
FedSPD: A Soft-clustering Approach
for Personalized Decentralized Federated Learning

I-Cheng Lin1 Osman Yağan1 Carlee Joe-Wong1

1Department of Electrical & Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

Abstract

Federated learning has recently gained popular-
ity as a framework for distributed clients to col-
laboratively train a machine learning model using
their local data. While traditional federated learn-
ing relies on a central server for model aggregation,
recent advancements adopt a decentralized frame-
work, enabling direct model exchange between
clients and eliminating the single point of failure.
However, existing decentralized frameworks often
assume all clients train a shared model. Personaliz-
ing each client’s model can enhance performance,
especially with heterogeneous client data distribu-
tions. We propose FedSPD, an efficient personal-
ized federated learning algorithm for the decentral-
ized setting, and show that it learns accurate mod-
els in low-connectivity networks. To provide the-
oretical guarantees on convergence, we introduce
a clustering-based framework that enables consen-
sus on models for distinct data clusters while per-
sonalizing to unique mixtures of these clusters at
different clients. This flexibility, allowing selec-
tive model updates based on data distribution, sub-
stantially reduces communication costs compared
to prior work on personalized federated learning
in decentralized settings. Experimental results on
real-world datasets show that FedSPD outperforms
multiple decentralized variants of existing person-
alized federated learning algorithms in scenarios
with low-connectivity networks.

1 INTRODUCTION

Federated Learning (FL) is a popular approach for dis-
tributed clients to collaboratively learn from their local data.
The most popular FL algorithm, FedAvg [McMahan et al.,
2017], and most of its variants operate within a centralized

federated learning (CFL) framework, where a central server
coordinates the training process.1 In CFL, each client in a
training round independently trains a model on its local data
and then sends the model parameters to a central server for
aggregation, after which the aggregated model is broadcast
back to the clients to begin a new training round. However,
communication delays and bottlenecks often arise when a
CFL system includes numerous mobile or IoT (Internet-of-
Things) clients, hampering CFL’s efficiency. Furthermore,
this centralized structure poses risks of attacks and failures
due to the single point of failure at the central server [Lalitha
et al., 2018].

Decentralized Federated Learning (DFL) addresses these
limitations by adopting a fully decentralized architecture
where clients share their locally trained model parameters
directly with neighboring clients, eliminating the need for
a central server [Lalitha et al., 2018]. This approach can
also reduce communication and computational costs [Bel-
trán et al., 2023]. However, most existing DFL methods
focus on learning a single global model for all clients, aim-
ing for consensus across clients. Such a global model may
under-perform on clients with non-IID (independent and
identically distributed) local data, as is commonly the case
in federated learning. To address this challenge, we design
an efficient personalized, decentralized federated learn-
ing algorithm that personalizes models to each client’s
data distribution without relying on a central server and
preserves DFL’s communication benefits by limiting the
required communication between clients. We particularly
focus on settings where clients are IoT devices using device-
to-device communication protocols. Such settings often fea-
ture limited network connectivity, communication resources
and computation resources, e.g., sensor-based environmen-
tal monitoring or vehicles learning personalized models of
human driver preferences [Nakanoya et al., 2021].

1Note that clients in the CFL setting still train their models in
a distributed manner; the term "centralized" simply refers to the
presence of a central server managing the clients’ interactions.

ar
X

iv
:2

41
0.

18
86

2v
2

 [c
s.L

G
]

2
Se

p
20

25

mailto:<ichengl@andrew.cmu.edu>?Subject=FedSPD: A Soft-clustering Approach for Personalized Decentralized Federated Learning
https://arxiv.org/abs/2410.18862v2

Personalization of a shared global model has shown to im-
prove performance in CFL settings [Ruan and Joe-Wong,
2022, Marfoq et al., 2021]. However, extending such per-
sonalization methods to DFL poses significant technical
challenges. DFL algorithms typically strive for consensus
by sharing local models among neighboring clients, which
represent only a subset of all clients. Ensuring that all clients
can benefit from each other’s updates despite limited com-
munication is a key challenge [Beltrán et al., 2023]. In con-
trast, learning personalized models requires intentionally
maintaining differences in clients’ models, particularly for
non-IID data. This makes it difficult to distinguish whether
model disparities are due to communication issues or dif-
ferences in local data distributions. We overcome this chal-
lenge by quantifying similarities between client data using
a clustering-based method, allowing the training of distinct
models for different data clusters, which are then personal-
ized to each client’s unique data mixture.

Prior works that seek to personalize models in DFL settings,
including cluster-based methods, are typically straightfor-
ward extensions of personalization methods designed for
CFL settings, which do not take into account the distinct
communication patterns in DFL and thus perform poorly
when the client network has poor connectivity. For example,
a naïve clustering method assigns each client to a single
cluster based on its data distribution [Ghosh et al., 2020].
However, such "hard" clustering assumes identical distri-
butions within the same cluster, which is rarely the case.
Instead, we adopt a soft clustering approach, as explored
in CFL settings [Ruan and Joe-Wong, 2022, Marfoq et al.,
2021], where each client’s data is modeled as an unknown
mixture of distributions, and a model is trained for each
cluster in this mixture. Existing DFL soft clustering ap-
proaches require clients to train models for all clusters in
every round [Marfoq et al., 2021], imposing significant
training and communication overhead that scales linearly
with the number of clusters. This is particularly problematic
in DFL scenarios, where clients often have limited commu-
nication and computation capacity [Nguyen et al., 2021].
Therefore, we introduce a training algorithm that (i) learns
each client’s mixture coefficients, (ii) ensures consensus on
models for each cluster, and (iii) unlike prior work, avoids
communication resource requirements that scale with the
number of clusters. Our contributions are as follows:

• We propose FedSPD, a novel FL algorithm for clients
that utilizes soft clustering to train personalized mod-
els in a decentralized manner. FedSPD allows clients
to reach a consensus on cluster-specific models and
adapt their cluster mixture estimates over time, while
requiring each client to train only one cluster model per
training round, significantly reducing communication.

• We prove the convergence of FedSPD in Theorem
5.11. This proof adopts a different approach from prior
work on soft clustering in DFL, which typically re-

quires clients to train models for every cluster in each
round [Marfoq et al., 2021].

• We demonstrate through experiments on real-world
datasets that FedSPD outperforms existing DFL al-
gorithms (both personalized and non-personalized).
In some cases, FedSPD even approaches the accuracy
of centralized algorithms. Furthermore, we show that
FedSPD is particularly effective in low-connectivity
networks with computationally constrained clients.

Following a review of related work in Section 2, we present
our DFL model in Section 3 and introduce the FedSPD al-
gorithm in Section 4. We then provide a convergence proof
in Section 5 and demonstrate the algorithm’s superior per-
formance in Section 6, before concluding in Section 7.

2 RELATED WORK

Decentralized Federated Learning has its roots in decen-
tralized optimization [Nedic and Ozdaglar, 2009, Wei and
Ozdaglar, 2012, Zhang et al., 2021] and in particular de-
centralized Stochastic Gradient Descent (SGD) [Lian et al.,
2017]. Several methods have been explored for decentral-
ized optimization [Nedic and Ozdaglar, 2009, Wu et al.,
2017, Lü et al., 2020], while the convergence analysis of
decentralized SGD was first presented by Yuan et al. [2016]
and Sirb and Ye [2018] with delayed information, high-
lighting decentralized SGD’s advantages over centralized
methods [Lian et al., 2017]. This literature establishes con-
ditions on client connectivity such that all local models will
converge to a consensus model [Lian et al., 2017]. The ef-
fects of client communication topologies in DFL [Lalitha
et al., 2018, Warnat-Herresthal et al., 2021] have also been
studied, and gradient tracking techniques based on push-sum
algorithms have been proposed to relax the assumptions on
client connectivity needed to show consensus [Nedić and
Olshevsky, 2014, 2016, Assran et al., 2019].

Personalization in CFL is generally motivated by highly
non-IID client data [McMahan et al., 2017, Collins et al.,
2021], which can impede convergence and lead to a global
model performing poorly at some clients, which may dis-
courage them from participating in the FL process [Huang
et al., 2020]. Common techniques include local finetun-
ing [Sim et al., 2019], model interpolation [Mansour et al.,
2020], meta-learning [Fallah et al., 2020], adding regular-
ization terms [T Dinh et al., 2020], and multi-task learning
[Smith et al., 2017, Yousefi et al., 2019, Li et al., 2021].
Clustered FL in particular includes hard clustering, which
partitions clients into clusters based on their data’s similar-
ity [Ghosh et al., 2020] and its variations [Xie et al., 2021,
Briggs et al., 2020, Duan et al., 2021, Mansour et al., 2020].
In soft clustered FL, one instead assumes that each client’s
data conforms to a mixture of distributions [Marfoq et al.,
2021, Ruan and Joe-Wong, 2022, Wu et al., 2023]. Like

these prior works, we use models learned for each cluster
as guides for a personalized model; unlike them, we add a
final personalization step to ensure good performance. We
discuss this comparison in more detail in Section 4.

Some prior works have considered combining personal-
ization and DFL. Jeong and Kountouris [2023] proposed
a distillation-based algorithm, while Ma et al. [2022] pro-
posed a communication-efficient algorithm with model prun-
ing and neighbor selection. Sadiev et al. [2022] prove lower
bounds on personalized DFL algorithms’ convergence under
specific objectives. Unlike these works, we provide theoreti-
cal convergence guarantees under more general learning ob-
jectives. Some centralized personalization algorithms also
include decentralized versions, such as FedEM [Marfoq
et al., 2021] and IFCA [Ghosh et al., 2020]. We experi-
mentally show (Section 6) that FedSPD outperforms both
FedEM and IFCA, particularly in low-connectivity settings.
Moreover, we only require each client to train one clus-
ter model at a time, which leads to significantly smaller
computational and communication overhead than FedEM.

Comparison with FedSoft. FedSPD was inspired by Fed-
Soft [Ruan and Joe-Wong, 2022]. However, the training
methodology is significantly different. FedSoft uses a prox-
imal objective and all client data to update its model in each
round, while our FedSPD maintains separate models for
each cluster and has each client update only one of these
models, using only data associated with that cluster, in each
round. Thus, FedSPD avoids bias in gradient updates, which
may hamper consensus in decentralized settings. Our the-
oretical convergence analysis also relaxes the assumptions
made by Ruan and Joe-Wong [2022] in analyzing FedSoft.
We provide a more detailed comparison in Appendix C.

3 PROBLEM FORMULATION

We illustrate our system model in Figure 1 and summarize
our notation in Table 1. We suppose there are N clients
that are connected to each other via a graph with adjacency
matrix A and use Ni to denote the set of client i’s neighbors.
Each client i = 1, 2, . . . , N has a fixed set Di of training
data. Clients with a shared edge can directly communicate
with each other, e.g., to send model parameters.

Each data point d ∈ Di on each client i is randomly sam-
pled from one of S unique probability distributions (clus-
ters) denoted as P1, P2, . . . PS , as illustrated in Figure 1.
Consistent with standard clustering methods, we take S
as a predetermined hyperparameter [Ruan and Joe-Wong,
2022]. Letting x denote the parameters of a machine learn-
ing model, we define the loss function ℓ(x;D) as measuring
the sum of the model losses with parameters x over all
points d in a dataset D. Cross-entropy loss, for example, is a
typical loss function for classification problems. The risk of
cluster s can then be written as: Fs(x) = ED∼Ps

[ℓ(x;D)].

Figure 1: Illustration of the mixture of data distribution at
clients in DFL.

For each client, the risk on a data point dis belonging
to cluster s is defined as: fis(x, dis) = ℓ(x, dis). Our
goal is for the clients to collectively find the optimal (i.e.,
risk-minimizing) model parameters for each cluster, which
we also call the cluster centers and can be written as:
c∗s = argminxFs(x), for s = 1, 2, ..., S. Given the cluster
centers and mixture coefficients uis, which represent the
proportions of each cluster s in each client i’s data, each
client can find a personalized model for its local data mixture
(Section 4). By focusing on common cluster centers, per-
sonalized learning can be reframed as achieving consensus
on these centers, addressing a key challenge in personalized
DFL. However, clients cannot directly determine the cluster
centers using their local data Di since it is a mixture of clus-
ters, and they do not know which of their data comes from
which cluster. In the next section, we present an algorithm
for clients to estimate the cluster centers and use them to
derive personalized models.

4 PROPOSED FEDSPD ALGORITHM

At each round t = 1, 2, . . . , T , each client i maintains two
types of parameters: (i) its estimate of the cluster center ctis
for each cluster s, and (ii) the cluster to which each data
point d ∈ Di is associated, and the corresponding fraction
of its data belonging to each cluster s, denoted by ut

is. In
each round t, clients update these parameters based on their
local data and information received from their neighbors.

Each round of training consists of four steps: (1) local
training, (2) parameter exchange, (3) parameter (i.e., cluster
center) update, and (4) data clustering. Following the last
training round, we conduct a final personalization step,
which involves a local training update to each client’s per-
sonalized model. Algorithm 1 formalizes this method.

Step 1: Local training (line 12 in Algorithm 1). In round t,
each client i has an estimated portion ut

is of its data coming
from cluster s, where

∑S
s=1 u

t
is = 1. These values are

Name Notation Domain Description
Number of Clients / Clusters N,S N, S ∈ N Total number of clients / clusters
Learning Rate ηt ηt ∈ R, 0 < η < 1 Learning rate used in round t
Number of Local Updates τ τ ∈ N Number of local updates in each training round
Client Neighbors Ni Ni ∈ P(N) Indices (in {1, 2, . . . , N}) of client i’s neighbors
Final Model Parameters xi xi ∈ R1×X Final personalized model parameters of client i
Final Concatenated Model Pa-
rameters

X X ∈ RN×X Concatenated personalized model parameters

Final Phase Epochs τfinal τfinal ∈ N Number of epochs for the final phase
Local Dataset Dt

is Dt
is ⊆ Di, client i’s

data
Data points at client i associated with cluster s in
round t

Cluster Selection sti sti ∈ {1, 2, . . . , S} Index of cluster that client i trains in round t
Portion of Clusters ut

is ut
is ∈ R, 0 < uis ≤ 1 Portion of data for client i of cluster s in round t

Concatenated Portions of Clus-
ters

U(t) U ∈ RN×S Concatenated portions of data of all clients in
round t

Average Cluster Centers cts cts ∈ RX Average center of cluster s over clients in round t
Concatenated Cluster Centers Ct

s Ct
s ∈ RN×X Concatenated centers of cluster s in round t

Collection of Cluster Centers C(t) C(t) ∈ RS×N×X C(t) = {Ct
1,C

t
2, ...,C

t
S}

Weight Matrix Wt
s Wt

s ∈ RN×N Weight matrix of cluster s in round t
Augmented Adjacency Matrix A A ∈ RN×N Augmented adjacency matrix with diagonal ele-

ments equal to 1
Concatenated Gradients Gt

s Gt
s ∈ RN×X Concatenated gradients in round t for cluster s,

Gt
s := [∇F1, ...,∇FN]

Table 1: Mathematical notations used in the paper.

computed at the end of the previous round (step 4). Client i
then selects cluster s to update with probability ut

is, ensuring
that clients contribute more to clusters where they have more
data. By selecting only one cluster per round, FedSPD keeps
the training overhead independent of the number of clusters
S, as each client always trains a single cluster’s model.

Once a cluster s is selected, the client performs τ SGD up-
dates on its current cluster center estimate ctis using learning
rate η. Gradients are computed on the risk of the data asso-
ciated with the selected cluster, Dt

i,s, as ∇cℓ(c; d), where
d is sampled uniformly at random from Dt

i,s. The dataset
Dt

i,s is formed in the previous round’s clustering step, which
assigns each data point d ∈ Di to a cluster.

Step 2: Parameter exchange (line 18 in Algorithm 1). Let
sti be the cluster selected by client i in round t, meaning that
ctisti

has been updated. Client i broadcasts sti and ctisti
to its

neighbors j ∈ Ni. Consequently, each client i receives the
communications {stj , ctjstj}j∈Ni

from all its neighbors.

Step 3: Cluster center updates

(line 23 in Algorithm 1). After receiving the updated cluster
centers and indices from its neighbors, each client i updates
the cluster center of the cluster s it selected to update during
this round. The client uses the average of its received cluster

centers to update its estimate of cis:

ct+1
is =

1

|j ∈ N [i] ∩ stj = s|
∑

j∈N [i]∩stj=s

ctjs (1)

Here, N [i] is the closed neighborhood, including client i
and its neighboring clients, and |j ∈ N [i] ∩ stj = s| repre-
sents the number of clients j that both updated cluster s and
belong to N [i]. If no updates for cluster s are received in
round t, i.e., none of the neighbors selected it, the estimated
cluster center remains unchanged: ct+1

is = ctis. This update
rule can be expressed in matrix form as Ct+1

s = Wt
sC

t
s,

where Wt
s is the weight matrix for cluster s at time t, and

Ct
s = [ct1s, . . . , c

t
Ns] contains the concatenated cluster cen-

ters.

Step 4: Data clustering (line 29 in Algorithm 1). After
updating the cluster centers, each client i associates its data
points d ∈ Di with a cluster. It calculates the loss ℓ(ct+1

is , d)
for each cluster s and assigns data point d to the cluster
with the lowest loss. Using these new associations, ut+1

is ,
the fraction of data points linked to cluster s, is computed.
This step enables FedSPD to adapt the mixture coefficients
as cluster center estimates evolve. The process then moves
to the next round, t+ 1, starting again with local training.

Final Step: Personalization (line 37 in Algorithm 1). After
T rounds, each client i computes a personalized model as a

weighted sum of its cluster centers:

xi =
S∑

s=1

uT
i,sc

T
i,s (2)

Marfoq et al. [2021] show that Eq. (2) provides the optimal
personalized model for client i when the loss function ℓ is
convex. However, since most practical loss functions, such
as cross-entropy for neural networks, are not convex, this
aggregated model may perform poorly in practice. Thus,
each client runs a few additional local training iterations,
starting from xi (Eq. (2)), using its entire local dataset Di.

Comparison to prior soft clustering algorithms. Mar-
foq et al. [2021] and Ruan and Joe-Wong [2022] use soft
clustering to learn cluster centers and personalized mod-
els without this final personalization step, directly learning
personalized models in each iteration, with a central server
estimating the cluster centers. In DFL, achieving consensus
on cluster models is difficult due to the extensive parameter
exchanges needed for model propagation, particularly when
clients have few neighbors. Marfoq et al. [2021] propose
a decentralized algorithm that sets the personalized model
as a weighted sum of the cluster centers at each round’s
end, which can be sub-optimal for non-convex loss func-
tions. Such a framework can lead to overfitting in DFL, as
clients have low connectivity and thus cannot rely on re-
ceiving many other clients’ updates in each training round.
Adding another final personalization step, as we use in Fed-
SPD, may exacerbate this overfitting, as cluster center gradi-
ents already incorporate personalized models. In Section 6,
we demonstrate that FedSPD outperforms Marfoq et al.
[2021]’s FedEM algorithm, which also requires each client
to train all models per round, incurring significantly more
computation and communication than FedSPD.

5 CONVERGENCE ANALYSIS

We prove that FedSPD converges in Theorem 5.11. We first
outline our technical assumptions and then present our main
results. All proof details can be found in Appendix A.

Assumptions. Our analysis relies on the following assump-
tions on the risk function and gradient estimates, which are
common in the literature [Marfoq et al., 2021, Ghosh et al.,
2020, Koloskova et al., 2020] and weaker than those of Ruan
and Joe-Wong [2022].

Assumption 5.1 (Strong convexity and smoothness) The
risk function Fs for each cluster s is L-smooth and µ-
strongly convex. That is, for some L > 0 and µ ≥ 0:

∥∇Fs(x)−∇Fs(y)∥ ≤ L∥x− y∥;

∇Fs(x)
T (y − x) +

µ

2
∥y − x∥2 ≤ Fs(y)− Fs(x)

(3)

Algorithm 1 Our Proposed FedSPD Algorithms

1: procedure FEDSPD(η, τ , S, T , Wt
s)

2: for t = 1, 2, ..., T τ do
3: LOCALUPDATE(C(t))
4: if t mod τ = 0 then
5: PARAMETEREXCHANGE(C(t), A)
6: PARAMETERUPDATE(C(t), A)
7: DATACLUSTERING(C(t), A)
8: end if
9: end for

10: FINALPHASE(C(t), u(t))
11: end procedure
12: procedure LOCALUPDATE(C(t))
13: for i = 1, 2, ..., N do
14: Client i selects cluster sti to update
15: ct+1

sti
= ctsti

− ηt∇fis(c
t
si)

16: end for
17: end procedure
18: procedure PARAMETEREXCHANGE(C(t), A)
19: for i = 1, 2, ..., N do
20: For each client i, exchange the updated parame-

ter cis and the selected cluster s with client j ∈ Ni

21: end for
22: end procedure
23: procedure PARAMETERUPDATE(C(t), A)
24: Construct Wt

s for each cluster s. If client i is not
selected to update cluster s, the row i and column i will
only have diagonal element equal to 1, else equal to 0 ,
meaning the model parameter of the cluster that a user
has not selected to update will remain the same as it
was in the previous epoch.

25: for s = 1, 2, ..., S do
26: Ct+1

s = Wt
sC

t+1
s

27: end for
28: end procedure
29: procedure DATACLUSTERING(C(t), A)
30: for i = 1, 2, ..., N do
31: for dk ∈ Di do
32: Label data dk with the least loss of all the

model parameters among all clusters.
33: end for
34: For s = 1, ..., S update ut

i,s for client i
35: end for
36: end procedure
37: procedure FINALPHASE(C(t), ut)
38: for i = 1, 2, ..., N do
39: Xi =

∑S
s=1 u

t
i,sC

t
s(i, :)

40: end for
41: for t = 1, 2, ..., τfinal do
42: LOCALUPDATE(X) ▷ Run gradient descent

using all data of the client for the aggregated training.
43: end for
44: end procedure

Assumption 5.2 (Bounded risk function) The risk function
Fs for each cluster s is lower-bounded by some Finf > 0,
i.e., Fs(x) ≥ Finf .

Assumption 5.3 (Unbiased gradient estimation) The gra-
dient is unbiased, i.e., E[∇fis(x)] = ∇Fs(x).

Assumption 5.4 (Bounded gradient) We have
E∥∇fis(x)∥2 ≤ σ2 for some σ2 > 0.

Assumption 5.5 (Bounded variance of gradient estima-
tion) The variance of the estimated gradient is bounded:

E∥∇fis(x)−∇Fs(x)∥2 ≤ v2, for some v2 > 0. (4)

Assumption 5.6 (Bounded cluster error) Following Ruan
and Joe-Wong [2022], Ghosh et al. [2020], during all train-
ing steps t, all estimated cluster centers have bounded dis-
tance to the optimal centers. That is, for some δ > 0:

∥ctis − c∗s∥ ≤ (0.5− α0)

√
µ

L
δ, ∀s ∈ 1, 2, ..., S (5)

where 0 < α0 ≤ 0.5.

Note that this assumption will always hold for some value
of δ; however, a larger δ, and thus larger cluster error, will
also lead to slower convergence.

We finally follow Koloskova et al. [2020] in assuming that
clients communicate sufficiently for consensus:

Assumption 5.7 (Expected consensus rate) Define Cs as
the concatenated model parameter matrix of cluster s. Then
for some constant p ∈ (0, 1] and integer β ≥ 1, for all
non-negative integers l ≤ T

β we have:

E

∥∥∥∥∥∥Cs

(l+1)β−1∏
t=lβ

Wt
s −Cs

∥∥∥∥∥∥
2

F

≤ (1− p)∥Cs −Cs∥2F (6)

where C̄s := [c̄s, ..., c̄s]︸ ︷︷ ︸
total N terms.

is the matrix with every column

equal to the average of the model parameters.

For simplicity, we further assume that all clients have the
same amount of data (i.e., Di has the same number of data
points for all clients i) and that the number of local updates
τ = 1 in the remainder of this section. These can be easily
relaxed if needed.

Results. Without loss of generality, we present our results
for a specific cluster i, where i = 1, . . . , S. Since the conver-
gence proof is identical for each of the S clusters, we omit
the cluster index for clarity. Let n be the number of clients

chosen to update the selected cluster. If the total data across
clients is roughly uniform for each cluster, then n ≈ N

S . We
begin by bounding the distance of the average cluster center
to its optimal center:

Theorem 5.8 (Descent lemma) The distance

E
∥∥∥c(t+1) − c⋆

∥∥∥2 between the average cluster center
and its optimum c⋆ satisfies the bound (7) with proper
choice of learning rate ηt:

≤ ηt(L+ µ)

n

n1∑
i=1

∥∥∥c(t) − c
(t)
i

∥∥∥2 + 18L2ϵ2Nη2t
n2

+ v2η2t

+
(
1− ηtµ+

ηtµϵN
n

)∥∥∥c(t) − c⋆
∥∥∥2 + 2ϵN (S − 1)v2η2t

n2

+

(
4η2t (n− ϵN)2L

n2
+ 2ηt

1− ϵN
n

)(
f
(
c(t)
)
− f (c⋆)

)
(7)

Here ϵN is the bound of the expected number of clients using
the wrong data in Lemma A.2.

We then derive an expression for the cluster centers esti-
mated by individual clients.

Theorem 5.9 (Update rule) Clients’ estimated centers of
the cluster after time t can be written as:

Ct = Clβ
t−1∏

m=lβ

Wm −
t−1∑

m=lβ

(
ηtG

m
m∏

r=t−1

Wr

)
(8)

Here l ∈ N and β is the constant in Assumption 5.7. Given
this expression, we can relate the clients’ cluster center
estimates to their average, showing that they eventually
reach a near-consensus:

Theorem 5.10 (Consensus distance) Define Et =
1
N

∑N
i=1 E∥c

(t)
i − c(t)∥2, the expected squared distance

of the model parameters of client i to the average model
parameter. It is upper-bounded by(

1− p

2

)
Emβ+

t−1∑
j=mβ

(
pEj

16β
+

18βnσ2 + nv2p

Np
η2j

+

(
36Lnβη2t

pN

)
(f(cj)− f(c⋆))

)
Here p is the constant defined in Assumption 5.7.

Theorem 5.11 (Cluster convergence rate) For given target
accuracy ϵ, there exists a constant learning rate for which ϵ
accuracy can be reached after T iterations:[

1 +

(
n− ϵN

n

)
ηL

] T∑
t=0

rt
RT

(Ef(ct)− f(c⋆))

+ µE∥c(T+1) − c⋆∥2 ≤ ϵ

(9)

Here rt is a sequence of positive weights defined in
Lemma A.3 in Appendix A.4 and RT =

∑T
t=1 rt. Rear-

ranging, we find that the number of required iterations T to
reach an error ϵ is of the order:

Õ

(√
L+ µ√
ϵµ

(
σ +

√
n√
N

v

)
+

Lβn
3
2

µp
√
N(n− ϵN)

ln

(
1

ϵ

)

+ v2
n2 + L2ϵ2N + ϵN (S − 1)

µn2ϵ

)
.

The convergence rate, asymptotically requiring O(1/
√
ϵ)

training rounds to reach an error ϵ, aligns with previous
works on DFL without personalization [Koloskova et al.,
2020], leading us to conjecture that FedSPD will converge
well. We note that the network connectivity appears in this
bound through the constant p ∈ (0, 1] (Assumption 5.7),
where higher connectivity indicates a larger p. However,
the second term in the convergence rate that involves p
is not the dominant term. Thus, as long as the network is
connected, we expect that the effect of network connectivity
on convergence will be relatively minor. Our simulation
results in Section 6.2 support this observation.

6 SIMULATION RESULTS

In this section, we evaluate the performance of our proposed
FedSPD algorithm and compare it with existing methods.
We also analyze how different network connectivity and
topology influence FedSPD’s performance.

Datasets and models. Unless specified, we use N = 100
clients for all experiments on hand-written character recog-
nition (MNIST and EMNIST datasets [Cohen et al., 2017])
and N = 25 clients for all experiments on image classi-
fication (CIFAR-10 and CIFAR-100 datasets [Krizhevsky
et al., 2009]). We use a CNN (convolutional neural network)
model for each client, following the settings of Ruan and
Joe-Wong [2022] with data from a mixture of S = 2 distri-
butions, DA and DB . Additional results using MobileNet-v2
are also included in Appendix B.2.7. Each client randomly
draws 10% to 90% of its data from DAand the remainder
from DB with unbalanced class [Marfoq et al., 2021], im-
age rotation [Ruan and Joe-Wong, 2022], or both. We thus
create a portion of clients with significantly unbalanced data
and guarantees the unique distribution of each client. We
follow Ruan and Joe-Wong [2022] and Marfoq et al. [2021]
for other parameter settings. Details are described in the
Appendix B. The test accuracy is evaluated on each client’s
local test dataset, which is unseen during training.

Client communications. Unless specified, the client graph
is a connected Erdős–Rényi (ER) random graph [Erdos et al.,
1960] with an average degree from 5 to 12; more details
are in Appendix B. To avoid the label switching problem
[Stephens, 2000], we calculate the cosine similarities of the

model parameters received from other clients to ensure the
consensus of the cluster.

Baselines. We compare FedSPD with: (i) centralized and
decentralized FedAvg [McMahan et al., 2017]; (ii) central-
ized and decentralized FedEM [Marfoq et al., 2021], a prior
soft clustering method; (iii) centralized and decentralized
versions of FedSoft [Ruan and Joe-Wong, 2022], which
also uses soft clustering; (iv) centralized and decentralized
IFCA [Ghosh et al., 2020] using hard clustering; (v) cen-
tralized and decentralized pFedMe [T Dinh et al., 2020],
another state-of-the-art FL personalization approach without
clustering; and (vi) local training on local dataset only.

Additional results will be included in the appendix due to
page limit. These include:

• We conduct ablation studies to analyze the impact of
different factors on the performance of FedSPD, specif-
ically evaluating:

– The influence of the number of local training
epochs in Section B.2.1;

– The contribution of the final training phase in
Section B.2.2;

– The impact of the number of clusters in Sec-
tion B.2.3; and

– More details of the effect of network connectivity
in Section B.2.4. We also show how the dynamic
network topology influences the performance of
FedSPD.

• In Section B.2.5, we evaluate the performance of Fed-
SPD under a more challenging setting where the total
amount of data is imbalanced across clients in addition
to the data heterogeneity across clusters.

• To explore the potential for enhancing privacy guaran-
tees in DFL, we incorporate Differential Privacy into
FedSPD and present the results in Section B.2.6.

• For most experiments on the CIFAR-10/CIFAR-100
datasets, we adopt the same CNN model used by Ruan
and Joe-Wong [2022] to ensure a fair comparison. To
further assess the scalability of FedSPD, we evaluate
its performance using a more complex architecture,
MobileNet-V2, in Section B.2.7.

6.1 COMPARISON WITH BASELINES

We first compare our method with other decentralized per-
sonalized methods. Our results on EMNIST, CIFAR-10, and
CIFAR-100 are shown in Table 2 and Table 3. FedSPD out-
performs other DFL methods in most cases, approaching the
accuracy of CFL. The centralized methods still outperform
decentralized methods, as expected from prior literature
[Sun et al., 2023]. However, decentralized methods offer ad-
vantages such as lower communication traffic and increased

Figure 2: Training accuracy of different DFL methods versus
number of epochs on CIFAR-10 (N = 25). FedSPD con-
verges faster in terms of training accuracy compared to all
other DFL methods.

Figure 3: Box-plot for accuracy across clients on EMNIST
dataset. FedSPD has much lower variance in test accuracy
across clients.

robustness, as they do not rely on a single point of failure
like a centralized server.

Figure 2 shows the training accuracy versus number of
epochs on the CIFAR-10 dataset. FedSPD converges faster
than all other DFL algorithms in terms of training accu-
racy. This shows that each of the clusters in FedSPD does
converge as desired. Note that compared to FedEM, an-
other soft clustering method, our FedSPD needs half the
communication cost, since FedEM clients exchange the
information of all S = 2 clusters.

To guarantee the fairness across clients, we show the box
plot of the final test accuracy across different clients on
EMNIST in Figure 3. FedSPD has much less variance in
accuracy across different clients compared to all baselines
except pFedMe, validating that its improvement in average
accuracy does not come from high accuracy in a few clients.

6.2 EFFECTS OF NETWORK CONNECTIVITY

In this section, we investigate how the performance varies
with the connectivity of the client network. Figure 4 shows
the test accuracy of different DFL methods under varying
client connectivity on the CIFAR-100 dataset using the ER
Random Graph, averaged over three experimental runs. Fed-
SPD consistently shows the highest test accuracies, though

Figure 4: Test accuracy of different methods under different
connectivity levels of an ER Random Graph on the CIFAR-
100 dataset (N = 15). FedSPD shows consistently high test
accuracies compare to other DFL methods.

other methods’ performance begins to increase as the graph
becomes more connected (a higher probability of link for-
mation).

Tables 4 and 5 show the test accuracy of FedSPD in differ-
ent types of networks and connectivity levels. We use three
different network topologies: the ER Random Graph; the
Barabasi-Albert (BA) Model [Albert and Barabási, 2002]
with preferential attachment representing the network fol-
lowing the power law; and the Random Geometrical Graph
(RGG) [Penrose, 2003], which is often used in wireless
communication and IoT scenarios that have high clustering
effects. We observe that the final test accuracy does not
vary significantly across different network topologies and
levels of connectivity in MNIST. In EMNIST, the test accu-
racy slightly increases when the average degree increases.
The test accuracy is more stable in RGG under different
connectivity, which we conjecture is due to RGG’s highly
clustered nature. Thus, as long as the network is connected,
FedSPD performs well in both high and low connectivity
scenarios and across various types of networks. As we ex-
pect from Theorem 5.11, FedSPD converges regardless of
the network topology.

6.3 COMMUNICATION OVERHEAD

FedSPD requires transmitting 50% less data compared to
FedEM (in the case S = 2) since only a single model
is transmitted by each client. As the number of clusters
S increases, our communication volume advantage grows.
Compared to the decentralized versions of FedAvg and Fed-
Soft, FedSPD requires each client to send the same volume
of data (equivalent to one model’s parameters) in each round.
However, since FedSPD only requires clients to send their
local models to their neighbors training models for the same
cluster, the number of clients to which each client communi-
cates in FedSPD is smaller than in algorithms like FedAvg
and FedSoft, which requires each client to send its local
model to all of its neighbors. FedSPD, FedAvg and FedSoft

DFL CFL
Dataset FedSPD FedEM IFCA FedAvg FedSoft pFedMe

EMNIST 83.07 88.83 89.42 88.81 84.97 90.95
CIFAR-10 68.72 79.64 79.52 79.36 76.62 79.43
CIFAR-100 40.38 44.25 43.91 43.11 39.76 8.742

Table 2: FedSPD has comparable test accuracy to CFL algorithms. Accuracy in percentage (%)

DFL
Dataset FedSPD FedEM IFCA FedAvg FedSoft pFedMe Local

EMNIST 83.07 80.47 83.88 78.61 74.30 81.16 56.91
CIFAR-10 68.72 50.45 52.39 49.21 42.38 49.48 41.82
CIFAR-100 40.38 18.59 17.18 17.20 13.17 18.27 13.31

Table 3: FedSPD achieves higher test accuracy than other DFL algorithms in most cases. Accuracy in percentage (%)

thus have comparable communication overhead if clients
use multicast communication, but if they use point-to-point
communication, FedSPD will require less communication
than FedAvg and FedSoft with full participation, due to
having fewer recipients per client.

6.4 DISCUSSION

As shown in Table 2 and Table 3, local learning performs the
worst among all algorithms, validating that all other meth-
ods benefit from exchanging information between clients to
learn a better model. Among the DFL algorithms, FedAvg,
the only one without personalization, typically performs the
worst, indicating that personalization is beneficial in non-iid
data distributions, as we would intuitively expect. However,
an exception is observed with the FedSoft algorithm. In
the CIFAR-10 and CIFAR-100 datasets, FedSoft performs
poorly, nearing the accuracy of local training. We conjec-
ture that this is due to the way FedSoft aggregates models,
making it difficult to learn the correct cluster centers in
a low-connectivity network, leading to suboptimal perfor-
mance. Our FedSPD designs a new model update method
to avoid such an issue. More detailed discussion comparing
FedSPD and FedSoft can be found in Section C.

Avg. Degree 6 8 10 12 14
ER 92.86 92.93 93.37 93.31 93.26
BA 93.06 92.58 92.56 92.87 93.17
RGG 92.86 92.61 92.84 93.49 92.97

Table 4: FedSPD shows consistently high test accuracies
on MNIST data for N = 50 clients across different client
network topologies.

2The centralized pFedMe on CIFAR-100 does not converge in
the various settings of hyperparameters we tried.

Avg. Degree 8 12 16 20
ER 79.79 82.26 84.28 84.49
BA 79.45 82.13 84.58 84.73
RGG 82.26 83.49 84.06 84.08

Table 5: FedSPD shows consistently high test accuracies
on EMNIST data for N = 50 clients across different client
network topologies.

7 CONCLUSION

We propose FedSPD, a soft clustering approach that enables
federated training of personalized models in a decentralized
setting. FedSPD models each FL client’s data as a mixture
of cluster distributions and aims to learn a distinct model for
each cluster. In the final phase, all models are aggregated
and further personalized for each client. Importantly, Fed-
SPD requires each client to train only one cluster model
per training round, ensuring scalability with the number
of clusters, and works well when communication resource
is limited. We theoretically demonstrate that FedSPD can
achieve consensus within each cluster. Our experiments
on real-world datasets show that FedSPD outperforms pre-
vious algorithms for personalized, decentralized FL and
performs well even in low-connectivity networks. For future
extensions, this work can serve as a foundation for various
applications, such as environmental monitoring in IoT, ob-
ject identification in mixed reality, or autonomous driving,
all of which benefit from the low latency of direct commu-
nication and collaborative learning across adjacent devices
with similar data.

Acknowledgements

This work was supported in part by the National Science
Foundation (NSF) under Grants CNS-2312761 and CNS-
1751075, and by the Office of Naval Research (ONR) under
Grant N00014-23-1-2275.

References

Réka Albert and Albert-László Barabási. Statistical mechan-
ics of complex networks. Reviews of modern physics, 74
(1):47, 2002.

Mahmoud Assran, Nicolas Loizou, Nicolas Ballas, and
Mike Rabbat. Stochastic gradient push for distributed
deep learning. In International Conference on Machine
Learning, pages 344–353. PMLR, 2019.

Enrique Tomás Martínez Beltrán, Mario Quiles Pérez, Pedro
Miguel Sánchez Sánchez, Sergio López Bernal, Gérôme
Bovet, Manuel Gil Pérez, Gregorio Martínez Pérez, and
Alberto Huertas Celdrán. Decentralized federated learn-
ing: Fundamentals, state of the art, frameworks, trends,
and challenges. IEEE Communications Surveys & Tutori-
als, 2023.

Christopher Briggs, Zhong Fan, and Peter Andras. Federated
learning with hierarchical clustering of local updates to
improve training on non-iid data. In 2020 International
Joint Conference on Neural Networks (IJCNN), pages
1–9. IEEE, 2020.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre
Van Schaik. Emnist: Extending mnist to handwritten
letters. In 2017 international joint conference on neural
networks (IJCNN), pages 2921–2926. IEEE, 2017.

Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay
Shakkottai. Exploiting shared representations for person-
alized federated learning. In International conference on
machine learning, pages 2089–2099. PMLR, 2021.

Moming Duan, Duo Liu, Xinyuan Ji, Renping Liu, Liang
Liang, Xianzhang Chen, and Yujuan Tan. Fedgroup:
Efficient federated learning via decomposed similarity-
based clustering. In 2021 IEEE Intl Conf on Paral-
lel & Distributed Processing with Applications, Big
Data & Cloud Computing, Sustainable Computing
& Communications, Social Computing & Networking
(ISPA/BDCloud/SocialCom/SustainCom), pages 228–237.
IEEE, 2021.

Paul Erdos, Alfréd Rényi, et al. On the evolution of random
graphs. Publ. math. inst. hung. acad. sci, 5(1):17–60,
1960.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Per-
sonalized federated learning: A meta-learning approach.
arXiv preprint arXiv:2002.07948, 2020.

Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ram-
chandran. An efficient framework for clustered federated
learning. Advances in Neural Information Processing
Systems, 33:19586–19597, 2020.

Tiansheng Huang, Weiwei Lin, Wentai Wu, Ligang He, Ke-
qin Li, and Albert Y Zomaya. An efficiency-boosting
client selection scheme for federated learning with fair-
ness guarantee. IEEE Transactions on Parallel and Dis-
tributed Systems, 32(7):1552–1564, 2020.

Eunjeong Jeong and Marios Kountouris. Personalized de-
centralized federated learning with knowledge distillation,
2023.

Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin
Jaggi, and Sebastian Stich. A unified theory of decentral-
ized sgd with changing topology and local updates. In
International Conference on Machine Learning, pages
5381–5393. PMLR, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009.

Anusha Lalitha, Shubhanshu Shekhar, Tara Javidi, and Fari-
naz Koushanfar. Fully decentralized federated learning.
In Third workshop on bayesian deep learning (NeurIPS),
volume 2, 2018.

Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia
Smith. Ditto: Fair and robust federated learning through
personalization. In International conference on machine
learning, pages 6357–6368. PMLR, 2021.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei
Zhang, and Ji Liu. Can decentralized algorithms outper-
form centralized algorithms? a case study for decentral-
ized parallel stochastic gradient descent. Advances in
neural information processing systems, 30, 2017.

Qingguo Lü, Xiaofeng Liao, Huaqing Li, and Tingwen
Huang. A computation-efficient decentralized algorithm
for composite constrained optimization. IEEE Transac-
tions on Signal and Information Processing over Net-
works, 6:774–789, 2020.

Zhenguo Ma, Yang Xu, Hongli Xu, Jianchun Liu, and
Yinxing Xue. Like attracts like: Personalized federated
learning in decentralized edge computing. IEEE Trans-
actions on Mobile Computing, pages 1–17, 2022. doi:
10.1109/TMC.2022.3230712.

Yishay Mansour, Mehryar Mohri, Jae Ro, and
Ananda Theertha Suresh. Three approaches for
personalization with applications to federated learning.
arXiv preprint arXiv:2002.10619, 2020.

Othmane Marfoq, Giovanni Neglia, Aurélien Bellet, Laetitia
Kameni, and Richard Vidal. Federated multi-task learning
under a mixture of distributions. Advances in Neural
Information Processing Systems, 34:15434–15447, 2021.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized

data. In Artificial intelligence and statistics, pages 1273–
1282. PMLR, 2017.

Manabu Nakanoya, Junha Im, Hang Qiu, Sachin Katti,
Marco Pavone, and Sandeep Chinchali. Personalized
federated learning of driver prediction models for au-
tonomous driving. arXiv preprint arXiv:2112.00956,
2021.

Angelia Nedić and Alex Olshevsky. Distributed optimiza-
tion over time-varying directed graphs. IEEE Transac-
tions on Automatic Control, 60(3):601–615, 2014.

Angelia Nedić and Alex Olshevsky. Stochastic gradient-
push for strongly convex functions on time-varying di-
rected graphs. IEEE Transactions on Automatic Control,
61(12):3936–3947, 2016.

Angelia Nedic and Asuman Ozdaglar. Distributed subgradi-
ent methods for multi-agent optimization. IEEE Transac-
tions on Automatic Control, 54(1):48–61, 2009.

Dinh C Nguyen, Ming Ding, Pubudu N Pathirana, Aruna
Seneviratne, Jun Li, and H Vincent Poor. Federated learn-
ing for internet of things: A comprehensive survey. IEEE
Communications Surveys & Tutorials, 23(3):1622–1658,
2021.

Mathew Penrose. Random geometric graphs, volume 5.
OUP Oxford, 2003.

Yichen Ruan and Carlee Joe-Wong. Fedsoft: Soft clus-
tered federated learning with proximal local updating. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 36, pages 8124–8131, 2022.

Abdurakhmon Sadiev, Ekaterina Borodich, Aleksandr
Beznosikov, Darina Dvinskikh, Saveliy Chezhegov,
Rachael Tappenden, Martin Takáč, and Alexander Gas-
nikov. Decentralized personalized federated learning:
Lower bounds and optimal algorithm for all personaliza-
tion modes. EURO Journal on Computational Optimiza-
tion, 10:100041, 2022.

Khe Chai Sim, Françoise Beaufays, Arnaud Benard, Dhruv
Guliani, Andreas Kabel, Nikhil Khare, Tamar Lucassen,
Petr Zadrazil, Harry Zhang, Leif Johnson, et al. Person-
alization of end-to-end speech recognition on mobile de-
vices for named entities. In 2019 IEEE Automatic Speech
Recognition and Understanding Workshop (ASRU), pages
23–30. IEEE, 2019.

Benjamin Sirb and Xiaojing Ye. Decentralized consensus
algorithm with delayed and stochastic gradients. SIAM
Journal on Optimization, 28(2):1232–1254, 2018.

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and
Ameet S Talwalkar. Federated multi-task learning. Ad-
vances in neural information processing systems, 30,
2017.

Matthew Stephens. Dealing with label switching in mixture
models. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 62(4):795–809, 2000.

Yan Sun, Li Shen, and Dacheng Tao. Which mode is better
for federated learning? centralized or decentralized. arXiv
preprint arXiv:2310.03461, 2023.

Canh T Dinh, Nguyen Tran, and Josh Nguyen. Personalized
federated learning with moreau envelopes. Advances
in Neural Information Processing Systems, 33:21394–
21405, 2020.

Stefanie Warnat-Herresthal, Hartmut Schultze, Krish-
naprasad Lingadahalli Shastry, Sathyanarayanan Man-
amohan, Saikat Mukherjee, Vishesh Garg, Ravi
Sarveswara, Kristian Händler, Peter Pickkers, N Ahmad
Aziz, et al. Swarm learning for decentralized and con-
fidential clinical machine learning. Nature, 594(7862):
265–270, 2021.

Ermin Wei and Asuman Ozdaglar. Distributed alternating
direction method of multipliers. In 2012 IEEE 51st IEEE
Conference on Decision and Control (CDC), pages 5445–
5450. IEEE, 2012.

Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang,
Farhad Farokhi, Shi Jin, Tony QS Quek, and H Vincent
Poor. Federated learning with differential privacy: Algo-
rithms and performance analysis. IEEE transactions on
information forensics and security, 15:3454–3469, 2020.

Tianyu Wu, Kun Yuan, Qing Ling, Wotao Yin, and Ali H
Sayed. Decentralized consensus optimization with asyn-
chrony and delays. IEEE Transactions on Signal and
Information Processing over Networks, 4(2):293–307,
2017.

Yue Wu, Shuaicheng Zhang, Wenchao Yu, Yanchi Liu,
Quanquan Gu, Dawei Zhou, Haifeng Chen, and Wei
Cheng. Personalized federated learning under mixture of
distributions. In International Conference on Machine
Learning, pages 37860–37879. PMLR, 2023.

Ming Xie, Guodong Long, Tao Shen, Tianyi Zhou, Xianzhi
Wang, Jing Jiang, and Chengqi Zhang. Multi-center fed-
erated learning. arXiv preprint arXiv:2108.08647, 2021.

Fariba Yousefi, Michael T Smith, and Mauricio Alvarez.
Multi-task learning for aggregated data using gaussian
processes. Advances in Neural Information Processing
Systems, 32, 2019.

Kun Yuan, Qing Ling, and Wotao Yin. On the convergence
of decentralized gradient descent. SIAM Journal on Opti-
mization, 26(3):1835–1854, 2016.

Jiaojiao Zhang, Qing Ling, and Anthony Man-Cho So. A
newton tracking algorithm with exact linear convergence

for decentralized consensus optimization. IEEE Trans-
actions on Signal and Information Processing over Net-
works, 7:346–358, 2021.

Supplementary Material

I-Cheng Lin1 Osman Yağan1 Carlee Joe-Wong1

1Department of Electrical & Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

A PROOF OF THE THEOREMS

A.1 PROOF OF THEOREM 5.8

Without loss of generality, we select a single cluster, cluster 1 for analysis; the same analysis applies to the other S − 1
clusters. For readability, we eliminate the subscription indicating the cluster number 1. Consider each client running single
step of SGD, we use n to indicate the number of clients selected to update this cluster and n1 and n0 to indicate the number
of clients using the correct data and incorrect data, respectively (i.e. the data is drawn from this selected cluster is consider a
correct data.), so that n1 + n0 = n. S indicates the set of the client selected to update this cluster, S∗ indicates the set of
clients using the correct data, and S∗ indicates the set of clients using the incorrect data.

Lemma A.1 (Doubly-stochastic weight matrix preserves the average) At the communication step, if the model of each client
in the network is updated according to a doubly-stochastic weight matrix Wt then the average after the communication step
remains the same. Formally, we have:

Ct+111
T

N
= CtWt11

T

N
= Ct11

T

N
(10)

From Lemma A.1, we can write the left-hand side of Theorem 5.8 as:

∥∥∥c(t+1) − c⋆
∥∥∥2 =

∥∥∥∥∥c(t) − ηt
n

n∑
i=1

∇Fi

(
c
(t)
i , D

(t)
i

)
− c⋆

∥∥∥∥∥
2

=

∥∥∥∥∥∥c(t) − c⋆ − ηt
n

∑
i∈S∩S∗

∇Fi

(
c
(t)
i

)
− ηt

n

∑
i∈S∩S∗

∇Fi

(
c
(t)
i

)∥∥∥∥∥∥
2

=

∥∥∥∥∥c(t) − c⋆ − ηt
n

∑
i∈S∩S∗

∇Fi

(
c
(t)
i

)∥∥∥∥∥
2

+

∥∥∥∥∥∥ηtn
∑

i∈S∩S∗

∇Fi

(
c
(t)
i

)∥∥∥∥∥∥
2

− 2ηt
n

〈
c(t) − c⋆ − ηt

n

∑
i∈S∩S∗

∇Fi

(
c
(t)
i

)
,
∑

i∈S∩S∗

∇Fi

(
c
(t)
i

)〉
(11)

We let the first and the second term on the right-hand side as ∥T1∥2 and ∥T2∥2 respectively. Thus the above equation can be
written as:

∥∥∥c(t+1) − c⋆
∥∥∥2 = ∥T1∥2 + ∥T2∥2 + 2 ⟨T1, T2⟩ ≤ (1 + α)∥T1∥2 + (1 + α−1)∥T2∥2 (12)

mailto:<ichengl@andrew.cmu.edu>?Subject=FedSPD: A Soft-clustering Approach for Personalized Decentralized Federated Learning

for all α > 0.

The T1 part is the typical decentralized SGD items. Inspired by [Koloskova et al., 2020], we write T1 as:

∥∥∥∥∥c(t) − c⋆ − ηt
n

∑
i∈S∩S∗

∇Fi

(
c
(t)
i

)∥∥∥∥∥
2

≤
∥∥∥c(t) − c⋆

∥∥∥2 + η2t
n2
1

n2

∥∥∥∥∥ 1

n1

n1∑
i=1

∇fi

(
c
(t)
i

)∥∥∥∥∥
2

︸ ︷︷ ︸
T11

+ 2ηt
n1

n

〈
c(t) − c⋆,

−1

n1

n1∑
i=1

∇fi

(
c
(t)
i

)
︸ ︷︷ ︸

T12

〉
+ η2t v

2

(13)

We can bound T11 and T12 separately as:

T11 =

∥∥∥∥∥ 1

n1

n1∑
i=1

(
∇fi

(
c
(t)
i

)
−∇fi

(
c(t)
)
+∇fi

(
c(t)
)
−∇fi (c

⋆)
)∥∥∥∥∥

2

≤ 2

n1

n1∑
i=1

∥∥∥∇fi

(
c
(t)
i

)
−∇fi

(
c(t)
)∥∥∥2 + 2

∥∥∥∥∥ 1n
n1∑
i=1

∇fi

(
c(t)
)
− 1

n

n1∑
i=1

∇fi (c
⋆)

∥∥∥∥∥
2

=
2L2

n1

n1∑
i=1

∥∥∥c(t)i − c(t)
∥∥∥2 + 4L

(
f
(
c(t)
)
− f(c⋆)

)
(14)

−T12 = − 1

n1

n1∑
i=1

[〈
c(t) − c

(t)
i ,∇fi

(
c
(t)
i

)〉
+
〈
c
(t)
i − c⋆,∇fi

(
c
(t)
i

)〉]
≤ − 1

n1

n1∑
i=1

[
fi

(
c(t)
)
− fi

(
c
(t)
i

)
− L

2

∥∥∥c(t) − c
(t)
i

∥∥∥2 + fi

(
c
(t)
i

)
− fi (c

⋆) +
µ

2

∥∥∥c(t)i − c⋆
∥∥∥2]

≤ −
(
f
(
c(t)
)
− f (c⋆)

)
+

L+ µ

2n1

n1∑
i=1

∥∥∥c(t) − c
(t)
i

∥∥∥2 − µ

4

∥∥∥c(t) − c⋆
∥∥∥2

(15)

Now we deal with T2. From [Ruan and Joe-Wong, 2022] and [Ghosh et al., 2020] we have the following Lemma:

Lemma A.2 (Mis-classified probability) For a data point belongs to cluster j, the probability of error classification P(ϵj,j′)
to cluster j′ ̸= j can be bound as:

P(ϵj,j
′
) ≤ c1

α2
0δ

4
(16)

And by union bound, the error probability is bounded as:

P(ϵ) ≤ c1S

α2
0δ

4
(17)

The expected number of clients using wrong cluster of data is bounded as:

E[S ∩ S∗] ≤ c1N

α2
0δ

4
= ϵN (18)

for some constant c1. We define this bound as ϵN

Inspired by [Ghosh et al., 2020], define T2k as the clients selecting the mis-classified data points that should be belongs to
cluster k where k ̸= 1(The correct cluster). That is:

T2k =
∑

i∈S∩S∗∩Sk∗

∇Fi(ci) (19)

For each T2k, we use nk to indicate the number of clients using mis-classified data that should be belongs to cluster k. We
have:

T2k =

nk∑
i=1

∇F k
i (ci) +

nk∑
i=1

∇Fi(ci)−∇F k
i (ci) (20)

Taking the expectation and by Markov’s inequality:

∥T2k∥ =

∥∥∥∥∥
nk∑
i=1

∇F k
i (ci) +

nk∑
i=1

∇Fi(ci)−∇F k
i (ci)

∥∥∥∥∥
≤ 3nkL+

√
nkv

θ1

(21)

For any θ1 ∈ (0, 1) with probability equal or greater than 1 − θ1. The above used Lemma A.2, Assumption 5.5 and
Assumption 5.6 and the Markov inequality.

Using the union bound we see that T2 =
∑

k T2k is bounded as the following with probability greater or equal to
1− (S − 1)θ1 − θ2:

∥T2∥2 = ∥
S∑

k=2

T2k∥2 ≤ (S − 1)

S∑
k=2

∥T2k∥2

≤ 18L2ϵ2N
θ22

+
2ϵN (S − 1)v2

θ21θ2

(22)

When
∑S

k=2 nk ≤ ϵN
θ2

with probability at least 1− θ2.

Combining the above three terms and Lemma A.2, we have:

E
∥∥∥c(t+1) − c⋆

∥∥∥2 ≤ (1− ηtµ+ ηtµ
ϵN
n

)
∥∥∥c(t) − c⋆

∥∥∥2 + 18L2ϵ2Nη2t
n2

+
2ϵN (S − 1)v2η2t

n2
+ η2t v

2

+
ηt(L+ µ)

n

n1∑
i=1

∥∥∥c(t) − c
(t)
i

∥∥∥2 + (4η2t (n− ϵN)2L

n2
+ 2ηt −

2ηtϵN
n

)(
f
(
c(t)
)
− f (c⋆)

) (23)

A.2 PROOF OF THEOREM 5.9

For time t− 1, after the local updating round, the cluster parameters can be expressed as:

Ct−1′ = Ct−1 − ηtG
t−1 (24)

After the communication round, the parameters can be expressed as:

Ct = Ct−1′Wt−1 = Ct−1Wt−1 − ηtG
t−1Wt−1 (25)

Thus, recursively expanding the parameters at time t back to lβ, we can get the final form:

Ct = Clβ
t−1∏

m=lβ

Wm −
t−1∑

m=lβ

(
ηtG

m
m∏

r=t−1

Wr

)
(26)

A.3 PROOF OF THEOREM 5.10

Following the same flow of Lemma 9 in [Koloskova et al., 2020], applying Theorem 5.10, we have for all α > 0:

E∥Ct −C
t∥2F = NEt ≤ E

∥∥∥∥∥∥C(mβ)

mβ∏
i=t−1

W(i) − C̄(mβ) +
t−1∑

j=mβ

ηj∇F
(
C(j)

) j∏
i=t−1

W(i)

∥∥∥∥∥∥
2

F

≤ E

∥∥∥∥∥∥C(mβ)

mβ∏
i=t−1

W(i) − C̄(mβ) +
t−1∑

j=mβ

ηj

(
∇F

(
C(j)

)
−∇F (C⋆) +∇f (C⋆)

) j∏
i=t−1

W(i)

∥∥∥∥∥∥
2

F

+

∥∥∥∥∥∥
t−1∑

j=mβ

ηj (∇F (C⋆) +∇f (C⋆))

j∏
i=t−1

W(i)

∥∥∥∥∥∥
2

F

≤ (1 + α)E

∥∥∥∥∥C(mβ)

mβ∏
i=t−1

W(i) − C̄(mβ)

∥∥∥∥∥
2

F

+ (1 + α−1)E

∥∥∥∥∥∥
t−1∑

j=mβ

ηj

(
∇F

(
C(j)

)
−∇F (C⋆) +∇f (C⋆)

) j∏
i=t−1

W(i)

∥∥∥∥∥∥
2

F

+

∥∥∥∥∥∥
t−1∑

j=mβ

ηj (∇F (C⋆) +∇f (C⋆))

j∏
i=t−1

W(i)

∥∥∥∥∥∥
2

F
(27)

Using Assumption 5.7, the above can be further simplified:

E∥Ct −C
t∥2F ≤ (1 + α)(1− p)E

∥∥∥C(mβ) −C
(mβ)

∥∥∥2
F

+ (1 + α−1)2β
t−1∑

j=mβ

η2jE
∥∥∥(∇F

(
C(j)

)
−∇F (C⋆) +∇f (C⋆)

)∥∥∥2
F

+
t−1∑

j=mβ

η2jE ∥(∇F (C⋆) +∇f (C⋆))∥2F

≤ (1 + α)(1− p)E
∥∥∥C(mβ) −C

(mβ)
∥∥∥2
F

+ (1 + α−1)2β
t−1∑

j=mβ

η2jE
∥∥∥(∇F

(
C(j)

)
−∇F (C⋆) +∇f (C⋆)

)∥∥∥2
F

+
t−1∑

j=mβ

η2jnv
2

(28)

The expectation of the second term on the right-hand side can be bounded as:

E
∥∥∥(∇F

(
C(j)

)
−∇F (C⋆) +∇f (C⋆)

)∥∥∥2
F

= E
∥∥∥(∇F

(
C(j)

)
−∇F

(
C
)
+∇F

(
C
)
−∇F (C⋆) +∇f (C⋆)

)∥∥∥2
F

≤ 3
n

N
L2∥C(j) −C

(j)∥2F + 3nσ2 + 6nL(f(cj)− f(c⋆))

≤ 3
n

N
L2∥C(j) −C

(j)∥2F + 3nσ2 + 6nL(f(cj)− f(c⋆))

(29)

Putting the above equations together and setting a proper α to make the first term become 1− p
2 , similar to [Koloskova et al.,

2020] with stepsize ηj ≤ p
√
N

12
√
2nβL

, we can get the desired bound:

Et ≤ (1− p

2
)Emβ +

p

16β

t−1∑
j=mβ

Ej +
36Lnβ

pN

t−1∑
j=mβ

η2j (f(c
j)− f(c⋆))

+

(
18βn

Np
σ2 +

n

N
v2
) t−1∑

j=mβ

η2j

(30)

A.4 PROOF OF THEOREM 5.11

We adapted the following Lemma A.3 from [Koloskova et al., 2020]:

Lemma A.3 (Simplify the Recursive Equations) For a bound of the cluster distance to the optimal dt = E∥c(t) − c⋆∥2 in
the following form:

dt+1 ≤ (1− aηt) dt − bηtet + cη2t + ηtBEt, (31)

and for any non-negative sequences {Et}t≥0, {et}t≥0, {ηt}t≥0 that satisfy the following form:

Et ≤
(
1− p

2

)
Emβ +

p

16β

t−1∑
j=mβ

Ej +D
t−1∑

j=mβ

η2j ej +A
t−1∑

j=mβ

η2j , (32)

then if the learning rate {η2t }t≥0 and {rt}t≥0 are respectively a 8β
p -slow decreasing sequence and 16β

p -slow increasing

non-negative sequence, then for some constant E > 0 with learning rate ηt ≤ 1
16

√
pb

DBβ the following holds:

E

T∑
t=0

rtEt ≤
b

2

T∑
t=0

rtet + 64BA
β

p

T∑
t=0

rtη
2
t (33)

By combining the above equations we have:

1

2RT

T∑
t=0

brtet ≤
1

RT

T∑
t=0

(
(1− aηt) rt

ηt
dt −

rt
ηt
dt+1

)
+

c

RT

T∑
t=0

rtηt +
64BA

RT

T∑
t=0

rtη
2
t (34)

Where RT =
∑T

t=0 rt

Following the previous Lemma, we adapt Lemma 13 from [Koloskova et al., 2020] as the following Lemma A.4

Lemma A.4 (Main Recursion) The main recursion can be bounded as the following with a constant step-size ηt = η < 1
h :

1

2RT

T∑
t=0

betrt + adT+1 ≤ Õ
(
d0h exp

[
−a(T + 1)

h

]
+

c

aT
+

BA

a2T 2

)
(35)

For the following two cases, tuning η we have: If 1
h ≥ ln(max{2,a2d0T

2/c})
aT η is chosen to be equal to this value and that:

Õ
(
ad0T exp

[
− ln

(
max

{
2, a2d0T

2/c
})])

+ Õ
(c

aT

)
+ Õ

(
BA

a2T 2

)
= Õ

(c

aT

)
+ Õ

(
BA

a2T 2

)
(36)

If else choose η = 1
h and that:

Õ
(
d0h exp

[
−a(T + 1)

h

]
+

c

h
+

BA

h2

)
≤ Õ

(
d0h exp

[
−a(T + 1)

h

]
+

c

aT
+

BA

a2T 2

)
(37)

Using the above Lemma A.3, Lemma A.4 and Theorem 5.8 and Theorem 5.10, we can get the final bound.

B SIMULATION DETAILS AND ADDITIONAL SIMULATIONS

B.1 EXPERIMENT DETAILS

The following shows the detailed settings of our experiments. We largely follow Marfoq et al. [2021], Ruan and Joe-Wong
[2022] in our experiment settings.

B.1.1 MNIST/EMNIST Data

Half of the dataset was selected to undergo a 90-degree rotation. Each client received the same amount of data, but the ratio
of rotated to non-rotated data was set uniformly at random in the range from 10% and 90%. The number of clients was fixed
at N = 100 for comparison with the baselines. A CNN (convolutional neural network) model was employed, consisting of
two convolutional layers with kernel size and padding set to 5 and 2, respectively. Each convolutional layer was followed by
a max-pooling layer with a kernel size of 2. After the convolutional layers, fully connected layers were used, with a dropout
layer of size 50. The ReLU activation function was applied to each convolution layer and fully-connected layer. All clients
utilized SGD as the optimizer. The number of local epochs was set to 5, with the initial step having double the local epochs
to accelerate the initial learning, leading to a faster reduction in global loss. The initial learning rate was 5e-2, with a decay
factor of 0.80. Training was carried out over 150 global epochs. Regarding network topology, unless otherwise specified, ER
Random Graph with connecting probability p = 0.06 and total number of clients N = 100 were used in the experiments.
The results in the table are averaged over five individual experiments.

B.1.2 CIFAR-10 & CIFAR-100 Data

The dataset was divided into even and odd labels by its number of label marked in the dataset, and half of the data was
randomly selected to undergo a 90-degree rotation. This process potentially created four different data distributions (rotated
even, un-rotated even, rotated odd, un-rotated odd). Each client received an equal amount of data, but the proportion of
odd-labeled and even-labeled data was randomly assigned, ranging uniformly at random from 10% to 90%. The number
of clients was set to N = 25 for comparison with the baselines. A CNN model with four convolutional layers was used.
The first two layers had a kernel size and padding of 5 and 2, respectively, while the last two layers had a kernel size and
padding of 3 and 1, respectively. Each convolutional layer was followed by batch normalization. After the second and fourth
convolutional layers, max-pooling with a kernel size of 2 and a dropout layer were applied. Following the convolutional
layers, two fully connected layers with dropout and batch normalization were used, containing 1024 and 512 hidden neurons,
respectively. The activation function was ReLU on each layer. All clients used SGD as the optimizer. The number of local
epochs was set to 5, with the initial step doubling the local epochs. The initial learning rate was set to 5e-2, with a decay
factor of 0.85. Training was conducted for 150 global epochs. Regarding network topology, unless otherwise specified, ER
Random Graph with connecting probability p = 0.20 and total number of clients N = 25 were used in the experiments. The
results in the table are averaged over two independent runs, except for FedSoft, which was only run once due to its extensive
runtime. The results in the Figure are averaged over three independent runs with slightly lower number of clients N = 15.

For the code for FedSPD, please refer to the Link.

B.2 ADDITIONAL SIMULATION RESULTS

B.2.1 Varying the Number of Local Epochs

We conducted experiments for 150 epochs on the MNIST, CIFAR-10, and CIFAR-100 datasets. As shown in Figure 5,
increasing the number of local epochs in FedSPD leads to faster convergence. For τ = 1, the training did not converge
even after 150 epochs on MNIST, and for CIFAR-10 and CIFAR-100, it seemed to converge to a lower training accuracy.
We observed that as the dataset and model complexity increased, increasing the number of local epochs tended to improve
performance.

Table 6 presents the final FedSPD testing accuracies for different numbers of local epochs across the datasets. On MNIST,

https://github.com/Anonymous-Submission-for-AISTATS/FedSPD_Anonymous_Submission

the testing accuracies were 93.27% and 93.47%, respectively, showing only a slight difference, likely because the MNIST
dataset is relatively simple, so the learning hyperparameters do not make much of a difference in model performance. For
CIFAR-10, the testing accuracies for τ = 5 and τ = 10 were 70.61% and 66.52%, respectively, where a larger number of
local epochs actually reduced the final performance. However, for CIFAR-100, τ = 10 resulted in the best performance.
This suggests that for more complex datasets, a higher number of local epochs can be beneficial, as indicated by the training
accuracy curves. Nevertheless, it is important to note that setting τ too high may lead to overfitting to the local data, as
was the case with τ = 10 on the CIFAR-10 dataset. These findings are consistent with known results in general federated
learning, where a higher number of local epochs can effectively increase the number of gradient steps taken, accelerating
convergence as long as the local models do not diverge too much due to a large number of local steps.

(a) Training accuracy on MNIST. (b) Training accuracy on CIFAR-10. (c) Training accuracy on CIFAR-100.

Figure 5: FedSPD training accuracy with different numbers of local steps τ . When the data become more complicated,
increasing local epochs may be a better choice.

Local Epochs 1 5 10
MNIST 74.20 93.27 93.47
CIFAR-10 41.34 70.61 66.52
CIFAR100 19.86 43.35 44.99

Table 6: Final FedSPD testing accuracies for different number of local epochs.

B.2.2 Influence of the Final Phase

Our FedSPD algorithm uses a final phase that follows the typical federated learning training process. The optimal number
of epochs for this final phase varies depending on the dataset and learning model. Due to the simplicity of EMNIST and its
model, the testing accuracy is already sufficiently high after aggregation. In our EMNIST setup, using 10 epochs in the final
phase increases performance by 0.5%, and beyond 10 epochs, the testing accuracy stabilizes. For CIFAR-10 and CIFAR-100,
the testing accuracy improves by 7% and 6%, respectively, after 15 epochs. Around 30 epochs are sufficient to achieve
optimal performance for both datasets. It is important to note that choosing the correct number of epochs and learning rate
for this final phase is crucial. Too many epochs, or a learning rate that is too high (or with insufficient decay), may lead
to overfitting to the local data. Since this final phase is trained locally without any communication overhead, it presents
a key advantage of our FedSPD algorithm in communication-constrained settings. Additionally, note that for EMNIST,
CIFAR-10, and CIFAR-100, our FedSPD already achieves higher accuracies compared to other methods, even without
this final phase. Other algorithms like FedEM perform aggregation during the regular training phase, so adding extra local
rounds in a final phase of training may lead to overfitting.

B.2.3 Influence of the Number of Clusters

The testing accuracy with different hyperparameters S (number of clusters) for the CIFAR-10 and CIFAR-100 datasets is
shown in Figure 7. In the experimental settings, we potentially created four different distributions by using varying labels
and image rotations. In our FedSPD algorithm, setting S too high does not necessarily improve performance. This may
be because most practical loss functions, such as the cross-entropy used in neural networks, are non-convex, meaning that
the aggregated model may not perform optimally in practice. Aggregating more models in the final phase can exacerbate

(a) Testing accuracy on EMNIST. (b) Testing accuracy on CIFAR-10. (c) Testing accuracy on CIFAR-100.

Figure 6: Testing accuracy of the final phase.

Figure 7: FedSPD test accuracy for different numbers of clusters S.

this issue. However, in our FedSPD algorithm, setting S = 2 already gives excellent performance in terms of the final test
accuracy.

B.2.4 Extra Details for Experiments with Different Graph Connectivity

FedSPD’s training accuracy versus epochs for MNIST across different topologies is shown in Figure 8. We observe that
networks with lower connectivity typically converge more slowly than those with higher connectivity, in each topology.
Additionally, RGG exhibits more oscillations compared to other topologies, likely due to its high clustering effect [Penrose,
2003]. However, all topologies eventually reach the same level of training accuracy, regardless of the network structure,
indicating that, as predicted by Theorem 5.11, FedSPD converges as long as the network is connected.

In addition to static network topology settings, we evaluate the performance of our FedSPD algorithm under dynamic
network conditions. In the following experiments, we use CIFAR-100 with 25 clients, initializing the network with an
Erdős–Rényi (ER) random graph. To simulate a dynamic network, at each epoch, every existing edge has a probability p of
being removed, while each non-existent edge has a probability padd of being added. The value of padd is adjusted at each
epoch to maintain a roughly constant average connectivity across the network. A larger value of p corresponds to a more
dynamic network topology over time. The results are summarized in Table 7. From the results, we observe that network
dynamics have little effect on performance—our FedSPD consistently maintains its effectiveness across different edge
removal probabilities p.

(a) Training accuracy of ER Graph. (b) Training accuracy of BA Model. (c) TrainingaAccuracy of RGG.

Figure 8: FedSPD converges slightly faster on networks of higher average degree, with noisier convergence on highly
clustered RGG graphs, on MNIST Data.

p 0.3 0.2 0.1 0 (Static)
Test Accuracy 37.56 37.22 37.42 37.14

Table 7: Performance of Dynamic Network Topology.

B.2.5 Impact of Data Quantity Imbalance Across Clients

In addition to considering data imbalance across clusters, we further evaluate the performance of our method under a more
challenging setting where both inter-cluster imbalance and total data imbalance across clients are present. Specifically, we
conduct experiments using the CIFAR-100 dataset with the same configuration as described in Figure 4. To simulate varying
amounts of data per client, we categorize clients into three groups: low, average, and high data holders. Let r denote the
ratio of data volume between clients with the highest and lowest data quantities.

(a) Average Test accuracy with unbalanced data amount. (b) Box plot of test accuracy across clients.

Figure 9: Test accuracy with unbalanced data amount.

The results of this experiment are presented in Figure 9. We observe that the average accuracy remains stable as the
imbalance ratio r increases. Notably, even under the most skewed setting (r = 9), the clients with the lowest test accuracy
achieve approximately 30% accuracy—substantially higher than the performance of local training under uniform data
allocation, which yields only around 14% accuracy. This demonstrates that clients with limited data can significantly benefit
from collaborative training and knowledge sharing with other clients.

B.2.6 Experiments Incorporating Differential Privacy (DP)

We follow Wei et al. [2020] conduct the experiments on MNIST dataset with 50 clients. The parameters of DP is selected as

follow: Clipping Threshold C = 1, δ = 0.01 thus c is chosen to be
√
2 ln 1.25

0.01 . We select ϵ to be 10, 50 and 100 to do the

experiment. Table 8 shows the results of different settings with two different accuracies. One is the test accuracy of our
FedSPD right after the model aggregation. The other one is the accuracy after 10 local epochs of our final phase. The reason
to include 2 different accuracies is because the final phase is local training, need not to do the DP. If we only show the
accuracy after the final phase, the influence of DP might not be clear.

Metrics No DP DP (ϵ = 100) DP (ϵ = 50) DP (ϵ = 10)
Test Accuracy (Post Aggregation) 92.51 92.75 92.46 92.13
Test Accuracy (After Final Phase) 93.89 93.99 93.87 93.70

Table 8: Results with DP on MNIST dataset.

From the results, we see that our FedSPD algorithms combine perfectly with DP. The accuracies keep at a high level with
different settings. The ϵ = 100 case even have a slightly higher accuracy compare to the case without DP. This may be
potentially due to a moderate additive noise actually preventing over-fitting in certain level. Another observation is that,
actually the final phase of our algorithms do enhance the model and reduce the gap of the test accuracies across different
settings. This is another evidence showing that the final phase of our FedSPD do further personalize the local model well.

B.2.7 Experiments Using MobileNet-v2

We conducted experiments on the CIFAR-100 dataset and the CIFAR-10 dataset and its mixtures with MNIST and
FashionMNIST, using MobileNet-v2 as the machine learning model. The mixed datasets were created by sampling 25,000
data points from CIFAR-10 and 25,000 from MNIST/FashionMNIST. Each client randomly drew between 10% and 90% of
its data from one of the sampled datasets, with the remainder sourced from the other. The network topology was modeled
as an Erdős–Rényi (ER) random graph with a connection probability of p = 0.20 and a total of 20 clients. The results are
presented in Table 9.

For CIFAR-100, our method outperforms other methods. However in the data mixture settings, the results indicate that
as the model size and complexity increase, FedAvg outperforms all other algorithms. As models and datasets become
more complex, personalization methods may occasionally exhibit reduced performance due to many reasons. This may be
attributed to the model’s expressiveness, which allows it to effectively capture variations across different clients. In this case,
the global model is sufficiently robust and more effective than personalizing to local data distributions. Similar results were
also observed in the decentralized FedEM Marfoq et al. [2021], where performance degradation occurred under specific
conditions in their experiments. In specific, their decentralized FedEM performs worse than FedAvg on FEMNIST and
CIFAR-10.

Our proposed method, FedSPD, experiences greater challenges in such scenario, as it splits the local dataset into two clusters
for separate training and postpone the aggregation. However, when the distributions of the two clusters differ significantly,
such as in the mixture of CIFAR-10 with MNIST or FashionMNIST, FedSPD achieves faster convergence, as demonstrated
in Figures 10b and 10c. This highlights FedSPD’s ability to accurately distinguish data sampled from different distributions,
showing that FedSPD can be trained efficiently when the communication/computing resources are limited.

FedSPD FedEM IFCA pFedMe FedAvg Local
CIFAR-10 72.14 78.02 78.56 61.00 79.01 57.72
CIFAR-10 + MNIST 86.20 88.88 89.08 74.64 89.27 77.76
CIFAR-10 + FashionMNIST 80.04 85.01 85.47 69.37 85.58 72.74
CIFAR-100 46.13 42.29 44.48 32.77 45.70 18.52

Table 9: Results using MobileNet-v2.

C DETAILED COMPARISON BETWEEN FEDSPD AND FEDSOFT

The training processes of FedSPD and FedSoft differ fundamentally. In FedSoft, local training utilizes a proximal objective
function with regularization terms to account for the distance to each cluster center. Conversely, FedSPD trains using data
associated with the selected cluster, where model parameters are updated based on an objective function that does not include
the regularization term. This modification is critical in decentralized federated learning, where ensuring both convergence

(a) Training Accuracy of Single CIFAR-10
Dataset.

(b) Training Accuracy of Mixture of CIFAR-
10 + MNIST.

(c) Training Accuracy of Mixture of CIFAR-
10 + FashionMNIST.

Figure 10: Experiments on Various Datasets Using MobileNet-v2.

to an optimal solution and consensus on cluster centers is essential. Unlike centralized systems, which aggregate cluster
centers at a single server, decentralized systems lack this central coordination, making consensus challenging. FedSPD
was inspired by FedSoft. Attempts were made to bound the consensus distance of cluster centers in FedSoft. However, the
results suggest that in decentralized settings of FedSoft, the consensus may not be reached. Experimental results in Section
6 demonstrate FedSoft’s limitations in the decentralized scenarios. Specifically, FedSoft’s cluster centers fail to reach the
optimal values due to its update rules:

• Uniform Data Utilization: FedSoft updates each cluster center using all available data.

• Probabilistic Contribution: FedSoft uses probabilities proportional to the estimated data distribution among clusters to
guide contributions to the selected cluster.

These update rules lead to gradients during local updates being biased towards a mixture of optimal cluster centers from
all clusters, rather than the correct optimal center for the selected cluster. As datasets grow more complex and the optimal
cluster centers diverge significantly (e.g., CIFAR-10 or CIFAR-100), this bias becomes more pronounced, causing degraded
performance. This is evident in Section 6, where FedSoft’s performance deteriorates as the datasets shift from EMNIST to
CIFAR-10 and CIFAR-100 in both centralized and decentralized scenarios.

In decentralized settings, the sparse updates exacerbate the difficulty for clients to estimate optimal cluster centers accurately.
This is especially problematic for complex datasets like CIFAR-10 and CIFAR-100, where FedSoft performs significantly
worse. This limitation highlights the need for a different approach, such as the one introduced by FedSPD.

In sum, in FedSPD during each round of the first step, clients train separate models using data associated with their selected
clusters. This approach ensures consensus and optimality of the cluster centers. Unlike centralized scenarios, where clients
share a unified cluster center, each client in decentralized systems maintains different cluster centers. This necessitates
rigorous proof of consensus across clients, as described in our theoretical analysis. Thus, the proof techniques of FedSPD
and FedSoft are completely different.

Once consensus on cluster centers is achieved, the second phase of FedSPD aggregates models by computing a weighted
average of the cluster centers, aligning with FedSoft’s objective. To address the suboptimality of non-convex models,
FedSPD incorporates an additional final phase of local training. This phase enables further exploration of the model
parameters, mitigating suboptimality and enhancing overall performance.

Differences in Theoretical Analysis.

• Relax of Assumption 2 in the FedSoft. Since FedSoft requires the Assumption 2 in their paper which state the β
similarity among all subproblems of different clusters. In other words, the optimals of different cluster centers need to
be close enough to guarantee the bounded distance between the learned cluster center and the optimal cluster center.
This is because they use all data to update the cluster center. If using the data from other cluster to update the selected
cluster, this assumption is required to guarantee the gradient update is not going to far away from the optimal of the
selected cluster. In contrast, the different update rule of our algorithm FedSPD on cluster center further guarantee
the optimality of our algorithms and have a tighter bound of convergence without the requirement of this additional
assumption.

• The proof of FedSoft is based on the centralized FL (CFL). Thus, consensus is automatically met with the centralized
aggregation. However, they do not proof the effectiveness under the decentralized settings. In contrast, we proof the
consensus of the cluster centers in FedSPD under decentralized FL. This is one of the main challenges of the theoretical
analysis. Proving the consensus and convergence is much more difficult in decentralized FL (DFL) than the CFL, since
all clients keep the different estimation of the cluster centers. Our attempts try to bound the consensus distance of
FedSoft in DFL was failed since the way that FedSoft update its cluster center may not yield the same optimal for all
clients. It may differ based on different neighboring clients.

	Introduction
	Related Work
	Problem Formulation
	Proposed FedSPD Algorithm
	Convergence Analysis
	Simulation Results
	Comparison with Baselines
	Effects of Network Connectivity
	Communication Overhead
	Discussion

	Conclusion
	Proof of the Theorems
	Proof of Theorem 5.8
	Proof of Theorem 5.9
	Proof of Theorem 5.10
	Proof of Theorem 5.11

	Simulation Details and Additional Simulations
	Experiment Details
	MNIST/EMNIST Data
	CIFAR-10 & CIFAR-100 Data

	Additional Simulation Results
	Varying the Number of Local Epochs
	Influence of the Final Phase
	Influence of the Number of Clusters
	Extra Details for Experiments with Different Graph Connectivity
	Impact of Data Quantity Imbalance Across Clients
	Experiments Incorporating Differential Privacy (DP)
	Experiments Using MobileNet-v2

	Detailed comparison between FedSPD and FedSoft

