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GEOMETRIC REGULARITY OF BLOW-UP LIMITS OF THE
KÄHLER-RICCI FLOW

Max Hallgren, Wangjian Jian, Jian Song, and Gang Tian

Abstract. We establish geometric regularity for Type I blow-up limits of the Kähler-
Ricci flow based at any sequence of Ricci vertices. As a consequence, the limiting
flow is continuous in time in both Gromov-Hausdorff and Gromov-W1 distances. In
particular, the singular sets of each time slice and its tangent cones are closed and
of codimension no less than 4.
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1 Introduction

Blow-up analysis is fundamental in the study of the formation of singularities in
Ricci flow. Hamilton (cf. [Ham82, Ham93]) laid out various approaches to classify
both finite time and long singularities of Ricci flow. Type I scaling is the most
natural parabolic blow-up that one wishes to extract a geometric limit satisfying
the Ricci soliton equations. In [ST08], Perelman showed that Type I rescalings of
a Fano Kähler-Ricci flow have uniformly bounded scalar curvature. Based on this
fact, it was shown in [Bam18, CW20, TZ16] that limits of normalized Fano Kähler-
Ricci flow have partial regularity akin to noncollapsed limits of Einstein manifolds.
Perelman’s estimate was also applied in [C+18] to give a Ricci flow proof of the
Yau-Tian-Donaldson conjecture, and in [DS20, HL] to establish the uniqueness of
tangent flows in the Fano setting.

However, it is still unknown whether the scalar curvature is bounded for Type
I rescalings of general finite time solutions of the Kähler-Ricci flow. On the other
hand, it was shown in [JST1] that Type I rescalings of any projective Kähler-Ricci
flow have locally bounded scalar curvature near certain distinguished points, called
Ricci vertices. Moreover, it was shown that the scalar curvature has at most quadratic
growth as a function of distance from the Ricci vertex, and that a partial C0 esti-
mate also holds at bounded distance from a Ricci vertex. The position of such Ricci
vertices depends on a choice of background (1,1)-form associated to the limiting
cohomology class at the singular time, which offers substantial flexibility in the sin-
gularity analysis of projective Kähler-Ricci flows. Nonetheless, it is so far unclear
when such blow-up limits would coincide with tangent flows, hence they could fail
to be self-similar. Because of this, the strongest form of Bamler’s partial regularity
theory [Bam2] does not apply. In particular, Bamler’s theory does not guarantee that
each time slice of the limiting metric flow has singularities of codimension four, that
the metric flow is continuous, or that the tangent cones of the time slices are metric
cones. The primary goal of this paper is to establish these facts.

The continuity of the limiting metric flow is established based on locally uni-
form estimates for distance distortion. Such estimates for Ricci flows with globally
bounded scalar curvature were established in [BZ17, BZ19], and (with additional
assumptions) in [CW20]. Some of the techniques employed in these proofs may be
successfully localized, giving a fairly straightforward proof that distances cannot
decrease too quickly in time. The reverse estimate, however, requires new ideas as
the corresponding proofs in [BZ19, CW20] rely heavily on a global scalar curvature
bound.

We localize the proof of [Bam18, Sect. 6] to show that each time slice of the
limiting metric flow has singularities of codimension four and is indeed a singular
space in the sense of [Bam17]. The partial regularity theory we rely on is from [Bam2]
rather than from [Bam17], since we choose to consider the F-limit. For this reason,
we have to work on the flow instead of on a single time-slice. The derivative estimate
of the Ricci potential in the time direction (which is the Laplacian estimate in the
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space direction) plays a crucial role in working on the space-time. Such Li-Yau type
estimate is established in [JST1], and it fits well with Perelman’s reduced geometry
as the boundedness of the Ricci potential propagated along the reduced geodesic.

Our results are closely related to the analytic minimal model program with Ricci
flow proposed in [ST07, ST12, ST17] in the hope that the blow-up limits will reveal
both geometric and algebraic structures of underlying algebraic singularities and the
associated birational surgeries. New proofs of Perelman’s estimates were discovered
for the Fano Kähler-Ricci flow [JST2] and were extended to general case in [JST1].
They provide a refined geometric picture of the analytic minimal model program.
This paper is a continuation of [JST1] and [JST2] and lays the groundwork for the
future study on the formation of singularities of the Kähler-Ricci flow.

1.1 Statement of the main results. We consider the unnormalized Kähler-Ricci
flow

⎧
⎨
⎩

∂g(t)

∂t
= −Ric(g(t)),

g(0) = g0,
(1.1)

on a Kähler manifold X of complex dimension n ≥ 2 for any initial Kähler metric
g0 ∈ H1,1(X,R) ∩ H2(X,Q).

Suppose the flow develops finite time singularities at T > 0. Kawamata’s ratio-
nality and base point free theorem imply that T ∈ Q and the limiting cohomology
class ϑ = [ω0] + T [KX ] ∈ H1,1(X,R) ∩ H2(X,Q) is a semi-ample Q-line bundle. In
particular, the semi-ample line bundle ϑ induces a unique surjective holomorphic
map

Φ : X → Y ⊂ CPN , (1.2)

where Y is a normal projective variety and dimY is equal to the Kodaira dimension
of ϑ. We will always assume that T = 1 after replacing ω0 by T −1ω0.

(1) When Y is a point, X is a Fano manifold and the Kähler-Ricci flow must have
finite time extinction.

(2) When 0 < m := dimC Y < dimC X , the general fibre of Φ : X → Y is a Fano
manifold and such a Fano fibration is also called a Mori fibration.

(3) When dim Y = dim X , Φ is a birational morphism corresponding to a divisorial
contraction or a small contraction of a flip.

We let θY be a smooth closed (1,1)-form on Y with

Φ∗θY ∈ ϑ. (1.3)

That is, θY is the restriction of a local smooth closed (1,1)-form through a local
embedding of Y into some CM . For example, we can choose θY to be the multiple
of the Fubini-Study metric CPN restricted to Y ⊂ CPN . We abuse our notation by
identifying θY with Φ∗θY for convenience.
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For fixed θY , there exists u ∈ C∞(X × [0,1)) such that

Ric(g(t)) − (1 − t)−1g(t) = −(1 − t)−1θY −
√

−1∂∂u.

In [JST1], we define the so-called Ricci vertex in the following way. A point p is said
to be a Ricci vertex at t ∈ [0,1) associated to θY if

u(p, t) = inf
X

u(·, t).

In [JST1, Theorem 1.5], we obtain the Li-Yau type estimates for the normalized
Ricci potential v(x, t) = u(x, t)− infX u(·, t)+1, which implies the gradient estimates
for v both in space and time directions. At the Ricci vertex we have v = 1, hence
locally around the Ricci vertex, we have uniform bound of v. Such local potential
bound would imply local scalar curvature bound, which allows us to obtain com-
pactness and structure theories for the Type-I blow up limits based at the Ricci
vertices.

The goal of this paper is to study the geometric regularity of the Type I blow-up
limits of the solution of (1.1) around Ricci vertices.

Consider any sequence of times ti ↗ 1. Let (Mi, (gi,t)t∈[−Ti,0]) be the flows arising
from (X, (g(t))t∈[0,1)) by setting

Mi := X, gi,t := (1 − ti)
−1g((1 − ti)t + ti), t ∈ [−Ti,0].

where Ti = ti/(1 − ti) → ∞ as i → ∞. By [Bam23], let pi ∈ X be any base-point, by
passing to a subsequence, we can obtain F-convergence on compact time-intervals

(Mi, (gi,t)t∈[−Ti,0], (νpi,0;t)t∈[−Ti,0])
F,C−−−→

i→∞
(X , (νp∞;t)t∈(−∞,0]), (1.4)

within some correspondence C, where X is a future continuous and H2n-concentrated
metric flow of full support over (−∞,0]. See Definition 2.13 for the definition of H2n-
concentrated metric flow.

According to [Bam2], we can decompose X into its regular and singular part

X = R 
 S, (1.5)

where R is dense open subset of X . Also, R carries the structure of a Ricci flow
spacetime (R, t, ∂t, g). For any t ∈ (−∞,0), writing Rt = Xt ∩R, we have that (Xt, dt)
is the metric completion of (Rt, gt).

The first main result of this paper is the following theorem.

Theorem 1.1. Let θY ∈ ϑ be any smooth closed (1,1)-form on Y , and let pi ∈ X be a

Ricci vertex associated with θY at ti. Then the limiting metric flow X is a continuous

metric flow on (−∞,0], both in the Gromov-Hausdorff sense and the Gromov-W1-

sense.
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The main technical obstacle to proving Theorem 1.1 is the lack of uniform scalar
curvature control. In fact, the proof of the theorem is built on the key gradient esti-
mate we establish for solutions of backwards heat equations, along with techniques
developed in [BZ19]. It seems that the validity of such an estimate relies on global
information of the flow, particularly on the quadratic growth rate for scalar curva-
ture. To prove Theorem 1.1, we first prove a Li-Yau type estimate for the forward
heat kernel on the Kähler-Ricci flow. This estimate is similar to that of [ZZ18], but
it depends on the Ricci potential rather than on the scalar curvature. We further
establish a gradient estimate for solutions of the backward heat equation via inte-
gral estimates. This allows us to establish locally uniform continuity of the distance
function in time along the rescaled flow of Type I, which can also be passed to the
limit.

The following theorem analyzes the geometric regularity of the blow-up limits.

Theorem 1.2. Let θY ∈ ϑ be any smooth closed (1,1)-form on Y , and let pi ∈ X be

a Ricci vertex associated with θY at ti. Then the following statements hold for every

t ∈ (−∞,0].

(1) (Xt, dt,Rt, gt) is a singular space of dimension 2n in the sense of Defini-

tion 2.16.

(2) The Minkowski dimension for the closed singular set St of each time slice is

given by

dimM St ≤ 2n − 4.

(3) Any tangent cone of (Xt, dt) is a metric cone.

The proof of Theorem 1.2 is built on combination of techniques from [Bam18] with
[Bam2]. An important step is to identify Gromov-Hausdorff convergence of points
with convergence of points in the sense defined in [Bam23].

Remark 1.3. It follows from the results of [JST1] that any tangent cone of (Xt, dt)
at a point x ∈ Xt is also a complex analytic variety. In a forthcoming note, we will
show that this tangent cone is an affine algebraic variety uniquely and algebraically
determined by the germ of the variety (Xt, x).

Remark 1.4. We explain some key ingredients of this paper.
If we assume the flow (1.1) has global Type I scalar curvature bound (e.g. when

X is Fano manifold and g0 ∈ c1(X), which is exactly Perelman’s estimate), then the
results of this paper follows from [BZ17] and [Bam18].

In general, it’s reasonable to expect only local scalar curvature bound. We consider
the normalized flow s = − ln(1 − t), ω̃(s) = (1 − t)−1ω(t), t ∈ [0,1). For simplicity, we
assume a(s) = infX u(·, s) is smooth, where u(s) = u(t(s)) with t(s) = 1 − e−s. We
define the normalized Ricci potential by v = u − a + 1, which satisfies the following
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coupled equations:
{

∂
∂sv = Δv + trω̃(s)(e

sθY ) + v − a′ + a − 1,

Ric(ω̃(s)) = ω̃(s) − esθY −
√

−1∂∂v.

By taking trace of the second equation and the Li-Yau type estimates in [JST1,
Theorem 1.5], we have Rg̃ ≤ Cv, and so v is a barrier for the scalar curvature.
Therefore we obtain a local scalar curvature bound around the Ricci vertex. This
allows us to carry out most of the arguments of [BZ17] and [Bam18]. However we
have to utilize the Ricci potential v rather than the scalar curvature itself, but for
some arguments (e.g. Lemma 3.9, the generalized maximum principle).

Our paper is organized as follows.
In Sect. 2, we recall some conventions and notations, as well as some known results

to be used in the later sections.
In Sect. 3, we derive analytic estimates for the finite time solutions of the Kähler-

Ricci flow. The local good distance distortion estimates are established based on a
new Harnack inequality for the heat equation coupled with the Kähler-Ricci flow
(see Theorem 3.6). We further prove Theorem 1.1 after obtaining Gromov-Hausdorff
continuity and Gromov-W1 continuity for the limiting metric flow in time.

In Sect. 4, we prove Theorem 1.2 for Ricci flows with scalar curvature controlled
by suitable barrier functions. Such barrier functions are natural generalizations of
the Ricci potentials from the Kähler-Ricci flow.

2 Conventions and preliminary results

In this section, we recall some notations and facts from Bamler’s theory, (see [Bam1,
Bam23, Bam2]).

2.1 Notation and conventions. Let (M, g(t))t∈I be a smooth Ricci flow on a
compact n-dimensional manifold, where I ⊂ R is an interval. For (x0, t0) ∈ M × I ,
A, T −, T + ≥ 0, the corresponding parabolic neighborhood is defined by

P (x0, t0;A,−T −, T +) = B(x0, t0, A) × ([t0 − T −, t0 + T +] ∩ I
)

, (2.1)

where we may omit −T − or T + if it is zero. For any r > 0, we set P (x0, t0; r) :=
P (x0, t0; r, −r2, r2).

The heat operator associated to (M, g(t)) is given by

� =
∂

∂t
− Δ

and the conjugate heat operator is given by

�
∗ = − ∂

∂t
− Δ + R,

where Δ is the Laplacian associated to g(t) and R is the scalar curvature of g(t).
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For any (x, t), (y, s) ∈ M × I with s ≤ t, we denote by K(x, t;y, s) the heat kernel
of the Ricci flow based at (y, s), satisfying

�K(·, ·;y, s) = 0, lim
t→s+

K(·, t;y, s) = δy, (2.2)

where δy is the Dirac measure at y. Then, K(x, t; ·, ·) is the conjugate heat kernel
based at (x, t), satisfying

�
∗K(x, t; ·, ·) = 0, lim

s→t−

K(x, t; ·, s) = δx. (2.3)

Using the conjugate heat kernel, we can define the conjugate heat measure νx,t;s

based at (x, t) by

dνx,t;s = K(x, t; ·, s)dg(t) = (4πτ)−n/2e−f dg(t), (2.4)

where τ = t − s and f ∈ C∞(M × (−∞, t)) is called the potential of the conjugate
heat measure νx,t;s.

For two probability measures μ1 and μ2 on a Riemannian manifold (M, g), the
Wasserstein W1-distance between μ1 and μ2 is defined by

dg
W1

(μ1, μ2) = sup
f

(∫

M
fdμ1 −

∫

M
fdμ2

)
, (2.5)

where the supremum is taken over all bounded 1-Lipschitz function on (M, g). The
variance between μ1 and μ2 is defined by

Var(μ1, μ2) =
∫

(x1,x2)∈M×M
d2

g(x1, x2)dμ1(x1)dμ2(x2). (2.6)

Then we have the following basic relation between the Wasserstein W1-distance and
the variance

dg
W1

(μ1, μ2) ≤
√

Var(μ1, μ2). (2.7)

For any (x0, t0) ∈ M × I , A, T −, T + ≥ 0, we define the P ∗-parabolic neighborhood

P ∗(x0, t0;A,−T −, T +) ⊂ M × I, (2.8)

as the set of (x, t) ∈ M × I with t ∈ [t0 − T −, t0 + T +] and

d
gt0−T −

W1
(νx0,t0;t0−T − , νx,t;t0−T −) < A. (2.9)

As before, we may omit −T − or T + if it is zero. We also define the P ∗-parabolic
r-ball by P ∗(x0, t0; r) := P ∗(x0, t0; r, −r2, r2).

Next we define the Hn-center at a base point along the Ricci flow.

Definition 2.1. A point (z, t) ∈ M × I is called an Hn-center of a point (x0, t0) ∈
M × I if t ≤ t0 and

Vart(δz, νx0,t0;t) ≤ Hn(t0 − t), (2.10)

where Vart is the variance with respect to the metric g(t).
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Immediately, if (z, t) is an Hn-center of (x0, t0), then we have

d
g(t)
W1

(δz, νx0,t0;t) ≤
√

Var(δz, νx0,t0;t) ≤
√

Hn(t0 − t). (2.11)

The following lemma is proved in [Bam1], which asserts that the mass of the conju-
gate heat kernel measure will concentrate around the Hn-centers.

Lemma 2.2. If the point (z, t) is an Hn-center of (x0, t0) with t < t0, then for any

A > 0, we have

νx0,t0;t

(
B

(
z, t,
√

AHn(t0 − t)
))

≥ 1 − 1

A
.

We now define the Nash entropy introduced by Hein-Naber [HN14]. Let dν =
(4πτ)−n/2e−f dg be a probability measure on a closed n-dimensional Riemannian
manifold (M, g) with τ > 0 and f ∈ C∞(M). The Nash entropy is defined by

N [g, f, τ ] =
∫

M
fdν − n

2
. (2.12)

Writing dνx0,t0;t = (4πτ)−n/2e−f(t)dg(t), where τ = t0 −t ≥ 0, we define the pointed
Nash entropy based at (x0, t0) by

Nx0,t0(τ) = N [g(t0 − τ), f(t0 − τ), τ ]. (2.13)

We also set

Nx0,t0(0) = 0,

which makes Nx0,t0(τ) continuous at τ = 0. We also define

N ∗
s (x0, t0) = Nx0,t0(t0 − s), (2.14)

for s < t0 and s ∈ I . The pointed Nash entropy Nx0,t0(τ) is non-increasing as a
function of τ ≥ 0.

By [Bam1], the pointed Nash entropy N ∗
s has bounded oscillation in any P ∗-

neighborhood. To be more precise, if P = P ∗(x0, t0;A,−T −, T +) and T − < t0 − s,
then we have

oscP N ∗
s ≤ 2

(
n

2(t0 − s − T −) − Rmin

)1/2

A +
n

2
ln
(

t0 − s + T +

t0 − s − T −

)
, (2.15)

where Rmin denotes the lower scalar curvature bound.
For any compact, n-dimensional manifold (M, g), Perelman’s W-functional is de-

fined by, for any τ > 0,

W[g, f, τ ] = (4πτ)−n/2
∫

M

(
τ(|∇f |2 + R) + f − n

)
e−f dg,
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with f ∈ C∞(M) so that
∫

M (4πτ)−n/2e−f dg = 1, and Perelman’s μ-functional and
ν-functional are defined by

μ[g, τ ] = inf∫
M

(4πτ)−n/2e−f dg=1
W[g, f, τ ],

and

ν[g, τ ] = inf
0<τ ′<τ

μ[g, τ ].

If (M, (gt)t∈[0,T )) is a Ricci flow, then the functions t → μ[gt, T − t] and t → ν[gt, T − t]
are non-decreasing. It is proved in [Bam1] that

N ∗
t (x0, t0) ≥ μ[g(t), t0 − t], (2.16)

for any t < t0.
Next, we define

Definition 2.3 (Curvature Radius). For any (x, t) ∈ M ×I , we define the curvature
radius at (x, t) as follows:

rRm(x, t) := sup
{

r > 0 : |Rm| ≤ r−2 on P (x, t; r)
}

.

Then we have the following lemma.

Lemma 2.4. For any α > 0, there exists C(n, α) < ∞, such that the following state-

ment holds.

Let (M, g(t))t∈I be a smooth Ricci flow on a compact n-dimensional manifold

with the interval I ⊂ R. Assume [a − α, b] ⊂ I , then in the weak sense we have

(1) |∇rRm| ≤ 1 on each time-slice M × {t} for all t ∈ [a, b];
(2) |∂tr

2
Rm| ≤ C(n, α) on M × [a, b].

Proof. Item (1) is clear from definition. Item (2) is from [BZ17, Lemma 6.1]. �

2.2 Entropy and heat kernel bounds. In [Bam1], Bamler established systematic
results on the Nash entropy and heat kernel bounds on a Ricci flow background. Let
us recall some results that will be used in our theory.

The following quantitative volume estimates are established in [Bam1].

Lemma 2.5. Let (M, g(t))t∈[−r2,0] be a solution of the Ricci flow. If

R ≤ r−2, on Bg(0)(x, r) × [−r2,0],

then

Volg(0)(Bg(0)(x, r)) ≥ ce
N ∗

−r2 (x,0)
rn. (2.17)

The assumption on the scalar curvature upper bound can be replaced using the
Hn-center as proved in [Bam1].
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Lemma 2.6. Let (M, g(t))t∈[−r2,0] be a solution of the Ricci flow. Suppose (z,−r2) is

an Hn-center of (x0,0) and

R(·,−r2) ≥ Rmin,

for some fixed Rmin ∈ R. Then there exists c = c(Rminr2) > 0 such that

Volg(−r2)(Bg(−r2)(z, (2Hn)1/2r)) ≥ ce
N ∗

−r2 (x,0)
rn. (2.18)

Next, we have the following heat kernel upper bound, which is proved in [Bam1]
(Theorem 7.2).

Lemma 2.7. Let (M, g(t))t∈I be a solution of the Ricci flow. Suppose that on M ×
[s, t],

[s, t] ⊂ I, R ≥ Rmin.

Let (z, s) ∈ M ×I be an Hn-center of (x, t) ∈ M ×I . Then there exist C = C(Rmin(t−
s)) < ∞, such that for any y ∈ M , we have

K(x, t;y, s) ≤ C(t − s)−n/2e−N ∗

s (x,t)e
− d2

s(z,y)

C(t−s) . (2.19)

Using this heat kernel upper bound estimate, we have the following estimate
which relates the W1-distance to the L-length. This estimate was used in [Jia23] to
prove an improved version of the volume non-collapsing estimate.

Lemma 2.8. Let (M, g(t))t∈(−T,0) be a solution of the Ricci flow for some T > 0.
Suppose (s, t) ⊂ (−T, 0) with s > −T + ε > 0 for some ε > 0. Let γ : [0, t − s] →
M × (−T, 0) be a C1 spacetime curve with

γ(τ) ∈ M × {t − τ}, γ(0) = (x, t), γ(t − s) = (y, s).

Then there exists C = C(ε) > 0 such that

d
g(s)
W1

(δy,s, νx,t;s) ≤ C

(
1 +

L(γ)

2(t − s)1/2
− N ∗

s (x, t)
)1/2

(t − s)1/2. (2.20)

Next, we have the following Lemma.

Lemma 2.9. Let (M, g(t))t∈I be a smooth Ricci flow on a compact n-dimensional

manifold with the interval I ⊂ R. Assume that (x0, t0) ∈ M × I , r0 ≤ 1 satisfy that

[t0 − 2r2
0, t0] ⊂ I , R(x0, t) ≤ Y r−2

0 for all t ∈ [t0 − r2
0, t0], and N ∗

t0−r2
0
(x0, t0) ≥ −Y ,

then we have

d
g(t0−r2

0)
W1

(νx0,t0;t0−r2
0
, δx0) ≤ Cr0

for some constant C = C(n, Y ) < ∞.
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Proof. After parabolic rescaling, we may assume without loss of generality that
r0 = 1. Consider the spacetime curve defined by γ(τ) = (x0, t0 − τ) for τ ∈ [0,1],
then we have

L(γ) =
∫ 1

0
τ 1/2R(x0, t0 − τ)dτ ≤ 3Y,

Hence we can apply Lemma 2.8 to obtain

d
g(t0−1)
W1

(νx0,t0;t0−1, δx0)

≤C

(
1 +

L(γ)

2(t0 − (t0 − 1))
1
2

− N ∗
t0−1(x0, t0)

)1/2

(t0 − (t0 − 1))1/2

≤C.

This completes the proof. �

Finally, let us recall the following result, which was proved by Perelman in [Per1].

Lemma 2.10. Let (M, g(t))t∈(−T,0) be a solution of the Ricci flow for some T > 0.
Suppose [s, t] ⊂ (−T, 0). Then for any x ∈ M , there exists a point y ∈ M , such that


(x,t)(y, s) ≤ n

2
.

We will call the point (y, s) an 
n-center of (x, t) in Lemma 2.10.

Remark 2.11. According to Lemmas 2.8 and 2.9, for a given point (x, t), the dis-
tance between the 
n-center (y, s) and the Hn-center (z, s) is always bounded in the
scale

√
t − s. By definition, for the 
n-center (y, s), we can find a reduced geodesic

from (x, t) to (y, s), with bounded reduced length, while for the Hn-center (z, s), we
don’t know if such reduced geodesic exists or not.

As for the Ricci vertex, which is defined in the background of AMMP and Kähler-
Ricci flow, by the Li-Yau type estimate in [JST1, Theorem 1.5], we can see that, if
(x, t) is a Ricci vertex, then the bound of the normalized Ricci potential remains to
hold at the 
n-center (y, s), hence also the Hn-center (z, s). In conclusion, if the base
point (x, t) is a Ricci vertex, then at s < t, the Ricci vertex, the 
n-center (y, s) and
the Hn-center (z, s) will be close to each other at the right scale.

2.3 Metric flows and F-convergence. Let (X, d) be a complete, separable metric
space and denote by B(X) the Borel σ-algebra generated by the open subsets of X . A
probability measure on X is a measure μ on B(X) with μ(X) = 1. We denote by P(X)
the set of probability measures on X . Denote by Φ : R → (0,1) the antiderivative
satisfies that Φ′(x) = (4π)−1/2e−x2/4, limx→−∞ Φ(x) = 0, limx→∞ Φ(x) = 1.

Definition 2.12 (Metric Flow Pairs, Definitions 3.2, 5.1 in [Bam23]). A metric flow
over I ⊆ R is a tuple

(X , t, (dt)t∈I , (νx;s)x∈X ,s∈I∩(−∞,t(x)]),
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where X is a set, t : X → I is a function, dt are metrics on the level sets Xt := t
−1(t),

such that (Xt, dt) is a complete and separable metric space for all t, and νx;s ∈ P(Xs),
s ≤ t(x) are such that νx;t(x) = δx and the following hold:

(1) (Gradient estimate for heat flows) For s, t ∈ I , s < t, T ≥ 0, if us : Xs → [0,1]
is such that Φ−1 ◦ us is T − 1

2 -Lipschitz (or just measurable if T = 0), then
either ut : Xt → [0,1], x �→ ∫Xs

usdνx;s, is constant or Φ−1 ◦ ut is (T + t − s)− 1
2 -

Lipschitz,
(2) (Reproduction formula) For t1 ≤ t2 ≤ t3 in I , νx;t1(E) =

∫
Xt2

νy;t1(E)dνx;t2(y)
for x ∈ Xt3 and all Borel sets E ⊆ Xt1 .

A conjugate heat flow on X is a family μt ∈ P(Xt), t ∈ I ′, such that for s ≤ t in I ′,
we have μs(E) =

∫
Xt

νx;s(E)dμt(x) for any Borel subset E ⊆ Xs. A metric flow pair
(X , (μt)t∈I′) consists of a metric flow X , along with a conjugate heat flow (μt)t∈I′

such that supp(μt) = Xt and |I \ I ′| = 0.

Definition 2.13 (Hn-concentrated metric flow, Definitions 3.30 in [Bam23]). The
metric flow X is called Hn-concentrated, if for any s ≤ t, s, t ∈ I , and x1, x2 ∈ Xt, we
have

Vart(νx1;s, νx2;s) ≤ Hn(t − s).

Next, we have the following definitions.

Definition 2.14 (Correspondences and F-Distance, Definitions 5.4, 5.6 in [Bam23]).
Given metric flows (X i)i∈I defined over I ′ ,i, a correspondence over I ′′ ⊆ R is a pair

C =
(
(Zt, dt)t∈I′′ , (ϕi

t)t∈I′′ ,i,i∈I
)

where (Zt, d
Z
t ) are metric spaces, I ′′ ,i ⊆ I ′ ,i ∩ I ′′, and ϕi

t : (X i
t , di

t) → (Zt, d
Z
t ) are

isometric embeddings.
The F-distance between metric flow pairs (X j , (μj

t)t∈I′ ,j ), j = 1,2, within C is
the infimum of r > 0 such that there exists a measurable set E ⊆ I ′′ such that
I ′′ \ E ⊆ I ′′ ,1 ∩ I ′′ ,2, |E| ≤ r2, and there exist couplings qt of (μ1

t , μ2
t ), t ∈ I ′′ \ E, such

that for all s, t ∈ I ′′ \ E with s ≤ t, we have
∫

X 1
t ×X 2

t

dZs
W1

(
(ϕ1

s)∗ν1
x1;s, (ϕ

2
s)∗ν2

x2;s

)
dqt(x

1, x2) ≤ r.

The F-distance between metric flow pairs is the infimum of F-distances within a
correspondence C, where C is varied among all correspondences.

For the next definition, we suppose (X i, (μi
t)t∈I′ ,i) F-converge to (X ∞, (μ∞

t )t∈I′ ∞)
within the correspondence C.

Definition 2.15 (Convergence within a correspondence, Definition 6.18 in [Bam23]).

Given μi ∈ P(X i
ti

) and μ∞ ∈ P(X ∞
t∞

), we write μi C−−−→
i→∞

μ∞ if ti → t∞ and there exist
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Ei ⊆ I ′′ such that |I ′′ \ Ei| → 0, Ei ⊆ I ′′ and

lim
i→∞

sup
t∈I′′\E

dZt
W

(
(ϕi

t)∗μi
t, (ϕ

∞
t )∗μ∞

t

)
= 0,

where μi
t is the conjugate heat flow on X i with μi

ti
= μi, for i ∈ N ∪ {∞}. We write

xi
C−−−→

i→∞
x∞ if δxi

C−−−→
i→∞

δx∞
.

We will need the following definition of singular spaces introduced by Bamler, see
[Bam18, Definition 2.1].

Definition 2.16 (Singular space). A tuple (X, d, R, g) is called a singular space (of
dimension n) if it satisfies the following properties:

(1) (X, d) is a locally compact, complete metric length space.
(2) RX ⊂ X is an open and dense subset, which can be equipped with a structure

of a smooth Riemannian n-manifold (RX , g), such that the inclusion map
(RX , dg) → (X, d) is a local isometry,

(3) The length metric of (RX , g) is equal to the restriction of d to R. In other
words, (X, d) is the completion of the length metric on (R, g).

(4) For any compact subset K ⊂ X , there are constants 0 < κ1(K) < κ2(K) < ∞
such that for all x ∈ K and 0 < r < 1, we have

κ1rn ≤ |B(x, r) ∩ R| ≤ κ2rn.

Here | · | denotes the Riemannian volume with respect to the metric g and
distance balls B(x, r) are measured with respect to the metric d.

The subset R is called the regular part and its complement S := X \ R is called
the singular part.

3 Continuity of blow-up limits of the Kähler-Ricci flow

3.1 Set up and preliminary results. We consider the normalized version of (1.1),
that is, we consider the following normalized Kähler-Ricci flow

⎧
⎨
⎩

∂ω̃(s)

∂s
= −Ric(ω̃(s)) + ω̃(s),

ω̃(0) = ω0,
(3.1)

which has a long-time solution with s ∈ [0,∞). The relations between the unnor-
malized Kähler-Ricci flow (1.1) and normalized Kähler-Ricci flow (3.1) are given
by

s = − ln(1 − t), t = 1 − e−s, ω̃(s) = (1 − t)−1ω(t), t ∈ [0,1). (3.2)

We can always find a smooth closed (1,1)-form χ ∈ −[KX ] such that

ωY = ω0 − χ
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is the restriction of the Fubini-Study metric ωFS on CPN to Y . We can also choose
a smooth volume form Ω such that

−
√

−1∂∂ log Ω = χ

since −χ ∈ [KX ]. The normalized flow (3.1) can be reduced to the complex Monge-
Ampère flow as below:

⎧
⎨
⎩

∂ϕ

∂s
= log

(ω0 + (es − 1)ωY +
√

−1∂∂ϕ)n

Ω
+ ϕ, s ∈ [0,∞),

ϕ|s=0 = 0.
(3.3)

We have the following well-known parabolic Schwarz lemma.

Lemma 3.1 (Parabolic Schwarz Lemma). Let β be any Kähler metric on CPN . For

the solution to the unnormalized flow ω(t), we have

trω(t)β ≤ C, (3.4)

and
(

∂

∂t
− Δω(t)

)
trω(t)β ≤ −C−1|∇trω(t)β|2ω(t) + C, (3.5)

on X × [0,1).
For the solution to the normalized flow ω̃(s), we have

trω̃(s)(e
sβ) ≤ C, (3.6)

and
(

∂

∂s
− Δω̃(s)

)
trω̃(s)(e

sβ) ≤ −C−1|∇trω̃(s)(e
sβ)|2ω̃(s) + Ce−s, (3.7)

on X × [0,∞). Here C < ∞ is a constant, depends on n, ω0 and the upper bound for

the bisectional curvature of β.

In the normalized flow, we denote the Ricci potential by

u0 =
∂ϕ

∂s
, (3.8)

then u0 satisfies the following coupled equations
{

∂
∂su0 = Δu0 + trω̃(s)(e

sωY ) + u0 = n − Rg̃(s) + u0,

Ric(ω̃(s)) = ω̃(s) − esωY −
√

−1∂∂u0.
(3.9)

For convenience, we still denote by u0(t) the function u0(s(t)) with s(t) = − log(1−t),
which is a function on the unnormalized flow X × [0,1).

Now, let θY be a smooth closed (1,1)-form on Y with Φ∗θY ∈ ϑ. Then we have

ωY − θY =
√

−1∂∂ρ, (3.10)
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where ρ is a smooth function on CPN . We still denote by ρ the pullback function
Φ ◦ ρ. Then in the normalized flow, we define

u1 = u0 + esρ, (3.11)

on X × [0,∞). When we are in the unnormalized flow, we still denote by u1(t) the
function u1(s(t)) with s(t) = − log(1 − t), and we can check that

Ric(ω(t)) − (1 − t)−1ω(t) = −(1 − t)−1θY −
√

−1∂∂u1,

for all t ∈ [0,1). Denote by

α =
√

−1∂∂ρ. (3.12)

We can view α as a smooth form on CPN . Now u1 is a smooth function, satisfying
the following coupled equations

{
∂
∂su1 = Δu1 − trω̃(s)(e

s(α − ωY )) + u1 = n − Rg̃(s) + u1,

Ric(ω̃(s)) = ω̃(s) + es(α − ωY ) −
√

−1∂∂u1,
(3.13)

on X × [0,∞).
In order to normalize u1, denote by a(s) := infX u1(·, s). We have the following

important estimates of a(s).

Lemma 3.2 (Lemma 4.3 in [JST1]). For any constants s0, T ≥ 0, for s ∈ [0, s0 + T ]
we have

es−s0a(s0) − B ≤ a(s), (3.14)

for some constant B = B(n, ω0,‖ρ‖C2(ωFS), T ) < ∞.

Given any sequence of times ti ↗ 1 in the normalized flow, let si = − ln(1 − ti) →
∞ as i → ∞. Let B0 = B(n, ω0,‖ρ‖C2(ωFS),0) be the constant from Lemma 3.2, then
we define

bi(s) = es−sia(si) − B0, (3.15)

where s is the time parameter in the normalized flow (X, g̃(s)). By Lemma 3.2, we
have bi(s) ≤ a(s) for all s ∈ [0, si]. We then denote by

vi = u1 − bi(s) + 1, (3.16)

which is a smooth function on the normalized flow (X, g̃(s)), s ∈ [0,∞). Then we
have vi ≥ 1 on X × [0, si].

According to [JST1], we have the following gradient and Laplacian estimates

|Δu1|
u1 − a + 1

+
|∇u1|2

u1 − a + 1
≤ C, (3.17)
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on the normalized flow (X, g̃(s)), s ∈ [0,∞). Hence for vi, by Lemma 3.2 and the
Schwarz lemma, we have

|∂svi|
vi

+
|Δvi|

vi
+

|∇vi|2
vi

≤ C, (3.18)

on X × [0, si].
Now, recall from the unnormalized flow (X, g(t)), t ∈ [0,1), we define Mi = X

and gi,t := (1 − ti)−1g((1 − ti)t + ti), t ∈ [−Ti,0] with Ti = ti/(1 − ti). Hence we can
compute that

ωi,t = (1 − t)ω̃(s(t)), s(t) = − ln(1 − t) − ln(1 − ti), t ∈ [−Ti,0].

For the convenience of the notations, we still denote by vi(t) = vi(s(t)), where s(t) =
− ln(1− t)− ln(1− ti), which makes vi a function on the Ricci flow (Mi, (gi,t)t∈[−Ti,0]),
hence we have vi ≥ 1 on Mi × [−Ti,0]. From (3.13), vi satisfy the following coupled
equations

{(
∂t − Δωi,t

)
vi = vi−(B0+1)

1−t − 1
1−ttrωi,t(

α−ωY

1−ti
),

Ric(ωi,t) = 1
1−t(ωi,t + α−ωY

1−ti
) −

√
−1∂∂vi,

(3.19)

on Mi × [−Ti,0]. We should remark here that, the factor 1
1−t here is not a Type I

bound, it’s actually a good term on (Mi, (gi,t)t∈[−Ti,0]). From the parabolic Schwarz

Lemma, say Lemma 3.1, we have for any Kähler metric β on CPN , trωi,t

(
β

1−ti

)
≤ C

and

(
∂t − Δωi,t

)
trωi,t

(
β

1 − ti

)
≤ −C−1

∣∣∣∣∇trωi,t

(
β

1 − ti

)∣∣∣∣
2

ωi,t

+ C(1 − ti), (3.20)

on Mi × [−Ti,0], for some constant C depending on β.
From (3.18), on (Mi, (gi,t)t∈[−Ti,0]), we have

|∂tvi|
vi

+
|Δvi|

vi
+

|∇vi|2
vi

≤ C

1 − t
≤ C. (3.21)

In conclusion, if we let pi be the Ricci vertex associated to θY at ti = 1 − e−si ,
then we have the following estimates.

Lemma 3.3. There exists constant C = C(n, ω0,‖ρ‖C4(ωFS)) < ∞, such that the fol-

lowing statements hold on the Ricci flow (Mi, (gi,t)t∈[−Ti,0]).

(1) vi ≥ 1;

(2) |∂tvi|
vi

+ |Δvi|
vi

+ |∇vi|2
vi

≤ C;

(3) Rgi ≤ Cvi;

(4) vi(pi,0) = B0 + 1.

Here all the operators are with respect to the metric gi,t.
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Item (3) follows from taking trace of the second equation of (3.19) and the
parabolic Schwarz Lemma, say Lemma 3.1. Item (4) follows from the definition of
the Ricci vertex.

Now according to (1.4), after passing to a subsequence, we can obtain F-
convergence on compact time-intervals

(Mi, (gi,t)t∈[−Ti,0], (νpi,0;t)t∈[−Ti,0])
F,C−−−→

i→∞
(X , (νp∞;t)t∈(−∞,0]), (3.22)

within some correspondence C, where X is a future continuous and H2n-concentrated
metric flow of full support over (−∞,0].

Throughout this section, unless otherwise stated, all the constants will depend at
most on n, ω0, ‖ρ‖C4(ωFS). We will omit this dependence in this section for conve-
nience.

3.2 Heat kernel estimate and good distance distortion lower bound. In this
subsection, we will obtain the good distortion lower bound on (Mi, (gi,t)t∈[−Ti,0]). For
convenience of notions, we will omit all the subscript i in this subsection.

First, we have the following heat kernel estimate.

Lemma 3.4. For −T ≤ s < t ≤ 0 and x, y ∈ M , we have the following estimate for

some C < ∞:

(i) Any H2n-center (z, s) of (x, t) satisfies d2
s(x, z) ≤ C

(
1 +
∫ t

s R(x, τ)dτ
)

(t − s);

(ii) We have

K(x, t;y, s) ≥ 1

C(t − s)n
exp

(
−C

∫ t

s
R(y, τ)dτ − Cd2

t (x, y)

(t − s)

)
,

K(x, t;y, s) ≤ C

(t − s)n
exp

(
C

∫ t

s
R(x, τ)dτ − d2

s(x, y)

C(t − s)

)
.

Proof. First, we have (note here we are of real dim 2n)

1

C(t − s)n
exp
(

−
∫ t

s
R(x, τ)dτ

)
≤ K(x, t;x, s) ≤ C

(t − s)n
. (3.23)

The upper bound follows from [Zha12], and the lower bound follows by combining
K(x, t;x, s) ≥ 1

C(t−s)n e−�(x,t)(x,s) with


(x,t)(x, s) ≤ 1

2
√

t − s

∫ t−s

0

√
τR(x, t − τ)dτ ≤

∫ t

s
R(x, τ)dτ.

(i) Let (z, s) be any H2n-center of (x, t). Then from [Bam1, Theorem 7.2] and (3.23),
we have

1

C(t − s)n
exp
(

−
∫ t

s
R(x, τ)dτ

)
≤ K(x, t;x, s) ≤ C

(t − s)n
exp

(
− d2

s(x, z)

10(t − s)

)
,



1916 M. HALLGREN ET AL. GAFA

which implies that

d2
s(x, z) ≤ C

(
1 +
∫ t

s
R(x, τ)dτ

)
(t − s).

(ii) Qi Zhang’s gradient estimate [Zha06, Theorem 3.2] and the upper bound in
(3.23) combine to give

|∇xK(x, t;y, s)|
|K(x, t;y, s)| ≤

√
1

t − s
log
(

C(t − s)−n

K(x, t;y, s)

)
,

so that
∣∣∣∣∣∇x

√
log
(

C(t − s)−n

K(x, t;y, s)

)∣∣∣∣∣≤
C√
t − s

,

which we can integrate to get

log
(

C(t − s)−n

K(x2, t;y, s)

)
≤ 2 log

(
C(t − s)−n

K(x1, t;y, s)

)
+

Cd2
t (x1, x2)

t − s
.

Choosing x1 = y and x2 = x, the lower bound in (3.23) then gives

log
(

C(t − s)−n

K(x, t;y, s)

)
≤ C

∫ t

s
R(y, τ)dτ +

Cd2
t (x, y)

t − s
.

Rearranging terms gives the lower bound.
Combining (i) with [Bam1, Theorem 7.2] gives

K(x, t;y, s) ≤ C

(t − s)n
exp

(
− d2

s(y, z)

9(t − s)

)

≤ C

(t − s)n
exp

(
C

∫ t

s
R(x, τ)dτ − d2

s(x, y)

10(t − s)

)
,

which proves the upper bound. �

Now we can prove the good distance distortion lower bound.

Proposition 3.5. For any A < T , D < ∞, there exist constants θ = θ(A, D) > 0,
C = C(A, D) < ∞, such that the following statement holds.

Assume −A ≤ t1 < t2 ≤ 0 satisfies t2 − t1 ≤ θ. Let p = pi be the Ricci vertex as

above. Assume x, y ∈⋃t∈[t1,t2] B(p, t, D). Then we have

dt2(x, y) ≥ dt1(x, y) − C
√

t2 − t1.

Proof. Throughout the proof, all the constants will depend at most on A, D. Let
(z, t1) be an H2n-center of (x, t2), then by Lemma 3.4, we have

d2
t1

(x, z) ≤ C

(
1 +
∫ t2

t1

R(x, t)dt

)
(t2 − t1). (3.24)
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Assume tx ∈ [t1, t2] satisfies dtx(x, p) ≤ D, then we have

R(x, t) ≤ Cv(x, t) ≤ Cv(x, tx) ≤ C(2v(p, tx) + CD2) ≤ C(Cv(p,0) + CD2) ≤ C,

for all t ∈ [t1, t2]. Hence by (3.24), we have

dt1(x, z) ≤ C
√

t2 − t1. (3.25)

Let u ∈ C∞(M × (t1, t2]) solve the heat equation, with u(·, t1) := dt1(x, ·). Then
(3.25) and [Bam1, Theorem 3.14] give

u(x, t2) =
∫

M
K(x, t2;w, t1)dt1(w, x)dgt1(w)

≤C
√

t2 − t1 +
∫

M
K(x, t2;w, t1)dt1(w, z)dgt1(w)

≤C
√

t2 − t1 +
√

t2 − t1

∫

B(z,t1,
√

t2−t1)
K(x, t2;w, t1)dgt1(w)

+
√

t2 − t1

∞∑

j=1

2j
∫

B(z,t1,2j+1
√

t2−t1)\B(z,t1,2j
√

t2−t1)
K(x, t2;w, t1)dgt1(w)

≤C
√

t2 − t1

⎛
⎝1 +

∞∑

j=1

2j exp

(
−(2j)2

10

)⎞
⎠

≤C
√

t2 − t1.

If we let ũ ∈ C∞(M × (t1, t2]) solve the heat equation with ũ(·, t1) = dt1(y, ·), the
same computation gives ũ(y, t2) ≤ C

√
t2 − t1. However, (u + ũ)(·, t1) ≥ dt1(x, y), so

the maximum principle gives (u + ũ)(·, t2) ≥ dt1(x, y), and in particular u(y, t2) ≥
dt1(x, y) − C

√
t2 − t1. Because |∇u| ≤ 1, we conclude

dt2(x, y) ≥ u(y, t2) − u(x, t2) ≥ dt1(x, y) − C
√

t2 − t1,

which completes the proof. �

3.3 Harnack inequality and global weak distance distortion upper bound. As
in Sect. 3.2, we will omit all the subscript i of (Mi, (gi,t)t∈[−Ti,0]) in this subsection.

Theorem 3.6. For any t0, t1 ∈ [−T, 0], t0 < t1, there exists C = C(t0) < ∞, such that

the following statement holds.

For any positive solution u ∈ C∞(M × [t0, t1]) of the heat equation, i.e. �u = 0,
where � is the operator in Sect. 2.1, we have

−Δu

u
+

1

2

|∇u|2
u2

≤ C

(
1

t − t0
+ v

)
,

on M × (t0, t1].
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Proof. Recall the evolution equation of the Ricci potential v from (3.19):

(∂t − Δ)v =
v − (B0 + 1)

1 − t
− 1

1 − t
trωtβ,

where β = α−ωY

1−ti
. Then we can compute

(∂t − Δ)|∇v|2 = −|∇∇v|2 − |∇∇v|2 +
2

1 − t
|∇v|2 +

2

1 − t
Re
〈

∇trωtβ,∇v
〉

. (3.26)

Denote by β0 = 1
1−ti

ωFS. Then choose a constant A < ∞ large enough such that
ω̃ := Aβ0 + β is a Kähler metric on CP N . By the parabolic Schwarz lemma (3.20),
we have

(∂t − Δ)trωtω̃ ≤ −C−1|∇trωtω̃|2 + C, (3.27)

(∂t − Δ)trωtβ0 ≤ −C−1 |∇trωtβ0|2 + C, (3.28)

and trωtω̃ ≤ C, trωtβ0 ≤ C. Hence by (3.19), we have

|∇∇v|2 ≥ |Ric|2 − C. (3.29)

We will estimate the following Li-Yau type Harnack quantity:

F := −Δu

u
+ δ

|∇u|2
u2

+ α|∇v|2 + trωtω̃ + trωtβ0 − γv,

where δ ∈ [ 1
2 ,1), α, γ ∈ [1,∞) are to be determined. We compute

(∂t − Δ)
Δu

u
=

〈Ric,∇∇u〉
u

+ 2
Re
〈

∇Δu, ∇u
〉

u2
− 2

|∇u|2Δu

u3
,

(∂t − Δ)
|∇u|2

u2
= − |∇∇u|2 + |∇∇u|2

u2

+ 4
Re
(
〈∇∇u, ∇u ⊗ ∇u〉 + 〈∇∇u, ∇u ⊗ ∇u〉

)

u3
− 6

|∇u|4
u4

.

From (3.19), we have

〈Ric,∇∇u〉
u

=
1

1 − t

Δu

u
− 〈∇∇u, ∇∇v〉

u
− 1

1 − t

〈β,∇∇u〉
u

.

Combining expressions we can compute

(∂t − Δ)F

≤ − 1

1 − t

Δu

u
+

〈∇∇u, ∇∇v〉
u

+
1

1 − t

〈β,∇∇u〉
u

− 2
Re〈∇Δu, ∇u〉

u2
+ 2

|∇u|2Δu

u3

− δ
|∇∇u|2 + |∇∇u|2

u2
+ 4δ

Re
(
〈∇∇u, ∇u ⊗ ∇u〉 + 〈∇∇u, ∇u ⊗ ∇u〉

)

u3
− 6δ

|∇u|4
u4
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− α|∇∇v|2 − α|∇∇v|2 +
2α

1 − t
|∇v|2 +

2α

1 − t
Re
〈

∇trωtβ,∇v
〉

− C−1|∇trωtβ0|2

− C−1|∇trωtω̃|2 − γ
1

1 − t
v − γ

1

1 − t
trωtβ + C.

Combining this with

Re

〈
∇F,

∇u

u

〉

= − Re〈∇Δu, ∇u〉
u2

+
|∇u|2Δu

u3
+ δ

Re
(
〈∇∇u, ∇u ⊗ ∇u〉 + 〈∇∇u, ∇u ⊗ ∇u〉

)

u3

− 2δ
|∇u|4

u4
+ 2α

Re
(
〈∇∇v,∇u ⊗ ∇v〉 + 〈∇∇v,∇u ⊗ ∇v〉

)

u

+
Re〈∇trωtβ0,∇u〉

u
+

Re〈∇trωtω̃, ∇u〉
u

− γ
Re〈∇v,∇u〉

u
,

we obtain the following:

(∂t − Δ)F − 2Re

〈
∇F,

∇u

u

〉

≤ − 1

1 − t

Δu

u
+

〈∇∇u, ∇∇v〉
u

+
1

1 − t

〈β,∇∇u〉
u

− δ
|∇∇u|2 + |∇∇u|2

u2
− 2δ

|∇u|4
u4

− α|∇∇v|2 − α|∇∇v|2 +
2α

1 − t
|∇v|2 +

2α

1 − t
Re
〈

∇trωtβ,∇v
〉

− C−1|∇trωtβ0|2

− C−1|∇trωtω̃|2 − γ

1 − t
v − γ

1 − t
trωtβ − 2

Re〈∇trωtω̃, ∇u〉
u

+ 2γ
Re〈∇v,∇u〉

u

− 2
Re〈∇trωtβ0,∇u〉

u
+ 2δ

Re
(
〈∇∇u, ∇u ⊗ ∇u〉 + 〈∇∇u, ∇u ⊗ ∇u

)

u3

− 2α
Re
(
〈∇∇v,∇u ⊗ ∇v〉 + 〈∇∇v,∇u ⊗ ∇v〉

)

u
+ C.

Using Cauchy’s inequality, we can also estimate

2α

1 − t
Re
〈

∇trωtβ,∇v
〉

≤ 1

20CA
|∇trωtβ|2 +

20CAα2

(1 − t)2
|∇v|2

≤ 1

10CA

(
|∇trωtω̃|2 + A|∇trωtβ0|2

)
+

20CAα2

(1 − t)2
|∇v|2,

−2
Re〈∇trωtβ0,∇u〉

u
≤ 1

10C
|∇trωtβ0|2 + 10C

|∇u|2
u2

,
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−2
Re〈∇trωtω̃, ∇u〉

u
≤ 1

10C
|∇trωtω̃|2 + 10C

|∇u|2
u2

,

〈∇∇u, ∇∇v〉
u

≤ α

2
|∇∇v|2 +

1

2α

|∇∇u|2
u2

,

−2α
Re
(
〈∇∇v,∇u ⊗ ∇v〉 + 〈∇∇v,∇u ⊗ ∇v〉

)

u

≤ α

2
(|∇∇v|2 + |∇∇v|2) + 4α

|∇u|2
u2

|∇v|2,

1

1 − t

〈β,∇∇u〉
u

≤ CAα

(1 − t)2
(trωtω̃ + trωtβ0)2 +

1

2α

|∇∇u|2
u2

≤ 1

2α

|∇∇u|2
u2

+
CAα

(1 − t)2
,

− 1

1 − t

Δu

u
≤ n|∇∇u|

(1 − t)u
≤ 1

α

|∇∇u|2
u2

+
nα2

4(1 − t)2
.

Combining expressions gives

(∂t − Δ)F − 2Re

〈
∇F,

∇u

u

〉

≤ 2

α

|∇∇u|2
u2

− δ
|∇∇u|2 + |∇∇u|2

u2
− 2δ

|∇u|4
u4

+
2α

1 − t
|∇v|2 + 4

|∇u|2
u2

|∇v|2

+ C
|∇u|2

u2
+

20CAα2

(1 − t)2
|∇v|2 − γ

1

1 − t
v − γ

1

1 − t
trωtβ +

CAα2

(1 − t)2

+ 2γ
Re〈∇v,∇u〉

u
+ 2δ

Re
(
〈∇∇u, ∇u ⊗ ∇u〉 + 〈∇∇u, ∇u ⊗ ∇u〉

)

u3
.

Next, we complete the square to obtain

−δ
|∇∇u|2

u2
+ 2δ

Re〈∇∇u, ∇u ⊗ ∇u〉
u3

− δ
|∇u|4

u4
= −δ

∣∣∣∣
∇∇u

u
− ∇u ⊗ ∇u

u2

∣∣∣∣
2

,

−
(

δ − 2

α

) |∇∇u|2
u2

+ 2δ
Re〈∇∇u, ∇u ⊗ ∇u〉

u3
− δ

|∇u|4
u4

= −
(

δ − 2

α

)∣∣∣∣∣
∇∇u

u
− δ

δ − 2
α

∇u ⊗ ∇u

u2

∣∣∣∣∣

2

+ δ

(
δ

δ − 2
α

− 1

)
|∇u|4

u4
.

Again combining expressions, and using |β| ≤ C and |∇v|2 ≤ Cv, we obtain

(∂t − Δ)F − 2Re

〈
∇F,

∇u

u

〉

≤ −
(

δ − 2

α

)∣∣∣∣∣−
∇∇u

u
+

δ

δ − 2
α

∇u ⊗ ∇u

u2

∣∣∣∣∣

2

+ δ

(
δ

δ − 2
α

− 1

)
|∇u|4

u4
+ Cα

|∇u|2
u2

v
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+ C
|∇u|2

u2
−
(

γ

1 − t
− Cα

1 − t
− CAα2

(1 − t)2

)
v + 2γ

Re〈∇v,∇u〉
u

+
Cγ

1 − t
+

CAα2

(1 − t)2
.

Next, we observe that

−Δu

u
+

δ

δ − 2
α

|∇u|2
u2

= F +

(
δ

δ − 2
α

− δ

)
|∇u|2

u2
− α|∇v|2 − trωtω̃ − trωβ0 + γv.

We assume that γ ≥ γ(α) has been chosen so that

γv ≥ 2α|∇v|2 + 2trωtω̃ + 2trωtβ0.

At any point (x∗, t∗) ∈ M ×(t0, t1] where Q := (t− t0)F achieves a positive maximum,
we then have

0 ≤ (t − t0)(∂t − Δ)Q = (t − t0)F + (t − t0)2(∂t − Δ)F

≤(t − t0)F − (t − t0)2

n

(
δ − 2

α

)(
F +

(
δ

δ − 2
α

− δ

)
|∇u|2

u2
+

γ

2
v

)2

+ C(t − t0)2α
|∇u|2

u2
v + C(t − t0)2 |∇u|2

u2
−
(

γ

1 − t
− Cα

1 − t
− CAα2

(1 − t)2

)
(t − t0)2v

+ 2γ(t − t0)2 Re〈∇v,∇u〉
u

+ δ

(
δ

δ − 2
α

− 1

)
(t − t0)2 |∇u|4

u4
+ C(γ + α)(t − t0)2

≤ − δ − 2
α

n
Q2 + Q −

⎛
⎝ 1

n

(
δ − 2

α

)(
δ

δ − 2
α

− δ

)2

− δ

(
δ

δ − 2
α

− 1

)⎞
⎠ (t − t0)2 |∇u|4

u4

− (t − t0)2

4n

(
δ − 2

α

)
γ2v2 −

(
1

n

(
δ − 2

α

)(
δ

δ − 2
α

− δ

)
γ − Cα

)
(t − t0)2 |∇u|2

u2
v

+ (t − t0)2

(
C

|∇u|2
u2

−
(

γ − Cα2

1 − t

)
v

1 − t
+ 2γ

|∇u|
u

|∇v| + C(γ + α)

)
.

Next, we use Cauchy’s inequality to estimate

C(t − t0)2 |∇u|2
u2

≤ γ−1(t − t0)2 |∇u|4
u4

+ Cγ(t − t0)2,

2γ(t − t0)2 |∇u|
u

|∇v| ≤ 1

2n

(
δ − 2

α

)(
δ

δ − 2
α

− δ

)
γ(t − t0)2 |∇u|2

u2
v

+ C

(
δ − 2

α

)−1
(

δ

δ − 2
α

− δ

)−1

γ(t − t0)2,
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so combining expressions gives the following at (x∗, t∗):

0 ≤ − δ − 2
α

n
Q2 + Q −

(
1

2n

(
δ − 2

α

)(
δ

δ − 2
α

− δ

)
γ − Cα

)
(t − t0)2 |∇u|2

u2
v

−
⎛
⎝ 1

n

(
δ − 2

α

)(
δ

δ − 2
α

− δ

)2

− δ

(
δ

δ − 2
α

− 1

)
− γ−1

⎞
⎠ (t − t0)2 |∇u|4

u4

− (t − t0)2

4n

(
δ − 2

α

)
γ2v2 − (t − t0)2

(
γ − Cα2

1 − t

)
v

1 − t
+ C(α, γ, δ, t0).

We now choose δ = 1
2 , α = 20n, so that δ > 10

α , then we have

1

n

(
δ − 2

α

)(
δ

δ − 2
α

− δ

)2

− δ

(
δ

δ − 2
α

− 1

)
=

((
1
2 + 1

10n

)2 − 1
5

)

2n − 2
5

= c0(n) > 0.

We next choose γ ≥ γ(α) large so that

γ >
Cα2

1 − t
+ c0(n)−1,

1

2n

(
δ − 2

α

)(
δ

δ − 2
α

− δ

)
γ > Cα,

then at (x∗, t∗), we have

0 ≤ − 1

4n
Q2 + Q + C(t0) ≤ − 1

8n
Q2 + C(t0),

so that Q ≤ C(t0) on M × (t0, t1]. Hence we have

−Δu

u
+

1

2

|∇u|2
u2

+ 20n|∇v|2 + trωtω̃ + trωtβ0 − γv ≤ C(t0)

t − t0
,

which completes the proof. �

As an application of Theorem 3.6, we have the following global weak distortion
estimate.

Proposition 3.7. Let t1, t2 ∈ [−T, 0], 0 < t2 − t1 < 1, there exists C = C(t1) < ∞,

such that the following statement holds.

Let p = pi be the Ricci vertex as above. For any x1, x2 ∈ M , if dt1(x1, x2) ≥√
t2 − t1, then we have

dt2(x1, x2)

dt1(x1, x2)
≤ C exp

(
(t2 − t1)

(
d2

t1
(x1, p) + d2

t1
(x2, p)

)
+ dt1(x1, p) + dt1(x2, p)

)
;

if dt1(x1, x2) ≤ √
t2 − t1, then we have

dt2(x1, x2)√
t2 − t1

≤ C exp
(
(t2 − t1)

(
d2

t1
(x1, p) + d2

t1
(x2, p)

)
+ dt1(x1, p) + dt1(x2, p)

)
.
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Proof. Denote by r0 =
√

t2 − t1, then consider the rescaling ĝt = r−2
0 gr2

0t. De-

note by t̂1 = r−2
0 t1, t̂2 = r−2

0 t2. Let γ : [0, dĝt̂1
(x1, x2)] → M be a unit-speed ĝt̂1

-
minimizing geodesic. Define N := �dĝt̂1

(x1, x2)�, and consider the restrictions γj :=
γ|[j,min{j+1,dĝ

t̂1
(x1,x2)}] for j = 0, . . . ,N . Define sj := j for j = 0, . . . ,N , and sN+1 :=

dĝt̂1
(x1, x2); also set zj := γ(sj). For each j, let (z′

j , t̂1 − 1) ∈ M be a 
2n-center of

(zj , t̂1), so that K(zj , t̂1; z′
j , t̂1 − 1) ≥ c(n). By Qi Zhang’s gradient estimate [Zha06,

Theorem 3.2], we then have

inf
s∈[sj ,sj+1]

K(γj(s), t̂1; z′
j , t̂1 − 1) ≥ c > 0.

Next, we apply the above Harnack inequality, say Theorem 3.6, to u :=
K(·, ·; z′

j, t̂1 − 1) to obtain (by the triangle inequality)

−∂t log u(γj(s), t) ≤C(t1)(t2 − t1)
(
1 + d2

gt1
(γj(s), p))

)

≤C(t1)(t2 − t1)
(
1 + d2

gt1
(x1, p) + d2

gt1
(x2, p)

)
,

for all t ∈ [t̂1, t̂2]. Integrating in time gives

log

(
u(γj(s), t̂1)

u(γj(s), t̂2)

)
≤ C(t1)(t2 − t1)

(
1 + d2

gt1
(x1, p) + d2

gt1
(x2, p)

)
.

That is,

u(γj(s), t̂2) ≥ c exp
(
−C(t1)(t2 − t1)

(
d2

gt1
(x1, p) + d2

gt1
(x2, p)

))
.

Again by [Zha06, Theorem 3.2], we have
∣∣∣∣∣∣
∇

√√√√log

(
C

u(·, t̂2)

)∣∣∣∣∣∣
≤ C,

so that

log

(
C

u(γj(s), t̂2)

)
≤ Cd2

ĝt̂2
(y, γj(s)) + 2 log

(
C

u(y, t̂2)

)
,

hence for all s ∈ [sj , sj+1] and y ∈ B(γj(s), t̂2,1), we have

K
(
y, t̂2; z′

j , t̂1 − 1
)

≥ c exp
(
−C(t1)(t2 − t1)

(
d2

gt1
(x1, p) + d2

gt1
(x2, p)

))
.

Fix j ∈ N, and let Nj ∈ N be maximal such that there exists sj ≤ sj,1 ≤ · · · ≤ sj,Nj ≤
sj+1 such that B(γj(sj,i), t2,1) are pairwise disjoint. By arguing as in [BZ17], we have
dĝt̂2

(zj , zj+1) ≤ 2Nj . On the other hand, we have

|B(γj(sj,i), t̂2,1)|ĝt̂2
≥ 1

C(t1)(1 + d2
gt1

(x1, p) + d2
gt1

(x2, p))2n
,
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for i = 1, . . . ,Nj , hence

en ≥
∫

M
K
(
y, t̂2; z′

j , t̂1 − 1
)

dĝt̂2
(y) ≥

Nj∑

i=1

∫

B(γj(s),t̂2,1)
K
(
y, t̂2; z′

j , t̂1 − 1
)

dĝt̂2
(y)

≥ c

(1 + d2
gt1

(x1, p) + d2
gt1

(x2, p))2n
exp
(
−C(t2 − t1)

(
d2

gt1
(x1, p) + d2

gt1
(x2, p)

))
Nj .

Combining estimates gives

dĝt̂2
(zj , zj+1)

≤ C(1 + d2
gt1

(x1, p) + d2
gt1

(x2, p))2n exp
(
C(t2 − t1)

(
d2

gt1
(x1, p) + d2

gt1
(x2, p)

))
,

this proves the case N = 0. When N > 0, summing in j gives

dĝt̂2
(x1, x2)

dĝt̂1
(x1, x2)

≤ C(1 + d2
gt1

(x1, p) + d2
gt1

(x2, p))2n exp
(
C(t2 − t1)

(
d2

gt1
(x1, p) + d2

gt1
(x2, p)

))
.

This completes the proof. �

3.4 Good distance distortion upper bound. As in Sect. 3.2, we will omit all the
subscript i of (Mi, (gi,t)t∈[−Ti,0]) in this subsection.

Proposition 3.8. Let p = pi be the Ricci vertex as above. For all t ∈ [−T, 0], r > 0,
and x ∈ M , we have

|B(x, t, r)|t ≤ C(t)r2neC(t)r log(10+dt(x,p)),

where | · |t stands for the volume with respect to the metric g(t).

Proof. Throughout the proof, all the constants depend at most on t. By Perelman’s
κ-noncollapsing estimate and Bamler’s noninflating estimate in [Bam1], we have

cr2n

(1 + dt(x, p))4n
≤ |B(x, t, r)|t ≤ Cr2n,

for all r ∈ (0,1] and x ∈ M . We will argue in a single time slice, so fix t ∈ [−T, 0],
and write B(x, r) = B(x, t, r), etc.

We will show by induction on k ∈ N that

|B(x,
1

4
k)| ≤ Ck(1 + dt(x, p))4nk

for all x ∈ M . The cases k ≤ 4 follow from Bamler’s noninflating estimate. Suppose
the claim holds for some k ≥ 4. Given x ∈ M , let {x1, . . . , xN } be a maximal subset
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of B(x,1) such that {B(xj ,
1
8)}N

j=1 is a pairwise disjoint collection. Then

C ≥ |B(x,1)| ≥
N∑

j=1

|B(xj ,
1

8
)| ≥ N

c

(1 + dt(x, p))4n
,

so that

N ≤ C1(1 + dt(x, p))4n.

Moreover, we know B(x,1) ⊆⋃N
j=1 B(xj ,

1
4), so that

⋃N
j=1 B(xj ,

k
4 ) cover B(x, 1

4(k +
1)). Then the induction hypothesis gives

|B(x,
1

4
(k + 1))| ≤

N∑

j=1

|B(xj ,
k

4
)| ≤ C1Ck(1 + dt(x, p))4n(k+1),

so if we choose C ≥ C1, then the claim follows. Hence for all k ∈ N, we have

|B(x, k/4)| ≤ Ck (1 + dt(x, p))4nk = eCk+4nk log(1+dt(x,p)),

for all k ∈ N.
Now fix r > 0. If r ∈ (0,1], then Bamler’s volume non-inflating gives

|B(x, t, r)|t ≤ Cr2n ≤ Cr2neCr log(1+dt(x,p)).

If instead r ≥ 1, we choose k ∈ N+ such that k−1
4 ≤ r ≤ k

4 , then

|B(x, t, r)|t ≤eCk+4nk log(1+dt(x,p)) ≤ Cr2neCr+Cr log(1+dt(x,p)).

This completes the proof. �

Lemma 3.9. For any t0, t1 ∈ [−T, 0], t0 < t1, there exist constants θ = θ(t0) > 0,
C = C(t0) < ∞, such that the following statement holds.

Let p = pi be the Ricci vertex as above. If u ∈ C∞(M × [t0, t1]) is a solution of

(∂t + Δ)u = 0, with |∇u(·, t1)| ≤ 1 and supp(|∇u(·, t1)|) ⊆ B(p, t1, D), then we have

|∇u|2(y, t0) ≤ exp
(
C

√
t1 − t0(D2 + 1)

)
,

for all y ∈ M .

Proof. Throughout the proof, all the constants depend at most on t0.
Let α ∈ (0,1), A < ∞ be constants to be determined. We first use

(∂t − Δx)
(
eA(t−t0)αv(x,t)K(x, t;y, t0)

)

=
(
Aα(t − t0)α−1v(x, t) − A2(t − t0)2α|∇v|2(x, t) + A(t − t0)α(∂t − Δ)v(x, t)

)

· eA(t−t0)αv(x,t)K(x, t;y, t0)
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− 2A(t − t0)α〈∇Rv(x, t),∇R

x log K(x, t;y, t0)〉eA(t−t0)αv(x,t)K(x, t;y, t0)

≥
(
Aα(t − t0)α−1 − CA2(t − t0)2α − CA(t − t0)α

)
v(x, t)

· eA(t−t0)αv(x,t)K(x, t;y, t0)

− 2A(t − t0)α〈∇Rv(x, t),∇R

x log K(x, t;y, t0)〉eA(t−t0)αv(x,t)K(x, t;y, t0),

and (here we use the Schwarz lemma)

(∂t + Δx)|∇u|2(x, t) =
(
|∇∇u|2 + |∇∇u|2

)
(x, t) + 2Rc(∇u, ∇u)

≥
(
|∇∇u|2 + |∇∇u|2

)
(x, t) − 2∇∇v(∇u, ∇u) − C|∇u|2,

to estimate (here we use R ≤ Cv)

d

dt

∫

M
|∇u|2(x, t)eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x)

=
∫

M
eA(t−t0)αv(x,t)K(x, t;y, t0)(∂t + Δ − R)|∇u|2(x, t)

+ |∇u|2(x, t)(∂t − Δ)
(
eA(t−t0)αv(x,t)K(x, t;y, t0)

)
dgt(x)

≥
∫

M

((
|∇∇u|2 + |∇∇u|2

)
(x, t) − 2∇∇v(∇u, ∇u) − C|∇u|2

)

· eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x)

+
(
Aα(t − t0)α−1 − CA2(t − t0)2α − CA(t − t0)α − C

)

·
∫

M
|∇u|2(x, t)v(x, t)eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x)

− 2A(t − t0)α
∫

M
|∇u|2(x, t)〈∇Rv(x, t),∇R

x log K(x, t;y, t0)〉

· eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x).

Next, we integrate by parts to obtain

−2A(t − t0)α
∫

M
|∇u|2(x, t)〈∇Rv(x, t),∇R

x log K(x, t;y, t0)〉

· eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x)

= − 2
∫

M
〈∇ReA(t−t0)αv(x,t), |∇u|2(x, t)∇R

x K(x, t;y, t0)〉dgt(x)

≥2
∫

M
|∇u|2(x, t)∂t log K(x, t;y, t0)eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x)
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− 2
∫

M

(
|∇∇u| + |∇∇u|

)
(x, t)|∇u|(x, t)|∇R

x log K(x, t;y, t0)|

· eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x),

and

− 2
∫

M
∇∇v(∇u, ∇u)eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x)

≥ − 2
∫

M
(|∇∇u| + |∇∇u|)(x, t)|∇u|(x, t)|∇v|(x, t)eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x)

− 2
∫

M
|∇v|(x, t)|∇u|2(x, t)|∇x log K(x, t;y, t0)|eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x)

+ 2A(t − t0)α
∫

M
|〈∇v,∇u〉|2eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x)

We also apply our Harnack inequality, say Theorem 3.6, to estimate

∂t log K(x, t;y, t0) ≥ 1

2
|∇ log K(x, t;y, t0)|2 − C

(
1

t − t0
+ v(x, t)

)
.

Combining all of these expressions yields (where ε > 0 is to be determined)

d

dt

∫

M
|∇u|2(x, t)eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x)

≥
∫

M

((
|∇∇u|2 + |∇∇u|2

)
(x, t) − C|∇u|2

)
eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x)

+
(
Aα(t − t0)α−1 − CA2(t − t0)2α − CA(t − t0)α − C

)

·
∫

M
|∇u|2(x, t)v(x, t)eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x)

− 2
∫

M
(|∇∇u| + |∇∇u|)(x, t)|∇u|(x, t)|∇v|(x, t)eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x)

− 2
∫

M
|∇v|(x, t)|∇u|2(x, t)|∇x log K(x, t;y, t0)|eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x)

+ 2A(t − t0)α
∫

M
|〈∇v,∇u〉|2eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x)

+ ε

∫

M
|∇u|2(x, t)|∇x log K(x, t;y, t0)|2eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x)

− Cε

∫

M

(
1

t − t0
+ v(x, t)

)
|∇u|2(x, t)eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x)

− 2ε

∫

M

(
|∇∇u| + |∇∇u|

)
(x, t)|∇u|(x, t)|∇x log K(x, t;y, t0)|

· eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x)
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− 2(1 − ε)A(t − t0)α
∫

M
|∇u|2(x, t)|∇v|(x, t)|∇x log K(x, t;y, t0)|

· eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x)

Next, we use Cauchy’s inequality to estimate

−2
∫

M
(|∇∇u| + |∇∇u|)(x, t)|∇u|(x, t)|∇v|(x, t)eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x)

≥ − 1

4

∫

M

(
|∇∇u|2 + |∇∇u|2

)
(x, t)eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x)

− 8
∫

M
|∇v|2(x, t)|∇u|2(x, t)eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x),

− 2ε

∫

M

(
|∇∇u| + |∇∇u|

)
(x, t)|∇u|(x, t)|∇x log K(x, t;y, t0)|

· eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x)

≥ − 1

4

∫

M

(
|∇∇u|2 + |∇∇u|2

)
(x, t)eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x)

− 8ε2
∫

M
|∇u|2(x, t)|∇x log K(x, t;y, t0)|2eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x).

Again combining expressions, we obtain

d

dt

∫

M
|∇u|2(x, t)eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x)

≥
(
Aα(t − t0)α−1 − CA2(t − t0)2α − CA(t − t0)α − C

)

·
∫

M
|∇u|2(x, t)v(x, t)eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x)

+ ε(1 − 8ε)
∫

M
|∇u|2(x, t)|∇x log K(x, t;y, t0)|2eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x)

− Cε

t − t0

∫

M
|∇u|2(x, t)eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x)

− 2 ((1 − ε)A(t − t0)α + 1)
∫

M
|∇v|(x, t)|∇u|2(x, t)|∇x log K(x, t;y, t0)|

· eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x).

Next, Cauchy’s inequality gives

−2 ((1 − ε)A(t − t0)α + 1)
∫

M
|∇v|(x, t)|∇u|2(x, t)|∇x log K(x, t;y, t0)|

· eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x)

≥ − ε

2

∫

M
|∇u|2(x, t)|∇x log K(x, t;y, t0)|2eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x)
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− C (A(t − t0)α + 1)2 ε−1
∫

M
|∇v|2(x, t)|∇u|2(x, t)

· eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x),

so that (assuming |t − t0| is sufficiently small and α ∈ (0,1))

d

dt

∫

M
|∇u|2(x, t)eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x)

≥
(
Aα(t − t0)α−1 − Cε−1

)∫

M
|∇u|2(x, t)v(x, t)eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x)

− Cε

t − t0

∫

M
|∇u|2(x, t)eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x).

If we choose ε := (t − t0)1−α, then assuming A < ∞ is sufficiently large, we obtain

d

dt

∫

M
|∇u|2(x, t)eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x)

≥ − C

(t − t0)α

∫

M
|∇u|2(x, t)eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x),

or equivalently,

d

dt
log
(∫

M
|∇u|2(x, t)eA(t−t0)αv(x,t)K(x, t;y, t0)dgt(x)

)
≥ − C

(t − t0)α
.

Integrating from t0 to t1 then yields

|∇u|2(y, t0) ≤ exp
(
C(t1 − t0)1−α

)∫

M
|∇u|2(x, t1)eA(t1−t0)αv(x,t1)K(x, t1;y, t0)dgt(x).

If |∇u|(·, t1) ≤ 1 and supp(|∇u(·, t1)|) ⊆ B(p, t0, D), then

|∇u|2(y, t0) ≤ exp
(
C(t1 − t0)1−α + C(t1 − t0)α(D2 + 1)

)
.

For optimal estimates, we choose α = 1
2 . This completes the proof. �

Now we can prove the good distance distortion upper bound.

Proposition 3.10. For any A < T , D < ∞, there exist constants θ = θ(A, D) > 0,
C = C(A, D) < ∞, such that the following statement holds.

Assume −A ≤ t1 < t2 ≤ 0 satisfies t2 − t1 ≤ θ. Let p = pi be the Ricci vertex as

above. Assume x1, x2 ∈⋃t∈[t1,t2] B(p, t, D). Then we have

dt2(x1, x2) ≤ dt1(x1, x2) + C
√

t2 − t1.

Proof. Throughout the proof, all the constants may depend on A, D. We let ui ∈
C∞(M × [t1, t2)) ∩ C0(M × [t1, t2]) solve

(−∂t − Δ)ui =0

ui(·, t2) =min{dt2(xi, ·),2dt2(x1, x2)}.
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Then ui satisfies the hypotheses of Lemma 3.9 and maxM |∇ui|(·, t2) = 1, so we can
estimate

|∇ui|(x, t1) ≤ 1 + C
√

t2 − t1,

for all x ∈ M . Moreover, the triangle inequality gives u1(·, t2) + u2(·, t2) ≥ dt2(x1, x2),
so the maximum principle implies

dt2(x1, x2) ≤ u1 + u2 ≤ 4dt2(x1, x2).

In particular, u1(x2, t1) ≥ dt2(x1, x2) − u2(x2, t1), so that

dt2(x1, x2) − (u1(x1, t1) + u2(x2, t1)) ≤u1(x2, t1) − u1(x1, t1)

≤
(
1 + C

√
t2 − t1

)
dt1(x1, x2).

By [JST1, Proposition 7.6], if we choose θ small enough, then we have

dt(xi, p) ≤ C,

for all t ∈ [t1, t2], hence dt(x1, x2) ≤ C, hence we obtain

dt2(x1, x2) ≤ dt1(x1, x2) + C
√

t2 − t1 + (u1(x1, t1) + u2(x2, t1)) . (3.30)

It remains to estimate ui(xi, t1).
For any x ∈ M , t ∈ [t1, t2], we have

R(x, t) ≤ Cv(x, t) ≤ Cv(x, t1) ≤ C(1 + d2
t1

(x, p)) ≤ C(1 + d2
t1

(x, xi)), (3.31)

hence by Lemma 3.4, if we choose θ small enough, then we have

K(x, t;xi, t1) ≤ C

(t − t1)n
exp

(
−d2

t1
(x, xi)

C(t − t1)

)
, (3.32)

for all x ∈ M , t ∈ [t1, t2]. We then claim that, if we choose θ small enough, then for
any t ∈ (t1, t2], k = 0,1,2, we have

∫

M
K(x, t;xi, t1) exp

(
d2

t1
(x, xi)

)
dk

t1
(x, xi)dgt1(x) ≤ C(t − t1)k/2. (3.33)

Indeed, for j = 0,1,2 . . . , by (3.32) and Proposition 3.8 we have
∫

B(xi,t1,2j+1(t−t1)1/2)\B(xi,t1,2j(t−t1)1/2)
K(x, t;xi, t1) exp

(
d2

t1
(x, xi)

)
dk

t1
(x, xi)dgt1(x)

≤
∫

B(xi,t1,2j+1(t−t1)1/2)\B(xi,t1,2j(t−t1)1/2)

C

(t − t1)n
exp

(
−d2

t1
(x, xi)

C(t − t1)

)

· exp
(
d2

t1
(x, xi)

)
dk

t1
(x, xi)dgt1(x)
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≤ C

(t − t1)n
exp
(
−C−122j

)
2jk(t − t1)k/2|B(xi, t1,2j+1(t − t1)1/2)|t

≤ C

(t − t1)n
exp
(
−C−122j

)
2jk(t − t1)k/222nj(t − t1)n exp

(
C2j+1(t − t1)1/2

)

≤ C exp
(
−C−122j

)
(t − t1)k/2,

summing over j proves (3.33).
Now from (−∂t − Δ + R)ui = Rui, and the fact that dgt ≤ Cdgt1 for all t ∈ [t1, t2],

we have

ui(xi, t1) ≤ C

∫

M
K(x, t2;xi, t1)dt2(x, xi)dgt1(x)

+ Cdt2(x1, x2)
∫ t2

t1

∫

M
K(x, t;xi, t1)R(x, t)dgt1(x)dt.

For the first term, by Proposition 3.7 and (3.33), if we let θ small enough, we have
∫

M
K(x, t2;xi, t1)dt2(x, xi)dgt1(x)

≤
∫

B(xi,t1,(t2−t1)1/2)
K(x, t2;xi, t1)C(t2 − t1)1/2dgt1(x)

+
∫

M
K(x, t2;xi, t1)C exp

(
d2

t1
(x, xi)

)
dt1(x, xi)dgt1(x)

≤C(t2 − t1)1/2.

For the second term, by (3.31) and (3.33), we have

∫ t2

t1

∫

M
K(x, t;xi, t1)R(x, t)dgt1(x)dt

≤
∫ t2

t1

∫

M
K(x, t;xi, t1)C(1 + d2

t1
(x, xi))dgt1(x)dt ≤ C(t2 − t1).

Combining expressions gives

ui(xi, t1) ≤ C
√

t2 − t1,

combine this with (3.30), we finish the proof. �

3.5 Continuity of the limiting metric flow. In this section, we first use the
good distance distortion estimates to prove the Gromov-Hausdorff continuity of the
limiting metric flow X , then we prove the Gromov-W1 continuity.

For pointed metric spaces (X1, d1, x1), (X2, d2, x2), we denote by

dP GH ((X1, d1, x1), (X2, d2, x2))
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the pointed Gromov-Hausdorff distance between the pointed metric spaces (for def-
initions and basic properties, see Chaps. 7,8 of [BBI01]). For convenience, when
(Xi, di, xi) are not bounded, we define

dP GH ((X1, d1, x1), (X2, d2, x2))

:=
∞∑

j=1

dP GH

(
(BX1(x1, j), d1, x1), (BX2(x2, j), d2, x2)

)

1 + dP GH ((BX1(x1, j), d1, x1), (BX2(x2, j), d2, x2))
,

which metrizes the pointed Gromov-Hausdorff topology on the class of isometry
classes of complete metric length spaces.

Proposition 3.11. For every t ∈ (−∞,0], we have pointed Gromov-Hausdorff con-

vergence

(Mi, dgi,t , pi) → (Xt, dt, qt),

where qt ∈ Xt satisfy dXs
W1

(νqt;s, δqs) ≤ C
√

t − s for s, t ∈ (−∞,0] with s ≤ t. Moreover,

the convergence is locally uniform in time in the sense that

lim
i→∞

sup
t∈J

dP GH

(
(Mi, dgi,t , pi), (Xt, dt, qt)

)
= 0

for any compact subset J ⊆ (−∞,0]. Finally, the map

t �→ (Xt, dt, qt), t ∈ (−∞,0],

is continuous in the pointed Gromov-Hausdorff topology.

Proof. Let I ′ ⊆ (−∞,0] be the set of times where F-convergence (3.22) is time-wise;
by passing to a subsequence, we may assume |(−∞,0] \ I ′| = 0. Let ψi : Ui → Mi be
the diffeomorphisms realizing locally smooth convergence of the F-convergence. Let
I ′′ ⊆ I ′ be a dense countable subset of (−∞,0]. By [JST1, Theorem 7.3], passing to
a subsequence, for every t ∈ I ′′, we have

lim
i→∞

dP GH

(
(Mi, dgi,t , pi), (Xt, dt, qt)

)
= 0,

for some qt ∈ Xt. Moreover, by [Hal, Proposition 2.7], we can pass to a subsequence
so that ψi extend to (not necessarily continuous) r−1

i -Gromov-Hausdorff approxima-
tions

ψi,t : B(qt, ri) → B(pi, t, ri)

for all t ∈ I ′′, where ri ↗ ∞ and qt ∈ Xt.
Note that if t ∈ (−∞,0] and xi ∈ Mi are such that (xi, t) → x∞ ∈ Xt with respect

to the Gromov-Hausdorff convergence, this means ϕi
t(xi) → ϕ∞

t (x∞) in (Zt, d
Z
t ), so

xi converge strictly to x∞ within C in the sense of [Bam23, Definition 6.22]. By
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[Bam23, Theorem 6.23], we thus have (xi, t)
C−−−→

i→∞
x∞. In particular, we then have

lim
i→∞

dXs
W1

(
(ϕi

s)∗νi
xi,t;s, (ϕ

∞
s )∗νx∞;s

)
= 0

for all s ∈ (−∞, t) ∩ I ′.

Claim 3.12. dXs
W1

(νqt;s, δqs) ≤ C(s)
√

t − s for all s, t ∈ I ′′ with s ≤ t, t − s ≤ θ(s),
where θ(s) > 0 is a small constant.

Proof. For sufficiently large i ∈ N, we can estimate

dXs
W1

(νqt;s, δqs) ≤dZs
W1

(
(ϕ∞

s )∗νqt;s, (ϕ
i
s)∗νi

ψi,t(qt),t;s

)
+ d

gi,s

W1

(
νi

ψi,t(qt),t;s, δψi,t(qt)

)

+ dgi,s(ψi,t(qt), ψi,s(qs)) + dZ
s

(
(ϕi

s ◦ ψi,s)(qs), ϕ
∞
s (qs)

)
,

and previous arguments give

lim
i→∞

dZs
W1

(
(ϕ∞

s )∗νqt;s, (ϕ
i
s)∗νi

ψi,t(qt),t;s

)
= 0 = lim

i→∞
dZ

s

(
(ϕi

s ◦ ψi,s)(qs), ϕ
∞
s (qs)

)
.

Moreover, Lemma 2.9 gives

d
gi,s

W1

(
νi

ψi,t(qt),t;s, δψi,t(qt)

)
≤ C(s)

√
t − s.

Using the short-time distortion estimate Proposition 3.5, we moreover have

dgi,s(ψi,t(qt), ψi,s(qs)) ≤ dgi,t(ψi,t(qt), pi) + dgi,s(ψi,s(qs), pi) + C(s)
√

t − s,

for all t close to s, so combining estimates gives the claim. �

Claim 3.13. γ : I ′′ → X , t �→ qt uniquely extends to a continuous path γ : (−∞,0) →
X (with respect to the natural topology of X ), satisfying

dXs
W1

(νγ(t);s, δγ(s)) ≤ C(s)
√

t − s,

for all s ≤ t, t − s ≤ θ(s), where θ(s) > 0 is a small constant.

Proof. Fix t0 ∈ (−∞,0), and define μt0 : I ′′ ∩ (t0,0) → P(Xt0), t �→ νγ(t);t0
. For any

t1, t2 ∈ I ′′ ∩ (t0,0) with t1 ≤ t2, Claim 3.12 gives

d
Xt0
W1

(μt0(t1), μt0(t2)) ≤ d
Xt1
W1

(νqt2 ;t1 , δqt1
) ≤ C(t0)

√
t2 − t1.

In particular, μt0 is local 1
2 -Hölder continuous, so extends uniquely to a local 1

2 -
Hölder continuous map μt0 : [t0,0) → P(Xt0). Moreover, by [Bam23, Lemma 2.10],
Var(μt0(t)) ≤ H2n(t − t0) passes to the limit to give Var(μt0(t0)) = 0. That is,
μt0(t0) = δqt0

for some qt0 ∈ Xt0 ; this allows us to define γ as (not a priori continuous)
map (−∞,0) → X . Also observe that

d
Xt0
W1

(δγ(t0), νγ(t);t0
) ≤ C(t0)

√
t − t0, (3.34)
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for any t ∈ [t0, t0 + θ(t0)) ∩ I ′′; by Claim 3.12, we have γ|I′′ agrees with its original
definition.

Suppose ti ∈ (−∞,0) satisfy ti → t ∈ (−∞,0). Fix s ∈ (−∞, t) ∩ I ′′, choose t∗
i ∈

(max(ti, t),max(ti, t) + i−1) ∩ I ′′, by (3.34) we can estimate

dXs
W1

(νγ(ti);s, νγ(t);s) ≤dXs
W1

(νγ(ti);s, νγ(t∗

i );s) + dXs
W1

(νγ(t);s, νγ(t∗

i );s)

≤d
Xti
W1

(δγ(ti), νγ(t∗

i );ti
) + dXt

W1
(δγ(t), νγ(t∗

i );t)

≤C(s)
√

i−1 + |t − ti|.

Therefore, we have limi→∞ dXs
W1

(νγ(ti);s, νγ(t);s) = 0, hence γ : (−∞,0) → X is contin-
uous. �

Claim 3.14. For any t ∈ (−∞,0) ∩ I ′, D < ∞ and r > 0, there exists c = c(t, D,

r) > 0, such that ν∞
p∞;t(B(x, r)) ≥ c for all x ∈ B(pt, D).

Proof. In fact, for any such x, we know that

νi
pi,0;t

(
B(ψi,t(x),

r

2
)
)

≥ c(t, D, r) > 0,

for all sufficiently large i ∈ N, see the proof of [JST1, Theorem 7.3]. Then the weak
convergence

(ϕi
t)∗νi

pi,0;t → (ϕt)∗ν∞
p∞;t

and (ϕi
t ◦ ψi,t)(x) → ϕ∞

t (x) imply

ν∞
p∞;t(B(x, r)) ≥

(
(ϕt)∗ν∞

p∞;t

)
(BZt(ϕt(x), r))

≥ lim sup
i→∞

(
(ϕi

t)∗νi
pi,0;t

)(
B

Zt(ϕt(x),
3r

4
)
)

≥ lim sup
i→∞

(
(ϕi

t)∗νi
pi,0;t

)(
BZt((ϕi

t ◦ ψi,t)(x),
r

2
)
)

=lim sup
i→∞

νi
pi,0;t(B(ψi,t(x),

r

2
)) ≥ c(t, D, r).

�

Claim 3.15. For every t0 ∈ (−∞,0), (Xt0 , dt0 , qt0) is the pointed Gromov-Hausdorff

limit of (Xt, dt, qt) as t ↘ t0 for t ∈ I ′′.

Proof. Because X is future-continuous, we know that

lim
I′′
t↘t0

dGW1

(
(Xt, dt, ν

∞
p∞;t), (Xt0 , dt0 , ν∞

p∞;t0
)
)

= 0.

Moreover, Claim 3.14 implies that the measures ν∞
p∞;t, ν∞

p∞;t0
satisfy the hypotheses

of [Hal, Proposition 2.7], so that after passing to a subsequence, we have

lim
I′′
t↘t0

dP GH

(
(Xt, dt, qt), (Xt0 , dt0 , q′

t0
)
)

= 0
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for some q′
t0

∈ Xt0 . Moreover, the Gromov-Hausdorff convergence can be realized by
metric embeddings

φ′
t : (Xt, dt) ↪→ Z ′

t

φ′
t0

: (Xt0 , dt0) ↪→ Z ′
t

such that

lim
I′′
t↘t0

d
Z′

t
W1

((φ′
t)∗ν∞

p∞;t, (φ
′
t0

)∗ν∞
p∞;t0

) = 0.

The proof of [Bam23, Lemma 4.18] shows that we can choose Z ′
t := Xt0 
 Xt, along

with the natural embeddings, where

dZ′

t (x, y) := inf
z∈Xt

(
dt(y, z) + d

Xt0
W1

(νz;t0 , δx)
)

+ εt

for x ∈ Xt0 and y ∈ Xt, where limt↘t0 εt = 0. Claim 3.13 then implies

d
Xt0
W1

(νqt;t0 , δqt0
) ≤ C(t0)

√
t − t0,

for all t close to t0, so that

dZ′

t (qt0 , qt) ≤ d
Xt0
W1

(νqt;t0 , δqt0
) + εt,

hence limt↘t0 dZ′

t (qt0 , qt) = 0. That is, qt converge to qt0 with respect to the Gromov-
Hausdorff convergence, so we must have q′

t0
= qt0 . �

Now, for any t ∈ (−∞,0), choose a sequence ti ∈ I ′′ with ti ↘ t. Then we can
estimate

dP GH

(
(Mi, dgi,t , pi), (Xt, dt, qt)

)≤ dP GH

(
(Mi, dgi,t , pi), (Mi, dgi,ti

, pi)
)

+ dP GH

(
(Mi, dgi,ti

, pi), (Xti , dti , pti)
)

+ dP GH ((Xti , dti , pti), (Xt, dt, qt)) ,

but limi→∞ dP GH

(
(Mi, dgi,t , pi), (Mi, dgi,ti

, pi)
)

= 0 via the identity map and locally
uniform distortion estimates, say Proposition 3.5 and Proposition 3.10,

lim
i→∞

dP GH

(
(Mi, dgi,ti

, pi), (Xti , dti , qti)
)

= 0

by the Gromov-Hausdorff convergence at times in I ′′, and

lim
i→∞

dP GH ((Xti , dti , qti), (Xt, dt, qt)) = 0

by Claim 3.15. Thus, the locally uniformly continuous maps

t �→ (Mi, dgi,t , pi)

converge pointwise to t �→ (Xt, dt, qt); this implies that the convergence is actually
locally uniform in t, and in particular that the limit is continuous. �
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Proposition 3.16. X is a Gromov-W1 continuous metric flow.

Proof. We use the notations from the Proposition 3.11.

Let t0 ∈ (−∞,0) be any fixed time. By Theorem 4.31 in [Bam23], it suffices to

show that for all x1, x2 ∈ Xt0 , we have

lim
t↗t0

dXt
W1

(νx1;t, νx2;t) ≥ dt0(x1, x2).

Fix ε > 0, and let I ′′ be as in the Proposition 3.11. By an extension of Proposition 4.40

of [Bam23] (using the fact that X is future-continuous), we have

Claim 3.17. For all t′ ∈ I ′′ ∩ (t0,∞) sufficiently close to t0, we can find x′
1, x′

2 ∈ Xt′

such that

d
Xt0
W1

(δxj , νx′

j ;t0
) < ε, |dt′(x′

1, x′
2) − dt0(x1, x2)| < ε,

|dt′(x′
j , qt′) − dt0(xj , qt0)| < 1

for j = 1,2.

Proof. Let φ′
t′ : (Xt′ , dt′) ↪→ Z ′

t′ , φ′
t0

: (Xt0 , dt0) ↪→ Z ′
t′ be as in the Proposition 3.11, so

that

lim
I′′
t′↘t0

d(φ′
t′(qt′), φ′

t0
(qt0)) = 0,

and limt′↘t0 d
Xt0
W1

(δqt0
, νqt′ ;t0) = 0. Because X is future continuous, Claim 4.41 of

[Bam23] gives x′
1, x′

2 ∈ Xt′ such that d
Xt0
W1

(δxj , νx′

j ;t0
) < ε

2 and dZ′

t′ (φ′
t′(x′

j), φ
′
t0

(xj)) < ε
2

if t′ ∈ I ′′ ∩ (t0,∞) is sufficiently close to t0. Then

|dt′(x′
1, x′

2) − dt0(x1, x2)| = |dZ′

t′ (φ′
t′(x′

1), φ′
t′(x′

2)) − dZ′

t′ (φ′
t0

(x1), φ′
t0

(x2))|

≤dZ′

t′ (φ′
t′(x′

1), φ′
t0

(x1)) + dZ′

t′ (φ′
t′(x′

2), φ′
t0

(x2)) ≤ ε,

and the estimate for |dt′(x′
j , qt′) − dt0(xj , qt0)| is similar. �

Assuming t′ ∈ I ′′, we also have ψi,t′(x′
j) −−−→

i→∞
x′

j with respect to the Gromov-

Hausdorff convergence, and in particular ψi,t′(x′
j)

C−−−→
i→∞

x′
j . Thus, we have

dt′(x′
1, x′

2) = lim
i→∞

dgi,t′
(ψi,t′(x′

1), ψi,t′(x′
2)).
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Now for any t ∈ I ′′ ∩ (−∞, t0), by triangle inequality we have

dXt
W1

(νx1;t, νx2;t)

≥dXt
W1

(νx′

1;t, νx′

2;t) − dXt
W1

(νx′

1;t, νx1;t) − dXt
W1

(νx′

2;t, νx2;t)

≥ lim sup
i→∞

{
d

gi,t

W1
(νi

ψi,t′ (x′

1),t′;t, ν
i
ψi,t′ (x′

2),t′;t) − dZt
W1

((ϕ∞
t )∗νx′

1;t, (ϕ
i
t)∗νi

ψi,t′ (x′

1),t′;t)

− dZt
W1

((ϕ∞
t )∗νx′

2;t, (ϕ
i
t)∗νi

ψi,t′ (x′

2),t′;t)
}

− d
Xt0
W1

(νx′

1;t0
, δx1) − d

Xt0
W1

(νx′

2;t0
, δx2)

≥ lim sup
i→∞

d
gi,t

W1
(νi

ψi,t′ (x′

1),t′;t, ν
i
ψi,t′ (x′

2),t′;t) − 2ε.

(3.35)

Next, observe (by the Claim 3.17)

lim
i→∞

dgi,t′
(ψi,t′(x′

j), pi) = dt′(x′
j , qt′) ≤ 1 + 2ε + dt0(xj , pt0), (3.36)

hence by Proposition 3.5 and Proposition 3.10, we have

lim sup
i→∞

|dgi,t′
(ψi,t′(x′

1), ψi,t′(x′
2)) − dgi,t(ψi,t′(x′

1), ψi,t′(x′
2))| ≤ C(t0, x1, x2)

√
t′ − t,

and by Lemma 2.9 we have

lim sup
i→∞

d
gi,t

W1
(νψi,t′ (x′

j),t′;t, δψi,t′ (x′

j)) ≤ C(t0, xj)
√

t′ − t,

both for all t′ ∈ I ′′ ∩ (t0,∞) and t ∈ I ′′ ∩ (−∞, t0) both sufficiently close to t0. Com-
bining estimates and Claim 3.17, we get

dXt
W1

(νx1;t, νx2;t) − dt0(x1, x2) ≥ −3ε − C(t0, x1, x2)
√

t′ − t

for all t′ ∈ I ′′ ∩ (t0,∞) and t ∈ I ′′ ∩ (−∞, t0) both sufficiently close to t0. Taking
t′ ↘ t0 along t′ ∈ I ′′ then yields

dXt
W1

(νx1;t, νx2;t) − dt0(x1, x2) ≥ −3ε − C(t0, x1, x2)
√

t0 − t,

so that

lim
t↗t0

dXt
W1

(νx1;t, νx2;t) − dt0(x1, x2) ≥ −3ε.

Since ε > 0 was arbitrary, the claim follows. �

Now we can finish the proof of the main results.

Proof of Theorem 1.1. Theorem 1.1 follows immediately from Proposition 3.11 and
Proposition 3.16. �

Remark 3.18. In Proposition 3.11 and Proposition 3.16, we only consider the time
t ∈ (−∞,0), but the results also hold for the time t = 0. This can be seen in the
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following way. When we form the Type I blow-up limits of our original Kähler-
Ricci flow, we take any sequence of times ti ↗ 1, and choose the base point as the
Ricci vertex pti associated to the given θY . Here we can perturb the time ti to
t̂i = ti + (1 − ti)/2, but still with the base point as the Ricci vertex pti . After this
perturbation, the time t = 0 in this section is the time t = −1 in the new sequence and
limit, and Theorem 6.40 of [Bam23] would allow us to change the base point of the
F-convergence from (pi,0) to (pi,−1). Now our Proposition 3.11 and Proposition 3.16
apply for the new sequence of flows and limit, which implies the continuity of the
original limit at time t = 0.

4 Structure of noncollapsed Ricci flows with locally bounded

scalar curvature

In this section, we consider the more general set-up of Ricci flows with locally
bounded scalar curvature, which is already appeared in [JST1]. First, we recall the
definition of based barrier of the scalar curvature. Let (M, g(t))t∈I be a smooth Ricci
flow on a compact n-dimensional manifold with the interval I ⊂ R.

Definition 4.1 (Based barrier of the scalar curvature). Let v : M × I → R be a
C1-function and C < ∞ be a constant. We call v a C-barrier of Rg if the following
hold on M × I :

(1) v ≥ 1;
(2) |∂t ln v| + |∇ ln v|2 ≤ C;
(3) Rg ≤ Cv.

Let (x0, t0) ∈ M × I and B < ∞. Then we say v is B-based at (x0, t0) if

v(x0, t0) ≤ B.

Remark 4.2. For finite time solution of Kähler-Ricci flow on projective manifolds,
such based barrier functions arise naturally from the normalized Ricci potential.

Suppose I = [−T, 0] for some T ∈ (0,∞]. Let λ > 0 be a rescaling factor. Denote
by g̃t = λ−2gλ2t and ṽ(t) = v(λ2t), where t ∈ [−λ−2T, 0]. If v is C-barrier B-based at
(x0, t0) of Rg, then ṽ is λ2C-barrier B-based at (x0, λ−2t0) of Rg̃.

Now, let (Mi, (gi,t)t∈[−Ti,0], (pi,0)) be a sequence of pointed Ricci flows on compact
manifolds of dimension n and T∞ := limi→∞ Ti. By the results of [Bam23], passing to
a subsequence, we can obtain F-convergence (see Definition 2.12 and Definition 2.14)
on compact time-intervals

(Mi, (gi,t)t∈[−Ti,0], (νpi,0;t)t∈[−Ti,0])
F,C−−−→

i→∞
(X , (νp∞;t)t∈(−T∞,0]), (4.1)

within some correspondence C, where X is a future continuous and Hn-concentrated
metric flow of full support over (−T∞,0].
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For the non-collapsing assumption, we assume that, for some uniform Y0 < ∞,
we have

ν[gi,−Ti ,2Ti] ≥ −Y0. (4.2)

According to [Bam2], we can decompose X into its regular and singular part

X = R 
 S, (4.3)

where R is a dense open subset of X . The singular set S has parabolic ∗-Minkowski
dimension ≤ n−2. Also, R carries the structure of a Ricci flow spacetime (R, t, ∂t, g).
For any t ∈ (−T∞,0), Rt = Xt ∩ R, we have that (Xt, dt) is the metric completion of
(Rt, gt).

For the local scalar curvature bound assumption, we suppose there exist a se-
quence of constants Ci < ∞ and a sequence of functions vi, such that vi is a Ci-barrier
of Rgi and Y0-based at (pi,0) for each i.

We have the following improvement on the convergence.

Theorem 4.3 (Theorem 7.3 in [JST1]). Suppose we have Ci ≤ Y0 for all i. Then

for every t ∈ (−T∞,0) where (4.1) is time-wise, passing to a subsequence, we have

that (Mi, dgi,t , pi) converge to (Xt, dt, qt) in the Gromov-Hausdorff topology for some

qt ∈ Xt.

The main result of this section is the characterization of the time-slices of the
limiting metric flow X .

Theorem 4.4. Suppose we have Ci ≤ Y0 for all i. Then for every t ∈ (−T∞,0), the
following statements hold.

(1) (Xt, dt,Rt, gt) is a singular space of dimension n, in the sense of Defini-

tion 2.16.

(2) We have the Minkowski dimension estimate

dimM St ≤ n − 4.

We first remark that, when the sequence of Ricci flows have globally uniformly
bounded scalar curvature, Theorem 4.4 is proved by Bamler (cf. [Bam18]). Here we
extend Bamler’s results to Ricci flows with locally bounded scalar curvature.

We also remark that, if we assume limi→∞ Ci = 0 and limi→∞ infMi×{−Ti} Rgi ≥ 0,
then X is a static limit, hence the conclusion of [Bam2, Theorem 2.16] holds for
the limiting metric flow X . Hence in such case, Theorem 4.4 is already proved by
Bamler. In conclusion, we have the following corollary.

Corollary 4.5. Suppose limi→∞ Ci = 0 and limi→∞ infMi×{−Ti} Rgi ≥ 0. Then the

conclusion of [Bam2, Theorem 2.16] holds for X . Moreover, for every t ∈ (−T∞,0),
passing to a subsequence, we have (Mi, dgi,t , pi) converge to (Xt, dt, q∞) in the

Gromov-Hausdorff topology for some q∞ ∈ Xt.
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Throughout this section, unless otherwise stated, all the constants will depend
on n, Y0. We will omit this dependence in this section for convenience.

4.1 Preliminary results. In this section, we recall some results established in
[JST1]. First, we have

Lemma 4.6 (Lemma 7.4 in [JST1]). For any A, D < ∞, there exists a constant C <

∞ depending on A, D, such that the following statements hold on the Ricci flow

(Mi, (gi,t)t∈[−Ti,0]).
For any (x0, t0) ∈ Mi × [−Ti,0], if

vi(x0, t0) ≤ A,

then we have

(1) vi(x0, t) ≤ C for all t ∈ [t0 − D, t0 + D] ∩ [−Ti,0];
(2) vi(x, t0) ≤ C for all x ∈ Bgi(x0, t0, D).

The next lemma states that the boundedness of the barrier function propagated
in the P ∗-parabolic neighborhoods.

Proposition 4.7 (Proposition 7.5 in [JST1]). For any η ∈ (0,1), A, D, T ± < ∞,

there exists a constant C < ∞ depends on η, A, D, T ±, such that the following

statements hold on the flow (Mi, (gi,t)t∈[−Ti,0]).
Suppose (x0, t0) ∈ Mi × [−Ti + T − + 10η,0] satisfies

vi(x0, t0) ≤ A.

Then for any (y0, s0) ∈ P ∗(x0, t0;D,−T −, T +), we have

vi(y0, s0) ≤ C.

Next, we have the following short time distance distortion estimate.

Proposition 4.8 (Proposition 7.6 in [JST1]). For any η ∈ (0,1), A, D < ∞, there

exist constants δ ∈ (0, η), C < ∞, both depending on η, A, D, such that the following

statements hold on the Ricci flow (Mi, (gi,t)t∈[−Ti,0]).
Suppose (x0, t0) ∈ Mi × [−Ti + 10η,0] satisfies that

vi(x0, t0) ≤ A,

then for any y0 ∈ Bgi(x0, t0, D), we have

dgi,t(y0, x0) ≤ C,

for all t ∈ [t0 − δ, min {t0 + δ, 0}].

Finally, we have the following heat kernel lower bound estimate.
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Proposition 4.9 (Proposition 7.7 in [JST1]). For any η ∈ (0,1), A, D < ∞, there

exists constant C < ∞ depends on η, A, D, such that the following statements hold

on the Ricci flow (Mi, (gi,t)t∈[−Ti,0]).
If (x0, t0) ∈ Mi × [−Ti + 10η,0] satisfies

vi(x0, t0) ≤ A,

then for any s0 ∈ [max
{
t0 − η−1,−Ti + η

}
, t0 − η] and y0 ∈ Bgi(x0, s0, D), we have

Ki(x0, t0;y0, s0) ≥ C−1,

where Ki(x, t;y, s), s < t denotes the heat kernel along the flow gi,t.

4.2 F-limit and local smooth convergence. Let us start with (4.1), that is, we
have the F-convergence on compact time-intervals

(Mi, (gi,t)t∈[−Ti,0], (νpi,0;t)t∈[−Ti,0])
F,C−−−→

i→∞
(X , (νp∞;t)t∈(−T∞,0]), (4.4)

within some correspondence C, where X is a future continuous and Hn-concentrated
metric flow of full support over (−T∞,0]. We can decompose X into it’s regular and
singular part

X = R 
 S, (4.5)

where R is dense open subset of X . Also, R carries the structure of a Ricci flow
spacetime (R, t, ∂t, g). For any t ∈ (−T∞,0], Rt = Xt ∩ R, we have (Xt, dt) is the
metric completion of (Rt, gt).

We denote the conjugate heat kernels restricted to R as follows:

dνx;s =: K(x; ·)dgs, x ∈ X , s ∈ (−T∞, t(x)),

where

K : {(x;y) ∈ X × R : t(x) > t(y)} → R+,

is a continuous function. For any x ∈ X , the function K(x; ·) : R<t(x) → R+ is a
smooth function and satisfies the conjugate heat equation �

∗K(x; ·) = 0; for any
y ∈ R, the function K(·;y) : R>t(y) → R+ is a smooth function and satisfies the heat
equation �K(·;y) = 0.

We can find an increasing sequence of open subsets U1 ⊂ U2 ⊂ · · · ⊂ R with
∪∞

i=1Ui = R, open subset Vi ⊂ Mi × [−Ti,0] and time-preserving diffeomorphisms
ψi : Ui → Vi such that on R, we have

ψ∗
i gi

C∞

loc−−−→
i→∞

g, ψ∗
i ∂i

t

C∞

loc−−−→
i→∞

∂t, Ki(xi, ti; ·) ◦ ψi
C∞

loc−−−→
i→∞

K(x∞; ·) (4.6)

for any sequence (xi, ti)
C−−−→

i→∞
x∞ ∈ X (see Definition 2.15). On

{(x;y) ∈ R × R : t(x) > t(y)} ,
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we have the convergence of the heat kernels

Ki ◦ (ψi, ψi)
C∞

loc−−−→
i→∞

K. (4.7)

4.3 Compactness of points under uniform geometry. In this subsection,
we prove compactness of points with uniform bounded geometry under the F-
convergence (4.4). For the definition of P ◦-parabolic neighborhood, see [Bam23,
Sect. 9.5].

As usual, we define the curvature radius rRm(x, t) at a point (x, t) of a Ricci flow
(M, (gt)t∈I) to be the supremum of r > 0 such that |Rm| ≤ r−2 on P (x, t; r). For a
non-collapsed F-limit X , the curvature radius r̃Rm is defined in [Bam2, Lemma 15.16].

Proposition 4.10. For any t∞ ∈ (−T∞,0), D < ∞, there exists σ̄ = σ̄(t∞, D) > 0,
such that for any σ ∈ (0, σ̄], the following statement holds.

Assume (xi, ti) ∈ Mi × (−Ti,0) satisfy

(1) limi→∞ ti = t∞;

(2) dgi,ti
(pi, xi) ≤ D;

(3) σ ≤ rRm(xi, ti) ≤ σ−1,

for all i ∈ N+. Then, after passing to a subsequence, we can find a point x∞ ∈ Rt∞
,

such that the following hold:

(1) (xi, ti)
C−−−→

i→∞
x∞;

(2) σ ≤ r̃Rm(x∞) ≤ σ−1;

(3) There exists a compact subset K ⊂⊂ R, such that whenever i is large enough,

we have (xi, ti) ∈ Vi and ψ−1
i (xi, ti) ∈ K ⊂⊂ Ui;

(4) P ◦(x∞; c0σ, (c0σ)2,−(c0σ)2) ⊂ R is unscathed with r̃Rm ≥ c0σ everywhere,

where c0 = c0(n) > 0 is a dimensional constant, and P (xi, ti; c0σ) converge

to P ◦(x∞; c0σ, (c0σ)2,−(c0σ)2) in the Cheeger-Gromov sense.

Proof. The proof of Proposition 4.10 consists of a series of lemmas. Throughout the
proof, unless otherwise stated, all the constants will depend at most on t∞, D.

Let η := (T∞ + t∞)/100 > 0 (if T∞ = ∞, simply take η = 1). Hence passing to a
subsequence, we may assume that ti ≥ −Ti + 50η and |ti − t∞| ≤ η for all i. All the
times for each i we consider in this proof is in [−Ti + η,0], hence we have Rgi ≥ −C

when we need the lower scalar curvature bound.
To start, since vi(pi,0) ≤ C, by Lemma 4.6, we have

vi(pi, t) ≤ C, (4.8)

for all t ∈ [ti − 10η,0], hence we have Rgi(pi, t) ≤ C for all t ∈ [ti,0]. Hence by
Lemma 2.9, we have

d
gi,ti
W1

(νpi,0;ti , δpi) ≤ C,
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combining with assumption (2), we have

d
gi,ti
W1

(νpi,0;ti , δxi) ≤ C.

Hence we can apply [Bam23, Theorem 6.49] to obtain that, after passing to a sub-
sequence, we can find a conjugate heat flow (μ∞

t )t∈(−T∞,t∞) on X with

lim
t↗t∞

Var(μ∞
t ) = 0, (4.9)

such that on compact time-intervals,

(νxi,ti;t)t∈(−Ti,ti)
C−−−→

i→∞
(μ∞

t )t∈(−T∞,t∞). (4.10)

Since X is Hn-concentrated, from (4.9), we have

Var(μ∞
t ) ≤ Hn(t∞ − t), for all t ∈ (−T∞, t∞). (4.11)

By [Bam23, Lemma 6.7], passing to a subsequence if necessary, we can find a subset
E∞ ⊂ (−T∞,0), which is of measure zero, such that both (4.4) and (4.10) are time-
wise outside of E∞.

Now for any j ∈ N+, we let εj → 0+, εj ≤ η, such that

sj := t∞ − εj /∈ E∞.

Then for each j, we let yj ∈ Xsj be an Hn-center of (μ∞
t )t∈(−T∞,t∞), and hence

Var(μ∞
sj

, δyj ) ≤ Hn(t∞ − sj) = Hnεj . (4.12)

Now we apply [Bam23, Theorem 6.45] to each yj to find yi
j ∈ Mi, such that

(yi
j , sj)

C−−−→
i→∞

yj , (4.13)

and (4.13) is time-wise outside of E∞ for each j.
Then for each j, we can find δj ∈ (0, εj ], such that

sj − δj /∈ E∞,

hence (4.13) is time-wise at sj − δj . For each j, we let (zi
j , sj − δj) be 
n-center of

(yi
j , sj), that is


(yi
j ,sj)(z

i
j , sj − δj) ≤ n/2, (4.14)

hence we can find smooth spacetime curve γyi
j

: [0, δj ] → Mi × [sj − δj , sj ] connecting

(yi
j , sj) to (zi

j , sj − δj) such that L(γyi
j
) ≤ nδ

1/2
j .

First, we have the following lemma.
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Lemma 4.11. There exist constant C < ∞, such that for each j, there exists i0(j) <

∞, such that for all i ≥ i0(j), we have:

dgi,sj −δj
(xi, z

i
j) ≤ Cε

1/2
j . (4.15)

Proof. We will apply the triangle inequality to the d
Zsj −δj

W1
-distance along the follow-

ing diagram:

δxi

(a)←→ νxi,ti;sj−δj

(b)←→ μ∞
sj−δj

(c)←→ νyj ;sj−δj

(d)←→ νyi
j ,sj ;sj−δj

(e)←→ δzi
j
. (4.16)

For (a) in (4.16), from (4.8), we have vi(pi, ti) ≤ C, hence by the assumption
dgi,ti

(pi, xi) ≤ D and Lemma 4.6, we have vi(xi, ti) ≤ C, hence by Lemma 4.6 again,
we have

vi(xi, t) ≤ C, (4.17)

for all t ∈ [ti − 1,0]. Hence we have Rgi(xi, t) ≤ C for all t ∈ [ti − 1,0]. Hence we can
apply Lemma 2.9 to obtain that

d
gi,sj −δj

W1
(νxi,ti;sj−δj , δxi) ≤ Cε

1/2
j , (4.18)

if we choose i0(j) large enough such that |ti − t∞| < εj for all i ≥ i0. Hence we can
compute

d
Zsj −δj

W1
((ϕi

sj−δj
)∗(δxi),(ϕ

i
sj−δj

)∗(νxi,ti;sj−δj ))

≤ d
gi,sj −δj

W1
(δxi , νxi,ti;sj−δj ) ≤ Cε

1/2
j .

(4.19)

where (Zt, dt) and ϕi
t are from Definition 2.14.

For (b) in (4.16), since (νxi,ti;t)t∈(−Ti,ti)
C−−−→

i→∞
(μ∞

t )t∈(−T∞,t∞) is time-wise at sj −
δj , we have

d
Zsj −δj

W1
((ϕi

sj−δj
)∗(νxi,ti;sj−δj ), (ϕ∞

sj−δj
)∗(μ∞

sj−δj
)) ≤ ε

1/2
j , (4.20)

for i ≥ i0(j), i0(j) large enough.
For (c) in (4.16), since yj ∈ Xsj is Hn-center of (μ∞

t )t∈(−T∞,t∞) and X is Hn-
concentrated, we can compute that

d
Zsj −δj

W1
((ϕ∞

sj−δj
)∗(μ∞

sj−δj
), (ϕ∞

sj−δj
)∗(νyj ;sj−δj )) ≤

√
Var(μ∞

sj−δj
, νyj ;sj−δj )

≤
√

Var(μ∞
sj

, δyj ) + Hnδj ≤
√

H2n(t∞ − sj) + Hnδj ≤ Cε
1/2
j .

(4.21)

For (d) in (4.16), since (yi
j , sj)

C−−−→
i→∞

yj is time-wise at sj − δj , we have

d
Zsj −δj

W1
((ϕ∞

sj−δj
)∗(νyj ;sj−δj ), (ϕi

sj−δj
)∗(νyi

j ,sj ;sj−δj
)) ≤ ε

1/2
j , (4.22)

for i ≥ i0(j), i0(j) large enough.
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For (e) in (4.16), we can apply Lemma 2.8 to obtain that

d
Zsj −δj

W1
((ϕi

sj−δj
)∗(νyi

j ,sj ;sj−δj
), (ϕi

sj−δj
)∗(δzi

j
))

≤
⎛
⎝1 +

L(γyi
j
)

2δ
1/2
j

− N ∗
sj−δj

(yi
j , sj)

⎞
⎠

1/2

δ
1/2
j ≤ Cδ

1/2
j .

(4.23)

Now, we can combine (4.19), (4.20), (4.21), (4.22), (4.23) and the triangle inequality
along the order (a), (b), (c), (d), (e) in (4.16) to obtain that

d
Zsj −δj

W1
((ϕi

sj−δj
)∗(δxi), (ϕ

i
sj−δj

)∗(δzi
j
)) ≤ Cε

1/2
j . (4.24)

Since ϕi
sj−δj

: (Mi, dgi,sj −δj
) → (Zsj−δj , dZ

sj−δj
) is isometric embedding, we obtain

from (4.24) that

dgi,sj −δj
(xi, z

i
j) ≤ Cε

1/2
j .

This completes the proof of Lemma 4.11. �

Next, we have the following lemma.

Lemma 4.12. There exists j0 < ∞, such that for all j ≥ j0, there exists i0(j) < ∞,

such that for all i ≥ i0(j), we have

(1) dgi,sj −δj
(yi

j , xi) ≤ Cε
1/2
j ;

(2) dgi,sj −δj
(yi

j , pi) ≤ C;

(3) rRm(yi
j , sj) ≥ σ/2.

Proof. First, recall that limi→∞ ti = t∞ = sj + j−1. From (4.17) we have vi(xi, sj −
δj) ≤ C, hence by Lemma 4.6 and Lemma 4.11, we have vi(zi

j , sj − δj) ≤ C. Hence
we can apply Proposition 4.7 to obtain that vi(yi

j , sj) ≤ C, hence by Lemma 4.6, we
have vi(yi

j , t) ≤ C for all t ∈ [ti − 1,0]. Hence we have

Rgi(y
i
j , t) ≤ C,

for all t ∈ [ti − 1,0]. Hence we can apply Lemma 2.9 to obtain that

d
gi,sj −δj

W1
(νyi

j ,sj ;sj−δj
, δyi

j
) ≤ Cδ

1/2
j . (4.25)

Combining this with (4.23), we can compute

dgi,sj −δj
(yi

j , z
i
j) ≤ d

gi,sj −δj

W1
(δyi

j
, νyi

j ,sj ;sj−δj
) + d

gi,sj −δj

W1
(νyi

j ,sj ;sj−δj
, δzi

j
) ≤ Cδ

1/2
j .

Combining this with Lemma 4.11, we have dgi,sj −δj
(yi

j , xi) ≤ Cε
1/2
j , this proves

item (1).
Next, since dgi,ti

(pi, xi) ≤ D, by applying Proposition 4.8, we have

dgi,sj −δj
(pi, xi) ≤ C,

provided j ≥ j0, j0 large, and i ≥ i0(j). This proves item (2).
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Finally, from rRm(xi, ti) ≥ σ, from Lemma 2.4, we have rRm(xi, sj − δj) ≥ 9σ/10
provided j ≥ j0, j0 large, and i ≥ i0(j). Hence by Lemma 2.4 and item (2) of this
lemma, we have rRm(yi

j , sj − δj) ≥ 8σ/10 provided j ≥ j0 and i ≥ i0(j). Hence by
Lemma 2.4 again, we have rRm(yi

j , sj) ≥ σ/2 provided j ≥ j0. This proves item (3).
This completes the proof of lemma 4.12. �

Next, we let σ̄ ≤ η. Then we have

Lemma 4.13. There exists j0 < ∞, such that for all j ≥ j0, there exists i0(j) < ∞,

such that for all i ≥ i0(j), for all y ∈ B(yi
j , sj , σ/2), for all t ∈ [sj − (σ/2)2, sj +

(σ/2)2], we have

K(pi,0;y, t) ≥ C−1. (4.26)

Proof. From item (2) of Lemma 4.12 and (4.8), we apply Proposition 4.8 to get

dgi,sj
(yi

j , pi) ≤ C. (4.27)

provided j ≥ j0 and i ≥ i0(j). Hence for any y ∈ B(yi
j , sj , σ/2), we have dgi,sj

(y, pi) ≤
C. By Proposition 4.8 again, if we choose σ̄ > 0 small enough, then we have

dgi,t(y, pi) ≤ C.

for all t ∈ [sj − (σ/2)2, sj + (σ/2)2]. Then (4.26) follows immediately from Proposi-
tion 4.9. This completes the proof. �

From Lemma 4.12, we have for j ≥ j0, i ≥ i0(j), rRm(yi
j , sj) ≥ σ/2, and since

(yi
j , sj)

C−−−→
i→∞

yj , we can apply [Bam23, Theorem 9.58] to each j ≥ j0, to obtain that,

there is a maximal T ∗
j ∈ (0, (σ/2)2] such that the open parabolic neighborhood (see

[Bam23, Sect. 9.5]) P ◦(yj ;σ/2,−(σ/2)2, T ∗
j ) ⊂ R is unscathed. The point is to obtain

uniform lower bound of T ∗
j . We have the following lemma.

Lemma 4.14. There exists j0 < ∞, such that for all j ≥ j0, we have

T ∗
j = (σ/2)2.

In particular, we have P (yi
j , sj ;σ/2) converge to P ◦(yj ;σ/2,−(σ/2)2, (σ/2)2) ⊂ R in

the Cheeger-Gromov sense as i → ∞.

Proof. Choose j0 large such that Lemma 4.13 holds. Assume that for some j ≥ j0,
we have T ∗

j < (σ/2)2. Then according to [Bam23, Theorem 9.58], we have

lim
t↗sj+T ∗

j

K(p∞;yj(t)) = 0, (4.28)

where yj(t) ∈ R(t) denotes the point survive from yj ∈ R(sj) to time t.
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On the other hand, we have the smooth convergence of the parabolic neigh-
borhoods P (yi

j , sj ;σ/2,−(σ/2)2, T ∗
j ) to the unscathed open parabolic neighborhood

P ◦(yj ;σ/2,−(σ/2)2, T ∗
j ) ⊂ R, hence for any t ∈ [sj , sj + T ∗

j ), by [Bam23, Theo-
rem 9.31, (e)] we have

K(p∞;yj(t)) = lim
i→∞

K(pi,0;yi
j, t). (4.29)

Hence combining (4.29) and Lemma 4.13, we obtain

K(p∞;yj(t)) = lim
i→∞

K(pi,0;yi
j, t) ≥ C−1,

for all t ∈ [sj , sj + T ∗
j ), this however contradicts (4.28). This contradiction means

that T ∗
j = (σ/2)2, hence completes the proof. �

Next, we have the following distance distortion estimate, which holds trivially
true on ordinary Ricci flows.

Lemma 4.15. Assume r ∈ (0,1), x0 ∈ Rt0 satisfy that P ◦(x0; r, −r2, r2) ⊂ R is un-

scathed and r̃Rm(x0) ≥ r. Then for any x ∈ B(x0, r
4) and t ∈ [t0 − r2, t0 + r2], we

have

e−r−2|t−t0|dt0(x0, x) ≤ dt(x0(t), x(t)) ≤ er−2|t−t0|dt0(x0, x).

Proof. Since P ◦(x0; r, −r2, r2) ⊂ R is unscathed, for any x ∈ B(x0, r
4), we can find a

smooth curve γ : [0,1] → B(x0, r) connecting x0 to x, such that 
gt0
(γ) = dgt0

(x0, x).
Hence for any t ∈ [t0 − r2, t0 + r2], we have

−r−2
gt(γ) ≤ d

dt

gt(γ) =

∫ 1

0

−Ricgt(γ̇(s), γ̇(s))

|γ̇(s)|gt

ds ≤ r−2
gt(γ).

Integrating this we obtain

e−r−2|t−t0|dgt0
(x0, x) ≤ dgt(x0(t), x(t)) ≤ er−2|t−t0|dgt0

(x0, x),

then we recall that for any t < 0, (Xt, dt) is the metric completion of (Rt, gt), which
completes the proof. �

Now we can finish the proof of Theorem 4.10.
First, due to Lemma 4.12 and Lemma 4.14 and [Bam2, Lemma 15.16], for j ≥ j0,

we have r̃Rm(yj) ≥ σ/2 and P ◦(yj ;σ/2,−(σ/2)2, (σ/2)2) ⊂ R is unscathed. Hence we
can apply [Bam2, Lemma 15.16, (e), (f)] to find a dimensional constant c0 = c0(n) >

0, such that

r̃Rm(y) ≥ σ/4, for any y ∈ P ◦(yj ; 2c0σ, −(2c0σ)2, (2c0σ)2). (4.30)

Indeed, given y ∈ P ◦(yj ; 2c0σ, −(2c0σ)2, (2c0σ)2), we have |r̃Rm(y(sj)) − r̃Rm(yj)| ≤
2c0σ, hence r̃Rm(y(sj)) ≥ σ/3 if c0 ≤ 1/1000; then from |r̃2

Rm(y) − r̃2
Rm(y(sj))| ≤

C0(n)(2c0σ)2, hence r̃Rm(y) ≥ σ/4 is c0(n) is small enough.
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Next, we claim that if we choose c0(n) small enough, then for any y ∈
P ◦(yj ; 2c0σ, −(2c0σ)2, (2c0σ)2), we have

P ◦(y; 2c0σ, −(2c0σ)2, (2c0σ)2) ⊂ P ◦(yj ;σ/2,−(σ/2)2, (σ/2)2). (4.31)

Indeed, let t̃ := t(y), x ∈ P ◦(y; 2c0σ, −(2c0σ)2, (2c0σ)2), then we have dt̃(x(t̃), y) ≤
2c0σ. But from Lemma 4.15, we have dt̃(y, yj(t̃)) ≤ edsj (y(sj), yj) ≤ 6c0σ, hence we
have dt̃(x(t̃), yj(t̃)) ≤ 8c0σ. But we have r̃Rm(yj(t̃)) ≥ σ/4 ≥ 4 · 8c0σ, hence again
by Lemma 4.15, we have dsj (x(sj), yj) ≤ edt̃(x(t̃), yj(t̃)) ≤ 20c0σ ≤ σ/10, hence x ∈
P ◦(yj ;σ/2,−(σ/2)2, (σ/2)2). This proves (4.31). Similar proof of (4.30) shows that
we can further require that

r̃Rm(x) ≥ c0σ, for any x ∈ P ◦(y; 2c0σ, −(2c0σ)2, (2c0σ)2). (4.32)

Next, the same arguments in the proof of Lemma 4.14 show that

K(p∞;y) ≥ C−1, ∀ y ∈ P ◦(yj ;σ/5,−(σ/5)2, (σ/5)2) (4.33)

but from [Bam2, Lemma 15.9, (a)], we have

K(p∞;y) ≤ C exp

⎛
⎝−(d

Xt(y)

W1
(νp∞;t(y), δy))2

C

⎞
⎠ , (4.34)

hence we can combine (4.33) and (4.34) to obtain that

d
Xt(y)

W1
(νp∞;t(y), δy) ≤ A,

for all y ∈ P ◦(yj ;σ/5,−(σ/5)2, (σ/5)2). Hence if we set

W := {r̃Rm ≥ σ/10} ∩ P ∗(p∞;A, t∞ − 10η) ∩ R[t∞−σ2,t∞+σ2],

then from (4.30), for j ≥ j0, we have P ◦(yj ; 2c0σ, −(2c0σ)2, (2c0σ)2) ⊂ W . Using
[Bam2, Lemma 15.16, (h)], we know W ⊂ R is a relatively compact subset of R,
hence for i large enough, we have W ⊂ Ui, then from Lemma 4.14, we have

P (yi
j , sj ; c0σ) ⊂ Vi = ψi(Ui), (4.35)

for i ≥ i0(j), i0(j) large enough, and we have

ψ−1
i (P (yi

j , sj ; c0σ)) ⊂ P ◦(yj ; 2c0σ, −(2c0σ)2, (2c0σ)2).

Recall that rRm(xi, ti) ≥ σ and limi→∞ ti = t∞ = sj + εj , we have rRm(xi, sj − δj) ≥
σ/2 for j ≥ j0, i ≥ i0(j). From item (2) of Lemma 4.12, we have dgi,sj −δj

(yi
j , xi) ≤

Cε
1/2
j , hence by Lemma 4.15, we have (xi, ti) ∈ P (yi

j , sj ; c0σ) for j ≥ j0, i ≥ i0(j). We
can fix one such j from now on. Hence ψ−1

i (xi, ti) is well-defined, and

ψ−1
i (xi, ti) ∈ P ◦(yj ; 2c0σ, −(2c0σ)2, (2c0σ)2) ⊂ W.
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Since W ⊂ R is relatively compact, passing to a subsequence, we have

ψ−1
i (xi, ti) −−−→

i→∞
x∞ ∈ P ◦(yj ; 2c0σ, −(2c0σ)2, (2c0σ)2) ⊂ K := W ⊂ R,

hence apply [Bam23, Theorem 9.31, (c)], we have (xi, ti)
C−−−→

i→∞
x∞, this proves items

(1) and (3). Item (2) follows since r̃Rm(x∞) = limi→∞ rRm(xi, ti). Item (4) follows
from Lemma 4.14, (4.31) and (4.32).

This completes the proof of Proposition 4.10. �

4.4 Long-time distance distortion estimates at small scales. In this section, we
prove the following long-time distance distortion estimates at small scales.

Proposition 4.16. For any η ∈ (0,1), A, D < ∞, there exist constants C < ∞ and

r̄ > 0, both depend on η, A, D, such that for any 0 < r ≤ r̄, the following statements

hold on the Ricci flow (Mi, (gi,t)t∈[−Ti,0]).
Suppose (x0, t0) ∈ Mi × [−Ti + 10η,0] satisfies that

vi(x0, t0) ≤ A,

then for any t1 ∈ [t0 − r2, t0 + r2] and y0 ∈ Bgi(x0, t0, Dr), we have

dgi,t1
(x0, y0) ≤ Cr.

Proof. Throughout the proof, unless otherwise stated, all the constants will depend
at most on η, A, D. All the times we consider in this proof is in [−Ti + η,0], hence
we have Rgi ≥ −C when we need the lower scalar curvature bound.

By Lemma 4.6, we have

vi(x0, t) ≤ C, (4.36)

for all t ∈ [t0 − η,0]. We then have

Lemma 4.17. There exists a constant 0 < α < 1
100 , C0 < ∞, 0 < r̃ < 1, such that the

following statement holds.

Assume 0 < r ≤ r̃, t′, t′′ ∈ [t0 − η,0] with |t′ − t′′| ≤ αr2, and (x1, t′) ∈ Mi × {t′}
with dgi,t′

(x0, x1) ≤ r, then we have

dgi,t′′
(x0, x1) ≤ C0r.

Proof. Consider the rescaled flow (Mi, (g̃i,t)t∈[−r−2Ti,0]) with g̃i,t = r−2gi,r2t. Denote
by t∗ := r−2t′ and t∗∗ := r−2t′′, then we have |t∗ − t∗∗| ≤ α. Let γ : [0,1] → Mi be a
g̃i,t∗-minimizing geodesic between (x0, t∗) and (x1, t∗).

Let (z0, t∗ − 1) be an 
n-center of (x0, t∗), hence we have


(x0,t∗)(z0, t∗ − 1) ≤ n/2.
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Then we consider the function K(x, t) := K(x, t; z0, t∗ −1), which satisfies that ∂tK =
ΔK. Then we have

d

dt

∫

Mi

K(·, t)dg̃i,t =
∫

Mi

(ΔK(·, t) − Rg̃i(·, t)K(·, t))dg̃i,t ≤ C

∫

Mi

K(·, t)dg̃i,t.

Hence for t ∈ [t∗ − 1
2 , t∗ + 1

2 ], we have
∫

Mi

K(·, t)dg̃i,t ≤ e2n(t−(t∗−1)). (4.37)

Also, for all t ∈ [t∗ − 1
2 , t∗ + 1

2 ], we have

K(·, t) ≤ B1, (4.38)

on Mi, for some constant B1 = B1(n, ω0) < ∞. Hence we can apply [Zha06, Theo-
rem 3.2] to obtain that

∣∣∣∣∣∇
√

ln
B1

K(·, t)

∣∣∣∣∣
g̃i,t

≤
√

1

t − (t∗ − 1
4)

≤ 10, (4.39)

for all t ∈ [t∗ − 1
8 , t∗ + 1

8 ]. But we have

K(γ(0), t∗) = K(x0, t∗) ≥ 1

(4π(t∗ − (t∗ − 1)))n/2
e−�(x0,t∗)(z0,t∗−1) ≥ c0,

for some constant c0 = c0(n) > 0, hence we can integrate (4.39) at t = t∗ along γ to
obtain that

K(γ(s), t∗) ≥ c0, for all s ∈ [0,1]. (4.40)

Now, for any time t between t∗ and t∗∗, we can apply [BZ17, Lemma 3.1] to obtain
that

|∂tK(γ(s), t)| ≤ B1(Rg̃i(γ(s), t) + C(n, ω0)), (4.41)

for all s ∈ [0,1], t ∈ [t∗ − 1
8 , t∗ + 1

8 ]. From (4.36), we have vi(γ(s), t′) ≤ C for all
s ∈ [0,1]. Hence we have vi(γ(s), t) ≤ C for all s ∈ [0,1] and t ∈ [−T − η,0], which
gives Rgi(γ(s), t) ≤ C for all s ∈ [0,1] and t ∈ [−T − η,0]. Hence we have

Rg̃i(γ(s), t) ≤ Cr2 ≤ 1, (4.42)

for all s ∈ [0,1], t ∈ [t∗ − 1
8 , t∗ + 1

8 ]. Hence from (4.41), we have

|∂tK(γ(s), t)| ≤ 2B1, (4.43)

for all s ∈ [0,1], t ∈ [t∗ − 1
8 , t∗ + 1

8 ]. Hence if we choose α > 0 small enough, we can
integrate (4.43) and use (4.40) to obtain

K(γ(s), t∗∗) ≥ c1 > 0, for all s ∈ [0,1]. (4.44)
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Then we can integrate (4.39) at t = t∗∗ to obtain that, for all s ∈ [0,1]

K(·, t∗∗) ≥ c2 > 0, on Bg̃i(γ(s), t∗∗,1). (4.45)

Now we let Q ≥ 1 be maximal subject to the fact that there are parameters 0 ≤
s1 < s2 < · · · < sQ ≤ 1 such that the balls Bg̃i(γ(s1), t∗∗,1), . . . , Bg̃i(γ(sQ), t∗∗,1)
are mutually disjoint. Then the balls Bg̃i(γ(s1), t∗∗,2), . . . , Bg̃i(γ(sQ), t∗∗,2) cover
γ([0,1]). Hence we have dg̃i,t∗∗ (x0, x1) ≤ 4Q.

So we only need to bound Q. From vi(γ(s), t′′) ≤ C for all s ∈ [0,1], for any
x ∈ Bg̃i(γ(s), t∗∗,1), we have vi(x, t′′) ≤ C, hence Rgi(x, t′′) ≤ C, hence we have

Rg̃i(·, t∗∗) ≤ Cr2 ≤ 1, on Bg̃i(γ(sj), t
∗∗,1),

for all 1 ≤ j ≤ Q, hence we can apply Lemma 2.5 to obtain that

Volg̃i,t∗∗ (Bg̃i(γ(sj), t
∗∗,1)) ≥ c3 > 0.

Combining this with (4.37) and (4.45), we have

e10n ≥
∫

Mi

K(·, t∗∗)dg̃i,t∗∗ ≥
Q∑

j=1

∫

Bg̃i (γ(sj),t∗∗,1)
K(·, t∗∗)dg̃i,t∗∗ ≥ Q · c2 · c3,

hence we have Q ≤ C0. This completes the proof of Lemma 4.17. �

Given t1 ∈ [t0 − r2, t0 + r2], then let y0 ∈ B(x0, t0, Dr). We only consider the case
t0 < t1, the other case is similar. Let Q := �α−1� + 1, δ0 := (t1 − t0)/Q, sj := t0 + jδ0

for j = 0,1, . . . , Q. We then choose r̄ > 0 small enough such that

CQ
0 Dr̄ ≤ r̃,

where C0 and r̃ are the constant from Lemma 4.17. We have dgi,s0
(x0, y0) ≤ Dr. We

prove by induction that

dgi,sj
(x0, x1) ≤ Cj

0Dr, (4.46)

for each j = 1, . . . ,Q. Indeed, if (4.46) holds for j − 1, then we have

sj − sj−1 = δ0 ≤ r2/Q ≤ αr2 ≤ α(Cj−1
0 Dr)2,

and we have Cj−1
0 Dr ≤ CQ

0 Dr̄ ≤ r̃, hence we can apply Lemma 4.17 with r ← Cj−1
0 r

to obtain (4.46) holds for j. Apply (4.46) with j = Q shows that

dgi,t1
(x0, x1) ≤ Cr.

This completes the proof of Proposition 4.16. �
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4.5 Integral curvature bounds. In this subsection, we will first prove integral
curvature bounds on the flows (Mi, (gi,t)t∈[−Ti,0]), then pass it to the limit metric
flow X .

First, we have the following covering result.

Proposition 4.18. For any T ∈ (0, T∞), A, B < ∞, 0 < p < 4, there exists con-

stants H = H(A, B, T,p) < ∞, B0 = B0(A, T ) < ∞, λ̄ = λ̄(A, B, T,p) > 0, such that

whenever B ≥ B0, then the following statement holds.

For any t0 ∈ (−T, 0), λ ∈ (0, λ̄), there exists constant r̄ > 0 depends on λ, t0, A,

B, T , p, such that the following statement holds for all i large enough.

Given any i ≥ i0, for any (x0, t0) ∈ P ∗(pi,0;A,−T ), 0 < r ≤ r̄, we can find Q-

many points y1, . . . , yQ ∈ Mi, such that

(1) Q ≤ Hλp−n;

(2) (yk, t0) ∈ P ∗(x0, t0 + r2;Br,−2r2);
(3) {rRm ≤ λr} ∩ P ∗(x0, t0 + r2;Br,−2r2) ∩ (Mi × {t0}) ⊂ ⋃Q

j=1 P ∗(yj , t0 + (λr)2;
Bλr,−2(λr)2).

Proof. We choose η ∈ (0,1) such that −T − 100η > −T∞, then we consider all i large
enough such that −T − 50η > −Ti. We will determine 0 < r̄ = r̄(λ, t0, A, B, T,p) < 1
in the course of the proof. We always require that Br̄ ≤ 1, t0 − r̄2 ≥ −T , t0 + r̄2 < 0,
0 < r ≤ r̄.

We choose points

(y1, t0), . . . , (yQ, t0) ∈ {rRm ≤ λr} ∩ P ∗(x0, t0 + r2;Br,−2r2) ∩ (Mi × {t0}),

with Q being maximal subject to the fact that the subsets

P ∗(yj , t0 + (λr)2; 3H1/2
n λr, −2(λr)2) ∩ (Mi × {t0})

are mutually disjoint for 1 ≤ j ≤ Q.
First, we have

Lemma 4.19. There exists constant B1 = B1(A, B, T ) < ∞, such that if we choose

i0 = i0(A, T ) < ∞ large enough, then we have

P ∗(yj , t0 + (λr)2; 3H1/2
n λr, −2(λr)2) ⊂ P ∗(x0, t0 + r2;B1r, −2r2),

for all 1 ≤ j ≤ Q.

Proof. First, since (x0, t0) ∈ P ∗(pi,0;A,−T ), we can apply Proposition 4.7 to obtain
that vi(x0, t0) ≤ C, hence

vi(x0, t) ≤ C(A, T ), (4.47)

for all t ∈ [−T, 0]. Hence we have Rgi(x0, t) ≤ C(A, T ) for all t ∈ [−T, 0], then we can
apply Lemma 2.9 to obtain

d
gi,t0−r2

W1
(νx0,t0+r2;t0−r2 , νx0,t0;t0−r2) ≤ d

gi,t0
W1

(νx0,t0+r2;t0
, δx0) ≤ C(A, T )r. (4.48)
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Next, from (yj , t0) ∈ P ∗(x0, t0 + r2;Br,−2r2) we have

d
gi,t0−r2

W1
(νx0,t0+r2;t0−r2 , νyj ,t0;t0−r2) ≤ Br, (4.49)

hence we can combine (4.48) and (4.49) to obtain that

d
gi,−T

W1
(νx0,t0;−T , νyj ,t0;−T ) ≤ d

gi,t0−r2

W1
(νx0,t0;t0−r2 , νyj ,t0;t0−r2) ≤ C(A, B, T )r. (4.50)

Combining this with (x0, t0) ∈ P ∗(pi,0;A,−T ), we have

d
gi,−T

W1
(νpi,0;−T , νyj ,t0;−T ) ≤ A + C(A, B, T )r ≤ A + 1, (4.51)

if we choose r̄ > 0 small enough. Using (4.51), we can apply Proposition 4.7 to obtain
that vi(yj , t0) ≤ C(A, T ), hence

vi(yj , t) ≤ C(A, T ), (4.52)

for all t ∈ [−T, 0]. Hence we have Rgi(yj , t) ≤ C(A, T ) for all t ∈ [−T, 0], then we can
apply Lemma 2.9 to obtain

d
gi,t0−r2

W1
(νyj ,t0+(λr)2;t0−r2 , νyj ,t0;t0−r2) ≤ d

gi,t0
W1

(νyj ,t0+(λr)2;t0
, δyj ) ≤ C(A, T )r. (4.53)

Hence we can combine (4.49) and (4.53) to obtain that

d
gi,t0−r2

W1
(νx0,t0+r2;t0−r2 , νyj ,t0+(λr)2;t0−r2) ≤ C(A, B, T )r. (4.54)

On the other hand, for any (ŷ, t̂) ∈ P ∗(yj , t0 + (λr)2; 3H
1/2
n λr, −2(λr)2), we have

d
gi,t0−r2

W1
(νyj ,t0+(λr)2;t0−r2 , νŷ,t̂;t0−r2)

≤ d
gi,t0−(λr)2

W1
(νyj ,t0+(λr)2;t0−(λr)2 , νŷ,t̂;t0−(λr)2) ≤ 3H1/2

n λr.
(4.55)

Combining (4.54) and (4.55), we obtain

d
gi,t0−r2

W1
(νx0,t0+r2;t0−r2 , νŷ,t̂;t0−r2) ≤ C(A, B, T )r.

This completes the proof of Lemma 4.19. �

Next, we have

Lemma 4.20. There exists constant B2 = B2(A, T ) < ∞, such that

P ∗(yj , t0 + (λr)2; 3H1/2
n λr, −2(λr)2) ⊂ {rRm ≤ B2λr} ,

for all 1 ≤ j ≤ Q.

Proof. First note that rRm(yj , t0) ≤ λr, using Lemma 2.4, we have

rRm(yj , t0 − (λr)2) ≤ C0(n)λr. (4.56)
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Next, we fix (ŷ, t̂) ∈ P ∗(yj , t0 +(λr)2; 3H
1/2
n λr, −2(λr)2). Then from (4.52) and Propo-

sition 4.7, we can get vi(ŷ, t̂) ≤ C(A, T ), hence

vi(ŷ, t) ≤ C(A, T ), (4.57)

for all t ∈ [−T, 0]. Hence we have Rgi(ŷ, t) ≤ C(A, T ) for all t ∈ [−T, 0], then we can
apply Lemma 2.9 to obtain

d
gi,t0−(λr)2

W1
(δŷ, νŷ,t̂;t0−(λr)2) ≤ C(A, T )λr. (4.58)

Next, we have

d
gi,t0−(λr)2

W1
(νŷ,t̂;t0−(λr)2 , νyj ,t0+(λr)2;t0−(λr)2) ≤ 3H1/2

n λr. (4.59)

Finally, similar to (4.53), we have

d
gi,t0−(λr)2

W1
(νyj ,t0+(λr)2;t0−(λr)2 , δyj ) ≤ C(A, T )r. (4.60)

Combining (4.58), (4.59) and (4.60), we obtain from the triangle inequality that

dgi,t0−(λr)2 (yj , ŷ) ≤ C(A, T )λr. (4.61)

Combining Lemma 2.4, (4.56) and (4.61) we obtain

rRm(ŷ, t0 − (λr)2) ≤ C(A, T )λr. (4.62)

But we have t̂ − (t0 − (λr)2) < 2(λr)2, hence by Lemma 2.4 again, we have

rRm(ŷ, t̂) ≤ C(A, T )λr.

This completes the proof of Lemma 4.20. �

Next, we have

Lemma 4.21. There exists constant Ep = Ep(A, B, T ) < ∞, 0 < r̄ = r̄(λ, t0, A, B, T,

p) < 1, such that for all i large enough, we have

∣∣∣{rRm ≤ B2λr} ∩ P ∗(x0, t0 + r2;B1r, −2r2) ∩ (Mi × {t0})
∣∣∣
gi,t0

≤ Epλprn. (4.63)

Proof. We will determine the constant Ep = Ep(A, B, T ) < ∞ in the course of the
proof.

Assume such r̄ does not exist. Then passing to a subsequence, for each i, we can
find a point (xi, t0) ∈ P ∗(pi,0;A,−T ), ri → 0+ such that

∣∣∣{rRm ≤ B2λri} ∩ P ∗(xi, t0 + r2
i ;B1ri,−2r2

i ) ∩ (Mi × {t0})
∣∣∣
gi,t0

≥ Epλprn
i , (4.64)



GAFA GEOMETRIC REGULARITY OF BLOW-UP LIMITS OF THE KÄHLER-RICCI FLOW 1955

for all i ∈ N. Let (M̂i, (ĝi,t)t∈[−T̂i,0]) be the flows arise from (Mi, (gi,t)t∈[−Ti,0]) by
setting

M̂i := Mi, ĝi,t := r−2
i gi,r2

i t+(t0+r2
i ), t ∈ [−T̂i,0],

where T̂i → ∞ as i → ∞ are chosen such that −Ti = −r2
i T̂i + (t0 + r2

i ). Then from
(4.64), on the flow (Mi,k, (gi,k,t)t∈[−Ti,k,0]), we have

∣∣∣{rRm ≤ B2λ} ∩ P ∗(xi,0;B1,−2) ∩ (M̂i × {−1})
∣∣∣
ĝi,−1

≥ Epλp. (4.65)

Passing to a subsequence, we have F-convergence on compact time-intervals

(M̂i, (ĝi,t)t∈[−T̂i,0], (νxi,0;t)t∈[−T̂i,0])
F,C−−−→

i→∞
(X̂ , (νx∞;t)t∈(−∞,0]), (4.66)

within some correspondence C, where X̂ is a future continuous and Hn-concentrated
metric flow of full support over (−∞,0]. We denote by X̂ = R̂
Ŝ the regular-singular
decomposition with R̂ carries the structure of a Ricci flow spacetime (R̂, t, ∂t, ĝ),
and let Ûi ⊂ R̂, V̂i ⊂ Mi × [−T̂i,0] be the open subsets where we have local smooth
convergence, with time-preserving diffeomorphisms ψ̂i : Ûi → V̂i for each i = 1,2, . . . .

Let δ = δ(λ, Ep, A, B, T ) > 0 be a small constant to be determined. Then we can
apply [Bam2, Lemma 15.27, (a)] to obtain that

∣∣∣{rRm ≤ 2δ} ∩ P ∗(xi,0;B1,−2) ∩ (M̂i × {−1})
∣∣∣
ĝi,−1

≤ C(A, B, T )δ, (4.67)

hence we can combine (4.65) and (4.67) to get

|Wi|ĝi,−1
≥ 1

2
Epλp, (4.68)

where Wi ⊂ M̂i is defined by

Wi := {2δ ≤ rRm ≤ B2λ} ∩ P ∗(xi,0;B1,−2) ∩ (M̂i × {−1}),

provided that δ is chosen small enough.
We claim that, for all i large, for any (y, −1) ∈ P ∗(xi,0;B1,−2), we have

dĝi,−1(y, xi) ≤ C(A, B, T ). (4.69)

Indeed, by Proposition 4.7: since (xi, t0) ∈ P ∗(pi,0;A,−T ), we have vi(xi, t0) ≤
C(A, T ); then from (y, t0) ∈ P ∗(xi, t0 +r2

i ;B1ri,−2r2
i ), we have vi(y, t0) ≤ C(A, B, T ).

Hence vi(xi, t), vi(y, t) ≤ C(A, B, T ) for all t ∈ [−T, 0], and we then have

Rgi(xi, t), Rgi(y, t) ≤ C(A, B, T ), (4.70)

for all t ∈ [−T, 0]. Hence we can apply Lemma 2.9 to get

d
gi,t0−r2

i
W1

(νxi,t0+r2
i ;t0−r2

i
, δxi) ≤ C(A, B, T )ri, (4.71)



1956 M. HALLGREN ET AL. GAFA

and

d
gi,t0−r2

i

W1
(νy,t0;t0−r2

i
, δy) ≤ C(A, B, T )ri, (4.72)

hence by the triangle inequality, we have dgi,t0−r2
i

(y, xi) ≤ C(A, B, T )ri. Then for all

i large enough (hence ri small enough), we can apply Proposition 4.16 to obtain
(4.69).

Now, if we set v̂i(t) = vi(r2
i t + (t0 + r2

i )), then v̂i is a r2
i Ci-barrier of Rĝi , and is

C(A, B, T )-based at (xi,0). Hence by (4.69), we can apply Proposition 4.10 to obtain
that Wi ⊂ V̂i for all i large enough (if this is not true, we can pass to a subsequence
to find points (yi,−1) ∈ Wi \ V̂i, this contradicts to item (3) of Proposition 4.10).
Hence for i large enough, ψ̂−1

i (Wi) ⊂ Ûi is well-defined. Then we have

Claim 4.22. For i large enough, we have

ψ̂−1
i (Wi) ⊂ {δ ≤ r̃Rm ≤ 2B2λ} ∩ P ∗(x∞; 2B1,−3) ∩ R̂−1.

Proof. If this is not true, passing to a subsequence, we can find a sequence of points
(yi,−1) ∈ Wi but ψ̂−1

i (yi,−1) /∈ {δ ≤ r̃Rm ≤ 2B2λ}∩ P ∗(x∞; 2B1,−3). Using Proposi-
tion 4.10 again, passing to a subsequence, there exists a point y∞ ∈ R̂−1, such that we

have (yi,−1)
C−−−→

i→∞
y∞, and r̃Rm(y∞) = limi→∞ rRm(yi,−1) ∈ [2δ, B2λ]. According to

[Bam2, Lemma 15.8], we have y∞ ∈ P ∗(x∞; 2B1,−3), and since ψ̂−1
i (yi,−1) → y∞ in

R̂−1, we have ψ̂−1
i (yi,−1) ∈ {δ ≤ r̃Rm ≤ 2B2λ} ∩ P ∗(x∞; 2B1,−3) for i large enough.

This is a contradiction which proves the claim. �

Due to [Bam2, Lemma 15.16, (h)], the set {δ ≤ r̃Rm ≤ 2B2λ} ∩ P ∗(x∞; 2B1,−3) ∩
R̂−1 is relatively compact in R̂−1, hence due to the local smooth convergence on
R̂−1, we have from (4.68) and Claim 4.22 that

∣∣∣{δ ≤ r̃Rm ≤ 2B2λ} ∩ P ∗(x∞; 2B1,−3) ∩ R̂−1

∣∣∣
ĝ−1

≥ 1

2
Epλp. (4.73)

On the other hand, from (4.70), we have

Rgi(xi, t0 + r2
i ) ≤ C(A, B, T ), (4.74)

for all i large. Also, we have Rgi ≥ −C(T ) on Mi × [−T, 0]. Hence we have

Rĝi(xi,0) ≤ C(A, B, T )r2
i → 0, as i → ∞,

and Rĝi ≥ −C(n, ω0)r2
i on M̂i × [−T ′,0] for any T ′ < ∞, for i large enough. Hence

we have
∫ 0

−T ′

∫

M̂i

|Ricĝi |2 dνxi,0;tdt ≤ Rĝi(xi,0) + C(A, B, T )r2
i → 0, as i → ∞. (4.75)

Hence we can apply [Bam2, Theorem 15.60] to obtain that (X̂ , (νx∞;t)t∈(−∞,0]) is a
static limit.
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We claim that, there exists C0 = C0(Y0) < ∞, such that for any x ∈ P ∗(x∞; 2B1,

−3) ∩ R̂−1, for any t ∈ [−2,−1], we have

x(t) ∈ P ∗(x∞; 2B1 + C0,−3) ∩ R̂t, (4.76)

where x(t) denotes the point survive to time t. Indeed, let t ∈ [−2,1), consider the
curve γ(τ) = x(−1 − τ), τ ∈ [0,−1 − t]. Since Ric ≡ 0 on R̂, we have L(γ) = 0, hence
from [Bam2, Lemma 22.2], we have

d
χ̂−3

W1
(νx;−3, νx(t);−3) ≤ d

χ̂−3

W1
(νx;t, δx(t)) < C(Y0),

hence by triangle inequality,

d
χ̂−3

W1
(νx∞;−3, νx(t);−3) ≤ d

χ̂−3

W1
(νx∞;−3, νx;−3) + d

χ̂−3

W1
(νx;−3, νx(t);−3) < 2B1 + C(Y0),

this proves (4.76).
Then we can apply the first inequality in [Bam2, Lemma 15.27, (a)] (taking

I∞ = [−2,−1] there is enough) to obtain that (note that p ∈ (0,4))

∫ −1

−2

∫

{0<r̃Rm≤2B2λ}∩P ∗(x∞;2B1+C0,−3)∩R̂t

dĝtdt ≤ B3λp,

for some constant B3 = B3(p, B1, B2) = B3(p, A, B, T ) < ∞. Using (4.76) and the
fact that X̂ is static limit, we conclude

∣∣∣{0 < r̃Rm ≤ 2B2λ} ∩ P ∗(x∞; 2B1,−3) ∩ R̂−1

∣∣∣
ĝ−1

≤ B3λp, (4.77)

Hence if we choose Ep ≥ 10B3, then we obtain a contradiction from (4.73) and (4.77).
This completes the proof of Lemma 4.21. �

Lemma 4.23. There exists constants H = H(p, A, B, T ) < ∞, 0 < r̄ = r̄(λ, t0, A, B, T,

p) < 1, such that

Q ≤ Hλp−n. (4.78)

Proof. Let 0 < r̄ = r̄(λ, t0, A, B, T,p) < 1 be the constant from Lemma 4.21.
For each 1 ≤ j ≤ Q, we let (zj , t0) be an Hn-center of (yj , t0 +(λr)2), then we have

d
gi,t0−(λr)2

W1
(νyj ,t0+(λr)2;t0−(λr)2 , νzj ,t0;t0−(λr)2) ≤ d

gi,t0
W1

(νyj ,t0+(λr)2;t0
, δzj )

≤ H1/2
n λr. (4.79)

But for any (z, t0) ∈ Bgi(zj , t0, (2Hn)1/2λr), we have

d
gi,t0−(λr)2

W1
(νzj ,t0;t0−(λr)2 , νz,t0;t0−(λr)2) ≤ dgi,t0

(zj , z) ≤ 2H1/2
n λr. (4.80)

Hence we can combine (4.79) and (4.80) to obtain that

d
gi,t0−(λr)2

W1
(νyj ,t0+(λr)2;t0−(λr)2 , νz,t0;t0−(λr)2) ≤ 3H1/2

n λr, (4.81)
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hence we have

B(zj , t0, (2Hn)1/2λr) ⊂ P ∗(yj , t0 + (λr)2; 3H1/2
n λr, −2(λr)2).

Hence from Lemma 2.6, we have
∣∣∣P ∗(yj , t0 + (λr)2; 3H1/2

n λr, −2(λr)2) ∩ (Mi × {t0})
∣∣∣
gi,t0

≥ c(λr)n, (4.82)

for some constant c = c(n, ω0) > 0, but these subsets are mutually disjoint, hence we
can combine Lemma 4.19, Lemma 4.20 and Lemma 4.21 to obtain that, for all i large
enough, we have

Q · c(λr)2n ≤ Epλpr2n,

where Ep is the constant from Lemma 4.21. This completes the proof. �

Lemma 4.23 proves item (1) of Proposition 4.18.
Finally, we come to prove item (3) of Proposition 4.18. Assume there is a point

(y0, t0) ∈ {rRm ≤ λr} ∩ P ∗(x0, t0 + r2;Br,−2r2), but

d
gi,t0−(λr)2

W1
(νy0,t0;t0−(λr)2 , νyj ,t0+(λr)2;t0−(λr)2) ≥ Bλr, (4.83)

for all j = 1, . . . ,Q. As the arguments of (4.51) to (4.53) we have Rgi(y0, t) ≤ C(A, T )
for all t ∈ [−T, 0] and

d
gi,t0−(λr)2

W1
(νy0,t0;t0−(λr)2 , νy0,t0+(λr)2;t0−(λr)2) ≤ d

gi,t0
W1

(νy0,t0+(λr)2;t0
, δy0)

≤ C(A, T )λr. (4.84)

Let (ŷ, t̂) ∈ P ∗(y0, t0 + (λr)2; 3H
1/2
n λr, −2(λr)2), then from (4.84), we have

d
gi,t0−(λr)2

W1
(νŷ,t̂;t0−(λr)2 , νy0,t0;t0−(λr)2) ≤ C(A, T )λr. (4.85)

Combining (4.83) and (4.85), we have

d
gi,t0−(λr)2

W1
(νŷ,t̂;t0−(λr)2 , νyj ,t0+(λr)2;t0−(λr)2) ≥ (B − C(A, T ))λr ≥ 10H1/2

n λr, (4.86)

provided that B ≥ 2C(A, T ). Hence we have

P ∗(y0, t0 + (λr)2; 3H1/2
n λr, −2(λr)2) ∩ P ∗(yj , t0 + (λr)2; 3H1/2

n λr, −2(λr)2) = ∅

for all j = 1, . . . ,Q. But this contradicts the maximality of Q.
This completes the proof of Proposition 4.18. �

Applying Proposition 4.18 successively for sufficiently small λ yields

Proposition 4.24. For any T ∈ (0, T∞), A, B < ∞, 0 < p < 4, t0 ∈ (−T, 0), there
exists constant Ep = Ep(A, B, T ) < ∞, such that the following statement holds.
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For any t0 ∈ (−T, 0), there exists constant r̄ > 0 depends on t0, A, B, T , p, such
that the following statement holds for all i large enough.

Given any i ≥ i0, for any (x0, t0) ∈ P ∗(pi,0;A,−T ), 0 < r ≤ r̄, 0 < s ≤ 1, we have

∣∣∣{rRm ≤ sr} ∩ P ∗(x0, t0 + r2;Br,−2r2) ∩ (Mi × {t0})
∣∣∣
gi,t0

≤ Epsprn. (4.87)

Proof. We choose η ∈ (0,1) such that −T − 100η > T∞, then we consider all i large
enough such that −T − 50η > −Ti. We always require that t0 − r̄2 ≥ −T , t0 + r̄2 < 0,
0 < r ≤ r̄.

Let B0 = B0(A + 1, T ) be the constant from Proposition 4.18. We the replace B

by max {B, B0}.
Let p′ = (p + 4)/2 ∈ (p,4), then let H = H(A + 1, B, T,p′) and λ̄ = λ̄(A +

1, B, T,p′) > 0 be the constants from Proposition 4.18. Choose 0 < λ = λ(A, B, T,

p) ≤ λ̄/2 such that

Hλp
′−p ≤ 1. (4.88)

Now, for any k ∈ N+, we apply Proposition 4.18 successively for k times to find points
(y1, t0), . . . , (yQ, t0) ∈ P ∗(x0, t0 + r2; 2Br,−2r2) with Q ≤ (Hλp

′−n)k such that
{

rRm ≤ λkr
}

∩ P ∗(x0, t0 + r2;Br,−2r2) ∩ (Mi × {t0})

⊂
Q⋃

j=1

P ∗(yj , t0 + (λkr)2;Bλkr, −2(λkr)2),

hence we can apply [Bam1, Theorem 9.8] to obtain that
∣∣∣
{

rRm ≤ λkr
}

∩ P ∗(x0, t0 + r2;Br,−2r2) ∩ (Mi × {t0})
∣∣∣
gi,t0

≤ (Hλp
′−n)k · C(A, T )(Bλkr)n ≤ Ep(Hλp

′−p)kλpkrn ≤ Epλpkrn.

This completes the proof. �

Now we can pass the integral curvature bound in Proposition 4.24 to the limit X .

Proposition 4.25. For any T ∈ (0, T∞), A, B < ∞, 0 < p < 4, t0 ∈ (−T, 0), there
exist constants 0 < r̄ = r̄(t0, A, B, T,p) < 1, Ep = Ep(A, B, T ) < ∞, such that the

following statement holds.

For any y∞ ∈ P ∗(p∞;A,−T ) ∩ Xt0 , 0 < r ≤ r̄, 0 < s ≤ 1, we have

∣∣∣∣{0 < r̃Rm ≤ sr} ∩ P ∗
(

y∞;Br,−3

2
r2

)
∩ Rt0−r2

∣∣∣∣
gt0−r2

≤ Epspr2n. (4.89)

Proof. We choose η ∈ (0,1) such that −T −100η > −T∞. We then require that r̄ ≤ η.
Using [Bam23, Theorem 6.45], we can find points (yi, t0) ∈ Mi × {t0} such that

(yi, t0)
C−−−→

i→∞
y∞.
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Let δ > 0 be any small constant, then we define the region

Wδ := {2δ ≤ r̃Rm ≤ sr} ∩ P ∗
(

y∞;Br,−3

2
r2

)
∩ Rt0−r2 .

According to [Bam2, Lemma 15.16, (h)], we know Wδ ⊂ Rt0−r2 is a relatively compact
subset, hence Wδ ⊂ Ui for i large enough. Hence ψi(Wδ) ⊂ Vi are well-defined subsets.
Let

Wi := {δ ≤ rRm ≤ 2sr} ∩ P ∗
(
yi, t0; 2Br,−2r2

)
∩ (Mi ×

{
t0 − r2

}
).

We claim that ψi(Wδ) ⊂ Wi for i large enough. If this is not true, passing to a subse-
quence if necessary, we can find points (ỹi, t0 −r2) ∈ ψi(Wδ)\Wi. Since Wδ ⊂ Rt0−r2 is
relatively compact, passing to a subsequence if necessary, we have ψ−1

i (ỹi, t0 − r2) →
ỹ∞ ∈ Wδ. Hence by [Bam23, Theorem 9.31], we have (ỹi, t0 − r2)

C−−−→
i→∞

y∞, hence

limi→∞ rRm(ỹi, t0 − r2) = r̃Rm(ỹ∞) ∈ [2δ, sr], combining with [Bam2, Lemma 15.8],
we have (ỹi, t0 − r2) ∈ Wi for i large enough, which is a contradiction.

Again by [Bam2, Lemma 15.8], we have (yi, t0) ∈ P ∗(pi,0;A + 1,−T − η) for all i

large enough. Using Proposition 4.7, we have vi(yi, t0) ≤ C(A, T ), hence

vi(yi, t) ≤ C(A, T ),

for all t ∈ [−T − η,0]. Hence we have

Rgi(yi, t) ≤ C(A, T ),

for all t ∈ [−T − η,0]. Hence we can apply Lemma 2.9 to obtain that

d
gi,−T −η

W1
(νyi,t0;−T −η, νyi,t0−r2;−T −η) ≤ d

gi,t0−r2

W1
(νyi,t0;t0−r2 , δyi)

≤ C(A, T )r ≤ 1, (4.90)

if r̄ is small enough. Hence we have (yi, t0 − r2) ∈ P ∗(pi,0;A + 2,−T − η) for i large
enough. Hence we can apply Proposition 4.24 to obtain that

|ψi(Wδ)|gi,t0−r2 ≤ |Wi|gi,t0−r2 ≤ Epsprn, (4.91)

if r ≤ r̄ = r̄(A, B, T,p, t0), i large enough, where Ep = Ep(A, B, T ) < ∞. Again, since
Wδ ⊂ Rt0−r2 is relatively compact, we have ψ∗

i gi,t0−r2 → gt0−r2 in C∞(Wδ)-sense,
hence we can pass i → ∞ in (4.91) to obtain

|Wδ|gt0−r2 ≤ Epsprn,

this holds for any δ > 0 with Ep being independent of δ, hence we let δ → 0 to obtain
(4.89).

This completes the proof of Proposition 4.25. �
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4.6 Proof of Theorem 4.4. First, we need the following result.

Proposition 4.26. For any A < ∞, t0 ∈ (−T∞,0), there exists constants r̄ > 0,
λ > 0, C < ∞, all depend on t0, A, such that the following statement holds.

Suppose x∞ ∈ Xt0 satisfies that

d
χt0
W1

(νp∞;t0 , δx∞
) ≤ A.

Then for any 0 < r ≤ r̄, there exists a point ỹ∞ ∈ Rt0+(λr)2 , a point y∞ ∈ Rt0 , ỹ∞ is

the point survive from y∞, such that

(1) ỹ∞ ∈ P ∗(p∞;C, t0 − r̄2);
(2) B(x∞, r) ⊂ P ∗(ỹ∞;Cr,−(λr)2);
(3) d(x∞, y∞) ≤ Cr, rRm(y∞) ≥ C−1r and |B(y∞, r) ∩ Rt0 |gt0

≥ C−1rn.

Proof. Throughout the proof, unless otherwise stated, all the constants will depend
at most on t0, A. First, we choose η ∈ (0,1) such that t0 − 100η > −T∞. We then
require that r̄ ≤ η.

Since Rt0 is a dense subset of Xt0 , we can find a point z∞ ∈ B(x∞, r) ∩ Rt0 . Using

[Bam23, Theorem 6.45], we can find points (zi, t0) ∈ Mi ×{t0} such that (zi, t0)
C−−−→

i→∞
z∞. Since

d
Xt0
W1

(δz∞
, νp∞;t0) ≤ d

Xt0
W1

(δz∞
, δx∞

) + d
Xt0
W1

(δx∞
, νp∞;t0) ≤ A + 1,

from [Bam2, Lemma 15.8], we have (zi, t0) ∈ P ∗(pi,0;A+2, t0 −η) for i large enough.
According to Proposition 4.7, we have vi(zi, t0) ≤ C, hence

vi(zi, t) ≤ C, (4.92)

for all t ∈ [t0 − η,0]. Hence we have

Rgi(zi, t) ≤ C, (4.93)

for all t ∈ [t0 − η,0], for i large enough. We have the following lemma.

Lemma 4.27. For any λ ∈ (0,1), let t̃0 := t0 + (λr)2, then for i large enough, for any

s ∈ (0,1), we have

∣∣{rRm ≤ sr} ∩ Bgi

(
zi, t̃0, r

)∣∣
gi,t̃0

≤ Csrn. (4.94)

Proof. From (4.93) and Lemma 2.9, we have

d
gi,t̃0
W1

(νzi,t̃0+r2;t̃0
, δzi) ≤ Cr. (4.95)

and similarly

d
gi,t0
W1

(νzi,t̃0;t0
, δzi) ≤ C(A, T )λr ≤ 1, (4.96)
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for i large enough. Let (x, t̃0) ∈ Bgi

(
zi, t̃0, r

)
, then from (4.95) we have

d
gi,t̃0−r2

W1
(νzi,t̃0+r2;t̃0−r2 , νx,t̃0;t̃0−r2) ≤ d

gi,t̃0
W1

(νzi,t̃0+r2;t̃0
, δx)

≤ d
gi,t̃0
W1

(νzi,t̃0+r2;t̃0
, δzi) + dgi,t̃0

(zi, x) ≤ Br,

for some constant B < ∞. Hence we have

Bgi

(
zi, t̃0, r

)⊂ P ∗(zi, t̃0 + r2;Br,−2r2).

Also from (4.96) we have

d
gi,t0−η

W1
(νzi,t̃0;t0−η, νpi,0;t0−η)

≤ d
gi,t0−η

W1
(νzi,t̃0;t0−η, νzi,t0;t0−η) + d

gi,t0−η

W1
(νzi,t0;t0−η, νpi,0;t0−η)

≤ d
gi,t0
W1

(νzi,t̃0;t0
, δzi) + A + 2 ≤ A + 3,

hence we can apply Proposition 4.24 to obtain that
∣∣{rRm ≤ sr} ∩ Bgi

(
zi, t̃0, r

)∣∣
gi,t̃0

≤
∣∣∣{rRm ≤ sr} ∩ P ∗(zi, t̃0 + r2;Br,−2r2) ∩ (Mi × {t̃0

}
)
∣∣∣
gi,t̃0

≤ Csr2n,

for some constant C < ∞, provided that r < r̄. This completes the proof. �

From (4.92), we have vi ≤ C on Bgi

(
zi, t̃0, r

)
, hence we have

Rgi(x, t̃0) ≤ C, for all x ∈ Bgi

(
zi, t̃0, r

)
,

for i large enough. Hence from Lemma 2.5, we have

∣∣Bgi

(
zi, t̃0, r

)∣∣
gi,t̃0

≥ C−1rn,

for some C < ∞. Combining this with Lemma 4.27, we can find a constant δ > 0,
such that there exists a point (yi, t̃0) ∈ Bgi

(
zi, t̃0, r

)
such that

rRm(yi, t̃0) ≥ 2δr. (4.97)

Using Lemma 2.4, there exists a dimensional constant C0(n) < ∞ such that

|r2
Rm(yi, t) − r2

Rm(yi, t0)| ≤ C0(n)λ2r2,

for all t ∈ [t0, t̃0], hence if we choose λ > 0 small enough, then from (4.97) we have

rRm(yi, t) ≥ δr, (4.98)

for all t ∈ [t0, t̃0].
From (4.93) and Lemma 2.9, we have

d
gi,t0−η

W1
(δzi , νzi,t0;t0−η) ≤ Cη1/2 ≤ 1. (4.99)
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But we also have (zi, t0) ∈ P ∗(pi,0;A+2, t0 −η) and d
gi,t0−η

W1
(νpi,0;t0−η, δpi) ≤ C, hence

by triangle inequality, we have

dgi,t0−η (zi, pi) ≤ C,

hence by Proposition 4.8, if we choose η and r̄ small enough, then we have

dgi,t(zi, pi) ≤ C (4.100)

for all t ∈ [t0 − η, t̃0]. Hence

dgi,t̃0
(yi, pi) ≤ C.

Hence by Proposition 4.8 again, if we choose r̄ small enough, then we have

dgi,t(yi, pi) ≤ C, (4.101)

for all t ∈ [t0, t̃0]. Hence we can apply Proposition 4.10 to find points ỹ∞ ∈ Rt0+(λr)2

and y∞ ∈ Rt0 such that (passing to a subsequence)

(yi, t0 + (λr)2)
C−−−→

i→∞
ỹ∞,

and

(yi, t0)
C−−−→

i→∞
y∞,

with ỹ∞ being the point survive from y∞. From (4.101) we have d
gi,t

W1
(δyi , νpi,0;t) ≤ C

for all t ∈ [t0, t̃0]. Hence item (1) is clear from [Bam2, Lemma 15.8].
Next, we prove item (3). Since z∞ ∈ Rt0 , we can find a constant 0 < r0 ≤ λr such

that r̃Rm(z∞) ≥ r0. From (4.100), if we choose r̄ small enough, then we can apply
Proposition 4.10 to find a dimensional constant c0(n) > 0, such that the worldline
of z∞ in R survives from Rt0 to Rt0+(c0r0)2 , and for any t ∈ [t0, t0 + (c0r0)2], if we
denote by z∞(t) ∈ Rt the point survives from z∞, then we have

(zi, t)
C−−−→

i→∞
z∞(t),

with r̃Rm(z∞(t)) ≥ c0r0. Similar to (4.96), we have

d
gi,t0+(c0r0)2

W1
(νzi,t0+(λr)2;t0+(c0r0)2 , δzi) ≤ Cr,

hence we have

d
g

i,t0+ 1
2

(c0r0)2

W1
(νyi,t0+(λr)2;t0+ 1

2
(c0r0)2 , νzi,t0+(c0r0)2;t0+ 1

2
(c0r0)2)

≤ d
g

i,t0+ 1
2

(c0r0)2

W1
(νyi,t0+(λr)2;t0+ 1

2
(c0r0)2 , νzi,t0+(λr)2;t0+ 1

2
(c0r0)2)

+ d
g

i,t0+ 1
2

(c0r0)2

W1
(νzi,t0+(λr)2;t0+ 1

2
(c0r0)2 , νzi,t0+(c0r0)2;t0+ 1

2
(c0r0)2)

≤ dgi,t0+(λr)2 (yi, zi) + d
gi,t0+(c0r0)2

W1
(νzi,t0+(λr)2;t0+(c0r0)2 , δzi) ≤ Cr,
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hence from [Bam2, Lemma 15.8], we have

d
Xt0
W1

(νỹ∞;t0 , νz∞(t0+(c0r0)2);t0
) ≤ Cr. (4.102)

If we consider the spacetime curve γ(τ) = z∞(t0 +(c0r0)2 −τ) with τ ∈ [0, (c0r0)2],
then r̃Rm(γ(τ)) ≥ c0r0, hence we have L(γ) ≤ c0r0, then from [Bam2, Lemma 22.2],
we have

d
Xt0
W1

(δz∞
, νz∞(t0+(c0r0)2);t0

) ≤ Cr0 ≤ Cr. (4.103)

According to Proposition 4.10, we can choose λ = λ(A, T ) even smaller, such
that the worldline of y∞ in R survives from Rt0 to ỹ∞ ∈ Rt0+(λr)2 , and for any

t ∈ [t0, t0 + (λr)2], we have (yi, t)
C−−−→

i→∞
y∞(t). Hence r̃Rm(y∞(t)) ≥ δr from (4.98) for

all t ∈ [t0, t0 + (λr)2]. Similarly to (4.103), we can prove

d
Xt0
W1

(δy∞
, νỹ∞;t0) ≤ Cr. (4.104)

Now we can combine (4.102) (4.103) and (4.104) with the triangle inequality to
obtain

dt0(z∞, y∞) ≤ Cr.

Hence dt0(x∞, y∞) ≤ Cr.
Also, there is a constant c0 = c0(n) > 0, such that P (yi, t0; c0δr) converge in the

Cheeger-Gromov sense to P ◦(y∞; c0δr, (c0δr)2,−(c0δr)2) ⊂ R, which is unscathed.
But Bgi,t0

(yi, t0, c0δr) ⊂ P (yi, t0; c0δr) and |Bgi,t0
(yi, t0, 1

2c0δr)|gi,t0
≥ C−1rn, hence

we have |B(y∞, c0δr)|gt0
≥ C−1rn. This proves item (3).

Finally, we prove item (2). Let x ∈ B(x∞, r), hence by item (3) we have

dt0(x, y∞) ≤ dt0(x, x∞) + dt0(x∞, y∞) ≤ Cr,

hence by (4.104), we can compute

d
Xt0
W1

(δx, νỹ∞;t0) ≤ d
Xt0
W1

(δx, δy∞
) + d

Xt0
W1

(δy∞
, νỹ∞;t0) ≤ Cr,

this proves item (2).
This completes the proof of Proposition 4.26. �

Now we can prove Theorem 4.4.

Proof of Theorem 4.4. We fix a time t0 ∈ (−T∞,0). Let η ∈ (0,1) be a small constant
such that t0 − 100η > −T∞.

For item (1), we only need to verify condition (4) in Definition 2.16. Let K ⊂ Xt0

be any compact subset, then there is a constant A = A(K) < ∞ such that K ⊂
P ∗(p∞;A, t0).
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Hence for any x∞ ∈ K, we can find constants 0 < r̄ = r̄(K, t0) < η, 0 < λ =
λ(K, t0) < 1, C = C(K, t0) < ∞, and for any r ∈ (0, r̄), we can find points ỹ∞ ∈
Rt0+(λr)2 , y∞ ∈ Rt0 , such that the statements of Proposition 4.26 hold. Hence we
have

|B(x∞,2Cr) ∩ Rt0 |gt0
≥ |B(y∞, r) ∩ Rt0 |gt0

≥ C−1rn ≥ C̃−1(2Cr)n, (4.105)

for some constant C̃ = C̃(K, t0) < ∞, this proves the volume non-collapsing estimate
in condition (4) in Definition 2.16.

Next, for the volume non-inflating estimate, we let r ∈ (0, r̄). We have B(x∞, r) ⊂
P ∗(ỹ∞;Cr,−(λr)2). For any δ > 0, we set Wδ := {r̃Rm ≥ 2δ} ∩ P ∗(ỹ∞;Cr,−3

2(λr)2) ∩
Rt0 . According to [Bam23, Theorem 6.45], we can find points yi ∈ Mi such that

(yi, t0 + (λr)2)
C−−−→

i→∞
ỹ∞. Then similar to the proof of Proposition 4.25, we have

Wδ ⊂ Rt0 is relatively compact, Wδ ⊂ Ui for i large enough, and ψi(Wδ) ⊂ Vi are
well-defined, and if we let

Wi := {rRm ≥ δ} ∩ P ∗
(
yi, t0 + (λr)2; 2Cr,−10λ2

)
∩ (Mi × {t0}),

then we have ψi(Wδ) ⊂ Wi for i large enough. Since (t0 + (λr)2) − 20λ2r2 > −T∞ and
t0 ∈ [(t0 + (λr)2) − 10λ2r2, (t0 + (λr)2)], according to [Bam1, Theorem 9.8], we have

|ψi(Wδ)|gi,t0
≤ |Wi|gi,t0

≤ C̃(K, t0)rn,

for all i large enough, hence by the smooth convergence of ψ∗gi,t0 to gt0 on Wδ, we
have |Wδ|gt0

≤ C̃(K, t0)rn, letting δ → 0, we obtain |B(x∞, r) ∩ Rt0 |gt0
≤ C̃(K, t0)rn.

This proves the volume non-inflating estimate in condition (4) in Definition 2.16,
and proves item (1).

Finally, we prove item (2), we consider the case K = {x∞}. Since ỹ∞ ∈
P ∗(p∞;C, t0 − r̄2) with t(ỹ∞) = t0 + (λr)2 ≤ t0/2 if we choose r̄ small enough, we
can apply Proposition 4.25 to obtain that, for any 0 < s < 1, 0 < p < 4,

∣∣∣∣{0 < r̃Rm ≤ sr} ∩ P ∗
(

ỹ∞;Cr,−3

2
(λr)2

)
∩ Rt0

∣∣∣∣
gt0

≤ Epsprn,

for some Ep = Ep(x∞, t0) < ∞, hence from B(x∞, r) ⊂ P ∗ (ỹ∞;Cr,−3
2(λr)2

)
, we have

|{0 < r̃Rm ≤ sr} ∩ B(x∞, r) ∩ Rt0 |gt0
≤ Epsprn.

Combining with item (1), we have (Xt0 , dt0 ,Rt0 , gt0) is a singular space of dimension
n, which has singularities of codimension 4 in the sense of [Bam17, Definition 1.9].
This proves item (2). �

Proof of Corollary 4.5. Since vi is a Ci-barrier of Rgi and Y0-based at (pi,0),
and Ci → 0 as i → ∞, we have limi→∞ Rgi(pi,0) ≤ limi→∞ CiY0 = 0. If we have
limi→∞ infMi×{−Ti} Rgi ≥ 0, then the same computation as (4.75) and [Bam2, The-
orem 15.60] show that X is a static limit. This implies that X is continuous in the
Gromov-W1 sense, hence by [Bam23], for every t ∈ (−T∞,0) the F-convergence (4.1)
is time-wise. By Theorem 4.3, this completes the proof. �
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4.7 Tangent spaces of the limiting space. In this section, we have the following
corollary for the tangent spaces of the limiting singular space.

Corollary 4.28. Suppose we have Ci ≤ Y0 for all i. Then for every t ∈ (−T∞,0)
where the F-convergence (4.1) is time-wise, the following statements hold.

(1) For any sequence of scales σk → 0+, for any q ∈ Xt, by passing to a subse-

quence, we have

(Xt, σ
−1
k dt, q) −−−→

k→∞
(X̃−1, dX̃

−1, q̃), (4.106)

in the pointed Gromov-Haudorff sense for some q̃ ∈ X−1, where X̃−1 is the −1-
time-slice of a static metric flow X̃ , which is a limit arising as in Corollary 4.5.

(2) For any sequence of scales ηk → 0+, by passing to a subsequence, we have

(X̃−1, η−1
k dX̃

−1, q̃) −−−→
k→∞

(X̂−1, dX̂
−1, q̂), (4.107)

in the pointed Gromov-Haudorff sense, where X̂−1 is the −1-time-slice of a

static metric flow X̂ , which is a limit arising as in Corollary 4.5. Moreover,

(X̂−1, dX̂
−1) is a metric cone.

Proof. Fix a time t0 ∈ (−T∞,0) where the where the F-convergence (4.1) is time-wise.
We choose η ∈ (0,1) such that t0 − 100η > −T∞. Fix a point q ∈ Xt0 . Let σk → 0+ be
any blow-up scales. We want to study the blow-up sequence (Xt0 , σ−1

k dt0 , q).
Since (4.1) is time-wise at t0, by the proof of [JST1, Theorem 7.3], the condition

of [Hal, Proposition 2.7] hold for (Mi, dgi,t0
, νpi,0;t0), with base-point (pi, t0), which

converge to (Xt0 , dt0 , νp∞;t0) in the Gromov-W1-Wasserstein sense. Hence, we can find
points q∗

i ∈ Mi, such that (q∗
i , t0) strictly converge to q within C and

(Mi, dgi,t0
, q∗

i ) −−−→
i→∞

(Xt0 , dX
t0

, q), (4.108)

in the pointed Gromov-Haudorff sense.
We need to do blow-up at the time t0 + σ2

k. By Proposition 4.26, passing to a
subsequence (such that all σk > 0 small enough, depending on t0, q), for each k,
there exists a point q̃k ∈ P ∗(p∞;C, t0 − η) ∩ Xt0+σ2

k
such that

d
Xt0
W1

(δq, νq̃k;t0) ≤ Cσk. (4.109)

Since (4.1) is time-wise at t0, by [Bam23, Theorem 6.45], for each k, there exists
qi

k ∈ Mi, such that

(qi
k, t0 + σ2

k)
C−−−→

i→∞
q̃k, (4.110)

where is time-wise at t0.
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Lemma 4.29. There exists a constant C = C(t0, q) < ∞, such that for each k, there

exists i0(k) < ∞, such that for all i ≥ i0(k), we have

dgi,t0
(q∗

i , qi
k) ≤ Cσk. (4.111)

Proof. By [Bam2, Lemma 15.8], for all i ≥ i0(k) with i0(k) large enough, we have

(qi
k, t0 + σ2

k) ∈ P ∗(pi,0; 2C, t0 − 2η).

Hence from vi(pi,0) ≤ Y0 and Proposition 4.7, we have vi(qi
k, t0 +σ2

k) ≤ C(t0, q), hence

vi(q
i
k, t) ≤ C(t0, q), (4.112)

for all t ∈ [t0 − 2η,0], hence

Rgi(q
i
k, t) ≤ C(t0, q), (4.113)

for all t ∈ [t0 − 2η,0].
Now, since (q∗

i , t0) strictly converge to q within C, we have

d
Zt0
W1

((ϕi
t0

)∗(δq∗

i
), (ϕ∞

t0
)∗(δq)) ≤ σk, (4.114)

for all i ≥ i0(k) with i0(k) large enough. Next, by (4.109), we have

d
Zt0
W1

((ϕ∞
t0

)∗(δq), (ϕ∞
t0

)∗(νq̃k;t0)) ≤ d
Xt0
W1

(δq, νq̃k;t0) ≤ Cσk. (4.115)

Next, since (4.110) is time-wise at t0, we have

d
Zt0
W1

((ϕ∞
t0

)∗(νq̃k;t0), (ϕi
t0

)∗(νqi
k

,t0+σ2
k

;t0
)) ≤ σk, (4.116)

for all i ≥ i0(k) with i0(k) large enough. Finally, from (4.113), we have

d
Zt0
W1

((ϕi
t0

)∗(νqi
k

,t0+σ2
k

;t0
), (ϕi

t0
)∗(δqi

k
)) ≤ Cσk. (4.117)

Now, by the triangle inequality and (4.114), (4.115), (4.116), (4.117), we have

dZ
t0

((ϕi
t0

)(q∗
i ), (ϕi

t0
)(qi

k)) = d
Zt0
W1

((ϕi
t0

)∗(δq∗

i
), (ϕi

t0
)∗(δqi

k
)) ≤ Cσk, (4.118)

for all i ≥ i0(k) with i0(k) large enough. Since ϕi
t0

: (Mi, dgi,t0
) → (Zt0 , dZ

t0
) is isometric

embedding, we conclude

dgi,t0
(q∗

i , qi
k) ≤ Cσk,

for all i ≥ i0(k) with i0(k) large enough. This completes the proof. �

From (4.108), we can choose i0(k) large enough, such that for all i ≥ i0(k), we
have

dP GH((Mi, dgi,t0
, q∗

i ), (Xt0 , dX
t0

, q)) ≤ σ3
k. (4.119)
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Now, for each k ∈ N, we choose i0(k) large enough, such that Lemma 4.29 and (4.119)
hold. Then we set

M̃k := Mi0(k), g̃k,t := σ−2
k gi0(k),σ2

k
t+(t0+σ2

k
), xk := q

i0(k)
k , t ∈ [−T̃k,0],

where T̃k = σ−2
k (Ti0(k) − η + t0 + σ2

k) → ∞ as k → ∞. We also set

q̃∗
k := q∗

i0(k),

then from Lemma 4.29, we have

dg̃k,−1
(q̃∗

k, xk) ≤ C. (4.120)

Also, from (4.119), we have

dP GH((M̃k, dg̃k,−1
, q̃∗

k), (Xt0 , σ−1
k dX

t0
, q)) ≤ σk. (4.121)

Next, recall that vi is Ci-barrier of Rgi , hence if we set ṽk(t) = vi0(k)(σ
2
kt + (t0 + σ2

k)),
t ∈ [−T̃k,0], then from (4.112), ṽk is σ2

kY0-barrier of Rg̃k
and C-based at (xk,0).

Moreover, due to the choice of T̃k, we have Rg̃k
≥ −C(t0, q)σ2

k. Hence, Corollary 4.5
applied here, that is, by passing to a subsequence, we have F-convergence on compact
time-intervals

(M̃k, (g̃k,t)t∈[−T̃k,0], (νxk,0;t)t∈[−T̃k,0])
F,C̃−−−→

i→∞
(X̃ , (νx∞;t)t∈(−∞,0]), (4.122)

within some correspondence C̃, with X̃ being a static limit, satisfies the conclusions of
[Bam2, Theorem 2.16]. Moreover, since X̃ is static, it’s continuous on (−∞,0) in the
sense of [Bam23, Definition 4.25], hence by [Bam23, Theorem 7.6], the F-convergence
(4.122) is time-wise at every t ∈ (−∞,0). Hence we can apply Theorem 4.3 to con-
clude that,

dP GH((M̃k, dg̃k,−1
, q̃∗

k), (X̃−1, dX̃
−1, q̃)) → 0, (4.123)

as k → ∞ for some q̃ ∈ X−1. Note that here we have used (4.120). Combining (4.121)
and (4.123), we conclude that

dP GH((Xt0 , σ−1
k dX

t0
, q), (X̃−1, dX̃

−1, q̃)) → 0,

which proves item (1). Finally, due to [Bam2, Theorem 2.16], every tangent cone
of (X̃−1, dX̃

−1) at any point is a metric cone, repeating the above arguments prove
item (2).

This completes the proof. �

As a consequence, we have the following corollary.

Corollary 4.30. Under the set-up of Theorem 1.1, for every t ∈ (−∞,0], the con-

clusions of Corollary 4.28 hold.
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4.8 Proof of Theorem 1.2. In this subsection, we come back to the set-up of
Sect. 3.1. Under this Kähler-Ricci flow set-up, we actually have stronger results than
Corollary 4.30 due to our distance distortion estimates.

Proposition 4.31. Under the set-up of Theorem 1.1, for any t0 ∈ (−∞,0), and any

x0 ∈ Xt0 , any tangent cone of (Xt0 , dt0) at x0 is a metric cone.

Proof. Let X λ,t0 denote the parabolic rescaling of X by λ, based at time t0; in
particular, we have (X λ,t0

t , dλ,t0

t ) = (Xt0+λ−2t, λdt0+λ−2t). Then, for any sequence λi →
∞, we can pass to a further subsequence so that

(X λi,t0 , (νt0+λ−2t)t∈(−∞,0])
F−−−→

i→∞
(Y, (μt)t∈(−∞,0])

where (Y, (μt)) is a static cone, which is itself a rescaled limit of the original flow
(M, (gt)t∈[0,1)). Let (C(Y ), dY , (ν ′

x;t)x∈C(Y ),t∈(−∞,0]) be the model of the metric cone,
with y∗ the vertex. Because the F-convergence

(Mi, (gi,t)t∈[−Ti,0], (νpi,0;t)t∈[−Ti,0])
F,C−−−→

i→∞
(X , (νp∞;t)t∈(−∞,0])

is time-wise at every time t ∈ (−∞,0), Claim 3.14 implies that (X λi,t0

t , dλi,t0

t , zt) sat-
isfy the hypotheses of [Hal, Proposition 2.7], so after passing to a further subsequence,
we have

(X λi,t0
t , dλi,t0

t , zt)
i→∞−−−→ (C(Y ), dY , yt)

in the pointed Gromov-Hausdorff sense, for any fixed t ∈ (−∞,0), where zt ∈ Xt0+λ−2
i t

is an H2n-center of x0, and yt ∈ C(Y ) is a 2H2n-center of y∗. The distance distortion
estimates and the proof of Claim 3.15 then imply that

dP GH

(
(X λi,t0

t , dλi,t0

t , zt), (Xt0 , λidt0 , x0)
)

≤ ε(t),

where limt↗0 ε(t) = 0. By choosing the original sequence λi so that (Xt0 , λidt0 , x0)
converges in the pointed Gromov-Hausdorff sense to a given tangent cone (X̂, d̂, x̂)
of (Xt0 , dt0) at x0, we obtain

dP GH

(
(C(Y ), dY , yt), (X̂, d̂, x̂)

)

≤ lim sup
i→∞

(
dP GH

(
(X λi,t0

t , dλi,t0
t , zt), (Xt0 , λidt0 , x0)

)

+ dP GH

(
(Xt0 , λidt0 , x0), (X̂, d̂, x̂)

))

≤ ε(t).

Moreover, because yt is an 2H2n-center of y∗ and Y is a static cone, it follows that
dY (yt, y∗) ≤ C|t|, so that (C(Y ), dY , yt) → (C(Y ), dY , y∗) in the pointed Gromov-
Hausdorff sense as t ↗ 0. In particular, taking t ↗ 0 above tells us that (C(Y ), dY , y∗)
is pointed isometric to (X̂, d̂, x̂). �
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We can finish the Proof of Theorem 1.2.

Proof of in Theorem 1.2. Let (Mi, (gi,t)t∈[−Ti,0]) be the sequence of Ricci flows de-
fined in Sect. 3.1. According to Lemma 3.3, we conclude that vi is a C-barrier of Rgi

and is 2B0-based at (pi,0), where vi is the Ricci potential defined in (3.16). Hence
Theorem 1.2 follows immediately from Theorem 4.4 and Proposition 4.31. �
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