Compute-in-memory Circuits and Architectures for Efficient Acceleration of Al and
Data Centric Workloads

by

Amitesh Sridharan

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

Approved June 2025 by the
Graduate Supervisory Committee:

Deliang Fan, Chair
Jae-sun Seo

Yu Cao
Jeff Zhang

ARIZONA STATE UNIVERSITY

August 2025

ABSTRACT

Modern computing is increasingly driven by the explosive growth of data from
applications such as Artificial Intelligence (AI), Machine Learning (ML), and Genomics.
These workloads are inherently data-intensive, requiring fast and efficient processing
of large datasets. Although scaling input data in Al applications continues to boost
performance, traditional computing architectures have struggled to keep pace, creating
a widening gap between data generation and processing capabilities.

This disparity stresses the three fundamental pillars of computing—storage, commu-
nication, and computation—impacting performance, energy efficiency, and cost. Con-
ventional Von Neumann architectures, designed to maximize computational through-
put, now face the “memory and power wall,” where compute units cannot fetch or
process data fast enough to meet demand. As data movement becomes the dominant
bottleneck, there is a clear need to pivot from compute-centric to memory-centric
design approaches.

In-Memory Computing (IMC), or Compute-in-Memory (CIM), addresses these
challenges by performing computation directly within memory, minimizing data
movement and mitigating the memory wall.

This dissertation introduces a series of digital CIM circuits and architectures that
significantly improve power, performance, and area (PPA) metrics for data-intensive
workloads. It begins with a programmable CIM design that balances the flexibility of
Central-Processing-Units(CPUs) /Graphics Processing Units(GPUs) with the efficiency
of ASICs, enabling a broad class of applications. A prototype 28nm CMOS chip is
then presented to accelerate general matrix-matrix multiplications (GEMMs) across
various fixed-point precisions.

The focus then shifts to sparse GEMM acceleration. The first design demon-

strates how CIM tailored for channel decoders leverages both fixed and unstructured
sparsity to outperform conventional designs. The second design, fabricated in 28nm
CMOS, supports diverse unstructured sparse formats and integer precisions, efficiently
targeting highly sparse deep neural networks (DNNs). The final design achieves
state-of-the-art efficiency in compressed sparse GEMMs, supporting both integer and
floating-point data types using shared hardware. It also integrates a RISC-V CPU to
manage computation across diverse matrix sizes and model types.

Together, these contributions advance CIM as a scalable and efficient platform for

future Al and data-centric systems.

i

ACKNOWLEDGMENTS

I owe my deepest gratitude to my wife, Vaishali Sridhar, my parents, Meera
Natarajan and Sridharan Kanakarajan, and my brother, Visvesh Sridharan, for their
unwavering love, encouragement, and support throughout every stage of my Ph.D.
journey. This dissertation is dedicated to them.

[am profoundly grateful to my advisor and committee chair, Dr. Deliang Fan, for
his exceptional mentorship, insightful guidance, and constant encouragement during
my doctoral studies. His support has been instrumental in shaping my research
direction, refining my writing, and developing essential skills in time management and
critical thinking. I am especially thankful for his patience, his belief in my potential,
and his dedication to guiding me through each phase of my Ph.D. It has truly been
an honor and privilege to be his student.

I would also like to express my heartfelt appreciation to Dr. Jae-sun Seo, a member
of my Ph.D. advisory committee, for his outstanding mentorship and continued
support. From the very beginning of my Ph.D., he has been a constant source of
inspiration. I am sincerely grateful for the opportunities he provided, his thoughtful
feedback, and, most importantly, for treating me as one of his own students. His
influence has had a lasting impact on both my academic and personal growth, and I
deeply aspire to follow the example he sets.

My sincere thanks go to Dr. Yu (Kevin) Cao and Dr. Jeff Zhang for their invaluable
guidance throughout my research projects and for their generous service as members
of my Ph.D. committee. I am also thankful to Dr. Bo Yuan, Dr. Shan X. Wang, Dr.
Wilman Tsai, and Dr. Yiran Chen for their collaboration and insightful contributions,
which have greatly enriched the scope and impact of my work. Additionally, I would

like to thank Dr. Harsono Simka and Dr. Ming He from Samsung Semiconductor Inc.,

il

and Dr. Kerem Akarvardar and Dr. Xiaoyu Sun from TSMC Corporate Research, for
their valuable feedback and technical mentorship during my summer internships. Their
guidance has significantly shaped my research direction and professional development.

[am deeply indebted to my colleagues and collaborators Dr. Shaahin Angizi, Dr.
Fan Zhang, Asmer Hamid Ali, Dr. Sai Kiran Cherupally, Dr. Jyotishman Saikia,
Anupreetham, Md. Habibur Rahman, Dr. Adnan Siraj Rakin, Dr. Li Yang, Yongjae
Lee, Yuan Liao, Dr. Shreyas Venkataramanaiah, Jingxing Li, Jingkai Guo, Yaotian
Liu, Dr. Injune Yeo, Haotian Su, Boyang Cheng, Yucheng Wang, and Jiawei Hu—for
their collaborative spirit, insightful discussions, and steadfast support throughout my
Ph.D. Their friendship and contributions have been instrumental to both the progress
and enjoyment of my graduate experience.

I also wish to thank my graduate advisors, Lynn Pratt and lan James, for their
continuous support with administrative matters and logistics. Their guidance ensured
a smooth and productive academic journey.

Finally, I would like to thank my friend Magesh Sridhar for his encouragement
and support. His positivity and friendship have meant a great deal to me and have
played an important role in the successful completion of this dissertation.

This work is supported in part by the National Science Foundation under Grant

No0.2314591, No.2505326, No.2528723, No0.2528767, and ASU.

v

TABLE OF CONTENTS

Page
LIST OF TABLES .. e ix
LIST OF FIGURES ... e X
CHAPTER
1 INTRODUCTION . 1
1.1 Today’s Computing Limitations 1
1.2 Memory Centric Compute Paradigm 2
1.3 Thesis Organizationuuuiiiiiiiiiiiiiiinnn. 6
2 PROGRAMMABLE AND GENERIC PROCESSING-IN-SRAM AC-
CELERATOR .. 8
2.1 Introduction 8
2.2 PSRAM Chip Circuit and Architecture 11
2.3 Chip Measurement Results........... 15
2.3.1 Performance Measurements 15
2.3.2 Variability Analysis.......... ... i 16
2.4 Application Evaluation and Comparison 18
2.4.1 Case Study 1: Bulk Bitwise Boolean Operations 18
2.4.2 Case study 2: Binary Weight Neural Networks............. 19
2.4.3 Case study 3: Data Encryption........................... 22
2.5 Conclusion 23
3 PRECISION SCALABLE IN-MEMORY COMPUTING MACRO WITH
BIT-PARALLEL INPUTS AND DECOMPOSABLE WEIGHTS 24
3.1 Imtroduction 25
3.2 PS-IMC Macro Architecture 27

CHAPTER Page

3.2.1 Bit-Cell Design 27
3.2.2 Carry Save Adder (CSA) Treecoovviiiiiiii., 29
3.2.3 Decomposed Weight Precision Data-flow 30

3.2.4 Variable Shift Accumulator (VSA) for Precision Handling .. 32
3.3 Chip Measurement Results............... 35
3.4 ConClUSION . . .\ 37
4 A FULLY DIGITAL SPARSE IN-MEMORY MATRIX VECTOR MUL-

TIPLIER FOR COMMUNICATION APPLICATIONS 38
4.1 Introduction 39
4.2 Neural BP Algorithm 41
4.3 Proposed DSPIMM Platform 45

4.3.1 Architecture and Data Flow 45
4.3.1.1 Wy, Structured Sparse Matrix Memory 46
4.3.1.2 Ws, Unstructured Sparse (USP) Matrix Memory 46
4.3.1.3 Global Addition, 47
4.3.1.4 MinSum Compute and Dot Products................ 47
4.3.1.5 S, Calculation............... 47

4.3.2 6+2T (8T) SRAM Bitcell Design for In-memory-computing 48
4.3.3 Bit-Serial Matrix Vector Multiplication (MVM) In-memory . 49
4.3.4 Structured Sparse Matrix Vector Multiplication (SSP-MVM) 50
4.3.4.1 Greedy Weight Compression and Localization
(GWCL) Algorithm for SSP-MVM.................. 50
4.3.4.2 SSP-MVM In-Memory Compute Circuit and Archi-

tecture. ... 51

vi

CHAPTER Page
4.3.5 Unstructured Sparse Matrix Vector Mult. (USP-MVM) 52

4.3.5.1 Enhanced Greedy Algorithm for USP-MVM 52

4.3.5.2 USP-MVM IMC Circuit and Architecture 53

4.3.5.3 Overflows 54

4.4 FEvaluation and Results 5}
4.4.1 Experiment Setup 55
4.4.2 Experiment Results........... 56

4.5 ConcluSion 57

5 A SPARSITY AWARE IN-MEMORY-COMPUTING MACRO WITH

CONFIGURABLE SPARSE REPRESENTATIONS 59
5.1 Introduction 60
5.1.1 Background and Motivation 60

5.1.2 Challenges and Benefits of Sparse Compute 61

5.2 Circuit, Architecture and Operation 63
5.2.1 SP-IMC Macro Architecture.............................. 63

5.2.2 Bitcell Design 64

5.2.3 Sparse Compression Formats and Variable Sparsity Ratio... 65

5.2.3.1 Compression Direction 66

5.2.4 Dataflow and Pipeline L. 67
5.2.5 Mapping Compressed kernels 68

5.3 Experiment Results and Analysis 69
5.3.1 Chip Measurements..............., 69
5.3.2 Comparison and Evaluation 72

5.4 Conclusion i 73

vii

CHAPTER Page
6 SPARSITY INTEGRATED COMPUTE-IN-MEMORY ACCELERA-
TOR WITH A FUSED DOT-PRODUCT ENGINE AND A RISC-V

CPU 75

6.1 Introduction 77

6.2 Architecture and Operation 78

6.2.1 SAFER Chip Architecture 78

6.2.2 SAFE Macro Architecture.................... 80

6.2.2.1 Compute Column (CC), 81

6.2.2.2 Sparse Decode Unit (SD)........ ... iiiat. 81

6.2.2.3 FP8 fused dot-product (FSD) and INT8 MAC 83

6.3 Chip Measurements and Results................................ 84

6.4 COonClUSION\t 88

7 CONCLUSION e 91

REFERENCES . 93
APPENDIX

A PREVIOUS PUBLISHED WORKS 100

B PERMISSION STATEMENT FOR THE PREVIOUS PUBLISHED

viil

LIST OF TABLES

Table Page
1. Measured Reference Voltage Ranges, 17
2. Latency Comparison of Vector Boolean Logic Operations Supported by
PSRAM and Prior Accelerators i i 19
3. Comparison with State-of-the-art SRAM Based PIM Accelerators. 21
4. 128-bit AES Performance. 22
5. Comparison with Prior Digital IMC Works................ 36
6. Power Breakdown 56
7. GWCL Algorithm Memory Benefits(Excludes Index Memory) 57
8. Comparison with State-of-the-art SRAM Based IMC Accelerators 57
9. Comparison with Prior LDPC Implementations 58
10. RISC-V Instruction Set Extensions 80
11. AT Model Accuracy for Various Sparsity Ratios........................... 88
12. Comparison with State-of-the-art Fully Digital CIM Works................ 89

1X

LIST OF FIGURES

Figure Page

1.

10.

11.
12.
13.

PSRAM Chip with 8 SRAM Cell as the Operand Memory and the Proposed

Single-cycle Logic-SA Design (Adapted from Sridharan et al. (2022a), with

Permission). i 12
In-memory Logic Simulation Waveforms.................................. 14
PSRAM Chip Micrograph and Area Breakdown 15

Frequency Scaling over Different Vdds (A), Static and Dynamic Power

Consumption (B), Vref Scaling over Different Vdds (C), and Throughput

Scaling over Different Vdds (D). 16
Monte-carlo Simulations for Vref Seperation Analysis 18
BWNN Hardware Mappingo oo 20

(A) PSRAM Energy Consumption and (B) Processing Time for Running
the Alexnet (Imagenet Dataset). 20
AES Block Diagram with the Gate Utilization............................ 22
Comparison of Conventional Digital IMC Implementations Versus Proposed
Throughput Oriented PS-IMC Implementation 26
PS-IMC Macro Architecture Design. (Adapted from Sridharan et al. (2024a)

with Permission) o 28
(A) Bit-cell Schematic, (B) Layout, and (C) Truth Table. 29
Precision Breakdown and Tree Structures of CSA and BAT 30

(A) Grouped Weight Precision, (B) PS-IMC’s Decomposed Weight Precision,

(C) Multiply and Accumulate Hardware Cost for 4-bit Operands 32

Figure
14.

15.

16.
17.
18.

19.
20.
21.
22.

23.

24.

25.

Page
(A) Psum Reduction from Top and Bottom Sub-arrays, (B) Variable Shift
Accumulator Micro-architecture, (C) Timing Diagram with the Total Num-
ber of Macs Performed in a Single PS-IMC Macro 33
Throughput (TOPS) vs. Energy-efficiency (TOPS/W) for (a) 1bW:1/4bl,
(B) 4bW:1/4bl, and (C) 8bW:1/4/8bl Modes. (D) Power and Frequency
SCaling . .. 34
Die Micrograph (Left), and Area Breakdown (Right)...................... 35
Example of Neural-BP Decoding Procedure 42

(A) DSPIMM Architecture (B) Unstructured Sparse Weight In-memory
Compute (C) Structured Sparse Weight In-memory Compute (D) Data Flow
of Bit-serial MVM. (Adapted from Sridharan et al. (2023) with Permission)
(A) 6+2T(8T) Compute Bit-cell (B) Truth Table of 2T And/Dot-product . .
EGWCL Algorithm Example
Area Breakdown of (A) SSP Matrix Memory (B) USP Matrix Memory.
Current Sparse IMC Implementation Drawbacks, Benefits of Sparse Encod-
ing, Challenges of Sparse Encoded Weights in IMC
Overall Architecture of SP-IMC Macro, Bit-cell Schematic, Layout, and
Micro-architecture of In-memory Decode Hardware. (Adapted from Sridha-
ran et al. (2024b) with Permission) il
Dataflow of Various Modes in SP-IMC, Pipeline Diagram, Index Priority
Queue, SpMM Parallelism in Memory
Mapping Methodologies for COO-CSC, RL, Why CSR Is Not IMC Friendly

and Benefits of N:M Sparse Encoding............

X1

Figure
26.

27.

28.
29.
30.

31.
32.
33.
34.

35.

Chip Measurement Results, Accuracy Results of Pruned DNNs, Area Break-
down in Macro and System Level.......... L.
System Latency, Write Operations, Figure of Merit (FOM), and Comparison
to Prior Digital IMCs
SAFER Chip Architecture
SAFE Core and Macro Architecture
(A) Sparse Decode Unit, (B) Sparse Compression and Mapping, (C) Re-
ducing Hardware Complexity by Normalizing Input Queue Length
(A) Floating-point Multiply Unit and (B) Fused Dot-product in SAFE.....
Pipeline Diagram for a 1:2 Sparse Workload
(A) SAFE Power, (B) Area Breakdown L.
Power and Frequency Scaling (A), Sparsity Savings (B), Throughput and
Energy Efficiency Scaling (C), Figure of Merit (D)........................

Testing Setup, Die-Micrograph and Chip Summary

X1l

Page

Chapter 1

INTRODUCTION

1.1 Today’s Computing Limitations

Over the past several decades, compute performance was primarily limited by
hardware capabilities, but this was consistently overcome by advances in transistor
scaling, as described by Moore’s Law (doubling the number of transistors per chip)
and Dennard scaling (allowing for higher clock speeds and lower power per transistor
as they shrank) However, as we approach the physical and thermodynamic limits of
miniaturization, both Moore’s Law and Dennard scaling have slowed significantly,
making further gains increasingly difficult and expensive Das (2015).

At the same time, the traditional Von-Neumann computing paradigm faces inherent
bottlenecks that are now more pronounced. The most significant is the Von-Neumann
bottleneck, which arises from the separation of memory and compute units. In this
architecture, data and instructions must travel back and forth across a shared bus,
limiting throughput and causing the processor to idle while waiting for data transfers.
As processor speeds have far outpaced improvements in memory bandwidth, this
bottleneck has only worsened, especially for data-intensive applications like Al and
large-scale data analytics. Additionally, the serial, step-by-step nature of Von-Neumann
processors restricts their ability to efficiently handle highly parallel workloads, further
limiting performance gains even as more cores are added. Attempts to mitigate these

issues—such as using larger caches, branch prediction, and multi-core designs—have

provided incremental improvements but have not solved the fundamental architectural
limitations.

The memory system which spans from fast SRAM caches to DRAM main memory
and even to slower storage like SSDs is responsible for a disproportionate share of the
system’s energy consumption, performance bottlenecks, reliability issues, and cost.
As applications continue to evolve particularly in domains such as machine learning,
genomics, graph processing, and large-scale data analytics they are becoming far
more data intensive, exacerbating the pressure on memory systems. The result is
a bottleneck between communication data path between the compute and memory.
This bottleneck, known as the memory wall problem and results in substantial data
movement overhead. A key observation from Mutlu (2018) highlights that, in a
traditional CPU, the data movement required for a simple ADD operation can cost

up to 115x more than the computation itself.

1.2 Memory Centric Compute Paradigm

A promising solution to the memory wall problem is the Processing-in-Memory
(PIM)—also referred to as Compute-in-Memory (CIM) or In-Memory Computing
(IMC)—paradigm (Hereafter, the terms Processing-in-Memory (PIM), Compute-in-
Memory (CIM), and In-Memory Computing (IMC) will be used interchangeably).
This approach rethinks the traditional separation between computation and storage
by placing computing elements as close to memory as possible, and in many cases,
embedding them directly within the memory arrays. By doing so, it virtually elimi-
nates the performance and energy bottlenecks caused by excessive data movement,

addressing the issue from both circuit-level and architectural perspectives. Over the

past decade, numerous studies have demonstrated the effectiveness of this paradigm
across various memory types including SRAMs Zhang et al. (2017); Yin et al. (2020);
Jiang et al. (2020); Hu et al. (2025), DRAMs Zhang et al. (2021a); Li et al. (2017);
Ahn et al. (2015); Seshadri et al. (2017), and even emerging non-volatile memory
technologies like MRAMSs Sridharan et al. (2022b); Zhang et al. (2024b) and RRAMs
Zhang et al. (2024a); Wang et al. (2023). The benefits of applying a memory-centric
computing model vary depending on the memory type as well as the underlying
compute methodology whether analog or digital. The analog computing model as in
Zhang et al. (2017); Jiang et al. (2020), map discrete numbers to the current domain
and uses current summing to perform arithmetic instead of traditional digital gates.
This has huge potential when it comes to reduced computation resources but it requires
the use of ADCs/DACs which tradeoffs compute accuracy with power, performance,
area as well as robstness and variability Seo et al. (2022). On the other hand we
have digital compute paradigm which is similar to digital ASICs but here the memory
centric paradigm is adopted by closely interleaving compute and memory by directly
driving compute logic with static components thereby effectively moving a part if not
most of the compute within the bit-cell or into the memory array. This eliminates
the need for memory reads and writes for compute effectively matching the memory
bandwidth with the memory size. This has much more practical viability and can
achieve energy efficiency close to analog compute. This dissertation specifically focuses
on exploring digital compute-in-memory circuits and how they can be effectively used
to accelerate data-intensive applications.

The key contributions of this thesis are:

e We propose a programmable Processing-in-Memory (PIM) architecture that

unifies PIM paradigm with flexible programmability. This design allows a single

memory-centric compute substrate to efficiently support and accelerate a wide
range of data-intensive applications, rather than being limited to fixed-function
accelerators.

e To demonstrate its practical viability, we implement and fabricate the pro-
grammable PIM design as a silicon prototype using 65nm CMOS technology. We
then validate the architecture’s effectiveness by mapping representative applica-
tions directly onto the chip. Through real-time execution and benchmarking,
we demonstrate significant performance and energy benefits, highlighting the
practicality and generalizability of our programmable PIM compute approach.

e Given the dominance of Al as a data-intensive workload, we explore how different
characteristics of AI/ML models—including model size, numerical precision,
data types, and sparsity—interact and trade off with one another in the context
of in-memory computing. We propose a suite of CIM architectures tailored to
effectively handle these diverse requirements and to deliver real-time compute
benefits.

e To enable scalable precision, we present PS-IMC (Precision-Scalable In-Memory
Compute), a novel CIM architecture that supports bit-parallel multiply-
accumulate (MAC) operations across multiple integer precisions. PS-IMC
achieves high compute efficiency by dynamically adapting to different precision
levels through intelligent resource sharing within the compute pipeline. This
flexibility allows it to deliver one of the highest compute throughputs reported
to date for a wide range of integer formats. The design is fabricated in 28nm
CMOS technology and is benchmarked against state-of-the-art CIM macros,
demonstrating its superior performance and precision scalability.

e To efficiently handle sparsity, we propose two CIM architectures: DSPIMM

and SP-IMC. These are among the first in-memory compute designs to support
unstructured sparsity and can directly operate on compressed weight representa-
tions stored within the memory. This is made possible through a time-interleaved
sparse decode methodology, which achieves the benefits of memory compression
while significantly reducing decoding complexity and overhead.

We validate the DSPIMM architecture by mapping a sparse communication-
driven deep neural network (DNN) algorithm—specifically, the Neural Belief
Propagation (Neural BP) algorithm—onto the hardware. We compare its
performance against traditional ASIC implementations to demonstrate the
advantages of in-memory execution for sparse models.

In SP-IMC we further explore how the time shared sparse decode methodology
can be configured to support multiple sparse compression formats and a wide
range of sparsity ratios, all while preserving bit-parallel MAC support and
offering robust compute efficiency across use cases. A prototype of the proposed
architecture, fabricated in 28nm CMOS technology, demonstrates more than
a 4-50x reduction in compute resources required to run popular models such
as ResNet, compared to baseline digital designs, highlighting the substantial
benefits of CIM for real-world inference tasks.

To address flexible data type support, we design a fused multiply-add (FMA)
pipeline within the CIM fabric that can process both integer and floating-point
formats across various precision levels. This allows hardware reuse across both
INTS8 and FP8 formats.

We also explore an alternative semi-structured N:M sparsity methodology in

CIMs, which offers a more hardware-friendly approach to sparse compute while

preserving high compression efficiency with better accuracy compared to a fully
structured sparsity.

e To address the scalability of matrix operations across varying shapes and di-
mensions, we co-design a lightweight, custom RISC-V processor with our CIM
macros. This hybrid architecture serves as a flexible controller to orchestrate
data movement and computation across matrix tiles, enabling scalable and
programmable matrix multiplication.

e All proposed features are integrated into a complete 28nm silicon prototype,
and we perform comprehensive comparisons with state-of-the-art CIM designs
to show that our system achieves best-in-class performance, power, and area

efficiency.

1.3 Thesis Organization

The outline of this thesis is as follows:

e Chapter 2 presents a programmable and generic SRAM (PSRAM) based
Compute-in-memory macro prototyped in 65nm CMOS. This chapter goes over
the memory-cell circuit design, macro architecture, variability analysis, chip
measurement results, and case studies for power/performance characterization
of prototype chip taped-out in commercial 65nm CMOS.

e Chapter 3 presents a precision scalable Compute-in-memory macro prototyped
in 28nm CMOS that proposes a hardware scaling methodology in CIM based
design to accelerate variable fixed precision multiply-and-accumulate workloads

primarily focused on accelerating matrix-vector multiplications. The CIM circuit

design, macro architecture, chip measurement results, workload characterizations
and comparsion with prior SOTA CIM desings are included in this chapter.

e Chapter 4 presents a system level CIM based acceleration hardware for an Al
based channel decoder primarily used in communication applications. This chap-
ter elaborates on channel codes, AL based channel decoding algorithms, a sparse
matrix multiplier design based on CIM, algorithm and hardware performance
characterization and comparison with prior works.

e Chapter 5 presents a prototype chip fabricated in 28nm CMOS that acceler-
ates generic unstructured sparse matrix-vector multiplications using a digital
Compute-in-Memory (CIM) architecture. This design explores the integration of
multiple sparsity formats and compression ratios within a single, monolithic CIM
framework, enabling broad applicability across diverse Al workloads. By directly
computing on compressed representations we show how the proposed architec-
ture achieves substantial reductions in compute resource usage for large-scale
AT models.

e Chapter 6 presents a digital CIM-based fused multiply-add (FMA) matrix-
vector accelerator prototype chip that supports semi-structured sparsity and
integrates a custom RISC-V CPU for efficient data movement. We demonstrate
how the FMA pipeline is designed to handle both integer and floating-point
workloads using shared hardware. We then evaluate the accelerator on various
CNN and LLM models with different semi-structured sparsity formats, all
supported natively in hardware. The chapter also explores the idea of how a
RISC-V core can serve as a programmable controller to manage data flow across
diverse Al workloads.

e Chapter 7 concludes the dissertation.

Chapter 2

PROGRAMMABLE AND GENERIC PROCESSING-IN-SRAM ACCELERATOR

This chapter introduces a generic and programmable Processing-in-SRAM
(PSRAM) accelerator chip that enables acceleration of a variety of data-intensive work-
loads. Built on an 8T-SRAM array, the proposed design is the first to support the full
set of Boolean logic operations—including 2 and 3-input NOR, NAND, XOR—along
with majority and full-adder operations, all executed in a single cycle reduced to
just memory reads. This level of functionality and flexibility within a single PSRAM
platform enables a broad range of compute-in-memory applications, including parallel
vector processing, neural network acceleration, and data encryption. To demonstrate
its capabilities, the PSRAM accelerator is implemented within a 16 Kb SRAM macro
and fabricated in a 65nm CMOS process. The prototype chip operates at a frequency
of 1.23 GHz, making it one of the fastest programmable in-memory computing systems
reported to date. The chip achieves a peak system-level throughput of 1.2 TOPS and
delivers an energy efficiency of 34.98 TOPS/W at 1.2V, across the complete set of

supported 2- and 3-input Boolean logic functions.

2.1 Introduction

Traditional Von Neumann computing architectures—such as central processing
units (CPUs) and graphics processing units (GPUs)—have long been the backbone of
general-purpose and high-performance computing. These platforms are valued for their

programmability, flexibility, and ability to efficiently execute a broad spectrum of bit-

wise logic and arithmetic operations. However, as data-intensive applications continue
to grow in both scale and complexity, these architectures increasingly face fundamental
bottlenecks in-memory bandwidth and energy efficiency. The separation of memory and
computation in Von Neumann systems results in frequent and energy-expensive data
transfers between processing and storage units, which limits performance scalability
and contributes significantly to power consumption. In response to these limitations,
Processing-in-Memory (PIM) architectures have emerged as a promising alternative.
By integrating computation capabilities directly within or near memory arrays, PIM
designs aim to reduce data movement, lower energy consumption, and improve
overall throughput. However, application-specific PIM architectures, while efficient
for targeted tasks, often suffer from limited generality. These designs are typically
optimized for a specific algorithm or application domain—such as convolutional neural
networks or encryption—which makes them inflexible and unable to adapt to the
fast-paced evolution of software workloads and algorithmic paradigms. As such, their
utility diminishes when applied outside their narrowly defined operational scope,
making them unsuitable for general-purpose use Biswas et al. (2018).

To overcome these limitations, recent research has focused on developing generic and
programmable PIM architectures capable of supporting a wider range of applications.
State-of-the-art designs, such as those presented in Wang et al. (2020), explore
alternatives to conventional bit-parallel processing models by adopting bit-serial
computing techniques. These approaches enable more compact and reconfigurable
PIM implementations that support basic arithmetic and logic functions using a limited
set of in-memory operations. Bit-serial methods decompose arithmetic computations
into a sequence of Boolean operations executed over multiple cycles, which allows for

flexible algorithm mapping without requiring extensive hardware specialization.

However, this added flexibility comes at the cost of increased latency and greater
intermediate data movement. Since bit-serial implementations often require multiple
compute cycles even for basic operations, they involve frequent read and write-back
steps between memory cells and peripheral logic. This can negate some of the energy
and performance benefits that PIM architectures are designed to deliver, especially in
scenarios where high-throughput and low-latency computation are essential Biswas
et al. (2018); Wang et al. (2020); Valavi et al. (2019); Zhang et al. (2018); Yue et al.
(2020).

To address the limitations of existing application-specific and bit-serial pro-
grammable PIM designs, this work presents a programmable Processing-in-SRAM
(PSRAM) accelerator that combines the high computational efficiency of in-memory
processing with the flexibility of general-purpose programmability. Unlike prior works
that are either limited to a narrow set of operations or require multiple compute cycles
to implement basic logic functions, the proposed PSRAM supports a complete set
of Boolean operations—including both 2-input and 3-input boolean logic operations
(e.g., NOR, NAND, XOR), majority logic, and full adder functionality all executed
within a single memory cycle. To the best of our knowledge, this is the first in-memory
computing macro that realizes the complete set of logic functions in a single-cycle
execution model.

This enables one of the fastest programmable in-memory computing systems
reported to date, with the prototype design achieving a clock frequency of 1.23 GHz.
The one-cycle logic execution model not only improves raw throughput but also
addresses one of the major inefficiencies of previous programmable in-memory logic
designs: redundant intermediate data write-back. In traditional multi-cycle PIM

systems, more complex logic functions such as 3-input operations and full adders are

10

typically realized through a sequence of basic Boolean steps, requiring multiple cycles.
Each cycle may involve reading and writing intermediate results to and from memory,
incurring both latency and energy overheads. By integrating support for complex
Boolean operations within a single memory cycle, PSRAM eliminates this overhead,
substantially reducing both latency and dynamic energy consumption Biswas et al.
(2018); Wang et al. (2020); Valavi et al. (2019); Zhang et al. (2018); Yue et al. (2020).

PSRAM accelerator is demonstrated across three distinct application domains
to showcase its versatility and general-purpose programmability. First, it supports
bulk bitwise vector operations, which are commonly used in data-intensive workloads
such as search, database filtering, and bitmap indexing. Second, the architecture
enables efficient low-precision deep learning acceleration, leveraging its Boolean and
arithmetic capabilities to execute quantized neural network inference directly within
memory. Finally, PSRAM is applied to cryptographic computation by supporting the
Advanced Encryption Standard (AES) algorithm, illustrating its capacity to handle

complex bit-manipulation and control flow patterns required in security applications.

2.2 PSRAM Chip Circuit and Architecture

PSRAM leverages the charge-sharing feature of the 8T-SRAM cell on Read Bit-
Line (RBL) and elevates it to implement 2-input and 3-input Boolean logic between
two or three selected rows in a single memory read cycle. The key idea comes from the
observation that certain discharge rate on the precharged RBL is determined by the
data value stored in the simultaneously selected memory cells attached to the same

bit-line. For instance, by activating three memory rows via Read Word-Lines (RWL),

e.g., RWLO-RWL2 (Fig. 1), if Sy, S10, and Sz memory cells all store ‘1’s, then

11

Compute sub-array

A / ::31 20 Mo
1820it\\ 4 531bit,” HE gl e 2
PSRAM Chi Y / - :
ip CLK Scan |/ i 8T-SRAM |
Gen Chain /| o

111 , i !
YYY i :

1

1/

—TT—

Row Decoder-

Row Decoder-

5
ksl
8
b
S
3
i
2
=

(MAJ)

_———_____Modified Read Row Decoder _______
Row Decoder-Il|

Reconflgurable S¢nse Amplifiels

Ctrl -

mRkRmRroooo |Si
mROoORROO (S
R ORORORO Sk
= m o R oo o [Camy

Figure 1. PSRAM Chip with 8 SRAM Cell as the Operand Memory and the
Proposed Single-cycle Logic-SA Design (Adapted from Sridharan et al. (2022a), with
Permission).

the read access transistors (T8) remain OFF, and the RBL precharged voltage does
not discharge. On the other side, if all cells store ‘0’s, the RBL voltage will rapidly
discharge through T8s. Similarly, based on different combinations of the values stored
in those memory cells, the discharged voltage value will be different if sampled at a
preset frequency, which could be sensed by our follow up ‘logic-SA’ design to implement
different logic functions through selecting different voltage references. Theoretically,
there will be four different voltage levels based on all possible combinations of three
memory cell data in the same bit-line. In our design, to yield a sufficiently large sense
margin, as shown in Monte Carlo simulations (Fig. 5), the read path transistor (T7 and
T8) size is designed to be 3x as shown in Fig. 1. To implement a programmable logic
function, a new re-configurable logic-SA is designed as in Fig. 1. It consists of three
sub-SAs with voltage references (i.e., Vrer1 <Vpger2<Vrers), each dedicated to distinct
logic functions. In this way, by activating three memory rows (i.e., input operand

vectors) at the same time, each sub-SA performs a neat voltage comparison between

12

the reference voltage and the discharged RBL voltages (w.r.t. different discharge rate
corresponding to stored memory cell data), which respectively generates (N)OR3,
(MAJ)MIN, and (N)AND3 logic output (complementary SA), and more importantly,
at the same time. A novel single-cycle in-SRAM XOR3 (full adder’s Sum) logic is
developed through an interesting observation as shown in the bottom-right truth table
of Fig. 1. When the majority function (MAJ) output (green box in the truth table) is
‘07, the corresponding XOR3’s output is the same as the OR3’s output. When the
majority function output is ‘1’, XOR3’s output can be achieved through AND3 as
highlighted by the purple box. Based on our last paragraph description, our logic-SA
could simultaneously get the OR3, MAJ and AND3 logic outputs, then we propose to
design the XOR3 logic through a two-transistor 2:1 multiplexer (with MAJ output as
the selector) circuit highlighted in the proposed reconfigurable logic-SA. The Boolean
logic of in-memory XOR3 can be given as XOR3 = M AJ(S;, S;, Sk).AND(S;, S}, Sk)+
MIN(S;, Sj, Sk).OR(S;, Sj, Sk). In this way, assuming three vector operands are pre-
stored in the memory, parallel in-memory full adder logic can be implemented for
the first time in a single memory cycle, where MAJ and XOR3 outputs generate the
carry-out and Sum signals, respectively. The two-input bit-wise operations will be
readily implemented by initializing one row to ‘0’/‘1’. All in-memory logic simulations

are first shown in Fig. 2, showing corresponding functionality.

13

1 | _ 111 110 101 100 011 010 00% 000
RWLO B | |
U3 = = = RWL1 B | HE
? II Il . : i l i
RWL2 S LT B
051= = =RwWL3 o Py RN SR RERE R LY
‘ i | R d ' ‘ 1 J I | L1
q T ¥ f ! T
RWL4 | | |
0.5 = = =RWLS | | | .
0 | | 1 ; i | I
1 RWLE . i] —
05~ = TRWLY | | | | 1
] RWLBI i I i |
0 [| — |
,1 H_ |) ! 7I _) _ - _))
-] 819mv |568n) W
i i 1 | ! i .98m\l

ﬁﬂr

1 - . : f
0.5 Ll XOR3 | | |
' I
‘D i | i : i —
0 1 2 3 4 5 6 7 8 10
Time (ns)

Figure 2. In-memory Logic Simulation Waveforms.

14

Read/Write Mux and Capture FFs
Decoders

Read/Write
Decoders

Memory 5
array

Clkgen Memory

SA array
Scan (1’5o)

Figure 3. PSRAM Chip Micrograph and Area Breakdown

2.3 Chip Measurement Results

2.3.1 Performance Measurements

We prototyped the PSRAM macro (128x128) in TSMC 65nm CMOS (Fig. 3).
The macro has a 2-KB/16Kb capacity and occupies 0.17 mm? (with decoder) in the
chip floorplan. The bit-cell has an area of 4.56 ym? (1080 F'? when scaled according
to feature size), which is designed using logic rules. For efficient integration, the SAs
are pitch matched w.r.t. the column and occupy 3.4% of the array size (0.082 mm?).
The complete core area breakdown is shown in Fig. 3. The PSRAM macro consumes
36 pJ (includes power consumed by all components on the die) and takes 813 ps to
generate 512 outputs of the complete 3 input logic set (AND3, XOR3, OR3, MAJ).
This represents a peak throughput of 2x128x4/813ps = 1259.52 GOPs at 1.2V supply
and a compute density of 583.12 GOPS/mm?. PSRAM achieves a significant speedup

of 4-157x when compared to state-of-the-art in-memory computing works Biswas

15

—_
()]

N

o

-
N
(6)]

N
5
- 30>
o 1 &
5 | S—
075 AT 5 2003,
@ 05 z =
L 100 ‘g 630 Py N Py
© < 550
= % 8 08 1 11 12 ®@500 8 09 1
. . : . 0.7 0. 0. 1 1.1
(a) VDD [V] (c) VDD [V]
S 1400 ——————————— 120
I | cakage
E I Dynamic
c 20 1
g
3 10t
o
O 070809 1 1.1 1.2

0.7 08 09 1.0 1.1 1.2
VDD [V]

Figure 4. Frequency Scaling over Different Vdds (A), Static and Dynamic Power

Consumption (B), Vref Scaling over Different Vdds (C), and Throughput Scaling over
Different Vdds (D).

VDD [V]

et al. (2018); Wang et al. (2020); Valavi et al. (2019); Zhang et al. (2018). We report

the maximum frequency, power consumption, throughput w.r.t. different VDDs in

Fig. 4.

2.3.2 Variability Analysis

The RBL sense margins are first tested through post-layout Monte Carlo simulations

in Cadence Spectre for the four possible sensing voltages, as shown in Fig. 5, where

16

Table 1. Measured Reference Voltage Ranges

VDD/ Vi Vren (V) Vrez (V) Vress (V)
0.7V @ 0.42GHz 509m-546m 603m-647m | 658m-693m
0.8V @ 0.64 GHz 452m-616m 620m-733m | 745m-780m
0.9V @ 0.84 GHz 414m-661m 669m-750m | 829m-889m
1.0V @ 0.98GHz 503m-711m 735m-902m | 908m-995m

1.1V@ 1.1GHz 550m-754m 760m-994m | 999m-1.083
1.2V @ 1.23GHz 554m-790m 815m-1.08 1.09-1.16

the sensing margin is reported considering both process (inter-die) and mismatch

variations (intra-die) for core VDD (1.0 V) at 1 GHz.

During the chip measurements, off-chip voltage references are provided (Viges) to
the SAs. To conduct the Vg, variation analysis on chip, we test all 128 bit-lines,
100 times, for all possible bit value combinations in memory. 10 chips are tested and
we report all the reference voltage ranges at different VDDs and the corresponding
maximum frequencies with zero logic errors in Table 1. It is found that at lower
voltages the maximum operating frequency is limited by the shrink of Vz.; ranges. A

higher VDD also yields a larger sensing margin.

17

|5 ok 'S
ez : oc: o -
1> >t >
- : : :

9 e il ~380mV

i\

Figure 5. Monte-carlo Simulations for Vref Seperation Analysis

2.4 Application Evaluation and Comparison

2.4.1 Case Study 1: Bulk Bitwise Boolean Operations

The PSRAM could be leveraged to implement bulk bitwise Boolean logic operations
efficiently between vectors stored in the same memory sub-array. This can lead to
efficient re-use of the internal memory bandwidth. Table 2 compares the latency for a
set of vector operations of interest, implemented by three generic PIM designs. We
achieve the best performance of each design, where input vectors A(aga...) B(bob;...)
and C(coc;...) are stored in separate rows of the memory. We draw two conclusions
from Table 2. First, our PSRAM is the only design that supports a full-set of Boolean

logic (both 2-input and 3-input) and integer operations. Second, due to the complexity

18

Table 2. Latency Comparison of Vector Boolean Logic Operations Supported by
PSRAM and Prior Accelerators

Parameters Y. Zhang et al. (2018) | J. Wang et al. (2020) PSRAM
Capacity (KB) 8 16 2
Technology (nm) 40 28 65

Frequency (GHz) 0.029 0.475 1.23
NOT (ns / # of Cycle) 34.72/1 2.1/1 0.81/1
NAND?2 (ns / # of Cycle) 3472 /1 2.1/1 081/1
NAND3 (ns / # of Cycle) 69.44 / 2 42/2 0.81/1
NOR2 (ns / # of Cycle) 34.72/1 2.1/1 0.81/1
NORS3 (ns / # of Cycle) 69.44 /2 42/2 0.81/1
X(N)OR2 (ns / # of Cycle) 34.72/1 21/1 0.81/1
XOR3 (ns / # of Cycle) 69.44 /2 4.2/2 0.81/1
Majority (ns / # of Cycle) n/a n/a 081/1
FULL-ADD (ns / # of Cycle) 69.44 /2 4.2/2 081/1
FULL-SUB (ns / # of Cycle) 69.44 /2 42/2 1.62/2
ADD-RCA (4-bit) (ns # of Cycle) n/a n/a 3.24/4
ADD-CSA (4-bit) (ns # of Cycle) n/a n/a 4.05/5

ADD-Serial* (4-bit) (ns) 173.6 10.5 4.05

SUB-Serialt (4-bit) (ns) 312.48 18.9 7.29

MULT-Serial# (4-bit) (ns) 1180.48 71.4 27.54

MULT-Serial (8-bit) (ns) 3541.44 214.2 82.62

of some operations (e.g., ADD/SUB/MULT), they cannot be implemented in a time-
efficient manner by the prior designs Zhang et al. (2018); Wang et al. (2020), while

PSRAM outperforms all prior works in latency.

2.4.2 Case study 2: Binary Weight Neural Networks

We also implement the binary-weight neural network (BWNN) with various weight
configurations for AlexNet and report the energy, latency and other performance in
Table 3 and Fig. 7. The general HW /SW framework developed for BWNN consists

of image and kernel banks, and PSRAM sub-arrays. Weights and activation are

19

kw 7 I [m
al||bl||cl||dl
DAY 2) transposed 0] o] co] a0
khl 0|11 l mapping s -
1 0] [/// el||f1||gl||hl
C C / e0|| /0 || g0|| hO
Kernel batch / Chia— | subarray L General | i i}
kW 7 V) h -3 [#1 /) Reserved 8*
= n ofoijfof o
Ch-2 Y= dr
Ch-1 X\ Reserved [[a][@][@][7]
AY2S . for Carry _IZIIZIIZIIZIIz
kh a5 6.1 (1) combined a) el Reserved |
aralle
Inpuj: bf;tfh /€ batch comgutziion for Sum "
YYVYY

Figure 6. BWNN Hardware Mapping

I <1:8> acc.= 56.6%

107" %&L&&C;SEAL@ 1072
<1:1>acc.=43.6% <>3‘
c
S :
— .
3102 | 15,107
© £
c 7}
H o
O
| s
1073 ' a 10
08 09 1 11 12 08 09 1 11 1.2
(a) VDD [V] (b) VDD [V]

Figure 7. (A) PSRAM Energy Consumption and (B) Processing Time for Running
the Alexnet (Imagenet Dataset).

20

Table 3. Comparison with State-of-the-art SRAM Based PIM Accelerators.

BWNN Accelerators GenericAccelerators
A. Biswas et.al. | H. Valavi et al. J.Yueetal. Y.Zhangetal.
Reference PSRAM (2018) (2019) (2020) (2018)
Technology 65nm 65nm 65nm 28nm 40nm
Bit cell Density 8T 10T 8T 8T Transposable 10T
Supply Voltage 0.8-1.2V 0.8-1.2V 0.68-1.2V 0.6-1.1V 0.5-0.9Vv
Max Frequency 1230MHz (1.2V) 5MHz 100MHz 475MHz (1.1V) | 28.8MHz (0.7V)
SRAM Macro Size 2KB 2KB 4.8KB 16 KB 8KB
Performance (GOPS) 1259.52 8 295 32.7 14.7
Performance per unit
area (GOPS/mm?2) 583.12 126 23.4 27.3 70
Energy-Efficiency 5.27 (add)
(TOPS/W) 34.98 40.3 20.6 0.55 (mult.) 31.28
Reconfigurable Programmable N/A N/A Programmable N/A

constantly quantized to 1-bit and ¢-bit using the same method as Faraone et al.
(2018), respectively, and then mapped to the parallel PSRAM sub-arrays. The top-1
accuracy after quantization on ImageNet dataset is reported in Fig. 7. For hardware
mapping, considering n-activated PSRAM chips with the size of 128 x128 (Fig. 6), each
sub-array can handle the parallel ADD/SUB (multiply-and-accumulate operations are
converted to ADD/SUB in BWNNS) of up to 128 elements of m-bit (2m<128) and
so accelerator could process nx128 elements simultaneously within computational
sub-arrays to maximize the throughput. The memory sub-array data mapping for
PSRAM is depicted in Fig. 6. We reserve four rows for Carry results initialized by zero
and up to 32 rows for Sum results. Every pair of corresponding elements to be added
together is aligned in the same bit-line. Herein, channel 1 (Chl) and Ch2 should
be aligned in the same sub-array. With m=32-bit, Chl elements occupy the first 32
rows of the sub-array followed by Ch2 in the next 32 rows. The addition algorithm
starts bit-by-bit from the LSBs of the two words and continues towards MSBs. For
evaluation, a 7-layer BWNN is adopted with distinct weight configurations of <W:I>:

<1:1>, <1:2>, <1:8>. Our evaluation result reported in Fig. 7 shows that PSRAM

21

| e ——]
SubBytes ~>[ShiffRows > MixColumns |[-» AddRoundKey \L =
72% XOR | 4-bitshift Register\l [100% x0R | ‘\\ 116 bytes

26% AND \ o o ofl! Ke qlutputdata
2% Inverter S, a— oo 01 02 03 01] :
16 bytes 1 s] ___________________ |
| nonRans ERRE
|[elelilo] _[c[olol “HA%AND.
1% Inverter
Figure 8. AES Block Diagram with the Gate Utilization
Table 4. 128-bit AES Performance.
Freq. Time (uS) Energy (nJ)
Platforms #Cycles (MH2) (Norm.) (Norm.)
Y.Zhang et al.(2018) 6358 24 265 (1x) 64.2 (1x)
M. Hutteret al. (2011)] 5429 0.847 6410 (24x) 10259 (160x)
PSRAM 718 1230 0.58 (0.002x) 19.21(0.3x)

can process AlexNet on average with 35 mJ energy per inference and ~0.5 ms latency.
The process energy and latency include the amount required by multiple PSRAM
chips working as a whole entity. More detailed performance comparison with other

recent SRAM based PIM designs are reported in Table 3.

2.4.3 Case study 3: Data Encryption

We further take the Advanced Encryption Standard (AES) data encryption algo-
rithm as the third case-study. To facilitate working with input data (with a standard
input length of 128 bits), each input byte data is distributed into 8-bit such that
eight PSRAM sub-arrays are filled by 4x4 bit-matrices Mathew et al. (2010). After

mapping, PSRAM supports the required AES bulk bit-wise operations to accelerate

22

each transformations inside the memory. As shown in Fig. 8, all AES transformations
are mainly based on (N)AND and XOR operations that are fully supported in PSRAM.
In SubBytes, MixColumns, and AddRoundKey stages, parallel in-memory XOR2 and
(N)AND?2 operations contribute to more than 90% of the operations. In ShiftRows
stage, state matrix will undergo a cyclical shift operation by a certain offset. We use
the 128-bit AES software implementation as the baseline from Zhang et al. (2018), a
350nm ASIC Hutter et al. (2011), and a 40nm ASIC Zhang et al. (2018) designs for
comparison. Table 4 shows that PSRAM achieves the highest speed-up over baseline.
This mainly comes from the massively-parallel and high throughput XOR operation
supported in PSRAM.

2.5 Conclusion

This chapter introduces a programmable PSRAM chip design in TSMC 65nm
CMOS technology. For the first time, the PSRAM could execute a complete set
of Boolean logic vector operations (i.e., NOR/NAND/XOR, both 2- and 3-input),
majority, and full adder, all in a single memory cycle. The design is taped-out in
65nm CMOS and we demonstrate three case studies leveraging our PSRAM design
on the prototype chip, including parallel vector operation, neural networks and data

encryption.

23

Chapter 3

PRECISION SCALABLE IN-MEMORY COMPUTING MACRO WITH
BIT-PARALLEL INPUTS AND DECOMPOSABLE WEIGHTS

Al is currently the most dominant class of data-intensive applications, with
large-dimensional matrix multiplications forming the core of AI computation. As
AT models evolve rapidly in size, architecture, and numerical precision, there is a
growing demand for adaptable hardware accelerators capable of efficiently handling
this diversity. While generic compute approaches—such as those discussed in the
previous chapter—offer flexibility, they often suffer from high overhead when executing
matrix-matrix operations. This is primarily due to their reliance on multiple bit-serial
instructions to complete a single matrix multiplication, resulting in significant latency
overhead. A more efficient alternative is the use of SIMD-style instructions, which
allow entire matrix multiplications to be executed with minimal cycle count and
reduced instruction complexity, making them better suited for high-throughput Al
workloads Dally (2023). To address this we present a fully digital multiply and
accumulate (MAC) in-memory computing (IMC) macro demonstrating one of the
fastest flexible precision integer based MACs to date. The design boasts a new
bit-parallel architecture enabled by a 10T bit-cell capable of four AND operations
and a decomposed precision data-flow that decreases the number of shift-accumulate
operations, bringing down the overall adder hardware cost by 1.57x whilst maintaining
100% utilization for all supported precision. It also employs a carry save adder tree

that saves 21% of adder hardware. The 28nm prototype chip achieves a speed-up of

24

2.6x, 10.8x, 2.42x, and 3.22x over prior SOTA in 1bW:1bl, 1bW:4bI, 4bW:4bl, and
8bW:8bl MACs respectively.

3.1 Introduction

In-memory computing (IMC) has been widely investigated as a promising approach
to accelerate Al workloads. There are mainly two prevalent IMC design paradigms,
i.e., compute in analog or digital domain. Analog IMC has gained attention due
to the large number of operations it can perform per watt as well as per unit area.
But it faces significant drawback from computing accuracy standpoint. On the other
hand, digital IMCs Fujiwara et al. (2022b); Lee et al. (2022); Chih et al. (2021); Mori
et al. (2023b); Lin et al. (2023) are more akin to digital ASICs closely interleaving
memory and logic units. Many recent digital IMC works demonstrate high throughput
and energy efficiency compared to their analog counterparts, without any accuracy
drop due to robust rail-to-rail logic operations. Convolutions are at the heart of deep
learning algorithms and are the most compute intensive operations. They follow a
multi-dimensional compute pattern, where the weights and inputs have five dimensions

(2D kernel, input channel, output channel, and bit-width).

Typical IMC designs follow a weight stationary approach by storing flattened 5D
weights (W) in 2D-space. The 2D weight matrix is constructed by assigning output
channels and bit-width to IMC rows (enabling parallel multiplications), the kernel
dimensions and input channels to IMC columns (enabling parallel accumulations).
The 5D-input feature maps (input/IP) are streamed from outside the memory onto
the word-lines (WL) performing multiplications within the bit-cell. WLs being a

limited resource (1-bit/cycle per WL in most cases), the 5D-input stream-in is time-

25

Col. Group Col. Group

Conventional digital IMC
implementations

1b-input """"""""""""""""""" -g g : : ;..:: ;n_b inputé —
B : i E - >
1b-input : f — in-b input; [
= ° : = ° il - - g 3 g
o |[: o [i1 & o o
c s | £ o= il % c :T:
= | = |]
g 3| 3 g [2HE|| = EIl 3
© s | o s it ©iEll © i E S
o & |i o e iy = 19 - i 19 -
- -~ : - - i o il® =] o =
£ 3 : L = | .E E o E o
=] =3 H K=z Qo - | c =
° c [] s ' 3 iR = =
H a | 3 a it o {1g]] Plell 2
a 7| o ? oo i3l & Bl s
[- : 1 - : ®© :lo] o]
['; c ; o 2 I ; 0 ;
: 3 | 2 [0 2 il 2 [Il 2
1b-input O H 1 e |1 = iH| « [|in-binputi [H| «
. : 4 f H oo *
1b-input 0 —L in-b input: [
= i : = H >
L il) e ; DAL
— 15 — - - -
Bit-serial shift accumulators for |1 2 ©—{Variable shift for weight prec.
.] . - i l — E = = =
l"P:Lg::;';:’i?t ‘;V(':t:lg‘o‘:;‘:l']me S S [Semi-serial shift acc. only for
- lopn input precisions > nb with
I uE. < fewer time-shared shift acc.
|
I

PS-IMC implementation

Figure 9. Comparison of Conventional Digital IMC Implementations Versus Proposed
Throughput Oriented PS-IMC Implementation

multiplexed to just 1D-input/unit time. In this setup, the input bit-width is also
unrolled in the time domain, hence a larger number of time-shared shift accumulations
circuits are present. The overall system incurs a large latency overhead due to the
bit-wise stream-in of inputs (latency overhead = (input precision) x (# of inputs)).
To maintain high throughput, large weight precision is typically addressed spatially
by grouping several memory columns together. This in-turn reduces the flexibility to
tune weight precision during inference. With the purpose of improving storage density,
recent works Fujiwara et al. (2022b); Mori et al. (2023b); Oh et al. (2023b) attempted
to time-share the compute hardware (adders, multipliers, etc.) with more memory
cells at the cost of throughput. Considering that convolutions are compute bound,
our approach is to maximize the throughput akin to Lee et al. (2022). However, Lee

et al. (2022) requires weight and/or input replication to achieve full utilization for

26

different precision MACs. Fig. 9 illustrates the PS-IMC design and its advantages over
prior works. Implemented in 28nm CMOS, PS-IMC achieves the highest throughput
for all supported MAC precision (1/4/8-b Weight (W):1-8b Input (I)), the highest
energy efficiency for IbW:1bl and 1bW:4bl MACs and the highest normalized compute
density (TOPS/mm?) for 8bW:8bI MACs.

3.2 PS-IMC Macro Architecture

Fig. 10 depicts the architecture diagram of the PS-IMC macro. We design the
macro using a semi-bit-parallel architecture, i.e., the design is completely bit-parallel up
to 4b-input, and a higher input precision will require time multiplexing (4b-input/unit
time). There is a pipeline stage between the adder-tree and shifter to evenly distribute
the critical path across two cycles. Hence, it takes two clock cycles to complete a
MAC with a 4b-input and 4b-weight, three cycles for a MAC with 8b-input with 4b
or 8b-weight, and only one clock cycle for a 4b-input and 1b-weight. We implement
two 128 x64 PS-IMC macros on the prototype chip and each 128 x64 macro has two
64x64 sub-arrays stacked one on top of the other, with the variable shift accumulator
(VSA) in the middle. Each column of the PS-IMC sub array has one 64-input 4-bit
CSA tree and 64 10T-SRAM bit-cells.

3.2.1 Bit-Cell Design

Fig. 11(A) and Fig. 11(B) show the proposed 10T bit-cell schematic and layout.

Each bit-cell occupies 1.38um? and is designed using logic rules. Each of the four

27

64x64 PS-IMC Sub-Array top

$148 Column [0] Column [1] Column [63]
§ é | BL Driver/Sense Amp. | | BL Driver/Sense Amp. | | BL Driver/Sense Amp.
AN E IWL_0[0] it IWL_0[0] PoawL ofo] :
[IWL_1[0] HH IWL_1[0] i IwWL_1[0] :
[w0 HF | w0 : WL[0] : I
- 5 PP_0[0] HH 1 PP_0[0] : He PP_0[0]
PP_1[0] i PP_1[0] : : PP_1[0]
10T [PP_2[0] il 10T [PP_2[0] | 10T [PP_2[0]
PP_3[0] i PP_3[0] : PP_3[0]
T IWL_2[0] i T IWL_2[0] DoIwL_2[0] : T
IWL_3[0] HE "~ IWL_3[0] T IWL_3[0] : ° :
= = i = g :
S ; o i Tl 64 o
ot ! x64 E i xe4 &l —— i xes 2
' < |ii E :
o P RE &% | : % |
g IwL_o[e3] | © IwL_o[e3] | O |: wL_o[e3] * (SHF
= IWL_1[63] i TWL_1[63] i IWL_1[63] :
(=) : [wie3) | wL[63] WL[63] * I
_| Pt o PP_0[63] HH HPP_0[63] : i PP_0[63]
TS : PP_1[63] i PP_1[63] : PP_1[63]
= 10T [PP_2[63] ::[10T [pP_2[63] : ;| 10T [PP_2[63]
4 PP_3[63] i PP_3[63] ; PP_3[63]
; : TIWL_2[63] HH TIWL_2[63] i IWL_2[63] : T
= I: IWL_3[63] HE “IWL_3[63] T IWL_3[63] : °
PSUM_0[9:0] [> PSUM_1[9:0] |~ .. . PSUM_63[9:0]
Config[0] R . 64x4b1b| 1050 ::
ConfigH] Variable Shift Accumulator 16xdbdb[13:0] [—
: PSUM_0[9:0]_ [PSUM_1[9:0] . .. PSUM_63[9:0]
—H{WL27]
o IWL_0[127]
T We-10127] 64x64 PS-IMC Sub-Array bottom
IWL_2[127]
\VI IWL_3[127]

Figure 10. PS-IMC Macro Architecture Design. (Adapted from Sridharan et al.
(2024a) with Permission)

additional transistors (T1-T4) perform a pass-gate based dot-product between 4b
input streamed in through the input/IP word lines (IWLs) and the 1b weight and
it’s complement stored on either side of the cross-coupled inverters. Each transistor
(T1-T4) is allocated to one input bit-significance, and performs a 1bW:1bI dot-product.
Thus, each bit-cell as a whole can perform a 1bW:4bl dot-product. Prior to compute,

the Partial Product (PP) nets are precharged to VSS and the IWLs are held at VSS

28

- NW

IWL_4 PP_4| |PP_3 IWL_3 ¥ D-w
I T4 T3l M -Po
= T WL | (b): o

B -co
BLB | BL H- 1.185um W-1.17um
wiwb [IWL_X | PP_1/3 |(PP_2/4
VDD | VDD |VDD-Vin| Vire
T2 Tll_ﬁ_ VDD [VSS 0 Vpre
IWL_2 2| PPl WL NesTves V=T
(a)) eSS

Figure 11. (A) Bit-cell Schematic, (B) Layout, and (C) Truth Table.

until all the weight bits are written into the SRAM bit-cells. This avoids any erroneous
compute when the stored bit is zero as the pass gates are controlled by the stored
weights. Additionally, PP X requires precharge after a large time interval of 0.5us.
This is dependent on the RC load on the PP X. We determine this precharge interval
based on post layout simulations. The functionality of the pass-gate based AND

operation is shown in the truth table in Fig. 11(C).

3.2.2 Carry Save Adder (CSA) Tree

Fig. 12 compares the precision breakdown of all branches in a binary adder tree
(BAT) widely used in prior works Fujiwara et al. (2022b); Chih et al. (2021); Mori
et al. (2023b) and a CSA tree of similar configuration used in this work. CSAs have
been widely adopted in digital designs requiring multi-operand additions because of
the significant reduction in the number of full adders and the speed-up they provide.

CSAs isolate each operand into partial sums and carries which are accumulated in

29

4 P~6¢ P\dd Péd I Adder precision increases every branch.
[P i e pdd o p i Binary Adder Tree
ms @Y EY | |a ab
o 320- IO - 0 5b
S 256 - . E () ©
2 i 4b 6b
= 192 - | Precision is accounted in tree periphery.
T i | Carry Save Adder Tree
“5 128 i é 4b 4b-S 4b 6b
1B/ +
* 64- 1 |C—
i [o—
PJE—] +
4-bit BAT 4-bit CSA |

Figure 12. Precision Breakdown and Tree Structures of CSA and BAT

parallel and the bit-precision is accounted for in the tree periphery. This utilizes
fewer high-precision adders and thereby results in an overall reduction in the number
of full adders, also resulting in a shorter critical path delay. For a 64-operand 4-bit
configuration, the CSA requires 21% fewer full adders when compared to the BAT

counterpart.

3.2.3 Decomposed Weight Precision Data-flow

Prior IMC designs Fujiwara et al. (2022b); Chih et al. (2021); Mori et al. (2023b)
spatially encode multi-bit weight precision by grouping memory columns together,
limiting weight precision flexibility. Sharma et al. (2018) proposes a hierarchical
approach to achieve this by decomposing large adder and multiplier precision into

smaller blocks that can be selectively tiled together. In this implementation, MACs

30

are performed in the traditional sense by completing multi-bit multiplication for each
operand prior to accumulation. Given that different shift-add hardware is required to
support flexible precision, Bit-Fusion trade-offs larger hardware overhead to support
flexible precision. Ryu et al. (2022) overcomes this hardware cost by allocating a fixed
bit-position to an entire PE (capable of small fixed-precision MACs across several
operands). The support for flexible precision comes when fusing the PEs together,
the partial sum from each PE is subject to a shift operation based on the allocated
bit-position. However, this reduction in multiplication hardware comes at the cost
of increased accumulation hardware, but given that multiplications are significantly
more expensive to perform (a 4-bit multiplication requires 4 ANDs; 3 shifts, 2 4-bit
additions and 1 5-b addition), the increase in accumulation hardware is easily off-set
by reduced multiplication hardware. The lowest granularity of fixed precision MACs
in each PE is 2-bit hence even Ryu et al. (2022) incurs a multiplication cost that

scales with the number of operands.

With this as motivation, we design PS-IMC using a completely weight decomposed
data-flow that un-groups all memory columns. Each memory column is allocated
a weight bit-significance (for an n-b weight, the first column stores the MSB and
the n'* column stores the LSB). The 1bW:4bl partial product generated by each
bit-cell across all rows are accumulated first. After accumulation, each column is
subjected to a shift operation depending on the bit-position. For example, considering
a 4b weight, PPs from the MSB column will go through left-shift by 3 (<<3) and as
we move down the column the shift value decreases by 1 (Fig. 13(B)). By handling
weight precision separately, the number of shift-accumulate operations remain constant
regardless of the number of operands (Fig. 13(C)). Through this approach, considering

a 4-bit precision and 128 operands, the total full-adder (FA) cost (multiplication +

31

4b Weight __MSB-1_MSB-2 LSB
AP ——— ao-PfB-- HEH HEH HOH
[)] (0] [0
- e 2 o
4b-DP) 2P 4-P-/—§f ﬂ;ﬂ-tﬂ-t
. . (0] [0]
ShlftAcc 4b |P+m -m— § -m— § -|:|— §
spap_ oML P HBH HBH _HTH
[m _— - X
Shift Ae Q
4b-IP b- MU "? n+1-bit
m g
4b-DP <| (b) Shift accumulate is done only once after acc.
Shift /'«ee Grouped weight prec. [Decomposed weight prec.
_ # of 4b 4 of #of | #of 4 of #of | #of
4b-IP b-MUL operan-sh",t FAs [FAs in|Total shift FAs | FAs in | Total
ds obs for | acc. |FAs obs for | acc. | FAs
4b-DP ¥ PS-| mul. |(MAC) PS- | mul.| (MAC)
- AOG 16 48 [336 | 131 | 467 | 3 22 284 306
Shift Aeer 32 | 96 |672| 274 |946] 3 | 25 | 536 | 561
{8b-MUL] 64 192 (1344 561 |1905| 3 28 | 1236 | 1264
(a) v 128 |384 |2688| 1316 |4004| 3 31 2512 | 2543

Shift acc. for every
operand prior to acc.

(c) # of multiplications (shift acc.) scale only with
bit-precision and not with # of operands.

Figure 13. (A) Grouped Weight Precision, (B) PS-IMC’s Decomposed Weight Preci-
sion, (C) Multiply and Accumulate Hardware Cost for 4-bit Operands

accumulation) is reduced by 1.57x and the number of shifts performed can be reduced

by 128%.

3.2.4 Variable Shift Accumulator (VSA) for Precision Handling

PS-IMC supports a wide variety of MAC configurations (1b/4b/8b Weight and

1-8b Input). Fig. 14(b) shows the micro-architecture of the VSA. A VSA is padded to

every 8 columns to support a maximum of 8b weight precision. Config|1:0] signals

in the VSA control the bit-precision of the weights and inputs. The 1bW:4bl MACs

32

Col. 0 Col. 1 Col. 7

= 15 Configto]
[x2 {5 Z 5 Z 3 E MSBs 1 2 3
o |7 - — e
o . . - 2 A/ S SsSB4t/ Next
= o G
o -719: ia +<S VoY 6xabab\/ T6x8585+
F ‘ | Psumso-719:0]) i [=B XX Xeextoan XobtN Nont aoas
3 x8 : L g 4bW:abl | ps.|MC Macro Timing Diagram
EB Ea —— E) : E4bw:4bl 3:0] (c)

= 11’b Add. H —
E - S' Ctrl(1 in even cycles)
= PSUMsO0-7 [9:0] S MSB i Clock

[= 22’b Add.
o oS ha 4<4 256
ol . . 5 25| 3| luss Ausb I b WL_0-3
o § EF c \

o}) MAC
3 3 3 : £iT S BbW:AbI|O™ ooy [sbw:dbl B0W:8b1] outpur
& : : : D

* Col.0O ° Col.1 * Col.7 hE_-;"' Variable Shift Accumulator
(a) ' (b)

Figure 14. (A) Psum Reduction from Top and Bottom Sub-arrays, (B) Variable Shift
Accumulator Micro-architecture, (C) Timing Diagram with the Total Number of Macs
Performed in a Single PS-IMC Macro

are collected in the pipeline stage before VSA in the same cycle as the input stream
in. These MACs are then gated by Config|0], which enables column-specific shifts
(<<3 for the 1% column and no shift for the last column) to obtain 4bW:4bI MACs.
Every 8 columns generate two 4bW:4bl MACs of 14-bit precision and these MAC
outputs are further gated by Config[l] to selectively shift accumulate one of the
4bW:4bl MAC output to obtain a larger 8bW:4bl MAC of 18-bit precision. An
alternative approach to implement a large weight precision (>4b) would be to subject
each column to a variable shift (7b through 4b), but in this case, the un-selected
shifters remain idle and each IMC column incurs a multiplexer overhead as opposed
to only one de-multiplexer for every 4 IMC columns. Due to the bit-parallel nature
of the 10T bit-cell, input precision of up to 4b can be handled in a single cycle
without any time-multiplexing or special control. Only for input precision above 4b,
multiplications are time-shared through shift-accumulators (Fig. 14(b)). The VSA is

tailored to support input precision ranging from 1-nb for a n-bit W. As a result, the a

33

2500

300 AT

- |-a— 4bwW:1bI
- —@— 4bW:4bl

" |—e— 1bW:1bl |
+|=@= 1bw:ab |

1875

N
N
(3]

1250

-
o
o

-y
(2]

Energy Efficiency (TOPS/W)
Energy Efficiency (TOPS/W)

625 g
ol {] @1 2V 0 e e e o . A @12V
0 20K 40K 60K 0 3K 6K 9K
Throughput (TOPS) Throughput (TOPS)
(a) (b)
160 i . - =] 160 T 2.0

g T-a sow:1b1 Measured @ 8bW:8bimode |
& 120 1 1 20 - 157
(1] [
3 | & 80 1.0 ¢
E o g
w o] @
> e ; =
2 40 40 1 os
@ .
c
w -

ol S S 5 0 il s' 0

0 1.5K 3K 4.5K 0.5 0.75 1.0 5
Throughput (TOPS) VDD (V)
(c) (d)

Figure 15. Throughput (TOPS) vs. Energy-efficiency (TOPS/W) for (a) 1bW:1/4bl,
(B) 4bW:1/4bl, and (C) 8bW:1/4/8bl Modes. (D) Power and Frequency Scaling

time-shared shift-accumulator is only necessary once every n columns. This reduces
the shift-accumulators/column since input precision is accounted with little (4b-8b)
to no (1b-4b) time-multiplexing. PS-IMC macro has three pipeline stages. The first,

second and third pipeline stages generate 64 4bl:1bW MACs, 16 4bl:4bW MACs and
8 8bI:8bW MACs respectively, as illustrated in Fig. 14(c) and (d).

34

128x64-Macro

128x64 Macro

.f)‘hﬁdhﬁ;)n(\pbﬁ

o o [IMC Array [I Shifters
«——— 156mm —— [Adder Trees [ll WL Drivers

Figure 16. Die Micrograph (Left), and Area Breakdown (Right)

3.3 Chip Measurement Results

PS-IMC is prototyped in TSMC 28nm CMOS. We implement two 128x 64 macros
on the prototype chip, where each macro occupies 0.32mm?. The PS-IMC macro
achieves the highest peak throughput/kb compared to all prior digital IMC works
for 1bW:1-4bl (3.25 TOPS/Kb @ 1.2V), 4bW:1-4bI (406.3 GOPS/Kb @ 1.2V) and
8bW:4-8bI (135.4 GOPS/Kb @ 1.2V). It also achieves the highest energy efficiency
for IbW:4bI (1843 TOPS/W @ 0.56V) and 1bW:1bl (2385.7 TOPS/W @ 0.56V).
The measurement condition is with 50% bit-wise weight sparsity and an average of
25% toggle rate for the inputs at 27°C. Input toggle rate has a linear dependence on
power, where 25% decrease in toggling rate will yield about 8.7-13% increase in energy
efficiency. For a lower input precision (<4b), we disable the IWLs depending on the
precision (a 2bI would mean we disable IWL 3 and IWL_2). A 1bW:1bI MAC in
PS-IMC achieves the same throughput as a 1bW:4bl, but due to the reduction in the

number of active IWLs 1bW:1bl achieves a higher energy efficiency. Fig. 15(a), Fig.

35

Table 5. Comparison with Prior Digital IMC Works

C-F. | Y-D. |H.Fujiwar- . .
Reference This Work |Lee et.|Chih et| aetal. J. 282? al Ca;IT' ;.(l)nzgt H;IMZOOZ: t
al. 2022jal. 2021| 2022 v’)
Technology 28nm 12nm | 22nm 5nm 28nm 28nm 4nm
Bit cell Density (EJX:ITD) ; (?XSE) 12T+1T &L’g;) eT+0.57 | STXAO
Array Size 8Kb/Macro | 8Kb 64Kb 64Kb 16Kb 16Kb 54Kb
Macro area (mm?) 0.32/Macro | 0.0323 | 0.202 | 0.0133 [0.033,0.049| 0.0159 0.0172
Supply(V) 0.54-1.2 0.72 0.72 0.5-0.9 0.45-1.1 0.6-1.1 0.32-1.1
Input Precision 1b-8b 4b-8b | 1b-8b 4b 1b-4b 1-8b |8b/12b/16b
. . . 4b/8b/
Weight Precision| 1b/4b/8b | 4b/8b 12b/16b 4b 1b 8b 8b/12b
Full O_ufput Yes Yes Yes Yes No Yes Yes
Precision
1b:1b| 451-3250 - - - 1252 - -
1b:4b| 451-3250 - - - 300 - -
G‘z"fvﬁ’)'(b 4b:4b| 56.3-406.3 | 167.9 | 51.56 | 46 ; - -
) 8b:4b| 28.1-203.1 - - - - - -
8b:8b| 18.7-135.4 42 14.3 11.4 - 1.45 15.89
1b:1b|557.4-2385.7 - - - 1108-2219 - -
TOPS/W |1b:4b(430.7-1843.5 - - - 154-248 - -
(W:l) 4b:4b| 52.8-215.5 121 89 254 - - -
8b:4b| 25.9-105.6 - - - - - -
8b:8b| 16.39-66.8 | 30.3 24.7 63 9.6-15.5 60.4 87.4
Normalized|1b:4b| 11.2-81.2 - - - 98 - -
*TOPS/mm?4b:4b| 1.4-10.15 7.63 | 10.15 7.05 - - -
(W:l) 8b:8b| 0.47-3.38 1.91 2.82 1.76 2.59 1.46 1.01
GOPS Calculation: 128(No. of rows)* 64(No. of cols)* 2(No. of macros) * 2(MAC)/Latency. GOPS/4,GOPS/8

for 4b and 8b weights respectively. 8b incurs more latency. $Normalized quadratically to 28nm.

15(b) and Fig. 15(c) illustrate the difference in energy efficiency as input precision is
scaled with fixed weight precision. In addition, Fig. 15(c) shows the 33% latency cost

when the input precision is scaled above 4b.

Table 12 compares PS-IMC against state-of-the-art digital SRAM IMC designs. It
achieves throughput improvements of 2.6 x, 10.8x, 2.42x, 3.22x in 1bW:1bl, 1bW:4bl,
4bW:4bl and 8bW:8bl MACs respectively. By reducing multiplication and adder

hardware (decomposed weight precision and CSA trees) and by increasing input bit-

36

parallelism, PS-IMC achieves 1.1x and 7.4x improvements in TOPS/W for 1bW:1bl
and 1bW:4bl MACs respectively. It also achieves 1.2x improvement in normalized
compute density for SbW:8bl MACs. Fig. 16 shows the PS-IMC prototype chip and

area breakdown.

3.4 Conclusion

In this work, we present a throughput oriented IMC macro that has a unique
decomposed weight precision data-flow for flexible precision bit-parallel MACs. PS-
IMC maintains 100% utilization without weight replication with low hardware overhead.
Measurement results show that PS-IMC achieves the highest throughput, energy
efficiency and compute density for various MAC workloads compared to prior SoTA

IMC works.

37

Chapter 4

A FULLY DIGITAL SPARSE IN-MEMORY MATRIX VECTOR MULTIPLIER
FOR COMMUNICATION APPLICATIONS

Channel decoders are key computing modules in wired /wireless communication
systems. Recently DNN based decoders have shown their promising error-correcting
performance because of their end-to-end learning capability. However, compared with
the traditional approaches, the emerging neural belief propagation (NBP) solution
suffers higher storage and computational complexity, limiting its hardware performance.
This stems from the fact that NBP has sparse matrix multiplications at its core.
The previous chapter demonstrates that IMCs are very good at performing matrix
multiplications, this is because IMCs have a matrix-like physical structure and is easy
to map matrix compute onto it. But sparse matrix multiplications break the matrix
structure if the zero compute needs to be skipped and makes it difficult to carry them
out in IMCs. To address this challenge, we develop compute methodologies that enable
sparse compute in IMCs. We do this by first analyzing the unique sparsity patterns
in the NBP algorithm, and then propose new IMC friendly compression algorithm
that enables zero skipping and also propose two new IMC designs that adapt this
algorithm and perform fast and efficient structured and unstructured sparse matrix
multiplications required by NBP. To our knowledge this is one of the first works
to propose IMC methodology for NBP compute. Post implementation, we perform
extensive experiments to demonstrate that our proposed design achieves significantly
higher energy efficiency and throughput compared to sate-of-the-art counterparts both

from a standalone IMC macro and a complete system level NBP implementation.

38

4.1 Introduction

Thanks to their powerful error-correcting capabilities, modern channel codes, such
as low-density parity check (LDPC) Gallager (1962), polar Arikan (2009), and Turbo
Berrou et al. (1993) codes, have been widely used in numerous real-world wired and
wireless communication systems, including but not limited to 5G, Wi-Fi, StarLink,
Ethernet, etc. In general, given a fixed channel code, its error-correcting performance
is mainly determined by the decoder. Recently, neural belief propagation (NBP), as a
neural network (NN)-based approach, has shown very promising decoding performance
across different types of channel codes Nachmani et al. (2016); Cammerer et al. (2017);
Gruber et al. (2017); Lugosch and Gross (2017). By unfolding the original iterative
belief propagation procedure to form a sparse feedforward neural network, NBP makes
the key scaling parameters, which were previously set in a heuristic way, can now be
directly learned from the data, significantly improving the error-correcting capability
of channel codes.

Hardware Challenge of NBP Decoder. Despite its attractive algorithmic
advantage, NBP decoder is facing a severe challenge in hardware performance. The in-
tegration of NN into decoding process, though improving error-correcting performance,
brings much higher storage and computation overhead. Because channel decoders
are typically deployed in the real-time and/or low-power communication systems,
the significantly increasing complexity, if not properly addressed, may hinder the
widespread adoption of this promising technique.

IMC-NBP: A Double-Win Solution. Fortunately, we discover that the
emerging hardware challenge for NBP decoder can be effectively addressed via in-

memory computing (IMC), a technique that has been well-studied to develop low-power

39

general NN hardware Biswas et al. (2018); Yue et al. (2020); Wang et al. (2022);
Sridharan et al. (2022a). Considering NBP is essentially a type of specialized sparse
feedforward neural network model, applying IMC to its hardware design, is naturally a
very promising strategy towards achieving high hardware performance while preserving
high decoding performance.

Which Type of IMC for NBP? Motivated by such promising benefits, in this
paper, we propose to develop energy-efficient high-performance in-memory computing-
based neural BP decoder. Since there exist numerous types of IMC techniques in
the market, e.g., SRAM, RRAM, MRAM, etc., the very first design knob we need to
consider is the most suitable IMC approach for NBP decoder. Our in-depth analysis
concludes that digital in-SRAM computing is the best candidate for building the
desired NBP decoder. This is because compared to Al applications, wired/wireless
communication have very stringent requirement on error rate (at least 10~* and above)
and data rate, calling for a noiseless compute environment and high throughput. To
that end, digital in-SRAM computing is an ideal candidate for NBP hardware because
of its accurate computation, low read/write latency, and high flexibility.

Questions to be Answered. Considering NBP decoder is a sparse neural network
with a unique sparsity pattern and activation function, a customized solution, instead
of the existing general in-SRAM hardware, is desired to fully deliver its algorithmic
promise. More specifically, several technical questions need to be answered. For
instance, how should we properly leverage the unique structured and unstructured
sparse patterns, which currently cannot be supported by the existing digital SRAM-
based IMC implementations? What is the efficient way to map new computing flow
and operation on the IMC circuits?

Technical Preview and Contributions. In this work, we perform systematic

40

investigations to answer these questions, and then develop the corresponding hardware

solutions. The main contributions are summarized as follows:

1. We, for the first time, design and develop an end-to-end, energy-efficient high-
speed SRAM-based in-memory computing system for neural BP channel decod-
ing, namely DSPIMM.

2. We propose an efficient and digital bit-serial in-memory matrix-vector multipli-
cation (MVM) module using a novel 8T compute SRAM bit-cell circuit design,
fully supporting the unique sparsity pattern in NBP decoding.

3. We propose a greedy weight compression and localization (GWCL) algorithm,
which properly leverages the structured and unstructured sparsity pattern, to
realize efficient data mapping and sparse computing.

4. We conduct extensive experiments showing the great energy efficiency and power
improvement of our DSPIMM platform. We also systematically benchmark with

other state-of-the-art counterparts.

4.2 Neural BP Algorithm

According to coding theory, a (N, K) channel code is uniquely defined by a (N — K)-
by-N binary parity check matrix (H), which can also be interpreted as a bipartite graph
consisting of N variable nodes and (N — K') check nodes. Suppose we use v to denote
the v-th variable node in the node set V' and ¢ to denote the c-th check node in the
node set C, respectively. Also, we use £ = {e(n) = (c,v) : H(c,v) =1L, v e V,ce C}

to denote the set of edges connecting the two types of nodes. Here the e ,) connecting

41

o~
<

~—~ e~
NS

S5

ﬁé’/\.
77

~ o~
<
o

<
o

WX 2\ N0 S
O O N> Svs

Iteration 1 Iteration N . Min — Sum

Figure 17. Example of Neural-BP Decoding Procedure

the c-th check node and the v-th variable node corresponds to one 1-valued entry
(“H(c,v) =1") of H.

The key idea of NBP decoding Nachmani et al. (2018) is to perform message
update in the unfolded bipartite graph. As illustrated in Fig. 17, the neurons denoted
as orange and green circles represent ., and w,_,., which are the messages (i.e.,
“belief") transmitted from the v-th variable node to the c-th check node and from
the v-th variable node to the c-th check node at the t-th iteration through edges F,
respectively. Different from traditional belief propagation, NBP treats the connections
between u._,, and u,_,. as trainable weights instead of the pre-set heuristics. Next, we
summarize the overall dataflow and compute steps of Neural BP decoding. Initially, an
NBP decoder receives the log-likelihood ratios (LLRs) I € R™ of the received codeword

T as:

42

Pr(z, = 1|r,)
l, =log —————=.
8 Pr(z, =0|r,)

(4.1)
Then the variable nodes and check nodes iteratively update the LLR messages during
the entire Neural BP decoding process. The specific update principle of the LLR
message in each iteration go through the following five steps:

Step 1: Structured Sparse Matrix-Vector Multiplication (SSP-MVM).

At the t-th iteration, u!_,, can be calculated as:

ul . = Wil, + Wou! !, (4.2)

t—1

where we define the first term as kf .. = W;l, and second term ¢ .. = Wou!"l,.

For the first term k!

vose = Wil,, the matrix format can be formulated as:

(Kt)1 0,0,0,w,...| | (L)1
=10,0,w,0,...| | : (4.3)

(kose)p : (L) v
with input vector I, € RY and weight matrix W, € RP*¥ that has one non-zero
entry in each row (corresponding to v), denoted by golden connections between [,

(pink circles) and wu,_,. (green circles).

Step 2: Unstructured Sparse Matrix Vector Multiplication (USP-MVM)
and Accumulation. It requires another matrix multiplication followed by an addition
with the results from the previous step. For the second term ¢!, _,. = Wau!~}, , the

c—v)?

matrix format can be formulated as:

(qf;—w)l 0,0,0,0,... (ui:)lv)l
—10,0,0,w, ... : (4.4)

(¢ ~c)D 5 (ul=})p

43

with input vector uw!”l, € R” and weight matrix W, € RP*P that has non-zero
entries at the positions corresponding to N(v)\c, where N(v) = {c € C : e, € E}
and M(c) = {v € V : e(,) € E} are the neighbors of variable node v and check node

¢, respectively. W is denoted by the red connections between u,_,, (orange circles)

and u,_,. (green circles). The u!

v 1s calculated as the summation of k and g from

Eq. 4.3 and 4.4 as:

(Uf]—)c)l (kf)—m)l (qzt)—m)l

N Y e (4.5)
(uggc)D (kf)%c)D (qiﬁc)D

Step 3&4: Min-Sum and Dot-Product Computation. The u!_, is calculated

c—v

by min-sum operation Lugosch and Gross (2017) as follows:

t _ : t : t
Ueyy = W3, v’EIl\l}Il(Icl)\v |uv’—>c| H Slgn(“’v’—m)? (46)
v'eM(c)\v

where wz € R is learnable. This step is denoted by connections between u,_.. (green
circles) and u.,, (orange circles) including blue connections (min-sum operations)
and black connections (weight dot products).

Step 5: Sy Calculation. Then, the final soft output after the ¢-th iteration can

be calculated as:

sh=1l,+ Wixul_,, (4.7)

(Si)l (lv>1 0707 0707' c (uf}/—>c>1
=| ¢ | +{0,w0,0,... : : (4.8)

(s5)N (lo)n 5 (U e)D

where W, € RV*P with non-zero elements correspond to N(v), denoted by golden

connections between u._,, (orange circles) and s, (yellow circles).

44

VY f—:\/ﬂ>! """ S —\ ~ T T16-Bit Hybrjd Bit-Celi Col — ~— X8 o — TeX8
o & ©o & o o 1o @ — A ™
82 2 |8 £ 8 £ . £ a [£
X< (;‘<< N IN</ b= (&) o N C
3ol © Q 3 . XS S x (]
s n QY 1 I g (] (] % o
N2 ||| 5 2 53 Al WLO] S P
— — | —] i o9, o [0] ; ﬁ 4
> SN——=: i = 3 T3 = . H Comparator | =
o ©o o el |lo © ol=28 S D < : L
n £ n = \g\z HiRE= 0l 9 Y 3 H o
I X< U (N < aloa] £ -]
= = X oW x S
ARl - BER EE - HERTE: - - 2 Qe 2 E
Qs ~ = 9= i = 2 ==) -]
—. A — . o G é = é =
: H \ H E ‘ti ?_ ;
@ W, -Structured uc u@d \ = o e o S
Sparse(SSP) Matrix Mem | [SParse(USP) Matrix Mew| -
K Output/PP. Buff. j \ Output/PP. Buff. / _——======= —/—._—_—_—_—_—_ ~

e
T 1| [—=
Global Adders ol [wuor)
3 S0 s]
\ 8 [£3 g Il £
Uy uv]->cl Uyksn->ci+n u,,im Sci+n g Eg En G || %
" o . £ |WL[256 3
)g 6 @ 3 g - *g' [WL[256] || 2
— 1 g (S 1% lweser I
w, of MM | e \},ch I
s .
auer EE Wi Q0= Sin, <o @)\ _ _ ez T AN _

Figure 18. (A) DSPIMM Architecture (B) Unstructured Sparse Weight In-memory
Compute (C) Structured Sparse Weight In-memory Compute (D) Data Flow of Bit-
serial MVM. (Adapted from Sridharan et al. (2023) with Permission)

Remark. As shown in the neural BP computation flow (Fig. 17), the majority of
learn-able weights W5, W5, Wy hold high sparsity with a special pattern under the
matrix format. For instance, because W € RP?*¥ has only one non-zero weight in
each row, the sparsity of Wy is %%, which can easily achieve 90% when N > 10

and 99% when N > 100.

4.3 Proposed DSPIMM Platform

4.3.1 Architecture and Data Flow

Fig. 18(A) demonstrates the overall architecture of our DSPIMM for NBP. It

supports all the required five algorithm steps as shown in the corresponding circuit

45

model in Fig. 18(A1l), (A2), (A3), and (A4). Note that, steps 1 and 2 are mainly
MVMs and are implemented using our IMC modules, where the corresponding circuits

are shown in Fig. 18(B) and (C).

4.3.1.1 Wy, Structured Sparse Matrix Memory

denoted by Fig. 18(A1). This corresponds to the NBP step 1. The IMC array with
golden halos denotes the memory of W weight matrices (i.e., golden connections in Fig.
17). Each IMC array size is 256x256 which translates to 8KB per block. The Control,
I/0 logic, and Input Buffers are shared among 4 IMC sub-arrays. The control and
I/0O logic help in scattering the stored weights in the Input Buffer (compiler-generated
SRAMSs) to the IMC sub-Arrays. They also store the Inputs, i.e., [, vectors, and
scatter them during compute mode. Then, the compute/partial product outputs
are collected in the output/partial product buffers (Using SRAM compiler generated

Register Files).

4.3.1.2 Wy, Unstructured Sparse (USP) Matrix Memory

Fig. 18(A2) shows the USP-Matrix Memory. The memory organization is similar
to SSP Matrix memory, with 128x256 - 4KB IMC arrays. They carry W5 (red halo)
as well as Wy (green halo) since both follow a similar computing pattern. This USP
Matrix Memory is responsible for the sparse MVMs in Step 2 and Step 5 of the NBP

algorithm.

46

4.3.1.3 Global Addition

After SSP and USP-MVM, the stored partial products in the output buffers are
streamed into parallel global adders to perform the addition operations on the two

MVM outputs. This completes the compute of the green dots in Fig. 17 denoting the
end of Step 2 of NBP algorithm.

4.3.1.4 MinSum Compute and Dot Products

These modules perform steps 3 and 4. The Minsum and dot-product instructions
do not have common operands, hence are not suitable for IMC. Thus, we leverage the
digital comparators in parallel to compute the MinSum. The Minsum outs along
with the sign bits from the output buffers of USP-MM and W3 weights are sent to
the dot-product engine (DPE) to compute Step 4. The W3 weight matrix is usually
large and uncompressed. So a Register file is used to buffer a portion of W3 weights
to be streamed onto the DPE. when finished, the remaining data will be fetched from

off-chip.
4.3.1.5 S, Calculation
Step 5 needs to be performed only once after several iterations of Steps 1 through
4. It is performed by loading [, onto the output buffers of the SSP-MVM memory and

using the computational sub-array of the USM-MVM (green halos) to perform MVM

between W, and the u,c of the previous iteration. Now, the global adders are used to

47

IWL |w wb DPO
DPO
vss . 1 o WL VSS |VSS | VDD |VSS
L]
aE WL VSS | VDD |VSS |Vss
A1 A
" e VDD |VSS | VDD |VsS
BLB BL vbp |vDD |Vvss |vDD-Vth

Figure 19. (A) 6+2T(8T) Compute Bit-cell (B) Truth Table of 2T And/Dot-product

sum the output buffers of USP Matrix Memory and SSP Matrix Memory containing

the MVM outs and [, respectively.

4.3.2 6+2T (8T) SRAM Bitcell Design for In-memory-computing

To implement in-memory computing (IMC), specifically for matrix multiplication
in this work, we propose a 6+2T SRAM compute bitcell (CBC) as shown in Fig.
19(a) to implement 1 bit partial product and then the peripheral shift & accumulator
circuits implement the rest for multi-bit matrix multiplication. For memory function,
a traditional 6T SRAM bitcell is used. For compute, the bit-cell is augmented with
two additional transistors - T1 and T2. Together, they perform the ‘AND’ function
or a I’b dot-product within the memory cell, between operand-1 (weight bit - w/wb)
and operand-2 (external input bit - IWL). The weight bit (w and its complementary -
wb) is stored in the cross-coupled inverters of bitcell which are connected with the
gate terminals of T2 and T1, respectively. The other operand-2 is from the input

world line (i.e., IWL), which goes to the source terminal of T2. Note that, as the

48

name suggests, IWL is broadcasted to the entire worldline, providing inputs to all
8T CBCs in that row that store multi-bits of the weight parameters. The last signal
is a VSS/GND connecting to the source terminal of T1. Finally, the AND or 1'b
Dot product out (DPO) is obtained from the common drain terminals of T1 and T2,

where the truth table is given in Fig. 19(b)

4.3.3 Bit-Serial Matrix Vector Multiplication (MVM) In-memory

For multi-bit MVM, the multi-bit weight operand is stored in the memory and the
other input operand is streamed through the IWLs. The matrix operand stored in the
memory is transposed before storage, this will put a single row of the matrix elements
into a single column of the memory array. It is done to (1) perform dot products
between all elements in one column of the second operand (through IWL) and all
elements in a single row of the first operand. (2) Since IWLs are shared amongst rows,
the same second operand column can be used to multiply with all the first operand
rows, performing a parallel NXM (Op.1) * M X1 (Op.2) vector dot-product. Then,
the accumulation of dot-products of every column in memory (corresponding to the
row of the first operand) is implemented using adder trees to complete MVM. Due to
bit-serial design, the IWLs can stream only 1 bit at a time, a shift accumulation is
designed to respect the bit-position of the multi-bit operands streamed through the
IWLs, where data flow is shown in Fig. 18(D).

49

N
N
w
[HY
[HEY

(I

><w><><
w
N
N
=

w

O rr O

OO rFrr W

oo

loooo]
*

X X X X
|

I 1 1

Weights Inputs Column Row Weight
Index Index Memory

Figure 20. EGWCL Algorithm Example

4.3.4 Structured Sparse Matrix Vector Multiplication (SSP-MVM)

MVM-in-memory is dense and intensive, meaning all bit-cells are active and used
for compute. But for NBP, the W; is extremely sparse with the special pattern as
described in section II. So to leverage such property, we develop a hardware-friendly
compression/encoding algorithm that localizes the weights and eliminates all zeros

from being stored, thereby ignored for compute.

4.3.4.1 Greedy Weight Compression and Localization (GWCL) Algorithm for SSP-
MVM

Fig.20 shows an example. It parses through the weight matrix and only stores
the non-zero weights in memory. But, such an operation scatters the weights across
memory, breaking the structure of matrix multiplication. To solve this, during the

skip of zero weights, our circuit needs to be aware of (1) which input needs to be

90

multiplied with which weight, and (2) which DPOs (post multiplication) need to be
added together.

For (1), whenever the algorithm faces a non-zero weight, it stores not only the
weight value but also the column index of this weight next to the input buffers.
Through this, when a new input is streamed in, the column indices can dictate which
row of input buffer should be streamed onto the IWLs for compute. Since the memory
leverages the sharing of IWLs over several bit-cells to achieve high parallelism, during
compression, all weights belonging to the same column are stored in a single row.
For (2), the sparsity of W; matrix is structured and only one element per row is
a non-zero weight. Since all elements in a row are added up for MVM(after dot
product), the resulting accumulation in this case will be the dot-product of the
input and weight alone. Therefore, due to the nature of this sparsity pattern, no
accumulation is necessary. Hence, no circuitry is required for accumulation or decoding
the accumulation of the scattered weights. In summary, the GWCL algorithm works
in two stages:

Stage 1: Ignores zero-weights and greedily stores non-zero weights, it also stores the
corresponding column index alongside the input buffer.

Stage 2: If encountering a weight belonging to a column previously stored, it stores
the weight in the same row as that of the previously encountered column index to

enable the parallel multiplication for a shared IWL.

4.3.4.2 SSP-MVM In-Memory Compute Circuit and Architecture

The one-time sparse weight compression discussed above is done off-line and

mapped to our IMC arrays. During inference, a new set of inputs is fetched every

51

iteration, so a decoding circuitry is designed to map the newly fetched inputs using
column indices. It consists of a set of comparators that compare the indices of the
new inputs against the stored column indices (next to the input buffers) and map
the inputs to the input buffers of the respective rows. Then, these inputs will be
streamed onto the IWLs in a bit-serial fashion for performing partial product. Since
no accumulation is required, the DPOs are directly sent to the shift accumulators
which completes the 8b8b dot-product. In summary, the implemented SSP-MVM
IMC architecture has 32 8-bit columns, each column has 256 rows and each row of
the 8-bit column consists of a shift accumulator and each 8-bit column have a routing

network to route all the accumulated outputs.

4.3.5 Unstructured Sparse Matrix Vector Mult. (USP-MVM)

The above SSP-MVM has a fixed sparse pattern with one-hot element in a row,
enabling us to skip accumulation. But, the unstructured sparse W5 and W, matrices

do not follow this pattern, with multiple non-zero elements in a row.

4.3.5.1 Enhanced Greedy Algorithm for USP-MVM

To adapt our hardware for USP-MVM, we enhance our GWCL algorithm to also
support USP weights. The main difference here is that weights need to be accumulated
and are scattered all over the memory array. To complete MVM, it needs a way to
identify which DPOs (post input stream-in) require accumulation, hence an additional
operation is performed alongside Stage 1, which is, the row indices of the weights are

also stored alongside the weight memory. The reason is that, in an MVM between

52

matrix A and B, the column of operand B is multiplied by the row of operand A,
after which the dot-products accumulate together. Mapping such a process to our
IMC memory array means the accumulation only happens to the dot-products of
weights in the same row. So, by storing the weight indices during accumulation, we
only need to accumulate the dot-products resulting from weights having the same
row-indices. In summary, the Enhanced GWCL (EGWCL) is:

Stage 1: Store column indices of all non-zero weights next to the input buffers; store
the row-indices next to the non-zero weights, ignoring the zero weights.

Stage 2: If the newly encountered weight has a column index that is previously
stored next to the input buffers, it stores the weight in the subsequent column of the

same memory row corresponding to the column index.

4.3.5.2 USP-MVM IMC Circuit and Architecture

As per our EGWCL algorithm, both the weights and row indices are stored in
the weight memory. Since only the weights are used for compute and the row-indices
are used for decoding the compressed weights for accumulation, a traditional 6T
SRAM bitcell is used for storing the row indices and 8T CBC is used for storing
weights. For a given memory size m x n, log(m) bits are required to represent the
row indices. We use 128-bit rows memory with 256-bit columns. The 8-bit CBC and
the 8-bit 6T SRAM together form a 16-Bit Hybrid Bit-Cell Column. So, we have
16 columns of the 16-Bit Hybrid Bit-Cells in total. As for the inputs, the column
indices are stored alongside the input buffers in flops. When a new input is fetched,
the comparator-based decoder is designed to parse through the column indices of

the input matrix and store the corresponding inputs onto the input buffers. Then,

93

they are streamed onto IWLs for dot product computing. The CBCs in every 16-bit
column will hold 8-bit DPOs that will be accumulated next. The EGWCL algorithm
scatters the weights across the memory, so multiple rows of the weight matrix can be
present in a single column of the memory array. Circuitry is required to (1) identify
which rows are present and (2) parse through and accumulate all the weights in the
column. For (1), we attach comparators to every word, which enables reading of the
weight indices directly from 67T bitcells. These comparators take in the row index
as well as the 8 DPO and compare the row-index against a generated index. If it
compares it outputs the 8'DPO, else it outputs a 0. For (2), we need to identify all the
row-indices present in a single column. So a Mod-Counter is placed in every column.
Every counter is given the first and last index present in the corresponding column to
parse through all the row indices of that column. The output of these counters is sent
to the comparators, providing indices to compare against and identify the weights

needs to be accumulated.

4.3.5.3 Overflows

The row indices of the accumulated DPOs are also stored alongside the flops in
the shift accumulators (Propagated from counters in the adder tree). This is to tackle
an inherent drawback called overflow that arises due to the nature of the EGWCL
algorithm. When the weights are compressed, there is a chance that weights from
a single row (W5 matrix) can span multiple columns (memory). In this case, these
values need to be accumulated. So, to keep track of which row the partial product is
being computed, the row index is also stored in flops for every column of the memory

array. After the counters parse through all the row-indices, the overflow detectors

54

4.9% IP & Index Buff.

2.5% Over-Flow Det.
1.4% IP Decode.
1.3% WL Drivers
0.4% Counters.
0.5% Shift Acc.

1.5% WL Drivers
1.2% IP & Index Buff.
0.3% IP Decode

Figure 21. Area Breakdown of (A) SSP Matrix Memory (B) USP Matrix Memory

present alongside the shift accumulators accumulate all the weights that belong to

the same row. This completes the USP-MVM.

4.4 FEvaluation and Results

4.4.1 Experiment Setup

Cadence Spectre is used for all custom circuitry, designed using TSMC 28nm
to verify functionality and to check for latency and power consumption. The area
evaluation of custom circuitry is done by making layouts in Cadence Virtuoso. For
an SSP-MVM Memory, we simulate a 128x256 memory array. For USP-MVM, we
simulate a 256x256 array. For all digital components, we use Synopsys Design Compiler
to synthesize the gate netlist. For all reported code lengths, VCD files are generated
using SDF annotated post-synthesized RTL simulations. These VCD files are used in
Synopsys PrimePower for reporting the power numbers. The Post-synthesized netlist

is used in Synopsys PrimeTime to obtain latency numbers.

55

Table 6. Power Breakdown

SSP-Matrix Mem(256x256) USP-Matrix Mem(128x256)

Hardware Power (mW) Hardware Power(mW)

Bit-Cell array(8T) 11.6mW Bit-cell array(6T-+8T) 4.2mW

Shift Accumulator | 46.73mW Comparator 21.3mW

Routing Network R+.(j . Adder Tree 18.7mW

Parasitics

IP Index-+IP Buff. 6.3mW Ip Index + Ip Buff. 4.22mW

Decoder 0.88mW Shift Accumulator 6.74mW

Ip Decode 1.3mW Overflow + Counters 4.63mW

Total 66.81mW Total 59.79mW

4.4.2 Experiment Results

Since this is the first work to demonstrate NBP in an SRAM-based IMC, we com-
pare our work with other popular LDPC channel decoding hardware implementations
in Table 9, even using different algorithms. The reason is that LDPC is the most
commonly used channel code in real-world applications, and its hardware decoder
design receives the most attention as compared to other channel codes. Ours achieves
the best energy efficiency and lowest power. We also evaluate the efficacy of our
compression algorithm in Table 7. It clearly achieves memory savings that match the

sparsity ratio.

For IMC performance, we draw comparisons with state-of-art IMC designs that
have MAC operation as their core in Table 8. Compared to existing SRAM-based IMC
platforms, the USP-MVM module and the SSP-MVM module achieve the best TOP /s
metric. The USP-MVM achieves a throughput almost equal to Chih et al. (2021) even
though it is only 1/4th in size and our SSP-MVM IMC module can complete an 8b8b
MAC one cycle faster from skipping accumulations. The complete area and power

breakdown for all sub-modules in USP-MVM and SSP-MVM are shown in Fig. 21

96

Table 7. GWCL Algorithm Memory Benefits(Excludes Index Memory)

Code Length/ 121 672 1056
Weight Memory | Uncompressed | GWCL algorithm | Uncompressed | GWCL algorithm | Uncompressed | GWCL algorithm
W1 73.2KB 0.6KB 1.5MB 2.2KB 3.7MB 3.52KB
Wo 366KB 2.4KB SMB 5.5KB 12.3MB 8.7KB
W3 366KB N/A 4.9MB N/A 12.3MB N/A
Wy 73.2KB 0.6KB 1.5MB 2.2KB 3.7MB 3.52KB

Table 8. Comparison with State-of-the-art SRAM Based IMC Accelerators

Reference USP-MVM (This | SSP-MVM Y.-D. Chihetal | H.Kim et al. D. Wang et al.
work) (This work) (2021) (2019) (2022)
Technology 28nm 28nm 22nm 65nm 28nm
Array Size 2+2 KB (W+]) 8KB 8KB 0.8KB 2KB
Bit-cell overhead 1T per bit-cell 2T per bit-cell 4T per bit-cell | XOR+MUX+FA | 2T per bit-cell
Sparsity Level 50% >99% fixed 50% 50% 50%
Macro Size 0.187mm? 0.7673mm? 0.202mm? 0.242mm? 0.049mm?
Performance (GOPs) (8b8b) 786.18 1927.3 917 N/A 2035(4b1b)
Efficiency (TOPS/w) (8b8b) 12.92 29.56 24.7 2.06 154
Latency(8b8b) 10.42ns (9 cycles) | 8.501(8 cycles) 18ns NA ~20ns
Implementation Synthesis Synthesis Post-Silicon Post-Silicon Post-Silicon

and Table 6. All above detailed hardware evaluation and bench-marking show great
performance improvement and hopefully, our design could serve as a benchmark for

future neural decoder implementations.

4.5 Conclusion

In this work, we propose a novel SRAM-based IMC circuit and architecture to
implement the Neural BP channel decoding algorithm. We utilize the sparse nature
of the algorithm by proposing IMC algorithm-hardware co-design to perform sparse
MVMs whose operands have fixed (algorithm specific) or generic unstructured sparse

patterns. Our proposed IMCs achieve the best throughput out of state-of-the-art IMC

o7

Table 9. Comparison with Prior LDPC Implementations

This work M. Li et al. (2021) R. Ghanaatian et al. (2018)
Code Length 1056 1027 2048
Core Area 1.32mm? 2.24mm? 16.2mm?
Frequency 783MHz 1000MHz 862MHz
Throughput 224Gb/s @ 4it 833Gb/s@4it 588Gb/s@5it
Area Efficiency 169.7GB/s/mm? 371.9Gb/s/mm? 36.3Gb/s/mm?
Energy Efficiency 1374.2Gb/s/W 109.605Gb/s/W 44.21 Gb/s/W
Latency 57.465ns@4it 38ns@4it 69.6ns@>5it
Power 0.163W 7.6W 13.3W
Node 28nm l16nm 28nm
Algorithm Neural-BP Layered Finite Alphabet

MAC implementations and significantly higher energy efficiency than state-of-the-art

LDPC decoder hardware.

o8

Chapter 5

A SPARSITY AWARE IN-MEMORY-COMPUTING MACRO WITH
CONFIGURABLE SPARSE REPRESENTATIONS

Deep neural networks (DNNs) have achieved remarkable success across a wide
range of cognitive tasks, prompting efforts to deploy them on edge devices. However,
edge platforms are inherently constrained in compute power and memory capacity,
making it challenging to accommodate large DNN models—which are both compute-
and memory-intensive due to their reliance on multiply-and-accumulate (MAC) oper-
ations. To address this, extensive research has focused on improving model efficiency
through various compression techniques such as quantization and sparsification. Model
sparsification is achieved via weight pruning, where less significant weights are set to
zero to reduce model complexity—often with an impact on accuracy. Numerous studies
have explored the tradeoff between hardware support for sparsity and maintaining
acceptable model accuracy Meng et al. (2021); Zhou et al. (2021).

These studies conclude that unstructured sparsity typically offers the highest model
accuracy, but poses significant challenges for hardware implementation due to its irreg-
ular and non-deterministic pruning patterns. In contrast, structured sparsity—while
more hardware-friendly—often results in a loss of accuracy. Furthermore, the optimal
sparsity ratio varies not only across different DNN models but also between layers
within the same model, making uniform sparsity support impractical for achieving
ideal performance.

So, from a hardware perspective, it is essential to support a wide range of sparsity

formats to meet the evolving demands of modern DNN models. Building on the

99

previous chapter, this chapter explores how hardware can be generalized to accommo-
date diverse sparsity formats and ratios. We introduce a Sparsity-Aware In-Memory
Computing (SP-IMC) macro that, for the first time, supports multiple compression
schemes—including run-length encoding and coordinate (COO) format—as well as
varying sparsity precisions such as N:M formats, enabling real-time adjustment of
the sparsity ratio. Additionally, SP-IMC incorporates scalable integer precision as
proposed in Sridharan et al. (2024a). Fabricated in a 28nm CMOS process, our SP-
IMC prototype demonstrates a reduction in compute resources by 4-50x compared

to state-of-the-art IMC designs.

5.1 Introduction

5.1.1 Background and Motivation

In-memory computing (IMC) methodologies have demonstrated substantial im-
provements in energy efficiency and throughput for DNN workloads by minimizing
data movement and eliminating frequent memory accesses. However, unlike many
ASIC-based accelerators hsin Chen et al. (2018); Zhang et al. (2021b); Han et al.
(2016), few silicon-proven IMC designs have effectively leveraged sparsity through
compressed storage and compute skipping to realize similar benefits.

A recent work Liu et al. (2023) explored sparsity by employing a binary mask and
a custom compression format to encode weights. However, this approach significantly
restricts compatibility with a broad range of sparse DNN models. Moreover, the
hardware implementation relies on a complex butterfly routing mechanism and incurs

additional compute overhead for decoding the compressed weights. Another effort Kim

60

et al. (2021) enables sparse computation via compute skipping but suffers from two
key limitations: (1) it supports only block-wise sparsity, which limits achievable model
accuracy, and (2) it does not operate on truly compressed weights—=zeros are still
physically stored in the IMC array, thus preserving the compute overhead associated
with dense workloads.

Another work Yue et al. (2023) delegates sparse computation to a separate ASIC,
using the IMC array solely for dense operations. This separation limits the energy
and area benefits of sparsity within the IMC fabric. In contrast, SP-IMC directly
operates on sparsely compressed weights within the IMC array itself, eliminating the
need for external compute and fully leveraging the advantages of in-memory sparsity.
Fig. 22 illustrates prior sparse and dense IMC approaches, highlighting their inherent

limitations.

5.1.2 Challenges and Benefits of Sparse Compute

The IMC paradigm is naturally well-suited for matrix multiplications due to the
structured and parallel nature of memory arrays. However, this advantage diminishes
when the matrix structure is disrupted—as is often the case with sparsity, especially
after compression. Compressed sparse matrices break the regularity required for
efficient in-memory computation, making it challenging to directly apply the IMC
model. This challenge is further compounded in the case of unstructured sparsity,
where the number and location of non-zero elements vary unpredictably across tensors.
As a result, non-uniform data distribution leads to imbalance across IMC compute
blocks, causing significant underutilization and degraded performance.

To address these challenges, we propose a design methodology that time-multiplexes

61

Prior works: Optimizing Storage Density

D. Wang et al (2022)

INEEN
Ll
AdderTree
IHEEN
Compressor
AdderTree

Reduced adder hardware
Reduced adder precision

through appx. compute.
Results in accuracy drop.

H. Mori et al (2023)

AdderTree

Scaling up memory hardware and
time share compute hardware.
No real benefits when it comes to
saving storage hardware.

J.Oh etal. (2023)

T "Row0~"""
i _MSB-LSB

Time multiplex weight
precision and |A precision.
Very low throughput

Prior works: Sparsity in IMC

J.Yueetal. (2023)

T.G based butterfly mux

w _TL 1]0[1 |1
w 0j0fo0]o0
w 11010

Dense Ws Binary Map

Address sparsity through W compression.
Decode and compute are done separately.
Complex decode hardware. Rigid sparsity.

w

w

w

Reduced Hardware Cost

T 4 Resnet-18 on CIFAR-10 A : :
21000 - 98% Sparsity i :P-IMC wodl 0 10 [wed 0 Woo [Wor[WoalWoa [Wr7 ETB multiplexed sparsity
on W w il I Iy I
8 & s00 sparse mc| || [0 [wei[o [0 [0 | i e
|52 4+ v o Tl o (x0T 1)
=3 100—] + * o Tw oj1j2fof3jjoj1f2]0]3 1D- Compression &
% ™ ax l 0] 0 [WasfWio W | o432 1]2(0f[1]0 multiply decode acc.
E 50 Vo * % o |ws[o o]0 3 T]0]0
Z .S CSC Compression RLC Compression
1_'4 é 5'_5 !', 1'0 Flexible sparsity support:
Layer # N:M(1-255:2-256), compressed sparse column &
S run length encodingformats <
parsity in DNNs — -
- Dense Utilization Challenge ompression Challenge
1.0 [- 90% Sparsity o, | Jtilizationin IMC depends on mapped| | MMs in-memory rely on matrix structure
’ .98% Sparsity © weights post compression . .
0.9 O % Sparsity 5 Weight matrix cn Weight matrix
7 o7 Y S5
® 0.5 g g ﬁ'ﬁ
: Bla|% |2 52
< < 28 |>|8 ES
= () > G 8
Resnet-32 Resnet-32 Resnet-50 & z ZIE T c®
CIFAR-10 CIFAR-100 ImageNet > (> § > £
Pruning techniques have large pruning = 3 _ig Row compression
ratio with minimal accuracy drop. Unstructured sparsity breaks multiplications

Figure 22. Current Sparse IMC Implementation Drawbacks, Benefits of Sparse

Encoding, Challenges of Sparse Encoded Weights in IMC

the sparse decode operation. By doing so, we decouple the variability of unstructured
sparsity from the hardware footprint and instead map it to the time domain. This
approach allows the compute resources to remain fixed, while latency becomes a
function of the sparsity level. As a result, we maintain consistent throughput across
all sparsity ratios, while still reaping the benefits of compressed storage. Fig. 22

highlights both the challenges posed by sparsity and the advantages of our proposed

design.

62

5.2 Circuit, Architecture and Operation

5.2.1 SP-IMC Macro Architecture

Fig. 23 shows the circuit and architecture of the proposed SP-IMC macro which
comprises of 64x128 bit-cells. The IMC macro consists of 16 column groups (CG),
where each CG consists of 32 row groups (RG) and one accumulation logic (AL) block.
Each RG has 16 bit-cells split into two 8b-rows by a multiply decode and compare
(MDC) block. The two 8-bit-rows have four bits of 10T bit-cells for weight storage
and another four bits of traditional 6T bit-cells to store the indices of the compressed
sparse weights. The bit-cell takes in the activations and performs AND operations
with the stored weight to generate partial multiply results. These partial-multiply outs
serve as inputs to the MDC block which has shift accumulators/partial multipliers to
complete the 4bW2bl/Act multiplications. The 4-bit indices at the top and bottom of
the MDC block serve as the input to the RL/COO decode block which calculates the
RLC indices based on the index from the previous column or directly pass the indices
from the bit-cell to the comparator blocks. Now the comparators compare it with
indices generated either by a local counter or the spillover counter. If the comparison
is successful, the partial products (PP) are sent to the adder tree and then to a shift
accumulator to complete MACs. The adder trees are split into two 32-input trees,
and the outputs of adder trees are shift-accumulated. The accumulator precision is
chosen by the weight precision control (WPC) signal between 14-bit (for 8b-W) and
11-bit (for 4-bit-W). Finally, a spillover accumulator is present to support edge cases

of compressed weights, e.g. uneven sparsity across matrix columns.

63

Sparse IMC Macro Architecture

- = 216 -
% g % m_‘ ecal || e
[(i
wm L Snilover lmd Col. speciic
- sp;.m:-.-ear.r Mn&;e Index Axproli-ol
E 3 e ——————————— i lPartIal Ilull:ipli&r! Comparators
;f:; 3 R s v 0 Y W _§1EE Idx_Mode PP_top
i f-aharm mup [a i RUCOO] Idx_to_Cmp
i T AL[D] i i e ot
Clock L] W_:J:::ﬂ] el — iu'l [Cok-1] — Dane
Gen T A [[PP_top) H Partial Multiplier| Coal. 1dx
= i FP_bol,
E I MDC Diaiie ‘E_h‘ — :
3 1Az B2t | 0. LR % = !
1
G A W ld 2 % :
n
Output % | iage) [Rew Grol]ids our | "G 100 g 3 i
Memory T UiaE) | Ftdx | I ap < T 10T Bit-Cell Schematic
u DPO[0]
15.18KB " MOC Pgn o E‘ E i vss n_l m 1A[0]
-g 1AE] Col. Idx o= [%
g (117 =m ==, . i | B 8L
' g = i |em T !
< I RLICOO g W32z | . = S
1 Mode i ! = y H
I g] 1 p—
' & = %32 3 H V55 T3 T4 1A[1]
= WPC 1
= Tabies) e 10T Bit-Cell Layout
PsumiibHak j |] B Fo_m1
1PC Shift [B Poiv
1 12b/4L/ED) |_AccumulstonSA i - ™ Faly
i w1
1 [— | ——— a
cf:;r:"] Al ZhiHbabELED1W] | 11BH5R20E .[B Active
I| Spillover Accumulation I) Mz
— | || Mwell

Figure 23. Overall Architecture of SP-IMC Macro, Bit-cell Schematic, Layout, and
Micro-architecture of In-memory Decode Hardware. (Adapted from Sridharan et al.
(2024b) with Permission)

5.2.2 Bitcell Design

The 10T bit-cell extends the conventional 6T cell by incorporating four additional

transistors T1-T4. Transistor pairs "T1", "T2" and "T3, T4" function as parallel

AND gates, enabling simultaneous bitwise operations between the streamed input

activation (IA) and the stored weight. This parallelism mitigates the A stream-in

bottleneck commonly encountered in prior designs Wang et al. (2022); Mori et al.

(2023a); Oh et al. (2023a); Yue et al. (2023); Fujiwara et al. (2022a), which rely on

64

purely bit-serial methods to support high input precision. Additionally, this 2T-AND
scheme resolves the issue of floating partial products observed in the PSIMC bit-cell
design Sridharan et al. (2024a) when weights are zero. Each 10T bit-cell performs a
1-bit weight by 2-bit IA multiplication, and the four 10T cells positioned at the top
and bottom collectively compute two 4b-IA x 2b-W partial products. Fig. 23 shows

the schematic and layout of the proposed bit-cell.

5.2.3 Sparse Compression Formats and Variable Sparsity Ratio

The SP-IMC architecture is designed to support multiple compression formats to
accommodate a wide range of sparse DNN workloads. Specifically, it implements two
representative sparse encoding schemes: the coordinate (COO) format and run-length
encoding (RL). In the COO format, each non-zero value is stored alongside its explicit
index, providing full flexibility in representing unstructured sparsity. In contrast, RL
encoding captures the number of zeros between successive non-zero elements using a
compact zero-count value, offering a more storage-efficient representation for sparsity
patterns with longer contiguous runs of zeros.

In addition to these formats, SP-IMC also supports N:M sparsity, a semi-structured
compression scheme wherein only one out of every M elements is retained, and the
remaining N — 1 elements are pruned. This format, initially developed and commer-
cialized by NVIDIA (supporting only 2:4 sparsity in hardware), strikes a balance
between unstructured flexibility and structured hardware efficiency. Unlike NVIDIA’s
fixed-ratio approach, SP-IMC offers generalized support for a wide range of N:M
formats—from 1 (to) 255:16 (t0) 256 without requiring any hardware modifications,

thanks to its fully unstructured sparsity support and flexible indexing logic. This

65

capability makes SP-IMC highly adaptable to diverse model requirements, including
models where each layer may benefit from a different sparsity ratio. By supporting
flexible sparsity formats and adaptive index precision, SP-IMC maximizes hardware
utilization and energy efficiency across a wide spectrum of DNN sparsity patterns.
Additional benefits of deploying N:M sparsity in SP-IMC, including compute regu-
larity and hardware reuse opportunities, will be discussed in detail in Section 5.2.5.
From a hardware perspective, the maximum sparsity ratio that can be supported
is governed by the bit-width of the index or zero-count field, which determines how
many unique positions or gaps can be represented. To accommodate this, SP-IMC
introduces variable index precision, controlled by an Idx Mode signal. This signal
selects between 4-bit and 8-bit index modes, trading off between metadata overhead
and sparsity granularity. In COO format, a 4-bit index can represent up to 16 positions,
while in RL format, it can encode up to 15 zeros between two non-zero values. The
8-bit mode extends this capability, allowing up to 256 distinct indices in COO or 255

zeros in RL, thus enabling significantly higher sparsity ratios when needed

5.2.3.1 Compression Direction

Matrices are inherently two-dimensional, and compression can be applied along
either the row or column direction. Compressing along rows preserves the accumulation
structure but disrupts the multiplication pattern. In contrast, compressing along
columns retains the multiplication structure while breaking the accumulation flow. In
IMC architectures, activations are typically streamed in through horizontal word-lines,
which aligns with the multiplication dimension of the matrix. As a result, preserving

the multiplication structure is critical for efficient in-memory computation. Therefore,

66

SP-IMC adopts column-wise compression, commonly referred to as Compressed
Sparse Column (CSC) format, as it aligns naturally with the compute flow in IMC

and maintains compatibility with the activation streaming mechanism.

5.2.4 Dataflow and Pipeline

RL and COO formats have different dataflows to support the decode of their
respective indices, as shown in Fig. 24 N:M sparse encoding follows the dataflow of
COO. In COO mode, each column of the memory array generates an index (through
local counters) every cycle that pertains to the index of stored weights in their
respective columns and these indices are used to gate accumulations of PP generated
in each RG using the comparators. The accumulated PPs are then sent to the shift
accumulator block for IA precision compensation semi-bit serially (2-bits/cycle). The
dataflow is similar in RL mode as well, but the index generator (counters) now
generates the zero count (ZC) between two non-zero weights, and RL compression
incurs additional decode hardware in the row direction to specify the non-zero weight
position. The index stored in the neighboring CG|n-1] is streamed and is added with
the indices in the current CGJn]. The spillover dataflow exists to support corner cases,
for e.g., all elements of a matrix row are not always mapped to the same CG, (Fig. 25
COO-CSC mapping) and can “spillover” to neighboring CGs. This arises out of uneven
sparsity across matrix columns and is the case for RL, COO and N:M sparsity. It is
greatly reduced for N:M sparsity due to fixed M. Fig. 24 shows the pipeline diagram
of 4b-IA:4b-W MACs from a CG in the SP-IMC macro. It also shows the priority
queue for index handling and the parallelism achieved in a SP-IMC to process sparse

compressed MACs.

67

CO0O Mode Dataflow

Calumn group 0

1 1
1 1
| -
i Col Index !
i 1
1 1
]

!

T ————
i
1
1
1
i
1

B

abw Hap i« -

o Col. group

=

e e e e e e e e e g

W
Tl
1
1
1
!
1
i
1
i
1
Accumulate
Accumulaie

[
ot
=

Column group 15

e

Cyele 1 t:- cla 2 Cyele Zn-1 Cyele 2n
[e] [el |]

| G Acc

1A 1[1:0]

1A, 0[3:2]

for 2-bits imfa: ____________ Paralizlism
PP = A1 :0]"W[3:0] i H
If generated ldxZC = stored idZC: : i
| PP is added i

H

Column group 15

Laow

High
4 efge Row-wise
| PP is not added Paralletsm! |
ittt ot

Huold Lintil

Figure 24. Dataflow of Various Modes in SP-IMC, Pipeline Diagram, Index Priority
Queue, SpMM Parallelism in Memory

5.2.5 Mapping Compressed kernels

The compression and IMC mapping methodology is elaborated in Fig. 25. Uncom-
pressed mapping is done for convolutions by first flattening the 4D kernels to a 2D
weight matrix and is transposed and stored onto the IMC array such that the kernel
dimensions and input channel (R, S, C) fall into columns with adder trees and the
output channel is mapped in the row direction to support parallel multiplications. We
employ a similar approach when it comes to mapping compressed weights. Encoding

in column direction is more IMC friendly because it retains column structure while

68

breaking row structures, i.e., breaks accumulations and retains multiplications. Com-
pressed sparse row (CSR) is not very IMC friendly and incurs additional hardware
overhead i.e., TA reordering, additional accumulate and WB operations, hence not
implemented in this macro. RL mapping is similar to COQ, the indices are replaced
with ZC. In RL to denote the end of each matrix column, its length is fixed, and
the last element of all matrix columns are stored regardless of magnitude. Mapping
matrices that have unequal non-zero weight distribution in every column will lead to
utilization issues in the IMC. This can be alleviated during training by employing a
fine-grained N:M sparsity structure. Through this method the SP-IMC macro can

also achieve a significant speedup and better utilization by fixing the indices/column.

5.3 Experiment Results and Analysis

5.3.1 Chip Measurements

The SP-IMC chip is fabricated in a 28nm CMOS process and evaluated across a
supply voltage range of 0.57V to 1.2V at a nominal temperature of 25°C. Under a
25% input toggle rate (TR), SP-IMC achieves energy efficiencies ranging from 8.4 to
36.6 TOPS/W for dense 4b-IA x 4b-W MAC operations—defined as the fully non-
sparse case where each column activates all bit-cells and adder tree nodes via a single
index. For a 1:16 pruning ratio (i.e., high sparsity), the energy efficiency significantly
improves, reaching 7.5 to 115.3 TOPS/W under the same TR. Furthermore, a 25%
reduction in TR results in an average 10% gain in energy efficiency, highlighting the
benefits of low activity factor designs. The chip supports a peak operating frequency

of 1.16 GHz at 1.18V across all operational modes.

69

e 3 hmgrll"mllﬁrl-:uml:&tl
b i | W Wi eyl |0 (1 | 2|0 | 3
.I’llﬂ.ﬁ_.u'ml_“-.."_zisz. -
e | Wea| @ Wiy, | W) @ I W 3
A e ‘Waight Matrix Irsdline Mistrix
o o Indices 2 & ¥ span multiple columns, but
r L || I there are adders padded (o columns only
REC " Spillover accumulator accumulates Rataing Muliply Parallalism
I Sparss Weight Malrix culpuls of adder trees from every column Braaia Add Parallalem
Why not CSR? - Incurs Additional Hardware overhead
i 0 |0 [weaf 0 | [0] b
g 0 |Wa|g 0|0 e 1
2
o Wad 0 (Wo [Wad 0 |@ T | Wuwofwed [0]z
W Matrix E 0|0 [Wha Wy ks i et WS ERES
a3 4
o Woight Matrix Index Matrix
Indices denoto |A oparand Needs additional accumulate and Wit back
Sparse Weight Matrix Analher Pipaling Stage, Bresks Mul. parallalissn

[

we 0 | 0 || @ - Comg in M direction{RLE) &

‘ii: s W) 0 [1]2]0)3 'ﬁ

OWmjojo]a - dwefo |1 |z]a]1]0 =

Wl 0 o [0 O il lelo =

0| 0 [W 8 Wy L] g

Wnight Matrix Zera Cour g

O|*=jojoj® ? R 5

R3C g H

Sparas Weighl Matrix L] L] ;N |V g g [E .‘3

o b o e § A L T A §

1.) Fixed column length] plalolol1 1 ™2 -
- . Wy a]

2) Last elemnent of e~ P A H I AHE | z T

column is always stored 0|9 |8 F"' i Denser weight & @ E

regardless of magitude. _ 1:2 Col-wise Sparsity index distribution T]

RLE Mapping : p - ;

Figure 25. Mapping Methodologies for COO-CSC, RL, Why CSR Is Not IMC Friendly
and Benefits of N:M Sparse Encoding

SP-IMC leverages a time-multiplexed sparsity mechanism that maps unstructured
sparsity to the time domain. As the number of active indices per column decreases
(i.e., increased sparsity), the adder tree activity factor is reduced since fewer adders
are engaged per cycle. Fig. 26 presents the detailed measurement results, including
the macro-level area breakdown. The adder trees dominate the macro area, followed
by the multipliers and comparators.

To evaluate the benefits of sparse compressed storage in reducing the number
of required macros, we scaled up the SP-IMC design and mapped a ResNet-18

model (trained on CIFAR-10 with 98% unstructured sparsity) onto the architecture.

70

TOPS & TOPS/W Scaling Pwr. & Freq. Scaling 1:2 vs 1:4 vs 1:8 Sparsi

1:16 Sparsity Baseline measurement with no sparsity. Adder tree activity factor scales with

= @25% 1A Toagle rate @25% 1A Toggle rate 6 sparsity because sparsity Is time-shared
120 80 7 - 1, a0
E_‘-i 2L AR e I | g
E_, a0 Efﬂ-ﬁ_ |~ Freguency 1.2 5:“ 2
oy E | < §:
g 604 =40 08 2 e
5 : g <
= | 2 2
o 304 Fa b - 04
5 : & B!
E E T T 1 u - T 'l:" ﬂ‘ T T T
u] 200 400 600 0.4 07 i 13 [i] D3 086 0% 12
Throughput {GOPS) VDDV VDDV

Chip area breakdown System level Area Scaling

Resnet-18, on Cifar-10, 88% Unstruciured sparsity mapped to SP-IMC with
RLC Compression.INT8 Dense acc.: B7%, Sparse acc. 86.2%

100%
COmoc

M Audders 750
WwLoriv. || &

[shift Acc. 3”—;50%
B sit-c=is ||

Model Accuracy(INT8)

Dense M:M Pruning Unstructured

1:2 14 1:8 90% Sparsity
Cifar-10 Resnetis 83.8% 83.37% 92.49% 91.44% 893.2%
Cifar-100 Resnet1s 75.9% 74.64% T4.63% 71.99% 73.9%

Figure 26. Chip Measurement Results, Accuracy Results of Pruned DNNs, Area
Breakdown in Macro and System Level

Compared to a dense baseline, we observe a 3x to 40x reduction in area, depending
on the layer and sparsity configuration.

We also conducted extensive software-level validation to assess the accuracy of
sparse DNN models when deployed on SP-IMC. As shown in Fig. 26, both unstructured
and N:M sparsity schemes—particularly at high sparsity ratios—achieve competitive
accuracy on CNN models such as ResNet-18, demonstrating the practicality and

effectiveness of sparsity support in SP-IMC.

71

5.3.2 Comparison and Evaluation

Fig. 27 presents a comparison between SP-IMC and prior state-of-the-art digital
IMC designs. Even without leveraging sparsity, SP-IMC achieves the highest through-
put, primarily due to its dual activation word-line parallelism. A key focus of this work
is on sparse compressed storage, enabling SP-IMC to maintain consistent hardware
throughput across various sparsity formats.

To evaluate the benefits of compressed storage, we compare the number of write
operations required to perform a large volume of MAC operations. SP-IMC significantly
reduces the number of writes compared to prior works. Most existing IMC designs
adopt a weight-stationary compute model, where weights must be written into the array
prior to computation hsin Chen et al. (2018). This step introduces considerable latency
at the system level, especially for large models. In contrast, SP-IMC dramatically
reduces this overhead by minimizing the number of weight parameters through sparsity-
aware compression.

This improvement is illustrated in the bottom two plots of Fig. 27. The left plot
shows the total cycle latency as a function of increasing MAC operations, while the
right plot depicts the number of write operations required relative to MAC count.
SP-IMC consistently achieves the lowest cycle latency and the fewest write operations,
even at scale, demonstrating its efficiency in both compute and memory access.

To quantitatively capture the benefits of sparsity and compressed storage, we
define a new Figure of Merit (FoM): TOPS/W x TOPS/mm2 x # of weights stored
per kb. This metric reflects not only energy and area efficiency, but also storage

density enabled by compression. Under this proposed FoM, SP-IMC achieves up

72

D. Wang et al J.Yueetal. | H. Fujiwaraet | H. Morietal J. Oh et al. .
Work (2022) (2023) al. (2022) (2023) (2023) This Work
Technology 28nm 28nm 5nm 4nm 28nm 28nm
MAC Implementation Digital Digital Digital Digital Digital Digital
IMC Sparsity Support | Approx. Addition X X X X RLC/CSC/N:M
Supply Voltage (V) 0.45-1.10 0.64-1.03 0.5-0.9 0.32-1.1 0.9-1.1 0.57-1.18
Macro Area (mm?) 0.049 NA 0.0133 0.0172 0.0159 0.24
Clock Frequency (MHz) 250 20-320 360-1440 1490 30-360 201-1160
. . 8T(55%) 8T x 2bit 6T+4T(50%)
Bitcell Transistors 8T 10T(45%) 12T +OAI BT+0.5T 67(50%)
. 4K (Weights)
Array Size(b) 16K 1.15M 64K 54K 16K + 4K(Index)
. . 1A:1-4b IA: 1-8b 1A: 8/12/16 1A: 1-8 IP:2b/4b/8b
Bit Precision W:1b INT8 W:4b W: 8/12 W:8 W:4b/8b
Full output precision No Yes Yes Yes Yes Yes
Performance(GOPS)'? 62.5* 22.9* 104.735 127.15 0.95-11.6 41.29-238.86°
Energy Efficiency? " s 67
(TOPS/W) 9.6-15.5 15.6%/70.37 17.5-63 87.4 22.4-60.4 4.38-57.67
Compute Density>3 o 7
TOPS/mm? 2.59 0.85 0.44-1.76 49.9 0.12-1.46 0.21-1.2

(' Normalized to 8Kb. 2 One operation is either 8b multiplication or addition. () Normalized quadratically to 28nm.
*Estimated from previous works.) 75% Sparsity, (5 92% Sparsity.) 93.75% Sparsity (15:16 Pruning).

GOPS Calculation: 32(Rows) x 16(Columns)/Latency(5xClk period). ("Excludes write energy/latency otherwise incurred by other
works for a scaled-up matrix that fits in SP-IMC and not in other works.® Includes write latency - 1 cycle/word size.

Scaling # of operations Reduced re-write operations Figure of Merit
FoM = TOPS/W() * TOPS/mm?2 (M * # of Wikb

1000 Due to compressed sparse storage, SP-IMC
B~ This work T -/:- can greatly reduce write backs depending on e Tie]
S w-J. 0 ot al. (2023) / compression ratio and memory size. 4~ SP-IMC - 1:8
S 700 {="H Morlotal 2023) R EEEEEEEEE R X J.Ohotal, (2023)
= |—e— H. Fujiwara etal. (2022) |/ Y r—TE SRR © H. Fujiwara etal. (2022)
£ 50 L A0K -+ sonesiaon g miowes - 20K [H. ot ot a1 (2023)
3 4 o — = SRR
3 [/el - @ 1 A o
o /[E 07K " " u AR
o / 2parsil = /i’ T) :
S 250 z = 10K A e T
S 5 /| SN i
o ‘ 4.8x 0.3K = - - TANA
——y w5 Z T ‘ LT TS|
. e — SEEEEEEEE el 9 O .
0 6K 12K 18K 0-_(_1&_4'_1_'_ i o 0 P 4 £
of MAC OPs'2 5K 10K 15K | |
’ # of MAC OPs'2 0 0.5 VDD (V) 1 1.5

Figure 27. System Latency, Write Operations, Figure of Merit (FOM), and Comparison
to Prior Digital IMCs

to 5.9x improvement over the best prior work, highlighting its superior balance of

compute throughput, area efficiency, and sparsity-aware storage capability.

5.4 Conclusion

In summary, this work presents SP-IMC, a fully digital sparsity-integrated in-

memory computing (IMC) macro that pushes the boundaries of flexibility, efficiency,

73

and scalability in sparse DNN acceleration. Unlike prior designs that either lack
support for compressed representations or require significant architectural modifi-
cations to handle different sparsity types, SP-IMC natively supports a wide range
of sparse encoding formats—including Coordinate (COO), Run-Length (RL), and
N:M structured sparsity—directly within the IMC array. SP-IMC also accommodates
multiple data precisions to suit diverse DNN workload requirements. Specifically, it
supports input activations (IA) at 2-bit, 4-bit, and 8-bit precision, and weights at
4-bit and 8-bit precision. To maximize sparsity coverage, the design features scalable
sparsity encoding, with support for both 4-bit and 8-bit index or zero-count fields,
enabling real-time configurability for different sparsity ratios and storage efficien-
cies. This flexible architecture allows SP-IMC to efficiently execute a wide range of
modern DNN models—such as CNNs and Transformers—under various sparsity and
quantization regimes, while maintaining high throughput, minimal energy overhead,
and reduced area footprint. By integrating compressed storage and time-multiplexed
compute, SP-IMC not only reduces memory and compute resources but also ensures
sustained performance across diverse sparsity patterns. As a result, SP-IMC represents
a significant step forward in building general-purpose, sparsity-aware IMC accelerators

that can adapt to the growing demands of edge and datacenter-scale Al workloads.

74

Chapter 6

SPARSITY INTEGRATED COMPUTE-IN-MEMORY ACCELERATOR WITH A
FUSED DOT-PRODUCT ENGINE AND A RISC-V CPU

Previous chapters explored the implementation of unstructured sparsity and preci-
sion scaling in single macro silicon designs. However, these implementations exhibit
inefficiencies, such as redundant multiplications and additions, and there is no visible
reduction in compute resources other than reduced storage. Moreover, prior designs
are confined to single macro implementations, which are inadequate for evaluating how
large-scale LLM and CNN models can be efficiently mapped and scaled-up hardware.
And previous chapters targeted scalable fixed precision workloads, which combined
with high sparsity levels cannot support several Al models. This chapter addresses
all the above shortcomings by presenting a sparsity-aware in-SRAM multiply-and-
accumulate (MAC) accelerator with a fused dot-product engine (SAFE) and a RISC-V
CPU (SAFER). For the first time, we implement a unified dot-product compute
methodology in Compute-in-memory (CIM) circuits vastly reducing the hardware
footprint for simultaneously supporting both floating point (FP) and integer (INT)
MACs. Additionally, we integrate various N:M sparsity formats allowing the CIM
macro to store and operate exclusively on compressed non-zero weights. We also tightly
integrate a 32-bit RISC-V CPU to SAFE for efficient data-movement across chip. The
CPU orchestrates data-movement across 4 implemented macros to enhances matrix
scaling for large Al workloads. The 28nm SAFER prototype achieves a peak energy
efficiency of 105.7 TOPS/W (78.9 TOPS/W) and 79.9 TOPS/W (63 TOPS/W) in

the macro (chip) level for FP8 and INTS8 workloads respectively. SAFER also achieves

)

Input Mem. (0.5KB) |«@¢——] Input Mem. (0.5KB))
- o X
@ 1T v
s SAFE Core #0 g SAFE Core #1 =)
& | |[Tocal Ctrl. Status | | [Local Ctrl. Status | g
s s || 192x32 |95]| 192x32 P
[%ﬁ CIM Array ||+ **|E2|| CM Array £
O l|e § 0.5KB Weight|[*T¥ T 0§ 0.5KB Weight =
2 ™110.25KB Index 2-"1/0.25KB Index P
1]
= Input Mem. (0.5KB)|<«# »| Input Mem. (0.5KB) -‘:‘é
5O SAFE Core #2 SEE SAFE Core #3 -
Local Ctrl. Status || &|S|g| |[Local Ctrl. Status ®
= || 192x32 —tosl|5 || 192x32 ;—
c g% CIM Array ||« o+ |E2 CIM Array o
S | |[©&||0-5kB Weight||«—e+—+|O S ||0.5KB Weight g
7] 8 "1{0.25KB Index 8" l0.25KB Index O
- N
% Output Mem. (1KB) »| Output Mem. (1KB) o
» =
> o
Output gather Global Control N

—
scatter Status i

Figure 28. SAFER Chip Architecture

a memory footprint reduction proportional to sparsity through compressed storage,
vastly reducing the macro count required for large AI models. For our proposed figure
of merit, which accounts for memory footprint, SAFER improves current SoTA CIMs

by 1.4x and 14x for INT8 and FP8 workloads.

76

6.1 Introduction

There have been a plethora of CIM designs targeting various hardware and software
features to enable efficient processing of deep neural networks (DNNs).

Sparsity is one such feature and has been widely adopted in various DNNs. DNN
models are getting larger and is becoming more challenging to fit them on chip. This
is further exacerbated by the fact that current CIMs have poor storage density due to
integration of compute logic circuits. Weight sparsity achieved through pruning in
DNNs, offers significant memory footprint reduction when paired with compression.
Compressed storage can also reduce memory accesses to CIMs when mapping large
DNN workloads. Prior CIM works have explored this: Liu et al. (2023) uses bitmaps
for compression but requires external compute and complex dense-format conversion
via butterfly multiplexers. SP-IMC Sridharan et al. (2024b) adopts compressed sparse
column (CSC) with simplified decode hardware but suffers from low MAC utilization.
SAFE aims to address these drawbacks by offering a simple decode mechanism for
various sparsity ratios and full utilization of the compute circuits.

Data-type re-configurability is another feature that enables support for various
DNNs. Supporting different number formats such as integer (INT) and floating-point
(FP) precision in CIM hardware is expensive and needs careful hardware re-use. Recent
CIM works have explored this, but schemes in Yuan et al. (2025); Yue et al. (2025);
Ali et al. (2025) trade off compute accuracy in FP arithmetic for hardware complexity,
whereas Saikia et al. (2023) has no accuracy drop but incurs large hardware overhead.
SAFE, for the first time, explores a fused-dot product (FSD) approach in CIM, which
was previously only employed in ASICs Hickmann et al. (2020); Park et al. (2023).

This method can reduce the cost of rounding and normalization for large vector-vector

7

MACs Hickmann et al. (2020). Each column in CIM arrays typically performs large
vector-vector MACs, therefore FSD can naturally fit well with CIM array design.
Additionally, FSD scheme uses fixed-point adders for accumulations. Adder trees
occupy a large footprint in digital CIMs, which can be amortized by using the same
adder trees in FSD for both INT and FP.

MAC configuration flexibility is another key feature that requires attention
as there are a variety of Al workloads all requiring different MAC structures. Self-
attention layer in large language models (LLMSs) differs from a convolution layer and
even convolutions vary from layer to layer in different DNNs. SAFER integrates a
custom RISC-V CPU to cast weights and activations across all memories on chip to
help with MAC reconfigurability. We also augment the RISC-V CPU with vector

additions to help with post accumulation of partial sums for large matrices.

6.2 Architecture and Operation

6.2.1 SAFER Chip Architecture

Fig. 28 shows the SAFER chip architecture, consisting of four SAFE cores, in-
put/output (IP/OP) buffers, control logic, and OP gather-scatter unit. To enable
parallel processing, each SAFE core is allocated a dedicated 0.5KB IP buffer for
feeding unique IPs. The OPs/partial-sums from all SAFE cores are collected and
transferred to two 1KB OP buffers via the OP gather-scatter unit. We incorporate
a custom 32-bit single-cycle RISC-V CPU to aid with the address calculations for

data movement between IP/OP buffers and weights (Ws) in the CIM array. This

78

G"':f'::r Compute Column #7 (SRAM Col 28-31)
Scatter Compute Column #0 (SRAM Col 0-3) Mindex
. A 4b . .
o : : TN'M WLO
g | WLok A~ 1 E5M2 eps D i IPWO_
2 : 8b| © B : © IDWO
S |l 4x4 B | | Syeley {0 [Type g
: 8b
2 |wez]: 6T- SRAM b +44FP mul. unit}— : o
S | Weight O |4 > B
O | WL3}: @ [8b) ~gp :23b| o
L : 215 AInt mul. unit—- ¢ | ¢
] wa o £
5 H 2x4 6T- [4lo| SlE:
: 4b| r 3
3 [om] | Row1 71 5
S WL e T, :23b 8
0 -
° | - =
J WL‘l 92 -- n- WL192
> [| Row31 | 3
IDW31)} : 523b {'\'l IPW31
& 1 --- n IDw31;
5 e BL Drivers and Sense Amplifiers
£8 280
e 9 FP/INT Sel ——;
o= FPs Type 7| 2'S complement to lshift A
g) FPEMAC Ouf| FP§ & INT round e Acc.
o w® < INT MAC Out Enable acc# ry
o t";J Enable shiftl
- ift value|

Figure 29. SAFE Core and Macro Architecture

is done by augmenting the base RV32-IM instruction set with additional load /store
instructions. These additional instructions provide support for a variety of MAC
configurations through uni/multi-casting Ws/OPs/IPs to any/all of the SAFE cores.
The CPU also monitors the status of all SAFE cores through global control status
registers. Additionally, we include FP8 (E4M3 and E5M2) and INT32 vector addition
to the CPU to enable partial-sum aggregations from SAFE macros for large matrices.

Table 10 provides the list of all supported instructions.

79

Table 10. RISC-V Instruction Set Extensions

Instruction Type

Function

RV32IM Base

All ratified instructions

Load store instructions
*New opcode for each instruction,
honors the same funct field for
byte,1/2 byte, word.
R-Type: Loads to CPU reg, stores to
CPU D-mem.

Load/Store IMC

Load/Store IP mem

Load/Store OP mem

Load/Store global CSR

Floating point

Extensions
*(R-type and |-type extension)

FP8 E4AM3/E5M2 8-vector addition

FP8 E4AM3/E5M2 multiply

FP8 E4AM3/E5M2 Single add

32-bit INT 8-vector addition

Copy instructions
*Moves data from non CPU memory to
desired location
*(R-type and I-type extension)

Copy desired IP mem location to
OP mem location and vice versa

6.2.2 SAFE Macro Architecture

Fig. 29 illustrates a single SAFE core. Each core has a 192x32 CIM array which is
broken into eight FSD “compute columns" (CCs) for compressed W storage and sparse
FP8/INT8 MAC operations. Each core also has an input gather-scatter (IGS) which
retrieves IPs and distributes them to the CCs through the IP FIFOs. The CIM array
also has WL-decoders, BL-drivers, and sense amplifiers to facilitate row-by-row read
and writes. The control logic manages compute modes and sparsity ratios. Status

registers track MAC count and manage IP requests via the IGS.

80

6.2.2.1 Compute Column (CC)

Each CC in a SAFE macro contains 192x4 6T-SRAM bits, out of which 128 x4
is used for W storage and 64x4 for Idx storage. The CC also includes a 32-vector
FSD MAC unit, supported by a backup SRAM with 64 storage locations for 8-bit
weights. This backup SRAM allows a new set of weights to be written to the CIM
array while the current set is actively used for computation. CC is divided into 32
rows, where each row has 4x4 bits for W storage and 2x4-bits for Idx storage. These
Ws and Idxs are sent to a sparse decode unit which filters two 8-bit Ws using the
two 4-bit Idxs into one weight (or 0) and this weight is sent to the multipliers. There
is an individual FP8 and INT8 multiplier to handle both data-types. The outputs
from the multiplier is sent to a 32-input 2’s complement adder tree. The multipliers
are data-gated to save power between different data types. Both data types share
the same adder tree as the accumulation data format is normalized between the two.
The outputs from the adder tree is then fed into a shift accumulator (SA). The shift
portion of the SA can be enabled by the control logic depending on the data type.
Now the 2’s complement partial-sum from the SA can optionally converted back to

FP.

6.2.2.2 Sparse Decode Unit (SD)

As shown in Fig. 30, SAFE’s sparse decode method supports various N:M sparsity
formats. It adopts a compressed sparse row (CSR) compression scheme, storing an
index for each non-zero weight. The index bit-width is determined by the maximum

supported M in N:M. All supported N:M ratios and their corresponding bit-width

81

(a) Sparse Decode Unit

: wiL (6T - x4l: WO N Sparse Decode: Sparsity Cycle
o ul (SD) Support Cost
x g :E" ‘W1 To multlpllari 12 2x2
N : ” : [[l
Tasssreadesnesrarnnarannet CEIE En. Row
AllW and Idx. are [or] . . . |: Row Sel. — :
directly fed into —— 2| Weight |: 178 Bx2
sparse decoder -7 —'| Index WL (IDW) Selector | : 1-15:16 16x2
from node Q. M 2 | 4 | 8 [16 | Cycle overhead to decode all non-zero
Idx Bit width for all dxBW|1 12132 weights in each compute column. *Not
supported sparsity including data-type latency.

(b) Sparse Compression and Mapping

Pol—fwolo [o [0 é InpthueuemFlFO IMCCoIO IMCCoI1 IMCCOI2 IMC Col3
IP1—> 0 W2/0)0 || 3 |IP3|IP2|IP1|IPO
a 4 4 3

(P29 19 IWHO Il £ o 7 ipe TP5 3
£ lips|—{0 o [0 |we %g Next IP fetch «
s
ol [ofojojoliss |ID3|ID2|ID1|IDO
< [Psj>wifofofo |27 & % ¥

iP6[— 0 [w3| 0 |w7 % Next ID fetch

IP7[—> 0|0 |ws|0 "2 Indices are c Acc Acc Acc

generalized to N:M.

Multiplication Direction
(c) Normalized Input Queues

Row 0 3[1P1/2]IP0O/A] Row 0 1P0/1/2 | N:M Sparsity will yield M-(N-1)
Row 1 —»{IP2/3] Pm' 1P1/2] Row 1 —rm IPs per compressed row
But all rows are normalized to
Row 0 —|IP3[1P2 [IP1 [1P0 | Row 0 —{IP3[1P2 [IP1 [IP0 | 1:M IPs to avoid IP rearrange
Row 1 _,||p3 P2 ||p1 |IPO Row 1 —>|IP3 IP2 |IP1 |IPO | hardware at the cost of latency.
2:4 Sparsity 3:4 Sparsity

Figure 30. (A) Sparse Decode Unit, (B) Sparse Compression and Mapping, (C)
Reducing Hardware Complexity by Normalizing Input Queue Length

is shown in Fig. 30(a). The stored indices specify which weights the IPs must be
multiplied with before accumulation. Each row in a CC has an Idx word line (IDWL);
as IPs are streamed into the macro via the IPWs, the corresponding indices are
simultaneously streamed through the IDWLs and the W selector uses these indices to
determine whether the corresponding weight needs multiplication from the streamed-in

IPs. This is required because when a matrix is compressed along the accumulation

direction, it breaks the multiplication structure. Not all Ws need to be multiplied
with the streamed-in IPs. We also time-multiplex sparsity, this is because there is
only a single IPW for every W, if a 1:4 sparsity is implemented then for each CIM
row, four IPs need to be streamed-in along with 4 Idxs and will vastly increase the
routing resources. The sparse compression and mapping mechanism is shown in
Fig. 30(b). For N:M sparsity where N#1, each row would require M —(N—1) IPs,
and the IPs required in each row are not in-order. To avoid more hardware for input
re-arrangement, we stream-in all M IPs regardless of V. This normalizes the cycle

count to M, as described in Fig. 30(c).

6.2.2.3 FP8 fused dot-product (FSD) and INT8 MAC

The FSD method supports vector-vector MACs for FP data-types, as shown in
Fig. 31(b). FP multiplications begin with exponent addition and mantissa multiplica-
tion; instead of rounding, the mantissa’s precision is preserved and is shifted by the
exponent and mapped to a 2’s complement number line. For E4M3, the number line
spans +2% — 2712 (23 bits) and for ESM2 the number line spans £2'¢ — 2718 (36 bits).
Now that the vectors are in 2’s complement format, they can be accumulated using a
fixed-point adder. The adder-tree bit-width is set to 23 bits instead of 36 bits because
of area constraints. To support ESM2, we time-multiplex the adder hardware over two
cycles. The first cycle is used to handle all exponents below 18 and the next cycle is
used for exponents above 18 and the shift accumulator performs shift and accumulate
computation of the two partial sums. Fig. 31(a) shows the detailed FP multiply units

in SAFE. To support INTS, an 8-bit integer multiplier is added to the pipeline after

83

E5M2 Multiplication (a) FP Multiply Unit E4M3 Multiplication
:IP[6:2] Wi6:2] W[1:0] if1:01} ~ WIT:01 IP[7:0] KIP[6:3] Wie:3] W2:0] I[2:0]:
: E5 M2 : : ;

L5 4 gy M2/ N AT gy M3

Sbit | 2 3bit | \"FT I I L /i [4bit | S 4-bit
RCA | ETo)f Mul |: |25 Ulsz s [ReA | E b1l Mul.
1 = t :
frsb Mantissa A S TP i _{Sb Mantissa
Bias | precisionis| ! /e & °lw 2]\ Bias | precision is
Sub. | preserved: | : /|2 S| [2(S 5| LSubd preserved:| ‘i
P lwE| oo S| gl 4b] 21_26 :
oI R A e o
T T 5 | g
9 Elely| v E i 1%
N2 ol O /)=
25| 18|25l |
: = sbh |
- Shift Man.| : | g 2 el B4 HHL
iCycle L_yjusing Exp{ : T 8 % > g \ | : [Shift Man. using Exp.]
P signi | —¢ wl— Y| i Mantissain UINT| Signout
UINT to 2's Gut ;| g Z — :

c-omplement Zzﬁvﬁ"',: ! Multiply) clﬂ;.mﬁt 2 | A
: Y 23 / 23% ultiply 1: 23b]
e 230 7% Out ¥ e Do =

(b) Fused Dot Product in SAFE
[sw] [siP] [Exp W] |ExpIP] [MantW | [MantIP] . - . x32 :[Normalization |
Alignment without 1
normalization for
---------- all multiplied FP convert
mantissa
Done once
y _‘ _ x32 after addition :
{ Fixed point adder tree

Figure 31. (A) Floating-point Multiply Unit and (B) Fused Dot-product in SAFE

the SD stage, while the adder hardware is reused; this is shown in Fig. 29. Fig. 32

illustrates SAFE’s pipeline for all supported data types.

6.3 Chip Measurements and Results

SAFER is prototyped in 28nm CMOS. It occupies 0.95mm?, and each SAFE core

occupies 0.15mm?. Fig. 33 shows the power/area breakdown for a SAFE core. FP8

84

E4M3/INT8 E5M2

1
IC || E<T8)E> 18],

BN [sp |!|ano][AnD
MUL l| SA I| SA |

I

I

Il IC IE<:18 E>18
! | |
I
I
1

\l ?.I '5' [9] 51 ()
A 1y 1 gee® :ol"\ 19 1eye®
I I I
MUL : :
|
I

I - Input/ldx Fetch [- Partial Multiply - Adder tree 1 - FP8 Convert
- Sparse Decode [- INT Conversion 1 - Accumulation

Not fo*‘ INT8

Figure 32. Pipeline Diagram for a 1:2 Sparse Workload

MACs consume less power and area, compared to INT8 MACs. This is due to the
wide multiplier unit for INT8 and the 2’s complement version of an FP8 number is
very sparse and reduces the overall activity factor of the adder tree. In prior digital
CIM works Sridharan et al. (2022a); Chih et al. (2021); Lin et al. (2023); Oh et al.
(2023b), the adder tree typically dominated power and area overheads compared
to multipliers. This is because bit-serial MAC operations reduce multiplications to
simple per-cycle AND operations. But Sridharan et al. (2024a) mitigates multiplier
overhead in bit-parallel designs by isolating weight precision and deferring precision
handling, akin to the bit-serial approach which does this in the time domain. In
contrast, SAFER implements full-precision 8bx8b multipliers for every selected weight,
avoiding such optimizations and instead prioritizing raw compute throughput. SAFER

can operate at 0.57-1.2V, reaching a F},,, of 141 MHz@Q0.57V and 815 MHz@1.2V.

85

[Sparse Decode [Adder tree [l Control
[Bit-cells [Shift Acc. B Multiply

1 00_‘: 8.7% 7.5%
(a)

X 801 e
£ 14.1%
s 60—
g 40—
o

20— 17.3%

E5

INT E4M3 E5M2

Figure 33. (A) SAFE Power, (B) Area Breakdown

Fig. 34(a) shows the voltage-frequency scaling measurements for both FP8 and INT
MACs, where the CPU was set to perform NoP instruction. All measurements were
done at 28°C. For INT8 workloads, we use an IP toggle rate of 50% and bit-wise W
sparsity of 50%. FP8 workloads use randomly generated numbers for both IPs and
Ws within the representable range. The SAFE(R) achieves a peak energy efficiency of
105.7 (78.9), 78.8 (59) and 79.9 (63) TFLOPS/W for FP8 E4M3, FP8 E5M2, and
INT8 MACs respectively.

To quantify how well various sparsity translates to memory footprint, we map
a ResNet-18 model (~11M parameters) trained for CIFAR-100 dataset for various
1: M sparsity. With 1:16 sparsity, only 91 SAFE macros are required for the entire
model, which marks 15.5x savings in macro area, as shown in Fig. 34(b). We also
validate the accuracy for ResNet-18 (DNN) and a Llama-2-7b (LLM) model for FP8

and INTS8 under various sparsity to demonstrate the practical need for different N: M

86

60 ——T——— 1.2 1 : : 1.5K
-|-&~Power INT8 (Chip) A & —&—Memory
. N
- E P et
1} -#- Power FP8 (Chip) b —e-Macro Count €
= 40 H -e- Frequency — 0.8% £10 < ; : 1K 8
E &7 =2 |X NURNY o mak e
° S
= o 9 8 |1 3
: v ¥ \ :
LN
a 20 /{/ — 048 §5 AN BRI ey
i bl = £ <
: d g 7]
ot
0 s 0 0
0.4 0.7 1 1.3 0 25 50 75
VDD (V) Sparsity Ratio (%)
(a) 500 (b)
=120 FRNE RN RN S NN O T 4.
2 A ~#— FP8 (E4M3) |- N FPe-1:16
7] \ —o— FP8-1:8
o [] —+— [NT8 N [|-~ FP8-1:4
o | = -&-Z.Yue etal. ‘25
= 80— —r— == 600 : .
o N FP8 (E5M2) g \[{* Y-Yivang etal. 25
E AR N\ e J.Saikia et al.”23
o . \\\ K\ o \
.g 40|22 ’7"\:k - — @J-%V— %1 300 : ,
E ["‘-...,* i A ;
Y L\‘..‘.: j U ""m.#
o 3 » > P
g 0 U 0 ' -y
w 0 200 400 600 04 0.7 1 1.3
Throughput (G(FL)OPS) VDD (V)
(c) (d)

Figure 34. Power and Frequency Scaling (A), Sparsity Savings (B), Throughput and
Energy Efficiency Scaling (C), Figure of Merit (D)

sparsity, as shown in Table 11. To account for reduced memory footprint due to
compressed storage, we devise a figure of merit (FoM) of TOPS/W /mm? /32K 8-bit
Ws/Kb, which takes energy efficiency, chip area and memory size in Kb when 32K
8-bit weight parameters are mapped onto the CIM array. Table 12 and Fig. 34(d)
show that SAFER achieves 1.4x and 14x improvements in this FoM for INT8 and

FP8 workloads respectively, compared to prior SoTA digital CIMs.

87

Table 11. AI Model Accuracy for Various Sparsity Ratios

Model/Dataset ResNet -18 on CIFAR-100
Act/W Precision INT8/INT8 FP8/FP8
Sparsity ratio 1:1 1:4 | 1:8 | 1:16 1:1 1:4 1:8 | 1:16
Model accuracy (%) 76 | 757 | 753|739 | 765 | 765 | 76.2 | 74.8
Model Llama-2-7b-hf (Post trained, not fine tuned)
Act/W Precision FP8/FP8
Performance Wikitext2 BoolQ 0-shot
Score (Lower is better) (Higher is better)
Sparsity ratio 11| 24 | 4:8 8:16 1:1 2:4 4:8 8:16
Model accuracy score | 5.1 12 8.3 7.2 077 | 067 | 0.72 | 0.74

6.4 Conclusion

In this work, we prototype SAFER, an in-SRAM sparse FSD-based CIM processor,
which integrates a custom RISC-V CPU enabling support for a variety of AI models
from DNNs to LLMs. Through FSD, SAFE enables FP8 MACs with minimal overhead
while also supporting hardware sharing between FP8 and INTS8 formats. Measurement
results show that SAFE achieves close to SoTA TOPS/W and TOPS/mm? while
maintaining full accuracy for all MAC workloads. SAFE also implements sparsity in
the form of compressed storage, achieving memory footprint reduction proportional
to sparsity. For the proposed FoM, SAFER achieves 1.4-14x improvement compared
to SoTA digital CIMs.

88

Table 12. Comparison with State-of-the-art Fully Digital CIM Works

This Z. Yueet | Y.Yiyanget | A. Sridharan | J. Saikiaet
work al., 2025 al., 2025 etal., 2024 al., 2023
Technology 28nm 28nm 28nm 28nm 28nm
Voltage (V) 0.57-1.2 0.62-0.9 0.65-0.9 0.57-1.18 0.55-1.2
Frequency (MHz) 141-815 100-525 153-400 201-1160 650
SRAM Cell 6T Logic 10T 6T 10T 8T/14T
Macro size 24Kb 224Kb 32Kb 8Kb 4Kb
(16KbW) (4KbW)
Weight/Input INT8,FP8 FP16/8, INT4/8 INT4/8 FP8
Precision (E4/5M3/2) INT8 FP8,BF16
Accuracy Loss No Yes Yes No No
Sparsity Support CSR/N:M Zero skip None CSC/N:M None
(50%-99%) dynamic (1%-99.9%)
FPg* 16-105.7(PIM) 99.7 192.3 - 121
Energy Efficiency 13-78.9(Chip)
T(FLYOPSW g | 12:479.9(PIM) 115 71.4 57.7 -
10-63(Chip)
Compute density |FP8* 0.3-1.79% 3.3 3.23 - 0.94
T(FLIOPS/mm? fiNra]™ 0.24-1.3¢ 3.81 2.34 1.2 -
]) 8.6-51.9(1:1) 37.42 59.53 29.2
Figure of Merit®: |FP8*| 34.7-207(1:4) For all For all - For all
T(FL)OPS/W/ 138-831(1:16) | sparsity sparsity sparsity
mm2* Ws/byte,
where W is an 8- 6.8-41.8(1:1) 164.3 84.1 57.7(1:1)
bit weight INT8| 27.4-167(1:4) For all For all 230.68(1:4) -
109-670(1:16) sparsity sparsity 922.7(1:16)

TFLOPS Calculation: IP Channels x OP Channels/Latency. *FP8 metrics are shown for E4M3.
&NT and E5M2 Multiplier area subtracted for accurate comparison. #FP8 Multiplierarea subtracted.
$FoM = Energy efficiency/die area * # of 8-bit weights/byte

89

Node 28nm
Macro area 0.15 mm?
Die area 1.52 mm?
Channels 32-IP & 8-OP per
macro
Alignment One-shot post
multiplication
Buffer size 4KB
PIM size 3KB
Peak 16-105.7(E4M3)
TOPS/W 12-78.8 (E5M2)

12.4-79.9(INT)

Figure 35. Testing Setup, Die-Micrograph and Chip Summary

= 0.76 MM —>

90

Chapter 7

CONCLUSION

This dissertation presents a series of innovations in programmable and sparsity-
aware in-memory computing (IMC) architectures, demonstrating a significant leap in
flexibility, efficiency, and scalability for Al acceleration.

First this dissertation introduces a programmable PSRAM chip fabricated in
TSMC 65nm CMOS technology, capable of executing a complete set of Boolean
vector operations—including NOR, NAND, XOR (both 2- and 3-input), majority, and
full-adder—in a single memory cycle. This design, taped out in silicon, is validated
through three real-world case studies: parallel vector operations, neural networks, and
data encryption.

Building on PSRAM, PS-IMC is proposed, a high-throughput IMC macro with
a unique decomposed weight-precision dataflow that enables bit-parallel multiply-
accumulate (MAC) operations without requiring weight replication. PS-IMC main-
tains 100% utilization with minimal hardware overhead and achieves state-of-the-art
throughput, energy efficiency, and compute density across a wide range of MAC
workloads.

To further extend IMC to algorithm-specific acceleration, a novel SRAM-based
IMC architecture optimized for the Neural Belief Propagation (Neural BP) decoding
algorithm is proposed. By leveraging sparsity through algorithm-hardware co-design,
this IMC implementations efficiently perform sparse matrix-vector multiplications

(MVMs) with either fixed or unstructured sparsity patterns. These implementations

91

outperform state-of-the-art LDPC decoder hardware in both throughput and energy
efficiency.

Expanding on sparse DNN acceleration, this dissertation introduces SP-IMC, a
fully digital sparsity-integrated IMC macro that natively supports a wide range of
sparse encoding formats—including Coordinate (COO), Run-Length (RL), and N:M
structured sparsity—within the memory array. SP-IMC accommodates multiple data
precisions for input activations (2b, 4b, 8b) and weights (4b, 8b), and supports scalable
sparsity through 4-bit and 8-bit indexing, offering real-time configurability for various
compression ratios. By combining compressed storage with time-multiplexed sparse
decode, SP-IMC achieves high energy efficiency, and a compact area footprint across
diverse CNN workloads.

Finally, this dissertation presents SAFER, an in-SRAM CIM processor that inte-
grates a custom RISC-V CPU to support end-to-end execution of AI models ranging
from DNNs to large language models (LLMs). Using Fused Multiply Accumulate,
SAFER enables FP8 MACs with minimal overhead and allows compute hardware
sharing across FP8 and INTS8 formats. The architecture supports sparsity through
compressed storage, reducing memory footprint in proportion to the degree of sparsity.
Measured results show that SAFER achieves near state-of-the-art TOPS/W and
TOPS/mm? while maintaining full accuracy, and delivers 1.4-13.8x improvement in
the proposed figure of merit compared to prior digital CIM architectures. Collectively,
these contributions advance the state of the art in SRAM based CIMs, offering a
versatile and efficient compute substrate that is well-suited for the evolving demands

of edge Al workloads.

92

REFERENCES

Ahn, J.; S. Hong, S. Yoo, O. Mutlu and K. Choi, “A scalable processing-in-memory
accelerator for parallel graph processing”, in “Proceedings of the 42nd Annual Inter-
national Symposium on Computer Architecture”, ISCA ’15, p. 105-117 (Association
for Computing Machinery, New York, NY, USA, 2015).

Ali, A. H., A. Sridharan, C. Guo, W. Hwang, W. Tsai, J. Zhang, Y. Chen, S. X. Wang
and D. Fan, “Fp-smr: A fully digital floating-point processing-in-sas-mram for
session-based recommender system”; in “Proceedings of the Great Lakes Symposium
on VLSI 2025”, GLSVLSI ’25, p. 341-347 (Association for Computing Machinery,
New York, NY, USA, 2025), URL https://doi.org/10.1145/3716368.3735206.

Arikan, E., “Channel polarization: A method for constructing capacity-achieving
codes for symmetric binary-input memoryless channels”, IEEE Transactions on
information Theory 55, 7, 3051-3073 (2009).

Berrou, C., A. Glavieux and P. Thitimajshima, “Near shannon limit error-correcting
coding and decoding: Turbo-codes. 17, in “Proceedings of ICC ’93 - IEEE Interna-
tional Conference on Communications”, vol. 2, pp. 1064-1070 vol.2 (1993).

Biswas, A. et al., “Conv-sram: An energy-efficient sram with in-memory dot-product
computation for low-power convolutional neural networks”, IEEE JSSC (2018).

Cammerer, S., T. Gruber, J. Hoydis and S. ten Brink, “Scaling deep learning-based
decoding of polar codes via partitioning”, in “GLOBECOM 2017 - 2017 IEEE Global
Communications Conference”, pp. 1-6 (2017).

Chih, Y.-D., P.-H. Lee, H. Fujiwara, Y.-C. Shih, C.-F. Lee, R. Naous, Y.-L. Chen,
C.-P. Lo, C.-H. Lu, H. Mori, W.-C. Zhao, D. Sun, M. E. Sinangil, Y.-H. Chen, T.-L.
Chou, K. Akarvardar, H.-J. Liao, Y. Wang, M.-F. Chang and T.-Y. J. Chang, “16.4
an 89tops/w and 16.3tops/mm?2 all-digital sram-based full-precision compute-in

memory macro in 22nm for machine-learning edge applications”, in “2021 IEEE
International Solid- State Circuits Conference (ISSCC)”, vol. 64, pp. 252-254 (2021).

Dally, B., “ Hardware for Deep Learning ”, in “2023 IEEE Hot Chips 35 Symposium
(HCS)”, pp. 1-58 (IEEE Computer Society, Los Alamitos, CA, USA, 2023), URL
https://doi.ieeecomputersociety.org/10.1109/HCS59251.2023.10254716.

Das, S., “Itrs assessment and benchmarking of emerging logic devices”, in “Emerging
Nanoelectronic Devices”, pp. 405-416 (2015).

Faraone, J., N. Fraser, M. Blott and P. H. Leong, “Syq: Learning symmetric quantiza-
tion for efficient deep neural networks”, in “Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR)”, (2018).

93

https://doi.org/10.1145/3716368.3735206
https://doi.ieeecomputersociety.org/10.1109/HCS59251.2023.10254716

Fujiwara, H., H. Mori, W.-C. Zhao, M.-C. Chuang, R. Naous, C.-K. Chuang,
T. Hashizume, D. Sun, C.-F. Lee, K. Akarvardar, S. Adham, T.-L. Chou, M. E.
Sinangil, Y. Wang, Y.-D. Chih, Y.-H. Chen, H.-J. Liao and T.-Y. J. Chang, “A 5-nm
254-tops/w 221-tops/mm?2 fully-digital computing-in-memory macro supporting
wide-range dynamic-voltage-frequency scaling and simultaneous mac and write
operations”; in “2022 IEEE International Solid-State Circuits Conference (ISSCC)”,
vol. 65, pp. 1-3 (2022a).

Fujiwara, H. et al., “A 5-nm 254-TOPS/W 221-TOPS/mm? Fully-Digital Computing-
in-Memory Macro Supporting Wide-Range Dynamic-Voltage-Frequency Scaling and
Simultaneous MAC and Write Operations”, in “IEEE ISSCC”, (2022b).

Gallager, R., “Low-density parity-check codes”, IRE Transactions on information
theory 8, 1, 21-28 (1962).

Gruber, T., S. Cammerer, J. Hoydis and S. t. Brink, “On deep learning-based channel
decoding”, in “2017 51st Annual Conference on Information Sciences and Systems
(CISS)”, pp. 1-6 (2017).

Han, S., X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz and W. J. Dally, “Eie:
Efficient inference engine on compressed deep neural network”, in “2016 ACM/IEEE

43rd Annual International Symposium on Computer Architecture (ISCA)”, pp.
243-254 (2016).

Hickmann, B., J. Chen, M. Rotzin, A. Yang, M. Urbanski and S. Avancha, “Intel
nervana neural network processor-t (nnp-t) fused floating point many-term dot
product”; in “2020 IEEE 27th Symposium on Computer Arithmetic (ARITH)”, pp.
133-136 (2020).

hsin Chen, Y., T.-J. Yang, J. S. Emer and V. Sze, “Eyeriss v2: A flexible accelerator
for emerging deep neural networks on mobile devices”, IEEE Journal on Emerging
and Selected Topics in Circuits and Systems (2018).

Hu, X., H. Mun, J. Meng, Y. Liao, A. Sridharan and J.-s. Seo, “A 28nm 20.9-137.2
tops/w output-stationary sram compute-in-memory macro featuring dynamic look-
ahead zero weight skipping and runtime partial sum quantization”, in “2025 IEEE
Custom Integrated Circuits Conference (CICC)”, pp. 1-3 (2025).

Hutter, M. et al., “A cryptographic processor for low-resource devices: Canning ecdsa
and aes like sardines”, in “IFIP”, (2011).

Jiang, Z., S. Yin, J.-S. Seo and M. Seok, “C3sram: An in-memory-computing sram
macro based on robust capacitive coupling computing mechanism”, IEEE Journal
of Solid-State Circuits 55, 7, 1888-1897 (2020).

94

Kim, J.-H., J. Lee, J. Lee, J. Heo and J.-Y. Kim, “Z-pim: A sparsity-aware processing-
in-memory architecture with fully variable weight bit-precision for energy-efficient
deep neural networks”, IEEE Journal of Solid-State Circuits 56, 4, 1093-1104 (2021).

Lee, C.-F. et al., “A 12nm 121-TOPS/W 41.6-TOPS/mm? All Digital Full Preci-
sion SRAM-based Compute-in-Memory with Configurable Bit-width For Al Edge
Applications”, in “IEEE Symp. VLSI Circuits”, (2022).

Li, S., D. Niu, K. T. Malladi, H. Zheng, B. Brennan and Y. Xie, “Drisa: a dram-based
reconfigurable in-situ accelerator”, in “Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture”, MICRO-50 17, p. 288-301 (Asso-
ciation for Computing Machinery, New York, NY, USA, 2017).

Lin, C.-T. et al., “DIMCA: An Area-Efficient Digital In-Memory Computing Macro
Featuring Approximate Arithmetic Hardware in 28 nm”, IEEE JSSC (2023).

Liu, S., P. Li, J. Zhang, Y. Wang, H. Zhu, W. Jiang, S. Tang, C. Chen, Q. Liu and
M. Liu, “16.2 a 28nm 53.8tops/w 8b sparse transformer accelerator with in-memory
butterfly zero skipper for unstructured-pruned nn and cim-based local-attention-

reusable engine”, in “2023 IEEE International Solid-State Circuits Conference
(ISSCC)?, pp. 250252 (2023).

Lugosch, L. and W. J. Gross, “Neural offset min-sum decoding”, in “2017 IEEE
International Symposium on Information Theory (ISIT)”, pp. 1361-1365 (2017).

Mathew, S., F. Sheikh, A. Agarwal, M. Kounavis, S. Hsu, H. Kaul, M. Anders
and R. Krishnamurthy, “53gbps native gf(24)2 composite-field aes-encrypt/decrypt
accelerator for content-protection in 45nm high-performance microprocessors”, in
“2010 Symposium on VLSI Circuits”, pp. 169-170 (2010).

Meng, J., L. Yang, X. Peng, S. Yu, D. Fan and J.-S. Seo, “Structured pruning of rram
crossbars for efficient in-memory computing acceleration of deep neural networks”,
IEEE Transactions on Circuits and Systems II: Express Briefs 68, 5, 1576-1580
(2021).

Mori, H., W.-C. Zhao, C.-E. Lee, C.-F. Lee, Y.-H. Hsu, C.-K. Chuang, T. Hashizume,
H.-C. Tung, Y.-Y. Liu, S.-R. Wu, K. Akarvardar, T.-L. Chou, H. Fujiwara, Y. Wang,
Y.-D. Chih, Y.-H. Chen, H.-J. Liao and T.-Y. J. Chang, “A 4nm 6163-tops/w /b
4790 — TOPS/mm? /b sram based digital-computing-in-memory macro support-
ing bit-width flexibility and simultaneous mac and weight update”, in “2023 IEEE
International Solid-State Circuits Conference (ISSCC)”, pp. 132-134 (2023a).

Mori, H. et al., “A 4nm 6163-TOPS/W /b 4790-TOPS/mm? /b SRAM Based Digital-
Computing-in-Memory Macro Supporting Bit-Width Flexibility and Simultaneous
MAC and Weight Update”, in “IEEE ISSCC”, (2023b).

95

Mutlu, O., “Processing data where it makes sense in modern computing systems:
Enabling in-memory computation”, in “2018 7th Mediterranean Conference on
Embedded Computing (MECO)”, pp. 8-9 (2018).

Nachmani, E.; Y. Be’ery and D. Burshtein, “Learning to decode linear codes using deep
learning”, in “2016 54th Annual Allerton Conference on Communication, Control,
and Computing (Allerton)”, pp. 341-346 (2016).

Nachmani, E., E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein and Y. Be’ery,
“Deep learning methods for improved decoding of linear codes”, IEEE Journal of
Selected Topics in Signal Processing 12, 1, 119-131 (2018).

Oh, J., C.-T. Lin and M. Seok, “D6cim: 60.4-tops/w, 1.46-tops/mm2, 1005-kb/mm2
digital 6t-sram-based compute-in-memory macro supporting 1-to-8b fixed-point
arithmetic in 28-nm cmos”, in “ESSCIRC 2023- IEEE 49th European Solid State
Circuits Conference (ESSCIRC)”, pp. 413416 (2023a).

Oh, J. et al., “D6CIM: 60.4-TOPS/W, 1.46-TOPS/mm?, 1005-Kb/mm? Digital 6T-
SRAM-Based Compute-in-Memory Macro Supporting 1-to-8b Fixed-Point Arith-
metic in 28-nm CMOS”, in “IEEE ESSCIRC”, (2023b).

Park, J.-S., C. Park, S. Kwon, T. Jeon, Y. Kang, H. Lee, D. Lee, J. Kim, H.-S. Kim,
Y. Lee, S. Park, M. Kim, S. Ha, J. Bang, J. Park, S. Lim and I. Kang, “A multi-mode
8k-mac hw-utilization-aware neural processing unit with a unified multi-precision
datapath in 4-nm flagship mobile soc”, IEEE Journal of Solid-State Circuits 58, 1,
189-202 (2023).

Ryu, S. et al., “BitBlade: Energy-Efficient Variable Bit-Precision Hardware Accelerator
for Quantized Neural Networks”, IEEE JSSC (2022).

Saikia, J., A. Sridharan, I. Yeo, S. Venkataramanaiah, D. Fan and J.-S. Seo, “Fp-imc:
A 28nm all-digital configurable floating-point in-memory computing macro”, in
“ESSCIRC 2023- IEEE 49th European Solid State Circuits Conference (ESSCIRC)”,
pp. 405-408 (2023).

Seo, J.-s., J. Saikia, J. Meng, W. He, H.-s. Suh, Anupreetham, Y. Liao, A. Hasssan and
I. Yeo, “Digital versus analog artificial intelligence accelerators: Advances, trends,
and emerging designs”, IEEE Solid-State Circuits Magazine 14, 3, 65-79 (2022).

Seshadri, V., D. Lee, T. Mullins, H. Hassan, A. Boroumand, M. A. Kim, Jeremie-
and Kozuch, O. Mutlu, P. B. Gibbons and T. C. Mowry, “Ambit: in-memory
accelerator for bulk bitwise operations using commodity dram technology”, in
“Proceedings of the 50th Annual IEEE/ACM International Symposium on Microar-
chitecture”, MICRO-50 ’17, p. 273-287 (Association for Computing Machinery, New
York, NY, USA, 2017).

96

Sharma, H. et al., “Bit Fusion: Bit-Level Dynamically Composable Architecture for
Accelerating Deep Neural Network”, in “ACM/IEEE ISCA”, (2018).

Sridharan, A., S. Angizi, S. K. Cherupally, F. Zhang, J.-S. Seo and D. Fan, “A 1.23-
ghz 16-kb programmable and generic processing-in-sram accelerator in 65nm”, in
“ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC)”,
pp. 153-156 (2022a).

Sridharan, A., J. Saikia, Anupreetham, F. Zhang, J.-S. Seo and D. Fan, “Ps-imc: A
2385.7-tops/w /b precision scalable in-memory computing macro with bit-parallel
inputs and decomposable weights for dnns”, IEEE Solid-State Circuits Letters 7,
102-105 (2024a).

Sridharan, A., F. Zhang and D. Fan, “Mnm: A fast and efficient min/max searching
in mram”, in “Proceedings of the Great Lakes Symposium on VLSI 2022”, GLSVLSI
'22, p. 39-44 (Association for Computing Machinery, New York, NY, USA, 2022b).

Sridharan, A., F. Zhang, J.-S. Seo and D. Fan, “Sp-imc: A sparsity aware in-memory-
computing macro in 28nm cmos with configurable sparse representation for highly
sparse dnn workloads”, in “2024 IEEE Custom Integrated Circuits Conference
(CICC)”, pp. 1-2 (2024D).

Sridharan, A., F. Zhang, Y. Sui, B. Yuan and D. Fan, “Dspimm: A fully digital sparse
in-memory matrix vector multiplier for communication applications”, in “2023 60th
ACM/IEEE Design Automation Conference (DAC)”, pp. 1-6 (2023).

Valavi, H. et al., “A 64-tile 2.4-mb in-memory-computing cnn accelerator employing
charge-domain compute”, IEEE JSSC (2019).

Wang, D., C.-T. Lin, G. K. Chen, P. Knag, R. K. Krishnamurthy and M. Seok,
“Dime: 2219tops/w 25692 /b digital in-memory computing macro in 28nm based on
approximate arithmetic hardware”, in “2022 ISSCC”, vol. 65, pp. 266-268 (2022).

Wang, J. et al., “A 28-nm compute SRAM with bit-serial logic/arithmetic operations
for programmable in-memory vector computing”, IEEE JSSC (2020).

Wang, Z., P. S. Nalla, G. Krishnan, R. V. Joshi, N. C. Cady, D. Fan, J.-s. Seo
and Y. Cao, “Digital-assisted analog in-memory computing with rram devices”, in
“2023 International VLSI Symposium on Technology, Systems and Applications
(VLSI-TSA /VLSI-DAT)”, pp. 1-4 (2023).

Yin, S., Z. Jiang, J.-S. Seo and M. Seok, “Xnor-sram: In-memory computing sram
macro for binary/ternary deep neural networks”, IEEE Journal of Solid-State
Circuits 55, 6 (2020).

97

Yuan, Y., B. Zhang, Y. Yang, Y. Luo, Q. Chen, S. Lv, H. Wu, C. Ma, M. Li, J. Yue,
X. Wang, G. Xing, P.-I. Mak, X. Li and F. Zhang, “14.5 a 28nm 192.3tflops/w
accurate/approximate dual-mode-transpose digital 6t-sram cim macro for floating-
point edge training and inference”, in “2025 IEEE International Solid-State Circuits

Conference (ISSCC)”, vol. 68, pp. 258-260 (2025).

Yue, J., C. He, Z. Wang, Z. Cong, Y. He, M. Zhou, W. Sun, X. Li, C. Dou, F. Zhang,
H. Yang, Y. Liu and M. Liu, “A 28nm 16.9-300tops/w computing-in-memory
processor supporting floating-point nn inference/training with intensive-cim sparse-
digital architecture”, in “2023 IEEE International Solid-State Circuits Conference
(ISSCC)”, pp. 1-3 (2023).

Yue, J. et al., “14.3 a 65nm computing-in-memory-based cnn processor with 2.9-to-
35.8 tops/w system energy efficiency using dynamic-sparsity performance-scaling
architecture and energy-efficient inter/intra-macro data reuse”, in “IEEE ISSCC”,
(2020).

Yue, Z., X. Xiang, Y. Wang, R. Guo, H. Han, S. Wei, Y. Hu and S. Yin, “14.4 a
51.6tflops/w full-datapath cim macro approaching sparsity bound and <2-30 loss
for compound ai”, in “2025 IEEE International Solid-State Circuits Conference
(ISSCC)”, vol. 68, pp. 1-3 (2025).

Zhang, F., S. Angizi and D. Fan, “Max-pim: Fast and efficient max/min searching
in dram”; in “2021 58th ACM/IEEE Design Automation Conference (DAC)”, pp.
211-216 (2021a).

Zhang, F., A. Sridharan, W. He, I. Yeo, M. Liehr, W. Zhang, N. Cady, Y. Cao, J.-S.
Seo and D. Fan, “A 65-nm rram compute-in-memory macro for genome processing”,
IEEE Journal of Solid-State Circuits 59, 7, 2093-2104 (2024a).

Zhang, F., A. Sridharan, W. Tsai, Y. Chen, S. X. Wang and D. Fan, “Efficient
memory integration: Mram-sram hybrid accelerator for sparse on-device learning”,
in “Proceedings of the 61st ACM/IEEE Design Automation Conference”, DAC 24
(Association for Computing Machinery, New York, NY, USA, 2024b).

Zhang, J., Z. Wang and N. Verma, “In-memory computation of a machine-learning
classifier in a standard 6t sram array”, IEEE Journal of Solid-State Circuits 52, 4,
915-924 (2017).

Zhang, J.-F., C.-E. Lee, C. Liu, Y. S. Shao, S. W. Keckler and Z. Zhang, “Snap: An
efficient sparse neural acceleration processor for unstructured sparse deep neural
network inference”, IEEE Journal of Solid-State Circuits 56, 2, 636-647 (2021b).

Zhang, Y., L. Xu, Q. Dong, J. Wang, D. Blaauw and D. Sylvester, “Recryptor: A
reconfigurable cryptographic cortex-m0 processor with in-memory and near-memory
computing for iot security”, IEEE Journal of Solid-State Circuits 53 (2018).

98

Zhou, A., Y. Ma, J. Zhu, J. Liu, Z. Zhang, K. Yuan, W. Sun and H. Li, “Learning
n:m fine-grained structured sparse neural networks from scratch”, URL https:
//arxiv.org/abs/2102.04010 (2021).

99

https://arxiv.org/abs/2102.04010
https://arxiv.org/abs/2102.04010

APPENDIX A

PREVIOUS PUBLISHED WORKS

100

Five chapters are based on the previously published works of the first author, listed
below:

Chapter 2: A. Sridharan, S. Angizi, S. K. Cherupally, F. Zhang, J. -S. Seo and D.
Fan, "A 1.23-GHz 16-kb Programmable and Generic Processing-in-SRAM Accelerator
in 65nm," ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ES-
SCIRC), Milan, Ttaly, 2022, pp. 153-156, doi: 10.1109/ESSCIRC55480.2022.9911440.

Chapter 3: A. Sridharan, J. Saikia, Anupreetham, F. Zhang, J. -S. Seo and D.
Fan.,"PS-IMC: A 2385.7-TOPS/W /b Precision Scalable In-Memory Computing Macro
With Bit-Parallel Inputs and Decomposable Weights for DNNs," in IEEE Solid-State
Circuits Letters, vol. 7, pp. 102-105, 2024, doi: 10.1109/LSSC.2024.3369058

Chapter 4: A. Sridharan, F. Zhang, Y. Sui, B. Yuan and D. Fan., "DSPIMM:
A Fully Digital SParse In-Memory Matrix Vector Multiplier for Communication
Applications," 2023 60th ACM/IEEE Design Automation Conference (DAC), San
Francisco, CA, USA, 2023, pp. 1-6, doi: 10.1109/DAC56929.2023.10247829

Chapter 5: A. Sridharan, F. Zhang, J. -S. Seo and D. Fan., "A Sparsity Aware In-
Memory-Computing Macro in 28nm CMOS with Configurable Sparse Representation
for Highly Sparse DNN Workloads," 2024 IEEE Custom Integrated Circuits Conference
(CICC), Denver, CO, USA, 2024, pp. 1-2, doi: 10.1109/CICC60959.2024.10529009.

Chapter 6: A. Sridharan, A.H. Ali, Y. Lee, A. Anupreethem, Y. Liu, J. Zhang, J.
-S. Seo, D. Fan., "SAFER: Sparsity Integrated Compute-in-Memory AI Accelerator
with a Fused Dot-Product Engine and a RISC-V CPU" IEEE European Solid-State
Electronics Research Conference (ESSERC), September 2025, accepted for publication.

101

APPENDIX B

PERMISSION STATEMENT FOR THE PREVIOUS PUBLISHED WORKS

102

The author of this dissertation thesis, Amitesh Sridharan, confirms that all included
published works have been granted permission by all co-authors.

103

ProQuest Number: 32114253

INFORMATION TO ALL USERS
The quality and completeness of this reproduction is dependent on the quality
and completeness of the copy made available to ProQuest.

ProQuest

Part of Clarivate

Distributed by
ProQuest LLC a part of Clarivate (2025).
Copyright of the Dissertation is held by the Author unless otherwise noted.

This work is protected against unauthorized copying under Title 17,
United States Code and other applicable copyright laws.

This work may be used in accordance with the terms of the Creative Commons license
or other rights statement, as indicated in the copyright statement or in the metadata
associated with this work. Unless otherwise specified in the copyright statement
or the metadata, all rights are reserved by the copyright holder.

ProQuest LLC
789 East Eisenhower Parkway
Ann Arbor, Ml 48108 USA

	Table of Contents
	List of Tables
	List of Figures
	Chapter
	1 INTRODUCTION
	2 Programmable and Generic Processing-in-SRAM Accelerator
	3 Precision Scalable In-Memory Computing Macro With Bit-Parallel Inputs and Decomposable Weights
	4 A Fully Digital Sparse In-Memory Matrix Vector Multiplier for Communication Applications
	5 A Sparsity Aware In-Memory-Computing Macro with Configurable Sparse Representations
	6 Sparsity Integrated Compute-in-Memory Accelerator with a Fused Dot-Product Engine and a RISC-V CPU
	7 CONCLUSION

	References
	Appendix
	A PREVIOUS PUBLISHED WORKS
	B Permission Statement for the Previous Published Works

