
Adversarial Perturbations Are Formed by Iteratively Learning Linear Combinations of the Right Singular Vectors of the Adversarial Jacobian

Thomas Paniagua¹ Chinmay Savadikar¹ Tianfu Wu¹

Code: <https://github.com/ivmcl/ordered-topk-attack>

Abstract

White-box targeted adversarial attacks reveal core vulnerabilities in Deep Neural Networks (DNNs), yet two key challenges persist: (i) How many target classes can be attacked simultaneously in a specified order, known as the *ordered top- K attack* problem ($K \geq 1$)? (ii) How to compute the corresponding adversarial perturbations for a given benign image directly in the image space? We address both by showing that *ordered top- K perturbations can be learned via iteratively optimizing linear combinations of the right singular vectors of the adversarial Jacobian* (i.e., the logit-to-image Jacobian constrained by target ranking). These vectors span an orthogonal, informative subspace in the image domain. We introduce **RisingAttacK**, a novel Sequential Quadratic Programming (SQP)-based method that exploits this structure. We propose a holistic figure-of-merits (FoM) metric combining attack success rates (ASRs) and ℓ_p -norms ($p = 1, 2, \infty$). Extensive experiments on ImageNet-1k across six ordered top- K levels ($K = 1, 5, 10, 15, 20, 25, 30$) and four models (ResNet-50, DenseNet-121, ViT-B, DEiT-B) show RisingAttacK consistently surpasses the state-of-the-art QuadAttacK.

1. Introduction

Deep Neural Networks (DNNs) have witnessed tremendous progress across numerous applications, enabling the recent development of large foundation models (such as DeepMind’s AlphaZero and AlphaFold and OpenAI’s ChatGPT) that are widely recognized to pave a promising way to-

¹Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, USA. Correspondence to: Thomas Paniagua <tapaniag@ncsu.edu>, Tianfu Wu <twu19@ncsu.edu>.

Proceedings of the 42nd International Conference on Machine Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025 by the author(s).

wards Artificial General Intelligence (AGI). Despite of the remarkable achievement, adversarial vulnerability (Szegedy et al., 2013; Goodfellow et al., 2014) remains the Achilles heel of all DNNs, particularly in computer vision, as revealed by white-box adversarial attacks, especially targeted white-box attacks (Carlini & Wagner, 2017) that can fool trained DNNs towards arbitrarily specified targets. With the access to network architectures and pretrained weights, white-box attacks can expose their deep vulnerabilities and test their robustness. In practice, white-box attacks are also used as surrogate models in learning transferrable black-box (Inkawich et al., 2019; Li et al., 2020a; Naseer et al., 2021; Zhao et al., 2023; Fang et al., 2024) and no-box (Li et al., 2020b) attacks. So, seeking more powerful white-box attacks will provide a foundation both for learning potentially stronger black-box and no-box attacks. In this paper, we focus on learning white-box targeted attacks in ImageNet-1k (Russakovsky et al., 2015) classification tasks.

We consider the generalized setting of targeted attacks, **ordered top- K attacks** (Zhang & Wu, 2020; Paniagua et al., 2023), that relax the traditional top-1 targets (e.g., to fool a DNN to classify a dog image as a cat) to K targets ($K \geq 1$) in any given orders (e.g., to fool a DNN to classify a dog image with [car, tree, table] as the ordered top-3 prediction, see the middle in Fig. 1). Ordered top- K targeted attacks expose deeper vulnerabilities of DNNs, since they show the manipulability of the decision boundary of DNNs at the logits subspace levels, especially when K is large (e.g., $K > 20$). These attacks are particularly impactful in applications where the order of predictions significantly influences outcomes, such as recommendation systems or multi-class decision-making, and adversaries can exploit decision hierarchies to disrupt critical processes. Particularly, safety-critical systems (e.g., face unlock, medical triage, content moderation) reason over *entire ranked lists*. An attacker dictating *all* top predictions (similar in spirit to [cat, car, fish] vs only “cat”) obtains finer control and evades simple “Top-1 changed” detectors.

In the meanwhile, **security evaluations now recommend $K > 1$** . For example, in the new differential-privacy evaluation guideline, NIST SP 800-226 (March 2025) (Near

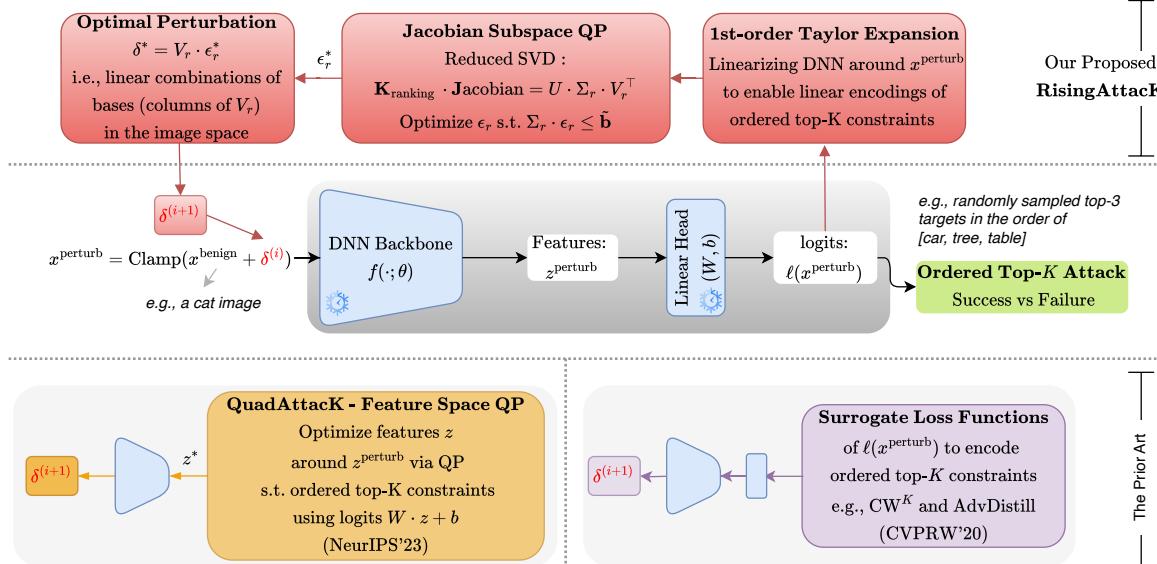


Figure 1. Workflow comparisons between our proposed image space based RisingAttacK (top) and the prior art (bottom), CW^K and AdvDistill (Zhang & Wu, 2020) and QuadAttacK (Paniagua et al., 2023) for learning ordered top-K targeted adversarial attacks (Zhang & Wu, 2020) for a benign image $x^{\text{benign}} \in [0, 1]^D$ (e.g., $D = 3 \times 224 \times 224$). See text for details.

et al., 2025) devotes an entire discussion to “Practical differentially-private Top-K selection” and cites (Durfee & Rogers, 2019) as its canonical example which repeatedly frames robustness/utility checks around whether the *entire ordered set* of the highest-scoring items is preserved under noise—not just the single best—underscoring regulators’ need for *Top-K mis-ranking tests*. **Ordered top-K attacks thus supply the stress-test regulators and practitioners request but that Top-1-only methods cannot deliver.**

Ordered top-K attacks can be straightforwardly formulated as an optimization problem with highly non-linear constraints, which is intractable in the vanilla form (see Eqn. 4). Thus, learning ordered top-K attacks poses a unique challenge as they require the perturbations to precisely influence the model’s ranking mechanism across multiple outputs ($K > 1$), not just a single decision ($K = 1$). Addressing ordered top-K attacks offers valuable insight into how models distribute their confidence across multiple classes and the vulnerabilities associated with this ranking structure. To address this challenge, there are two main approaches in the prior art (see the bottom of Fig. 1):

- **Designing surrogate loss functions**, such as the CW^K (extended from the CW method (Carlini & Wagner, 2017)) and the Adversarial Distillation method proposed in (Zhang & Wu, 2020), that transform the constrained optimization problem to an unconstrained one.
- **Reformulating the non-linear constraints to linear ones**, such as the recently proposed QuadAttacK (Paniagua et al., 2023), by first solving the optimization problem in the feature space of the DNN backbone (i.e., the input space to the linear head classifier), and then back-

propagating the optimized features through the backbone to compute adversarial perturbations.

QuadAttacK has shown significant improvement in comparison with methods based on surrogate loss functions. While QuadAttacK is effective, its effectiveness diminishes significantly when $K > 20$ and the computing budget is restricted (e.g., 30 steps). It relies on backpropagation to map the optimized feature space perturbation back to the original input image space. This introduces an indirect connection between the optimization problem and the resulting image space perturbation, leading to limitations as-folows:

- **Feature vs. Image Space Misalignment:** Minimizing the perturbation in the feature space does not always correspond to minimizing it in the image space due to the nonlinear mapping between the two spaces.
- **Suboptimal Visual Perturbations:** The resulting adversarial examples may not fully align with the visual characteristics of the image, as perturbations that minimize the distance in feature space may not correspond to minimal or visually coherent changes in the image space, due to the nonlinear relationship between the two spaces.

To the best of our knowledge, no existing approaches have been proposed for learning ordered top- K attacks ($K \geq 1$) directly in the image space due to the complexities of high-dimensional, non-linear optimization. Potentially due to this, it remains unresolved to seek an explicit formula for “seeing” what adversarial perturbations are formed, if possible. In this paper, we propose a **Sequential Quadratic Programming (SQP)** formulation to address the non-linear optimization challenge of learning ordered top- K

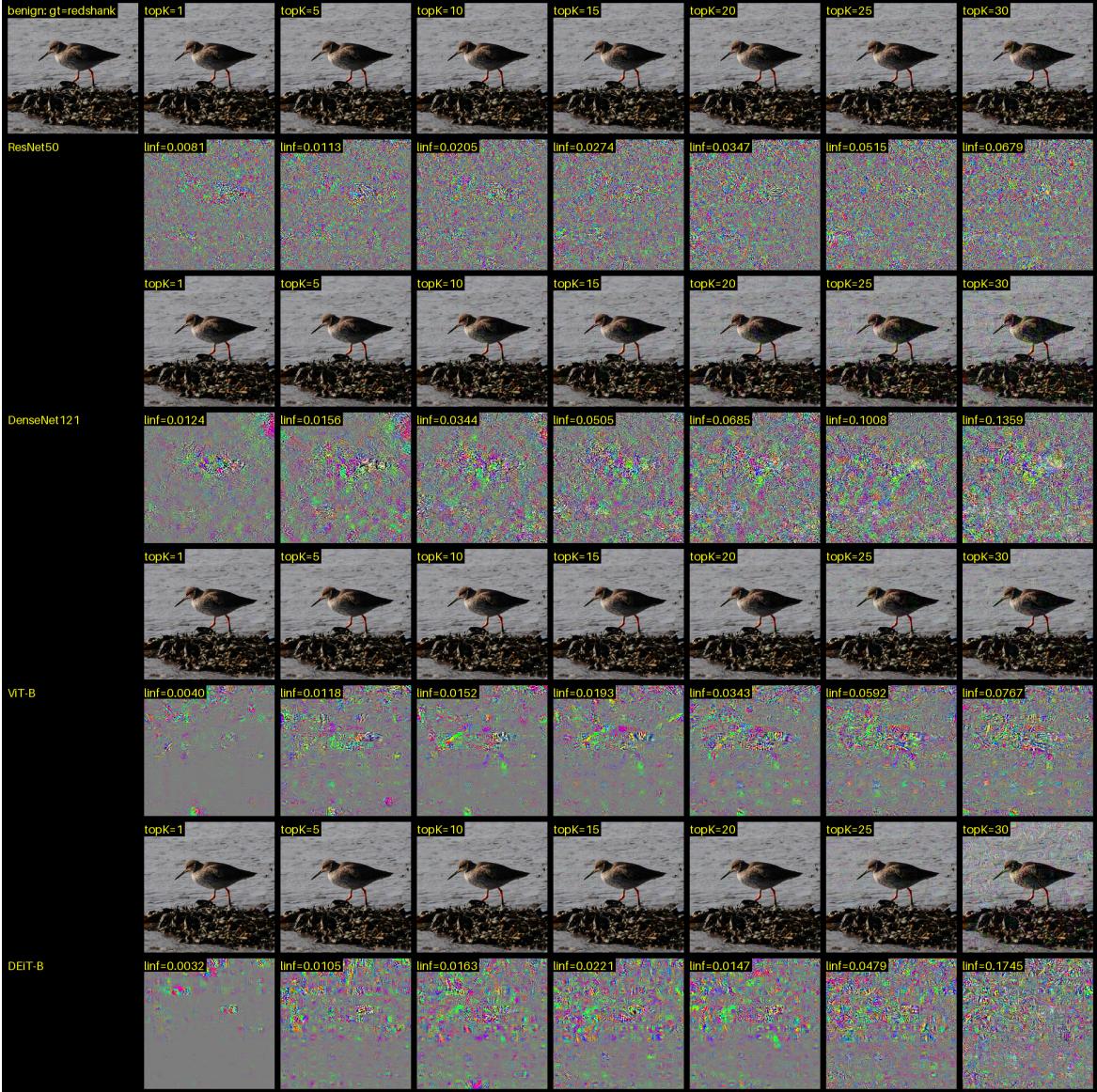


Figure 2. Examples of adversarial examples and associated perturbations learned for a benign image (ILSVRC2012_val_00002633 with the ground-truth label, redshank) by our RisingAttacK using a list of randomly sampled 30 targets in the order of: mask, analog-clock, slide-rule, Siberian-husky, harmonica, African-chameleon, dowitcher, hyena, wing, pillow, garter-snake, Great-Pyrenees, puffer, banana, West-Highland-white-terrier, whippet, brown-bear, snowplow, tarantula, space-heater, sports-car, jean, sandbar, perfume, papillon, triceratops, barrow, peacock, digital-watch, carton. The adversarial perturbations are normalized to $[0, 1]$ for the sake of visualization. Some of them are treated as being “visually imperceptible” based on the commonly used threshold $8/255 = 0.0314$ for ℓ_∞ (‘linf’) norms. For the benign image, the top-30 predictions by the four models respectively are:

- **ResNet50:** redshank, ruddy turnstone, red-backed sandpiper, dowitcher, oystercatcher, grey whale, red-breasted merganser, crane, sea lion, chainlink fence, lakeside, wreck, quail, partridge, screwdriver, plastic bag, pelican, parachute, killer whale, sulphur-crested cockatoo, African crocodile, white stork, pole, bucket, caldron, hummingbird, sandbar, king penguin, nail, syringe.
- **DenseNet121:** redshank, ruddy turnstone, red-backed sandpiper, oystercatcher, breakwater, dowitcher, sea lion, academic gown, abaya, mortarboard, red-breasted merganser, lifeboat, cloak, espresso, lipstick, theater curtain, wood rabbit, umbrella, refrigerator, ruffed grouse, king penguin, partridge, sandbar, diamondback, hen-of-the-woods, wine bottle, mailbox, stone wall, volcano, redbone.
- **ViT-B:** redshank, red-backed sandpiper, ruddy turnstone, dowitcher, oystercatcher, water ouzel, Madagascar cat, chain saw, apiary, red-breasted merganser, Tibetan mastiff, cicada, seat belt, American egret, wall clock, mask, snow leopard, schipperke, potter’s wheel, lyaenid, mud turtle, curly-coated retriever, dumbbell, television, strainer, feather boa, buckle, junco, boa constrictor, volcano.
- **DeiT-B:** redshank, ruddy turnstone, red-backed sandpiper, dowitcher, oystercatcher, red-breasted merganser, warthog, worm fence, Indian elephant, African crocodile, maze, badger, snowplow, American black bear, stone wall, king penguin, car wheel, rock python, water ouzel, guillotine, wild boar, centipede, diamondback, apiary, barrow, horned viper, sundial, guenon, bustard, skunk.

attacks directly in the image space, as illustrated in Fig. 1 (top), which can address the drawbacks of QuadAttacK (Paniagua et al., 2023). Our approach efficiently solves the SQP problem by iteratively computing the singular value decomposition (SVD) of the adversarial Jacobian (i.e., the attack-targets-ranking constrained logit-to-image Jacobian matrix), obtained from linearizing the DNN during optimization. This direct optimization in image space provides deeper insights into the learned adversarial perturbations: **ordered top- K adversarial perturbations can be learned by iteratively optimizing linear combinations of the right singular vectors (corresponding to non-zero singular values) of the adversarial Jacobian**. The proposed method is thus dubbed as RisingAttacK (see examples in Fig. 2). Our proposed RisingAttacK achieves significant better performance than the prior state-of-the-art method, QuadAttacK (Paniagua et al., 2023) in experiments.

2. Related Work and Our Contributions

Adversarial Attacks. Adversarial attacks aim to expose the vulnerabilities of DNNs by introducing small, often visually imperceptible perturbations to input data that cause the model to produce incorrect or adversary-specified outputs. Foundational work in adversarial machine learning introduced methods for generating adversarial examples under various norms and constraints, including the Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2014), Projected Gradient Descent (PGD) (Madry et al., 2017), and the Carlini-Wagner (CW) attack (Carlini & Wagner, 2017). These early approaches primarily targeted top-1 classification outputs, seeking to force the model to misclassify an input into a specific target class.

Beyond top-1 attacks, researchers have investigated adversarial perturbations that manipulate the top- K predictions of a model. (Zhang & Wu, 2020) introduced one of the earliest methods for addressing **ordered** top- K adversarial attacks, focusing on creating an optimal target class distribution aided by word embedding vectors, and minimizes KL divergence to this optimal distribution that satisfies the ordered top- K objective. (Tursynbek et al., 2022) explored the geometry of **unordered** top- K adversarial attacks, highlighting the complexities of crafting perturbations that adhere to top- K constraints. (Reza et al., 2025) proposed GSBA K , a geometric score-based unordered top- K black-box attack method built on (Reza et al., 2023). (Paniagua et al., 2023) advanced this area by formulating the ordered top- K adversarial attack problem as a quadratic programming (QP) optimization in the feature space. This approach efficiently enforced the desired ordering of logits but required back-propagation to map feature space solutions to the image space. Our proposed JacAttacK builds upon these foundations by extending the idea in QuadAttacK (Pani-

agua et al., 2023) to directly address the ordered top- K adversarial attack problem in the image space.

Sequential Quadratic Programming (SQP). SQP is a widely used framework for solving nonlinear constrained optimization problems (Nocedal & Wright, 1999). By iteratively solving QP subproblems that linearize constraints and use a quadratic approximation of the objective, SQP effectively handles problems involving nonlinearities and complex constraint sets (Boggs & Tolle, 2000). This approach is particularly relevant in high-dimensional settings, such as adversarial attacks, where the constraints often involve intricate relationships between model outputs. However, applying SQP to large-scale problems, such as those in image space, can be computationally expensive due to the need to repeatedly compute gradients and solve large QPs (Gill et al., 2005). Our method adapts SQP for adversarial optimization by leveraging subspace splitting to reduce the dimensionality of the optimization problem, thereby overcoming scalability challenges while preserving accuracy.

Our Contributions. The main contributions of this paper are as-folows: (i) **Novel Theoretical Insights:** It introduces explicit derivations connecting adversarial perturbations to singular vectors of the adversarial Jacobian, providing new theoretical clarity. (ii) **Methodological Innovation:** It is the first method to directly optimize ordered top- K adversarial attacks in image space via SQP, significantly improving alignment between optimized solutions and visually coherent perturbations. (iii) **Empirical Advances:** It provides comprehensive evaluation across multiple architectures and attack levels, consistently outperforming the previous state-of-the-art, QuadAttacK using a proposed holistic metric, Figure of Merits (FoM) covering both success rates and perturbation magnitudes.

3. Approach

In this section, we first define the problem of learning ordered top- K attacks (Zhang & Wu, 2020), and then present details of our proposed RisingAttacK.

3.1. Problem Definition

Model Under Attack. Let $(x^{\text{benign}}, y) \in [0, 1]^{3 \times H \times W} \times \mathcal{Y}$ be a pair of a benign RGB image x^{benign} with spatial height and width, H and W respectively, and its ground-truth label y with the C -class label space $\mathcal{Y} = \{1, \dots, C\}$. Let $D = 3 \times H \times W$ be the dimension of the input image space. In ImageNet-1k (Russakovsky et al., 2015) classification, we have $C = 1000$ and $D = 3 \times 224 \times 224 \approx 1.5e5$.

A DNN trained for image classification is a highly-nonlinear mapping from the image space to the logit space:

$$\ell(\cdot; \Theta) : [0, 1]^D \rightarrow \mathbb{R}^C, \quad (1)$$

where Θ collects all learned parameters of the DNN. We

will omit Θ in notations and use $\ell(\cdot)$ for simplicity.

We consider validation or testing images that can be correctly classified by a trained DNN such as ResNet-50 (He et al., 2016) in learning attacks, i.e., $y = \arg \max \ell(x^{\text{benign}})$. The DNN is frozen in learning attacks.

The Adversarial Region of Ordered Top-K Targeted Attacks for (x^{benign}, y) . Let $\mathcal{T} \in \mathcal{Y} \setminus \{y\}$ be a randomly sampled sequence of ordered top- K targets for attacking x^{benign} , $K = |\mathcal{T}|$. The adversarial region is defined by,

$$\mathcal{R}(x^{\text{benign}}, \mathcal{T}) = \left\{ x^{\text{adv}} \in [0, 1]^D; \text{ satisfying} \right. \\ \ell(x^{\text{adv}})_{t_i} > \ell(x^{\text{adv}})_{t_{i+1}}, t_i \in \mathcal{T}, i \in [1, K-1], \quad (2)$$

$$\left. \ell(x^{\text{adv}})_{t_K} > \ell(x^{\text{adv}})_j, t_K \in \mathcal{T}, \forall j \in \mathcal{Y} \setminus \mathcal{T} \right\}, \quad (3)$$

where the subscript represent the entry index of the logit vector. We often expect the perturbation energy, defined by l_p -norm, $\|x^{\text{adv}} - x^{\text{benign}}\|_p$, is as small as possible to be visually imperceptible for $p = 1, 2, \infty$. An adversarial perturbation $\delta = x^{\text{adv}} - x^{\text{benign}}$ is treated as being “visually imperceptible” based on the commonly used threshold $\ell_\infty < 8/255 = 0.0314$.

Encoding Ordered Top- K Targeted Attack Constraints in the Logit Space. Denote by $\mathbb{K} \in \{+1, 0, -1\}^{(C-1) \times C}$ the matrix that encodes ordered top- K constraints subject to \mathcal{T} , with which the adversarial region can be rewritten by, $\mathcal{R}(x^{\text{benign}}, \mathcal{T}) = \{x^{\text{adv}} \in [0, 1]^D; \text{ satisfying } \mathbb{K} \cdot \ell(x^{\text{adv}}) > 0\}$.

Learning ordered top- K attacks for a benign image x^{benign} can be posed as a constrained minimization problem,

$$\underset{\delta \in \mathbb{R}^D}{\text{minimize}} \quad \|\delta\|_p, \quad (4)$$

$$\text{subject to} \quad \mathbb{K} \cdot \ell(x^{\text{perturb}}) > 0,$$

$$x^{\text{perturb}} = \text{Clamp}(x^{\text{benign}} + \delta),$$

where δ is the adversarial perturbation variables, $\|\cdot\|_p$ represents the l_p -norm (typically, l_2 -norm is used). $\text{Clamp}(\cdot)$ ensures the perturbed example x^{perturb} is in the input image space (i.e., $x^{\text{perturb}} \in [0, 1]^D$) via element-wise pixel value clipping. **The challenge of solving Eqn. 4 lies in the nonlinear constraints caused by the highly non-linear DNN (Eqn. 1).** In practice, we also expect the learning of $x^{\text{adv}} (= x^{\text{benign}} + \delta^*) \in \mathcal{R}(x^{\text{benign}}, \mathcal{T})$ is efficient subject to a predefined and limited budget such as 30 or 60 iterations.

3.2. Our Proposed RisingAttacK

Inspired by the QP approach in QuadAttacK (Paniagua et al., 2023) (see a brief overview in Appendix A), but different from its feature space QP formulation, we aim to solve Eqn. 4 directly in the image space under the SQP framework (Boggs & Tolle, 2000). The core idea is to iteratively linearize the nonlinear constraints in Eqn. 4. Due to the large number of constraints, $C - 1$ and the high dimension-

ality of the image space, D , which make the optimization with constraints linearized still infeasible in practice, we streamline yet retain the solutions of Eqn. 4.

Eqn. 4 can be re-expressed as,

$$\underset{x \in [0, 1]^D}{\text{minimize}} \quad \|x - x^{\text{benign}}\|_p, \quad (5)$$

$$\text{subject to} \quad \mathbb{K} \cdot \ell(x) > 0,$$

Similar in spirit to QuadAttacK (Paniagua et al., 2023) and all other attack methods, our proposed RisingAttacK is an iterative optimization algorithm starting from the initial perturbed image $x^{\text{perturb}} = \text{Clamp}(x^{\text{benign}} + \delta^{(0)})$ (e.g., $\delta^{(0)} = \mathbf{0}$). At the i -th iteration, let $x^{\text{perturb}} = \text{Clamp}(x^{\text{benign}} + \delta^{(i)})$ be the current perturbed image. We omit the iteration index in x^{perturb} for simplicity. To solve Eqn. 5, our RisingAttacK is streamlined as follows:

- We linearize the DNN $\ell(\cdot)$ around the current perturbed image x^{perturb} , so the nonlinear constraints $\mathbb{K} \cdot \ell(x) > 0$ become linear. We use the first-order Taylor expansion,

$$\ell(x) \approx \ell(x^{\text{perturb}}) + \mathbb{J}(x^{\text{perturb}}) \cdot (x - x^{\text{perturb}}), \quad (6)$$

where $\mathbb{J}(x^{\text{perturb}}) \in \mathbb{R}^{C \times D}$ is the **logit-to-image Jacobian matrix** of the DNN, which represents the sensitivity of the DNN logits with respect to changes in x^{perturb} . Each row of $\mathbb{J}(x^{\text{perturb}})$ corresponds to the gradient of a particular logit with respect to the input pixels.

- After the linearization, there is a gap between the objective function (i.e., x should be as close as possible to the benign image), and the linearized constraints which entails x to be sufficiently close to the perturbed image x^{perturb} to ensure the linearization is sufficiently approximately accurate to retain the ordered top- K constraints. We re-express the objective function $\|x - x^{\text{benign}}\|$ to be $\|x - x^{\text{anchor}}\|$, where x^{anchor} represents the anchor in optimization, $x^{\text{anchor}} = x^{\text{benign}}$ or $x^{\text{anchor}} = x^{\text{perturb}}$ (the current perturbed image). We propose an anchor selection strategy: we start with $x^{\text{anchor}} = x^{\text{perturb}}$ so the algorithm can quickly reach the adversarial region, that is to find $x \in \mathcal{R}(x^{\text{benign}}, \mathcal{T})$. We then seek better adversarial images with smaller perturbation energies by letting the anchor $x^{\text{anchor}} = x^{\text{benign}}$. The two steps may iterate based on monitoring the improvement with respect to a threshold (see Sec. 3.2.4). Consider l_2 -norm for the objective, Eqn. 5 is re-expressed as,

$$\underset{x \in [0, 1]^D}{\text{minimize}} \quad \|x - x^{\text{anchor}}\|_2^2, \quad (7)$$

$$\text{s.t.} \quad \mathbb{K} \cdot (\ell(x^{\text{anchor}}) + \mathbb{J}(x^{\text{anchor}}) \cdot (x - x^{\text{anchor}})) > 0.$$

- Eqn. 7 is theoretically solvable, but not practically feasible since the number of constraints, $C - 1$ is large (e.g., $C = 1000$) and the dimension of variables, D is extremely high (e.g., $D = 3 \times 224 \times 224$), especially given the limited budgets in learning attacks. We propose methods to address these challenges.

3.2.1. COMPACT ORDERED TOP-K CONSTRAINTS

We introduce a mapping that condenses the logit space without compromising the ordered top- K constraints, but allows the number of rows of the Jacobian matrix to only depend on the number of targets, K .

To that end, we first notice that Eqn. 3 can be simplified to reduce the number of constraints from $C - K$ to 1 without breaking the overall ordered top- K constraints,

$$\ell(x)_{t_K} > \max(\{\ell(x)_j\}_{j \in \mathcal{Y} \setminus \mathcal{T}}), \quad (8)$$

where $\max(\cdot)$ introduces nonlinearity in the constraints with a gradient switching effect in learning that is not desirable, however. We tackle this by introducing a mapping,

$$G : \ell(\cdot) \in \mathbb{R}^C \rightarrow \mathbf{l}(\cdot) \in \mathbb{R}^{d=K+M+1}, \quad (9)$$

where M is a multiplicative of K such as $M = 5 \cdot K$. The mapping G reorders the logits and augments them with a differentiable nonlinear term (see Appendix B for details due to space limit).

Denote by $\mathbf{K} \in \{+1, 0, -1\}^{(d-1) \times d}$ the compact encoding matrix using the mapping G , which has a nice form with rows rotating from $[1 \ -1 \ 0 \ \dots \ 0]$ (i.e., the logits in $\mathbf{l}(\cdot)$ are expected to be increasingly ordered). \mathbf{K} remains unchanged in the optimization.

With the mapping G reordered and condensed logits $\mathbf{l}(\cdot)$, Eqn. 6 is redefined by,

$$\mathbf{l}(x) \approx \mathbf{l}(x^{\text{anchor}}) + \mathbf{J}(x^{\text{anchor}}) \cdot (x - x^{\text{anchor}}), \quad (10)$$

where the Jacobian matrix $\mathbf{J}(x^{\text{anchor}}) \in \mathbb{R}^{d \times D}$ with $d = K + M + 1$ only dependent on the number of attack targets, K , and often $d \ll C$ (e.g., $d = 101$ for $K = 20$ with $C = 1000$ in ImageNet-1k).

3.2.2. JACOBIAN SUBSPACE QP

With the compact encoding matrix \mathbf{K} and the updated Taylor expansion (Eqn. 10), the constraints in Eqn. 7 are then simplified and we have,

$$\underset{x \in [0,1]^D}{\text{minimize}} \quad \|x - x^{\text{anchor}}\|_2^2, \quad (11)$$

$$\text{subject to} \quad A \cdot x \leq \mathbf{b},$$

where $A = -\mathbf{K} \cdot \mathbf{J}(x^{\text{anchor}})$ incorporates the ordered top- K ranking constraints into the logit-to-image sensitivity analysis (i.e., **the adversarial Jacobian**), $\mathbf{b} = \mathbf{K} \cdot (\mathbf{l}(x^{\text{anchor}}) - \mathbf{J}(x^{\text{anchor}}) \cdot x^{\text{anchor}}) + \mathbf{m}$ defines the constraint boundaries and the feasibility of the optimization, with \mathbf{m} being margins introduced to control the target separability and to change from strict ' $<$ ' to ' \leq ' in optimization constraints. Here, $A \in \mathbb{R}^{(d-1) \times D}$, $\mathbf{b} \in \mathbb{R}^{d-1}$. $\{x \in \mathbb{R}^D; A \cdot x \leq \mathbf{b}\}$ defines a high-dimensional **polyhedron** in the image space.

Directly solving Eqn. 11 is still computationally challenging and does not meet the low budget in learning attacks. We exploit the structure of the polyhedron via projection.

Exploiting the Subspace Structure of A . We utilize the

structure of A revealed by its SVD,

$$A = U \cdot \Sigma \cdot V^T = U \cdot \Sigma_r \cdot V_r^T, \quad (12)$$

where $U \in \mathbb{R}^{(d-1) \times (d-1)}$, $\Sigma \in \mathbb{R}^{(d-1) \times D}$, and $V \in \mathbb{R}^{D \times D}$. $\Sigma = \begin{bmatrix} \Sigma_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$ is a diagonal matrix with singular values, $\text{diag}(\sigma_1, \dots, \sigma_{d-1})$. U (and V) provide orthogonal bases for the column (and the row) spaces of A . And, $U \cdot U^T = \mathbb{I}$ and $V^T \cdot V = \mathbb{I}$ (where \mathbb{I} represents the identity matrix). The rows of U corresponding to large singular values identify the most sensitive ranking constraints. The row space of A corresponds to the input image space, and **each column of V represents a principle direction in the image space**. Since we have $d \ll D$, we can drop the last $D - (d - 1)$ columns of V to form the *reduced SVD*, i.e., $V_r \in \mathbb{R}^{D \times (d-1)}$, the first $d - 1$ columns of V , which consists of the $d - 1$ orthogonal bases in the image space, and spans the entire solution space of the polyhedron defined by $A \cdot x \leq \mathbf{b}$. **The columns of V_r span a subspace in which adversarial perturbations are most effective towards satisfying ordered top- K constraints.** Learning ordered top- K attacks can be achieved in the subspace accordingly, as we solve it in the following.

Let $\delta = x - x^{\text{anchor}}$, Eqn. 11 is rewritten as,

$$\underset{\delta \in \mathbb{R}^D}{\text{minimize}} \quad \|\delta\|_2^2, \quad (13)$$

$$\text{subject to} \quad A \cdot \delta \leq \mathbf{b} - A \cdot x^{\text{anchor}},$$

With the change of variables $\delta = V \cdot \epsilon$, we have,

$$\|\delta\|_2 = \|V \cdot \epsilon\|_2 = \|\epsilon\|_2, \quad (\text{since } V \text{ is orthogonal}) \quad (14)$$

$$A \cdot \delta = U \cdot \Sigma \cdot V^T \cdot V \cdot \epsilon = U \cdot \Sigma \cdot \epsilon, \quad (15)$$

So, Eqn. 13 is rewritten as,

$$\underset{\epsilon \in \mathbb{R}^D}{\text{minimize}} \quad \|\epsilon\|_2^2, \quad (16)$$

$$\text{subject to} \quad \Sigma \cdot \epsilon \leq U^T \cdot (\mathbf{b} - A \cdot x^{\text{anchor}}),$$

where due to the block diagonal structure of Σ , we can split $\epsilon = \begin{bmatrix} \epsilon_r \\ \epsilon_o \end{bmatrix}$, $\epsilon_r \in \mathbb{R}^{d-1}$ and ϵ_o lies in the null space of A and thus can be ignored and set $\epsilon_o = \mathbf{0}$ since we are minimizing $\|\epsilon\|_2^2$. We further have,

$$\underset{\epsilon_r \in \mathbb{R}^{d-1}}{\text{minimize}} \quad \|\epsilon_r\|_2^2, \quad (17)$$

$$\text{subject to} \quad \Sigma_r \cdot \epsilon_r \leq U^T \cdot (\mathbf{b} - A \cdot x^{\text{anchor}}),$$

which is **now a low-dimensional optimization problem with linear constraints**, and can be solved by many QP solvers efficiently, such as the cvxpy package (Diamond & Boyd, 2016; Agrawal et al., 2018). Let $\tilde{\mathbf{b}} = U^T \cdot (\mathbf{b} - A \cdot x^{\text{anchor}})$ which represents the projection of the constraint boundary onto the orthogonal basis formed by the left singular vectors. Then, the constraint $\Sigma_r \cdot \epsilon_r \leq \tilde{\mathbf{b}}$ also shows the feasibility and constraint satisfaction: *the smaller the ratio $\frac{\tilde{\mathbf{b}}_i}{\sigma_i}$ for a singular value σ_i ($i = 1, \dots, d - 1$) is, the easier it is to satisfy the corresponding constraint*.

Denote by ϵ_r^* the optimized solution of Eqn. 17. The optimal solution of ϵ is $\epsilon^* = \begin{bmatrix} \epsilon_r^* \\ \mathbf{0} \end{bmatrix}$ by definition. Thus, $\delta^* = V \cdot \epsilon^*$.

We can directly recover the optimal solution x^* in the image space by,

$$\begin{aligned} x^* &= x^{\text{anchor}} + \delta^*, \\ &= x^{\text{anchor}} + V \cdot \begin{bmatrix} \epsilon_r^* \\ \mathbf{0} \end{bmatrix} = x^{\text{anchor}} + V_r \cdot \epsilon_r^*, \end{aligned} \quad (18)$$

which can be understood from the QP perspective in the Appendix C, and is used in updating the perturbation and the perturbed image for the next, $(i + 1)$ -th iteration of our RisingAttacK,

$$\delta^{(i+1)} = \text{Clamp}(x^*) - x^{\text{benign}}, \quad (19)$$

$$x^{\text{perturb}} = x^{\text{benign}} + \delta^{(i+1)}. \quad (20)$$

3.2.3. ℓ_∞ PERCENTILE PROJECTION

For the solution $\delta^* = V_r \cdot \epsilon_r^*$ based on Eqn. 17, we observe that it often exhibits disproportionately high ℓ_∞ norms. We observe this large ℓ_∞ is driven by very few components (pixel values) of our solution and the overall quality of our solution is not contaminated by these extreme values (or outliers). We hypothesize that the outliers might be caused by the first-order Taylor linearization that is not sufficiently accurate at those pixels. To alleviate this issue, we resort to a ℓ_∞ Percentile Projection as the post-processing step. Specifically, we compute

$$\tau = \text{Percentile}(|\delta^*|, 0.995) \quad (21)$$

where τ indicates 99.5th percentile of magnitudes in our solution. We then element-wisely project δ^* to this percentile,

$$\delta_i^* \leftarrow \text{Sign}(\delta_i^*) \times \min(|\delta_i^*|, \tau), \quad (22)$$

where i is the entry index.

3.2.4. ANCHOR POINT SELECTION

When the number of iterations is infinite (or very high), choosing $x^{\text{anchor}} = x^{\text{benign}}$ in Eqn. 11 yields the lowest energy solution upon convergence. This is because each step of the optimization directly minimizes the distance from x to x^{benign} , aligning the solution trajectory with the global objective. However, in practice, the number of iterations is limited, and x^{benign} does not lie within the adversarial region during intermediate iterations. As a result, only using x^{benign} as the anchor point can significantly delay reaching the adversarial region, especially when the constraint set is complex (when K is large).

On the other hand, choosing x^{perturb} (the current perturbed image), as the anchor point ensures rapid progress toward the adversarial region. Since the optimization minimizes the distance from x to x^{perturb} at each step, the solution quickly adjusts to satisfy the constraints. However, this may lead to suboptimal solutions in terms of perturbation energy,

as the optimization prioritizes feasibility over minimizing perturbation energy.

Alternating Anchor Point Strategy. To balance the trade-offs between rapid feasibility and minimal energy, we implement an alternating anchor point strategy. This approach dynamically switches between x^{benign} and x^{perturb} as the anchor point based on the current optimization state.

- If the number of iterations since the last feasible solution exceeds β (a predefined threshold), we set $x^{\text{anchor}} = x^{\text{perturb}}$ to prioritize reaching the adversarial region.
- Otherwise, we set $x^{\text{anchor}} = x^{\text{benign}}$ to continue minimizing the perturbation energy while staying within the adversarial region.

3.2.5. INTERPRETATION OF RISINGATTACK

Eqn. 18 provides an intuitive interpretation for the optimized perturbation $\delta^* = V_r \cdot \epsilon_r^*$ at each iteration of the optimization. The perturbation is the learned linear combination with coefficients in $\epsilon_r^* \in \mathbb{R}^{d-1}$ of $d-1$ image bases, i.e., columns in $V_r \in \mathbb{R}^{D \times (d-1)}$. Recall that each column in V_r represents a principle direction in the image space that can affect logit ranking the most subject to how large the corresponding singular value is. The learned weighted sum of the columns of V_r can provide most efficient perturbation, as shown by the consistently smaller perturbation energy obtained in our experiments.

Potential Defensive Insights. By analyzing which singular vectors in V_r correspond to large singular values, defensive strategies can be developed by reinforcing robustness in those vulnerable directions against ordered top- K attacks. Meanwhile, adversarial training can be guided to target these critical subspaces. We leave those for future work.

4. Experiments

In this section, we evaluate our RisingAttacK in the ImageNet-1k benchmark (Russakovsky et al., 2015), and compare with QuadAttacK (Paniagua et al., 2023).

Models Under Attack. Following QuadAttacK, we use two representative ConvNets (ResNet-50 (He et al., 2016) and DenseNet-121 (Huang et al., 2017)) and two Vision Transformers (ViT-B (Dosovitskiy et al., 2020) and DEiT-B (Touvron et al., 2021)). Their ImageNet-1k pretrained checkpoints are from the *timm* package (Wightman, 2019).

Data and Attack Targets. We use ImageNet-1k *val* images from which we select and sample a subset consisting of class-balanced 1000 images (i.e., one image per class). The 1000 benign images can be correctly classified by all the four models. For each image, five ordered target sets are randomly sampled for each value of K ($K = 1, 5, 10, 15, 20, 25, 30$), see Appendix D for details.

Table 1. Ordered top- K attack results averaged across 5 different seeds. Overall, our RisingAttacK shows a big leap forward in advancing ordered top- K attacks, outperforming the prior state-of-the-art method, QuadAttacK (Paniagua et al., 2023) by a large margin in most cases (higher ASRs with lower ℓ_p norms). ℓ_∞ -norms in red is to show they are treated as being “visually imperceptible” based on the commonly used threshold 8/255 = 0.0314. The subscripts of methods (30 and 60) represent the computing budgets.

(a) ResNet-50 (He et al., 2016)

Top- K	Method	Mean			Time (s/img) \downarrow	FoM \uparrow	
		ASR \uparrow	$\ell_1 \downarrow$	$\ell_2 \downarrow$	$\ell_\infty \downarrow$		
Top-30	QuadAttacK ₆₀	0.2076	11.8070	3654.9139	0.1349	3.3947	6.4793
	RisingAttacK ₆₀	0.6642	7.0271	2081.8960	0.0511	17.0013	
	RisingAttacK ₃₀	0.0022	6.2378	1844.3013	0.0470	1.6539	inf
Top-25	QuadAttacK ₆₀	0.6018	11.6214	3599.8101	0.1301	3.4167	3.6439
	RisingAttacK ₆₀	0.8420	5.2960	1561.6462	0.0393	14.0839	
	QuadAttacK ₃₀	0.0018	10.4263	3259.2773	0.0991	1.7058	48.9628
	RisingAttacK ₃₀	0.0392	5.1218	1511.3347	0.0388	7.0999	
Top-20	QuadAttacK ₆₀	0.8344	10.0891	3133.6199	0.1079	3.4039	3.1100
	RisingAttacK ₆₀	0.8306	3.7474	1101.1521	0.0281	6.7267	
	QuadAttacK ₃₀	0.0978	9.0948	2850.0433	0.0858	1.7264	1.9481
	RisingAttacK ₃₀	0.0666	3.4854	1022.5585	0.0269	3.7216	
Top-15	QuadAttacK ₆₀	0.9440	8.3368	2600.7510	0.0822	3.4839	3.2229
	RisingAttacK ₆₀	0.9868	3.0150	878.9222	0.0233	5.1634	
	QuadAttacK ₃₀	0.4922	7.8296	2451.8036	0.0717	1.7382	3.3674
	RisingAttacK ₃₀	0.5856	2.9944	873.3877	0.0234	2.8794	
Top-10	QuadAttacK ₆₀	0.9866	6.5228	2044.5753	0.0576	3.7396	3.3482
	RisingAttacK ₆₀	0.9936	2.0825	602.1784	0.0167	3.3991	
	QuadAttacK ₃₀	0.8460	6.3547	1994.8023	0.0544	1.7593	2.9244
	RisingAttacK ₃₀	0.8064	2.1748	630.0922	0.0175	1.7965	
Top-5	QuadAttacK ₆₀	0.9968	4.0029	1261.2314	0.0309	4.5257	3.3373
	RisingAttacK ₆₀	0.9558	1.1534	330.1495	0.0098	1.8225	
	QuadAttacK ₃₀	0.9590	3.9539	1246.4929	0.0300	2.1458	2.6681
	RisingAttacK ₃₀	0.9504	1.4693	420.0254	0.0124	0.9517	
Top-1	QuadAttacK ₆₀	0.9996	1.4443	467.1178	0.0083	5.3373	2.1564
	RisingAttacK ₆₀	0.9992	0.6144	165.8517	0.0064	0.6114	
	QuadAttacK ₃₀	0.9772	1.4244	461.1199	0.0088	2.6411	1.4638
	RisingAttacK ₃₀	0.9986	0.9155	251.6174	0.0088	0.3201	

(c) ViT-B (Dosovitskiy et al., 2020)

Top- K	Method	Mean			Time (s/img) \downarrow	FoM \uparrow	
		ASR \uparrow	$\ell_1 \downarrow$	$\ell_2 \downarrow$	$\ell_\infty \downarrow$		
Top-30	QuadAttacK ₆₀	0.3272	9.6708	2938.2587	0.1032	5.2135	3.1589
	RisingAttacK ₆₀	0.9534	9.7262	2721.2876	0.0876	43.3954	
	QuadAttacK ₃₀				2.7870	inf	
Top-25	QuadAttacK ₆₀	0.5568	11.4132	3206.4565	0.1029	21.7179	
	RisingAttacK ₆₀				2.7870	inf	
	QuadAttacK ₃₀	0.6872	9.4331	2860.6667	0.1002	5.2723	2.6425
Top-20	QuadAttacK ₆₀	0.9944	5.5706	1520.5703	0.0526	36.0486	
	RisingAttacK ₆₀				2.7354	inf	
	QuadAttacK ₃₀				2.7354	inf	
	RisingAttacK ₃₀	0.7536	7.7050	2126.3211	0.0721	18.0775	
Top-15	QuadAttacK ₆₀	0.7828	7.9108	2393.0875	0.0815	5.0069	2.8308
	RisingAttacK ₆₀	0.9864	3.7609	1007.6887	0.0360	15.8230	
	QuadAttacK ₃₀	0.0004	6.3770	1992.7502	0.0533	2.6210	1610.8632
	RisingAttacK ₃₀	0.4956	4.9482	1343.2135	0.0473	7.9615	
Top-10	QuadAttacK ₆₀	0.8404	6.2661	1893.5173	0.0620	4.7622	2.7231
	RisingAttacK ₆₀	0.9988	2.8751	753.1852	0.0284	11.9841	
	QuadAttacK ₃₀	0.0056	4.7982	1495.8188	0.0385	2.4245	164.8583
	RisingAttacK ₃₀	0.7510	3.8944	1038.7394	0.0379	6.0305	
Top-5	QuadAttacK ₆₀	0.9130	4.5246	1374.2283	0.0410	4.6368	2.5247
	RisingAttacK ₆₀	0.9936	1.9915	508.8791	0.0206	8.2583	
	QuadAttacK ₃₀	0.0252	3.4999	1094.6987	0.0261	2.3034	36.7947
	RisingAttacK ₃₀	0.7112	2.6247	684.1576	0.0267	4.1602	
Top-1	QuadAttacK ₆₀	0.9980	3.6439	1128.3054	0.0288	4.3981	1.7630
	RisingAttacK ₆₀	0.5712	1.1650	292.6494	0.0128	4.4038	
	QuadAttacK ₃₀	0.5024	3.2930	1029.8490	0.0242	2.1108	2.3688
	RisingAttacK ₃₀	0.5980	1.6101	406.4644	0.0174	2.2197	

Metrics. The metrics used to evaluate the attack methods include the Attack Success Rate (ASR), as well as the ℓ_1 , ℓ_2 , and ℓ_∞ norms of the perturbations. ASR quantifies the fraction of adversarial examples satisfying the ordered top- K constraints (larger is better). ℓ_p norms are computed based on successful adversarial examples (lower is better, indicating less visually-perceptible). We note that ℓ_p norms are compatible between different methods only when their ASRs are similar. For example, a method may show very low ℓ_p norms when the ASR is also very low (i.e., it can only

(b) DenseNet-121 (Huang et al., 2017)

Top- K	Method	Mean			Time (s/img) \downarrow	FoM \uparrow	
		ASR \uparrow	$\ell_1 \downarrow$	$\ell_2 \downarrow$	$\ell_\infty \downarrow$		
Top-30	QuadAttacK ₆₀	0.2076	11.8070	3654.9139	0.1349	4.5409	inf
	RisingAttacK ₆₀	0.4074	14.7263	4393.8482	0.1051	20.3156	
	QuadAttacK ₃₀				2.3266	0	
Top-25	QuadAttacK ₆₀	0.6018	11.6214	3599.8101	0.1301	4.1657	8.5496
	RisingAttacK ₆₀	0.9370	9.9988	2945.3574	0.0747	16.8643	
	QuadAttacK ₃₀				2.2016	inf	
	RisingAttacK ₃₀	0.1094	9.9203	2921.6770	0.0756	8.5279	
Top-20	QuadAttacK ₆₀	0.8340	11.6266	3583.3589	0.1268	4.0066	2.6290
	RisingAttacK ₆₀	0.9812	5.9921	1744.8239	0.0468	8.2901	
	QuadAttacK ₃₀	0.0330	9.8564	3072.6790	0.0923	2.0206	23.7723
	RisingAttacK ₃₀	0.4500	6.1377	1786.5613	0.0485	4.6070	
Top-15	QuadAttacK ₆₀	0.9866	9.2713	2884.2755	0.0887	3.8963	2.3310
	RisingAttacK ₆₀	1.0000	4.3657	1252.9889	0.0359	6.2878	
	QuadAttacK ₃₀	0.5088	8.6281	2697.9823	0.0771	1.8919	3.5524
	RisingAttacK ₃₀	0.9362	4.7380	1362.7350	0.0387	3.5501	
Top-10	QuadAttacK ₆₀	0.9986	6.7559	2123.4571	0.0545	3.8256	2.5458
	RisingAttacK ₆₀	1.0000	2.6903	759.1986	0.0235	4.2223	
	QuadAttacK ₃₀	0.0392	6.6701	2098.0095	0.0531	1.8918	2.4272
	RisingAttacK ₃₀	0.9880	2.9210	827.1606	0.0253	2.2937	
Top-5	QuadAttacK ₆₀	0.9998	3.9671	1258.1706	0.0264	3.8644	3.0870
	RisingAttacK ₆₀	0.9994	1.2169	331.6714	0.0119	2.2643	
	QuadAttacK ₃₀	0.0924	3.9526	1253.5745	0.0262	1.8502	2.2794
	RisingAttacK ₃₀	0.9982	1.6603	457.9204	0.0156	1.2082	
Top-1	QuadAttacK ₆₀	1.0000	1.5191	503.0047	0.0070	3.0413	1.9466
	RisingAttacK ₆₀	0.9960	1.5144	501.4779	0.0070	1.5519	
	QuadAttacK ₃₀	1.0000	1.0708	280.0300	0.0116	0.4255	1.2739

(d) DEiT-B (Touvron et al., 2021)

Top- K	Method	Mean			Time (s/img) \downarrow	FoM \uparrow	
		ASR \uparrow	$\ell_1 \downarrow$	$\ell_2 \downarrow$	$\ell_\infty \downarrow$		
Top-30	QuadAttacK ₆₀	0.0640	9.3734	2860.9240	0.0997	4.1792	8.8333
	RisingAttacK ₆₀	0.5150	9.4432	2697.9176	0.0804	43.3521	
	QuadAttacK ₃₀				2.30		

and $\text{FoM} = 0$ if both methods fail. When the $\text{FoM} > 1$, we say the primary method is holistically better than the opponent method. We report the Mean metrics across the five sampled targets for each K . We also adopt the commonly used $\ell_\infty = 8/255$ as the threshold to characterize the “visual imperceptibility” of learned adversarial perturbations (Croce et al., 2020). See Appendix E for details of metrics including Best, Mean and Worst comparisons.

Baselines. We mainly compare with QuadAttacK (Paniagua et al., 2023) since it is the prior state-of-the-art method, significantly outperforming the CW^K and AD (Adversarial Distillation) (Zhang & Wu, 2020). For a fair comparison, both methods are tested under identical experimental conditions. For all experiments, each attack is evaluated at 30 and 60 optimization iterations to analyze its performance under varying computational budgets. The initial perturbation for all attacks is set to zero, ensuring consistent starting conditions across methods.

Results and Analyses. Our proposed RisingAttacK shows a big leap forward in advancing ordered top- K attacks, which in turn verifies the significant advantages of learning attacks directly in the image space by our proposed SQP formulation. Results of ordered top- K attacks for the four models are shown in Table 1(a), 1(b), 1(c) and 1(d).

- Based on the FoM evaluation (Eqn. 23), our RisingAttacK consistently outperforms the previous state-of-the-art method, QuadAttacK across all K ($=1, 5, 10, 20, 25, 30$) and all four models. It achieves FoMs greater than 2 in most cases (i.e., holistically 2x better than QuadAttacK).
- Our RisingAttacK facilitates learning visually-imperceptible perturbations up to $K = 20$ for ResNet50 and DEiT-B, $K = 15$ for ViT-B, and $K = 10$ for DenseNet121, based on the ℓ_∞ threshold, significantly outperforming QuadAttacK.

Fig. 2 show examples of learned adversarial examples and perturbations using RisingAttacK₆₀. More examples are provided in the Appendix F.

More Results. We also show results of using the lowest- K predictions of each benign image by each model as the ordered top- K attack targets (Table 6 in the Appendix E). Ordered top- K targets by this image- and model-specific selection method are intuitively deemed as more difficult to attack, as empirically shown in (Zhang & Wu, 2020). Counterintuitively, our results show they are not more difficult than randomly sampled targets using both QuadAttacK and our RisingAttacK.

The Average Speed (second/image). We note that for $K = 1$ our RisingAttacK is consistently faster than QuadAttacK. For $K > 1$, QuadAttacK is mostly faster than our RisingAttacK. The main reason is due to the current implementation of computing the logit-to-image Jacobian matrix in PyTorch,

for which we used PyTorch 2.6 and the `jacrev` and `vmap` (with chunk size 100) functions in the `torch.func` library. When K is larger than 1, based on Eqn. 9, we maintain $K + M + 1$ logits with $M = 5 \cdot K$. We did not test other factors for M (e.g., $2 \cdot K$ or a predefined constant such as 5). We will address this speed limitation in future work.

5. Conclusion

This paper presents RisingAttack, a novel method for learning ordered top- K targeted white-box adversarial attacks by directly solving the non-linearly constrained optimization problem in image space under the sequential quadratic programming framework. Our RisingAttacK provides a simple yet elegant solution: ordered top- K adversarial perturbations can be learned via iteratively optimizing linear combinations of the right singular vectors (corresponding to non-zero singular values) of the attack-targets-ranking constrained logit-to-image Jacobian matrix. Through experiments on four ImageNet-1k trained DNNs, our RisingAttacK shows a big leap forward in advancing ordered top- K attacks in terms of a proposed figure-of-merits metric, significantly outperforming the previous state-of-the-art method, QuadAttacK.

Impact Statement

This work advances the field of adversarial machine learning by introducing RisingAttacK. By improving the efficiency and scalability of ordered top- K adversarial attacks, particularly for large K values, this research highlights critical vulnerabilities in modern DNNs. However, adversarial attack methods also pose risks, as they may be misused to compromise real-world systems. For example, attacks on ranking-based systems could be exploited to manipulate search engine results or recommendation algorithms. To mitigate these risks, this work should be viewed as a tool for potentially strengthening defenses (e.g., as critics for them) rather than enabling malicious use. In addition, this work contributes to the broader exploration of optimization in machine learning by integrating techniques from traditional nonlinear programming into neural network-based problems. This direction holds promise for both adversarial research and other optimization tasks in machine learning, offering a foundation for solving increasingly complex challenges.

Acknowledgments

This research is partly supported by NSF IIS-1909644, ARO Grant W911NF1810295, ARO Grant W911NF2210010, NSF CMMI-2024688 and NSF IUSE-2013451. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ARO, NSF or the U.S. Government.

References

Agrawal, A., Verschueren, R., Diamond, S., and Boyd, S. A rewriting system for convex optimization problems. *Journal of Control and Decision*, 5(1):42–60, 2018.

Amos, B. and Kolter, J. Z. Optnet: Differentiable optimization as a layer in neural networks. In *International Conference on Machine Learning*, pp. 136–145. PMLR, 2017.

Boggs, P. T. and Tolle, J. W. Sequential quadratic programming for large-scale nonlinear optimization. *Journal of computational and applied mathematics*, 124(1-2):123–137, 2000.

Carlini, N. and Wagner, D. Towards evaluating the robustness of neural networks. In *2017 ieee symposium on security and privacy (sp)*, pp. 39–57. Ieee, 2017.

Croce, F., Andriushchenko, M., Sehwag, V., Debenedetti, E., Flammarion, N., Chiang, M., Mittal, P., and Hein, M. Robustbench: a standardized adversarial robustness benchmark. *arXiv preprint arXiv:2010.09670*, 2020.

Diamond, S. and Boyd, S. CVXPY: A Python-embedded modeling language for convex optimization. *Journal of Machine Learning Research*, 17(83):1–5, 2016.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al. An image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint arXiv:2010.11929*, 2020.

Durfee, D. and Rogers, R. M. Practical differentially private top-k selection with pay-what-you-get composition. In Wallach, H. M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E. B., and Garnett, R. (eds.), *Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada*, pp. 3527–3537, 2019. URL <https://proceedings.neurips.cc/paper/2019/hash/b139e104214a08ae3f2ebcce149cdf6e-Abstract.html>.

Fang, H., Kong, J., Chen, B., Dai, T., Wu, H., and Xia, S.-T. Clip-guided networks for transferable targeted attacks. *arXiv preprint arXiv:2407.10179*, 2024.

Gill, P. E., Murray, W., and Saunders, M. A. Snopt: An sqp algorithm for large-scale constrained optimization. *SIAM review*, 47(1):99–131, 2005.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining and harnessing adversarial examples. *arXiv preprint arXiv:1412.6572*, 2014.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2016.

Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q. Densely connected convolutional networks. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 2017.

Inkawich, N., Wen, W., Li, H. H., and Chen, Y. Feature space perturbations yield more transferable adversarial examples. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 7066–7074, 2019.

Li, M., Deng, C., Li, T., Yan, J., Gao, X., and Huang, H. Towards transferable targeted attack. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 641–649, 2020a.

Li, Q., Guo, Y., and Chen, H. Practical no-box adversarial attacks against dnns. *Advances in Neural Information Processing Systems*, 33:12849–12860, 2020b.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. Towards deep learning models resistant to adversarial attacks. *arXiv preprint arXiv:1706.06083*, 2017.

Naseer, M., Khan, S., Hayat, M., Khan, F. S., and Porikli, F. On generating transferable targeted perturbations. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 7708–7717, 2021.

Near, J., Darais, D., Lefkovitz, N., and Howarth, G. Guidelines for evaluating differential privacy guarantees. NIST Special Publication SP 800-226, National Institute of Standards and Technology, Gaithersburg, MD, March 2025. URL <https://doi.org/10.6028/NIST.SP.800-226>.

Nocedal, J. and Wright, S. J. *Numerical optimization*. Springer, 1999.

Paniagua, T., Grainger, R., and Wu, T. Quadattac k : A quadratic programming approach to learning ordered top- k adversarial attacks. *Advances in Neural Information Processing Systems*, 36:48962–48993, 2023.

Reza, M. F., Rahmati, A., Wu, T., and Dai, H. Cgba: Curvature-aware geometric black-box attack. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 124–133, 2023.

Reza, M. F., Jin, R., Wu, T., and Dai, H. GSBA k : \$top\$-\$k\$ geometric score-based black-box attack. In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=htX7AoHyln>.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. ImageNet Large Scale Visual Recognition Challenge. *International Journal of Computer Vision (IJCV)*, 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and Fergus, R. Intriguing properties of neural networks. *arXiv preprint arXiv:1312.6199*, 2013.

Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., and Jégou, H. Training data-efficient image transformers & distillation through attention. In *International conference on machine learning*, pp. 10347–10357. PMLR, 2021.

Tursynbek, N., Petushko, A., and Oseledets, I. Geometry-inspired top-k adversarial perturbations. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 3398–3407, 2022.

Wightman, R. Pytorch image models. <https://github.com/rwightman/pytorch-image-models>, 2019.

Zhang, Z. and Wu, T. Learning ordered top-k adversarial attacks via adversarial distillation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops*, pp. 776–777, 2020.

Zhao, A., Chu, T., Liu, Y., Li, W., Li, J., and Duan, L. Minimizing maximum model discrepancy for transferable black-box targeted attacks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8153–8162, 2023.

A. Background on QuadAttacK

QuadAttacK (Paniagua et al., 2023) addresses the challenge of optimizing Eqn. 4 by first “lifting” it into the feature space, i.e., the output space of $f(\cdot)$, see the left-bottom of Fig 1. At a given iteration i , let $\delta^{(i)}$ be the current perturbation, and $x^{\text{perturb}} = x^{\text{benign}} + \delta^{(i)}$ the current perturbed image with $z^{\text{perturb}} = f(x^{\text{perturb}})$ its DNN features. QuadAttacK aims to iteratively find the optimal perturbed features z around z^{perturb} to satisfy the constraints by,

$$\begin{aligned} & \underset{z}{\text{minimize}} \quad \|z - z^{\text{perturb}}\|_2^2, \\ & \text{subject to} \quad \mathbb{K} \cdot (W \cdot z + b) > 0, \end{aligned} \quad (24)$$

where the nonlinear backbone $f(\cdot)$ is eliminated from the constraints. Eqn. 24 can be solved by a QP package (Amos & Kolter, 2017). With the optimized z^* , the adversarial perturbation is updated by back-propagating the feature distance to the image space through the highly non-linear DNN backbone $f(\cdot)$,

$$\delta^{(i+1)} = \delta^{(i)} - \gamma \cdot \frac{\partial}{\partial \delta} (\lambda \cdot \|z^* - z^{\text{perturb}}\|_2^2 + \|\delta\|_p) |_{\delta=\delta^{(i)}}, \quad (25)$$

where γ is the learning rate, and λ the trade-off parameter between feature distance and image perturbation. The perturbed image is updated by,

$$x^{\text{perturb}} = \text{Clamp}(x^{\text{benign}} + \delta^{(i+1)}). \quad (26)$$

QuadAttacK is executed iteratively with respect to a predefined computing budget (e.g., 30 or 60 iterations). As aforementioned, there is a gap between the optimized z^* (Eqn. 24) in the feature space and the computed $\delta^{(i+1)}$ (Eqn. 25) in the image space in terms of satisfying the ordered top-K constraints, which leads to suboptimal adversarial examples (Eqn. 26).

B. Details on Compact Ordered Top-K Constraints

In Sec. 3.2.1, we introduce the mapping G (Eqn. 9) that reorders the logits and augments them with a differentiable nonlinear term, reproduced here,

$$G : \ell(\cdot) \in \mathbb{R}^C \rightarrow \mathbf{l}(\cdot) \in \mathbb{R}^{d=K+M+1},$$

where $K = |\mathcal{T}|$ is the number of attack targets, M is the number of highest non-target logits to include explicitly (e.g., $M = 5 \cdot K$), and the final term is the soft-maximum of the remaining logits. We have,

- *The ordered top- K targets:* $\mathbf{l}(x)_i = \ell(x)_{t_i}$, for $i \in \{1, \dots, K\}$, where $t_i \in \mathcal{T}$ is the i -th target class. These targets remain the same during the optimization.
- *The ordered top- M non-targets:* $\mathbf{l}(x)_{K+j} = \ell(x)_{m_j}$, where $j \in [1, \dots, M]$, and $m_j = \arg \text{sort}_j \{\ell(x)_i; i \in \mathcal{Y} \setminus \mathcal{T}\}$, i.e., $\ell(x)_{m_j}$ is the j -th largest non-target logit. For example, $M = 5 \times K$. Denote by \mathcal{M} the ordered top- M non-target classes, which are dynamic during the optimization.
- *The Soft-Maximum of logits of the Remaining Classes:* $\mathbf{l}(x)_d = \text{SmoothMax}(\{\ell(x)_j; j \in \mathcal{Y} \setminus (\mathcal{T} \cup \mathcal{M})\})$, where $d = K + M + 1$, and $\text{SmoothMax}(\cdot)$ is differentiable and enables gradient distribution (rather than switching) in learning, which is defined by,

$$\text{SmoothMax}(v) = \text{Sum}(\text{Softmax}(v) \odot v), \quad (27)$$

where \odot represents element-wise (Hadamard) product. It is straightforward to show that $\text{mean}(v) \leq \text{SmoothMax}(v) \leq \text{max}(v)$ for any real vectors v .

We note that the inclusion of the top- M non-target logits is to ensure that the compact constraints remain robust, even in cases where the $\text{SmoothMax}(\cdot)$ function introduces significant nonlinearity.

C. QP for Recovering Perturbation in the Image Space

We show the solution (Eqn. 18) can be understood from the QP perspective. Based on $\delta = V \cdot \epsilon$ and $\delta = x - x^{\text{anchor}}$, we have,

$$\epsilon = V^\top \cdot (x - x^{\text{anchor}}), \quad (28)$$

$$\epsilon_r = V_r^\top \cdot x - V_r^\top \cdot x^{\text{anchor}} \triangleq x_r - x_r^{\text{anchor}}, \quad (29)$$

where x_r is the projection of x , and x_r^{anchor} the projection of the anchor image.

Minimizing $\|\epsilon_r\|_2^2$ is to find the optimal x_r^* that is closest to x_r^{anchor} . We have, $x_r^* = x_r^{\text{anchor}} + \epsilon_r^*$, with which the QP for

recovering the optimal perturbation in the original image space is to,

$$\begin{aligned} & \underset{x \in [0,1]^D}{\text{minimize}} \quad \|x - x^{\text{anchor}}\|_2^2, \\ & \text{subject to} \quad V_r^\top \cdot x = x_r^*, \end{aligned} \quad (30)$$

which only involves equality constraints, making it computationally efficient to solve, even though x is in the high-dimensional image space. We show that Eqn. 30 has a closed-form solution, reproducing the result in Eqn. 18.

Recall ϵ_r^* is the solution from solving Eqn. 17, $x_r^{\text{anchor}} = V_r^\top \cdot x^{\text{anchor}}$ and $x_r^* = x_r^{\text{anchor}} + \epsilon_r^*$. Eqn. 30 is reproduced here,

$$\begin{aligned} & \underset{x \in [0,1]^D}{\text{minimize}} \quad \|x - x^{\text{anchor}}\|_2^2, \\ & \text{subject to} \quad V_r^\top \cdot x = x_r^*, \end{aligned}$$

which can be re-expressed by expanding the objective function and removing the constant term as,

$$\begin{aligned} & \underset{x \in [0,1]^D}{\text{minimize}} \quad x^\top \cdot x - 2 \cdot x^{\text{anchor}}^\top \cdot x, \\ & \text{subject to} \quad V_r^\top \cdot x = x_r^*, \end{aligned} \quad (31)$$

And the Lagrangian is,

$$\mathcal{L}(x, \lambda) = x^\top \cdot x - 2 \cdot x^{\text{anchor}}^\top \cdot x + \lambda^\top \cdot (V_r^\top \cdot x - x_r^*). \quad (32)$$

We obtain estimating equations from the derivatives as follows,

$$\frac{\partial}{\partial x} \mathcal{L}(x, \lambda) = 2 \cdot x - 2 \cdot x^{\text{anchor}} + V_r \cdot \lambda = 0, \quad (33)$$

$$\Rightarrow x = x^{\text{anchor}} - \frac{1}{2} V_r \cdot \lambda, \quad (34)$$

$$\frac{\partial}{\partial \lambda} \mathcal{L}(x, \lambda) = V_r^\top \cdot x - x_r^* = 0, \quad (35)$$

$$\Rightarrow V_r^\top \cdot x = x_r^*, \quad (36)$$

We have,

$$V_r^\top \cdot (x^{\text{anchor}} - \frac{1}{2} V_r \cdot \lambda) = x_r^* \quad (37)$$

$$\Rightarrow \lambda = 2 \cdot (V_r^\top \cdot x^{\text{anchor}} - x_r^*) = 2 \cdot \left(x_r^{\text{anchor}} - (x_r^{\text{anchor}} + \epsilon_r^*) \right) = -2 \cdot \epsilon_r^*, \quad (38)$$

So, we have,

$$x = x^{\text{anchor}} - \frac{1}{2} V_r \cdot (-2 \cdot \epsilon_r^*) = x^{\text{anchor}} + V_r \cdot \epsilon_r^*, \quad (39)$$

which reproduces Eqn. 18.

D. Details of Attack Targets

We use 5 random seeds (42, 52, 62, 72 and 82) and sample 5 lists of ordered top-30 targets as follows:

- *seed=42*: (643): mask, (409): analog-clock, (798): slide-rule, (250): Siberian-husky, (593): harmonica, (47): African-chameleon, (142): dowitcher, (276): hyena, (908): wing, (721): pillow, (57): garter-snake, (257): Great-Pyrenees, (397): puffer, (954): banana, (203): West-Highland-white-terrier, (172): whippet, (294): brown-bear, (803): snowplow, (76): tarantula, (811): space-heater, (817): sports-car, (608): jean, (977): sandbar, (711): perfume, (157): papillon, (51): triceratops, (428): barrow, (84): peacock, (531): digital-watch, (478): carton
- *seed=52*: (523): crutch, (330): wood-rabbit, (743): prison, (611): jigsaw-puzzle, (613): joystick, (810): space-bar, (634): lumbermill, (203): West-Highland-white-terrier, (217): English-springer, (816): spindle, (926): hot-pot, (275): African-hunting-dog, (337): beaver, (33): loggerhead, (264): Cardigan, (862): torch, (755): radio-telescope, (949): strawberry, (162): beagle, (488): chain, (251): dalmatian, (292): tiger, (440): beer-bottle, (638): maillot, (722): ping-pong-ball, (349): bighorn, (592): hard-disc, (409): analog-clock, (584): hair-slide, (701): parachute
- *seed=62*: (45): Gila-monster, (224): groenendaal, (274): dhole, (54): hognose-snake, (759): reflex-camera, (931):

bagel, (1): goldfish, (478): carton, (51): triceratops, (649): megalith, (117): chambered-nautilus, (652): military-uniform, (601): hoopskirt, (571): gas-pump, (520): crib, (221): Irish-water-spaniel, (869): trench-coat, (102): echidna, (14): indigo-bunting, (670): motor-scooter, (975): lakeside, (511): convertible, (8): hen, (840): swab, (156): Blenheim-spaniel, (928): ice-cream, (24): great-grey-owl, (567): frying-pan, (668): mosque, (866): tractor

- $seed=72$: (678): neck-brace, (329): sea-cucumber, (731): plunger, (829): streetcar, (565): freight-car, (628): liner, (331): hare, (376): proboscis-monkey, (787): shield, (622): lens-cap, (402): acoustic-guitar, (225): malinois, (487): cellular-telephone, (858): tile-roof, (94): hummingbird, (991): coral-fungus, (808): sombrero, (95): jacamar, (649): megalith, (35): mud-turtle, (215): Brittany-spaniel, (246): Great-Dane, (222): kuvasz, (88): macaw, (586): half-track, (424): barbershop, (553): file, (302): ground-beetle, (363): armadillo, (793): shower-cap
- $seed=82$: (280): grey-fox, (942): butternut-squash, (457): bow-tie, (810): space-bar, (811): space-heater, (388): giant-panda, (121): king-crab, (974): geyser, (432): bassoon, (969): eggnog, (633): loupe, (399): abaya, (438): beaker, (329): sea-cucumber, (563): fountain-pen, (661): Model-T, (552): feather-boa, (256): Newfoundland, (859): toaster, (539): doormat, (949): strawberry, (157): papillon, (410): apriary, (569): garbage-truck, (496): Christmas-stocking, (207): golden-retriever, (591): handkerchief, (806): sock, (372): baboon, (219): cocker-spaniel

We use those targets sequentially for $K = 1, 5, 10, 15, 20, 25, 30$ for the four models. The targets are shared by the 1000 testing images. For each testing image, if its ground-truth label is in any ordered top- K targets, we replace it with a different randomly sampled targets.

In addition to the randomly sampled targets, we also test a special case in which the lowest- K predictions by a model for a benign image are used as the ordered top- K attack targets (i.e., the first target is the class of the lowest logit for the benign image, and so far so on). The results are shown in Table 6 in the Appendix E.

E. Details of Metrics and Full Results

We report the Mean metrics (ASRs and ℓ_p norms) in the paper. Here, we also report results in terms of Best and Worst metrics in Tables 2, 3, 4, 5, where FoMs are computed using Mean.

For a model and a given K , there are five different lists of ordered top- K targets. For each image, its Best (Worst) ASR is 1 if any (all) of the five lists of targets can be successfully attacked, and the Mean ASR is the fraction of successful attacks over the total five runs. The overall Best, Mean, Worst ASRs are then averaged over the 1000 testing images. Corresponding to the three types of ASRs, their ℓ_p norms are computed using successfully attacked images only.

F. More Qualitative Results

We show examples learned by both our RisingAttacK and QuadAttacK for each of the five random seeds. Fig. 3 shows the examples by QuadAttacK, corresponding to those by our RisingAttacK in Fig. 2 and the seed is 42

More examples are in Figs. 4 and 5 (for seed=52).

Due to the file size limit (20M), we will show examples using other seeds in our released code repository.

Table 2. Full results including the three metrics (Best, Mean, Worst) for ResNet50 in Table 1(a). FoM is based on the Mean performance.

Top- K	Method	Best				Mean				Worst				Time (s/img) \downarrow	FoM \uparrow
		ASR \uparrow	$\ell_1 \downarrow$	$\ell_2 \downarrow$	$\ell_\infty \downarrow$	ASR \uparrow	$\ell_1 \downarrow$	$\ell_2 \downarrow$	$\ell_\infty \downarrow$	ASR \uparrow	$\ell_1 \downarrow$	$\ell_2 \downarrow$	$\ell_\infty \downarrow$		
Top-30	QuadAttacK ₆₀	0.4590	11.6907	3620.6876	0.1307	0.2076	11.8070	3654.9139	0.1349	0.0330	11.9156	3686.5432	0.1394	3.3947	6.4793
	RisingAttacK ₆₀	0.8770	6.5011	1922.6780	0.0475	0.6642	7.0271	2081.8960	0.0511	0.3900	7.5992	2255.0249	0.0550	17.0013	
	QuadAttacK ₃₀	Failed				Failed				Failed				1.6539	inf
	RisingAttacK ₃₀	0.0110	6.2378	1844.3013	0.0470	0.0022	6.2378	1844.3013	0.0470	Failed				8.5619	
Top-25	QuadAttacK ₆₀	0.8460	11.3686	3526.3618	0.1219	0.6018	11.6214	3599.8101	0.1301	0.3060	11.8774	3674.2965	0.1388	3.4167	3.6439
	RisingAttacK ₆₀	0.9580	4.8257	1419.8702	0.0361	0.8420	5.2960	1561.6462	0.0393	0.6700	5.8040	1715.5532	0.0427	14.0839	
	QuadAttacK ₃₀	0.0090	10.4263	3259.2773	0.0991	0.0018	10.4263	3259.2773	0.0991	Failed				1.7058	48.9628
	RisingAttacK ₃₀	0.1270	5.0430	1487.4868	0.0382	0.0392	5.1218	1511.3347	0.0388	0.0010	5.2031	1535.9489	0.0394	7.0999	
Top-20	QuadAttacK ₆₀	0.9560	9.7368	3030.3407	0.0984	0.8344	10.0891	3133.6199	0.1079	0.6500	10.4514	3239.8729	0.1183	3.4039	3.1100
	RisingAttacK ₆₀	0.9500	3.3880	992.4068	0.0257	0.8306	3.7474	1101.1521	0.0281	0.6520	4.1005	1207.9307	0.0305	6.7267	
	QuadAttacK ₃₀	0.2620	9.0111	2842.4299	0.0839	0.0978	9.0948	2850.0433	0.0858	0.0080	9.1756	2874.5937	0.0876	1.7264	1.9481
	RisingAttacK ₃₀	0.2040	3.4120	1000.3753	0.0264	0.0666	3.4854	1022.5585	0.0269	0.0010	3.5609	1045.7229	0.0274	3.7216	
Top-15	QuadAttacK ₆₀	0.9870	7.9013	2470.1343	0.0729	0.9440	8.3368	2600.7510	0.0822	0.8460	8.8010	2739.1058	0.0932	3.4839	3.2229
	RisingAttacK ₆₀	0.9990	2.6335	763.6941	0.0208	0.9868	3.0150	878.9222	0.0233	0.9610	3.4246	1003.1229	0.0260	5.1634	
	QuadAttacK ₃₀	0.7540	7.5962	2380.3027	0.0674	0.4922	7.8296	2451.8036	0.0717	0.2090	8.0427	2517.2334	0.0759	1.7382	3.3674
	RisingAttacK ₃₀	0.8310	2.7910	812.1335	0.0219	0.5856	2.9944	873.3877	0.0234	0.2970	3.2057	936.9361	0.0249	2.8794	
Top-10	QuadAttacK ₆₀	0.9970	6.1074	1917.6238	0.0504	0.9866	6.5228	2044.5753	0.0576	0.9660	6.9893	2186.1273	0.0666	3.7396	3.3482
	RisingAttacK ₆₀	0.9980	1.8077	519.1006	0.0149	0.9936	2.0825	602.1784	0.0167	0.9800	2.3735	690.1587	0.0187	3.3991	
	QuadAttacK ₃₀	0.9520	6.0248	1893.2294	0.0491	0.8460	6.3547	1994.8023	0.0544	0.6600	6.6744	2093.2491	0.0598	1.7593	2.9244
	RisingAttacK ₃₀	0.9410	1.9697	568.1198	0.0160	0.8064	2.1748	630.0922	0.0175	0.5990	2.3743	690.3320	0.0188	1.7965	
Top-5	QuadAttacK ₆₀	1.0000	3.6813	1161.6413	0.0264	0.9968	4.0029	1261.2314	0.0309	0.9900	4.3529	1369.4046	0.0362	4.5257	3.3373
	RisingAttacK ₆₀	0.9890	0.9567	270.4779	0.0085	0.9558	1.1534	330.1495	0.0098	0.8980	1.3547	391.1246	0.0112	1.8225	
	QuadAttacK ₃₀	0.9880	3.6540	1153.1996	0.0261	0.9590	3.9539	1246.4929	0.0300	0.8950	4.2646	1343.3064	0.0344	2.1458	2.6681
	RisingAttacK ₃₀	0.9860	1.2737	361.3176	0.0110	0.9504	1.4693	420.0254	0.0124	0.8910	1.6607	477.3890	0.0138	0.9517	
Top-1	QuadAttacK ₆₀	1.0000	1.1548	381.4498	0.0057	0.9996	1.4443	467.1178	0.0083	0.9980	1.7222	550.7556	0.0110	5.3373	2.1564
	RisingAttacK ₆₀	1.0000	0.4136	104.7782	0.0049	0.9992	0.6144	165.8517	0.0064	0.9990	0.8364	233.5616	0.0079	0.6114	
	QuadAttacK ₃₀	0.9980	1.1521	380.6522	0.0057	0.9772	1.4244	461.1199	0.0080	0.9340	1.6861	540.0446	0.0105	2.6411	1.4638
	RisingAttacK ₃₀	1.0000	0.6218	163.8710	0.0066	0.9986	0.9155	251.6174	0.0088	0.9950	1.2054	338.3424	0.0110	0.3201	

Table 3. Full results including the three metrics (Best, Mean, Worst) for DenseNet121 in Table 1(b). FoM is based on the Mean performance.

Top- K	Method	Best				Mean				Worst				Time (s/img) \downarrow	FoM \uparrow
		ASR \uparrow	$\ell_1 \downarrow$	$\ell_2 \downarrow$	$\ell_\infty \downarrow$	ASR \uparrow	$\ell_1 \downarrow$	$\ell_2 \downarrow$	$\ell_\infty \downarrow$	ASR \uparrow	$\ell_1 \downarrow$	$\ell_2 \downarrow$	$\ell_\infty \downarrow$		
Top-30	QuadAttacK ₆₀	Failed				Failed				Failed				4.5409	inf
	RisingAttacK ₆₀	0.7490	13.8191	4117.4537	0.0991	0.4074	14.7263	4393.8482	0.1051	0.0730	15.6581	4677.7359	0.1114	20.3156	
	QuadAttacK ₃₀	Failed				Failed				Failed				2.3266	
	RisingAttacK ₃₀	Failed				Failed				Failed				10.2335	
Top-25	QuadAttacK ₆₀	0.4600	13.0098	4002.5555	0.1489	0.1734	13.1825	4053.5759	0.1531	0.0050	13.3529	4103.6056	0.1573	4.1657	8.5496
	RisingAttacK ₆₀	0.9860	8.8114	2589.4709	0.0666	0.9370	9.9898	2945.3574	0.0747	0.8340	11.2310	3320.9942	0.0830	16.8643	
	QuadAttacK ₃₀	Failed				Failed				Failed				2.2016	
	RisingAttacK ₃₀	0.3150	9.6484	2840.4239	0.0736	0.1094	9.9203	2921.6770	0.0756	0.0010	10.1868	3001.6276	0.0775	8.5279	
Top-20	QuadAttacK ₆₀	0.9730	11.0446	3412.9160	0.1140	0.8340	11.6266	3583.3589	0.1268	0.5840	12.1967	3749.9306	0.1403	4.0066	2.6290
	RisingAttacK ₆₀	0.9970	5.1080	1480.5618	0.0406	0.9812	5.9921	1744.8239	0.0468	0.9450	6.9129	2020.8591	0.0532	8.2901	
	QuadAttacK ₃₀	0.1240	9.7962	3054.7057	0.0914	0.0330	9.8564	3072.6790	0.0923	Failed				2.0206	23.7723
	RisingAttacK ₃₀	0.7320	5.7318	1664.7979	0.0456	0.4500	6.1377	1786.5613	0.0485	0.1460	6.5680	1915.5893	0.0516	4.6070	
Top-15	QuadAttacK ₆₀	0.9970	8.6591	2701.7797	0.0774	0.9866	9.2713	2884.2755	0.0887	0.9610	9.8890	3067.5058	0.1011	3.8963	2.3310
	RisingAttacK ₆₀	1.0000	3.8050	1086.1460	0.0318	1.0000	4.3657	1252.9889	0.0359	1.0000	4.9640	1431.3256	0.0402	6.2878	
	QuadAttacK ₃₀	0.7780	8.3044	2599.4287	0.0720	0.5088	8.6281	2697.9823	0.0771	0.2380	8.9352	2791.7948	0.0821	1.8919	3.5524
	RisingAttacK ₃₀	0.9900	4.2188	1207.4247	0.0350	0.9362	4.7380	13							

Table 4. Full results including the three metrics (Best, Mean, Worst) for ViT-B in Table 1(c). FoM is based on the Mean performance.

Top- K	Method	Best			Mean			Worst			Time (s/img) \downarrow	FoM \uparrow			
		ASR \uparrow	$\ell_1 \downarrow$	$\ell_2 \downarrow$	$\ell_\infty \downarrow$	ASR \uparrow	$\ell_1 \downarrow$	$\ell_2 \downarrow$	$\ell_\infty \downarrow$	ASR \uparrow	$\ell_1 \downarrow$	$\ell_2 \downarrow$	$\ell_\infty \downarrow$		
Top-30	QuadAttackK ₆₀	0.6720	9.4223	2864.1279	0.0996	0.3272	9.6708	2938.2587	0.1032	0.0590	9.9254	3014.5189	0.1067	5.2135	3.1589
	RisingAttackK ₆₀	1.0000	6.7803	1881.7456	0.0613	0.9534	9.7262	2721.2876	0.0876	0.8260	14.2641	4001.9670	0.1299	43.3954	
Top-25	QuadAttackK ₃₀	Failed				Failed				Failed			2.7870		
	RisingAttackK ₃₀	0.8080	10.3031	2880.8575	0.0934	0.5568	11.4132	3206.4565	0.1029	0.2430	12.6194	3558.5805	0.1134	21.7179	inf
Top-20	QuadAttackK ₆₀	0.9350	9.0105	2737.0924	0.0935	0.6872	9.4331	2860.6667	0.1002	0.3490	9.8582	2985.2203	0.1070	5.2723	2.6425
	RisingAttackK ₆₀	1.0000	4.0101	1084.9150	0.0382	0.9944	5.5706	1520.5703	0.0526	0.9740	8.1685	2232.4551	0.0782	36.0486	
Top-15	QuadAttackK ₃₀	Failed				Failed				Failed			2.7354		
	RisingAttackK ₃₀	0.9330	6.8418	1877.8280	0.0643	0.7536	7.7050	2126.3211	0.0721	0.5000	8.8041	2438.7838	0.0825	18.0775	inf
Top-10	QuadAttackK ₆₀	0.9710	7.4811	2268.2729	0.0748	0.7828	7.9108	2393.0875	0.0815	0.4910	8.3426	2519.7231	0.0884	5.0069	2.8308
	RisingAttackK ₆₀	0.9980	3.0033	792.6934	0.0294	0.9864	3.7609	1007.6887	0.0360	0.9560	4.5804	1241.9193	0.0432	15.8230	
Top-5	QuadAttackK ₃₀	0.0020	6.3770	1992.7502	0.0533	0.0004	6.3770	1992.7502	0.0533	Failed			2.6210		
	RisingAttackK ₃₀	0.7380	4.5276	1221.1645	0.0436	0.4956	4.9482	1343.2135	0.0473	0.2490	5.3892	1471.1873	0.0511	1610.8632	
Top-1	QuadAttackK ₆₀	0.9730	5.8803	1780.9271	0.0558	0.8404	6.2661	1893.5173	0.0620	0.5980	6.6687	2011.4965	0.0684	4.7622	2.7231
	RisingAttackK ₆₀	1.0000	2.3069	593.4747	0.0235	0.9988	2.8751	753.1852	0.0284	0.9940	3.5373	939.6227	0.0343	11.9841	
Top-10	QuadAttackK ₃₀	0.0240	4.7795	1490.0706	0.0382	0.0056	4.7982	1495.8188	0.0385	Failed			2.4245		
	RisingAttackK ₃₀	0.9270	3.4401	908.2324	0.0339	0.7510	3.8944	1038.7394	0.0379	0.5310	4.4471	1197.6996	0.0427	164.8583	
Top-5	QuadAttackK ₆₀	0.9900	4.1855	1274.5181	0.0363	0.9130	4.5246	1374.2282	0.0410	0.7510	4.8729	1476.9954	0.0459	4.6368	2.5247
	RisingAttackK ₆₀	1.0000	1.5878	397.2939	0.0169	0.9936	1.9915	508.8791	0.0206	0.9750	2.4423	634.1043	0.0247	8.2583	
Top-1	QuadAttackK ₃₀	0.0810	3.4468	1078.1791	0.0256	0.0252	3.4999	1094.6987	0.0261	Failed			2.3034		
	RisingAttackK ₃₀	0.9010	2.3233	599.0848	0.0240	0.7112	2.6247	684.1576	0.0267	0.4810	2.9492	775.8982	0.0297	4.1602	

Table 5. Full results including the three metrics (Best, Mean, Worst) for DEiT-B in Table 1(d). FoM is based on the Mean performance.

Top- K	Method	Best			Mean			Worst			Time (s/img) \downarrow	FoM \uparrow			
		ASR \uparrow	$\ell_1 \downarrow$	$\ell_2 \downarrow$	$\ell_\infty \downarrow$	ASR \uparrow	$\ell_1 \downarrow$	$\ell_2 \downarrow$	$\ell_\infty \downarrow$	ASR \uparrow	$\ell_1 \downarrow$	$\ell_2 \downarrow$	$\ell_\infty \downarrow$		
Top-30	QuadAttackK ₆₀	0.2350	9.3006	2840.2109	0.0985	0.0640	9.3734	2860.9240	0.0997	0.0010	9.4465	2881.7991	0.1009	4.1792	8.8333
	RisingAttackK ₆₀	0.9860	7.9531	2263.3389	0.0678	0.5150	9.4432	2697.9176	0.0804	0.0340	11.7557	3365.5665	0.1007	43.3521	
Top-25	QuadAttackK ₃₀	Failed				Failed				Failed			2.3032		
	RisingAttackK ₃₀	0.2160	10.8323	3092.9352	0.0937	0.6060	11.0771	3165.6910	0.0957				21.6930	inf	
Top-20	QuadAttackK ₆₀	0.9900	8.8805	2703.0149	0.0886	0.8644	9.3780	2849.8222	0.0960	0.5880	9.9093	3006.5687	0.1039	4.0966	2.1975
	RisingAttackK ₆₀	1.0000	3.6473	1002.9836	0.0337	0.9854	5.1921	1434.6160	0.0482	0.9360	7.9650	2187.8969	0.0768	36.1084	
Top-15	QuadAttackK ₃₀	Failed				Failed				Failed			2.2173		
	RisingAttackK ₃₀	0.9100	5.6674	1575.9766	0.0520	0.6748	6.3220	1763.4334	0.0581	0.3620	7.1691	2002.6759	0.0662	18.1108	inf
Top-10	QuadAttackK ₆₀	0.9990	7.2048	2199.2260	0.0665	0.9612	7.6974	2343.5441	0.0735	0.8540	8.2263	2499.1404	0.0811	4.1868	2.8466
	RisingAttackK ₆₀	1.0000	2.3202	611.1048	0.0230	0.9956	2.9174	781.2607	0.0282	0.9850	3.5733	968.9946	0.0339	15.8331	
Top-5	QuadAttackK ₃₀	0.0160	6.2491	1950.0525	0.0524	0.0032	6.2491	1950.0525	0.0524	Failed			2.1503		
	RisingAttackK ₃₀	0.8560	3.5031	946.6329	0.0338	0.6348	3.8373	1045.3953	0.0366	0.3810	4.1863	1148.5782	0.0395	325.7059	
Top-1	QuadAttackK ₆₀	1.0000	5.5928	1713.0918	0.0481	0.9750	6.0671	1852.4958	0.0544	0.9100	6.5599	1997.5902	0.0611	3.9525	2.8819
	RisingAttackK ₆₀	1.0000	1.7594	448.6124	0.0184	1.0000	2.2015	573.3811	0.0223	1.0000	2.7017	715.2705	0.0266	11.9810	
Top-10	QuadAttackK ₃₀	0.1350	4.9541	1548.1232	0.0383	0.0338	4.9874	1558.1460	0.0386	Failed			2.0234		
	RisingAttackK ₃₀	0.9870	2.7227	714.8364	0.0273	0.9278	3.1490	838.2295	0.0310	0.8140	3.5773	963.3399	0.0346	42.8983	
Top-5	QuadAttackK ₆₀	0.9980	3.9545	1222.8665	0.0305	0.9762	4.3693	1346.6326	0.0353	0.9150	4.7999	1475.4252	0.0406	3.8755	2.9455
	RisingAttackK ₆₀	1.0000	1.1885	291.5197	0.0132	0.9996	1.5076	379.6582	0.0162	0.9980	1.8825	484.4438	0.0195	8.2610	
Top-1	QuadAttackK ₃₀	0.3540	3.4965	1097.7370	0.0249	0.1298	3.5782	1123.3760	0.0256	0.0100	3.6597	1148.9145	0.0263	1.9552	
	RisingAttackK ₃₀	0.9800	1.7993	458.0865	0.0191	0.9200	2.1465	556.2741	0.0222	0.8000	2.5030	658.8665	0.0253	11.4300	
Top-5	QuadAttackK ₆₀	1.0000	2.9872	940.1374	0.0201	0.9984	3.3975	1064.7252	0.0243	0.9950	3.8203	1192.7754	0.0288	3.4381	3.1378
	RisingAttackK ₆₀	1.0000	0.8108	189.0044	0.0096	0.9992	1.0575	254.5953	0.0121	0.9970	1.3365	329.6166	0.0148	4.4027	
Top-1	QuadAttackK ₃₀	0.9700	2.9571	932.7132	0.0197	0.7794	3.2526	1024.0607	0.0225	0.4770	3.5452	1114.4266	0.0252	1.7718	
	RisingAttackK ₃₀	0.9760	1.0890	264.4306	0.0125	0.8800	1.3450	334.9398	0.0149	0.7110	1.6168	410.8617	0.0174	2.2165	

Table 6. Ordered top- K attack results using the lowest- K predictions of benign images as attack targets. Overall, our RisingAttack shows a big leap forward in advancing ordered top- K attacks, outperforming the prior state-of-the-art method, QuadAttack (Paniagua et al., 2023) by a large margin in most cases (higher ASRs with lower ℓ_p norms). ℓ_∞ -norms in red is to show they are treated as being “visually imperceptible” based on the commonly used threshold $8/255 = 0.0314$. The subscripts of methods (30 and 60) represent the computing budgets. The FoM (figure of merits) of our RisingAttack against QuadAttack is computed by Eqn. 23 to show its holistic improvement in terms of how many times it is better.

(a) ResNet-50 (He et al., 2016)

Top- K	Method	Single-Run				Time (s/img) \downarrow	FoM \uparrow
		ASR \uparrow	$\ell_1 \downarrow$	$\ell_2 \downarrow$	$\ell_\infty \downarrow$		
Top-30	QuadAttack ₆₀	0.3250	11.7308	3640.1040	0.1292	4.7020	3.8464
	RisingAttack ₆₀	0.5340	5.9437	1762.7836	0.0443	38.9733	
Top-30	QuadAttack ₃₀	0.0010	10.6442	3329.8271	0.1111	2.2976	7.6272
	RisingAttack ₃₀	0.0040	6.3581	1870.2285	0.0490	19.6176	
Top-25	QuadAttack ₆₀	0.6240	11.5386	3585.0978	0.1250	4.5973	3.1978
	RisingAttack ₆₀	0.7070	4.7898	1415.3054	0.0355	32.0203	
Top-25	QuadAttack ₃₀	0.0320	10.3092	3233.3005	0.0954	2.2886	2.2899
	RisingAttack ₃₀	0.0280	4.2924	1263.4319	0.0330	16.1438	
Top-20	QuadAttack ₆₀	0.8990	10.0532	3129.2405	0.1050	4.5393	2.8243
	RisingAttack ₆₀	0.7300	3.6953	1088.5812	0.0277	14.1311	
Top-20	QuadAttack ₃₀	0.1270	9.1247	2863.4929	0.0830	2.2579	2.1278
	RisingAttack ₃₀	0.0560	3.3960	993.0273	0.0265	7.4246	
Top-15	QuadAttack ₆₀	0.9370	8.4982	2653.1828	0.0840	4.5458	3.1157
	RisingAttack ₆₀	0.9620	3.1353	917.7340	0.0240	10.7638	
Top-15	QuadAttack ₃₀	0.3980	7.8166	2453.6085	0.0696	2.2794	2.6514
	RisingAttack ₃₀	0.3880	3.0805	900.1031	0.0240	5.6529	
Top-10	QuadAttack ₆₀	0.9840	6.7946	2130.0686	0.0610	4.6965	3.1959
	RisingAttack ₆₀	0.9840	2.2788	661.9469	0.0180	7.6067	
Top-10	QuadAttack ₃₀	0.7670	6.4958	2040.6640	0.0554	2.3425	2.5281
	RisingAttack ₃₀	0.6590	2.3197	674.2584	0.0185	3.9934	
Top-5	QuadAttack ₆₀	0.9910	4.2898	1351.5930	0.0339	5.1849	2.9681
	RisingAttack ₆₀	0.9290	1.3772	397.4290	0.0114	4.3419	
Top-5	QuadAttack ₃₀	0.9210	4.1759	1316.8696	0.0323	5.2534	2.4573
	RisingAttack ₃₀	0.9070	1.6905	486.2660	0.0140	2.2706	
Top-1	QuadAttack ₆₀	0.9990	1.6902	542.3103	0.0103	6.1673	2.1155
	RisingAttack ₆₀	1.0000	0.7436	203.6175	0.0074	1.6483	
Top-1	QuadAttack ₃₀	0.9620	1.6317	523.8288	0.0097	3.0124	1.4446
	RisingAttack ₃₀	1.0000	1.0940	303.8991	0.0102	0.8588	

(c) ViT-B (Dosovitskiy et al., 2020)

Top- K	Method	Single-Run				Time (s/img) \downarrow	FoM \uparrow
		ASR \uparrow	$\ell_1 \downarrow$	$\ell_2 \downarrow$	$\ell_\infty \downarrow$		
Top-30	QuadAttack ₆₀	0.2400	9.2933	2828.3158	0.0997	6.5384	6.0806
	RisingAttack ₆₀	0.9980	6.9512	1923.6753	0.0631	107.4773	
Top-30	QuadAttack ₃₀	Failed				3.6705	inf
	RisingAttack ₃₀	0.5200	9.2443	2576.2629	0.0842	54.5843	
Top-25	QuadAttack ₆₀	0.5220	9.2439	2813.6584	0.0980	6.3901	3.9297
	RisingAttack ₆₀	0.9960	4.8564	1318.3544	0.0458	109.1623	
Top-25	QuadAttack ₃₀	Failed				3.5624	inf
	RisingAttack ₃₀	0.5860	6.8079	1869.8754	0.0640	46.2905	
Top-20	QuadAttack ₆₀	0.6870	7.7073	2337.6029	0.0803	6.1960	3.2785
	RisingAttack ₆₀	0.9680	3.5511	945.7173	0.0343	43.4669	
Top-20	QuadAttack ₃₀	0.0010	5.6397	1745.0922	0.0501	3.4596	450.2016
	RisingAttack ₃₀	0.3810	4.8757	1316.7148	0.0472	24.6167	
Top-15	QuadAttack ₆₀	0.7880	6.0980	1849.0582	0.0606	6.0093	2.8951
	RisingAttack ₆₀	1.0000	2.8185	734.7598	0.0280	32.9165	
Top-15	QuadAttack ₃₀	0.0130	4.5583	1422.9767	0.0378	3.2740	62.7339
	RisingAttack ₃₀	0.6740	3.7918	1009.0854	0.0372	18.6537	
Top-10	QuadAttack ₆₀	0.8900	4.4073	1342.7171	0.0401	5.7166	2.5217
	RisingAttack ₆₀	0.9940	1.9987	508.1560	0.0208	22.5797	
Top-10	QuadAttack ₃₀	0.0310	3.2038	1007.5255	0.0245	3.0683	24.9115
	RisingAttack ₃₀	0.6540	2.6736	696.4219	0.0273	12.7669	
Top-5	QuadAttack ₆₀	0.9970	3.6834	1140.4541	0.0296	5.3490	1.6908
	RisingAttack ₆₀	0.5460	1.1798	295.8843	0.0129	12.1849	
Top-5	QuadAttack ₃₀	0.4230	3.1510	987.3517	0.0235	2.8011	2.3368
	RisingAttack ₃₀	0.5450	1.6973	429.3175	0.0183	6.8619	
Top-1	QuadAttack ₆₀	1.0000	1.7206	555.2969	0.0091	3.4851	3.0815
	RisingAttack ₆₀	0.9260	0.4883	109.9290	0.0065	3.7639	
Top-1	QuadAttack ₃₀	0.9970	1.7137	553.1291	0.0091	1.7672	2.0013
	RisingAttack ₃₀	0.9250	0.7459	172.3669	0.0094	2.0927	

(b) DenseNet-121 (Huang et al., 2017)

Top- K	Method	Single-Run				Time (s/img) \downarrow	FoM \uparrow
		ASR \uparrow	$\ell_1 \downarrow$	$\ell_2 \downarrow$	$\ell_\infty \downarrow$		
Top-30	QuadAttack ₆₀	0.1370	13.3362	4119.1202	0.1466	5.3182	9.4906
	RisingAttack ₆₀	0.8520	10.2572	3029.0433	0.0764	40.2688	
Top-25	QuadAttack ₃₀	Failed				2.8216	inf
	RisingAttack ₃₀	0.0850	8.7632	2561.6755	0.0683	20.1358	
Top-25	QuadAttack ₆₀	0.6760	13.1121	4052.3545	0.1417	5.0749	3.0375
	RisingAttack ₆₀	0.9840	7.2225	2110.8964	0.0561	32.7520	
Top-20	QuadAttack ₃₀	0.0800	11.1429	3480.9835	0.1047	2.6689	94.7409
	RisingAttack ₃₀	0.4730	7.5557	2203.2915	0.0597	16.4573	
Top-20	QuadAttack ₆₀	0.9360	11.3239	3513.0089	0.1142	4.8813	2.6289
	RisingAttack ₆₀	0.9900	5.0476	1460.8408	0.0407	14.5282	
Top-15	QuadAttack ₃₀	0.9910	9.2727	2889.0552	0.0840	4.8481	2.3800
	RisingAttack ₃₀	1.0000	4.1631	1190.6402	0.0348	11.1324	
Top-10	QuadAttack ₃₀	0.6320	8.6222	2167.0029	0.0531	2.4163	2.3308
	RisingAttack ₃₀	0.9540	4.5707	1310.9248	0.0380	5.7205	
Top-5	QuadAttack ₆₀	0.9990	4.3886	1396.2655	0.0290	4.4818	2.8989
	RisingAttack ₆₀	0.9980	1.4362	394.3187	0.0138	4.6659	
Top-5	QuadAttack ₃₀	0.9810	4.3306	1377.5596	0.0284	2.2109	2.0768
	RisingAttack ₃₀	0.9930	2.0112	558.1958	0.0185	2.3818	
Top-1	QuadAttack ₆₀	1.0000	1.7865	587.0397	0.0086	3.6998	2.0325
	RisingAttack ₆₀	1.0000	0.7916	201.4099	0.0093	2.0500	
Top-1	QuadAttack ₃₀	0.9910	1.7586	577.6225	0.0084	1.8592	1.3071
	RisingAttack ₃₀	1.0000	1.2213	321.1319	0.0130	1.0587	

(d) DEiT-B (Touvron et al., 2021)

Top- K	Method	Single-Run				Time (s/img) \downarrow	FoM \uparrow
		ASR \uparrow	$\ell_1 \downarrow$	$\ell_2 \downarrow$	$\ell_\infty \downarrow$		
Top-30	QuadAttack ₆₀	0.3660	9.6171	2927.7147	0.0983	5.3128	4.2723
	RisingAttack ₆₀	0.9850	6.5547	1846.3443	0.0575	107.3817	

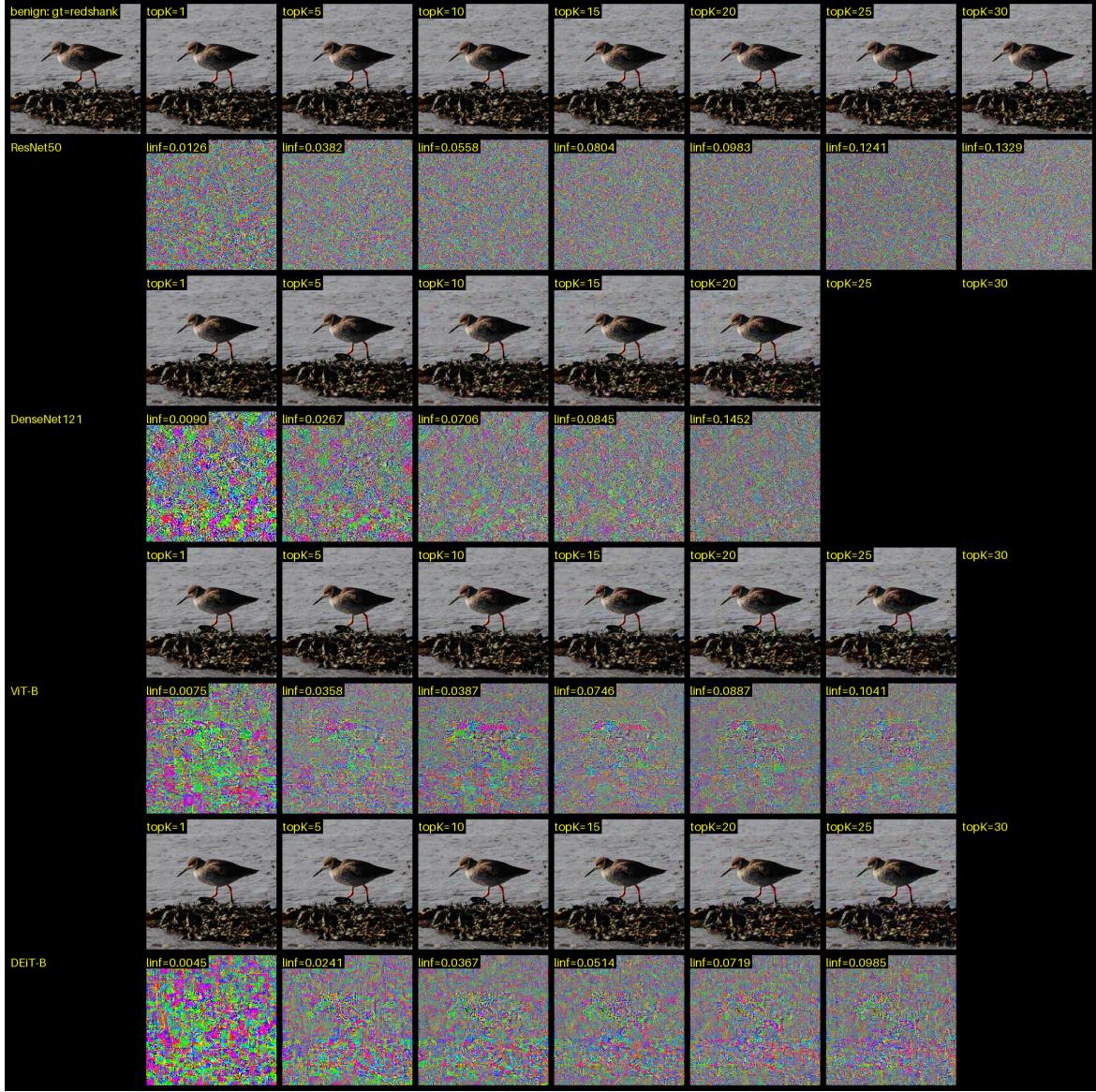


Figure 3. QuadAttacK examples of adversarial examples and associated perturbations learned for a benign image (ILSVRC2012.val_00002633 with the ground-truth label, redshank) using a list of randomly sampled 30 targets (see the list for **seed=42** in the Appendix D) in the order of: mask, analog-clock, slide-rule, Siberian-husky, harmonica, African-chameleon, dowitcher, hyena, wing, pillow, garter-snake, Great-Pyrenees, puffer, banana, West-Highland-white-terrier, whippet, brown-bear, snowplow, tarantula, space-heater, sports-car, jean, sandbar, perfume, papillon, triceratops, barrow, peacock, digital-watch, carton.

The adversarial perturbations are normalized to $[0, 1]$ for the sake of visualization. Some of them are treated as being “visually imperceptible” based on the commonly used threshold $8/255 = 0.0314$ for ℓ_∞ (“l^{inf}”) norms. If QuadAttacK fails using a model for a K (e.g. topK=25 for DenseNet121), we leave it blank. For the benign image, the top-30 predictions by the four models respectively are:

- **ResNet50:** redshank, ruddy turnstone, red-backed sandpiper, dowitcher, oystercatcher, grey whale, red-breasted merganser, crane, sea lion, chainlink fence, lakeside, wreck, quail, partridge, screwdriver, plastic bag, pelican, parachute, killer whale, sulphur-crested cockatoo, African crocodile, white stork, pole, bucket, cauldron, hummingbird, sandbar, king penguin, nail, syringe.
- **DenseNet121:** redshank, ruddy turnstone, red-backed sandpiper, oystercatcher, breakwater, dowitcher, sea lion, academic gown, abaya, mortarboard, red-breasted merganser, lifeboat, cloak, espresso, lipstick, theater curtain, wood rabbit, umbrella, refrigerator, ruffed grouse, king penguin, partridge, sandbar, diamondback, hen-of-the-woods, wine bottle, mailbox, stone wall, volcano, redbone.
- **ViT-B:** redshank, red-backed sandpiper, ruddy turnstone, dowitcher, oystercatcher, water ouzel, Madagascar cat, chain saw, apiary, red-breasted merganser, Tibetan mastiff, cicada, seat belt, American egret, wall clock, mask, snow leopard, schipperke, potter's wheel, lycanid, mud turtle, curly-coated retriever, dumbbell, television, strainer, feather boa, buckle, junco, boa constrictor, volcano.
- **DeiT-B:** redshank, ruddy turnstone, red-backed sandpiper, dowitcher, oystercatcher, red-breasted merganser, warthog, worm fence, Indian elephant, African crocodile, maze, badger, snowplow, American black bear, stone wall, king penguin, car wheel, rock python, water ouzel, guillotine, wild boar, centipede, diamondback, apiary, barrow, horned viper, sundial, guenon, bustard, skunk.

Figure 4. RisingAttacK examples of adversarial examples and associated perturbations learned for a benign image (ILSVRC2012.val_00002266 with the ground-truth label, dogsled) using a list of randomly sampled 30 targets (see the list for **seed=52** in the Appendix D) in the order of: crutch, wood-rabbit, prison, jigsaw-puzzle, joystick, space-bar, lumbermill, West-Highland-white-terrier, English-springer, spindle, hot-pot, African-hunting-dog, beaver, loggerhead, Cardigan, torch, radio-telescope, strawberry, beagle, chain, dalmatian, tiger, beer-bottle, maillot, ping-pong-ball, bighorn, hard-disc, analog-clock, hair-slide, parachute. The adversarial perturbations are normalized to $[0, 1]$ for the sake of visualization. Some of them are treated as being “visually imperceptible” based on the commonly used threshold $8/255 = 0.0314$ for ℓ_∞ (‘l_{inf}’) norms. For the benign image, the top-30 predictions by the four models respectively are:

- **ResNet50:** dogsled, Eskimo dog, bobsled, Ibizan hound, Labrador retriever, EntleBucher, beagle, Weimaraner, Greater Swiss Mountain dog, bloodhound, stretcher, Cardigan, Walker hound, redbone, Leonberg, Siberian husky, English foxhound, Chihuahua, shovel, Bernese mountain dog, malinois, ski mask, groenendael, Chesapeake Bay retriever, curly-coated retriever, drum, cocker spaniel, Gordon setter, Saluki, cowboy hat.
- **DenseNet121:** dogsled, Ibizan hound, Chesapeake Bay retriever, American Staffordshire terrier, whippet, Weimaraner, bobsled, vizsla, snowmobile, drum, malinois, Rhodesian ridgeback, Saluki, Eskimo dog, ski, Labrador retriever, mountain tent, Irish terrier, toyshop, shovel, muzzle, ski mask, dingo, alp, Irish wolfhound, Greater Swiss Mountain dog, Brittany spaniel, hog, Staffordshire bullterrier, Siberian husky.
- **ViT-B:** dogsled, Ibizan hound, Eskimo dog, American Staffordshire terrier, whippet, Greater Swiss Mountain dog, snowmobile, EntleBucher, boxer, Saluki, bobsled, Siberian husky, Norfolk terrier, Staffordshire bullterrier, basenji, Great Dane, Rhodesian ridgeback, Irish terrier, Brittany spaniel, Tibetan terrier, Chihuahua, muzzle, vizsla, beagle, rugby ball, Walker hound, Norwich terrier, Italian greyhound, Cardigan, Weimaraner.
- **DeiT-B:** dogsled, Eskimo dog, EntleBucher, Ibizan hound, whippet, Chihuahua, Weimaraner, Siberian husky, bearskin, Greater Swiss Mountain dog, Italian greyhound, bobsled, manhole cover, beagle, snowmobile, coffeepot, scabbard, bald eagle, langur, wing, espresso, stethoscope, mortarboard, dingo, suit, cowboy hat, piggy bank, carpenter’s kit, basenji, zucchini.

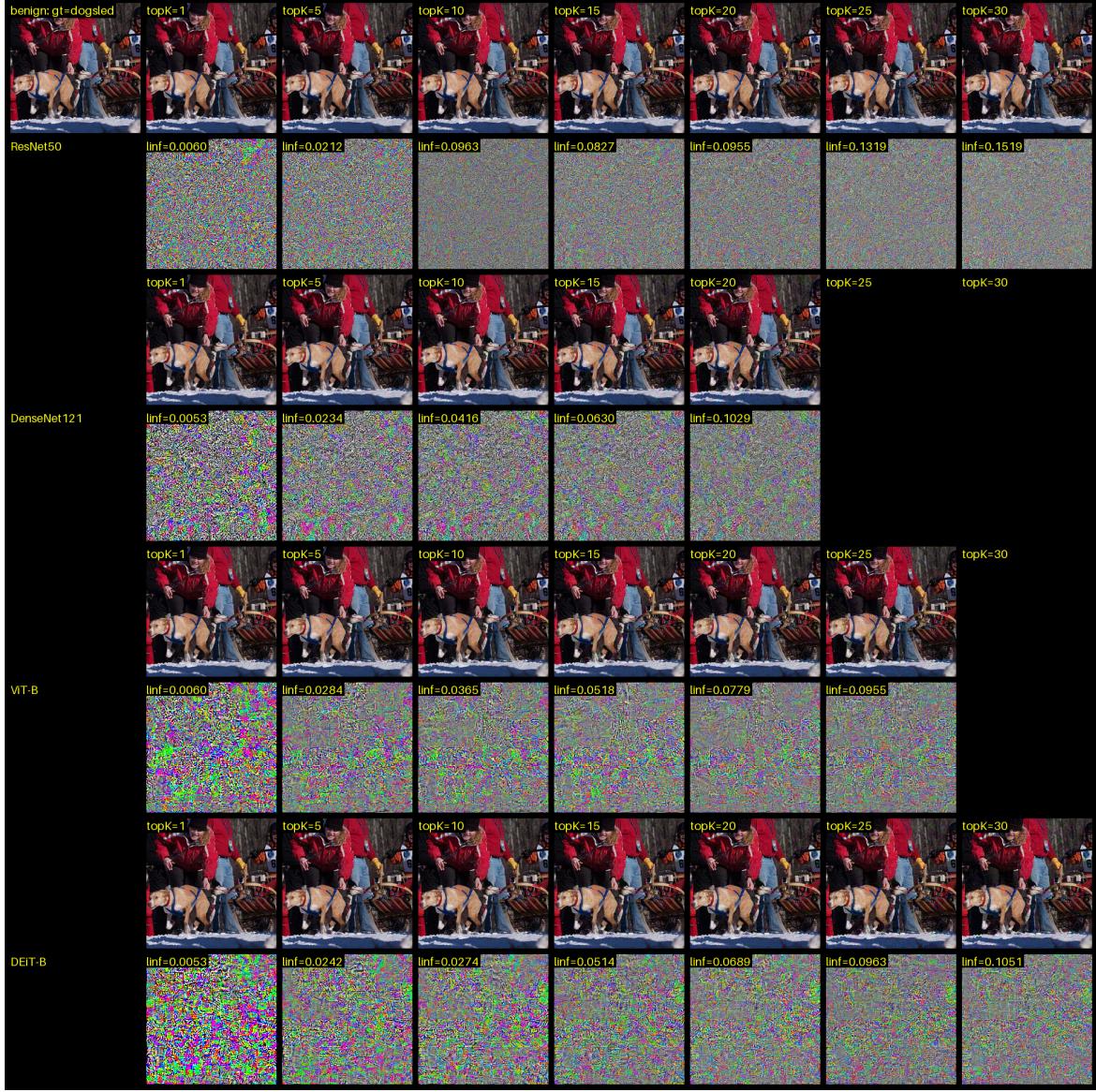


Figure 5. QuadAttacK examples of adversarial examples and associated perturbations learned for a benign image (ILSVRC2012_val_00002266 with the ground-truth label, dogsled) using a list of randomly sampled 30 targets (see the list for **seed=52** in the Appendix D) in the order of: crutch, wood-rabbit, prison, jigsaw-puzzle, joystick, space-bar, lumbermill, West-Highland-white-terrier, English-springer, spindle, hot-pot, African-hunting-dog, beaver, loggerhead, Cardigan, torch, radio-telescope, strawberry, beagle, chain, dalmatian, tiger, beer-bottle, maillot, ping-pong-ball, bighorn, hard-disc, analog-clock, hair-slide, parachute. The adversarial perturbations are normalized to $[0, 1]$ for the sake of visualization. Some of them are treated as being “visually imperceptible” based on the commonly used threshold $8/255 = 0.0314$ for ℓ_∞ (l_{∞}) norms. If QuadAttacK fails using a model for a K (e.g. topK=25 for DenseNet121), we leave it blank. For the benign image, the top-30 predictions by the four models respectively are:

- **ResNet50:** dogsled, Eskimo dog, bobsled, Ibizan hound, Labrador retriever, EntleBucher, beagle, Weimaraner, Greater Swiss Mountain dog, bloodhound, stretcher, Cardigan, Walker hound, redbone, Leonberg, Siberian husky, English foxhound, Chihuahua, shovel, Bernese mountain dog, malinois, ski mask, groenendael, Chesapeake Bay retriever, curly-coated retriever, drum, cocker spaniel, Gordon setter, Saluki, cowboy hat.
- **DenseNet121:** dogsled, Ibizan hound, Chesapeake Bay retriever, American Staffordshire terrier, whippet, Weimaraner, bobsled, vizsla, snowmobile, drum, malinois, Rhodesian ridgeback, Saluki, Eskimo dog, ski, Labrador retriever, mountain tent, Irish terrier, toyshop, shovel, muzzle, ski mask, dingo, alp, Irish wolfhound, Greater Swiss Mountain dog, Brittany spaniel, hog, Staffordshire bullterrier, Siberian husky.
- **ViT-B:** dogsled, Ibizan hound, Eskimo dog, American Staffordshire terrier, whippet, Greater Swiss Mountain dog, snowmobile, EntleBucher, boxer, Saluki, bobsled, Siberian husky, Norfolk terrier, Staffordshire bullterrier, basenji, Great Dane, Rhodesian ridgeback, Irish terrier, Brittany spaniel, Tibetan terrier, Chihuahua, muzzle, vizsla, beagle, rugby ball, Walker hound, Norwich terrier, Italian greyhound, Cardigan, Weimaraner.
- **DeiT-B:** dogsled, Eskimo dog, EntleBucher, Ibizan hound, whippet, Chihuahua, Weimaraner, Siberian husky, bearskin, Greater Swiss Mountain dog, Italian greyhound, bobsled, manhole cover, beagle, snowmobile, coffeepot, scabbard, bald eagle, langur, wing, espresso, stethoscope, mortarboard, dingo, suit, cowboy hat, piggy bank, carpenter’s kit, basenji, zucchini.