
Compute-in-memory Circuits and Architectures for E!cient Acceleration of AI and
Data Centric Workloads

by

Amitesh Sridharan

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved June 2025 by the
Graduate Supervisory Committee:

Deliang Fan, Chair
Jae-sun Seo

Yu Cao
Je" Zhang

ARIZONA STATE UNIVERSITY

August 2025

ABSTRACT

Modern computing is increasingly driven by the explosive growth of data from

applications such as Artificial Intelligence (AI), Machine Learning (ML), and Genomics.

These workloads are inherently data-intensive, requiring fast and e!cient processing

of large datasets. Although scaling input data in AI applications continues to boost

performance, traditional computing architectures have struggled to keep pace, creating

a widening gap between data generation and processing capabilities.

This disparity stresses the three fundamental pillars of computing—storage, commu-

nication, and computation—impacting performance, energy e!ciency, and cost. Con-

ventional Von Neumann architectures, designed to maximize computational through-

put, now face the “memory and power wall,” where compute units cannot fetch or

process data fast enough to meet demand. As data movement becomes the dominant

bottleneck, there is a clear need to pivot from compute-centric to memory-centric

design approaches.

In-Memory Computing (IMC), or Compute-in-Memory (CIM), addresses these

challenges by performing computation directly within memory, minimizing data

movement and mitigating the memory wall.

This dissertation introduces a series of digital CIM circuits and architectures that

significantly improve power, performance, and area (PPA) metrics for data-intensive

workloads. It begins with a programmable CIM design that balances the flexibility of

Central-Processing-Units(CPUs)/Graphics Processing Units(GPUs) with the e!ciency

of ASICs, enabling a broad class of applications. A prototype 28nm CMOS chip is

then presented to accelerate general matrix-matrix multiplications (GEMMs) across

various fixed-point precisions.

The focus then shifts to sparse GEMM acceleration. The first design demon-

i

strates how CIM tailored for channel decoders leverages both fixed and unstructured

sparsity to outperform conventional designs. The second design, fabricated in 28nm

CMOS, supports diverse unstructured sparse formats and integer precisions, e!ciently

targeting highly sparse deep neural networks (DNNs). The final design achieves

state-of-the-art e!ciency in compressed sparse GEMMs, supporting both integer and

floating-point data types using shared hardware. It also integrates a RISC-V CPU to

manage computation across diverse matrix sizes and model types.

Together, these contributions advance CIM as a scalable and e!cient platform for

future AI and data-centric systems.

ii

ACKNOWLEDGMENTS

I owe my deepest gratitude to my wife, Vaishali Sridhar, my parents, Meera

Natarajan and Sridharan Kanakarajan, and my brother, Visvesh Sridharan, for their

unwavering love, encouragement, and support throughout every stage of my Ph.D.

journey. This dissertation is dedicated to them.

I am profoundly grateful to my advisor and committee chair, Dr. Deliang Fan, for

his exceptional mentorship, insightful guidance, and constant encouragement during

my doctoral studies. His support has been instrumental in shaping my research

direction, refining my writing, and developing essential skills in time management and

critical thinking. I am especially thankful for his patience, his belief in my potential,

and his dedication to guiding me through each phase of my Ph.D. It has truly been

an honor and privilege to be his student.

I would also like to express my heartfelt appreciation to Dr. Jae-sun Seo, a member

of my Ph.D. advisory committee, for his outstanding mentorship and continued

support. From the very beginning of my Ph.D., he has been a constant source of

inspiration. I am sincerely grateful for the opportunities he provided, his thoughtful

feedback, and, most importantly, for treating me as one of his own students. His

influence has had a lasting impact on both my academic and personal growth, and I

deeply aspire to follow the example he sets.

My sincere thanks go to Dr. Yu (Kevin) Cao and Dr. Je" Zhang for their invaluable

guidance throughout my research projects and for their generous service as members

of my Ph.D. committee. I am also thankful to Dr. Bo Yuan, Dr. Shan X. Wang, Dr.

Wilman Tsai, and Dr. Yiran Chen for their collaboration and insightful contributions,

which have greatly enriched the scope and impact of my work. Additionally, I would

like to thank Dr. Harsono Simka and Dr. Ming He from Samsung Semiconductor Inc.,

iii

and Dr. Kerem Akarvardar and Dr. Xiaoyu Sun from TSMC Corporate Research, for

their valuable feedback and technical mentorship during my summer internships. Their

guidance has significantly shaped my research direction and professional development.

I am deeply indebted to my colleagues and collaborators Dr. Shaahin Angizi, Dr.

Fan Zhang, Asmer Hamid Ali, Dr. Sai Kiran Cherupally, Dr. Jyotishman Saikia,

Anupreetham, Md. Habibur Rahman, Dr. Adnan Siraj Rakin, Dr. Li Yang, Yongjae

Lee, Yuan Liao, Dr. Shreyas Venkataramanaiah, Jingxing Li, Jingkai Guo, Yaotian

Liu, Dr. Injune Yeo, Haotian Su, Boyang Cheng, Yucheng Wang, and Jiawei Hu—for

their collaborative spirit, insightful discussions, and steadfast support throughout my

Ph.D. Their friendship and contributions have been instrumental to both the progress

and enjoyment of my graduate experience.

I also wish to thank my graduate advisors, Lynn Pratt and Ian James, for their

continuous support with administrative matters and logistics. Their guidance ensured

a smooth and productive academic journey.

Finally, I would like to thank my friend Magesh Sridhar for his encouragement

and support. His positivity and friendship have meant a great deal to me and have

played an important role in the successful completion of this dissertation.

This work is supported in part by the National Science Foundation under Grant

No.2314591, No.2505326, No.2528723, No.2528767, and ASU.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1 INTRODUCTION . 1

1.1 Today’s Computing Limitations . 1

1.2 Memory Centric Compute Paradigm . 2

1.3 Thesis Organization . 6

2 PROGRAMMABLE AND GENERIC PROCESSING-IN-SRAM AC-

CELERATOR . 8

2.1 Introduction . 8

2.2 PSRAM Chip Circuit and Architecture . 11

2.3 Chip Measurement Results . 15

2.3.1 Performance Measurements . 15

2.3.2 Variability Analysis . 16

2.4 Application Evaluation and Comparison . 18

2.4.1 Case Study 1: Bulk Bitwise Boolean Operations 18

2.4.2 Case study 2: Binary Weight Neural Networks 19

2.4.3 Case study 3: Data Encryption . 22

2.5 Conclusion . 23

3 PRECISION SCALABLE IN-MEMORY COMPUTING MACRO WITH

BIT-PARALLEL INPUTS AND DECOMPOSABLE WEIGHTS 24

3.1 Introduction . 25

3.2 PS-IMC Macro Architecture . 27

v

CHAPTER Page

3.2.1 Bit-Cell Design . 27

3.2.2 Carry Save Adder (CSA) Tree . 29

3.2.3 Decomposed Weight Precision Data-flow 30

3.2.4 Variable Shift Accumulator (VSA) for Precision Handling . . 32

3.3 Chip Measurement Results . 35

3.4 Conclusion . 37

4 A FULLY DIGITAL SPARSE IN-MEMORY MATRIX VECTOR MUL-

TIPLIER FOR COMMUNICATION APPLICATIONS 38

4.1 Introduction . 39

4.2 Neural BP Algorithm . 41

4.3 Proposed DSPIMM Platform . 45

4.3.1 Architecture and Data Flow . 45

4.3.1.1 W1, Structured Sparse Matrix Memory 46

4.3.1.2 W2, Unstructured Sparse (USP) Matrix Memory 46

4.3.1.3 Global Addition . 47

4.3.1.4 MinSum Compute and Dot Products 47

4.3.1.5 Sv Calculation . 47

4.3.2 6+2T (8T) SRAM Bitcell Design for In-memory-computing 48

4.3.3 Bit-Serial Matrix Vector Multiplication (MVM) In-memory . 49

4.3.4 Structured Sparse Matrix Vector Multiplication (SSP-MVM) 50

4.3.4.1 Greedy Weight Compression and Localization

(GWCL) Algorithm for SSP-MVM. 50

4.3.4.2 SSP-MVM In-Memory Compute Circuit and Archi-

tecture . 51

vi

CHAPTER Page

4.3.5 Unstructured Sparse Matrix Vector Mult. (USP-MVM) 52

4.3.5.1 Enhanced Greedy Algorithm for USP-MVM 52

4.3.5.2 USP-MVM IMC Circuit and Architecture 53

4.3.5.3 Overflows . 54

4.4 Evaluation and Results . 55

4.4.1 Experiment Setup . 55

4.4.2 Experiment Results . 56

4.5 Conclusion . 57

5 A SPARSITY AWARE IN-MEMORY-COMPUTING MACRO WITH

CONFIGURABLE SPARSE REPRESENTATIONS 59

5.1 Introduction . 60

5.1.1 Background and Motivation . 60

5.1.2 Challenges and Benefits of Sparse Compute 61

5.2 Circuit, Architecture and Operation . 63

5.2.1 SP-IMC Macro Architecture . 63

5.2.2 Bitcell Design . 64

5.2.3 Sparse Compression Formats and Variable Sparsity Ratio. . . 65

5.2.3.1 Compression Direction . 66

5.2.4 Dataflow and Pipeline . 67

5.2.5 Mapping Compressed kernels . 68

5.3 Experiment Results and Analysis . 69

5.3.1 Chip Measurements . 69

5.3.2 Comparison and Evaluation . 72

5.4 Conclusion . 73

vii

CHAPTER Page

6 SPARSITY INTEGRATED COMPUTE-IN-MEMORY ACCELERA-

TOR WITH A FUSED DOT-PRODUCT ENGINE AND A RISC-V

CPU . 75

6.1 Introduction . 77

6.2 Architecture and Operation . 78

6.2.1 SAFER Chip Architecture . 78

6.2.2 SAFE Macro Architecture . 80

6.2.2.1 Compute Column (CC) . 81

6.2.2.2 Sparse Decode Unit (SD). 81

6.2.2.3 FP8 fused dot-product (FSD) and INT8 MAC 83

6.3 Chip Measurements and Results . 84

6.4 Conclusion . 88

7 CONCLUSION . 91

REFERENCES . 93

APPENDIX

A PREVIOUS PUBLISHED WORKS . 100

B PERMISSION STATEMENT FOR THE PREVIOUS PUBLISHED

WORKS . 102

viii

LIST OF TABLES

Table Page

1. Measured Reference Voltage Ranges . 17

2. Latency Comparison of Vector Boolean Logic Operations Supported by

PSRAM and Prior Accelerators . 19

3. Comparison with State-of-the-art SRAM Based PIM Accelerators. 21

4. 128-bit AES Performance. 22

5. Comparison with Prior Digital IMC Works . 36

6. Power Breakdown . 56

7. GWCL Algorithm Memory Benefits(Excludes Index Memory) 57

8. Comparison with State-of-the-art SRAM Based IMC Accelerators 57

9. Comparison with Prior LDPC Implementations . 58

10. RISC-V Instruction Set Extensions . 80

11. AI Model Accuracy for Various Sparsity Ratios . 88

12. Comparison with State-of-the-art Fully Digital CIM Works 89

ix

LIST OF FIGURES

Figure Page

1. PSRAM Chip with 8t SRAM Cell as the Operand Memory and the Proposed

Single-cycle Logic-SA Design (Adapted from Sridharan et al. (2022a), with

Permission). 12

2. In-memory Logic Simulation Waveforms. 14

3. PSRAM Chip Micrograph and Area Breakdown . 15

4. Frequency Scaling over Di"erent Vdds (A), Static and Dynamic Power

Consumption (B), Vref Scaling over Di"erent Vdds (C), and Throughput

Scaling over Di"erent Vdds (D). 16

5. Monte-carlo Simulations for Vref Seperation Analysis . 18

6. BWNN Hardware Mapping . 20

7. (A) PSRAM Energy Consumption and (B) Processing Time for Running

the Alexnet (Imagenet Dataset). 20

8. AES Block Diagram with the Gate Utilization. 22

9. Comparison of Conventional Digital IMC Implementations Versus Proposed

Throughput Oriented PS-IMC Implementation . 26

10. PS-IMC Macro Architecture Design. (Adapted from Sridharan et al. (2024a)

with Permission) . 28

11. (A) Bit-cell Schematic, (B) Layout, and (C) Truth Table. 29

12. Precision Breakdown and Tree Structures of CSA and BAT 30

13. (A) Grouped Weight Precision, (B) PS-IMC’s Decomposed Weight Precision,

(C) Multiply and Accumulate Hardware Cost for 4-bit Operands 32

x

Figure Page

14. (A) Psum Reduction from Top and Bottom Sub-arrays, (B) Variable Shift

Accumulator Micro-architecture, (C) Timing Diagram with the Total Num-

ber of Macs Performed in a Single PS-IMC Macro . 33

15. Throughput (TOPS) vs. Energy-e!ciency (TOPS/W) for (a) 1bW:1/4bI,

(B) 4bW:1/4bI, and (C) 8bW:1/4/8bI Modes. (D) Power and Frequency

Scaling . 34

16. Die Micrograph (Left), and Area Breakdown (Right) . 35

17. Example of Neural-BP Decoding Procedure . 42

18. (A) DSPIMM Architecture (B) Unstructured Sparse Weight In-memory

Compute (C) Structured Sparse Weight In-memory Compute (D) Data Flow

of Bit-serial MVM. (Adapted from Sridharan et al. (2023) with Permission) 45

19. (A) 6+2T(8T) Compute Bit-cell (B) Truth Table of 2T And/Dot-product . . 48

20. EGWCL Algorithm Example . 50

21. Area Breakdown of (A) SSP Matrix Memory (B) USP Matrix Memory. 55

22. Current Sparse IMC Implementation Drawbacks, Benefits of Sparse Encod-

ing, Challenges of Sparse Encoded Weights in IMC . 62

23. Overall Architecture of SP-IMC Macro, Bit-cell Schematic, Layout, and

Micro-architecture of In-memory Decode Hardware. (Adapted from Sridha-

ran et al. (2024b) with Permission) . 64

24. Dataflow of Various Modes in SP-IMC, Pipeline Diagram, Index Priority

Queue, SpMM Parallelism in Memory . 68

25. Mapping Methodologies for COO-CSC, RL, Why CSR Is Not IMC Friendly

and Benefits of N:M Sparse Encoding . 70

xi

Figure Page

26. Chip Measurement Results, Accuracy Results of Pruned DNNs, Area Break-

down in Macro and System Level . 71

27. System Latency, Write Operations, Figure of Merit (FOM), and Comparison

to Prior Digital IMCs . 73

28. SAFER Chip Architecture . 76

29. SAFE Core and Macro Architecture . 79

30. (A) Sparse Decode Unit, (B) Sparse Compression and Mapping, (C) Re-

ducing Hardware Complexity by Normalizing Input Queue Length 82

31. (A) Floating-point Multiply Unit and (B) Fused Dot-product in SAFE 84

32. Pipeline Diagram for a 1:2 Sparse Workload . 85

33. (A) SAFE Power, (B) Area Breakdown . 86

34. Power and Frequency Scaling (A), Sparsity Savings (B), Throughput and

Energy E!ciency Scaling (C), Figure of Merit (D) . 87

35. Testing Setup, Die-Micrograph and Chip Summary . 90

xii

Chapter 1

INTRODUCTION

1.1 Today’s Computing Limitations

Over the past several decades, compute performance was primarily limited by

hardware capabilities, but this was consistently overcome by advances in transistor

scaling, as described by Moore’s Law (doubling the number of transistors per chip)

and Dennard scaling (allowing for higher clock speeds and lower power per transistor

as they shrank) However, as we approach the physical and thermodynamic limits of

miniaturization, both Moore’s Law and Dennard scaling have slowed significantly,

making further gains increasingly di!cult and expensive Das (2015).

At the same time, the traditional Von-Neumann computing paradigm faces inherent

bottlenecks that are now more pronounced. The most significant is the Von-Neumann

bottleneck, which arises from the separation of memory and compute units. In this

architecture, data and instructions must travel back and forth across a shared bus,

limiting throughput and causing the processor to idle while waiting for data transfers.

As processor speeds have far outpaced improvements in memory bandwidth, this

bottleneck has only worsened, especially for data-intensive applications like AI and

large-scale data analytics. Additionally, the serial, step-by-step nature of Von-Neumann

processors restricts their ability to e!ciently handle highly parallel workloads, further

limiting performance gains even as more cores are added. Attempts to mitigate these

issues—such as using larger caches, branch prediction, and multi-core designs—have

1

provided incremental improvements but have not solved the fundamental architectural

limitations.

The memory system which spans from fast SRAM caches to DRAM main memory

and even to slower storage like SSDs is responsible for a disproportionate share of the

system’s energy consumption, performance bottlenecks, reliability issues, and cost.

As applications continue to evolve particularly in domains such as machine learning,

genomics, graph processing, and large-scale data analytics they are becoming far

more data intensive, exacerbating the pressure on memory systems. The result is

a bottleneck between communication data path between the compute and memory.

This bottleneck, known as the memory wall problem and results in substantial data

movement overhead. A key observation from Mutlu (2018) highlights that, in a

traditional CPU, the data movement required for a simple ADD operation can cost

up to 115→ more than the computation itself.

1.2 Memory Centric Compute Paradigm

A promising solution to the memory wall problem is the Processing-in-Memory

(PIM)—also referred to as Compute-in-Memory (CIM) or In-Memory Computing

(IMC)—paradigm (Hereafter, the terms Processing-in-Memory (PIM), Compute-in-

Memory (CIM), and In-Memory Computing (IMC) will be used interchangeably).

This approach rethinks the traditional separation between computation and storage

by placing computing elements as close to memory as possible, and in many cases,

embedding them directly within the memory arrays. By doing so, it virtually elimi-

nates the performance and energy bottlenecks caused by excessive data movement,

addressing the issue from both circuit-level and architectural perspectives. Over the

2

past decade, numerous studies have demonstrated the e"ectiveness of this paradigm

across various memory types including SRAMs Zhang et al. (2017); Yin et al. (2020);

Jiang et al. (2020); Hu et al. (2025), DRAMs Zhang et al. (2021a); Li et al. (2017);

Ahn et al. (2015); Seshadri et al. (2017), and even emerging non-volatile memory

technologies like MRAMs Sridharan et al. (2022b); Zhang et al. (2024b) and RRAMs

Zhang et al. (2024a); Wang et al. (2023). The benefits of applying a memory-centric

computing model vary depending on the memory type as well as the underlying

compute methodology whether analog or digital. The analog computing model as in

Zhang et al. (2017); Jiang et al. (2020), map discrete numbers to the current domain

and uses current summing to perform arithmetic instead of traditional digital gates.

This has huge potential when it comes to reduced computation resources but it requires

the use of ADCs/DACs which tradeo"s compute accuracy with power, performance,

area as well as robstness and variability Seo et al. (2022). On the other hand we

have digital compute paradigm which is similar to digital ASICs but here the memory

centric paradigm is adopted by closely interleaving compute and memory by directly

driving compute logic with static components thereby e"ectively moving a part if not

most of the compute within the bit-cell or into the memory array. This eliminates

the need for memory reads and writes for compute e"ectively matching the memory

bandwidth with the memory size. This has much more practical viability and can

achieve energy e!ciency close to analog compute. This dissertation specifically focuses

on exploring digital compute-in-memory circuits and how they can be e"ectively used

to accelerate data-intensive applications.

The key contributions of this thesis are:

• We propose a programmable Processing-in-Memory (PIM) architecture that

unifies PIM paradigm with flexible programmability. This design allows a single

3

memory-centric compute substrate to e!ciently support and accelerate a wide

range of data-intensive applications, rather than being limited to fixed-function

accelerators.

• To demonstrate its practical viability, we implement and fabricate the pro-

grammable PIM design as a silicon prototype using 65nm CMOS technology. We

then validate the architecture’s e"ectiveness by mapping representative applica-

tions directly onto the chip. Through real-time execution and benchmarking,

we demonstrate significant performance and energy benefits, highlighting the

practicality and generalizability of our programmable PIM compute approach.

• Given the dominance of AI as a data-intensive workload, we explore how di"erent

characteristics of AI/ML models—including model size, numerical precision,

data types, and sparsity—interact and trade o" with one another in the context

of in-memory computing. We propose a suite of CIM architectures tailored to

e"ectively handle these diverse requirements and to deliver real-time compute

benefits.

• To enable scalable precision, we present PS-IMC (Precision-Scalable In-Memory

Compute), a novel CIM architecture that supports bit-parallel multiply-

accumulate (MAC) operations across multiple integer precisions. PS-IMC

achieves high compute e!ciency by dynamically adapting to di"erent precision

levels through intelligent resource sharing within the compute pipeline. This

flexibility allows it to deliver one of the highest compute throughputs reported

to date for a wide range of integer formats. The design is fabricated in 28nm

CMOS technology and is benchmarked against state-of-the-art CIM macros,

demonstrating its superior performance and precision scalability.

• To e!ciently handle sparsity, we propose two CIM architectures: DSPIMM

4

and SP-IMC. These are among the first in-memory compute designs to support

unstructured sparsity and can directly operate on compressed weight representa-

tions stored within the memory. This is made possible through a time-interleaved

sparse decode methodology, which achieves the benefits of memory compression

while significantly reducing decoding complexity and overhead.

• We validate the DSPIMM architecture by mapping a sparse communication-

driven deep neural network (DNN) algorithm—specifically, the Neural Belief

Propagation (Neural BP) algorithm—onto the hardware. We compare its

performance against traditional ASIC implementations to demonstrate the

advantages of in-memory execution for sparse models.

• In SP-IMC we further explore how the time shared sparse decode methodology

can be configured to support multiple sparse compression formats and a wide

range of sparsity ratios, all while preserving bit-parallel MAC support and

o"ering robust compute e!ciency across use cases. A prototype of the proposed

architecture, fabricated in 28nm CMOS technology, demonstrates more than

a 4-50→ reduction in compute resources required to run popular models such

as ResNet, compared to baseline digital designs, highlighting the substantial

benefits of CIM for real-world inference tasks.

• To address flexible data type support, we design a fused multiply-add (FMA)

pipeline within the CIM fabric that can process both integer and floating-point

formats across various precision levels. This allows hardware reuse across both

INT8 and FP8 formats.

• We also explore an alternative semi-structured N:M sparsity methodology in

CIMs, which o"ers a more hardware-friendly approach to sparse compute while

5

preserving high compression e!ciency with better accuracy compared to a fully

structured sparsity.

• To address the scalability of matrix operations across varying shapes and di-

mensions, we co-design a lightweight, custom RISC-V processor with our CIM

macros. This hybrid architecture serves as a flexible controller to orchestrate

data movement and computation across matrix tiles, enabling scalable and

programmable matrix multiplication.

• All proposed features are integrated into a complete 28nm silicon prototype,

and we perform comprehensive comparisons with state-of-the-art CIM designs

to show that our system achieves best-in-class performance, power, and area

e!ciency.

1.3 Thesis Organization

The outline of this thesis is as follows:

• Chapter 2 presents a programmable and generic SRAM (PSRAM) based

Compute-in-memory macro prototyped in 65nm CMOS. This chapter goes over

the memory-cell circuit design, macro architecture, variability analysis, chip

measurement results, and case studies for power/performance characterization

of prototype chip taped-out in commercial 65nm CMOS.

• Chapter 3 presents a precision scalable Compute-in-memory macro prototyped

in 28nm CMOS that proposes a hardware scaling methodology in CIM based

design to accelerate variable fixed precision multiply-and-accumulate workloads

primarily focused on accelerating matrix-vector multiplications. The CIM circuit

6

design, macro architecture, chip measurement results, workload characterizations

and comparsion with prior SoTA CIM desings are included in this chapter.

• Chapter 4 presents a system level CIM based acceleration hardware for an AI

based channel decoder primarily used in communication applications. This chap-

ter elaborates on channel codes, AL based channel decoding algorithms, a sparse

matrix multiplier design based on CIM, algorithm and hardware performance

characterization and comparison with prior works.

• Chapter 5 presents a prototype chip fabricated in 28nm CMOS that acceler-

ates generic unstructured sparse matrix-vector multiplications using a digital

Compute-in-Memory (CIM) architecture. This design explores the integration of

multiple sparsity formats and compression ratios within a single, monolithic CIM

framework, enabling broad applicability across diverse AI workloads. By directly

computing on compressed representations we show how the proposed architec-

ture achieves substantial reductions in compute resource usage for large-scale

AI models.

• Chapter 6 presents a digital CIM-based fused multiply-add (FMA) matrix-

vector accelerator prototype chip that supports semi-structured sparsity and

integrates a custom RISC-V CPU for e!cient data movement. We demonstrate

how the FMA pipeline is designed to handle both integer and floating-point

workloads using shared hardware. We then evaluate the accelerator on various

CNN and LLM models with di"erent semi-structured sparsity formats, all

supported natively in hardware. The chapter also explores the idea of how a

RISC-V core can serve as a programmable controller to manage data flow across

diverse AI workloads.

• Chapter 7 concludes the dissertation.

7

Chapter 2

PROGRAMMABLE AND GENERIC PROCESSING-IN-SRAM ACCELERATOR

This chapter introduces a generic and programmable Processing-in-SRAM

(PSRAM) accelerator chip that enables acceleration of a variety of data-intensive work-

loads. Built on an 8T-SRAM array, the proposed design is the first to support the full

set of Boolean logic operations—including 2 and 3-input NOR, NAND, XOR—along

with majority and full-adder operations, all executed in a single cycle reduced to

just memory reads. This level of functionality and flexibility within a single PSRAM

platform enables a broad range of compute-in-memory applications, including parallel

vector processing, neural network acceleration, and data encryption. To demonstrate

its capabilities, the PSRAM accelerator is implemented within a 16 Kb SRAM macro

and fabricated in a 65nm CMOS process. The prototype chip operates at a frequency

of 1.23 GHz, making it one of the fastest programmable in-memory computing systems

reported to date. The chip achieves a peak system-level throughput of 1.2 TOPS and

delivers an energy e!ciency of 34.98 TOPS/W at 1.2V, across the complete set of

supported 2- and 3-input Boolean logic functions.

2.1 Introduction

Traditional Von Neumann computing architectures—such as central processing

units (CPUs) and graphics processing units (GPUs)—have long been the backbone of

general-purpose and high-performance computing. These platforms are valued for their

programmability, flexibility, and ability to e!ciently execute a broad spectrum of bit-

8

wise logic and arithmetic operations. However, as data-intensive applications continue

to grow in both scale and complexity, these architectures increasingly face fundamental

bottlenecks in-memory bandwidth and energy e!ciency. The separation of memory and

computation in Von Neumann systems results in frequent and energy-expensive data

transfers between processing and storage units, which limits performance scalability

and contributes significantly to power consumption. In response to these limitations,

Processing-in-Memory (PIM) architectures have emerged as a promising alternative.

By integrating computation capabilities directly within or near memory arrays, PIM

designs aim to reduce data movement, lower energy consumption, and improve

overall throughput. However, application-specific PIM architectures, while e!cient

for targeted tasks, often su"er from limited generality. These designs are typically

optimized for a specific algorithm or application domain—such as convolutional neural

networks or encryption—which makes them inflexible and unable to adapt to the

fast-paced evolution of software workloads and algorithmic paradigms. As such, their

utility diminishes when applied outside their narrowly defined operational scope,

making them unsuitable for general-purpose use Biswas et al. (2018).

To overcome these limitations, recent research has focused on developing generic and

programmable PIM architectures capable of supporting a wider range of applications.

State-of-the-art designs, such as those presented in Wang et al. (2020), explore

alternatives to conventional bit-parallel processing models by adopting bit-serial

computing techniques. These approaches enable more compact and reconfigurable

PIM implementations that support basic arithmetic and logic functions using a limited

set of in-memory operations. Bit-serial methods decompose arithmetic computations

into a sequence of Boolean operations executed over multiple cycles, which allows for

flexible algorithm mapping without requiring extensive hardware specialization.

9

However, this added flexibility comes at the cost of increased latency and greater

intermediate data movement. Since bit-serial implementations often require multiple

compute cycles even for basic operations, they involve frequent read and write-back

steps between memory cells and peripheral logic. This can negate some of the energy

and performance benefits that PIM architectures are designed to deliver, especially in

scenarios where high-throughput and low-latency computation are essential Biswas

et al. (2018); Wang et al. (2020); Valavi et al. (2019); Zhang et al. (2018); Yue et al.

(2020).

To address the limitations of existing application-specific and bit-serial pro-

grammable PIM designs, this work presents a programmable Processing-in-SRAM

(PSRAM) accelerator that combines the high computational e!ciency of in-memory

processing with the flexibility of general-purpose programmability. Unlike prior works

that are either limited to a narrow set of operations or require multiple compute cycles

to implement basic logic functions, the proposed PSRAM supports a complete set

of Boolean operations—including both 2-input and 3-input boolean logic operations

(e.g., NOR, NAND, XOR), majority logic, and full adder functionality all executed

within a single memory cycle. To the best of our knowledge, this is the first in-memory

computing macro that realizes the complete set of logic functions in a single-cycle

execution model.

This enables one of the fastest programmable in-memory computing systems

reported to date, with the prototype design achieving a clock frequency of 1.23 GHz.

The one-cycle logic execution model not only improves raw throughput but also

addresses one of the major ine!ciencies of previous programmable in-memory logic

designs: redundant intermediate data write-back. In traditional multi-cycle PIM

systems, more complex logic functions such as 3-input operations and full adders are

10

typically realized through a sequence of basic Boolean steps, requiring multiple cycles.

Each cycle may involve reading and writing intermediate results to and from memory,

incurring both latency and energy overheads. By integrating support for complex

Boolean operations within a single memory cycle, PSRAM eliminates this overhead,

substantially reducing both latency and dynamic energy consumption Biswas et al.

(2018); Wang et al. (2020); Valavi et al. (2019); Zhang et al. (2018); Yue et al. (2020).

PSRAM accelerator is demonstrated across three distinct application domains

to showcase its versatility and general-purpose programmability. First, it supports

bulk bitwise vector operations, which are commonly used in data-intensive workloads

such as search, database filtering, and bitmap indexing. Second, the architecture

enables e!cient low-precision deep learning acceleration, leveraging its Boolean and

arithmetic capabilities to execute quantized neural network inference directly within

memory. Finally, PSRAM is applied to cryptographic computation by supporting the

Advanced Encryption Standard (AES) algorithm, illustrating its capacity to handle

complex bit-manipulation and control flow patterns required in security applications.

2.2 PSRAM Chip Circuit and Architecture

PSRAM leverages the charge-sharing feature of the 8T-SRAM cell on Read Bit-

Line (RBL) and elevates it to implement 2-input and 3-input Boolean logic between

two or three selected rows in a single memory read cycle. The key idea comes from the

observation that certain discharge rate on the precharged RBL is determined by the

data value stored in the simultaneously selected memory cells attached to the same

bit-line. For instance, by activating three memory rows via Read Word-Lines (RWL),

e.g., RWL0-RWL2 (Fig. 1), if S0,0, S1,0, and S2,0 memory cells all store ‘1’s, then

11

T3 T1

T4 T2Q

RB
LRWL0

W
BL

0

W
BL

B

WWL0

VRef1 VRef2 VRef3
8T SRAM cell

array_out

SAE

Clk

ref

VRef3RBL

Out OutbarSAE

T5 T6

T8

T7 di
sc

ha
rg

e
pa

th

PSRAM Chip Scan
Chain

CLK
Gen

182bit 531bit

Compute sub-array
RWL0
WWL0

RWL1
WWL1
RWL2
WWL2

RWL126
WWL126
RWL127
WWL127

Ro
w

De
co

de
r-I

Ro
w

De
co

de
r-I

I
Ro

w
De

co
de

r-I
II

Mo
dif

ied
 R

ea
d R

ow
 D

ec
od

er

W
rit

e R
ow

 D
ec

od
er

Ctrl
Reconfigurable Sense Amplifiers

S2,0

8T

8T

S2,1

8T

8T

S2,127

8T

8T

S1,0 S1,1 S1,127

S0,127S0,1S0,0

3W:L

3W:L

T7

6T

T8

Pr
ec

ha
rg

.

RWL1

T7

6T

T8

RWL2

If
S1

,1
27

=0
If

S2
,1

27
=1

cut-off

on

Precharger

RBL

8T-SRAM
Layout

W
BL

B

W
BL

WWL

RWL

VDD

GND

RB
L

M2
M1

M3

Poly
Diffus ion

RB
L

RB
L

RB
L

Pr
ec

hr
g_

BL

OR
AND

MUX 0 0 0 0 0 0 0 0
0 0 1 0 0 1 1 0
0 1 0 0 0 1 1 0
0 1 1 1 0 1 0 1
1 0 0 0 0 1 1 0
1 0 1 1 0 1 0 1
1 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1

Si Sj Sk Ca
rry

(M
AJ

)

Su
m

ORMA
J

AN
D

(X
OR

3)

Figure 1. PSRAM Chip with 8t SRAM Cell as the Operand Memory and the
Proposed Single-cycle Logic-SA Design (Adapted from Sridharan et al. (2022a), with
Permission).

the read access transistors (T8) remain OFF, and the RBL precharged voltage does

not discharge. On the other side, if all cells store ‘0’s, the RBL voltage will rapidly

discharge through T8s. Similarly, based on di"erent combinations of the values stored

in those memory cells, the discharged voltage value will be di"erent if sampled at a

preset frequency, which could be sensed by our follow up ‘logic-SA’ design to implement

di"erent logic functions through selecting di"erent voltage references. Theoretically,

there will be four di"erent voltage levels based on all possible combinations of three

memory cell data in the same bit-line. In our design, to yield a su!ciently large sense

margin, as shown in Monte Carlo simulations (Fig. 5), the read path transistor (T7 and

T8) size is designed to be 3→ as shown in Fig. 1. To implement a programmable logic

function, a new re-configurable logic-SA is designed as in Fig. 1. It consists of three

sub-SAs with voltage references (i.e., VRef1<VRef2<VRef3), each dedicated to distinct

logic functions. In this way, by activating three memory rows (i.e., input operand

vectors) at the same time, each sub-SA performs a neat voltage comparison between

12

the reference voltage and the discharged RBL voltages (w.r.t. di"erent discharge rate

corresponding to stored memory cell data), which respectively generates (N)OR3,

(MAJ)MIN, and (N)AND3 logic output (complementary SA), and more importantly,

at the same time. A novel single-cycle in-SRAM XOR3 (full adder’s Sum) logic is

developed through an interesting observation as shown in the bottom-right truth table

of Fig. 1. When the majority function (MAJ) output (green box in the truth table) is

‘0’, the corresponding XOR3’s output is the same as the OR3’s output. When the

majority function output is ‘1’, XOR3’s output can be achieved through AND3 as

highlighted by the purple box. Based on our last paragraph description, our logic-SA

could simultaneously get the OR3, MAJ and AND3 logic outputs, then we propose to

design the XOR3 logic through a two-transistor 2:1 multiplexer (with MAJ output as

the selector) circuit highlighted in the proposed reconfigurable logic-SA. The Boolean

logic of in-memory XOR3 can be given as XOR3 = MAJ(Si, Sj, Sk).AND(Si, Sj, Sk)+

MIN(Si, Sj, Sk).OR(Si, Sj, Sk). In this way, assuming three vector operands are pre-

stored in the memory, parallel in-memory full adder logic can be implemented for

the first time in a single memory cycle, where MAJ and XOR3 outputs generate the

carry-out and Sum signals, respectively. The two-input bit-wise operations will be

readily implemented by initializing one row to ‘0’/‘1’. All in-memory logic simulations

are first shown in Fig. 2, showing corresponding functionality.

13

memory Fig. 2 Simulation waveforms

819mv 568mv 98mv

111 110 101 000001010011100

Figure 2. In-memory Logic Simulation Waveforms.

14

Figure 3. PSRAM Chip Micrograph and Area Breakdown

2.3 Chip Measurement Results

2.3.1 Performance Measurements

We prototyped the PSRAM macro (128→128) in TSMC 65nm CMOS (Fig. 3).

The macro has a 2-KB/16Kb capacity and occupies 0.17 mm2 (with decoder) in the

chip floorplan. The bit-cell has an area of 4.56 µm2 (1080 F 2 when scaled according

to feature size), which is designed using logic rules. For e!cient integration, the SAs

are pitch matched w.r.t. the column and occupy 3.4% of the array size (0.082 mm2).

The complete core area breakdown is shown in Fig. 3. The PSRAM macro consumes

36 pJ (includes power consumed by all components on the die) and takes 813 ps to

generate 512 outputs of the complete 3 input logic set (AND3, XOR3, OR3, MAJ).

This represents a peak throughput of 2→128→4/813ps = 1259.52 GOPs at 1.2V supply

and a compute density of 583.12 GOPS/mm2. PSRAM achieves a significant speedup

of 4-157→ when compared to state-of-the-art in-memory computing works Biswas

15

0.8 0.9 1 1.1 1.2VDD (V)
0

0.25
0.5

0.75
1

1.25
1.5

TO
Ps

/W

0

0.5

1

0
0.25
0.5

0.75
1

 P
ow

er
 [

m
W

]

10

20

0.7 0.8 0.9 1 1.1
VDD [V]

500
550
600
650
700
750
800
850
900
950

1000

SA
 R

ef
. V

ol
ta

ge
 [m

V]
 Vref1

Vref2
Vref3

0.8 0.9 1 1.1 1.2
VDD [V]

0
0.25
0.5

0.75
1

1.25
1.5

M
ax

 F
re

qu
en

cy
 [G

H
z]

0

10

20

30

40

0.7 0.8 0.9 1 1.1 1.2
VDD [V]

0

10

20

30

Po
w

er
 [m

W
] Leakage

Dynamic

0.7 0.8 0.9 1.0 1.1 1.2
VDD [V]

400

600

800

1000

1200

1400

G
O

PS

20

40

60

80

100

120
(a)

(b)

(c)

(d)

Figure 4. Frequency Scaling over Di"erent Vdds (A), Static and Dynamic Power
Consumption (B), Vref Scaling over Di"erent Vdds (C), and Throughput Scaling over
Di"erent Vdds (D).

et al. (2018); Wang et al. (2020); Valavi et al. (2019); Zhang et al. (2018). We report

the maximum frequency, power consumption, throughput w.r.t. di"erent VDDs in

Fig. 4.

2.3.2 Variability Analysis

The RBL sense margins are first tested through post-layout Monte Carlo simulations

in Cadence Spectre for the four possible sensing voltages, as shown in Fig. 5, where

16

Table 1. Measured Reference Voltage Ranges

the sensing margin is reported considering both process (inter-die) and mismatch

variations (intra-die) for core VDD (1.0 V) at 1 GHz.

During the chip measurements, o"-chip voltage references are provided (VRef) to

the SAs. To conduct the VRef variation analysis on chip, we test all 128 bit-lines,

100 times, for all possible bit value combinations in memory. 10 chips are tested and

we report all the reference voltage ranges at di"erent VDDs and the corresponding

maximum frequencies with zero logic errors in Table 1. It is found that at lower

voltages the maximum operating frequency is limited by the shrink of VRef ranges. A

higher VDD also yields a larger sensing margin.

17

Figure 5. Monte-carlo Simulations for Vref Seperation Analysis

2.4 Application Evaluation and Comparison

2.4.1 Case Study 1: Bulk Bitwise Boolean Operations

The PSRAM could be leveraged to implement bulk bitwise Boolean logic operations

e!ciently between vectors stored in the same memory sub-array. This can lead to

e!cient re-use of the internal memory bandwidth. Table 2 compares the latency for a

set of vector operations of interest, implemented by three generic PIM designs. We

achieve the best performance of each design, where input vectors A(a0a1...) B(b0b1...)

and C(c0c1...) are stored in separate rows of the memory. We draw two conclusions

from Table 2. First, our PSRAM is the only design that supports a full-set of Boolean

logic (both 2-input and 3-input) and integer operations. Second, due to the complexity

18

Table 2. Latency Comparison of Vector Boolean Logic Operations Supported by
PSRAM and Prior Accelerators

of some operations (e.g., ADD/SUB/MULT), they cannot be implemented in a time-

e!cient manner by the prior designs Zhang et al. (2018); Wang et al. (2020), while

PSRAM outperforms all prior works in latency.

2.4.2 Case study 2: Binary Weight Neural Networks

We also implement the binary-weight neural network (BWNN) with various weight

configurations for AlexNet and report the energy, latency and other performance in

Table 3 and Fig. 7. The general HW/SW framework developed for BWNN consists

of image and kernel banks, and PSRAM sub-arrays. Weights and activation are

19

Sub-array
#1

k1,f1 k2,f2

k9,f9

k6,f6

k3,f3
k1,f1 k2,f2

k9,f9

k6,f6

k3,f3k1,f1 k2,f2

k9,f9

k6,f6

k3,f3
k7
k4
k1

k8
k5
k2

k9
k6
k3

k7
k4
1

k8
k5
1

k9
k6
1

k7
k4
1

k8
k5
1

+1
-1
-1

Sub-array
#9Sub-array
#1Sub-array

#1

kw

kh
Kernel batch

1
0
1

0
1
1

1
1
1

c

Input batch

Ch-1
(1) combined

batch

Ch-2
Ch-3
Ch-4

a0
a1
a2
a3

b0
b1
b2
b3

c0
c1
c2
c3

d0
d1
d2
d3

e0
e1
e2
e3

f0
f1
f2
f3

g0
g1
g2
g3

h0
h1
h2
h3

0 0 0 0

Reserved
for Sum

Reserved
for Carry

0 0 0 0

k7,f
7

k4,f
4 k7,f

7

k5,f
5

k7,f
7

k4,f
4 k7,f

7

k5,f
5

k7,f
7

k4,f
4 k7,f

7

k5,f
5

f7

0

0

f5

f2

f9

f6

f3f1

0 0 0 0

General
Reserved

0 0 0 0 Q
Q*

(2) transposed
mapping

x
y

(3) parallel
computation

n

m

m

m

2
k7
k4
k1

k8
k5
k2

k9
k6
k3

k7
k4
1

k8
k5
1

k9
k6
1

k7
k4
1

k8
k5
1

+1
-1
-1

kw

kh
f7
f4
f1

f8
f5
f2

f9
f6
f3

c

f1

Figure 6. BWNN Hardware Mapping

0.8 0.9 1 1.1 1.2
VDD [V]

10-4

10-3

10-2

Pr
oc

es
si

ng
 L

at
en

cy
 (s

)

0.8 0.9 1 1.1 1.2
VDD [V]

10-3

10-2

10-1

En
er

gy
 (J

)

0.8 0.9 1 1.1 1.2
VDD [V]

1e-3

1e-2

1e-1

En
er

gy
 (J

)

<1:8> acc.= 56.6%
<1:2> acc.= 55.4%
<1:1> acc.= 43.6%

0.8 0.9 1 1.1 1.2
VDD [V]

1e-3

1e-2

1e-1

En
er

gy
 (J

)

(b)(a)
Figure 7. (A) PSRAM Energy Consumption and (B) Processing Time for Running
the Alexnet (Imagenet Dataset).

20

Table 3. Comparison with State-of-the-art SRAM Based PIM Accelerators.

constantly quantized to 1-bit and q-bit using the same method as Faraone et al.

(2018), respectively, and then mapped to the parallel PSRAM sub-arrays. The top-1

accuracy after quantization on ImageNet dataset is reported in Fig. 7. For hardware

mapping, considering n-activated PSRAM chips with the size of 128→128 (Fig. 6), each

sub-array can handle the parallel ADD/SUB (multiply-and-accumulate operations are

converted to ADD/SUB in BWNNs) of up to 128 elements of m-bit (2m↑128) and

so accelerator could process n→128 elements simultaneously within computational

sub-arrays to maximize the throughput. The memory sub-array data mapping for

PSRAM is depicted in Fig. 6. We reserve four rows for Carry results initialized by zero

and up to 32 rows for Sum results. Every pair of corresponding elements to be added

together is aligned in the same bit-line. Herein, channel 1 (Ch1) and Ch2 should

be aligned in the same sub-array. With m=32-bit, Ch1 elements occupy the first 32

rows of the sub-array followed by Ch2 in the next 32 rows. The addition algorithm

starts bit-by-bit from the LSBs of the two words and continues towards MSBs. For

evaluation, a 7-layer BWNN is adopted with distinct weight configurations of <W:I>:

<1:1>, <1:2>, <1:8>. Our evaluation result reported in Fig. 7 shows that PSRAM

21

Figure 8. AES Block Diagram with the Gate Utilization

Table 4. 128-bit AES Performance.

can process AlexNet on average with 35 mJ energy per inference and ↓0.5 ms latency.

The process energy and latency include the amount required by multiple PSRAM

chips working as a whole entity. More detailed performance comparison with other

recent SRAM based PIM designs are reported in Table 3.

2.4.3 Case study 3: Data Encryption

We further take the Advanced Encryption Standard (AES) data encryption algo-

rithm as the third case-study. To facilitate working with input data (with a standard

input length of 128 bits), each input byte data is distributed into 8-bit such that

eight PSRAM sub-arrays are filled by 4→4 bit-matrices Mathew et al. (2010). After

mapping, PSRAM supports the required AES bulk bit-wise operations to accelerate

22

each transformations inside the memory. As shown in Fig. 8, all AES transformations

are mainly based on (N)AND and XOR operations that are fully supported in PSRAM.

In SubBytes, MixColumns, and AddRoundKey stages, parallel in-memory XOR2 and

(N)AND2 operations contribute to more than 90% of the operations. In ShiftRows

stage, state matrix will undergo a cyclical shift operation by a certain o"set. We use

the 128-bit AES software implementation as the baseline from Zhang et al. (2018), a

350nm ASIC Hutter et al. (2011), and a 40nm ASIC Zhang et al. (2018) designs for

comparison. Table 4 shows that PSRAM achieves the highest speed-up over baseline.

This mainly comes from the massively-parallel and high throughput XOR operation

supported in PSRAM.

2.5 Conclusion

This chapter introduces a programmable PSRAM chip design in TSMC 65nm

CMOS technology. For the first time, the PSRAM could execute a complete set

of Boolean logic vector operations (i.e., NOR/NAND/XOR, both 2- and 3-input),

majority, and full adder, all in a single memory cycle. The design is taped-out in

65nm CMOS and we demonstrate three case studies leveraging our PSRAM design

on the prototype chip, including parallel vector operation, neural networks and data

encryption.

23

Chapter 3

PRECISION SCALABLE IN-MEMORY COMPUTING MACRO WITH

BIT-PARALLEL INPUTS AND DECOMPOSABLE WEIGHTS

AI is currently the most dominant class of data-intensive applications, with

large-dimensional matrix multiplications forming the core of AI computation. As

AI models evolve rapidly in size, architecture, and numerical precision, there is a

growing demand for adaptable hardware accelerators capable of e!ciently handling

this diversity. While generic compute approaches—such as those discussed in the

previous chapter—o"er flexibility, they often su"er from high overhead when executing

matrix-matrix operations. This is primarily due to their reliance on multiple bit-serial

instructions to complete a single matrix multiplication, resulting in significant latency

overhead. A more e!cient alternative is the use of SIMD-style instructions, which

allow entire matrix multiplications to be executed with minimal cycle count and

reduced instruction complexity, making them better suited for high-throughput AI

workloads Dally (2023). To address this we present a fully digital multiply and

accumulate (MAC) in-memory computing (IMC) macro demonstrating one of the

fastest flexible precision integer based MACs to date. The design boasts a new

bit-parallel architecture enabled by a 10T bit-cell capable of four AND operations

and a decomposed precision data-flow that decreases the number of shift-accumulate

operations, bringing down the overall adder hardware cost by 1.57x whilst maintaining

100% utilization for all supported precision. It also employs a carry save adder tree

that saves 21% of adder hardware. The 28nm prototype chip achieves a speed-up of

24

2.6→, 10.8→, 2.42→, and 3.22→ over prior SoTA in 1bW:1bI, 1bW:4bI, 4bW:4bI, and

8bW:8bI MACs respectively.

3.1 Introduction

In-memory computing (IMC) has been widely investigated as a promising approach

to accelerate AI workloads. There are mainly two prevalent IMC design paradigms,

i.e., compute in analog or digital domain. Analog IMC has gained attention due

to the large number of operations it can perform per watt as well as per unit area.

But it faces significant drawback from computing accuracy standpoint. On the other

hand, digital IMCs Fujiwara et al. (2022b); Lee et al. (2022); Chih et al. (2021); Mori

et al. (2023b); Lin et al. (2023) are more akin to digital ASICs closely interleaving

memory and logic units. Many recent digital IMC works demonstrate high throughput

and energy e!ciency compared to their analog counterparts, without any accuracy

drop due to robust rail-to-rail logic operations. Convolutions are at the heart of deep

learning algorithms and are the most compute intensive operations. They follow a

multi-dimensional compute pattern, where the weights and inputs have five dimensions

(2D kernel, input channel, output channel, and bit-width).

Typical IMC designs follow a weight stationary approach by storing flattened 5D

weights (W) in 2D-space. The 2D weight matrix is constructed by assigning output

channels and bit-width to IMC rows (enabling parallel multiplications), the kernel

dimensions and input channels to IMC columns (enabling parallel accumulations).

The 5D-input feature maps (input/IP) are streamed from outside the memory onto

the word-lines (WL) performing multiplications within the bit-cell. WLs being a

limited resource (1-bit/cycle per WL in most cases), the 5D-input stream-in is time-

25

Figure 9. Comparison of Conventional Digital IMC Implementations Versus Proposed
Throughput Oriented PS-IMC Implementation

multiplexed to just 1D-input/unit time. In this setup, the input bit-width is also

unrolled in the time domain, hence a larger number of time-shared shift accumulations

circuits are present. The overall system incurs a large latency overhead due to the

bit-wise stream-in of inputs (latency overhead = (input precision) → (# of inputs)).

To maintain high throughput, large weight precision is typically addressed spatially

by grouping several memory columns together. This in-turn reduces the flexibility to

tune weight precision during inference. With the purpose of improving storage density,

recent works Fujiwara et al. (2022b); Mori et al. (2023b); Oh et al. (2023b) attempted

to time-share the compute hardware (adders, multipliers, etc.) with more memory

cells at the cost of throughput. Considering that convolutions are compute bound,

our approach is to maximize the throughput akin to Lee et al. (2022). However, Lee

et al. (2022) requires weight and/or input replication to achieve full utilization for

26

di"erent precision MACs. Fig. 9 illustrates the PS-IMC design and its advantages over

prior works. Implemented in 28nm CMOS, PS-IMC achieves the highest throughput

for all supported MAC precision (1/4/8-b Weight (W):1-8b Input (I)), the highest

energy e!ciency for 1bW:1bI and 1bW:4bI MACs and the highest normalized compute

density (TOPS/mm2) for 8bW:8bI MACs.

3.2 PS-IMC Macro Architecture

Fig. 10 depicts the architecture diagram of the PS-IMC macro. We design the

macro using a semi-bit-parallel architecture, i.e., the design is completely bit-parallel up

to 4b-input, and a higher input precision will require time multiplexing (4b-input/unit

time). There is a pipeline stage between the adder-tree and shifter to evenly distribute

the critical path across two cycles. Hence, it takes two clock cycles to complete a

MAC with a 4b-input and 4b-weight, three cycles for a MAC with 8b-input with 4b

or 8b-weight, and only one clock cycle for a 4b-input and 1b-weight. We implement

two 128→64 PS-IMC macros on the prototype chip and each 128→64 macro has two

64x64 sub-arrays stacked one on top of the other, with the variable shift accumulator

(VSA) in the middle. Each column of the PS-IMC sub array has one 64-input 4-bit

CSA tree and 64 10T-SRAM bit-cells.

3.2.1 Bit-Cell Design

Fig. 11(A) and Fig. 11(B) show the proposed 10T bit-cell schematic and layout.

Each bit-cell occupies 1.38µm2 and is designed using logic rules. Each of the four

27

Figure 10. PS-IMC Macro Architecture Design. (Adapted from Sridharan et al.
(2024a) with Permission)

additional transistors (T1-T4) perform a pass-gate based dot-product between 4b

input streamed in through the input/IP word lines (IWLs) and the 1b weight and

it’s complement stored on either side of the cross-coupled inverters. Each transistor

(T1-T4) is allocated to one input bit-significance, and performs a 1bW:1bI dot-product.

Thus, each bit-cell as a whole can perform a 1bW:4bI dot-product. Prior to compute,

the Partial Product (PP) nets are precharged to VSS and the IWLs are held at VSS

28

Figure 11. (A) Bit-cell Schematic, (B) Layout, and (C) Truth Table.

until all the weight bits are written into the SRAM bit-cells. This avoids any erroneous

compute when the stored bit is zero as the pass gates are controlled by the stored

weights. Additionally, PP_X requires precharge after a large time interval of 0.5µs.

This is dependent on the RC load on the PP_X. We determine this precharge interval

based on post layout simulations. The functionality of the pass-gate based AND

operation is shown in the truth table in Fig. 11(C).

3.2.2 Carry Save Adder (CSA) Tree

Fig. 12 compares the precision breakdown of all branches in a binary adder tree

(BAT) widely used in prior works Fujiwara et al. (2022b); Chih et al. (2021); Mori

et al. (2023b) and a CSA tree of similar configuration used in this work. CSAs have

been widely adopted in digital designs requiring multi-operand additions because of

the significant reduction in the number of full adders and the speed-up they provide.

CSAs isolate each operand into partial sums and carries which are accumulated in

29

Figure 12. Precision Breakdown and Tree Structures of CSA and BAT

parallel and the bit-precision is accounted for in the tree periphery. This utilizes

fewer high-precision adders and thereby results in an overall reduction in the number

of full adders, also resulting in a shorter critical path delay. For a 64-operand 4-bit

configuration, the CSA requires 21% fewer full adders when compared to the BAT

counterpart.

3.2.3 Decomposed Weight Precision Data-flow

Prior IMC designs Fujiwara et al. (2022b); Chih et al. (2021); Mori et al. (2023b)

spatially encode multi-bit weight precision by grouping memory columns together,

limiting weight precision flexibility. Sharma et al. (2018) proposes a hierarchical

approach to achieve this by decomposing large adder and multiplier precision into

smaller blocks that can be selectively tiled together. In this implementation, MACs

30

are performed in the traditional sense by completing multi-bit multiplication for each

operand prior to accumulation. Given that di"erent shift-add hardware is required to

support flexible precision, Bit-Fusion trade-o"s larger hardware overhead to support

flexible precision. Ryu et al. (2022) overcomes this hardware cost by allocating a fixed

bit-position to an entire PE (capable of small fixed-precision MACs across several

operands). The support for flexible precision comes when fusing the PEs together,

the partial sum from each PE is subject to a shift operation based on the allocated

bit-position. However, this reduction in multiplication hardware comes at the cost

of increased accumulation hardware, but given that multiplications are significantly

more expensive to perform (a 4-bit multiplication requires 4 ANDs, 3 shifts, 2 4-bit

additions and 1 5-b addition), the increase in accumulation hardware is easily o"-set

by reduced multiplication hardware. The lowest granularity of fixed precision MACs

in each PE is 2-bit hence even Ryu et al. (2022) incurs a multiplication cost that

scales with the number of operands.

With this as motivation, we design PS-IMC using a completely weight decomposed

data-flow that un-groups all memory columns. Each memory column is allocated

a weight bit-significance (for an n-b weight, the first column stores the MSB and

the nth column stores the LSB). The 1bW:4bI partial product generated by each

bit-cell across all rows are accumulated first. After accumulation, each column is

subjected to a shift operation depending on the bit-position. For example, considering

a 4b weight, PPs from the MSB column will go through left-shift by 3 (<<3) and as

we move down the column the shift value decreases by 1 (Fig. 13(B)). By handling

weight precision separately, the number of shift-accumulate operations remain constant

regardless of the number of operands (Fig. 13(C)). Through this approach, considering

a 4-bit precision and 128 operands, the total full-adder (FA) cost (multiplication +

31

Figure 13. (A) Grouped Weight Precision, (B) PS-IMC’s Decomposed Weight Preci-
sion, (C) Multiply and Accumulate Hardware Cost for 4-bit Operands

accumulation) is reduced by 1.57→ and the number of shifts performed can be reduced

by 128→.

3.2.4 Variable Shift Accumulator (VSA) for Precision Handling

PS-IMC supports a wide variety of MAC configurations (1b/4b/8b Weight and

1-8b Input). Fig. 14(b) shows the micro-architecture of the VSA. A VSA is padded to

every 8 columns to support a maximum of 8b weight precision. Config[1:0] signals

in the VSA control the bit-precision of the weights and inputs. The 1bW:4bI MACs

32

Figure 14. (A) Psum Reduction from Top and Bottom Sub-arrays, (B) Variable Shift
Accumulator Micro-architecture, (C) Timing Diagram with the Total Number of Macs
Performed in a Single PS-IMC Macro

are collected in the pipeline stage before VSA in the same cycle as the input stream

in. These MACs are then gated by Config[0], which enables column-specific shifts

(<<3 for the 1st column and no shift for the last column) to obtain 4bW:4bI MACs.

Every 8 columns generate two 4bW:4bI MACs of 14-bit precision and these MAC

outputs are further gated by Config[1] to selectively shift accumulate one of the

4bW:4bI MAC output to obtain a larger 8bW:4bI MAC of 18-bit precision. An

alternative approach to implement a large weight precision (>4b) would be to subject

each column to a variable shift (7b through 4b), but in this case, the un-selected

shifters remain idle and each IMC column incurs a multiplexer overhead as opposed

to only one de-multiplexer for every 4 IMC columns. Due to the bit-parallel nature

of the 10T bit-cell, input precision of up to 4b can be handled in a single cycle

without any time-multiplexing or special control. Only for input precision above 4b,

multiplications are time-shared through shift-accumulators (Fig. 14(b)). The VSA is

tailored to support input precision ranging from 1-nb for a n-bit W. As a result, the a

33

Figure 15. Throughput (TOPS) vs. Energy-e!ciency (TOPS/W) for (a) 1bW:1/4bI,
(B) 4bW:1/4bI, and (C) 8bW:1/4/8bI Modes. (D) Power and Frequency Scaling

time-shared shift-accumulator is only necessary once every n columns. This reduces

the shift-accumulators/column since input precision is accounted with little (4b-8b)

to no (1b-4b) time-multiplexing. PS-IMC macro has three pipeline stages. The first,

second and third pipeline stages generate 64 4bI:1bW MACs, 16 4bI:4bW MACs and

8 8bI:8bW MACs respectively, as illustrated in Fig. 14(c) and (d).

34

Figure 16. Die Micrograph (Left), and Area Breakdown (Right)

3.3 Chip Measurement Results

PS-IMC is prototyped in TSMC 28nm CMOS. We implement two 128→64 macros

on the prototype chip, where each macro occupies 0.32mm2. The PS-IMC macro

achieves the highest peak throughput/kb compared to all prior digital IMC works

for 1bW:1-4bI (3.25 TOPS/Kb @ 1.2V), 4bW:1-4bI (406.3 GOPS/Kb @ 1.2V) and

8bW:4-8bI (135.4 GOPS/Kb @ 1.2V). It also achieves the highest energy e!ciency

for 1bW:4bI (1843 TOPS/W @ 0.56V) and 1bW:1bI (2385.7 TOPS/W @ 0.56V).

The measurement condition is with 50% bit-wise weight sparsity and an average of

25% toggle rate for the inputs at 27oC. Input toggle rate has a linear dependence on

power, where 25% decrease in toggling rate will yield about 8.7-13% increase in energy

e!ciency. For a lower input precision (<4b), we disable the IWLs depending on the

precision (a 2bI would mean we disable IWL_3 and IWL_2). A 1bW:1bI MAC in

PS-IMC achieves the same throughput as a 1bW:4bI, but due to the reduction in the

number of active IWLs 1bW:1bI achieves a higher energy e!ciency. Fig. 15(a), Fig.

35

Table 5. Comparison with Prior Digital IMC Works

15(b) and Fig. 15(c) illustrate the di"erence in energy e!ciency as input precision is

scaled with fixed weight precision. In addition, Fig. 15(c) shows the 33% latency cost

when the input precision is scaled above 4b.

Table 12 compares PS-IMC against state-of-the-art digital SRAM IMC designs. It

achieves throughput improvements of 2.6→, 10.8→, 2.42→, 3.22→ in 1bW:1bI, 1bW:4bI,

4bW:4bI and 8bW:8bI MACs respectively. By reducing multiplication and adder

hardware (decomposed weight precision and CSA trees) and by increasing input bit-

36

parallelism, PS-IMC achieves 1.1→ and 7.4→ improvements in TOPS/W for 1bW:1bI

and 1bW:4bI MACs respectively. It also achieves 1.2→ improvement in normalized

compute density for 8bW:8bI MACs. Fig. 16 shows the PS-IMC prototype chip and

area breakdown.

3.4 Conclusion

In this work, we present a throughput oriented IMC macro that has a unique

decomposed weight precision data-flow for flexible precision bit-parallel MACs. PS-

IMC maintains 100% utilization without weight replication with low hardware overhead.

Measurement results show that PS-IMC achieves the highest throughput, energy

e!ciency and compute density for various MAC workloads compared to prior SoTA

IMC works.

37

Chapter 4

A FULLY DIGITAL SPARSE IN-MEMORY MATRIX VECTOR MULTIPLIER

FOR COMMUNICATION APPLICATIONS

Channel decoders are key computing modules in wired/wireless communication

systems. Recently DNN based decoders have shown their promising error-correcting

performance because of their end-to-end learning capability. However, compared with

the traditional approaches, the emerging neural belief propagation (NBP) solution

su"ers higher storage and computational complexity, limiting its hardware performance.

This stems from the fact that NBP has sparse matrix multiplications at its core.

The previous chapter demonstrates that IMCs are very good at performing matrix

multiplications, this is because IMCs have a matrix-like physical structure and is easy

to map matrix compute onto it. But sparse matrix multiplications break the matrix

structure if the zero compute needs to be skipped and makes it di!cult to carry them

out in IMCs. To address this challenge, we develop compute methodologies that enable

sparse compute in IMCs. We do this by first analyzing the unique sparsity patterns

in the NBP algorithm, and then propose new IMC friendly compression algorithm

that enables zero skipping and also propose two new IMC designs that adapt this

algorithm and perform fast and e!cient structured and unstructured sparse matrix

multiplications required by NBP. To our knowledge this is one of the first works

to propose IMC methodology for NBP compute. Post implementation, we perform

extensive experiments to demonstrate that our proposed design achieves significantly

higher energy e!ciency and throughput compared to sate-of-the-art counterparts both

from a standalone IMC macro and a complete system level NBP implementation.

38

4.1 Introduction

Thanks to their powerful error-correcting capabilities, modern channel codes, such

as low-density parity check (LDPC) Gallager (1962), polar Arikan (2009), and Turbo

Berrou et al. (1993) codes, have been widely used in numerous real-world wired and

wireless communication systems, including but not limited to 5G, Wi-Fi, StarLink,

Ethernet, etc. In general, given a fixed channel code, its error-correcting performance

is mainly determined by the decoder. Recently, neural belief propagation (NBP), as a

neural network (NN)-based approach, has shown very promising decoding performance

across di"erent types of channel codes Nachmani et al. (2016); Cammerer et al. (2017);

Gruber et al. (2017); Lugosch and Gross (2017). By unfolding the original iterative

belief propagation procedure to form a sparse feedforward neural network, NBP makes

the key scaling parameters, which were previously set in a heuristic way, can now be

directly learned from the data, significantly improving the error-correcting capability

of channel codes.

Hardware Challenge of NBP Decoder. Despite its attractive algorithmic

advantage, NBP decoder is facing a severe challenge in hardware performance. The in-

tegration of NN into decoding process, though improving error-correcting performance,

brings much higher storage and computation overhead. Because channel decoders

are typically deployed in the real-time and/or low-power communication systems,

the significantly increasing complexity, if not properly addressed, may hinder the

widespread adoption of this promising technique.

IMC-NBP: A Double-Win Solution. Fortunately, we discover that the

emerging hardware challenge for NBP decoder can be e"ectively addressed via in-

memory computing (IMC), a technique that has been well-studied to develop low-power

39

general NN hardware Biswas et al. (2018); Yue et al. (2020); Wang et al. (2022);

Sridharan et al. (2022a). Considering NBP is essentially a type of specialized sparse

feedforward neural network model, applying IMC to its hardware design, is naturally a

very promising strategy towards achieving high hardware performance while preserving

high decoding performance.

Which Type of IMC for NBP? Motivated by such promising benefits, in this

paper, we propose to develop energy-e!cient high-performance in-memory computing-

based neural BP decoder. Since there exist numerous types of IMC techniques in

the market, e.g., SRAM, RRAM, MRAM, etc., the very first design knob we need to

consider is the most suitable IMC approach for NBP decoder. Our in-depth analysis

concludes that digital in-SRAM computing is the best candidate for building the

desired NBP decoder. This is because compared to AI applications, wired/wireless

communication have very stringent requirement on error rate (at least 10→4 and above)

and data rate, calling for a noiseless compute environment and high throughput. To

that end, digital in-SRAM computing is an ideal candidate for NBP hardware because

of its accurate computation, low read/write latency, and high flexibility.

Questions to be Answered. Considering NBP decoder is a sparse neural network

with a unique sparsity pattern and activation function, a customized solution, instead

of the existing general in-SRAM hardware, is desired to fully deliver its algorithmic

promise. More specifically, several technical questions need to be answered. For

instance, how should we properly leverage the unique structured and unstructured

sparse patterns, which currently cannot be supported by the existing digital SRAM-

based IMC implementations? What is the e!cient way to map new computing flow

and operation on the IMC circuits?

Technical Preview and Contributions. In this work, we perform systematic

40

investigations to answer these questions, and then develop the corresponding hardware

solutions. The main contributions are summarized as follows:

1. We, for the first time, design and develop an end-to-end, energy-e!cient high-

speed SRAM-based in-memory computing system for neural BP channel decod-

ing, namely DSPIMM.

2. We propose an e!cient and digital bit-serial in-memory matrix-vector multipli-

cation (MVM) module using a novel 8T compute SRAM bit-cell circuit design,

fully supporting the unique sparsity pattern in NBP decoding.

3. We propose a greedy weight compression and localization (GWCL) algorithm,

which properly leverages the structured and unstructured sparsity pattern, to

realize e!cient data mapping and sparse computing.

4. We conduct extensive experiments showing the great energy e!ciency and power

improvement of our DSPIMM platform. We also systematically benchmark with

other state-of-the-art counterparts.

4.2 Neural BP Algorithm

According to coding theory, a (N , K) channel code is uniquely defined by a (N↔K)-

by-N binary parity check matrix (H), which can also be interpreted as a bipartite graph

consisting of N variable nodes and (N ↔K) check nodes. Suppose we use v to denote

the v-th variable node in the node set V and c to denote the c-th check node in the

node set C, respectively. Also, we use E = {e(c,v) = (c, v) : H(c, v) = 1, v ↗ V, c ↗ C}

to denote the set of edges connecting the two types of nodes. Here the e(c,v) connecting

41

Figure 17. Example of Neural-BP Decoding Procedure

the c-th check node and the v-th variable node corresponds to one 1-valued entry

(“H(c, v) = 1") of H .

The key idea of NBP decoding Nachmani et al. (2018) is to perform message

update in the unfolded bipartite graph. As illustrated in Fig. 17, the neurons denoted

as orange and green circles represent uc↑v and uv↑c, which are the messages (i.e.,

“belief") transmitted from the v-th variable node to the c-th check node and from

the v-th variable node to the c-th check node at the t-th iteration through edges E,

respectively. Di"erent from traditional belief propagation, NBP treats the connections

between uc↑v and uv↑c as trainable weights instead of the pre-set heuristics. Next, we

summarize the overall dataflow and compute steps of Neural BP decoding. Initially, an

NBP decoder receives the log-likelihood ratios (LLRs) l ↗ Rn of the received codeword

r as:

42

lv = log
Pr(xv = 1|rv)
Pr(xv = 0|rv)

. (4.1)

Then the variable nodes and check nodes iteratively update the LLR messages during

the entire Neural BP decoding process. The specific update principle of the LLR

message in each iteration go through the following five steps:

Step 1: Structured Sparse Matrix-Vector Multiplication (SSP-MVM).

At the t-th iteration, ut
v↑c can be calculated as:

u
t
v↑c = W1lv +W2u

t→1
c↑v, (4.2)

where we define the first term as k
t
v↑c = W1lv and second term q

t
v↑c = W2u

t→1
c↑v.

For the first term k
t
v↑c = W1lv, the matrix format can be formulated as:





(kt
v↑c)1
...

(kt
v↑c)D




=





0, 0, 0, w, . . .

0, 0, w, 0, . . .

...









(lv)1
...

(lv)N




(4.3)

with input vector lv ↗ RN and weight matrix W 1 ↗ RD↓N that has one non-zero

entry in each row (corresponding to v), denoted by golden connections between lv

(pink circles) and uv↑c (green circles).

Step 2: Unstructured Sparse Matrix Vector Multiplication (USP-MVM)

and Accumulation. It requires another matrix multiplication followed by an addition

with the results from the previous step. For the second term q
t
v↑c = W2u

t→1
c↑v, the

matrix format can be formulated as:




(qtv↑c)1
...

(qtv↑c)D




=





0, 0, 0, 0, . . .

0, 0, 0, w, . . .

...









(ut→1
c↑v)1
...

(ut→1
c↑v)D




(4.4)

43

with input vector u
t→1
c↑v ↗ RD and weight matrix W 2 ↗ RD↓D that has non-zero

entries at the positions corresponding to N(v)\c, where N(v) = {c ↗ C : e(c,v) ↗ E}

and M(c) = {v ↗ V : e(c,v) ↗ E} are the neighbors of variable node v and check node

c, respectively. W 2 is denoted by the red connections between uc↑v (orange circles)

and uv↑c (green circles). The u
t
v↑c is calculated as the summation of k and q from

Eq. 4.3 and 4.4 as:




(ut
v↑c)1
...

(ut
v↑c)D




=





(kt
v↑c)1
...

(kt
v↑c)D




+





(qtv↑c)1
...

(qtv↑c)D




. (4.5)

Step 3&4: Min-Sum and Dot-Product Computation. The ut
c↑v is calculated

by min-sum operation Lugosch and Gross (2017) as follows:

ut
c↑v = w3c→v min

v↑↔M(c)\v
|ut

v↑↑c|
∏

v↑↔M(c)\v

sign(ut
v↑↑c), (4.6)

where w3 ↗ RD is learnable. This step is denoted by connections between uv↑c (green

circles) and uc↑v (orange circles) including blue connections (min-sum operations)

and black connections (weight dot products).

Step 5: SV Calculation. Then, the final soft output after the t-th iteration can

be calculated as:

s
t
v = lv +W 4 → u

t
c→→v (4.7)





(stv)1
...

(stv)N




=





(lv)1
...

(lv)N




+





0, 0, 0, 0, . . .

0, w, 0, 0, . . .

...









(ut
v↑↑c)1
...

(ut
v↑↑c)D




, (4.8)

where W 4 ↗ RN↓D with non-zero elements correspond to N(v), denoted by golden

connections between uc↑v (orange circles) and sv (yellow circles).

44

Figure 18. (A) DSPIMM Architecture (B) Unstructured Sparse Weight In-memory
Compute (C) Structured Sparse Weight In-memory Compute (D) Data Flow of Bit-
serial MVM. (Adapted from Sridharan et al. (2023) with Permission)

Remark. As shown in the neural BP computation flow (Fig. 17), the majority of

learn-able weights W1,W2,W4 hold high sparsity with a special pattern under the

matrix format. For instance, because W 1 ↗ RD↓N has only one non-zero weight in

each row, the sparsity of W1 is N→1
N %, which can easily achieve 90% when N ↘ 10

and 99% when N ↘ 100.

4.3 Proposed DSPIMM Platform

4.3.1 Architecture and Data Flow

Fig. 18(A) demonstrates the overall architecture of our DSPIMM for NBP. It

supports all the required five algorithm steps as shown in the corresponding circuit

45

model in Fig. 18(A1), (A2), (A3), and (A4). Note that, steps 1 and 2 are mainly

MVMs and are implemented using our IMC modules, where the corresponding circuits

are shown in Fig. 18(B) and (C).

4.3.1.1 W1, Structured Sparse Matrix Memory

denoted by Fig. 18(A1). This corresponds to the NBP step 1. The IMC array with

golden halos denotes the memory of W1 weight matrices (i.e., golden connections in Fig.

17). Each IMC array size is 256x256 which translates to 8KB per block. The Control,

I/O logic, and Input Bu"ers are shared among 4 IMC sub-arrays. The control and

I/O logic help in scattering the stored weights in the Input Bu"er (compiler-generated

SRAMs) to the IMC sub-Arrays. They also store the Inputs, i.e., lv vectors, and

scatter them during compute mode. Then, the compute/partial product outputs

are collected in the output/partial product bu"ers (Using SRAM compiler generated

Register Files).

4.3.1.2 W2, Unstructured Sparse (USP) Matrix Memory

Fig. 18(A2) shows the USP-Matrix Memory. The memory organization is similar

to SSP Matrix memory, with 128x256 - 4KB IMC arrays. They carry W2 (red halo)

as well as W4 (green halo) since both follow a similar computing pattern. This USP

Matrix Memory is responsible for the sparse MVMs in Step 2 and Step 5 of the NBP

algorithm.

46

4.3.1.3 Global Addition

After SSP and USP-MVM, the stored partial products in the output bu"ers are

streamed into parallel global adders to perform the addition operations on the two

MVM outputs. This completes the compute of the green dots in Fig. 17 denoting the

end of Step 2 of NBP algorithm.

4.3.1.4 MinSum Compute and Dot Products

These modules perform steps 3 and 4. The Minsum and dot-product instructions

do not have common operands, hence are not suitable for IMC. Thus, we leverage the

digital comparators in parallel to compute the MinSum. The Minsum outs along

with the sign bits from the output bu"ers of USP-MM and W3 weights are sent to

the dot-product engine (DPE) to compute Step 4. The W3 weight matrix is usually

large and uncompressed. So a Register file is used to bu"er a portion of W3 weights

to be streamed onto the DPE. when finished, the remaining data will be fetched from

o"-chip.

4.3.1.5 Sv Calculation

Step 5 needs to be performed only once after several iterations of Steps 1 through

4. It is performed by loading lv onto the output bu"ers of the SSP-MVM memory and

using the computational sub-array of the USM-MVM (green halos) to perform MVM

between W4 and the uvc of the previous iteration. Now, the global adders are used to

47

Figure 19. (A) 6+2T(8T) Compute Bit-cell (B) Truth Table of 2T And/Dot-product

sum the output bu"ers of USP Matrix Memory and SSP Matrix Memory containing

the MVM outs and lv respectively.

4.3.2 6+2T (8T) SRAM Bitcell Design for In-memory-computing

To implement in-memory computing (IMC), specifically for matrix multiplication

in this work, we propose a 6+2T SRAM compute bitcell (CBC) as shown in Fig.

19(a) to implement 1 bit partial product and then the peripheral shift & accumulator

circuits implement the rest for multi-bit matrix multiplication. For memory function,

a traditional 6T SRAM bitcell is used. For compute, the bit-cell is augmented with

two additional transistors - T1 and T2. Together, they perform the ‘AND’ function

or a 1’b dot-product within the memory cell, between operand-1 (weight bit - w/wb)

and operand-2 (external input bit - IWL). The weight bit (w and its complementary -

wb) is stored in the cross-coupled inverters of bitcell which are connected with the

gate terminals of T2 and T1, respectively. The other operand-2 is from the input

world line (i.e., IWL), which goes to the source terminal of T2. Note that, as the

48

name suggests, IWL is broadcasted to the entire worldline, providing inputs to all

8T CBCs in that row that store multi-bits of the weight parameters. The last signal

is a VSS/GND connecting to the source terminal of T1. Finally, the AND or 1’b

Dot product out (DPO) is obtained from the common drain terminals of T1 and T2,

where the truth table is given in Fig. 19(b)

4.3.3 Bit-Serial Matrix Vector Multiplication (MVM) In-memory

For multi-bit MVM, the multi-bit weight operand is stored in the memory and the

other input operand is streamed through the IWLs. The matrix operand stored in the

memory is transposed before storage, this will put a single row of the matrix elements

into a single column of the memory array. It is done to (1) perform dot products

between all elements in one column of the second operand (through IWL) and all

elements in a single row of the first operand. (2) Since IWLs are shared amongst rows,

the same second operand column can be used to multiply with all the first operand

rows, performing a parallel NXM (Op.1) * MX1 (Op.2) vector dot-product. Then,

the accumulation of dot-products of every column in memory (corresponding to the

row of the first operand) is implemented using adder trees to complete MVM. Due to

bit-serial design, the IWLs can stream only 1 bit at a time, a shift accumulation is

designed to respect the bit-position of the multi-bit operands streamed through the

IWLs, where data flow is shown in Fig. 18(D).

49

Figure 20. EGWCL Algorithm Example

4.3.4 Structured Sparse Matrix Vector Multiplication (SSP-MVM)

MVM-in-memory is dense and intensive, meaning all bit-cells are active and used

for compute. But for NBP, the W1 is extremely sparse with the special pattern as

described in section II. So to leverage such property, we develop a hardware-friendly

compression/encoding algorithm that localizes the weights and eliminates all zeros

from being stored, thereby ignored for compute.

4.3.4.1 Greedy Weight Compression and Localization (GWCL) Algorithm for SSP-

MVM

Fig.20 shows an example. It parses through the weight matrix and only stores

the non-zero weights in memory. But, such an operation scatters the weights across

memory, breaking the structure of matrix multiplication. To solve this, during the

skip of zero weights, our circuit needs to be aware of (1) which input needs to be

50

multiplied with which weight, and (2) which DPOs (post multiplication) need to be

added together.

For (1), whenever the algorithm faces a non-zero weight, it stores not only the

weight value but also the column index of this weight next to the input bu"ers.

Through this, when a new input is streamed in, the column indices can dictate which

row of input bu"er should be streamed onto the IWLs for compute. Since the memory

leverages the sharing of IWLs over several bit-cells to achieve high parallelism, during

compression, all weights belonging to the same column are stored in a single row.

For (2), the sparsity of W1 matrix is structured and only one element per row is

a non-zero weight. Since all elements in a row are added up for MVM(after dot

product), the resulting accumulation in this case will be the dot-product of the

input and weight alone. Therefore, due to the nature of this sparsity pattern, no

accumulation is necessary. Hence, no circuitry is required for accumulation or decoding

the accumulation of the scattered weights. In summary, the GWCL algorithm works

in two stages:

Stage 1: Ignores zero-weights and greedily stores non-zero weights, it also stores the

corresponding column index alongside the input bu"er.

Stage 2: If encountering a weight belonging to a column previously stored, it stores

the weight in the same row as that of the previously encountered column index to

enable the parallel multiplication for a shared IWL.

4.3.4.2 SSP-MVM In-Memory Compute Circuit and Architecture

The one-time sparse weight compression discussed above is done o"-line and

mapped to our IMC arrays. During inference, a new set of inputs is fetched every

51

iteration, so a decoding circuitry is designed to map the newly fetched inputs using

column indices. It consists of a set of comparators that compare the indices of the

new inputs against the stored column indices (next to the input bu"ers) and map

the inputs to the input bu"ers of the respective rows. Then, these inputs will be

streamed onto the IWLs in a bit-serial fashion for performing partial product. Since

no accumulation is required, the DPOs are directly sent to the shift accumulators

which completes the 8b8b dot-product. In summary, the implemented SSP-MVM

IMC architecture has 32 8-bit columns, each column has 256 rows and each row of

the 8-bit column consists of a shift accumulator and each 8-bit column have a routing

network to route all the accumulated outputs.

4.3.5 Unstructured Sparse Matrix Vector Mult. (USP-MVM)

The above SSP-MVM has a fixed sparse pattern with one-hot element in a row,

enabling us to skip accumulation. But, the unstructured sparse W2 and W4 matrices

do not follow this pattern, with multiple non-zero elements in a row.

4.3.5.1 Enhanced Greedy Algorithm for USP-MVM

To adapt our hardware for USP-MVM, we enhance our GWCL algorithm to also

support USP weights. The main di"erence here is that weights need to be accumulated

and are scattered all over the memory array. To complete MVM, it needs a way to

identify which DPOs (post input stream-in) require accumulation, hence an additional

operation is performed alongside Stage 1, which is, the row indices of the weights are

also stored alongside the weight memory. The reason is that, in an MVM between

52

matrix A and B, the column of operand B is multiplied by the row of operand A,

after which the dot-products accumulate together. Mapping such a process to our

IMC memory array means the accumulation only happens to the dot-products of

weights in the same row. So, by storing the weight indices during accumulation, we

only need to accumulate the dot-products resulting from weights having the same

row-indices. In summary, the Enhanced GWCL (EGWCL) is:

Stage 1: Store column indices of all non-zero weights next to the input bu"ers; store

the row-indices next to the non-zero weights, ignoring the zero weights.

Stage 2: If the newly encountered weight has a column index that is previously

stored next to the input bu"ers, it stores the weight in the subsequent column of the

same memory row corresponding to the column index.

4.3.5.2 USP-MVM IMC Circuit and Architecture

As per our EGWCL algorithm, both the weights and row indices are stored in

the weight memory. Since only the weights are used for compute and the row-indices

are used for decoding the compressed weights for accumulation, a traditional 6T

SRAM bitcell is used for storing the row indices and 8T CBC is used for storing

weights. For a given memory size m → n, log(m) bits are required to represent the

row indices. We use 128-bit rows memory with 256-bit columns. The 8-bit CBC and

the 8-bit 6T SRAM together form a 16-Bit Hybrid Bit-Cell Column. So, we have

16 columns of the 16-Bit Hybrid Bit-Cells in total. As for the inputs, the column

indices are stored alongside the input bu"ers in flops. When a new input is fetched,

the comparator-based decoder is designed to parse through the column indices of

the input matrix and store the corresponding inputs onto the input bu"ers. Then,

53

they are streamed onto IWLs for dot product computing. The CBCs in every 16-bit

column will hold 8-bit DPOs that will be accumulated next. The EGWCL algorithm

scatters the weights across the memory, so multiple rows of the weight matrix can be

present in a single column of the memory array. Circuitry is required to (1) identify

which rows are present and (2) parse through and accumulate all the weights in the

column. For (1), we attach comparators to every word, which enables reading of the

weight indices directly from 6T bitcells. These comparators take in the row index

as well as the 8’DPO and compare the row-index against a generated index. If it

compares it outputs the 8’DPO, else it outputs a 0. For (2), we need to identify all the

row-indices present in a single column. So a Mod-Counter is placed in every column.

Every counter is given the first and last index present in the corresponding column to

parse through all the row indices of that column. The output of these counters is sent

to the comparators, providing indices to compare against and identify the weights

needs to be accumulated.

4.3.5.3 Overflows

The row indices of the accumulated DPOs are also stored alongside the flops in

the shift accumulators (Propagated from counters in the adder tree). This is to tackle

an inherent drawback called overflow that arises due to the nature of the EGWCL

algorithm. When the weights are compressed, there is a chance that weights from

a single row (W2 matrix) can span multiple columns (memory). In this case, these

values need to be accumulated. So, to keep track of which row the partial product is

being computed, the row index is also stored in flops for every column of the memory

array. After the counters parse through all the row-indices, the overflow detectors

54

Figure 21. Area Breakdown of (A) SSP Matrix Memory (B) USP Matrix Memory

present alongside the shift accumulators accumulate all the weights that belong to

the same row. This completes the USP-MVM.

4.4 Evaluation and Results

4.4.1 Experiment Setup

Cadence Spectre is used for all custom circuitry, designed using TSMC 28nm

to verify functionality and to check for latency and power consumption. The area

evaluation of custom circuitry is done by making layouts in Cadence Virtuoso. For

an SSP-MVM Memory, we simulate a 128x256 memory array. For USP-MVM, we

simulate a 256x256 array. For all digital components, we use Synopsys Design Compiler

to synthesize the gate netlist. For all reported code lengths, VCD files are generated

using SDF annotated post-synthesized RTL simulations. These VCD files are used in

Synopsys PrimePower for reporting the power numbers. The Post-synthesized netlist

is used in Synopsys PrimeTime to obtain latency numbers.

55

Table 6. Power Breakdown

SSP-Matrix Mem(256x256) USP-Matrix Mem(128x256)
Hardware Power (mW) Hardware Power(mW)

Bit-Cell array(8T) 11.6mW Bit-cell array(6T+8T) 4.2mW
Shift Accumulator 46.73mW Comparator 21.3mW

Routing Network R+C
Parasitics Adder Tree 18.7mW

IP Index+IP Bu". 6.3mW Ip Index + Ip Bu". 4.22mW
Decoder 0.88mW Shift Accumulator 6.74mW

Ip Decode 1.3mW Overflow + Counters 4.63mW
Total 66.81mW Total 59.79mW

4.4.2 Experiment Results

Since this is the first work to demonstrate NBP in an SRAM-based IMC, we com-

pare our work with other popular LDPC channel decoding hardware implementations

in Table 9, even using di"erent algorithms. The reason is that LDPC is the most

commonly used channel code in real-world applications, and its hardware decoder

design receives the most attention as compared to other channel codes. Ours achieves

the best energy e!ciency and lowest power. We also evaluate the e!cacy of our

compression algorithm in Table 7. It clearly achieves memory savings that match the

sparsity ratio.

For IMC performance, we draw comparisons with state-of-art IMC designs that

have MAC operation as their core in Table 8. Compared to existing SRAM-based IMC

platforms, the USP-MVM module and the SSP-MVM module achieve the best TOP/s

metric. The USP-MVM achieves a throughput almost equal to Chih et al. (2021) even

though it is only 1/4th in size and our SSP-MVM IMC module can complete an 8b8b

MAC one cycle faster from skipping accumulations. The complete area and power

breakdown for all sub-modules in USP-MVM and SSP-MVM are shown in Fig. 21

56

Table 7. GWCL Algorithm Memory Benefits(Excludes Index Memory)

Table 8. Comparison with State-of-the-art SRAM Based IMC Accelerators

and Table 6. All above detailed hardware evaluation and bench-marking show great

performance improvement and hopefully, our design could serve as a benchmark for

future neural decoder implementations.

4.5 Conclusion

In this work, we propose a novel SRAM-based IMC circuit and architecture to

implement the Neural BP channel decoding algorithm. We utilize the sparse nature

of the algorithm by proposing IMC algorithm-hardware co-design to perform sparse

MVMs whose operands have fixed (algorithm specific) or generic unstructured sparse

patterns. Our proposed IMCs achieve the best throughput out of state-of-the-art IMC

57

Table 9. Comparison with Prior LDPC Implementations

MAC implementations and significantly higher energy e!ciency than state-of-the-art

LDPC decoder hardware.

58

Chapter 5

A SPARSITY AWARE IN-MEMORY-COMPUTING MACRO WITH

CONFIGURABLE SPARSE REPRESENTATIONS

Deep neural networks (DNNs) have achieved remarkable success across a wide

range of cognitive tasks, prompting e"orts to deploy them on edge devices. However,

edge platforms are inherently constrained in compute power and memory capacity,

making it challenging to accommodate large DNN models—which are both compute-

and memory-intensive due to their reliance on multiply-and-accumulate (MAC) oper-

ations. To address this, extensive research has focused on improving model e!ciency

through various compression techniques such as quantization and sparsification. Model

sparsification is achieved via weight pruning, where less significant weights are set to

zero to reduce model complexity—often with an impact on accuracy. Numerous studies

have explored the tradeo" between hardware support for sparsity and maintaining

acceptable model accuracy Meng et al. (2021); Zhou et al. (2021).

These studies conclude that unstructured sparsity typically o"ers the highest model

accuracy, but poses significant challenges for hardware implementation due to its irreg-

ular and non-deterministic pruning patterns. In contrast, structured sparsity—while

more hardware-friendly—often results in a loss of accuracy. Furthermore, the optimal

sparsity ratio varies not only across di"erent DNN models but also between layers

within the same model, making uniform sparsity support impractical for achieving

ideal performance.

So, from a hardware perspective, it is essential to support a wide range of sparsity

formats to meet the evolving demands of modern DNN models. Building on the

59

previous chapter, this chapter explores how hardware can be generalized to accommo-

date diverse sparsity formats and ratios. We introduce a Sparsity-Aware In-Memory

Computing (SP-IMC) macro that, for the first time, supports multiple compression

schemes—including run-length encoding and coordinate (COO) format—as well as

varying sparsity precisions such as N :M formats, enabling real-time adjustment of

the sparsity ratio. Additionally, SP-IMC incorporates scalable integer precision as

proposed in Sridharan et al. (2024a). Fabricated in a 28nm CMOS process, our SP-

IMC prototype demonstrates a reduction in compute resources by 4–50→ compared

to state-of-the-art IMC designs.

5.1 Introduction

5.1.1 Background and Motivation

In-memory computing (IMC) methodologies have demonstrated substantial im-

provements in energy e!ciency and throughput for DNN workloads by minimizing

data movement and eliminating frequent memory accesses. However, unlike many

ASIC-based accelerators hsin Chen et al. (2018); Zhang et al. (2021b); Han et al.

(2016), few silicon-proven IMC designs have e"ectively leveraged sparsity through

compressed storage and compute skipping to realize similar benefits.

A recent work Liu et al. (2023) explored sparsity by employing a binary mask and

a custom compression format to encode weights. However, this approach significantly

restricts compatibility with a broad range of sparse DNN models. Moreover, the

hardware implementation relies on a complex butterfly routing mechanism and incurs

additional compute overhead for decoding the compressed weights. Another e"ort Kim

60

et al. (2021) enables sparse computation via compute skipping but su"ers from two

key limitations: (1) it supports only block-wise sparsity, which limits achievable model

accuracy, and (2) it does not operate on truly compressed weights—zeros are still

physically stored in the IMC array, thus preserving the compute overhead associated

with dense workloads.

Another work Yue et al. (2023) delegates sparse computation to a separate ASIC,

using the IMC array solely for dense operations. This separation limits the energy

and area benefits of sparsity within the IMC fabric. In contrast, SP-IMC directly

operates on sparsely compressed weights within the IMC array itself, eliminating the

need for external compute and fully leveraging the advantages of in-memory sparsity.

Fig. 22 illustrates prior sparse and dense IMC approaches, highlighting their inherent

limitations.

5.1.2 Challenges and Benefits of Sparse Compute

The IMC paradigm is naturally well-suited for matrix multiplications due to the

structured and parallel nature of memory arrays. However, this advantage diminishes

when the matrix structure is disrupted—as is often the case with sparsity, especially

after compression. Compressed sparse matrices break the regularity required for

e!cient in-memory computation, making it challenging to directly apply the IMC

model. This challenge is further compounded in the case of unstructured sparsity,

where the number and location of non-zero elements vary unpredictably across tensors.

As a result, non-uniform data distribution leads to imbalance across IMC compute

blocks, causing significant underutilization and degraded performance.

To address these challenges, we propose a design methodology that time-multiplexes

61

Figure 22. Current Sparse IMC Implementation Drawbacks, Benefits of Sparse
Encoding, Challenges of Sparse Encoded Weights in IMC

the sparse decode operation. By doing so, we decouple the variability of unstructured

sparsity from the hardware footprint and instead map it to the time domain. This

approach allows the compute resources to remain fixed, while latency becomes a

function of the sparsity level. As a result, we maintain consistent throughput across

all sparsity ratios, while still reaping the benefits of compressed storage. Fig. 22

highlights both the challenges posed by sparsity and the advantages of our proposed

design.

62

5.2 Circuit, Architecture and Operation

5.2.1 SP-IMC Macro Architecture

Fig. 23 shows the circuit and architecture of the proposed SP-IMC macro which

comprises of 64→128 bit-cells. The IMC macro consists of 16 column groups (CG),

where each CG consists of 32 row groups (RG) and one accumulation logic (AL) block.

Each RG has 16 bit-cells split into two 8b-rows by a multiply decode and compare

(MDC) block. The two 8-bit-rows have four bits of 10T bit-cells for weight storage

and another four bits of traditional 6T bit-cells to store the indices of the compressed

sparse weights. The bit-cell takes in the activations and performs AND operations

with the stored weight to generate partial multiply results. These partial-multiply outs

serve as inputs to the MDC block which has shift accumulators/partial multipliers to

complete the 4bW2bI/Act multiplications. The 4-bit indices at the top and bottom of

the MDC block serve as the input to the RL/COO decode block which calculates the

RLC indices based on the index from the previous column or directly pass the indices

from the bit-cell to the comparator blocks. Now the comparators compare it with

indices generated either by a local counter or the spillover counter. If the comparison

is successful, the partial products (PP) are sent to the adder tree and then to a shift

accumulator to complete MACs. The adder trees are split into two 32-input trees,

and the outputs of adder trees are shift-accumulated. The accumulator precision is

chosen by the weight precision control (WPC) signal between 14-bit (for 8b-W) and

11-bit (for 4-bit-W). Finally, a spillover accumulator is present to support edge cases

of compressed weights, e.g. uneven sparsity across matrix columns.

63

Figure 23. Overall Architecture of SP-IMC Macro, Bit-cell Schematic, Layout, and
Micro-architecture of In-memory Decode Hardware. (Adapted from Sridharan et al.
(2024b) with Permission)

5.2.2 Bitcell Design

The 10T bit-cell extends the conventional 6T cell by incorporating four additional

transistors T1–T4. Transistor pairs "T1", "T2" and "T3, T4" function as parallel

AND gates, enabling simultaneous bitwise operations between the streamed input

activation (IA) and the stored weight. This parallelism mitigates the IA stream-in

bottleneck commonly encountered in prior designs Wang et al. (2022); Mori et al.

(2023a); Oh et al. (2023a); Yue et al. (2023); Fujiwara et al. (2022a), which rely on

64

purely bit-serial methods to support high input precision. Additionally, this 2T-AND

scheme resolves the issue of floating partial products observed in the PSIMC bit-cell

design Sridharan et al. (2024a) when weights are zero. Each 10T bit-cell performs a

1-bit weight by 2-bit IA multiplication, and the four 10T cells positioned at the top

and bottom collectively compute two 4b-IA × 2b-W partial products. Fig. 23 shows

the schematic and layout of the proposed bit-cell.

5.2.3 Sparse Compression Formats and Variable Sparsity Ratio

The SP-IMC architecture is designed to support multiple compression formats to

accommodate a wide range of sparse DNN workloads. Specifically, it implements two

representative sparse encoding schemes: the coordinate (COO) format and run-length

encoding (RL). In the COO format, each non-zero value is stored alongside its explicit

index, providing full flexibility in representing unstructured sparsity. In contrast, RL

encoding captures the number of zeros between successive non-zero elements using a

compact zero-count value, o"ering a more storage-e!cient representation for sparsity

patterns with longer contiguous runs of zeros.

In addition to these formats, SP-IMC also supports N :M sparsity, a semi-structured

compression scheme wherein only one out of every M elements is retained, and the

remaining N ↔ 1 elements are pruned. This format, initially developed and commer-

cialized by NVIDIA (supporting only 2:4 sparsity in hardware), strikes a balance

between unstructured flexibility and structured hardware e!ciency. Unlike NVIDIA’s

fixed-ratio approach, SP-IMC o"ers generalized support for a wide range of N :M

formats—from 1 (to) 255:16 (t0) 256 without requiring any hardware modifications,

thanks to its fully unstructured sparsity support and flexible indexing logic. This

65

capability makes SP-IMC highly adaptable to diverse model requirements, including

models where each layer may benefit from a di"erent sparsity ratio. By supporting

flexible sparsity formats and adaptive index precision, SP-IMC maximizes hardware

utilization and energy e!ciency across a wide spectrum of DNN sparsity patterns.

Additional benefits of deploying N :M sparsity in SP-IMC, including compute regu-

larity and hardware reuse opportunities, will be discussed in detail in Section 5.2.5.

From a hardware perspective, the maximum sparsity ratio that can be supported

is governed by the bit-width of the index or zero-count field, which determines how

many unique positions or gaps can be represented. To accommodate this, SP-IMC

introduces variable index precision, controlled by an Idx_Mode signal. This signal

selects between 4-bit and 8-bit index modes, trading o" between metadata overhead

and sparsity granularity. In COO format, a 4-bit index can represent up to 16 positions,

while in RL format, it can encode up to 15 zeros between two non-zero values. The

8-bit mode extends this capability, allowing up to 256 distinct indices in COO or 255

zeros in RL, thus enabling significantly higher sparsity ratios when needed

5.2.3.1 Compression Direction

Matrices are inherently two-dimensional, and compression can be applied along

either the row or column direction. Compressing along rows preserves the accumulation

structure but disrupts the multiplication pattern. In contrast, compressing along

columns retains the multiplication structure while breaking the accumulation flow. In

IMC architectures, activations are typically streamed in through horizontal word-lines,

which aligns with the multiplication dimension of the matrix. As a result, preserving

the multiplication structure is critical for e!cient in-memory computation. Therefore,

66

SP-IMC adopts column-wise compression, commonly referred to as Compressed

Sparse Column (CSC) format, as it aligns naturally with the compute flow in IMC

and maintains compatibility with the activation streaming mechanism.

5.2.4 Dataflow and Pipeline

RL and COO formats have di"erent dataflows to support the decode of their

respective indices, as shown in Fig. 24 N:M sparse encoding follows the dataflow of

COO. In COO mode, each column of the memory array generates an index (through

local counters) every cycle that pertains to the index of stored weights in their

respective columns and these indices are used to gate accumulations of PP generated

in each RG using the comparators. The accumulated PPs are then sent to the shift

accumulator block for IA precision compensation semi-bit serially (2-bits/cycle). The

dataflow is similar in RL mode as well, but the index generator (counters) now

generates the zero count (ZC) between two non-zero weights, and RL compression

incurs additional decode hardware in the row direction to specify the non-zero weight

position. The index stored in the neighboring CG[n-1] is streamed and is added with

the indices in the current CG[n]. The spillover dataflow exists to support corner cases,

for e.g., all elements of a matrix row are not always mapped to the same CG, (Fig. 25

COO-CSC mapping) and can “spillover” to neighboring CGs. This arises out of uneven

sparsity across matrix columns and is the case for RL, COO and N:M sparsity. It is

greatly reduced for N:M sparsity due to fixed M. Fig. 24 shows the pipeline diagram

of 4b-IA:4b-W MACs from a CG in the SP-IMC macro. It also shows the priority

queue for index handling and the parallelism achieved in a SP-IMC to process sparse

compressed MACs.

67

Figure 24. Dataflow of Various Modes in SP-IMC, Pipeline Diagram, Index Priority
Queue, SpMM Parallelism in Memory

5.2.5 Mapping Compressed kernels

The compression and IMC mapping methodology is elaborated in Fig. 25. Uncom-

pressed mapping is done for convolutions by first flattening the 4D kernels to a 2D

weight matrix and is transposed and stored onto the IMC array such that the kernel

dimensions and input channel (R, S, C) fall into columns with adder trees and the

output channel is mapped in the row direction to support parallel multiplications. We

employ a similar approach when it comes to mapping compressed weights. Encoding

in column direction is more IMC friendly because it retains column structure while

68

breaking row structures, i.e., breaks accumulations and retains multiplications. Com-

pressed sparse row (CSR) is not very IMC friendly and incurs additional hardware

overhead i.e., IA reordering, additional accumulate and WB operations, hence not

implemented in this macro. RL mapping is similar to COO, the indices are replaced

with ZC. In RL to denote the end of each matrix column, its length is fixed, and

the last element of all matrix columns are stored regardless of magnitude. Mapping

matrices that have unequal non-zero weight distribution in every column will lead to

utilization issues in the IMC. This can be alleviated during training by employing a

fine-grained N:M sparsity structure. Through this method the SP-IMC macro can

also achieve a significant speedup and better utilization by fixing the indices/column.

5.3 Experiment Results and Analysis

5.3.1 Chip Measurements

The SP-IMC chip is fabricated in a 28nm CMOS process and evaluated across a

supply voltage range of 0.57V to 1.2V at a nominal temperature of 25°C. Under a

25% input toggle rate (TR), SP-IMC achieves energy e!ciencies ranging from 8.4 to

36.6 TOPS/W for dense 4b-IA × 4b-W MAC operations—defined as the fully non-

sparse case where each column activates all bit-cells and adder tree nodes via a single

index. For a 1:16 pruning ratio (i.e., high sparsity), the energy e!ciency significantly

improves, reaching 7.5 to 115.3 TOPS/W under the same TR. Furthermore, a 25%

reduction in TR results in an average 10% gain in energy e!ciency, highlighting the

benefits of low activity factor designs. The chip supports a peak operating frequency

of 1.16 GHz at 1.18V across all operational modes.

69

Figure 25. Mapping Methodologies for COO-CSC, RL, Why CSR Is Not IMC Friendly
and Benefits of N:M Sparse Encoding

SP-IMC leverages a time-multiplexed sparsity mechanism that maps unstructured

sparsity to the time domain. As the number of active indices per column decreases

(i.e., increased sparsity), the adder tree activity factor is reduced since fewer adders

are engaged per cycle. Fig. 26 presents the detailed measurement results, including

the macro-level area breakdown. The adder trees dominate the macro area, followed

by the multipliers and comparators.

To evaluate the benefits of sparse compressed storage in reducing the number

of required macros, we scaled up the SP-IMC design and mapped a ResNet-18

model (trained on CIFAR-10 with 98% unstructured sparsity) onto the architecture.

70

Figure 26. Chip Measurement Results, Accuracy Results of Pruned DNNs, Area
Breakdown in Macro and System Level

Compared to a dense baseline, we observe a 3× to 40× reduction in area, depending

on the layer and sparsity configuration.

We also conducted extensive software-level validation to assess the accuracy of

sparse DNN models when deployed on SP-IMC. As shown in Fig. 26, both unstructured

and N :M sparsity schemes—particularly at high sparsity ratios—achieve competitive

accuracy on CNN models such as ResNet-18, demonstrating the practicality and

e"ectiveness of sparsity support in SP-IMC.

71

5.3.2 Comparison and Evaluation

Fig. 27 presents a comparison between SP-IMC and prior state-of-the-art digital

IMC designs. Even without leveraging sparsity, SP-IMC achieves the highest through-

put, primarily due to its dual activation word-line parallelism. A key focus of this work

is on sparse compressed storage, enabling SP-IMC to maintain consistent hardware

throughput across various sparsity formats.

To evaluate the benefits of compressed storage, we compare the number of write

operations required to perform a large volume of MAC operations. SP-IMC significantly

reduces the number of writes compared to prior works. Most existing IMC designs

adopt a weight-stationary compute model, where weights must be written into the array

prior to computation hsin Chen et al. (2018). This step introduces considerable latency

at the system level, especially for large models. In contrast, SP-IMC dramatically

reduces this overhead by minimizing the number of weight parameters through sparsity-

aware compression.

This improvement is illustrated in the bottom two plots of Fig. 27. The left plot

shows the total cycle latency as a function of increasing MAC operations, while the

right plot depicts the number of write operations required relative to MAC count.

SP-IMC consistently achieves the lowest cycle latency and the fewest write operations,

even at scale, demonstrating its e!ciency in both compute and memory access.

To quantitatively capture the benefits of sparsity and compressed storage, we

define a new Figure of Merit (FoM): TOPS/W → TOPS/mm2 → # of weights stored

per kb. This metric reflects not only energy and area e!ciency, but also storage

density enabled by compression. Under this proposed FoM, SP-IMC achieves up

72

Figure 27. System Latency, Write Operations, Figure of Merit (FOM), and Comparison
to Prior Digital IMCs

to 5.9→ improvement over the best prior work, highlighting its superior balance of

compute throughput, area e!ciency, and sparsity-aware storage capability.

5.4 Conclusion

In summary, this work presents SP-IMC, a fully digital sparsity-integrated in-

memory computing (IMC) macro that pushes the boundaries of flexibility, e!ciency,

73

and scalability in sparse DNN acceleration. Unlike prior designs that either lack

support for compressed representations or require significant architectural modifi-

cations to handle di"erent sparsity types, SP-IMC natively supports a wide range

of sparse encoding formats—including Coordinate (COO), Run-Length (RL), and

N :M structured sparsity—directly within the IMC array. SP-IMC also accommodates

multiple data precisions to suit diverse DNN workload requirements. Specifically, it

supports input activations (IA) at 2-bit, 4-bit, and 8-bit precision, and weights at

4-bit and 8-bit precision. To maximize sparsity coverage, the design features scalable

sparsity encoding, with support for both 4-bit and 8-bit index or zero-count fields,

enabling real-time configurability for di"erent sparsity ratios and storage e!cien-

cies. This flexible architecture allows SP-IMC to e!ciently execute a wide range of

modern DNN models—such as CNNs and Transformers—under various sparsity and

quantization regimes, while maintaining high throughput, minimal energy overhead,

and reduced area footprint. By integrating compressed storage and time-multiplexed

compute, SP-IMC not only reduces memory and compute resources but also ensures

sustained performance across diverse sparsity patterns. As a result, SP-IMC represents

a significant step forward in building general-purpose, sparsity-aware IMC accelerators

that can adapt to the growing demands of edge and datacenter-scale AI workloads.

74

Chapter 6

SPARSITY INTEGRATED COMPUTE-IN-MEMORY ACCELERATOR WITH A

FUSED DOT-PRODUCT ENGINE AND A RISC-V CPU

Previous chapters explored the implementation of unstructured sparsity and preci-

sion scaling in single macro silicon designs. However, these implementations exhibit

ine!ciencies, such as redundant multiplications and additions, and there is no visible

reduction in compute resources other than reduced storage. Moreover, prior designs

are confined to single macro implementations, which are inadequate for evaluating how

large-scale LLM and CNN models can be e!ciently mapped and scaled-up hardware.

And previous chapters targeted scalable fixed precision workloads, which combined

with high sparsity levels cannot support several AI models. This chapter addresses

all the above shortcomings by presenting a sparsity-aware in-SRAM multiply-and-

accumulate (MAC) accelerator with a fused dot-product engine (SAFE) and a RISC-V

CPU (SAFER). For the first time, we implement a unified dot-product compute

methodology in Compute-in-memory (CIM) circuits vastly reducing the hardware

footprint for simultaneously supporting both floating point (FP) and integer (INT)

MACs. Additionally, we integrate various N :M sparsity formats allowing the CIM

macro to store and operate exclusively on compressed non-zero weights. We also tightly

integrate a 32-bit RISC-V CPU to SAFE for e!cient data-movement across chip. The

CPU orchestrates data-movement across 4 implemented macros to enhances matrix

scaling for large AI workloads. The 28nm SAFER prototype achieves a peak energy

e!ciency of 105.7 TOPS/W (78.9 TOPS/W) and 79.9 TOPS/W (63 TOPS/W) in

the macro (chip) level for FP8 and INT8 workloads respectively. SAFER also achieves

75

Figure 28. SAFER Chip Architecture

a memory footprint reduction proportional to sparsity through compressed storage,

vastly reducing the macro count required for large AI models. For our proposed figure

of merit, which accounts for memory footprint, SAFER improves current SoTA CIMs

by 1.4→ and 14→ for INT8 and FP8 workloads.

76

6.1 Introduction

There have been a plethora of CIM designs targeting various hardware and software

features to enable e!cient processing of deep neural networks (DNNs).

Sparsity is one such feature and has been widely adopted in various DNNs. DNN

models are getting larger and is becoming more challenging to fit them on chip. This

is further exacerbated by the fact that current CIMs have poor storage density due to

integration of compute logic circuits. Weight sparsity achieved through pruning in

DNNs, o"ers significant memory footprint reduction when paired with compression.

Compressed storage can also reduce memory accesses to CIMs when mapping large

DNN workloads. Prior CIM works have explored this: Liu et al. (2023) uses bitmaps

for compression but requires external compute and complex dense-format conversion

via butterfly multiplexers. SP-IMC Sridharan et al. (2024b) adopts compressed sparse

column (CSC) with simplified decode hardware but su"ers from low MAC utilization.

SAFE aims to address these drawbacks by o"ering a simple decode mechanism for

various sparsity ratios and full utilization of the compute circuits.

Data-type re-configurability is another feature that enables support for various

DNNs. Supporting di"erent number formats such as integer (INT) and floating-point

(FP) precision in CIM hardware is expensive and needs careful hardware re-use. Recent

CIM works have explored this, but schemes in Yuan et al. (2025); Yue et al. (2025);

Ali et al. (2025) trade o" compute accuracy in FP arithmetic for hardware complexity,

whereas Saikia et al. (2023) has no accuracy drop but incurs large hardware overhead.

SAFE, for the first time, explores a fused-dot product (FSD) approach in CIM, which

was previously only employed in ASICs Hickmann et al. (2020); Park et al. (2023).

This method can reduce the cost of rounding and normalization for large vector-vector

77

MACs Hickmann et al. (2020). Each column in CIM arrays typically performs large

vector-vector MACs, therefore FSD can naturally fit well with CIM array design.

Additionally, FSD scheme uses fixed-point adders for accumulations. Adder trees

occupy a large footprint in digital CIMs, which can be amortized by using the same

adder trees in FSD for both INT and FP.

MAC configuration flexibility is another key feature that requires attention

as there are a variety of AI workloads all requiring di"erent MAC structures. Self-

attention layer in large language models (LLMs) di"ers from a convolution layer and

even convolutions vary from layer to layer in di"erent DNNs. SAFER integrates a

custom RISC-V CPU to cast weights and activations across all memories on chip to

help with MAC reconfigurability. We also augment the RISC-V CPU with vector

additions to help with post accumulation of partial sums for large matrices.

6.2 Architecture and Operation

6.2.1 SAFER Chip Architecture

Fig. 28 shows the SAFER chip architecture, consisting of four SAFE cores, in-

put/output (IP/OP) bu"ers, control logic, and OP gather-scatter unit. To enable

parallel processing, each SAFE core is allocated a dedicated 0.5KB IP bu"er for

feeding unique IPs. The OPs/partial-sums from all SAFE cores are collected and

transferred to two 1KB OP bu"ers via the OP gather-scatter unit. We incorporate

a custom 32-bit single-cycle RISC-V CPU to aid with the address calculations for

data movement between IP/OP bu"ers and weights (Ws) in the CIM array. This

78

Figure 29. SAFE Core and Macro Architecture

is done by augmenting the base RV32-IM instruction set with additional load/store

instructions. These additional instructions provide support for a variety of MAC

configurations through uni/multi-casting Ws/OPs/IPs to any/all of the SAFE cores.

The CPU also monitors the status of all SAFE cores through global control status

registers. Additionally, we include FP8 (E4M3 and E5M2) and INT32 vector addition

to the CPU to enable partial-sum aggregations from SAFE macros for large matrices.

Table 10 provides the list of all supported instructions.

79

Table 10. RISC-V Instruction Set Extensions

6.2.2 SAFE Macro Architecture

Fig. 29 illustrates a single SAFE core. Each core has a 192→32 CIM array which is

broken into eight FSD “compute columns" (CCs) for compressed W storage and sparse

FP8/INT8 MAC operations. Each core also has an input gather-scatter (IGS) which

retrieves IPs and distributes them to the CCs through the IP FIFOs. The CIM array

also has WL-decoders, BL-drivers, and sense amplifiers to facilitate row-by-row read

and writes. The control logic manages compute modes and sparsity ratios. Status

registers track MAC count and manage IP requests via the IGS.

80

6.2.2.1 Compute Column (CC)

Each CC in a SAFE macro contains 192→4 6T-SRAM bits, out of which 128→4

is used for W storage and 64→4 for Idx storage. The CC also includes a 32-vector

FSD MAC unit, supported by a backup SRAM with 64 storage locations for 8-bit

weights. This backup SRAM allows a new set of weights to be written to the CIM

array while the current set is actively used for computation. CC is divided into 32

rows, where each row has 4→4 bits for W storage and 2→4-bits for Idx storage. These

Ws and Idxs are sent to a sparse decode unit which filters two 8-bit Ws using the

two 4-bit Idxs into one weight (or 0) and this weight is sent to the multipliers. There

is an individual FP8 and INT8 multiplier to handle both data-types. The outputs

from the multiplier is sent to a 32-input 2’s complement adder tree. The multipliers

are data-gated to save power between di"erent data types. Both data types share

the same adder tree as the accumulation data format is normalized between the two.

The outputs from the adder tree is then fed into a shift accumulator (SA). The shift

portion of the SA can be enabled by the control logic depending on the data type.

Now the 2’s complement partial-sum from the SA can optionally converted back to

FP.

6.2.2.2 Sparse Decode Unit (SD)

As shown in Fig. 30, SAFE’s sparse decode method supports various N :M sparsity

formats. It adopts a compressed sparse row (CSR) compression scheme, storing an

index for each non-zero weight. The index bit-width is determined by the maximum

supported M in N :M . All supported N :M ratios and their corresponding bit-width

81

Figure 30. (A) Sparse Decode Unit, (B) Sparse Compression and Mapping, (C)
Reducing Hardware Complexity by Normalizing Input Queue Length

is shown in Fig. 30(a). The stored indices specify which weights the IPs must be

multiplied with before accumulation. Each row in a CC has an Idx word line (IDWL);

as IPs are streamed into the macro via the IPWs, the corresponding indices are

simultaneously streamed through the IDWLs and the W selector uses these indices to

determine whether the corresponding weight needs multiplication from the streamed-in

IPs. This is required because when a matrix is compressed along the accumulation

82

direction, it breaks the multiplication structure. Not all Ws need to be multiplied

with the streamed-in IPs. We also time-multiplex sparsity, this is because there is

only a single IPW for every W, if a 1:4 sparsity is implemented then for each CIM

row, four IPs need to be streamed-in along with 4 Idxs and will vastly increase the

routing resources. The sparse compression and mapping mechanism is shown in

Fig. 30(b). For N :M sparsity where N ≃=1, each row would require M↔(N↔1) IPs,

and the IPs required in each row are not in-order. To avoid more hardware for input

re-arrangement, we stream-in all M IPs regardless of N . This normalizes the cycle

count to M , as described in Fig. 30(c).

6.2.2.3 FP8 fused dot-product (FSD) and INT8 MAC

The FSD method supports vector-vector MACs for FP data-types, as shown in

Fig. 31(b). FP multiplications begin with exponent addition and mantissa multiplica-

tion; instead of rounding, the mantissa’s precision is preserved and is shifted by the

exponent and mapped to a 2’s complement number line. For E4M3, the number line

spans ±29 ↔ 2→12 (23 bits) and for E5M2 the number line spans ±216 ↔ 2→18 (36 bits).

Now that the vectors are in 2’s complement format, they can be accumulated using a

fixed-point adder. The adder-tree bit-width is set to 23 bits instead of 36 bits because

of area constraints. To support E5M2, we time-multiplex the adder hardware over two

cycles. The first cycle is used to handle all exponents below 18 and the next cycle is

used for exponents above 18 and the shift accumulator performs shift and accumulate

computation of the two partial sums. Fig. 31(a) shows the detailed FP multiply units

in SAFE. To support INT8, an 8-bit integer multiplier is added to the pipeline after

83

Figure 31. (A) Floating-point Multiply Unit and (B) Fused Dot-product in SAFE

the SD stage, while the adder hardware is reused; this is shown in Fig. 29. Fig. 32

illustrates SAFE’s pipeline for all supported data types.

6.3 Chip Measurements and Results

SAFER is prototyped in 28nm CMOS. It occupies 0.95mm2, and each SAFE core

occupies 0.15mm2. Fig. 33 shows the power/area breakdown for a SAFE core. FP8

84

Figure 32. Pipeline Diagram for a 1:2 Sparse Workload

MACs consume less power and area, compared to INT8 MACs. This is due to the

wide multiplier unit for INT8 and the 2’s complement version of an FP8 number is

very sparse and reduces the overall activity factor of the adder tree. In prior digital

CIM works Sridharan et al. (2022a); Chih et al. (2021); Lin et al. (2023); Oh et al.

(2023b), the adder tree typically dominated power and area overheads compared

to multipliers. This is because bit-serial MAC operations reduce multiplications to

simple per-cycle AND operations. But Sridharan et al. (2024a) mitigates multiplier

overhead in bit-parallel designs by isolating weight precision and deferring precision

handling, akin to the bit-serial approach which does this in the time domain. In

contrast, SAFER implements full-precision 8b→8b multipliers for every selected weight,

avoiding such optimizations and instead prioritizing raw compute throughput. SAFER

can operate at 0.57-1.2V, reaching a Fmax of 141 MHz@0.57V and 815 MHz@1.2V.

85

Figure 33. (A) SAFE Power, (B) Area Breakdown

Fig. 34(a) shows the voltage-frequency scaling measurements for both FP8 and INT

MACs, where the CPU was set to perform NoP instruction. All measurements were

done at 28oC. For INT8 workloads, we use an IP toggle rate of 50% and bit-wise W

sparsity of 50%. FP8 workloads use randomly generated numbers for both IPs and

Ws within the representable range. The SAFE(R) achieves a peak energy e!ciency of

105.7 (78.9), 78.8 (59) and 79.9 (63) TFLOPS/W for FP8 E4M3, FP8 E5M2, and

INT8 MACs respectively.

To quantify how well various sparsity translates to memory footprint, we map

a ResNet-18 model (↓11M parameters) trained for CIFAR-100 dataset for various

1:M sparsity. With 1:16 sparsity, only 91 SAFE macros are required for the entire

model, which marks 15.5→ savings in macro area, as shown in Fig. 34(b). We also

validate the accuracy for ResNet-18 (DNN) and a Llama-2-7b (LLM) model for FP8

and INT8 under various sparsity to demonstrate the practical need for di"erent N :M

86

Figure 34. Power and Frequency Scaling (A), Sparsity Savings (B), Throughput and
Energy E!ciency Scaling (C), Figure of Merit (D)

sparsity, as shown in Table 11. To account for reduced memory footprint due to

compressed storage, we devise a figure of merit (FoM) of TOPS/W/mm2/32K 8-bit

Ws/Kb, which takes energy e!ciency, chip area and memory size in Kb when 32K

8-bit weight parameters are mapped onto the CIM array. Table 12 and Fig. 34(d)

show that SAFER achieves 1.4→ and 14→ improvements in this FoM for INT8 and

FP8 workloads respectively, compared to prior SoTA digital CIMs.

87

Table 11. AI Model Accuracy for Various Sparsity Ratios

6.4 Conclusion

In this work, we prototype SAFER, an in-SRAM sparse FSD-based CIM processor,

which integrates a custom RISC-V CPU enabling support for a variety of AI models

from DNNs to LLMs. Through FSD, SAFE enables FP8 MACs with minimal overhead

while also supporting hardware sharing between FP8 and INT8 formats. Measurement

results show that SAFE achieves close to SoTA TOPS/W and TOPS/mm2 while

maintaining full accuracy for all MAC workloads. SAFE also implements sparsity in

the form of compressed storage, achieving memory footprint reduction proportional

to sparsity. For the proposed FoM, SAFER achieves 1.4-14→ improvement compared

to SoTA digital CIMs.

88

Table 12. Comparison with State-of-the-art Fully Digital CIM Works

89

Figure 35. Testing Setup, Die-Micrograph and Chip Summary

90

Chapter 7

CONCLUSION

This dissertation presents a series of innovations in programmable and sparsity-

aware in-memory computing (IMC) architectures, demonstrating a significant leap in

flexibility, e!ciency, and scalability for AI acceleration.

First this dissertation introduces a programmable PSRAM chip fabricated in

TSMC 65nm CMOS technology, capable of executing a complete set of Boolean

vector operations—including NOR, NAND, XOR (both 2- and 3-input), majority, and

full-adder—in a single memory cycle. This design, taped out in silicon, is validated

through three real-world case studies: parallel vector operations, neural networks, and

data encryption.

Building on PSRAM, PS-IMC is proposed, a high-throughput IMC macro with

a unique decomposed weight-precision dataflow that enables bit-parallel multiply-

accumulate (MAC) operations without requiring weight replication. PS-IMC main-

tains 100% utilization with minimal hardware overhead and achieves state-of-the-art

throughput, energy e!ciency, and compute density across a wide range of MAC

workloads.

To further extend IMC to algorithm-specific acceleration, a novel SRAM-based

IMC architecture optimized for the Neural Belief Propagation (Neural BP) decoding

algorithm is proposed. By leveraging sparsity through algorithm-hardware co-design,

this IMC implementations e!ciently perform sparse matrix-vector multiplications

(MVMs) with either fixed or unstructured sparsity patterns. These implementations

91

outperform state-of-the-art LDPC decoder hardware in both throughput and energy

e!ciency.

Expanding on sparse DNN acceleration, this dissertation introduces SP-IMC, a

fully digital sparsity-integrated IMC macro that natively supports a wide range of

sparse encoding formats—including Coordinate (COO), Run-Length (RL), and N:M

structured sparsity—within the memory array. SP-IMC accommodates multiple data

precisions for input activations (2b, 4b, 8b) and weights (4b, 8b), and supports scalable

sparsity through 4-bit and 8-bit indexing, o"ering real-time configurability for various

compression ratios. By combining compressed storage with time-multiplexed sparse

decode, SP-IMC achieves high energy e!ciency, and a compact area footprint across

diverse CNN workloads.

Finally, this dissertation presents SAFER, an in-SRAM CIM processor that inte-

grates a custom RISC-V CPU to support end-to-end execution of AI models ranging

from DNNs to large language models (LLMs). Using Fused Multiply Accumulate,

SAFER enables FP8 MACs with minimal overhead and allows compute hardware

sharing across FP8 and INT8 formats. The architecture supports sparsity through

compressed storage, reducing memory footprint in proportion to the degree of sparsity.

Measured results show that SAFER achieves near state-of-the-art TOPS/W and

TOPS/mm² while maintaining full accuracy, and delivers 1.4–13.8→ improvement in

the proposed figure of merit compared to prior digital CIM architectures. Collectively,

these contributions advance the state of the art in SRAM based CIMs, o"ering a

versatile and e!cient compute substrate that is well-suited for the evolving demands

of edge AI workloads.

92

REFERENCES

Ahn, J., S. Hong, S. Yoo, O. Mutlu and K. Choi, “A scalable processing-in-memory
accelerator for parallel graph processing”, in “Proceedings of the 42nd Annual Inter-
national Symposium on Computer Architecture”, ISCA ’15, p. 105–117 (Association
for Computing Machinery, New York, NY, USA, 2015).

Ali, A. H., A. Sridharan, C. Guo, W. Hwang, W. Tsai, J. Zhang, Y. Chen, S. X. Wang
and D. Fan, “Fp-smr: A fully digital floating-point processing-in-sas-mram for
session-based recommender system”, in “Proceedings of the Great Lakes Symposium
on VLSI 2025”, GLSVLSI ’25, p. 341–347 (Association for Computing Machinery,
New York, NY, USA, 2025), URL https://doi.org/10.1145/3716368.3735206.

Arikan, E., “Channel polarization: A method for constructing capacity-achieving
codes for symmetric binary-input memoryless channels”, IEEE Transactions on
information Theory 55, 7, 3051–3073 (2009).

Berrou, C., A. Glavieux and P. Thitimajshima, “Near shannon limit error-correcting
coding and decoding: Turbo-codes. 1”, in “Proceedings of ICC ’93 - IEEE Interna-
tional Conference on Communications”, vol. 2, pp. 1064–1070 vol.2 (1993).

Biswas, A. et al., “Conv-sram: An energy-e!cient sram with in-memory dot-product
computation for low-power convolutional neural networks”, IEEE JSSC (2018).

Cammerer, S., T. Gruber, J. Hoydis and S. ten Brink, “Scaling deep learning-based
decoding of polar codes via partitioning”, in “GLOBECOM 2017 - 2017 IEEE Global
Communications Conference”, pp. 1–6 (2017).

Chih, Y.-D., P.-H. Lee, H. Fujiwara, Y.-C. Shih, C.-F. Lee, R. Naous, Y.-L. Chen,
C.-P. Lo, C.-H. Lu, H. Mori, W.-C. Zhao, D. Sun, M. E. Sinangil, Y.-H. Chen, T.-L.
Chou, K. Akarvardar, H.-J. Liao, Y. Wang, M.-F. Chang and T.-Y. J. Chang, “16.4
an 89tops/w and 16.3tops/mm2 all-digital sram-based full-precision compute-in
memory macro in 22nm for machine-learning edge applications”, in “2021 IEEE
International Solid- State Circuits Conference (ISSCC)”, vol. 64, pp. 252–254 (2021).

Dally, B., “ Hardware for Deep Learning ”, in “2023 IEEE Hot Chips 35 Symposium
(HCS)”, pp. 1–58 (IEEE Computer Society, Los Alamitos, CA, USA, 2023), URL
https://doi.ieeecomputersociety.org/10.1109/HCS59251.2023.10254716.

Das, S., “Itrs assessment and benchmarking of emerging logic devices”, in “Emerging
Nanoelectronic Devices”, pp. 405–416 (2015).

Faraone, J., N. Fraser, M. Blott and P. H. Leong, “Syq: Learning symmetric quantiza-
tion for e!cient deep neural networks”, in “Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR)”, (2018).

93

https://doi.org/10.1145/3716368.3735206
https://doi.ieeecomputersociety.org/10.1109/HCS59251.2023.10254716

Fujiwara, H., H. Mori, W.-C. Zhao, M.-C. Chuang, R. Naous, C.-K. Chuang,
T. Hashizume, D. Sun, C.-F. Lee, K. Akarvardar, S. Adham, T.-L. Chou, M. E.
Sinangil, Y. Wang, Y.-D. Chih, Y.-H. Chen, H.-J. Liao and T.-Y. J. Chang, “A 5-nm
254-tops/w 221-tops/mm2 fully-digital computing-in-memory macro supporting
wide-range dynamic-voltage-frequency scaling and simultaneous mac and write
operations”, in “2022 IEEE International Solid-State Circuits Conference (ISSCC)”,
vol. 65, pp. 1–3 (2022a).

Fujiwara, H. et al., “A 5-nm 254-TOPS/W 221-TOPS/mm2 Fully-Digital Computing-
in-Memory Macro Supporting Wide-Range Dynamic-Voltage-Frequency Scaling and
Simultaneous MAC and Write Operations”, in “IEEE ISSCC”, (2022b).

Gallager, R., “Low-density parity-check codes”, IRE Transactions on information
theory 8, 1, 21–28 (1962).

Gruber, T., S. Cammerer, J. Hoydis and S. t. Brink, “On deep learning-based channel
decoding”, in “2017 51st Annual Conference on Information Sciences and Systems
(CISS)”, pp. 1–6 (2017).

Han, S., X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz and W. J. Dally, “Eie:
E!cient inference engine on compressed deep neural network”, in “2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA)”, pp.
243–254 (2016).

Hickmann, B., J. Chen, M. Rotzin, A. Yang, M. Urbanski and S. Avancha, “Intel
nervana neural network processor-t (nnp-t) fused floating point many-term dot
product”, in “2020 IEEE 27th Symposium on Computer Arithmetic (ARITH)”, pp.
133–136 (2020).

hsin Chen, Y., T.-J. Yang, J. S. Emer and V. Sze, “Eyeriss v2: A flexible accelerator
for emerging deep neural networks on mobile devices”, IEEE Journal on Emerging
and Selected Topics in Circuits and Systems (2018).

Hu, X., H. Mun, J. Meng, Y. Liao, A. Sridharan and J.-s. Seo, “A 28nm 20.9-137.2
tops/w output-stationary sram compute-in-memory macro featuring dynamic look-
ahead zero weight skipping and runtime partial sum quantization”, in “2025 IEEE
Custom Integrated Circuits Conference (CICC)”, pp. 1–3 (2025).

Hutter, M. et al., “A cryptographic processor for low-resource devices: Canning ecdsa
and aes like sardines”, in “IFIP”, (2011).

Jiang, Z., S. Yin, J.-S. Seo and M. Seok, “C3sram: An in-memory-computing sram
macro based on robust capacitive coupling computing mechanism”, IEEE Journal
of Solid-State Circuits 55, 7, 1888–1897 (2020).

94

Kim, J.-H., J. Lee, J. Lee, J. Heo and J.-Y. Kim, “Z-pim: A sparsity-aware processing-
in-memory architecture with fully variable weight bit-precision for energy-e!cient
deep neural networks”, IEEE Journal of Solid-State Circuits 56, 4, 1093–1104 (2021).

Lee, C.-F. et al., “A 12nm 121-TOPS/W 41.6-TOPS/mm2 All Digital Full Preci-
sion SRAM-based Compute-in-Memory with Configurable Bit-width For AI Edge
Applications”, in “IEEE Symp. VLSI Circuits”, (2022).

Li, S., D. Niu, K. T. Malladi, H. Zheng, B. Brennan and Y. Xie, “Drisa: a dram-based
reconfigurable in-situ accelerator”, in “Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture”, MICRO-50 ’17, p. 288–301 (Asso-
ciation for Computing Machinery, New York, NY, USA, 2017).

Lin, C.-T. et al., “DIMCA: An Area-E!cient Digital In-Memory Computing Macro
Featuring Approximate Arithmetic Hardware in 28 nm”, IEEE JSSC (2023).

Liu, S., P. Li, J. Zhang, Y. Wang, H. Zhu, W. Jiang, S. Tang, C. Chen, Q. Liu and
M. Liu, “16.2 a 28nm 53.8tops/w 8b sparse transformer accelerator with in-memory
butterfly zero skipper for unstructured-pruned nn and cim-based local-attention-
reusable engine”, in “2023 IEEE International Solid-State Circuits Conference
(ISSCC)”, pp. 250–252 (2023).

Lugosch, L. and W. J. Gross, “Neural o"set min-sum decoding”, in “2017 IEEE
International Symposium on Information Theory (ISIT)”, pp. 1361–1365 (2017).

Mathew, S., F. Sheikh, A. Agarwal, M. Kounavis, S. Hsu, H. Kaul, M. Anders
and R. Krishnamurthy, “53gbps native gf(24)2 composite-field aes-encrypt/decrypt
accelerator for content-protection in 45nm high-performance microprocessors”, in
“2010 Symposium on VLSI Circuits”, pp. 169–170 (2010).

Meng, J., L. Yang, X. Peng, S. Yu, D. Fan and J.-S. Seo, “Structured pruning of rram
crossbars for e!cient in-memory computing acceleration of deep neural networks”,
IEEE Transactions on Circuits and Systems II: Express Briefs 68, 5, 1576–1580
(2021).

Mori, H., W.-C. Zhao, C.-E. Lee, C.-F. Lee, Y.-H. Hsu, C.-K. Chuang, T. Hashizume,
H.-C. Tung, Y.-Y. Liu, S.-R. Wu, K. Akarvardar, T.-L. Chou, H. Fujiwara, Y. Wang,
Y.-D. Chih, Y.-H. Chen, H.-J. Liao and T.-Y. J. Chang, “A 4nm 6163-tops/w/b
4790↔TOPS/mm

2/b sram based digital-computing-in-memory macro support-
ing bit-width flexibility and simultaneous mac and weight update”, in “2023 IEEE
International Solid-State Circuits Conference (ISSCC)”, pp. 132–134 (2023a).

Mori, H. et al., “A 4nm 6163-TOPS/W/b 4790-TOPS/mm2/b SRAM Based Digital-
Computing-in-Memory Macro Supporting Bit-Width Flexibility and Simultaneous
MAC and Weight Update”, in “IEEE ISSCC”, (2023b).

95

Mutlu, O., “Processing data where it makes sense in modern computing systems:
Enabling in-memory computation”, in “2018 7th Mediterranean Conference on
Embedded Computing (MECO)”, pp. 8–9 (2018).

Nachmani, E., Y. Be’ery and D. Burshtein, “Learning to decode linear codes using deep
learning”, in “2016 54th Annual Allerton Conference on Communication, Control,
and Computing (Allerton)”, pp. 341–346 (2016).

Nachmani, E., E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein and Y. Be’ery,
“Deep learning methods for improved decoding of linear codes”, IEEE Journal of
Selected Topics in Signal Processing 12, 1, 119–131 (2018).

Oh, J., C.-T. Lin and M. Seok, “D6cim: 60.4-tops/w, 1.46-tops/mm2, 1005-kb/mm2
digital 6t-sram-based compute-in-memory macro supporting 1-to-8b fixed-point
arithmetic in 28-nm cmos”, in “ESSCIRC 2023- IEEE 49th European Solid State
Circuits Conference (ESSCIRC)”, pp. 413–416 (2023a).

Oh, J. et al., “D6CIM: 60.4-TOPS/W, 1.46-TOPS/mm2, 1005-Kb/mm2 Digital 6T-
SRAM-Based Compute-in-Memory Macro Supporting 1-to-8b Fixed-Point Arith-
metic in 28-nm CMOS”, in “IEEE ESSCIRC”, (2023b).

Park, J.-S., C. Park, S. Kwon, T. Jeon, Y. Kang, H. Lee, D. Lee, J. Kim, H.-S. Kim,
Y. Lee, S. Park, M. Kim, S. Ha, J. Bang, J. Park, S. Lim and I. Kang, “A multi-mode
8k-mac hw-utilization-aware neural processing unit with a unified multi-precision
datapath in 4-nm flagship mobile soc”, IEEE Journal of Solid-State Circuits 58, 1,
189–202 (2023).

Ryu, S. et al., “BitBlade: Energy-E!cient Variable Bit-Precision Hardware Accelerator
for Quantized Neural Networks”, IEEE JSSC (2022).

Saikia, J., A. Sridharan, I. Yeo, S. Venkataramanaiah, D. Fan and J.-S. Seo, “Fp-imc:
A 28nm all-digital configurable floating-point in-memory computing macro”, in
“ESSCIRC 2023- IEEE 49th European Solid State Circuits Conference (ESSCIRC)”,
pp. 405–408 (2023).

Seo, J.-s., J. Saikia, J. Meng, W. He, H.-s. Suh, Anupreetham, Y. Liao, A. Hasssan and
I. Yeo, “Digital versus analog artificial intelligence accelerators: Advances, trends,
and emerging designs”, IEEE Solid-State Circuits Magazine 14, 3, 65–79 (2022).

Seshadri, V., D. Lee, T. Mullins, H. Hassan, A. Boroumand, M. A. Kim, Jeremie-
and Kozuch, O. Mutlu, P. B. Gibbons and T. C. Mowry, “Ambit: in-memory
accelerator for bulk bitwise operations using commodity dram technology”, in
“Proceedings of the 50th Annual IEEE/ACM International Symposium on Microar-
chitecture”, MICRO-50 ’17, p. 273–287 (Association for Computing Machinery, New
York, NY, USA, 2017).

96

Sharma, H. et al., “Bit Fusion: Bit-Level Dynamically Composable Architecture for
Accelerating Deep Neural Network”, in “ACM/IEEE ISCA”, (2018).

Sridharan, A., S. Angizi, S. K. Cherupally, F. Zhang, J.-S. Seo and D. Fan, “A 1.23-
ghz 16-kb programmable and generic processing-in-sram accelerator in 65nm”, in
“ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC)”,
pp. 153–156 (2022a).

Sridharan, A., J. Saikia, Anupreetham, F. Zhang, J.-S. Seo and D. Fan, “Ps-imc: A
2385.7-tops/w/b precision scalable in-memory computing macro with bit-parallel
inputs and decomposable weights for dnns”, IEEE Solid-State Circuits Letters 7,
102–105 (2024a).

Sridharan, A., F. Zhang and D. Fan, “Mnm: A fast and e!cient min/max searching
in mram”, in “Proceedings of the Great Lakes Symposium on VLSI 2022”, GLSVLSI
’22, p. 39–44 (Association for Computing Machinery, New York, NY, USA, 2022b).

Sridharan, A., F. Zhang, J.-S. Seo and D. Fan, “Sp-imc: A sparsity aware in-memory-
computing macro in 28nm cmos with configurable sparse representation for highly
sparse dnn workloads”, in “2024 IEEE Custom Integrated Circuits Conference
(CICC)”, pp. 1–2 (2024b).

Sridharan, A., F. Zhang, Y. Sui, B. Yuan and D. Fan, “Dspimm: A fully digital sparse
in-memory matrix vector multiplier for communication applications”, in “2023 60th
ACM/IEEE Design Automation Conference (DAC)”, pp. 1–6 (2023).

Valavi, H. et al., “A 64-tile 2.4-mb in-memory-computing cnn accelerator employing
charge-domain compute”, IEEE JSSC (2019).

Wang, D., C.-T. Lin, G. K. Chen, P. Knag, R. K. Krishnamurthy and M. Seok,
“Dimc: 2219tops/w 2569f2/b digital in-memory computing macro in 28nm based on
approximate arithmetic hardware”, in “2022 ISSCC”, vol. 65, pp. 266–268 (2022).

Wang, J. et al., “A 28-nm compute SRAM with bit-serial logic/arithmetic operations
for programmable in-memory vector computing”, IEEE JSSC (2020).

Wang, Z., P. S. Nalla, G. Krishnan, R. V. Joshi, N. C. Cady, D. Fan, J.-s. Seo
and Y. Cao, “Digital-assisted analog in-memory computing with rram devices”, in
“2023 International VLSI Symposium on Technology, Systems and Applications
(VLSI-TSA/VLSI-DAT)”, pp. 1–4 (2023).

Yin, S., Z. Jiang, J.-S. Seo and M. Seok, “Xnor-sram: In-memory computing sram
macro for binary/ternary deep neural networks”, IEEE Journal of Solid-State
Circuits 55, 6 (2020).

97

Yuan, Y., B. Zhang, Y. Yang, Y. Luo, Q. Chen, S. Lv, H. Wu, C. Ma, M. Li, J. Yue,
X. Wang, G. Xing, P.-I. Mak, X. Li and F. Zhang, “14.5 a 28nm 192.3tflops/w
accurate/approximate dual-mode-transpose digital 6t-sram cim macro for floating-
point edge training and inference”, in “2025 IEEE International Solid-State Circuits
Conference (ISSCC)”, vol. 68, pp. 258–260 (2025).

Yue, J., C. He, Z. Wang, Z. Cong, Y. He, M. Zhou, W. Sun, X. Li, C. Dou, F. Zhang,
H. Yang, Y. Liu and M. Liu, “A 28nm 16.9-300tops/w computing-in-memory
processor supporting floating-point nn inference/training with intensive-cim sparse-
digital architecture”, in “2023 IEEE International Solid-State Circuits Conference
(ISSCC)”, pp. 1–3 (2023).

Yue, J. et al., “14.3 a 65nm computing-in-memory-based cnn processor with 2.9-to-
35.8 tops/w system energy e!ciency using dynamic-sparsity performance-scaling
architecture and energy-e!cient inter/intra-macro data reuse”, in “IEEE ISSCC”,
(2020).

Yue, Z., X. Xiang, Y. Wang, R. Guo, H. Han, S. Wei, Y. Hu and S. Yin, “14.4 a
51.6tflops/w full-datapath cim macro approaching sparsity bound and <2-30 loss
for compound ai”, in “2025 IEEE International Solid-State Circuits Conference
(ISSCC)”, vol. 68, pp. 1–3 (2025).

Zhang, F., S. Angizi and D. Fan, “Max-pim: Fast and e!cient max/min searching
in dram”, in “2021 58th ACM/IEEE Design Automation Conference (DAC)”, pp.
211–216 (2021a).

Zhang, F., A. Sridharan, W. He, I. Yeo, M. Liehr, W. Zhang, N. Cady, Y. Cao, J.-S.
Seo and D. Fan, “A 65-nm rram compute-in-memory macro for genome processing”,
IEEE Journal of Solid-State Circuits 59, 7, 2093–2104 (2024a).

Zhang, F., A. Sridharan, W. Tsai, Y. Chen, S. X. Wang and D. Fan, “E!cient
memory integration: Mram-sram hybrid accelerator for sparse on-device learning”,
in “Proceedings of the 61st ACM/IEEE Design Automation Conference”, DAC ’24
(Association for Computing Machinery, New York, NY, USA, 2024b).

Zhang, J., Z. Wang and N. Verma, “In-memory computation of a machine-learning
classifier in a standard 6t sram array”, IEEE Journal of Solid-State Circuits 52, 4,
915–924 (2017).

Zhang, J.-F., C.-E. Lee, C. Liu, Y. S. Shao, S. W. Keckler and Z. Zhang, “Snap: An
e!cient sparse neural acceleration processor for unstructured sparse deep neural
network inference”, IEEE Journal of Solid-State Circuits 56, 2, 636–647 (2021b).

Zhang, Y., L. Xu, Q. Dong, J. Wang, D. Blaauw and D. Sylvester, “Recryptor: A
reconfigurable cryptographic cortex-m0 processor with in-memory and near-memory
computing for iot security”, IEEE Journal of Solid-State Circuits 53 (2018).

98

Zhou, A., Y. Ma, J. Zhu, J. Liu, Z. Zhang, K. Yuan, W. Sun and H. Li, “Learning
n:m fine-grained structured sparse neural networks from scratch”, URL https:
//arxiv.org/abs/2102.04010 (2021).

99

https://arxiv.org/abs/2102.04010
https://arxiv.org/abs/2102.04010

APPENDIX A

PREVIOUS PUBLISHED WORKS

100

Five chapters are based on the previously published works of the first author, listed
below:

Chapter 2: A. Sridharan, S. Angizi, S. K. Cherupally, F. Zhang, J. -S. Seo and D.
Fan, "A 1.23-GHz 16-kb Programmable and Generic Processing-in-SRAM Accelerator
in 65nm," ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ES-
SCIRC), Milan, Italy, 2022, pp. 153-156, doi: 10.1109/ESSCIRC55480.2022.9911440.

Chapter 3: A. Sridharan, J. Saikia, Anupreetham, F. Zhang, J. -S. Seo and D.
Fan.,"PS-IMC: A 2385.7-TOPS/W/b Precision Scalable In-Memory Computing Macro
With Bit-Parallel Inputs and Decomposable Weights for DNNs," in IEEE Solid-State
Circuits Letters, vol. 7, pp. 102-105, 2024, doi: 10.1109/LSSC.2024.3369058

Chapter 4: A. Sridharan, F. Zhang, Y. Sui, B. Yuan and D. Fan., "DSPIMM:
A Fully Digital SParse In-Memory Matrix Vector Multiplier for Communication
Applications," 2023 60th ACM/IEEE Design Automation Conference (DAC), San
Francisco, CA, USA, 2023, pp. 1-6, doi: 10.1109/DAC56929.2023.10247829

Chapter 5: A. Sridharan, F. Zhang, J. -S. Seo and D. Fan., "A Sparsity Aware In-
Memory-Computing Macro in 28nm CMOS with Configurable Sparse Representation
for Highly Sparse DNN Workloads," 2024 IEEE Custom Integrated Circuits Conference
(CICC), Denver, CO, USA, 2024, pp. 1-2, doi: 10.1109/CICC60959.2024.10529009.

Chapter 6: A. Sridharan, A.H. Ali, Y. Lee, A. Anupreethem, Y. Liu, J. Zhang, J.
-S. Seo, D. Fan., "SAFER: Sparsity Integrated Compute-in-Memory AI Accelerator
with a Fused Dot-Product Engine and a RISC-V CPU" IEEE European Solid-State
Electronics Research Conference (ESSERC), September 2025, accepted for publication.

101

APPENDIX B

PERMISSION STATEMENT FOR THE PREVIOUS PUBLISHED WORKS

102

The author of this dissertation thesis, Amitesh Sridharan, confirms that all included
published works have been granted permission by all co-authors.

103

ProQuest Number:

INFORMATION TO ALL USERS
The quality and completeness of this reproduction is dependent on the quality

and completeness of the copy made available to ProQuest.

Distributed by
ProQuest LLC a part of Clarivate ().

Copyright of the Dissertation is held by the Author unless otherwise noted.

This work is protected against unauthorized copying under Title 17,
United States Code and other applicable copyright laws.

This work may be used in accordance with the terms of the Creative Commons license
or other rights statement, as indicated in the copyright statement or in the metadata

associated with this work. Unless otherwise specified in the copyright statement
or the metadata, all rights are reserved by the copyright holder.

ProQuest LLC
789 East Eisenhower Parkway

Ann Arbor, MI 48108 USA

32114253

2025

	Table of Contents
	List of Tables
	List of Figures
	Chapter
	1 INTRODUCTION
	2 Programmable and Generic Processing-in-SRAM Accelerator
	3 Precision Scalable In-Memory Computing Macro With Bit-Parallel Inputs and Decomposable Weights
	4 A Fully Digital Sparse In-Memory Matrix Vector Multiplier for Communication Applications
	5 A Sparsity Aware In-Memory-Computing Macro with Configurable Sparse Representations
	6 Sparsity Integrated Compute-in-Memory Accelerator with a Fused Dot-Product Engine and a RISC-V CPU
	7 CONCLUSION

	References
	Appendix
	A PREVIOUS PUBLISHED WORKS
	B Permission Statement for the Previous Published Works

