860.9240 0.0997 4.1792
8.8333

RisingAttacK60 0.5150 9.4432 2697.9176 0.0804 43.3521

QuadAttacK30 Failed 2.3032
inf

RisingAttacK30 0.0600 11.0771 3165.6910 0.0957 21.6930

Top-25

QuadAttacK60 0.8644 9.3780 2849.8222 0.0960 4.0966
2.1975

RisingAttacK60 0.9854 5.1921 1434.6160 0.0482 36.1084

QuadAttacK30 Failed 2.2173
inf

RisingAttacK30 0.6748 6.3220 1763.4334 0.0581 18.1108

Top-20

QuadAttacK60 0.9612 7.6974 2343.5441 0.0735 4.1868
2.8466

RisingAttacK60 0.9956 2.9174 781.2607 0.0282 15.8331

QuadAttacK30 0.0032 6.2491 1950.0525 0.0524 2.1503
325.7059

RisingAttacK30 0.6348 3.8373 1045.3953 0.0366 7.9624

Top-15

QuadAttacK60 0.9750 6.0671 1852.4958 0.0544 3.9525
2.8819

RisingAttacK60 1.0000 2.2015 573.3811 0.0223 11.9810

QuadAttacK30 0.0338 4.9874 1558.1460 0.0386 2.0234
42.8983

RisingAttacK30 0.9278 3.1490 838.2295 0.0310 6.0263

Top-10

QuadAttacK60 0.9762 4.3693 1346.6326 0.0353 3.8755
2.9455

RisingAttacK60 0.9996 1.5076 379.6582 0.0162 8.2610

QuadAttacK30 0.1298 3.5782 1123.3760 0.0256 1.9552
11.4300

RisingAttacK30 0.9200 2.1465 556.2741 0.0222 4.1613

Top-5

QuadAttacK60 0.9984 3.3975 1064.7252 0.0243 3.4381
3.1378

RisingAttacK60 0.9992 1.0575 254.5953 0.0121 4.4027

QuadAttacK30 0.7794 3.2526 1024.0607 0.0225 1.7718
2.6286

RisingAttacK30 0.8800 1.3450 334.9398 0.0149 2.2165

Top-1

QuadAttacK60 1.0000 1.3910 459.6084 0.0063 2.9955
3.9437

RisingAttacK60 0.9794 0.3340 68.5738 0.0052 1.2708

QuadAttacK30 0.9994 1.3899 459.3060 0.0063 1.4404
2.4502

RisingAttacK30 0.9772 0.5249 114.2980 0.0073 0.6426

Metrics. The metrics used to evaluate the attack methods

include the Attack Success Rate (ASR), as well as the ℓ1,

ℓ2, and ℓ∞ norms of the perturbations. ASR quantifies the

fraction of adversarial examples satisfying the ordered top-

K constraints (larger is better). ℓp norms are computed

based on successful adversarial examples (lower is better,

indicating less visually-perceptible). We note that ℓp norms

are compatible between different methods only when their

ASRs are similar. For example, a method may show very

low ℓp norms when the ASR is also very low (i.e., it can only

attack a few images). To compare the relative improvement

of one method (with ASR1 and ℓ1p norms) against another

one (with ASR2 and ℓ2p norms), we propose to use a holistic

figure of merits (FoM),

FoM =
ASR1

ASR2 ·
1

3
·

∑

p∈{1,2,∞}

ℓ2p
ℓ1p
, (23)

where when the opponent method fails, i.e., ASR2 = 0,

we set FoM= +∞. Similarly, we set FoM= −∞ if the

primary method fails while the opponent method succeeds,
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and FoM= 0 if both methods fail. When the FoM> 1,

we say the primary method is holistically better than the

opponent method. We report the Mean metrics across the

five sampled targets for each K. We also adopt the com-

monly used ℓ∞ = 8/255 as the threshold to characterize

the “visual imperceptibility” of learned adversarial pertur-

bations (Croce et al., 2020). See Appendix E for details of

metrics including Best, Mean and Worst comparisons.

Baselines. We mainly compare with QuadAttacK (Paniagua

et al., 2023) since it is the prior state-of-the-art method,

significantly outperforming the CWK and AD (Adversarial

Distillation) (Zhang & Wu, 2020). For a fair comparison,

both methods are tested under identical experimental con-

ditions. For all experiments, each attack is evaluated at 30

and 60 optimization iterations to analyze its performance

under varying computational budgets. The initial perturba-

tion for all attacks is set to zero, ensuring consistent starting

conditions across methods.

Results and Analyses. Our proposed RisingAttacK shows

a big leap forward in advancing ordered top-K attacks,

which in turn verifies the significant advantages of learn-

ing attacks directly in the image space by our proposed

SQP formulation. Results of ordered top-K attacks for the

four models are shown in Table 1(a), 1(b), 1(c) and 1(d).

• Based on the FoM evaluation (Eqn. 23), our RisingAt-

tacK consistently outperforms the previous state-of-the-

art method, QuadAttacK across all K (=1,5,10,20, 25,30)

and all four models. It achieves FoMs greater than 2 in

most cases (i.e., holistically 2x better than QuadAttacK).

• Our RisingAttacK facilitates learning visually-

imperceptible perturbations up to K = 20 for

ResNet50 and DEiT-B, K = 15 for ViT-B, and K = 10
for DenseNet121, based on the ℓ∞ threshold, significantly

outperforming QuadAttacK.

Fig. 2 show examples of learned adversarial examples and

perturbations using RisingAttacK60. More examples are

provided in the Appendix F.

More Results. We also show results of using the lowest-

K predictions of each benign image by each model as the

ordered top-K attack targets (Table 6 in the Appendix E).

Ordered top-K targets by this image- and model-specific

selection method are intuitively deemed as more difficult to

attack, as empirically shown in (Zhang & Wu, 2020). Coun-

terintuitively, our results show they are not more difficult

than randomly sampled targets using both QuadAttacK and

our RisingAttacK.

The Average Speed (second/image). We note that for K = 1
our RisingAttacK is consistently faster than QuadAttacK.

For K > 1, QuadAttacK is mostly faster than our RisingAt-

tacK. The main reason is due to the current implementation

of computing the logit-to-image Jacobian matrix in PyTorch,

for which we used PyTorch 2.6 and the jacrev and vmap

(with chunk size 100) functions in the torch.func li-

brary. When K is larger than 1, based on Eqn. 9, we main-

tain K + M + 1 logits with M = 5 ·K. We did not test

other factors for M (e.g., 2 ·K or a predefined constant such

as 5). We will address this speed limitation in future work.

5. Conclusion

This paper presents RisingAttack, a novel method for learn-

ing ordered top-K targeted white-box adversarial attacks

by directly solving the non-linearly constrained optimiza-

tion problem in image space under the sequential quadratic

programming framework. Our RisingAttacK provides a

simple yet elegant solution: ordered top-K adversarial per-

turbations can be learned via iteratively optimizing linear

combinations of the right singular vectors (corresponding

to non-zero singular values) of the attack-targets-ranking

constrained logit-to-image Jacobian matrix. Through ex-

periments on four ImageNet-1k trained DNNs, our Risin-

gAttacK shows a big leap forward in advancing ordered

top-K attacks in terms of a proposed figure-of-merits met-

ric, significantly outperforming the previous state-of-the-art

method, QuadAttacK.

Impact Statement

This work advances the field of adversarial machine learning

by introducing RisingAttacK. By improving the efficiency

and scalability of ordered top-K adversarial attacks, partic-

ularly for large K values, this research highlights critical

vulnerabilities in modern DNNs. However, adversarial at-

tack methods also pose risks, as they may be misused to

compromise real-world systems. For example, attacks on

ranking-based systems could be exploited to manipulate

search engine results or recommendation algorithms. To

mitigate these risks, this work should be viewed as a tool for

potentially strengthening defenses (e.g., as critics for them)

rather than enabling malicious use. In addition, this work

contributes to the broader exploration of optimization in

machine learning by integrating techniques from traditional

nonlinear programming into neural network-based problems.

This direction holds promise for both adversarial research

and other optimization tasks in machine learning, offering a

foundation for solving increasingly complex challenges.
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A. Background on QuadAttacK

QuadAttacK (Paniagua et al., 2023) addresses the challenge of optimizing Eqn. 4 by first “lifting” it into the feature space,

i.e., the output space of f(·), see the left-bottom of Fig 1. At a given iteration i, let δ(i) be the current perturbation, and

xperturb = xbenign + δ(i) the current perturbed image with zperturb = f(xperturb) its DNN features. QuadAttacK aims to

iteratively find the optimal perturbed features z around zperturb to satisfy the constraints by,

minimize
z

||z − zperturb||22, (24)

subject to K · (W · z + b) > 0,

where the nonlinear backbone f(·) is eliminated from the constraints. Eqn. 24 can be solved by a QP package (Amos &

Kolter, 2017). With the optimized z∗, the adversarial perturbation is updated by back-propagating the feature distance to the

image space through the highly non-linear DNN backbone f(·),

δ(i+1) = δ(i) − γ ·
∂

∂δ

(

λ · ||z∗ − zperturb||22 + ||δ||p
)

|δ=δ(i) , (25)

where γ is the learning rate, and λ the trade-off parameter between feature distance and image perturbation. The perturbed

image is updated by,

xperturb = Clamp(xbenign + δ(i+1)). (26)

QuadAttacK is executed iteratively with respect to a predefined computing budget (e.g., 30 or 60 iterations). As aforemen-

tioned, there is a gap between the optimized z∗ (Eqn. 24) in the feature space and the computed δ(i+1) (Eqn. 25) in the

image space in terms of satisfying the ordered top-K constraints, which leads to suboptimal adversarial examples (Eqn. 26).

B. Details on Compact Ordered Top-K Constraints

In Sec. 3.2.1, we introduce the mapping G (Eqn. 9) that reorders the logits and augments them with a differentiable nonlinear

term, reproduced here,

G : ℓ(·) ∈ R
C → l(·) ∈ R

d=K+M+1,

where K = |T | is the number of attack targets, M is the number of highest non-target logits to include explicitly (e.g.,

M = 5 ·K), and the final term is the soft-maximum of the remaining logits. We have,

• The ordered top-K targets: l(x)i = ℓ(x)ti , for i ∈ {1, . . . ,K}, where ti ∈ T is the i-th target class. These targets remain

the same during the optimization.

• The ordered top-M non-targets: l(x)K+j = ℓ(x)mj
, where j ∈ [1, · · · ,M ], and mj = arg sortj{ℓ(x)i; i ∈ Y \ T }, i.e.,

ℓ(x)mj
is the j-th largest non-target logit. For example, M = 5×K. Denote byM the ordered top-M non-target classes,

which are dynamic during the optimization.

• The Soft-Maximum of logits of the Remaining Classes: l(x)d = SmoothMax
(

{ℓ(x)j ; j ∈ Y \ (T ∪ M)}
)

, where

d = K +M +1, and SmoothMax(·) is differentiable and enables gradient distribution (rather than switching) in learning,

which is defined by,

SmoothMax(v) = Sum(Softmax(v)⊙ v), (27)

where ⊙ represents element-wise (Hadamard) product. It is straightforward to show that mean(v) ≤ SmoothMax(v) ≤
max(v) for any real vectors v.

We note that the inclusion of the top-M non-target logits is to ensure that the compact constraints remain robust, even in

cases where the SmoothMax(·) function introduces significant nonlinearity.

C. QP for Recovering Perturbation in the Image Space

We show the solution (Eqn. 18) can be understood from the QP perspective. Based on δ = V · ϵ and δ = x− xanchor, we

have,

ϵ = V ⊤ · (x− xanchor), (28)

ϵr = V ⊤
r · x− V ⊤

r · x
anchor ≜ xr − xanchor

r , (29)

where xr is the projection of x, and xanchor
r the projection of the anchor image.

Minimizing ||ϵr||
2
2 is to find the optimal x∗

r that is closest to xanchor
r . We have, x∗

r = xanchor
r + ϵ∗r , with which the QP for
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recovering the optimal perturbation in the original image space is to,

minimize
x∈[0,1]D

||x− xanchor||22, (30)

subject to V ⊤
r · x = x∗

r ,

which only involves equality constraints, making it computationally efficient to solve, even though x is in the high-

dimensional image space. We show that Eqn. 30 has a closed-form solution, reproducing the result in Eqn. 18.

Recall ϵ∗r is the solution from solving Eqn. 17, xanchor
r = V ⊤

r · x
anchor and x∗

r = xanchor
r + ϵ∗r . Eqn. 30 is reproduced here,

minimize
x∈[0,1]D

||x− xanchor||22,

subject to V ⊤
r · x = x∗

r ,

which can be re-expressed by expanding the objective function and removing the constant term as,

minimize
x∈[0,1]D

x⊤ · x− 2 · xanchor⊤ · x, (31)

subject to V ⊤
r · x = x∗

r ,

And the Lagrangian is,

L(x, λ) = x⊤ · x− 2 · xanchor⊤ · x+ λ⊤ · (V ⊤
r · x− x∗

r). (32)

We obtain estimating equations from the derivatives as follows,

∂

∂x
L(x, λ) = 2 · x− 2 · xanchor + Vr · λ = 0, (33)

⇒ x = xanchor −
1

2
Vr · λ, (34)

∂

∂λ
L(x, λ) = V ⊤

r · x− x∗
r = 0, (35)

⇒ V ⊤
r · x = x∗

r , (36)

We have,

V ⊤
r · (x

anchor −
1

2
Vr · λ) = x∗

r (37)

⇒ λ = 2 · (V ⊤
r · x

anchor − x∗
r) = 2 ·

(

xanchor
r − (xanchor

r + ϵ∗r)
)

= −2 · ϵ∗r , (38)

So, we have,

x = xanchor −
1

2
Vr · (−2 · ϵ

∗
r) = xanchor + Vr · ϵ

∗
r , (39)

which reproduces Eqn. 18.

D. Details of Attack Targets

We use 5 random seeds (42, 52, 62, 72 and 82) and sample 5 lists of ordered top-30 targets as follows:

• seed=42: (643): mask, (409): analog-clock, (798): slide-rule, (250): Siberian-husky, (593): harmonica, (47): African-

chameleon, (142): dowitcher, (276): hyena, (908): wing, (721): pillow, (57): garter-snake, (257): Great-Pyrenees,

(397): puffer, (954): banana, (203): West-Highland-white-terrier, (172): whippet, (294): brown-bear, (803): snowplow,

(76): tarantula, (811): space-heater, (817): sports-car, (608): jean, (977): sandbar, (711): perfume, (157): papillon, (51):

triceratops, (428): barrow, (84): peacock, (531): digital-watch, (478): carton

• seed=52: (523): crutch, (330): wood-rabbit, (743): prison, (611): jigsaw-puzzle, (613): joystick, (810): space-bar,

(634): lumbermill, (203): West-Highland-white-terrier, (217): English-springer, (816): spindle, (926): hot-pot, (275):

African-hunting-dog, (337): beaver, (33): loggerhead, (264): Cardigan, (862): torch, (755): radio-telescope, (949):

strawberry, (162): beagle, (488): chain, (251): dalmatian, (292): tiger, (440): beer-bottle, (638): maillot, (722):

ping-pong-ball, (349): bighorn, (592): hard-disc, (409): analog-clock, (584): hair-slide, (701): parachute

• seed=62: (45): Gila-monster, (224): groenendael, (274): dhole, (54): hognose-snake, (759): reflex-camera, (931):
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bagel, (1): goldfish, (478): carton, (51): triceratops, (649): megalith, (117): chambered-nautilus, (652): military-

uniform, (601): hoopskirt, (571): gas-pump, (520): crib, (221): Irish-water-spaniel, (869): trench-coat, (102):

echidna, (14): indigo-bunting, (670): motor-scooter, (975): lakeside, (511): convertible, (8): hen, (840): swab, (156):

Blenheim-spaniel, (928): ice-cream, (24): great-grey-owl, (567): frying-pan, (668): mosque, (866): tractor

• seed=72: (678): neck-brace, (329): sea-cucumber, (731): plunger, (829): streetcar, (565): freight-car, (628): liner,

(331): hare, (376): proboscis-monkey, (787): shield, (622): lens-cap, (402): acoustic-guitar, (225): malinois, (487):

cellular-telephone, (858): tile-roof, (94): hummingbird, (991): coral-fungus, (808): sombrero, (95): jacamar, (649):

megalith, (35): mud-turtle, (215): Brittany-spaniel, (246): Great-Dane, (222): kuvasz, (88): macaw, (586): half-track,

(424): barbershop, (553): file, (302): ground-beetle, (363): armadillo, (793): shower-cap

• seed=82: (280): grey-fox, (942): butternut-squash, (457): bow-tie, (810): space-bar, (811): space-heater, (388):

giant-panda, (121): king-crab, (974): geyser, (432): bassoon, (969): eggnog, (633): loupe, (399): abaya, (438): beaker,

(329): sea-cucumber, (563): fountain-pen, (661): Model-T, (552): feather-boa, (256): Newfoundland, (859): toaster,

(539): doormat, (949): strawberry, (157): papillon, (410): apiary, (569): garbage-truck, (496): Christmas-stocking,

(207): golden-retriever, (591): handkerchief, (806): sock, (372): baboon, (219): cocker-spaniel

We use those targets sequentially for K = 1, 5, 10, 15, 20, 25, 30 for the four models. The targets are shared by the 1000

testing images. For each testing image, if its ground-truth label is in any ordered top-K targets, we replace it with a different

randomly sampled targets.

In addition to the randomly sampled targets, we also test a special case in which the lowest-K predictions by a model for a

benign image are used as the ordered top-K attack targets (i.e., the first target is the class of the lowest logit for the benign

image, and so far so on). The results are shown in Table 6 in the Appendix E.

E. Details of Metrics and Full Results

We report the Mean metrics (ASRs and ℓp norms) in the paper. Here, we also report results in terms of Best and Worst

metrics in Tables 2, 3, 4, 5, where FoMs are computed using Mean.

For a model and a given K, there are five different lists of ordered top-K targets. For each image, its Best (Worst) ASR

is 1 if any (all) of the five lists of targets can be successfully attacked, and the Mean ASR is the fraction of successful

attacks over the total five runs. The overall Best, Mean, Worst ASRs are then averaged over the 1000 testing images.

Corresponding to the three types of ASRs, their ℓp norms are computed using successfully attacked images only.

F. More Qualitative Results

We show examples learned by both our RisingAttacK and QuadAttacK for each of the five random seeds. Fig. 3 shows the

examples by QuadAttacK, corresponding to those by our RisingAttacK in Fig. 2 and the seed is 42

More examples are in Figs. 4 and 5 (for seed=52).

Due to the file size limit (20M), we will show examples using other seeds in our released code repository.
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Table 2. Full results including the three metrics (Best, Mean, Worst) for ResNet50 in Table 1(a). FoM is based on the Mean

performance.

Top-K Method
Best Mean Worst

Time (s/img) ↓ FoM ↑
ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓ ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓ ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓

Top-30

QuadAttacK60 0.4590 11.6907 3620.6876 0.1307 0.2076 11.8070 3654.9139 0.1349 0.0330 11.9156 3686.5432 0.1394 3.3947
6.4793

RisingAttacK60 0.8770 6.5011 1922.6780 0.0475 0.6642 7.0271 2081.8960 0.0511 0.3900 7.5992 2255.0249 0.0550 17.0013

QuadAttacK30 Failed Failed Failed 1.6539
inf

RisingAttacK30 0.0110 6.2378 1844.3013 0.0470 0.0022 6.2378 1844.3013 0.0470 Failed 8.5619

Top-25

QuadAttacK60 0.8460 11.3686 3526.3618 0.1219 0.6018 11.6214 3599.8101 0.1301 0.3060 11.8774 3674.2965 0.1388 3.4167
3.6439

RisingAttacK60 0.9580 4.8257 1419.8702 0.0361 0.8420 5.2960 1561.6462 0.0393 0.6700 5.8040 1715.5532 0.0427 14.0839

QuadAttacK30 0.0090 10.4263 3259.2773 0.0991 0.0018 10.4263 3259.2773 0.0991 Failed 1.7058
48.9628

RisingAttacK30 0.1270 5.0430 1487.4868 0.0382 0.0392 5.1218 1511.3347 0.0388 0.0010 5.2031 1535.9489 0.0394 7.0999

Top-20

QuadAttacK60 0.9560 9.7368 3030.3407 0.0984 0.8344 10.0891 3133.6199 0.1079 0.6500 10.4514 3239.8729 0.1183 3.4039
3.1100

RisingAttacK60 0.9500 3.3880 992.4068 0.0257 0.8306 3.7474 1101.1521 0.0281 0.6520 4.1005 1207.9307 0.0305 6.7267

QuadAttacK30 0.2620 9.0111 2824.4299 0.0839 0.0978 9.0948 2850.0433 0.0858 0.0080 9.1756 2874.5937 0.0876 1.7264
1.9481

RisingAttacK30 0.2040 3.4129 1000.3753 0.0264 0.0666 3.4854 1022.5585 0.0269 0.0010 3.5609 1045.7229 0.0274 3.7216

Top-15

QuadAttacK60 0.9870 7.9013 2470.1343 0.0729 0.9440 8.3368 2600.7510 0.0822 0.8460 8.8010 2739.1058 0.0932 3.4839
3.2229

RisingAttacK60 0.9990 2.6335 763.6941 0.0208 0.9868 3.0150 878.9222 0.0233 0.9610 3.4246 1003.1229 0.0260 5.1634

QuadAttacK30 0.7540 7.5962 2380.3027 0.0674 0.4922 7.8296 2451.8036 0.0717 0.2090 8.0427 2517.2334 0.0759 1.7382
3.3674

RisingAttacK30 0.8310 2.7910 812.1335 0.0219 0.5856 2.9944 873.3877 0.0234 0.2970 3.2057 936.9361 0.0249 2.8794

Top-10

QuadAttacK60 0.9970 6.1074 1917.6238 0.0504 0.9866 6.5228 2044.5753 0.0576 0.9660 6.9893 2186.1273 0.0666 3.7396
3.3482

RisingAttacK60 0.9980 1.8077 519.1006 0.0149 0.9936 2.0825 602.1784 0.0167 0.9800 2.3735 690.1587 0.0187 3.3991

QuadAttacK30 0.9520 6.0248 1893.2294 0.0491 0.8460 6.3547 1994.8023 0.0544 0.6600 6.6744 2093.2491 0.0598 1.7593
2.9244

RisingAttacK30 0.9410 1.9697 568.1198 0.0160 0.8064 2.1748 630.0922 0.0175 0.5990 2.3743 690.3320 0.0188 1.7965

Top-5

QuadAttacK60 1.0000 3.6813 1161.6413 0.0264 0.9968 4.0029 1261.2314 0.0309 0.9900 4.3529 1369.4046 0.0362 4.5257
3.3373

RisingAttacK60 0.9890 0.9567 270.4779 0.0085 0.9558 1.1534 330.1495 0.0098 0.8980 1.3547 391.1246 0.0112 1.8225

QuadAttacK30 0.9880 3.6540 1153.1996 0.0261 0.9590 3.9539 1246.4929 0.0300 0.8950 4.2646 1343.3064 0.0344 2.1458
2.6681

RisingAttacK30 0.9860 1.2737 361.3176 0.0110 0.9504 1.4693 420.0254 0.0124 0.8910 1.6607 477.3890 0.0138 0.9517

Top-1

QuadAttacK60 1.0000 1.1548 381.4498 0.0057 0.9996 1.4443 467.1178 0.0083 0.9980 1.7222 550.7556 0.0110 5.3373
2.1564

RisingAttacK60 1.0000 0.4136 104.7782 0.0049 0.9992 0.6144 165.8517 0.0064 0.9990 0.8364 233.5616 0.0079 0.6114

QuadAttacK30 0.9980 1.1521 380.6522 0.0057 0.9772 1.4244 461.1199 0.0080 0.9340 1.6861 540.0446 0.0105 2.6411
1.4638

RisingAttacK30 1.0000 0.6218 163.8710 0.0066 0.9986 0.9155 251.6174 0.0088 0.9950 1.2054 338.3424 0.0110 0.3201

Table 3. Full results including the three metrics (Best, Mean, Worst) for DenseNet121 in Table 1(b). FoM is based on the Mean

performance.

Top-K Method
Best Mean Worst

Time (s/img) ↓ FoM ↑
ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓ ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓ ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓

Top-30

QuadAttacK60 Failed Failed Failed 4.5409
inf

RisingAttacK60 0.7490 13.8191 4117.4537 0.0991 0.4074 14.7263 4393.8482 0.1051 0.0730 15.6581 4677.7359 0.1114 20.3156

QuadAttacK30 Failed Failed Failed 2.3266
inf

RisingAttacK30 Failed Failed Failed 10.2335

Top-25

QuadAttacK60 0.4600 13.0098 4002.5555 0.1489 0.1734 13.1825 4053.5759 0.1531 0.0050 13.3529 4103.6056 0.1573 4.1657
8.5496

RisingAttacK60 0.9860 8.8114 2589.4709 0.0666 0.9370 9.9898 2945.3574 0.0747 0.8340 11.2310 3320.9942 0.0830 16.8643

QuadAttacK30 Failed Failed Failed 2.2016
inf

RisingAttacK30 0.3150 9.6484 2840.4239 0.0736 0.1094 9.9203 2921.6770 0.0756 0.0010 10.1868 3001.6276 0.0775 8.5279

Top-20

QuadAttacK60 0.9730 11.0446 3412.9160 0.1140 0.8340 11.6266 3583.3589 0.1268 0.5840 12.1967 3749.9306 0.1403 4.0066
2.6290

RisingAttacK60 0.9970 5.1080 1480.5618 0.0406 0.9812 5.9921 1744.8239 0.0468 0.9450 6.9129 2020.8591 0.0532 8.2901

QuadAttacK30 0.1240 9.7962 3054.7057 0.0914 0.0330 9.8564 3072.6790 0.0923 Failed 2.0206
23.7723

RisingAttacK30 0.7320 5.7318 1664.7979 0.0456 0.4500 6.1377 1786.5613 0.0485 0.1460 6.5680 1915.5893 0.0516 4.6070

Top-15

QuadAttacK60 0.9970 8.6591 2701.7797 0.0774 0.9866 9.2713 2884.2755 0.0887 0.9610 9.8890 3067.5058 0.1011 3.8963
2.3310

RisingAttacK60 1.0000 3.8050 1086.1460 0.0318 1.0000 4.3657 1252.9889 0.0359 1.0000 4.9640 1431.3256 0.0402 6.2878

QuadAttacK30 0.7780 8.3044 2599.4287 0.0720 0.5088 8.6281 2697.9823 0.0771 0.2380 8.9352 2791.7948 0.0821 1.8919
3.5524

RisingAttacK30 0.9900 4.2188 1207.4247 0.0350 0.9362 4.7380 1362.7350 0.0387 0.8350 5.2677 1521.6817 0.0425 3.5501

Top-10

QuadAttacK60 1.0000 6.2172 1957.3529 0.0469 0.9986 6.7558 2123.4894 0.0545 0.9970 7.3050 2291.5986 0.0629 3.8256
2.5458

RisingAttacK60 1.0000 2.3212 649.6995 0.0208 1.0000 2.6903 759.1986 0.0235 1.0000 3.0749 874.1637 0.0263 4.2223

QuadAttacK30 0.9900 6.1801 1946.4525 0.0464 0.9392 6.6701 2098.0095 0.0531 0.8380 7.1563 2248.2525 0.0602 1.8918
2.4272

RisingAttacK30 0.9980 2.4880 698.6799 0.0221 0.9880 2.9210 827.1606 0.0253 0.9690 3.3607 958.0512 0.0285 2.2937

Top-5

QuadAttacK60 1.0000 3.6045 1143.1525 0.0226 0.9998 3.9671 1258.1706 0.0264 0.9990 4.3422 1377.3171 0.0305 3.8644
3.0870

RisingAttacK60 1.0000 1.0122 270.9332 0.0103 0.9994 1.2169 331.6714 0.0119 0.9980 1.4422 398.9840 0.0136 2.2643

QuadAttacK30 0.9980 3.6019 1142.1894 0.0226 0.9924 3.9526 1253.5745 0.0262 0.9820 4.3229 1371.6348 0.0303 1.8502
2.2794

RisingAttacK30 1.0000 1.3896 378.3550 0.0135 0.9982 1.6603 457.9204 0.0156 0.9940 1.9524 544.3561 0.0178 1.2082

Top-1

QuadAttacK60 1.0000 1.1724 397.8131 0.0049 1.0000 1.5191 503.0047 0.0070 1.0000 1.8544 606.7211 0.0093 3.0413
1.9466

RisingAttacK60 1.0000 0.4732 112.4793 0.0063 1.0000 0.7001 177.1356 0.0085 1.0000 0.9566 251.8730 0.0108 0.8046

QuadAttacK30 1.0000 1.1728 397.9329 0.0049 0.9960 1.5144 501.4779 0.0070 0.9880 1.8426 603.0238 0.0092 1.5519
1.2739

RisingAttacK30 1.0000 0.7032 175.2027 0.0084 1.0000 1.0708 280.0300 0.0116 1.0000 1.4523 390.3135 0.0149 0.4255
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Table 4. Full results including the three metrics (Best, Mean, Worst) for ViT-B in Table 1(c). FoM is based on the Mean perfor-

mance.

Top-K Method
Best Mean Worst

Time (s/img) ↓ FoM ↑
ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓ ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓ ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓

Top-30

QuadAttacK60 0.6720 9.4223 2864.1279 0.0996 0.3272 9.6708 2938.2587 0.1032 0.0590 9.9254 3014.5189 0.1067 5.2135
3.1589

RisingAttacK60 1.0000 6.7803 1881.7456 0.0613 0.9534 9.7262 2721.2876 0.0876 0.8260 14.2641 4001.9670 0.1299 43.3954

QuadAttacK30 Failed Failed Failed 2.7870
inf

RisingAttacK30 0.8080 10.3031 2880.8575 0.0934 0.5568 11.4132 3206.4565 0.1029 0.2430 12.6194 3558.5805 0.1134 21.7179

Top-25

QuadAttacK60 0.9350 9.0105 2737.0924 0.0935 0.6872 9.4331 2860.6667 0.1002 0.3490 9.8582 2985.2203 0.1070 5.2723
2.6425

RisingAttacK60 1.0000 4.0101 1084.9150 0.0382 0.9944 5.5706 1520.5703 0.0526 0.9740 8.1685 2232.4551 0.0782 36.0486

QuadAttacK30 Failed Failed Failed 2.7354
inf

RisingAttacK30 0.9330 6.8418 1877.8280 0.0643 0.7536 7.7050 2126.3211 0.0721 0.5000 8.8041 2438.7838 0.0825 18.0775

Top-20

QuadAttacK60 0.9710 7.4811 2268.2729 0.0748 0.7828 7.9108 2393.0875 0.0815 0.4910 8.3426 2519.7231 0.0884 5.0069
2.8308

RisingAttacK60 0.9980 3.0033 792.6934 0.0294 0.9864 3.7609 1007.6887 0.0360 0.9560 4.5804 1241.9193 0.0432 15.8230

QuadAttacK30 0.0020 6.3770 1992.7502 0.0533 0.0004 6.3770 1992.7502 0.0533 Failed 2.6210
1610.8632

RisingAttacK30 0.7380 4.5276 1221.1645 0.0436 0.4956 4.9482 1343.2135 0.0473 0.2490 5.3892 1471.1873 0.0511 7.9615

Top-15

QuadAttacK60 0.9730 5.8803 1780.9271 0.0558 0.8404 6.2661 1893.5173 0.0620 0.5980 6.6687 2011.4965 0.0684 4.7622
2.7231

RisingAttacK60 1.0000 2.3069 593.4747 0.0235 0.9988 2.8751 753.1852 0.0284 0.9940 3.5373 939.6227 0.0343 11.9841

QuadAttacK30 0.0240 4.7795 1490.0706 0.0382 0.0056 4.7982 1495.8188 0.0385 Failed 2.4245
164.8583

RisingAttacK30 0.9270 3.4401 908.2324 0.0339 0.7510 3.8944 1038.7394 0.0379 0.5310 4.4471 1197.6996 0.0427 6.0305

Top-10

QuadAttacK60 0.9900 4.1855 1274.5181 0.0363 0.9130 4.5246 1374.2282 0.0410 0.7510 4.8729 1476.9954 0.0459 4.6368
2.5247

RisingAttacK60 1.0000 1.5872 397.2939 0.0169 0.9936 1.9915 508.8791 0.0206 0.9750 2.4423 634.1043 0.0247 8.2583

QuadAttacK30 0.0810 3.4468 1078.1791 0.0256 0.0252 3.4999 1094.6987 0.0261 Failed 2.3034
36.7947

RisingAttacK30 0.9010 2.3233 599.0848 0.0240 0.7112 2.6247 684.1576 0.0267 0.4810 2.9492 775.8982 0.0297 4.1602

Top-5

QuadAttacK60 1.0000 3.2461 1010.5003 0.0241 0.9980 3.6439 1128.3054 0.0288 0.9930 4.0423 1246.0157 0.0338 4.3981
1.7630

RisingAttacK60 0.8280 0.9934 245.3329 0.0111 0.5712 1.1650 292.6494 0.0128 0.2910 1.3395 340.9352 0.0144 4.4038

QuadAttacK30 0.8120 3.0924 968.7317 0.0221 0.5024 3.2930 1029.8490 0.0242 0.1780 3.4820 1087.7387 0.0261 2.1108
2.3688

RisingAttacK30 0.8420 1.3886 345.5126 0.0153 0.5980 1.6101 406.4644 0.0174 0.3310 1.8357 468.6344 0.0195 2.2197

Top-1

QuadAttacK60 1.0000 1.2537 410.8221 0.0059 0.9998 1.5736 509.7575 0.0081 0.9990 1.9042 612.7661 0.0106 2.6007
3.2121

RisingAttacK60 0.9940 0.2978 60.3734 0.0045 0.9388 0.4365 96.0745 0.0060 0.8260 0.6048 139.9744 0.0078 1.2715

QuadAttacK30 1.0000 1.2541 410.9606 0.0059 0.9958 1.5681 508.0591 0.0081 0.9900 1.8935 609.5179 0.0105 1.3040
2.1102

RisingAttacK30 0.9950 0.4270 90.9070 0.0060 0.9362 0.6578 149.1661 0.0086 0.8180 0.9318 219.6820 0.0115 0.6417

Table 5. Full results including the three metrics (Best, Mean, Worst) for DEiT-B in Table 1(d). FoM is based on the Mean

performance.

Top-K Method
Best Mean Worst

Time (s/img) ↓ FoM ↑
ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓ ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓ ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓

Top-30

QuadAttacK60 0.2350 9.3006 2840.2109 0.0985 0.0640 9.3734 2860.9240 0.0997 0.0010 9.4465 2881.7991 0.1009 4.1792
8.8333

RisingAttacK60 0.9860 7.9531 2263.3389 0.0678 0.5150 9.4432 2697.9176 0.0804 0.0340 11.7557 3365.5665 0.1007 43.3521

QuadAttacK30 Failed Failed Failed 2.3032
inf

RisingAttacK30 0.2160 10.8323 3092.9352 0.0937 0.0600 11.0771 3165.6910 0.0957 Failed 21.6930

Top-25

QuadAttacK60 0.9900 8.8805 2703.0149 0.0886 0.8644 9.3780 2849.8222 0.0960 0.5880 9.9093 3006.5687 0.1039 4.0966
2.1975

RisingAttacK60 1.0000 3.6473 1002.9836 0.0337 0.9854 5.1921 1434.6160 0.0482 0.9360 7.9650 2187.8969 0.0768 36.1084

QuadAttacK30 Failed Failed Failed 2.2173
inf

RisingAttacK30 0.9100 5.6674 1575.9766 0.0520 0.6748 6.3220 1763.4334 0.0581 0.3620 7.1691 2002.6759 0.0662 18.1108

Top-20

QuadAttacK60 0.9990 7.2048 2199.2260 0.0665 0.9612 7.6974 2343.5441 0.0735 0.8540 8.2263 2499.1404 0.0811 4.1868
2.8466

RisingAttacK60 1.0000 2.3202 611.1048 0.0230 0.9956 2.9174 781.2607 0.0282 0.9850 3.5733 968.9946 0.0339 15.8331

QuadAttacK30 0.0160 6.2491 1950.0525 0.0524 0.0032 6.2491 1950.0525 0.0524 Failed 2.1503
325.7059

RisingAttacK30 0.8560 3.5031 946.6329 0.0338 0.6348 3.8373 1045.3953 0.0366 0.3810 4.1863 1148.5782 0.0395 7.9624

Top-15

QuadAttacK60 1.0000 5.5928 1713.0918 0.0481 0.9750 6.0671 1852.4958 0.0544 0.9100 6.5599 1997.5902 0.0611 3.9525
2.8819

RisingAttacK60 1.0000 1.7594 448.6124 0.0184 1.0000 2.2015 573.3811 0.0223 1.0000 2.7017 715.2705 0.0266 11.9810

QuadAttacK30 0.1350 4.9541 1548.1232 0.0383 0.0338 4.9874 1558.1460 0.0386 Failed 2.0234
42.8983

RisingAttacK30 0.9870 2.7227 714.8364 0.0273 0.9278 3.1490 838.2295 0.0310 0.8140 3.5773 963.3399 0.0346 6.0263

Top-10

QuadAttacK60 0.9980 3.9545 1222.8665 0.0305 0.9762 4.3693 1346.6326 0.0353 0.9150 4.7999 1475.4252 0.0406 3.8755
2.9455

RisingAttacK60 1.0000 1.1885 291.5197 0.0132 0.9996 1.5076 379.6582 0.0162 0.9980 1.8825 484.4438 0.0195 8.2610

QuadAttacK30 0.3540 3.4965 1097.7370 0.0249 0.1298 3.5782 1123.3760 0.0256 0.0100 3.6597 1148.9145 0.0263 1.9552
11.4300

RisingAttacK30 0.9800 1.7993 458.0865 0.0191 0.9200 2.1465 556.2741 0.0222 0.8000 2.5030 658.8665 0.0253 4.1613

Top-5

QuadAttacK60 1.0000 2.9872 940.1374 0.0201 0.9984 3.3975 1064.7252 0.0243 0.9950 3.8203 1192.7754 0.0288 3.4381
3.1378

RisingAttacK60 1.0000 0.8108 189.0044 0.0096 0.9992 1.0575 254.5953 0.0121 0.9970 1.3365 329.6166 0.0148 4.4027

QuadAttacK30 0.9700 2.9571 932.7132 0.0197 0.7794 3.2526 1024.0607 0.0225 0.4770 3.5452 1114.4266 0.0252 1.7718
2.6286

RisingAttacK30 0.9760 1.0890 264.4306 0.0125 0.8800 1.3450 334.9398 0.0149 0.7110 1.6168 410.8617 0.0174 2.2165

Top-1

QuadAttacK60 1.0000 1.1376 381.0736 0.0047 1.0000 1.3910 459.6084 0.0063 1.0000 1.6659 545.2655 0.0080 2.9955
3.9437

RisingAttacK60 0.9990 0.2450 46.1936 0.0041 0.9794 0.3340 68.5738 0.0052 0.9420 0.4472 97.7384 0.0065 1.2708

QuadAttacK30 1.0000 1.1372 380.9527 0.0047 0.9994 1.3899 459.3060 0.0063 0.9970 1.6631 544.4684 0.0080 1.4404
2.4502

RisingAttacK30 1.0000 0.3367 67.5065 0.0052 0.9772 0.5249 114.2980 0.0073 0.9240 0.7524 171.9542 0.0099 0.6426
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Table 6. Ordered top-K attack results using the lowest-K predictions of benign images as attack targets. Overall, our RisingAttacK

shows a big leap forward in advancing ordered top-K attacks, outperforming the prior state-of-the-art method, QuadAttacK (Paniagua

et al., 2023) by a large margin in most cases (higher ASRs with lower ℓp norms). ℓ∞-norms in red is to show they are treated as being

“visually imperceptible” based on the commonly used threshold 8/255 = 0.0314. The subscripts of methods (30 and 60) represent the

computing budgets. The FoM (figure of merits) of our RisingAttacK against QuadAttacK is computed by Eqn. 23 to show its holistic

improvement in terms of how many times it is better.

(a) ResNet-50 (He et al., 2016)

Top-K Method
Single-Run

Time (s/img) ↓ FoM↑
ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓

Top-30

QuadAttacK60 0.3250 11.7308 3640.1040 0.1292 4.7020
3.8464

RisingAttacK60 0.5340 5.9437 1762.7836 0.0433 38.9733

QuadAttacK30 0.0010 10.6442 3329.8271 0.1111 2.2976
7.6272

RisingAttacK30 0.0040 6.3581 1870.2285 0.0490 19.6176

Top-25

QuadAttacK60 0.6240 11.5386 3585.0978 0.1250 4.5973
3.1978

RisingAttacK60 0.7070 4.7898 1415.3054 0.0355 32.0203

QuadAttacK30 0.0320 10.3092 3233.3005 0.0954 2.2886
2.2899

RisingAttacK30 0.0280 4.2926 1263.4319 0.0330 16.1438

Top-20

QuadAttacK60 0.8090 10.0532 3129.2405 0.1050 4.5393
2.8243

RisingAttacK60 0.7300 3.6953 1088.5812 0.0277 14.1311

QuadAttacK30 0.1270 9.1247 2863.4929 0.0830 2.2579
1.2784

RisingAttacK30 0.0560 3.3960 993.0273 0.0265 7.4246

Top-15

QuadAttacK60 0.9370 8.4982 2653.1828 0.0840 4.5458
3.1157

RisingAttacK60 0.9620 3.1353 917.7340 0.0240 10.7638

QuadAttacK30 0.3980 7.8166 2453.6085 0.0696 2.2794
2.6514

RisingAttacK30 0.3880 3.0805 900.1031 0.0240 5.6529

Top-10

QuadAttacK60 0.9840 6.7946 2130.0686 0.0610 4.6965
3.1959

RisingAttacK60 0.9840 2.2788 661.9469 0.0180 7.6067

QuadAttacK30 0.7670 6.4958 2040.6640 0.0554 2.3425
2.5281

RisingAttacK30 0.6590 2.3197 674.2584 0.0185 3.9934

Top-5

QuadAttacK60 0.9910 4.2898 1351.5930 0.0339 5.1849
2.9681

RisingAttacK60 0.9290 1.3772 397.4290 0.0114 4.3419

QuadAttacK30 0.9210 4.1759 1316.8696 0.0323 2.5234
2.4573

RisingAttacK30 0.9070 1.6905 486.2660 0.0140 2.2706

Top-1

QuadAttacK60 0.9990 1.6902 542.3103 0.0103 6.1673
2.1155

RisingAttacK60 1.0000 0.7436 203.6175 0.0074 1.6483

QuadAttacK30 0.9620 1.6317 523.8288 0.0097 3.0124
1.4446

RisingAttacK30 1.0000 1.0940 303.8991 0.0102 0.8588

(b) DenseNet-121 (Huang et al., 2017)

Top-K Method
Single-Run

Time (s/img) ↓ FoM↑
ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓

Top-30

QuadAttacK60 0.1370 13.3362 4119.1202 0.1466 5.3182
9.4906

RisingAttacK60 0.8520 10.2572 3029.0433 0.0764 40.2688

QuadAttacK30 Failed 2.8216
inf

RisingAttacK30 0.0850 8.7632 2561.6755 0.0683 20.1358

Top-25

QuadAttacK60 0.6760 13.1121 4052.3545 0.1417 5.0749
3.0375

RisingAttacK60 0.9840 7.2225 2110.8964 0.0561 32.7520

QuadAttacK30 0.0080 11.1429 3480.9835 0.1047 2.6689
94.7409

RisingAttacK30 0.4730 7.5557 2203.2915 0.0597 16.4573

Top-20

QuadAttacK60 0.9360 11.3239 3513.0089 0.1142 4.8813
2.6289

RisingAttacK60 0.9900 5.0476 1460.8408 0.0407 14.5282

QuadAttacK30 0.1710 9.9557 3118.5042 0.0886 2.5958
7.5775

RisingAttacK30 0.6840 5.5711 1612.6615 0.0451 7.4920

Top-15

QuadAttacK60 0.9910 9.2727 2898.0552 0.0840 4.8481
2.3800

RisingAttacK60 1.0000 4.1631 1190.6402 0.0348 11.1324

QuadAttacK30 0.6320 8.6222 2707.6770 0.0731 2.4824
2.9579

RisingAttacK30 0.9540 4.5707 1310.9248 0.0380 5.7205

Top-10

QuadAttacK60 0.9980 7.0847 2232.9939 0.0559 4.7497
2.4674

RisingAttacK60 1.0000 2.8950 817.3569 0.0253 7.9408

QuadAttacK30 0.9230 6.8696 2167.0029 0.0531 2.4163
2.3308

RisingAttacK30 0.9830 3.1446 890.9174 0.0272 4.0917

Top-5

QuadAttacK60 0.9990 4.3886 1396.2655 0.0290 4.4818
2.8989

RisingAttacK60 0.9980 1.4362 394.3187 0.0138 4.6659

QuadAttacK30 0.9810 4.3306 1377.5596 0.0284 2.2109
2.0768

RisingAttacK30 0.9930 2.0112 558.1958 0.0185 2.3818

Top-1

QuadAttacK60 1.0000 1.7865 587.0397 0.0086 3.6998
2.0325

RisingAttacK60 1.0000 0.7916 201.4099 0.0093 2.0500

QuadAttacK30 0.9910 1.7586 577.6225 0.0084 1.8592
1.3071

RisingAttacK30 1.0000 1.2213 321.1319 0.0130 1.0587

(c) ViT-B (Dosovitskiy et al., 2020)

Top-K Method
Single-Run

Time (s/img) ↓ FoM↑
ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓

Top-30

QuadAttacK60 0.2400 9.2933 2828.3158 0.0997 6.5384
6.0806

RisingAttacK60 0.9980 6.9512 1923.6753 0.0631 107.4773

QuadAttacK30 Failed 3.6705
inf

RisingAttacK30 0.5200 9.2443 2576.2629 0.0842 54.5843

Top-25

QuadAttacK60 0.5220 9.2439 2813.6584 0.0980 6.3901
3.9297

RisingAttacK60 0.9960 4.8564 1318.3544 0.0458 90.1623

QuadAttacK30 Failed 3.5624
inf

RisingAttacK30 0.5860 6.8079 1869.8754 0.0640 46.2905

Top-20

QuadAttacK60 0.6870 7.7073 2337.6029 0.0803 6.1960
3.2785

RisingAttacK60 0.9680 3.5511 945.7173 0.0343 43.4669

QuadAttacK30 0.0010 5.6397 1745.0922 0.0501 3.4596
450.2016

RisingAttacK30 0.3810 4.8757 1316.7148 0.0472 24.6167

Top-15

QuadAttacK60 0.7880 6.0980 1849.0582 0.0606 6.0093
2.8951

RisingAttacK60 1.0000 2.8185 734.7598 0.0280 32.9165

QuadAttacK30 0.0130 4.5583 1422.9767 0.0378 3.2740
62.7339

RisingAttacK30 0.6740 3.7918 1009.0854 0.0372 18.6537

Top-10

QuadAttacK60 0.8900 4.4073 1342.7171 0.0401 5.7166
2.5217

RisingAttacK60 0.9940 1.9987 508.1560 0.0208 22.5797

QuadAttacK30 0.0310 3.2038 1007.5255 0.0245 3.0683
24.9115

RisingAttacK30 0.6540 2.6736 696.4219 0.0273 12.7669

Top-5

QuadAttacK60 0.9970 3.6834 1140.4541 0.0296 5.3490
1.6908

RisingAttacK60 0.5460 1.1798 295.8843 0.0129 12.1849

QuadAttacK30 0.4230 3.1510 987.3517 0.0235 2.8011
2.3368

RisingAttacK30 0.5450 1.6973 429.3175 0.0183 6.8619

Top-1

QuadAttacK60 1.0000 1.7206 555.2969 0.0091 3.4851
3.0815

RisingAttacK60 0.9260 0.4883 109.9290 0.0065 3.7639

QuadAttacK30 0.9970 1.7137 553.1291 0.0091 1.7672
2.0013

RisingAttacK30 0.9250 0.7459 172.3669 0.0094 2.0927

(d) DEiT-B (Touvron et al., 2021)

Top-K Method
Single-Run

Time (s/img) ↓ FoM↑
ASR ↑ ℓ1 ↓ ℓ2 ↓ ℓ∞ ↓

Top-30

QuadAttacK60 0.3660 9.6171 2927.7147 0.0983 5.3128
4.2723

RisingAttacK60 0.9850 6.5547 1846.3443 0.0575 107.3817

QuadAttacK30 Failed 3.0631
inf

RisingAttacK30 0.2920 7.8282 2213.4546 0.0694 54.7059

Top-25

QuadAttacK60 0.8810 9.3748 2858.4162 0.0933 5.2609
2.9615

RisingAttacK60 0.9980 3.7927 1035.3009 0.0357 90.7822

QuadAttacK30 Failed 2.9321
inf

RisingAttacK30 0.7090 5.4817 1521.3469 0.0508 46.5786

Top-20

QuadAttacK60 0.9480 7.7045 2353.1867 0.0729 5.2085
3.1254

RisingAttacK60 0.9910 2.6716 707.9259 0.0264 43.5567

QuadAttacK30 0.0040 6.1241 1920.0202 0.0490 2.8225
246.9753

RisingAttacK30 0.5990 3.6926 1001.5668 0.0357 24.6677

Top-15

QuadAttacK60 0.9710 6.0495 1855.0592 0.0536 4.9720
3.0621

RisingAttacK60 1.0000 2.0686 532.7703 0.0213 32.9756

QuadAttacK30 0.0240 4.7361 1492.8217 0.0364 2.7253
60.2646

RisingAttacK30 0.9050 2.9258 774.8312 0.0291 18.6605

Top-10

QuadAttacK60 0.9830 4.3244 1340.7801 0.0344 4.7669
3.0775

RisingAttacK60 0.9990 1.4164 351.9301 0.0155 22.6131

QuadAttacK30 0.0940 3.3065 1037.0081 0.0246 2.6114
15.6515

RisingAttacK30 0.9220 2.0227 520.4555 0.0212 12.7832

Top-5

QuadAttacK60 0.9980 3.4488 1085.9038 0.0240 4.5690
3.3363

RisingAttacK60 0.9990 1.0086 240.3898 0.0117 12.1753

QuadAttacK30 0.7800 3.2362 1023.7461 0.0219 2.3610
2.6224

RisingAttacK30 0.8700 1.3222 328.4794 0.0147 6.8720

Top-1

QuadAttacK60 1.0000 1.5513 509.9606 0.0071 3.8654
4.0412

RisingAttacK60 0.9860 0.3632 76.0298 0.0054 3.7549

QuadAttacK30 0.9970 1.5428 507.5080 0.0070 1.9139
2.4961

RisingAttacK30 0.9800 0.5707 126.7541 0.0077 2.0951
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Figure 3. QuadAttacK examples of adversarial examples and associated perturbations learned for a benign image (ILSVRC2012 val 00002633 with the ground-truth label, redshank) using a list of

randomly sampled 30 targets (see the list for seed=42 in the Appendix D) in the order of: mask, analog-clock, slide-rule, Siberian-husky, harmonica, African-chameleon,

dowitcher, hyena, wing, pillow, garter-snake, Great-Pyrenees, puffer, banana, West-Highland-white-terrier, whippet, brown-bear,

snowplow, tarantula, space-heater, sports-car, jean, sandbar, perfume, papillon, triceratops, barrow, peacock, digital-watch, carton.

The adversarial perturbations are normalized to [0, 1] for the sake of visualization. Some of them are treated as being “visually imperceptible” based on the commonly used threshold 8/255 = 0.0314

for ℓ∞ (‘linf’) norms. If QuadAttacK fails using a model for a K (e.g. topK=25 for DenseNet121), we leave it blank. For the benign image, the top-30 predictions by the four models respectively are:

• ResNet50: redshank, ruddy turnstone, red-backed sandpiper, dowitcher, oystercatcher, grey whale, red-breasted merganser, crane, sea lion, chainlink fence, lakeside, wreck, quail, partridge, screwdriver,

plastic bag, pelican, parachute, killer whale, sulphur-crested cockatoo, African crocodile, white stork, pole, bucket, caldron, hummingbird, sandbar, king penguin, nail, syringe.

• DenseNet121: redshank, ruddy turnstone, red-backed sandpiper, oystercatcher, breakwater, dowitcher, sea lion, academic gown, abaya, mortarboard, red-breasted merganser, lifeboat, cloak, espresso,

lipstick, theater curtain, wood rabbit, umbrella, refrigerator, ruffed grouse, king penguin, partridge, sandbar, diamondback, hen-of-the-woods, wine bottle, mailbox, stone wall, volcano, redbone.

• ViT-B: redshank, red-backed sandpiper, ruddy turnstone, dowitcher, oystercatcher, water ouzel, Madagascar cat, chain saw, apiary, red-breasted merganser, Tibetan mastiff, cicada, seat belt, American egret,

wall clock, mask, snow leopard, schipperke, potter’s wheel, lycaenid, mud turtle, curly-coated retriever, dumbbell, television, strainer, feather boa, buckle, junco, boa constrictor, volcano.

• DEiT-B: redshank, ruddy turnstone, red-backed sandpiper, dowitcher, oystercatcher, red-breasted merganser, warthog, worm fence, Indian elephant, African crocodile, maze, badger, snowplow, American

black bear, stone wall, king penguin, car wheel, rock python, water ouzel, guillotine, wild boar, centipede, diamondback, apiary, barrow, horned viper, sundial, guenon, bustard, skunk.
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Figure 4. RisingAttacK examples of adversarial examples and associated perturbations learned for a benign image (ILSVRC2012 val 00002266 with the ground-truth label, dogsled) using

a list of randomly sampled 30 targets (see the list for seed=52 in the Appendix D) in the order of: crutch, wood-rabbit, prison, jigsaw-puzzle, joystick, space-bar,

lumbermill, West-Highland-white-terrier, English-springer, spindle, hot-pot, African-hunting-dog, beaver, loggerhead, Cardigan, torch,

radio-telescope, strawberry, beagle, chain, dalmatian, tiger, beer-bottle, maillot, ping-pong-ball, bighorn, hard-disc, analog-clock,

hair-slide, parachute. The adversarial perturbations are normalized to [0, 1] for the sake of visualization. Some of them are treated as being “visually imperceptible” based on the commonly used

threshold 8/255 = 0.0314 for ℓ∞ (‘linf’) norms. For the benign image, the top-30 predictions by the four models respectively are:

• ResNet50: dogsled, Eskimo dog, bobsled, Ibizan hound, Labrador retriever, EntleBucher, beagle, Weimaraner, Greater Swiss Mountain dog, bloodhound, stretcher, Cardigan, Walker hound, redbone,

Leonberg, Siberian husky, English foxhound, Chihuahua, shovel, Bernese mountain dog, malinois, ski mask, groenendael, Chesapeake Bay retriever, curly-coated retriever, drum, cocker spaniel, Gordon

setter, Saluki, cowboy hat.

• DenseNet121: dogsled, Ibizan hound, Chesapeake Bay retriever, American Staffordshire terrier, whippet, Weimaraner, bobsled, vizsla, snowmobile, drum, malinois, Rhodesian ridgeback, Saluki, Eskimo

dog, ski, Labrador retriever, mountain tent, Irish terrier, toyshop, shovel, muzzle, ski mask, dingo, alp, Irish wolfhound, Greater Swiss Mountain dog, Brittany spaniel, hog, Staffordshire bullterrier, Siberian

husky.

• ViT-B: dogsled, Ibizan hound, Eskimo dog, American Staffordshire terrier, whippet, Greater Swiss Mountain dog, snowmobile, EntleBucher, boxer, Saluki, bobsled, Siberian husky, Norfolk terrier,

Staffordshire bullterrier, basenji, Great Dane, Rhodesian ridgeback, Irish terrier, Brittany spaniel, Tibetan terrier, Chihuahua, muzzle, vizsla, beagle, rugby ball, Walker hound, Norwich terrier, Italian

greyhound, Cardigan, Weimaraner.

• DEiT-B: dogsled, Eskimo dog, EntleBucher, Ibizan hound, whippet, Chihuahua, Weimaraner, Siberian husky, bearskin, Greater Swiss Mountain dog, Italian greyhound, bobsled, manhole cover, beagle,

snowmobile, coffeepot, scabbard, bald eagle, langur, wing, espresso, stethoscope, mortarboard, dingo, suit, cowboy hat, piggy bank, carpenter’s kit, basenji, zucchini.
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Figure 5. QuadAttacK examples of adversarial examples and associated perturbations learned for a benign image (ILSVRC2012 val 00002266 with the ground-truth label, dogsled) using

a list of randomly sampled 30 targets (see the list for seed=52 in the Appendix D) in the order of: crutch, wood-rabbit, prison, jigsaw-puzzle, joystick, space-bar,

lumbermill, West-Highland-white-terrier, English-springer, spindle, hot-pot, African-hunting-dog, beaver, loggerhead, Cardigan, torch,

radio-telescope, strawberry, beagle, chain, dalmatian, tiger, beer-bottle, maillot, ping-pong-ball, bighorn, hard-disc, analog-clock,

hair-slide, parachute. The adversarial perturbations are normalized to [0, 1] for the sake of visualization. Some of them are treated as being “visually imperceptible” based on the commonly used

threshold 8/255 = 0.0314 for ℓ∞ (‘linf’) norms. If QuadAttacK fails using a model for a K (e.g. topK=25 for DenseNet121), we leave it blank. For the benign image, the top-30 predictions by the four

models respectively are:

• ResNet50: dogsled, Eskimo dog, bobsled, Ibizan hound, Labrador retriever, EntleBucher, beagle, Weimaraner, Greater Swiss Mountain dog, bloodhound, stretcher, Cardigan, Walker hound, redbone,

Leonberg, Siberian husky, English foxhound, Chihuahua, shovel, Bernese mountain dog, malinois, ski mask, groenendael, Chesapeake Bay retriever, curly-coated retriever, drum, cocker spaniel, Gordon

setter, Saluki, cowboy hat.

• DenseNet121: dogsled, Ibizan hound, Chesapeake Bay retriever, American Staffordshire terrier, whippet, Weimaraner, bobsled, vizsla, snowmobile, drum, malinois, Rhodesian ridgeback, Saluki, Eskimo

dog, ski, Labrador retriever, mountain tent, Irish terrier, toyshop, shovel, muzzle, ski mask, dingo, alp, Irish wolfhound, Greater Swiss Mountain dog, Brittany spaniel, hog, Staffordshire bullterrier, Siberian

husky.

• ViT-B: dogsled, Ibizan hound, Eskimo dog, American Staffordshire terrier, whippet, Greater Swiss Mountain dog, snowmobile, EntleBucher, boxer, Saluki, bobsled, Siberian husky, Norfolk terrier,

Staffordshire bullterrier, basenji, Great Dane, Rhodesian ridgeback, Irish terrier, Brittany spaniel, Tibetan terrier, Chihuahua, muzzle, vizsla, beagle, rugby ball, Walker hound, Norwich terrier, Italian

greyhound, Cardigan, Weimaraner.

• DEiT-B: dogsled, Eskimo dog, EntleBucher, Ibizan hound, whippet, Chihuahua, Weimaraner, Siberian husky, bearskin, Greater Swiss Mountain dog, Italian greyhound, bobsled, manhole cover, beagle,

snowmobile, coffeepot, scabbard, bald eagle, langur, wing, espresso, stethoscope, mortarboard, dingo, suit, cowboy hat, piggy bank, carpenter’s kit, basenji, zucchini.
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