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CscK metrics near the canonical class

By Bin Guo at Newark, Wangjian Jian at Beijing, Yalong Shi at Nanjing
and Jian Song at Piscataway

Abstract. Let X be a Kéhler manifold with semiample canonical bundle Ky. It is
proved in [W. Jian, Y. Shi and J. Song, A remark on constant scalar curvature Kéhler metrics on
minimal models, Proc. Amer. Math. Soc. 147 (2019), no. 8, 3507-3513] that, for any Kéhler
class y, there exists § > 0 such that, for all ¢ € (0, §), there exists a unique cscK metric g; in
Kx + ty. In this paper, we prove that {(X, g¢)}s¢(0,5) have uniformly bounded Kéhler poten-
tials, volume forms and diameters. As a consequence, these metric spaces are pre-compact in
the Gromov—Hausdorff sense.

1. Introduction

The existence of constant scalar curvature Kihler (cscK) metrics and the related moduli
problem are fundamental problems in complex differential geometry. The work of Chen—Cheng
[2] proves that the cscK metric equation can be solved if the Mabuchi K-energy is proper.
Such properness of the Mabuchi K-energy is closely related to the J-equation in the case
when the canonical class of the underlying Kéhler manifold is semipositive [1,25]. In fact, if
X is a minimal model, i.e., the canonical bundle Kx is nef, it is proved in [12, 16] that there
always exists a unique cscK metric in any Kihler class sufficiently close to Ky . Naturally, one
would like to establish a compactness result and to gain further understanding of geometric
degeneration for such cscK metrics in relation to the moduli problem.

Let X be a compact Kihler manifold of complex dimension n. Suppose the canonical
line bundle Ky is semiample, i.e., Ky is base point free for some m > 1. For sufficiently large
m € Z7, the linear system |m Ky | induces a holomorphic map
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for some N € N. The image of X via , w(X), coincides with the unique algebraic canonical
model X.,, determined by the canonical ring of X. The dimension x = dim X, is the Kodaira
dimension of X, where X is of general type if x = n, and in this case, there exists a geomet-
ric (singular) Kéhler—Einstein metric wea, on Xcan (see [17]) satisfying Ric(wean) = —wean. If
k < n,thenw: X — X4 is a holomorphic fibration over X,,, whose generic fiber is a Calabi—
Yau manifold. There exists a unique canonical (singular) Kéhler metric wc,, (see [18, 19]) on
Xcan defined by
Ric(wcan) = —Wcan T Owp,

where wwp is a positive current induced by the L? or Weil-Petersson metric of Calabi—Yau
fibration 77: X — Xca. Furthermore, wcay are smooth on X2, , away from the critical values
of .

We now fix a Kihler class y and consider the perturbation of Ky by
(1.2) ye = Kx + 1y

for sufficiently small # > 0. By [12], there exists § = () > 0 such that, for all # € (0, §), there
exists a unique cscK metric w; € y;. It is natural to ask what is the asymptotic behavior of this
family of cscK metrics when # — 0. The following is a natural extension of the conjecture
in [12].

Conjecture 1.1. The above cscK metric spaces (X, wy) converge to

(Xcoan’ Wcan),
the metric completion of (Xg,,, Wcan), in Gromov—Hausdorff topology as t — 0. Furthermore,

(XS Wean) is homeomorphic to the algebraic variety X ap.

When X is of general type, it is proved in [15] that w; converges smoothly to @wc,, on
X¢,,- Furthermore, (X, g;) have uniformly bounded diameter [9]. The main goal of this paper
is to establish uniform geometric bounds for (X, g;) for all X with semiample Ky .

When X is not of general type, i.e., k < n, it is much more challenging to obtain both
analytic and geometric estimates since the total volume approaches 0 as ¢ — 0. In particular,
the corresponding cscK metrics must collapse, whereas there is very limited understanding for
the behavior and regularity of collapsing canonical Kéhler metrics. We would like to point out
that, concerning the compactness of non-Einstein cscK metrics, the known results [3, 24] all
implicitly require certain non-collapsing conditions and integral control of curvatures, neither
of which holds in our study when x < n.

In [8,9], geometric estimates such as diameter, lower bound of Green’s function, Sobolev
constants are established under the assumptions of normalized Nash entropy for the Monge—
Ampere measures, where collapsing is allowed to take place. Such estimates also lead to
a relative volume non-collapsing

Vol(B(x, R))

Vol(X)
for some constants ¢ > 0 and o > 0, which suffices to conclude the Gromov—Hausdorff com-
pactness in many cases. Our goal is to apply the Sobolev inequality to our study and to establish

uniform L °°-estimates for local potentials and volume measure of the cscK metrics w;, which
we will also write as g;. Indeed, we prove the following theorem.

> c¢R* forall R € (0, diam(X, w)),
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Theorem 1.1. Let X be an n-dimensional compact Kihler manifold with semiample
canonical bundle Kx. For any Kdhler class y, there exists § = 6(y) > 0 such that there exists
a unique cscK metric wy € Ky + ty fort € (0,6) as in [12]. Then there exist « = a(n) > 0
and C = C(n, X, v, 6) such that, for any t € (0, 8), we have

Voly,, (Bw, (x, R)) -

C7'R”
Vol, (X) =

(1.3) diam(X, w;) < C,

for any R € (0,1), where By, (x, R) denotes the geodesic ball in (X, w;) with center x € X
and radius R > 0. Consequently, the family of metric spaces {(X, ®¢)}se(0,5) is pre-compact
with respect to the Gromov—Hausdorff topology.

In fact, we obtain uniform estimates for the Sobolev constant and a lower bound of
Green’s function associated to g; as in [8, 9] due to the uniform estimates in Theorem 2.1.
Consequently, for any sequence {¢;} — 0, the metric spaces (X, g;;) subsequently converge
in Gromov—Hausdorff sense to a compact metric space Z. It is interesting to investigate the
geometry of the limit space Z. If Conjecture 1.1 holds, then the twisted Kidhler—Einstein space
(Xcans gcan) arises as the unique geometric limit of cscK metrics in the Kéhler classes near
the canonical Ky . These phenomena should be compared to the normalized Kédhler—Ricci flow
on X, where the solution converges to gcan pointwise on X, with bounded diameter and scalar
curvature [13,20].

In the next section, we shall prove Theorem 1.1 assuming a uniform L°° estimate of
the cscK system. Then, in Section 3, we prove a uniform entropy bound based on a uni-
form L°° estimate of J-equations. Finally, in Section 4, we prove the uniform L°°-estimate
(Theorem 2.1) based on the entropy bound in Section 3.

2. Reduction to uniform a priori estimates for cscK system

Let wrs be the Fubini—Study metric on C PV from the pluricanonical map 7: X — C PN
in (1.1) induced by |m Kx| and let

1 £
n=—n wgs € Kx,
m

which is a semipositive (1, 1)-form. By Yau’s theorem [26], there is a unique Kidhler metric
6 € y such that Ric(f) = —n. Let w; be the unique cscK metric w; € y; and let

9t=ﬂ+t9€yt

as in (1.2) be the reference metric for each ¢ € (0, §) for fixed § = §(y) > 0. Then there exists
a unique ¢; satisfying )
ws = 0y +100¢;, supg; = 0.
X

Furthermore, ¢; solves the following coupled system:

0; + i00¢,)" = VieFron
2.1 {( ¢ + 100¢;) e

Aa), Ft = —Et — trw, (77),
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where

We also have [y efr6" = 1 from the first equation of (2.1).
We shall prove that Theorem 1.1 follows from the following uniform L°° estimates.

Theorem 2.1. There exists a uniform constant C = C(n, X,y,68,n) > 0 such that, for
all't € (0,38), we have

sup ([lorllLooxy + 1 FtllLeox)) < C.
t€(0,6)

We remark that, by Theorem 2.1, the metrics w; (after possibly passing to a subsequence)
converge weakly to a positive current with bounded local potentials on X qp.

Proof of Theorem 1.1 assuming Theorem 2.1.  We first recall the following results of [9]
for the convenience of readers.
Let (X, wy) be a compact Kihler manifold. The p-Nash entropy of another K#hler form

Ny p(@) 1= [wl]n /X‘log([wl]n Z_X))pwn

Denote by K(X) the set of Kdhler metrics on X . Consider the class of Kihler metrics

n
W(wx, A, p,K;0) := {a) € K(X) ‘ [0] - [ox]"! < A, Noy,p(@) < K, 1ot > 0},
(0] wy
where o > 0 is a continuous function. Through Green function’s estimates, Guo—Phong—Song—
Sturm proved in [9] that if dimg{oc = 0} <2n —1 and p > n, then we can find constants
C =C(wy.,n,A,p.K,0)>0,c =c(wy.,n, A, p, K,0) >0and @ = a(n, p) > 0 such that,
for any w € W(wy, A, p, K;0), diam(X, w) < C and, for any x € X and R € (0, 1],

Volo (B (x. R) _ 0
Volp,(X)  —

In our case, note that, since

1
Nop(0) = 4 [ IFilPof.
tJx
if we have Theorem 2.1, then Ny ,(w;) < C? for any p, and
L of _ Fs C
[w;]" 67 B ’

where C is the constant in Theorem 2.1. So we can simply take o to be the constant function
¢~€ and hence the conditions of the main theorem of [9] are all fulfilled. Consequently, we
obtain the desired uniform diameter bound and relative non-collapsing estimate (1.3).

The proof of Gromov—Hausdorff pre-compactness from (1.3) is standard: from the rel-
ative non-collapsing estimate, for any € > 0 sufficiently small, the maximal packing number
using disjoint geodesic balls of radius € is uniformly bounded from above. Then the family is
pre-compact by Gromov’s pre-compactness theorem [6, Proposition 5.2]. O
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3. Uniform entropy bounds

To prove Theorem 2.1, we first need a 1-Nash entropy bound. Let ¢ € (0, §) be fixed. All
the relevant constants in this section are independent of ¢. Let (¢;, F;) be the solution to the
coupled system (2.1). Note that, since

1 2
Noston) =3 [ 1Rt = [ |Flefen < [ Fefron +2por,
Vi Jx X X e
it suffices to bound |, x F +ef10" by the following proposition.

Proposition 3.1. There is a constant C > 0 that depends on n, 8, n such that

n

1 w
— [ ( t ":/FF’9”<C.
v [ tos Vt@,,)w, | Fieft6" <

To prove this upper bound, we start with a family version of the well-known «-invariant
argument in [23], based on a local version of [11].

Lemma 3.1. There is a constant cy = co(n, 6, n) > 0 such that

n

1 Wy n
v mg(vt L)t = 2c0(la, (pr) = o, (¢0) — €

for some uniform constant C > 0, where Ig,, Jg, are Aubin’s functionals.

Proof. Note that 8; = n+ t6 < C0 for some uniform constant C > 0. So any function
in PSH(X, 6,) satisfies a uniform a-invariant estimate (see [11,23])

[ o <c
y =

for some ag = ag(n, X, n,0) > 0. This implies that

1

_ e_ao(/’t_Ftw;’l :/ e—aowt—erFan EC
Vi Jx X

Taking log on both sides and applying Jensen’s inequality, we obtain

1
—[ (—oop: — Fr)w} <logC.
Vi Jx

Rearranging the terms gives

1

o
3.1 — Fo > — — n _logC.
(3.1) v )y Wy > v, /X( ¢r)w; —log

The lemma then follows from equivalence of the functionals /9, — Jy, and V% fX (—¢:)of and

choosing 2¢o = ag > 0. O

The proof of Proposition 3.1 makes use of the fact that the entropy of F; is a component
of the Mabuchi K-energy. We recall the following modified form of Chen—Tian’s formula for
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the K-energy: for any ¢ € PSH(X, 6;),

1 92‘0 n 1 en n
62 Ka = [ oe(FEe)or, - o [ oe(50)00 + drao)

where 0; o = 0; +1 aégo. In fact, the usual Chen-Tian formula gives

1 o7
Ko, () = v / 10g( o7 )9;’,¢, + J_Ric(6,).6, (9)

since

1 07 1 0 1 on
—1( or, =— |1 )0ty - /1( or,
v, Jx O 0"> Vv, Jx Og(ve v, Jy % V,en)
1 o 1 on
= = | 1og(1% Yoy 1 (5 )or
Vv, Jx Og(v gn )70 Ty, )08 Vté?”)
1 o7
=3 | Yoe(5 5w ) 6l = 6.
By writing 67, — 6" as fol js fspds, itis stralghtforward to check that the last term equals

Jy+Ric(6,),6, (¢), which in turn implies (3.2).
It is well known that cscK metrics are minimizers of K-energy; hence we have

Ko, (1) = Kg,(0) =0,
which implies that (recall that w; = 0;,¢,)

! 1og< b1 )9,” > — ! log( @

n
t

)t + Iy, (00)

Vt V,on Vi Vv.on
11 w}
= 1 Lot + vt

where we use Lemma 3.1 and the following equation of the J-functionals:

00(10[ ((pt) - J9t (gl)t)) + JT],O[ ((pt) = J7]+C()0[,9[ (@t)

By straightforward calculations, we have

1 on
— |1 L_)g" < C
Vi Jx Og<Vt9”) L

for some constant C = C(n, 1, 0) > 0. Combining these inequalities, we get

n

1 w;
(3.3) v 1 g(VG )w;’ + 20y 4¢08,,6, (91) < C.

To get an upper bound of
n

1 Wy
| toe(7 )t
Vi Jy CE\vn )t
from (3.3), we see that it suffices to prove a uniform lower bound of J; 4 ¢4, 6, (®1)-

In the next step, we will use the existence of a minimizer of the J 4 .4, 4, -functional to
show the lower bound. For notational convenience, we denote y; = 1 + c¢ob;, which satisfies

cobr < xt < (14 ¢0)0;.
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By [12,21], the minimizer ¢y € PSH(X, 6;) of J,, g, exists and solves the J-equation

(3.4 (0 +100¢:)" ' A x¢ = c1(0; + i00¢;)",
where we normalize supy ¢; = 0 and ¢; = co + a; > c¢o > 0 with
1
(3.5) a;:=— | 67 LA
Tt

We claim that if we can prove a uniform L°° bound for the solutions ¢; of (3.4), then we
will finish the proof of Proposition 3.1.

In fact, if ¢; is uniformly bounded, we obtain a uniform lower bound for J; ¢4, .6, (1)
as follows:

1 1 _
T108,90) = 100,00 = o /X /0 0 (s — cibr5p,) A Brss)~  ds = —C

for some uniform C = C(||¢; ||z (x)) > 0. Consequently, by (3.3), we immediately get a uni-
form upper bound for [} Frefron,

To prove the uniform L°° bound for ¢;, we will apply the trick of [22] by Moser’s
iteration. However, we would need the uniform Sobolev inequality from [8] for the reference
metric 6;.

Lemma 3.2. There exists C > 0 such that, for all t € (0, 8), we have
‘at — E‘ < Ct
n
foray in (3.5).

Proof. By direct computation, it follows that

ST fn Ao (D

Yico" ) fxn a0 Q)

Lemma 3.3 ([12]). There exists a uniform 8o > 0 such that

as L O@) = % +O00). o

(3.6) ne (0" — (= Dye A (0)" % > 8o(0)" !
if 0 <t <t forsomet =t(n,0,n) sufficiently small.
Proof. This lemma follows from straightforward calculations as in [12]. Indeed, we
have
ne " —(n— 1)y, AO"2
=nc(n+10)"""—(m—DnA@+16)"">—(n—1cob] ™"
= (na; + co) XK: n-1 AoV —(n— 1)% n-2 RN (1)
i=0 i i=0 :

K
= (nar + o))"~ + Y Airf A (16,

i=1
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where the coefficients (fori = 1,...,k) are

n—1 n—2

a= e+ a)(" ) -0 (127)
i i—1

n—1 n—2
(by Lemma3.2) = (k+co+ O@))| . —(n—1|.
i

= (”fl)(x+c0+0(t)—i)zc—°
i 2

if 1 < for some sufficiently small = 7(n, 6, n) > 0. Combining the above inequalities, we
finally arrive at

K
ne @t —(n =1y AO"2 > %" DN (1) i T
i=0

where we may take

S0 = ) -
0 2max;=g,.., :c{(nlfl)}

From now on, we additionally impose that 0 < ¢ < 7. For any s € [0, 1], we denote
Or,s = Or +i00(s).

where ¢; is the solution to the J-equation (3.4).
Lemma 3.4 ([22]). There exists a uniform constant ¢y = c1(n, 0,1) > 0 such that

nCz(Qt,s)n_l —(n=1Dxe A (Gt,s)n_2 >c1(1 - S)n_l(et)n_l-

Proof.  The proof of this lemma is the same as that of [22, Lemma 2.3]. The point is that
the constant ¢; here is independent of 7. For completeness, we include a proof here. We view
X+ as the reference form in the definition of Hessian operators: for any positive (1, 1)-form 6,

o" nf* =1 A
on(0) = —, op_1(0) = "KL
Xt Xt
We write B
9; = 9[ + laa¢t = 91"1.
It is clear that 6; ; = sé, + (1 — s)6;. Since, foreachi = 1, ..., n, the function
On—1;i (et,s)
On—2;i (et,s)
1s concave, it follows that
3.7) Un—l;i(et,s) > SGn—l;i (?\t) +(1—5) On—1;i (Gt)
On—2;i (Qt,s) Op—2;i (0y) On—2;i (6r)
The first term on the right-hand side of (3.7),
On—1;i (é\t)

On—2:i(0r)
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is bigger than % (see [21]). By the cone condition (3.6), the second term on the right-hand
side of (3.7),

On—1;i (Gt)
On—2;i (Qt)’
is no less than : 5 . .
m = (1 + n_c(’)t)n_ct > (1 +80)E,
ne: t
where
s 50

max,e(o,,-] ncy

is a uniform positive constant. Thus inequality (3.7) yields

On—1;i(0rs) s (L=s)0 + 80)
On—2:i(0r5) — neq ney .

(3.8)
In terms of (n — 1, n — 1)-forms, (3.8) is equivalent to
(3.9) nc,@t",s_l —(m—=Dy: A 0;’;2 > 8o(1 —s)(n— D) ys A 9{”;2.

On the other hand, since the function s + o0y,—1:; (6;, s)l/ (=1 s concave, we have

On—15 (0r,5) "™V > 50,1, (0) V7D 1 (1 = 5)op_1;: (8) /@D
> (1= 8§)0p—1,i () /7D,

which implies that
Xt AOPSE = (=" x AOPT2

Combining this with (3.9) gives that
nc,@f’s_l —(m—Dys A 0;’;2 > §o(1—5)"(n — Dy A or=2 > codo(n — 1)(1 — s)ror—1,
The lemma is proved with ¢; = cogo(n —1). O

We will use the Moser iteration argument to prove the C° estimates of ¢;. To this end,
we need the following uniform Sobolev inequality for the reference metrics 6;. (Note that, by
direct computations, the metric 6, satisfies the conditions in [8]; see also [8, Example 4.1].)

Lemma 3.5 ([8, Theorem 2.1 and (4.10)]). There exist a constant ¢ = q(n, X) > 1 and
a constant C = C(n, 0, n) > 0 such that, for anyu € C1(X),

1 2q an /g C 2 2 n
(3.10) (VI/XM 9,) < Vt/X(u + [Vulg, )07

From these, we can now prove the uniform L°° estimate for ¢;, which finishes the proof
of Proposition 3.1.

Proposition 3.2. There exists a uniform constant C > 0 that is independent of t € (0, f]
such that supy (—¢;) < C.
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Proof. 'We follow the arguments in [22] closely. For any p > 1, we consider the integral
(3.11) /Xe—l’¢t (ct(6]'s, — 61— xu A (O] 5 —6771)).

On one hand, this integral is
(3.12) /Xe—Wt (—cO + e AOFTY < C/Xe—wte;’.

On the other hand, the integral in (3.11) is
1
/ P91 93¢, A (/ nedpst = (1= Do A 0752 ds)
X 0 bl bl
1
- p/Xe—Pm/—laqst A O; A (f nebf st — =y AOP? ds)
0

_ 1
> p/ e P/ —10¢: A Od: A (/ c1(1—s)"ds 9,”—1)
X 0
> czp/ e P91/ —10¢, A O, A O]
X

for some ¢, > 0 that depends on #n, 8, n but is independent of ¢ and p. This inequality together
with (3.12) yield that, for some uniform constant C’ > 0,

1 c’
(3.13) —/ Ve~ 2902 g7 < —p/ e P9,
Vi Jx ! Vi Jx
Applying the Sobolev inequality (3.10) to u := e~P%1/2 and using (3.13), we obtain

1 /g C
(3.14) (—/ e Ry
Vi Jx Vi Jx

We now apply inequality (3.14) with p; = qk fork =1,2,...,and (3.14) reads

1 1/p 1 1/p
(3.15) (VLe_pk+l¢t0?) k+1 < Cl/qp;/Q(v/Xe—pk@gtn) k‘
t t

Iterating (3.15) gives

(i/ e—Pk+1¢t9n)l/pk+l < CZ§=1quqZ§=1jqu (l/ e—q¢,9n)1/q
Ve Jx ! - Vv Ix t

< C(Vit/Xe—wref)”q.

Letting k — oo yields that
1 1/q
(3.16) supe ¥ < C(—/ e_q¢’9t") .
b'¢ Vi Jx

Finally, note that V%Qt” < CH" for a uniform constant C > 0, so

1 — 1
(i/ e—qfﬁtg;?) & < C(Supe_¢’)qqo(/ e—aotbzen) /a
Vi Jx X X

q—ag
(by a-invariant) < C (sup e_¢’) a
X

which combined with (3.16) gives the desired estimate supy e %" < C. O
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4. From entropy bound to L*° estimates

Given the uniform entropy bound of F;, the L°° estimates of ¢; and F; have been proved
n [7]. For completeness, we provide a sketched proof.
Note that, by Proposition 3.1, we have

(4.1) / |Filefrom < C,
X
and from (3.1), we also have

1
42) L / (—pno! < C.
Vi Jx
Denote f = 1/10. We solve the auxiliary complex Monge—Ampére equations as in [7, 10],

Tk( (pt+18 t) Flen

(0; + i00V)" =
Ak

sup ¥ = 0,
X

where 7 (x): R — R is a family of positive smooth function that decreases to x yg, (x), and
Ay 1s a constant that makes the equation solvable,

Ap = / T (—¢r + ,BFt)eFZQn — / (—¢r + ﬁFt)eFIG” = Ao,
X Q

and here Q = {—¢; + BF; > 0}. Equations (4.1), (4.2) imply that A is uniformly bounded
from above. So we can find a uniform constant C > 0 such that, for any ¢ > 0, we can find
a ko (possibly depending on ¢) such that Ay < C for any k > kg. In the following, we always
assume that k > ko.

Consider the test function

W = —s(—yy + A)TH — g, + BF;,

with the constants chosen such that

arbr = 2, 0 DO BROPIOND
n+1" n2n/(n+1)

We claim that supy ¥ < 0. If the maximum of W is obtained at some point in X \2, we are
done. So assume W takes a maximum at x.x € €2; then, at Xpax,

ne _ 1
0 Z Awt‘lj Z F(_Wk + A) ntl tra); 91’ Wk
ne
( Wk + A) n+1 tre, gt

—-n +trw, 0; — BR; — Btry, n
26

e nyrtn (e,

t

by the choice of the constants ¢, A. This implies that, at xpyax, ¥ < 0. Hence the claim is proved.
Since ¢ < C and A < C, we obtain

BF: < —@; + BF; < C(—yi + A)7+T.



164 Guo, Jian, Shi and Song, CscK metrics near the canonical class

Then, for any € > 0, we can find a constant C > 0 such that BF; < e(—y) + Cc. Again,
using the «-invariant, this shows that, for any p > 1,

(4.3) /X ePFign < C,.

By the family version of Kotodziej’s uniform estimate [14], developed in [4, 5], we have
l¢¢llLoe < C (see also [10]).

To show the L*° estimates of F;, we need the following mean-value inequality in [9] for
the Laplace operator A, .

Lemma 4.1 ([9, Lemma 5.1]). Under condition (4.3) on Fy, there is a uniform constant
C = C(n, p,0,n) > 0 such that, for any C? function u with Ay, u > —a for some a > 0, the
following inequality holds:

supu<C a+—/|u|a)t

We first apply Lemma 4.1 to the function u := F; — ¢;, which satisfies
Ap,u = —R; —try, N —n +try, 0; > —R; —n,

and this implies that
sup F; < supu < C(Et +n+ / (| F¢| + |g0t|)eFf6”) <C.
X X X

To get the lower bound of F;, we apply Lemma 4.1 to the function u := — F;, which fulfills
the equation
Ap,u =—Ay, Fr = Ry + try, n > —Ry,

and we obtain
sup(~F) = C([Rul + [ |FleF6") <
X X

thus the lower bound of F; follows, and we finish the proof of Theorem 2.1.
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