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GEOMETRIC REGULARITY OF BLOW-UP LIMITS OF THE
KAHLER-RICCI FLOW

MAX HALLGREN, WANGJIAN JIAN, JIAN SONG, AND GANG TIAN

Abstract. We establish geometric regularity for Type I blow-up limits of the Kéhler-
Ricci flow based at any sequence of Ricci vertices. As a consequence, the limiting
flow is continuous in time in both Gromov-Hausdorff and Gromov-W; distances. In
particular, the singular sets of each time slice and its tangent cones are closed and
of codimension no less than 4.
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1 Introduction

Blow-up analysis is fundamental in the study of the formation of singularities in
Ricci flow. Hamilton (cf. [Ham82, Ham93]) laid out various approaches to classify
both finite time and long singularities of Ricci flow. Type I scaling is the most
natural parabolic blow-up that one wishes to extract a geometric limit satisfying
the Ricci soliton equations. In [STO08], Perelman showed that Type I rescalings of
a Fano Kéhler-Ricci flow have uniformly bounded scalar curvature. Based on this
fact, it was shown in [Bam18, CW20, TZ16] that limits of normalized Fano Kéhler-
Ricci flow have partial regularity akin to noncollapsed limits of Einstein manifolds.
Perelman’s estimate was also applied in [C+18] to give a Ricci flow proof of the
Yau-Tian-Donaldson conjecture, and in [DS20, HL] to establish the uniqueness of
tangent flows in the Fano setting.

However, it is still unknown whether the scalar curvature is bounded for Type
I rescalings of general finite time solutions of the K&hler-Ricci flow. On the other
hand, it was shown in [JST1] that Type I rescalings of any projective Kéhler-Ricci
flow have locally bounded scalar curvature near certain distinguished points, called
Ricci vertices. Moreover, it was shown that the scalar curvature has at most quadratic
growth as a function of distance from the Ricci vertex, and that a partial C° esti-
mate also holds at bounded distance from a Ricci vertex. The position of such Ricci
vertices depends on a choice of background (1,1)-form associated to the limiting
cohomology class at the singular time, which offers substantial flexibility in the sin-
gularity analysis of projective Kéhler-Ricci flows. Nonetheless, it is so far unclear
when such blow-up limits would coincide with tangent flows, hence they could fail
to be self-similar. Because of this, the strongest form of Bamler’s partial regularity
theory [Bam2| does not apply. In particular, Bamler’s theory does not guarantee that
each time slice of the limiting metric flow has singularities of codimension four, that
the metric flow is continuous, or that the tangent cones of the time slices are metric
cones. The primary goal of this paper is to establish these facts.

The continuity of the limiting metric flow is established based on locally uni-
form estimates for distance distortion. Such estimates for Ricci flows with globally
bounded scalar curvature were established in [BZ17, BZ19], and (with additional
assumptions) in [CW20]. Some of the techniques employed in these proofs may be
successfully localized, giving a fairly straightforward proof that distances cannot
decrease too quickly in time. The reverse estimate, however, requires new ideas as
the corresponding proofs in [BZ19, CW20] rely heavily on a global scalar curvature
bound.

We localize the proof of [Baml8, Sect. 6] to show that each time slice of the
limiting metric flow has singularities of codimension four and is indeed a singular
space in the sense of [Bam17]. The partial regularity theory we rely on is from [Bam2]
rather than from [Bam17], since we choose to consider the F-limit. For this reason,
we have to work on the flow instead of on a single time-slice. The derivative estimate
of the Ricci potential in the time direction (which is the Laplacian estimate in the
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space direction) plays a crucial role in working on the space-time. Such Li-Yau type
estimate is established in [JST1], and it fits well with Perelman’s reduced geometry
as the boundedness of the Ricci potential propagated along the reduced geodesic.

Our results are closely related to the analytic minimal model program with Ricci
flow proposed in [ST07, ST12, ST17] in the hope that the blow-up limits will reveal
both geometric and algebraic structures of underlying algebraic singularities and the
associated birational surgeries. New proofs of Perelman’s estimates were discovered
for the Fano Kéhler-Ricci flow [JST2] and were extended to general case in [JST1].
They provide a refined geometric picture of the analytic minimal model program.
This paper is a continuation of [JST1] and [JST2] and lays the groundwork for the
future study on the formation of singularities of the Ké&hler-Ricci flow.

1.1 Statement of the main results. We consider the unnormalized Kahler-Ricci
flow
dg(t) .
{ 5 = “Riclg(®)), (1.1)
g (O) = 9o,

on a Kahler manifold X of complex dimension n > 2 for any initial Kéhler metric
go € HYY(X,R) N H(X,Q).

Suppose the flow develops finite time singularities at T' > 0. Kawamata’s ratio-
nality and base point free theorem imply that T'€ Q and the limiting cohomology
class ¥ = [wo] + T[Kx] € HM(X,R) N H?(X,Q) is a semi-ample Q-line bundle. In
particular, the semi-ample line bundle ¥ induces a unique surjective holomorphic
map

d:X —Y CCPY, (1.2)

where Y is a normal projective variety and dimY is equal to the Kodaira dimension
of 9. We will always assume that 7' =1 after replacing wy by T 'wy.

(1) When Y is a point, X is a Fano manifold and the K&hler-Ricci flow must have
finite time extinction.

(2) When 0 < m:=dimcY < dimc X, the general fibre of & : X — Y is a Fano
manifold and such a Fano fibration is also called a Mori fibration.

(3) When dimY = dim X, ® is a birational morphism corresponding to a divisorial
contraction or a small contraction of a flip.

We let 0y be a smooth closed (1,1)-form on Y with
O 0y €. (1.3)

That is, 0y is the restriction of a local smooth closed (1,1)-form through a local
embedding of Y into some CM. For example, we can choose 6y to be the multiple
of the Fubini-Study metric CP¥ restricted to Y ¢ CPY. We abuse our notation by
identifying fy with ®*fy for convenience.
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For fixed 60y, there exists u € C*°(X x [0,1)) such that
Ric(g(t)) — (1 —t)"'g(t) = —(1 — )"0y — vV/—100u.

In [JST1], we define the so-called Ricci vertex in the following way. A point p is said
to be a Ricci vertex at t € [0,1) associated to Oy if

u(p,t) :i§fu(-,t).

In [JST1, Theorem 1.5, we obtain the Li-Yau type estimates for the normalized
Ricci potential v(x,t) = u(z,t) —infx u(-,t) + 1, which implies the gradient estimates
for v both in space and time directions. At the Ricci vertex we have v =1, hence
locally around the Ricci vertex, we have uniform bound of v. Such local potential
bound would imply local scalar curvature bound, which allows us to obtain com-
pactness and structure theories for the Type-I blow up limits based at the Ricci
vertices.

The goal of this paper is to study the geometric regularity of the Type I blow-up
limits of the solution of (1.1) around Ricci vertices.

Consider any sequence of times ¢; /1. Let (Mj, (9i,¢)e[-1,,0)) be the flows arising
from (X, (9(t))ic(o,1)) by setting

M;=X, giu:=01-t)""g(1-t)t+t;), te[-T,0].

where T; =t;/(1 — t;) — o0 as i — o0. By [Bam23], let p; € X be any base-point, by
passing to a subsequence, we can obtain F-convergence on compact time-intervals

F,C
(Mi, (git)te|-1:,0 (Vps 03 te|-1,0) —— (X (Vpooit)te(—00,0]) (1.4)

1—+00
within some correspondence €, where X is a future continuous and Hj,-concentrated
metric flow of full support over (—oo,0]. See Definition 2.13 for the definition of Hy,-
concentrated metric flow.
According to [Bam2], we can decompose X into its regular and singular part

X=RUS, (1.5)

where R is dense open subset of X. Also, R carries the structure of a Ricci flow
spacetime (R,t, 0y, ¢g). For any t € (—00,0), writing R; = AR, we have that (X}, d;)
is the metric completion of (R, g¢).

The first main result of this paper is the following theorem.

Theorem 1.1. Let Oy € ¥ be any smooth closed (1,1)-form on'Y, and let p; € X be a
Ricci vertex associated with 0y at t;. Then the limiting metric flow X is a continuous
metric flow on (—o00,0], both in the Gromov-Hausdorff sense and the Gromov-Wy-
sense.
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The main technical obstacle to proving Theorem 1.1 is the lack of uniform scalar
curvature control. In fact, the proof of the theorem is built on the key gradient esti-
mate we establish for solutions of backwards heat equations, along with techniques
developed in [BZ19]. It seems that the validity of such an estimate relies on global
information of the flow, particularly on the quadratic growth rate for scalar curva-
ture. To prove Theorem 1.1, we first prove a Li-Yau type estimate for the forward
heat kernel on the Kéhler-Ricci flow. This estimate is similar to that of [ZZ18], but
it depends on the Ricci potential rather than on the scalar curvature. We further
establish a gradient estimate for solutions of the backward heat equation via inte-
gral estimates. This allows us to establish locally uniform continuity of the distance
function in time along the rescaled flow of Type I, which can also be passed to the
limit.

The following theorem analyzes the geometric regularity of the blow-up limits.

Theorem 1.2. Let 6y € 9 be any smooth closed (1,1)-form on Y, and let p; € X be
a Ricci verter associated with Oy at t;. Then the following statements hold for every
t € (—00,0].

(1) (X, de, Re,g¢) s a singular space of dimension 2n in the sense of Defini-
tion 2.16.

(2) The Minkowski dimension for the closed singular set S, of each time slice is
given by

dimy S < 2n — 4.

(3) Any tangent cone of (X, dy) is a metric cone.

The proof of Theorem 1.2 is built on combination of techniques from [Bam18] with
[Bam2]. An important step is to identify Gromov-Hausdorff convergence of points
with convergence of points in the sense defined in [Bam23].

REMARK 1.3. It follows from the results of [JST1] that any tangent cone of (X}, d;)
at a point x € A} is also a complex analytic variety. In a forthcoming note, we will
show that this tangent cone is an affine algebraic variety uniquely and algebraically
determined by the germ of the variety (A}, x).

REMARK 1.4. We explain some key ingredients of this paper.

If we assume the flow (1.1) has global Type I scalar curvature bound (e.g. when
X is Fano manifold and gg € ¢1(X), which is exactly Perelman’s estimate), then the
results of this paper follows from [BZ17] and [Bam18|.

In general, it’s reasonable to expect only local scalar curvature bound. We consider
the normalized flow s = —In(1 —t), @(s) = (1 —t)lw(t), t €[0,1). For simplicity, we
assume a(s) = infx u(-,s) is smooth, where u(s) = u(t(s)) with t(s) =1 —e™*. We
define the normalized Ricci potential by v =u — a + 1, which satisfies the following



1904 M. HALLGREN ET AL. GAFA

coupled equations:

%v = Av + trgg (e*fy) +v—a +a—1,
Ric(@(s)) = @(s) — ey — /—190v.

By taking trace of the second equation and the Li-Yau type estimates in [JST1,
Theorem 1.5], we have R; < Cv, and so v is a barrier for the scalar curvature.
Therefore we obtain a local scalar curvature bound around the Ricci vertex. This
allows us to carry out most of the arguments of [BZ17] and [Bam18]. However we
have to utilize the Ricci potential v rather than the scalar curvature itself, but for
some arguments (e.g. Lemma 3.9, the generalized maximum principle).

Our paper is organized as follows.

In Sect. 2, we recall some conventions and notations, as well as some known results
to be used in the later sections.

In Sect. 3, we derive analytic estimates for the finite time solutions of the Kéhler-
Ricci flow. The local good distance distortion estimates are established based on a
new Harnack inequality for the heat equation coupled with the Kéahler-Ricci flow
(see Theorem 3.6). We further prove Theorem 1.1 after obtaining Gromov-Hausdorff
continuity and Gromov-W; continuity for the limiting metric flow in time.

In Sect. 4, we prove Theorem 1.2 for Ricci flows with scalar curvature controlled
by suitable barrier functions. Such barrier functions are natural generalizations of
the Ricci potentials from the Kéhler-Ricci flow.

2 Conventions and preliminary results

In this section, we recall some notations and facts from Bamler’s theory, (see [Baml,
Bam23, Bam2)).

2.1 Notation and conventions. Let (M,g(t))ier be a smooth Ricci flow on a
compact n-dimensional manifold, where I C R is an interval. For (zg,ty) € M x I,
A, T, T+ >0, the corresponding parabolic neighborhood is defined by

P(zo,t0; A, =T~ ,T") = B(wo, to, A) x ([to— T ,to + T NI), (2.1)

where we may omit —7~ or T if it is zero. For any r > 0, we set P(xg,to;r) :=
P(zo, to;r, —12,1?).
The heat operator associated to (M, g(t)) is given by

0
O=—-A
ot
and the conjugate heat operator is given by
0
0=—-——-A+R
ot L

where A is the Laplacian associated to g(t) and R is the scalar curvature of g(t).
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For any (z,t), (y,s) € M x I with s <t, we denote by K(x,t;y,s) the heat kernel
of the Ricci flow based at (y, s), satisfying

DK('7’;y7S):07 lim K('at;yas):(sya (22)
t—st
where ¢, is the Dirac measure at y. Then, K(x,t;-,-) is the conjugate heat kernel
based at (x,t), satisfying
O*K(z,t;-,-) =0, lim K(x,t;-,8)=20,. (2.3)

s—t—

Using the conjugate heat kernel, we can define the conjugate heat measure v, s,
based at (x,t) by

AV s = K (2, t; -, 5)dg(t) = (4nr) 2~ dg(t), (2.4)

where 7=t — s and f € C®°(M x (—o0,t)) is called the potential of the conjugate
heat measure v, ;..

For two probability measures p; and pe on a Riemannian manifold (M, g), the
Wasserstein Wi-distance between pq and o is defined by

&y, (11, pi2) = sup (/M fdpy — /M fduz> , (2.5)

where the supremum is taken over all bounded 1-Lipschitz function on (M, g). The
variance between p; and o is defined by

Var(u, i) = | &1, 22)dpn (1) dpss () (2.6)
(z1,22)EM XM

Then we have the following basic relation between the Wasserstein W;-distance and

the variance
iy, (1, p2) </ Var(pa, pa). (2.7)

For any (xo,t0) € M x I, A, T~,T" >0, we define the P*-parabolic neighborhood
P*(xo,tg; A, T, TT)C M x I, (2.8)

as the set of (z,t) € M x I with t € [t — T ,to+T"] and
d%27T7 (on,to;to—T— ) Va;t;to—T—) <A (2-9)

As before, we may omit —T'~ or T'" if it is zero. We also define the P*-parabolic
r-ball by P*(zo,to;7) := P*(wo,to; 7, —12,72).
Next we define the H,-center at a base point along the Ricci flow.

DEFINITION 2.1. A point (z,t) € M x I is called an H,-center of a point (xo,ty) €
M x Iif t <tgand

Vart(dz, on,to;t) S Hn(t() — t), (210)

where Var; is the variance with respect to the metric g(t).
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Immediately, if (z,t) is an H,-center of (xg,ty), then we have

AN (82 Vg tost) <\ VAL(8a, Vg tt) < \/Halto — 1). (2.11)

The following lemma is proved in [Baml], which asserts that the mass of the conju-
gate heat kernel measure will concentrate around the H,-centers.

LEMMA 2.2. If the point (z,t) is an H,-center of (xg,to) with t < tg, then for any
A >0, we have

1
Vzo tost <B (27t7 AHn(tO - t))) >1-— Z

We now define the Nash entropy introduced by Hein-Naber [HN14]. Let dv =
(4717')_"/ 2¢=fdg be a probability measure on a closed n-dimensional Riemannian
manifold (M, g) with 7> 0 and f € C*°(M). The Nash entropy is defined by

Nlg, f.7] = /M Fdv — g (2.12)

Writing dvy, 100 = (477) "2~/ Ddg(t), where 7 =ty —t > 0, we define the pointed
Nash entropy based at (xg,tp) by

Naoto(T) =Nlg(to = 7), f(to — 7),7]. (2.13)
We also set
Nao,to(0) =0,
which makes Ny, +,(7) continuous at 7= 0. We also define
N (z0,t0) = Nag.to (to — ), (2.14)

for s <ty and s € I. The pointed Nash entropy Ny, . (7) is non-increasing as a
function of 7 > 0.

By [Baml], the pointed Nash entropy N has bounded oscillation in any P*-
neighborhood. To be more precise, if P = P*(xg,to; A, =T ,T") and T~ <ty — s,
then we have

1/2 +
n n to—s+T

* <9 A+ —-In|——
osepNy < (2(t0—s—T—)—Rmm> *3 n(to—s—T—)’

where R, denotes the lower scalar curvature bound.

(2.15)

For any compact, n-dimensional manifold (M, g), Perelman’s WW-functional is de-
fined by, for any 7 > 0,

Wig. f,7) = (mr) 02 [ (V2 + B)+ f —n) e /dg,
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with f € C*°(M) so that [,,(477)"2e~fdg =1, and Perelman’s p-functional and
v-functional are defined by

pulg, 7] = inf Wiy, f,7],
fM (4mT)—n/2e=fdg=1

and

vlg. 71 = 0<i?/f<fu[g’ﬂ'

If (M, (9¢)icpo,1)) is a Ricci flow, then the functions ¢ — p[g;, T —t] and t — v{g;, T — ]
are non-decreasing. It is proved in [Baml] that

N (o, to) = plg(t), to — 1], (2.16)

for any t < tg.
Next, we define

DEFINITION 2.3 (Curvature Radius). For any (x,t) € M x I, we define the curvature
radius at (z,t) as follows:

TRm (Z,1) :=sup {7“ >0:|Rm| < r~2 on P(:r,t;r)} .
Then we have the following lemma.

LEMMA 2.4. For any a >0, there exists C(n,«) < 0o, such that the following state-
ment holds.

Let (M,qg(t))ier be a smooth Ricci flow on a compact n-dimensional manifold
with the interval I C R. Assume [a — a,b] C I, then in the weak sense we have

(1) |Vrem| <1 on each time-slice M x {t} for all t € [a,b];
(2) 10l < C(n,a) on M x [a,b].

Proof. Ttem (1) is clear from definition. Item (2) is from [BZ17, Lemma 6.1]. O

2.2 Entropy and heat kernel bounds. In [Baml], Bamler established systematic
results on the Nash entropy and heat kernel bounds on a Ricci flow background. Let
us recall some results that will be used in our theory.

The following quantitative volume estimates are established in [Bam1].

LEMMA 2.5. Let (M, g(t))ic(—r2,0 be a solution of the Ricci flow. If
R <172, on Bygy(z,r) x [-r7,0],
then
Vol (o) (By(o) (z,7)) = e 200, (2.17)

The assumption on the scalar curvature upper bound can be replaced using the
H,,-center as proved in [Baml].
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LEMMA 2.6. Let (M, g(t))e[—r2,0) be a solution of the Ricci flow. Suppose (z,—r?) is
an H,-center of (x¢,0) and

R('a _TQ) Z Rmin)
for some fized Rpin € R. Then there exists ¢ = c(Ryinr?) > 0 such that
Voly(_y2)(By(—roy (2, (2H,)V?r)) > ce™"r200pn, (2.18)

Next, we have the following heat kernel upper bound, which is proved in [Bam1l]
(Theorem 7.2).

LEMMA 2.7. Let (M, qg(t))ier be a solution of the Ricci flow. Suppose that on M x
[s,],

[3775] C I, RZ Rmin-

Let (z,s) € M x I be an Hy,-center of (x,t) € M x I. Then there exist C = C'(Rypn(t—
s)) < 0o, such that for any y € M, we have

d2(z,v)

K(z,t;y,s) < C(t — s) " 2e N @ T (2.19)

Using this heat kernel upper bound estimate, we have the following estimate
which relates the Wi-distance to the L-length. This estimate was used in [Jia23] to
prove an improved version of the volume non-collapsing estimate.

LEMMA 2.8. Let (M,g(t))ic(—r0) be a solution of the Ricci flow for some T > 0.
Suppose (s,t) C (=T,0) with s > =T + € >0 for some ¢ >0. Let v :[0,t — s| —
M x (=T,0) be a C* spacetime curve with

7(7_) €M x {t - T}’ 7(0) = (:Eat)v ’7(t - S) = (y,S)-
Then there exists C = C(e) > 0 such that
s Ly ] 2
d%(/l)(@,s, Vz,t;s) <C (1 + Q(t —(8§1/2 B Ns (.%',t)) (t - 3)1/2- (2'20)
Next, we have the following Lemma.

LEMMA 2.9. Let (M,g(t))ier be a smooth Ricci flow on a compact n-dimensional
manifold with the interval I C R. Assume that (zg,tg) € M x I, 1o <1 satisfy that
[to — 2r2,to) C I, R(zo,t) <Yry? for all t € [ty — 12, t0], and ./\/;’;_Tg(xo,to) > Y,
then we have

g(to—r7)
dW1 ° (Vwoio;to—?%?éﬂﬁo) < Cry

for some constant C =C(n,Y) < oco.



GAFA GEOMETRIC REGULARITY OF BLOW-UP LIMITS OF THE KAHLER-RICCI FLOW 1909

Proof. After parabolic rescaling, we may assume without loss of generality that
ro = 1. Consider the spacetime curve defined by (1) = (xo,tg — 7) for 7 € [0,1],
then we have

1
L(y)= / T2 R (g, to — 7)d7 < 3Y,
0
Hence we can apply Lemma 2.8 to obtain
to—1
d%(/lo )(Vwoﬂfo;tofla 59:0)

£() N (g e
§C<1+2(to—(to—1))% o 0’t0)> o= lfo=1)

<C.
This completes the proof. O
Finally, let us recall the following result, which was proved by Perelman in [Perl].

LEMMA 2.10. Let (M, g(t))ic(—1,0) be a solution of the Ricci flow for some T > 0.
Suppose [s,t] C (=T,0). Then for any x € M, there ezists a point y € M, such that

n
g(z,t) (y7 3) < 5

We will call the point (y,s) an ¢,,-center of (x,t) in Lemma 2.10.

REMARK 2.11. According to Lemmas 2.8 and 2.9, for a given point (z,t), the dis-
tance between the ¢,-center (y,s) and the H,-center (z,s) is always bounded in the
scale \/t — s. By definition, for the ¢,-center (y,s), we can find a reduced geodesic
from (z,t) to (y,s), with bounded reduced length, while for the H,-center (z,s), we
don’t know if such reduced geodesic exists or not.

As for the Ricci vertex, which is defined in the background of AMMP and Kéhler-
Ricci flow, by the Li-Yau type estimate in [JST1, Theorem 1.5], we can see that, if
(x,t) is a Ricci vertex, then the bound of the normalized Ricci potential remains to
hold at the £,-center (y, s), hence also the H,-center (z,s). In conclusion, if the base
point (z,t) is a Ricci vertex, then at s < t, the Ricci vertex, the £,-center (y,s) and
the H,-center (z,s) will be close to each other at the right scale.

2.3 Metric flows and F-convergence. Let (X,d) be a complete, separable metric
space and denote by B(X) the Borel o-algebra generated by the open subsets of X. A
probability measure on X is a measure p on B(X) with (X)) = 1. We denote by P(X)
the set of probability measures on X. Denote by ®: R — (0,1) the antiderivative
satisfies that ®'(x) = (47r)_1/26_“’2/4, lim, , o ®(x) =0, lim,_, ®(z) = 1.

DEFINITION 2.12 (Metric Flow Pairs, Definitions 3.2, 5.1 in [Bam23]). A metric flow
over I C R is a tuple

(X, £, (dt)teh (Vm;s)xe)(,se[ﬂ(—oo,t(z)])7
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where X is a set, t: X — I is a function, d; are metrics on the level sets &; :=t~1(t),
such that (X}, d;) is a complete and separable metric space for all ¢, and v,,s € P(X;),
s < t(x) are such that v,y = d, and the following hold:

(1) (Gradient estimate for heat flows) For s,t € I, s<t, T >0, if us: Xs — [0,1]
is such that ®~1 o, is T_%—Lipschitz (or just measurable if T'=0), then
either u; : & — [0,1], 2+ [, usdv,, is constant or D tou is (T+t— 3)*%—
Lipschitz, '

(2) (Reproduction formula) For t; <ty <t3in I, vy, (E) = thz Vyitr (BE)dVgy, (y)
for z € A, and all Borel sets £ C &}, .

A conjugate heat flow on X is a family u; € P(X;), t € I, such that for s <t in I’,
we have ps(E) = [y, Ves(E)du(x) for any Borel subset E' C X. A metric flow pair
(X, (ut)ter) consists of a metric flow X, along with a conjugate heat flow (u)er
such that supp(u) = &; and |[I'\ I'| =0.

DEFINITION 2.13 (H,-concentrated metric flow, Definitions 3.30 in [Bam23]). The
metric flow X is called H,-concentrated, if for any s <t, s,t € I, and x1, x5 € X}, we
have

Vary(Va, s, Vayis) < Hp(t — 5).

Next, we have the following definitions.

DEFINITION 2.14 (Correspondences and F-Distance, Definitions 5.4, 5.6 in [Bam23]).
Given metric flows (X?);c7 defined over I’*, a correspondence over I” C R is a pair

= ((Zta di)eer, (@i)te]ﬂ@,iel)

where (Z;,d?) are metric spaces, I"* C I'* N I" and ¢ : (X},d) — (Z;,d?) are
isometric embeddings.

The F-distance between metric flow pairs (X7, (4! )iepr i), j = 1,2, within € is
the infimum of r» > 0 such that there exists a measurable set & C I” such that
I"\ECI"'NI"? |E| <r? and there exist couplings q; of (u},pu?), t € I"\ E, such
that for all s,t € I"” \ E with s <t, we have

ZS
| i (Db (), dae a) <
Xlxx?
The F-distance between metric flow pairs is the infimum of F-distances within a

correspondence €, where € is varied among all correspondences.

For the next definition, we suppose (X*, (ui)yc i) F-converge to (X, (uf°)ierr o)
within the correspondence €.

DEFINITION 2.15 (Convergence within a correspondence, Definition 6.18 in [Bam23]).
Given p' € P(X}) and p*> € P(X2°), we write ' — % 5 41 if t; — to and there exist
71— 00
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E; C 1" such that |I"\ E;| =0, E; CI"” and

lim supdft ((@})eptf, (97°)ett5®) =0,
1—00 tEI”\E
where pj is the conjugate heat flow on X* with pj = wi, for i € NU {oo}. We write
B — Tog if Oy, — by
1—00 1—00

We will need the following definition of singular spaces introduced by Bamler, see
[Bam18, Definition 2.1].

DEFINITION 2.16 (Singular space). A tuple (X,d,R,g) is called a singular space (of
dimension n) if it satisfies the following properties:

(1) (X,d) is a locally compact, complete metric length space.

(2) Rx C X is an open and dense subset, which can be equipped with a structure
of a smooth Riemannian n-manifold (Rx,g), such that the inclusion map
(Rx,dy) — (X,d) is a local isometry,

(3) The length metric of (Rx,g) is equal to the restriction of d to R. In other
words, (X,d) is the completion of the length metric on (R, g).

(4) For any compact subset K C X, there are constants 0 < k1 (K) < k2(K) < 0o
such that for all z € K and 0 <r < 1, we have

rir" < |B(z,r) NR| < kor™.

Here |- | denotes the Riemannian volume with respect to the metric g and
distance balls B(x,r) are measured with respect to the metric d.

The subset R is called the regular part and its complement S := X \ R is called
the singular part.

3 Continuity of blow-up limits of the Kahler-Ricci flow

3.1 Set up and preliminary results. We consider the normalized version of (1.1),
that is, we consider the following normalized Ké&hler-Ricci flow

0s (3.1)

(ZJ(O) = wo,

{ 99(5) _ _Ric(a(s)) +&(s),

which has a long-time solution with s € [0,00). The relations between the unnor-
malized Kéhler-Ricci flow (1.1) and normalized Kéhler-Ricci flow (3.1) are given
by

s=—In(1—t), t=1—¢"%, @(s)=(1—1t)"'w(t), tc0,1). (3.2)
We can always find a smooth closed (1,1)-form x € —[Kx] such that

Wy =W — X
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is the restriction of the Fubini-Study metric wpg on CP" to Y. We can also choose
a smooth volume form € such that

—/—1001log Q1 =y

since —x € [Kx]. The normalized flow (3.1) can be reduced to the complex Monge-
Ampere flow as below:

{ 09 _ 1o w0t (€ = Doy + v=100¢)"

ds og 0 + P, s€& [0700)7 (33)
@ls=0=0.

We have the following well-known parabolic Schwarz lemma.

LEMMA 3.1 (Parabolic Schwarz Lemma). Let 8 be any Kdihler metric on CPY. For
the solution to the unnormalized flow w(t), we have

trynB < C, (3.4)
and
0 A 1 2
5 Dew ) tupf = -C [Vtro Bliw + C (3.5)
on X x[0,1).
For the solution to the normalized flow w(s), we have
e (€*8) < C, (3.6)
and
0 A s < —1 s 2 —s
5~ Dats) tro(s) (e°B8) < —C7 | Vitrgs)(e°B)|5 ) + Ce™?, (3.7)

on X x[0,00). Here C' < o0 is a constant, depends on n, wy and the upper bound for
the bisectional curvature of 5.

In the normalized flow, we denote the Ricci potential by

dp
=_r 3.8
Uo 88 ) ( )
then ug satisfies the following coupled equations
%uo = Aug + try ) (e°wy) + uo =n— R;(s) + o, (3.9)
Ric(@(s)) =w(s) — e*wy — /—19duy. ’

For convenience, we still denote by wug(t) the function ug(s(t)) with s(t) = —log(1—t),
which is a function on the unnormalized flow X x [0,1).
Now, let fy be a smooth closed (1,1)-form on Y with ®*6y € ¥. Then we have

Wy — 9Y =V —185/), (310)
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where p is a smooth function on CPY. We still denote by p the pullback function
® o p. Then in the normalized flow, we define

up =up + €°p, (3.11)

on X x [0,00). When we are in the unnormalized flow, we still denote by wu;(¢) the
function uy(s(t)) with s(t) = —log(1 —t), and we can check that

Ric(w(t)) — (1 —t)'w(t) = —(1 —t) 'Oy — V/—190u,,
for all ¢t € [0,1). Denote by
a=+/—190p. (3.12)

We can view « as a smooth form on CPY. Now u; is a smooth function, satisfying
the following coupled equations

0 — S =
{ Fsl1 = Auy — trg(s) (€ (o — wy)) +ur =n — Ry(s) + u, (3.13)

Ric(@(s)) = @(s) + e*(a — wy) — vV—100uy,

on X x [0,00).
In order to normalize u;, denote by a(s) :=infx ui(-,s). We have the following
important estimates of a(s).

LEMMA 3.2 (Lemma 4.3 in [JST1]). For any constants so,T >0, for s € [0,s0+ T
we have

e’ *a(sg) — B <a(s), (3.14)

for some constant B = B(n,wo, ||pllc2(wps): T') < 00.

Given any sequence of times ¢; /1 in the normalized flow, let s; = —In(1 —1¢;) —
o0 as i — 00. Let By = B(n,wo, ||pllc2(wps); 0) be the constant from Lemma 3.2, then
we define

bi(s) =e’*a(s;) — By, (3.15)

where s is the time parameter in the normalized flow (X, g(s)). By Lemma 3.2, we
have b;(s) < a(s) for all s € [0, s;]. We then denote by

V; = U1 —bz‘(S) + 1, (316)

which is a smooth function on the normalized flow (X, g(s)), s € [0,00). Then we
have v; > 1 on X x [0, s,].
According to [JST1], we have the following gradient and Laplacian estimates

A Vuy|?
A Val” o (3.17)
ul—a—i-l ul—a+1
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on the normalized flow (X, g(s)), s € [0,00). Hence for v;, by Lemma 3.2 and the
Schwarz lemma, we have

|(95’Ui| |A’U1| |V’Ui|2
+ +

U; U; (%

<C, (3.18)

on X x [0, s;].

Now, recall from the unnormalized flow (X, g(t)), t € [0,1), we define M; = X
and g;;:= (1 —t;)"tg((1 = t;)t + t;), t € [-T;,0] with T; =¢;/(1 — t;). Hence we can
compute that

wir=1-t)w(s(t)), st)=—-In(l—-t)—In(1-1¢;), te[-T;0].

For the convenience of the notations, we still denote by v;(t) = v;(s(t)), where s(t) =
—In(1—¢) —In(1—t;), which makes v; a function on the Ricci flow (Mj, (gi¢)ie[-1,0]),
hence we have v; > 1 on M; x [—T;,0]. From (3.13), v; satisfy the following coupled
equations

vi—(Bo+1) a—w
{(@—Aw”) % — 1 e (57, (3.19)

'U =
Ric(wi) = 1t (wis + °=55) — v=100u;,

on M; x [-T;,0]. We should remark here that, the factor ﬁ here is not a Type I
bound, it’s actually a good term on (Mj, (git)te[—T;,,0])- From the parabolic Schwarz

Lemma, say Lemma 3.1, we have for any Kéhler metric 8 on CPV, try, , (%) <C
and

B 2
v (757,

on M; x [=T;,0], for some constant C' depending on f3.
From (3.18), on (Mj, (9i,¢)ie[-1;,0), We have

(8t—Awi,t)trwi,t( 5 )< _ct FO(—t), (320

11—t

) 2
|0 +|AUZ| Vil c <. (3.21)

U; (4 V; _].—t_

In conclusion, if we let p; be the Ricci vertex associated to 0y at t; =1 — e™%,
then we have the following estimates.

LEMMA 3.3. There ewists constant C = C(n,wo, ||p|lc4(wes)) < 00, such that the fol-
lowing statements hold on the Ricci flow (M, (git)tec[-,,0])-

(1) v; > 1;

(2) |3tv7\ + \Avﬂ + \Vm\ <C;
(3) R <C’vl,

(4) v (p,, 0)=By+1.

Here all the operators are with respect to the metric g; ;.
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Item (3) follows from taking trace of the second equation of (3.19) and the
parabolic Schwarz Lemma, say Lemma 3.1. Item (4) follows from the definition of
the Ricci vertex.

Now according to (1.4), after passing to a subsequence, we can obtain F-
convergence on compact time-intervals

(M, (git)ee-.,0) (Vpi,0i)eel-T3.,0)) i’—ij (X, (Vpaost e (—00,01); (3:22)
within some correspondence €, where X is a future continuous and Hs,-concentrated
metric flow of full support over (—o0,0].

Throughout this section, unless otherwise stated, all the constants will depend at
most on 7, wo, [|pllc4(wes)- We will omit this dependence in this section for conve-
nience.

3.2 Heat kernel estimate and good distance distortion lower bound. In this
subsection, we will obtain the good distortion lower bound on (M, (gs¢)tc[—T;.,0])- For
convenience of notions, we will omit all the subscript ¢ in this subsection.

First, we have the following heat kernel estimate.

LEMMA 3.4. For =T <s<t<0 and xz,y € M, we have the following estimate for
some C' < 00:
(i) Any Hoy,-center (2,s) of (x,t) satisfies d*(z,2) < C (1 + /! R(iC,T)dT) (t—s);
(ii) We have

. 1 t Cd?(xay)
K(z,t;y,s) > m exp (—C’/S R(y,T)dr — W) )

exp (C /tR(CC,’T)dT - cl?(x,y)) .

K(z,t;y,s) <

C
(t—s)

Proof. First, we have (note here we are of real dim 2n)

C(t—s)

C
(t—s)®

The upper bound follows from [Zhal2], and the lower bound follows by combining

K(z,t;z,s) > C(tis)" el (@) with

ﬁ exp (_ /: R(x,T)dT> < K(z,t;2,5) < (3.23)

1 t—s t
ooy, < 57 | Vi@t =nir < [ R

() Let (z,s) be any Hg,-center of (z,t). Then from [Bam1, Theorem 7.2] and (3.23),
we have

1 t ' C d?(z, 2)
m exp (—/s R(x,T)dT> < K(z,t;x,s) < = exp (—m> ,



1916 M. HALLGREN ET AL. GAFA
which implies that
t
2(z,2) < C (1 +/ R(m,T)dT) (t—s).

(73) Qi Zhang’s gradient estimate [Zha06, Theorem 3.2] and the upper bound in
(3.23) combine to give

VoK (2, tiy, )| [ L 10g<0(t—8)‘”>’
|K (2, t;y, )] t—s K(z,t;y,s)

oo ()

which we can integrate to get

Ct—s)™" ) ( Ct—s)™ ) Cd?(x1,22)
1 — ) <21 :
o8 (K(l’g,t;y,S) =208 K(:Cl?t;yvs) " t—s

so that

Choosing z1 =y and z9 = x, the lower bound in (3.23) then gives

Ct—s)™ t Cdj (x,y)
log [ ——2—) < =S d)
Og<K(w,t;y,8)> _C/s Bly.m)dr + =

Rearranging terms gives the lower bound.
Combining (i) with [Bam1, Theorem 7.2] gives

2
K(z,t;y,s) < ¢ exp (— dS(y’Z)>

(t—s)n 9t —s)
d
—exp / R(x,T) ( ) ,
(t 10(t —s)
which proves the upper bound. O

Now we can prove the good distance distortion lower bound.

PROPOSITION 3.5. For any A<T, D < oo, there exist constants 0 = 0(A, D) >0
C =C(A,D) < oo, such that the following statement holds.

Assume —A <t <ty <0 satisfies to — t; < 0. Let p=p; be the Ricci vertex as
above. Assume x,y € Uyep, 1, B(p,t, D). Then we have

dtz(xuy) 2 dtl(xay) - C\/ t2 7t1'

Proof. Throughout the proof, all the constants will depend at most on A, D. Let
(z,t1) be an Hy,-center of (x,t2), then by Lemma 3.4, we have

& (2,2)<C (1 L[ R(a:,t)dt) (ts — 11). (3.24)

t1
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Assume t, € [t1,t9] satisfies d, (x,p) < D, then we have

R(z,t) < Cv(x,t) < Co(z,t,) < C(2v(p,t,) + CD?*) < C(Cu(p,0) + CD?*) < C,
for all ¢ € [t1,t2]. Hence by (3.24), we have

dt1 ({E, Z) S C\/ tg - tl. (325)

Let uw € C®(M X (t1,t2]) solve the heat equation, with u(-,¢1) :=dy, (z,-). Then
(3.25) and [Baml, Theorem 3.14] give

u(eto) = [ Kt w,0)dy, (w.2)dgi, ()

<Ch/tg — t; +/ K(z,to;w, ty)dy, (w, 2)dge, (w)
M

SC\/t2—t1+\/t2—t1/ K (x,t2;w,t1)dgy, (w)
B(Z,tl,\/tQ—tl)
+ Vo —tlej/ K(m,tg;w,tl)dgtl(w)

j=1 B(z,t1,29t1\/ta—t1)\B(z,t1,29/t2—t1)

> . (27)2
<CViy =11 [1+) 2exp | - T

j=1
<Cv/tg —tq.

If we let @€ C®°(M x (t1,t2]) solve the heat equation with a(-,t1) = d, (y,-), the
same computation gives (y,t2) < Cy/ta — t1. However, (u + @)(-,t1) > dy, (z,y), so
the maximum principle gives (u + @)(+,t2) > di, (z,y), and in particular u(y,ts) >
dy, (z,y) — C'/ta — t;. Because |Vu| <1, we conclude

dtz(m)y) Z u(y7t2) - U(CC,tQ) Z dt1 (%y) - C\/ t2 - tlv

which completes the proof. O

3.3 Harnack inequality and global weak distance distortion upper bound. As
in Sect. 3.2, we will omit all the subscript ¢ of (Mj, (gi,¢)ic[-1;,0) in this subsection.

Theorem 3.6. For any to,t1 € [—T,0], to < t1, there exists C = C(ty) < oo, such that
the following statement holds.

For any positive solution u € C°(M X [to,t1]) of the heat equation, i.e. Ou =0,
where O is the operator in Sect. 2.1, we have

U 2 w?

Au 1 2 1
S LT R N
t—to

on M x (to,tl].
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Proof. Recall the evolution equation of the Ricci potential v from (3.19):

_’U-(B()—Fl) 1
(825_A)’U_ 1—¢ _l_ttYWtﬂa

where 3= 5=*. Then we can compute
k2

_ 2 2 _
(9 = )|V = |V — |V 4 - |Vof* + _tRe<VtrwB,vu>. (3.26)

1

Denote by gy = %nwps. Then choose a constant A < oo large enough such that

@ := ABy + B is a Kéhler metric on CPY. By the parabolic Schwarz lemma (3.20),
we have
(0 — A)tr,, @ < —C~HVitr, &> + C, (3.27)
(8, — A) try, Bo < —C ' |Vt fo|* + C, (3.28)
and tr,,w < C, tr,, Sy < C. Hence by (3.19), we have
|VVo|? > |Ric)* - C. (3.29)
We will estimate the following Li-Yau type Harnack quantity:

[Vul?
u2

F::—&+5

+ CVIV'U’Q + trwta + trwtﬁO -,
u

where 6 € [3,1), o, 7 € [1,00) are to be determined. We compute

Au _ (Ric, VVu) n 2Re <VAU>VU> B 2|Vu]2Au
u

(8,5 — A) » u2 u3 ’
|Vul? |VVul? + |VVu|?
(0r = A) w2 u2
Re ((VVu,vu ® Vu) + (VVu, Vu® Vu>) |Vt
+4 —6 :

u3 ut

From (3.19), we have

(Ric, VVu) 1 Au_(VVu,vvw_ 1 {B8,VVu)

U 11—t u U 1-—1¢ U

Combining expressions we can compute
(0y —A)F
1 Au N (VVu, VVuv) N 1 (3,VVu) B 2Re<VA2u,Vu> +2\Vu|2Au

- 1—t U 1—¢ U U u3

-5 + 40 — 60 4

u2 u3 U
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_ 2 2 _
—Mvvmz—mvvm2+T§ﬂvm2+1f§%<vwwﬁﬁw>—CVHVHM%F

1
v
1—-1

— O HVitr,, & tr,, 8+ C.

R

Combining this with

Re <VF ﬂ>

Re(VAu, Vu) . IVul2Au . 6Re ((VVu,Vu@Vw +(VVu, Vu® Vu))

w2 w w3
Wk Re (<vw,% ® V) + (VVu,Vu @ Vv))
T 12«
u
n Re(Vtr,, B0, Vu) n Re(Vtr,,w, Vu) B 7R6<Vv,vu>
u u u ’

we obtain the following;:

(@—Aﬂw—ﬂm<VFY3>

1 Au  (VVu,VVv) N 1 (8, VVu) _6]VVu\2 +[VVu? 26\Vu\4

= 11—t u U 1—t¢ U u? ul

_ 2 2 _
fmvvm2fmvvm2+T§ﬂvm2+1fﬁw<vumﬂmm>f6fwvu%%ﬁ

tr,, @, V- .V
SN - o o RS TY g, RelV0 Vi
U PR A " ”

\v Re ((VVu,Vu ® Vu) + (VVu, Vu® Vu
B 2Re(Vtrwtﬁo,Vu) Yy (< )+ )

U u3

Re ((VVU,Vu ® Vo) + (VV,Vu ® Vv>)

— 2« +C.
u
Using Cauchy’s inequality, we can also estimate
20C Ac?
2y 2
2 Re(Vtr,, 8, V) < g Vir, 5 + o7V
1 20C Aa?
<_ - Y 2 A " ey 2
<100A <|Vtr |7 + A|Viry, Bol ) (-1 [Vl
Re(Vtrwt/Bo,vw \VU\Q

—2 |Vtr,, ol + 10C ——

u 10C
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Re(VtrwtC;,vu) 9
-9 “ 1
" < 1OC|Vtr 0|7 +10C——

(v%ﬁvw
u

!VW

\VV I+

1 |VVul?
2a

u?

Re ((VV0,Vu® Vo) + (VV, Vu® Vo) )

u

—2a

< S(VVoP + [VVuP )+4a‘ 4 g0,

1 (B,VVU>< CAax (b1, & + 5)2+L|VVU|2<L|Vvu|2 CAx
11—t w (-2 w20 20 w2 T 2a  w? (1—1t)%’

< 12 2
1 Au < n|VVu| <l\VVu| 4 _no

1—tuw ~— (1—tu " a u? 41 —t)%

Combining expressions gives

(8, — A)F — 2Re <VF @>

[VVul*  ([VVul> +[VVu* |Vu\4
wr 0 u?
|Vu|?>  20C Aa? 5 1 1 CAa2
ey e R it et ”1—#“6*(1—@2
Re(Vv, Vu) 25R€ (<VVU,§U ® Vu) + (VVu, Vu ® Vu>)
A _'_ )

U u3

2 !V !2
T«

IV >+ 45| Vof?

+C

+ 2

Next, we complete the square to obtain

|VVul? Re(VVu,Vu®Vu) _|Vul VVu  Vu® Vul?
- 2 — = — _
) 2 +20 e 0 A 0 ” 2

X7, |2 N7, \7. 4
- (5— g) VYU | Re(VVu, Vu® Vu) |Vl
(6%

u2 u3 ut

4] |Vl
oy )

Again combining expressions, and using || < C and |Vv|? < Cv, we obtain

(5__) VVu 5 VueVul
« u (5—% u?

(8, — A)F — 2Re <VF v“>

— = 2
2 VVu 0 Vu®Vu ] |Vl |Vul?
_(s-2) |- L
(5 a)‘ i +5<5_2 ) -t Cat s

«
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2 A 2 X A 2
+C|V“| ( 0% Ca  CAa )UJFQWRe(Vv,Vu) Cr CAx

u? 1—t 1—t (1—1¢)? 17t+(17t)2'

Next, we observe that

_Au, & |Vuf
n §—2 2

2
:F—|—< 0 _5> [Vl — a|Vo|* — tr,,@ — tr,Bo + Y.

§—2 u?
We assume that v > ~(a) has been chosen so that
v > 2a|Vo|? + 2tr,, & + 2try, Bo.

At any point (z*,t*) € M x (to,t1] where @ := (t —t¢) F' achieves a positive maximum,
we then have

0<(t—1t0) (0 — A)Q = (t — to) F + (t — t0)* (0, — A)F

g(ttO)F(t_ntO)Q@z) <F+< fg 5) |V£2+gu>

|[Vul?

Vu
+ Ot —t)’a ”

(- tO)QRe<V1},vu>

v (52 1) - et

—%(5—%)7%2— (% (5—2) (652 —5)7—0@) (t—to)QWUZPU

«Q

|Vu|? Ca? v |Vul
t—to)? —|y- 2
+ (t —to) (C o T Tt

u

Vol + C(y+ oz)) )

Next, we use Cauchy’s inequality to estimate

C(t—t0)2|vu’2 ‘VU|4
uZ

<y t—t) —— + Ot — 1),

5| Vul 1 < 2) 4] o | Vu|?
— - < — - — [ — -
it =t Ve < g (5= 2) (25 8 st - gt

oL s -
+C(5_E> (5_2—5> Y(t —to)?,
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so combining expressions gives the following at (z*,t*):

5—— ) \V4 2

0<——=Q°+Q- ( (—%) (5_% )’Y-C’a)(t—to)Z'uZ'v

1 2\ ( ¢ ’ 5 Tl

(A2 () o) e
)2 5

_( 420) (5_%)7202_@_%)2( 1Ci)ét>1L+C( a6 0).

We now choose § = %, o =20n, so that § > %, then we have

2 1y 1)2_1
2 (6-2) (532_5> _5<652_1>:((22;Oi)2 o

We next choose v > vy(«) large so that

Ca? . 1 2 )
1—t+60(n) s %<(5—5) <@—6>"}/>C’O(7

then at (x*,t*), we have

v >

1 1
< 2 < _ 2
0< 4nQ +Q+C(t) < SnQ + C(ty),

so that @ < C(tyg) on M x (tg,t1]. Hence we have

Au 1 |Vul|? C(t
——4 - | | + 20n| V| 4 tr, & + try, B — yv < (to)
u 2 t— to
which completes the proof. O

As an application of Theorem 3.6, we have the following global weak distortion
estimate.

PROPOSITION 3.7. Let t1,ty € [-T,0], 0 <ty —t; <1, there exists C = C(t1) < oo
such that the following statement holds.
Let p = p; be the Ricci vertex as above. For any xi,x9 € M, if dy, (x1,22) >

V1o —t1, then we have

di, (21, 22) 2 .

dy, (21, 72) <Cexp ((tQ —t) (dt1 (z1,p) +dy, (372719)) +dy, (w1,p) + dy, (37271?)) ;
if di, (x1,22) < \/ta — t1, then we have

dt2 (':Ul)xQ)

2 2
\/H < Cexp ((t2 - tl) (dt1 (:Elap) + dtl (l’z,p)) + dt1 (l‘lap) =+ dtl (‘rQ’p)) :
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Proof. Denote by ro = \/ta —t;, then consider the rescaling §: = r, Qgrgt. De-
note by f; = ry2ty, to =1y °ts. Let [O,alg{1 (w1,22)] — M be a unit-speed §; -
minimizing geodesic. Define NV := [d, (21,%2)], and consider the restrictions v; :=
7’[7’mi“{j+1’dﬁ£1 (@1,22)}] for j=0,...,N. Define s; :=j for j=0,...,N, and sy1 :=
dg, (w1,22); also set z; :=~(s;). For each j, let (zé,fl — 1) € M be a {y,-center of
(zj,t1), so that K(z;,t1; z;,fl —1) > ¢(n). By Qi Zhang’s gradient estimate [Zha06,
Theorem 3.2], we then have

inf K(Vj(s),£1;23,£1—1)26>0.

$€[sj,85+1]

Next, we apply the above Harnack inequality, say Theorem 3.6, to u :=

K(- z},t} — 1) to obtain (by the triangle inequality)

—ulogu(;(s),t) <C(t)(t2 — t1) (1 + 2, (35(5).p)))
<C(t)(t2 —t1) (1+ &2, (21,0) + &2, (22.p)).

for all t € [t1,%,]. Integrating in time gives

8 (%) <C(t)(to — 1) (L4, (@1,p) +dp, (22.9)) -
That is,
u(v;(s),F2) = cexp (~C(t) (62 = 1) (&, (21,0) + &}, (22.9)) )

Again by [Zha06, Theorem 3.2], we have

V.llo CA <C
& (u(', 2)>| ’

c o C
o <m> < Cdj, (y,7i(s)) +2log (u(y,£2)>’

hence for all s € [s;,s;41] and y € B(7;(s), 2, 1), we have

so that

K (y,fg; 2ty — 1) > cexp (—C(tl)(tg —11) (d;tl (x1,p) + dgtl (:Eg,p))) .

Fix j € N, and let N; € N be maximal such that there exists s; <s;1 <--- <s;n; <
s;+1 such that B(~;(s;),t2,1) are pairwise disjoint. By arguing as in [BZ17], we have
dg,. (2j,2j+1) < 2Nj. On the other hand, we have

1
C(tl)(l + d£27t1 (x17p) + d?;tl (x27p))2n’

|B(’Yj(5j,i)7 1?27 ]-) ’fifQ =



1924 M. HALLGREN ET AL. GAFA

fori=1,...,N;, hence
N
> [ K (ndsi—1)dgs ()2 Y [

i1 Y B(vi(s),t2,1)

SET exp (—C(tz —t1) (dfhl (x1,p) + d?ul (acg,p))) N;.

K (y,f3; 2}, f1 = 1) dg, ()

C
1+ dgtl (xlap) + d?]tl ($27

>
(
Combining estimates gives
dg,, (25, 2j+1)
SO+, (w,p) +d2, (23,p)"exp (Clts —t1) (&, (w1,0) + &2, (22,D)))
this proves the case N =0. When N > (0, summing in j gives
d§52 (mla x2)
d@fl ($1, 1‘2)
<O+, (01,p) + 2, (22,0) exp (Cta — t1) (2, (w1,0) + &2, (22,D)))-

This completes the proof. Il

3.4 Good distance distortion upper bound. As in Sect. 3.2, we will omit all the
subscript i of (Mj, (9i,¢)ie[-1;,0)) in this subsection.

PROPOSITION 3.8. Let p=p; be the Ricci vertex as above. For all t € [-T,0], r >0,
and x € M, we have

|B(z,t,r)|, < C(t)r2reCOrloa(0tdip)

where | - | stands for the volume with respect to the metric g(t).

Proof. Throughout the proof, all the constants depend at most on ¢. By Perelman’s
r-noncollapsing estimate and Bamler’s noninflating estimate in [Bam1], we have

cr®n
— < |B(x,t,7)| < Cr*,
TGy = Poh0ls
for all r € (0,1] and x € M. We will argue in a single time slice, so fix ¢t € [-T,0],
and write B(z,r) = B(x,t,r), etc.
We will show by induction on k € N that

1
Bz, k)| < C¥(1 + dy(a p))

for all x € M. The cases k <4 follow from Bamler’s noninflating estimate. Suppose
the claim holds for some k > 4. Given z € M, let {z1,...,2y} be a maximal subset
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) IN\UN i e c e . .
of B(z,1) such that {B(x;,5)};Z; is a pairwise disjoint collection. Then

1>N c

N
C2|B(x,1)| 2 Y |Blaj, )| 2 (1+ dy(x,p))*’

so that
N < Cy(1 +dy(z,p))™

Moreover, we know B(z,1) C Ué\f:l B(zj,1), so that U;-V:l B(zj,%) cover B(z,(k+
1)). Then the induction hypothesis gives

N
\B(a: “(k+1)) Z xj,— )| < CLC*(1 + dy(, p) )" *+D)|

so if we choose C' > (', then the claim follows. Hence for all k € N, we have
|B(x,k/4)| < C* (1 + dy(z,p))*"* = eChtinklos(i+d:(@p)

for all k € N.
Now fix r > 0. If € (0, 1], then Bamler’s volume non-inflating gives

|B(x,t,7)]; < Cr¥" < Op?neCricsitdep),

If instead r > 1, we choose k € NT such that % <r<

S

, then

|B(x,t,7)|, <eChHinkloa(ltdi(zp)) < Cp2neCrtCriog(ltdi(zp))

This completes the proof. O

LEMMA 3.9. For any to,t; € [-T,0], to < t1, there exist constants 6 = 0(ty) > 0,
C =C(ty) < 00, such that the following statement holds.

Let p =p; be the Ricci vertex as above. If ue C™(M x [to,t1]) is a solution of
(O + A)u=0, with |Vu(-,t1)| <1 and supp(|Vu(-,t1)|) € B(p,t1, D), then we have

Vul*(y,to) < exp (Cvi — to(D? + 1)) ,
for allye M.

Proof. Throughout the proof, all the constants depend at most on tg.
Let € (0,1), A < 0o be constants to be determined. We first use

(D = Ay) (MO DK (2,13, ) )
= (Aa(t —t0)* oz, t) — A2(t — o) |V 2 (2, t) + A(t — to)*(8; — A)v(z, t))

. eA(t—tO)av(x’t)K(x7 t;:y,to)
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— 2A(t — to)*(VFu(w,1), Vi log K (, t;y, o)) e )™ O K (2, £y, o)
> (Aa(t —t0)* ™! = CA(t — 10)* = CA(t — t)* ) v(, 1)
K CRART
- 2A(t - to)a<vRv<x7 t)? VE IOg K(.’I,', tv Y, t0)>€A(t7t0)av(%t)K<x7 ta Y, tO)a

and (here we use the Schwarz lemma)

(9 + A2) [ Vul2(2,1) = (IVVul? + [VVuP) (2,1) + 2Re(Vu, Vu)
> (IVVul? + |VVul?) (2,t) — 2VVu(Va, Vu) - C|Vul?,
to estimate (here we use R < Cwv)

d @
| IR A D 1, ) g 2)
_ / A K (1 iy 10)(D, + A — R)|Vul?(z,t)
M
+ Va2 (2, )9, = A) (XK (@, 8y, 8) ) dg(w)
2/ (199 +199u?) (2.1) ~ 29V0(Vu, V) — C|Vu)
M
AT K (1, 1y, 80) dgy ()
+ (Aa(t = to)°™h = CA%(t — 1)** — CA(t — t5)* — C)
/ \Vul?(z,t)v(z, t)e AT VEO K (2 ¢y, t0)dg, (x)
M
- 2A(t - tO)a/ |VU|2($, t) (vRU(.ZU, t)a V;cR IOgK(Q’J, Ly, tO))
M

ATTEO K (2, y, t0)dge ().
Next, we integrate by parts to obtain
“9A(t—ty)° / Vul?(z, £)(VR0(x, £), V¥log K (x, £y, to))
M

e AU @D (3 1y, t0)dgy ()

- 2/ (VAU @) 172 (2, ) VEK (2, 8y, to))dgy (2)
M

22/ \Vul*(2,1)0; log K (2, t;y, to) e 70" @D K (2 15y, o) dgy (x)
M
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=2 [ (I9Vul+[TVul) (2,0 Vul(2. ) [E log K (2. iy, o)
AT @) B (1 4y to)dge (),

and

-2 /M VYV (Vu, Vu)eAt0) @D i (2 1y 1) dgy (x)
> — 2/M(|VVu| + |VVu|) (x,t)|[Vul (2, )| Vo| (2, ) e EtOVED K (1 oy to)dgy ()

-2 /M \Vo|(x,t)|Vul?(z, )|V log K (, t; y, to)|e ATV E@D K (2 8y, t0)dge ()
F24(t—t0)" [ (V0 Tu) PeAC 0 K (1,1, t0)dg(2)

We also apply our Harnack inequality, say Theorem 3.6, to estimate

1 1
Olog K (w,1;y,t0) = 5| Viog K (z, t:y,1o)|* = C (t
—to

+ v(az,t)) .
Combining all of these expressions yields (where € > 0 is to be determined)
d 2 A(t—to)*v(z,t)
14 ‘VU’ ({L‘,t)e 0 ’ K(x’tvy’t())dgt(‘r)
dt Jar
> / ((I9Vul? +[VVul) (2,t) — C[Tul?) X000 [ (3, 10) dgy ()
M
+ (Aa(t - t)*™t = CAY(t — t)* — CA(t — to)* ~ C)
I e ol A O K 1y, 1))
M

—2/ (IVVul + [VVul) (2, )| Vul (2, 1) Vo (2, ) e K (2,8 y, t0)dg ()

M
=2 [ 90, 01V (e, 0] T log K (2,15, )]0 O K (0, 5y, ) i)

M
2400 10) [ (W0, Tu) P 0 K (1 153, 10) g 0)

M

+e / [Vl (@, 8)[ Vo log K (, 1y, to) e OO K (2, 1y, 1) dga ()

M

1 «
e[ (i o)) IVuP (et K o,y to)da(o)
M\t —1o

~2¢ [ (I9Val+ [VVul) (2,0 V(2. 0)] V. log Kzt o)

M

A K (2, 1y, 1) dgi ()
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—2(1—e)A(t — to)a/ |Vul?(x,t)|Vo|(z,t)| V. log K (z,t;y,to)]
M
CAUTOED K (2, 8y, o) dgy ()
Next, we use Cauchy’s inequality to estimate

=2 [ 9Vl + [VFu) (o, 0) [Vl o, ) Voo, e O K 1,5y, t0)dgy ()
M

> - %/ (IVVulP +|[VVul?) (z,1)e X010 @O K (2, 85y, to)dgy ()
M

=8 [ Vol @ O] Tul (@, 0 K (o iy o) dgi (o),
- 26/M (1V5u] + [VVul) (2.1) | Vul (2,8)| Vs log K (2. 3, 1)
AT @) B (1 4oy to)dge ()
> - % /M (IVVu + [VuP) (@, )0 O K (2, 8y, t0)dgi ()
— 8¢2 /M |Vul?(z,t)|V,log K (z,t; y,t0)|26A(t*t°)a”(”’t)K(:n, t;y,to)dg(x).

Again combining expressions, we obtain
4
dt

> (Aa(t —to)*™! = CA%(t — 10)* — CA(t — to)* - C)

/M Vul?(z,t)e D K (3, 4y, t0)dge ()

[ 1T vt 0t K @,y ) dg ()

+ ¢(1 — 8e) / (Vu|?(z,t)|V,log K (z, t;y, to) [2eAE 0O @D K (1 t:9, t0)dgs ()
M

Ce
t—t

/\VU\Q(%t)eA(tftO)a”(z’”K(x,t;y,to)dgt(fc)
M
—2((1= QA —t0)" +1) [ Vel O] Vul(@,0) V. log K (. i3 t0)|
M
ATV ED K (2, 85, 10) dge ().
Next, Cauchy’s inequality gives
~2((1= QA —t0)" +1) [ Vel O Vel (@, )| V. log K (2. 53, 10)|
M
AN (2, 8y, t0) dgy ()

> = 5 [ IVl @,V log K (o, iy, o) Pe 10" 0O K (0,1, 10) dou (o)
M
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—CAl =t + 1 [ Vo ()] Vul )
M
L AUTOEN K (2, 8y, t0)dgi (),
so that (assuming |t — o] is sufficiently small and « € (0,1))

d —to)%v(x
@/MIVUIQ(CCJ)GA“ 0" @D K (2, 1y, to)dge (x)

> (Aat—t0)" =€) [ [TuP @ tpula )t DK @,y t)dg(x)
M

Ce
t—t,

/\VU\Q(%t)eA(t_tO)a”(x’t)K(w,t;y,to)dgt(ﬂf)-
M
If we choose € := (t —tg)'™®, then assuming A < oo is sufficiently large, we obtain

d @
E/M|vu|2(xvt)e/l(tit0) v(x’t)K(xat;yatO)dgt(x>

- 19l a0 K, 1y, o) dgi (o),
(t — to)a M
or equivalently,
ilog (/ (Vu|?(z, t)eAt0 @D K (1 ¢y to)dgt(:c)) > —L.
di M 7 T - (t—t0)?

Integrating from £y to ¢; then yields
Vul*(y, to) < exp (C(tr —10)' ™) /M Vul? (2, t1) e =0 @ K (2, 11y, t0)dge ().
If |Vu|(-,t1) <1 and supp(|Vu(-,t1)|) C B(p,to, D), then
[Vul2(y,to) <exp (C(t — 1)~ + C(t1 — t0)*(D* + 1)) .
For optimal estimates, we choose a = % This completes the proof. Il

Now we can prove the good distance distortion upper bound.

PROPOSITION 3.10. For any A<T, D < oo, there exist constants = 6(A, D) >0,
C=C(A,D) < oo, such that the following statement holds.

Assume —A <t <ty <0 satisfies to — t; < 0. Let p=p; be the Ricci vertex as
above. Assume x1,72 € Uyep, 1, B(p,t, D). Then we have

di, (21, 2) < dy, (21, 22) + C/ta — t1.

Proof. Throughout the proof, all the constants may depend on A, D. We let u; €
C®(M X [t1,t3)) NCO(M x [t1,15]) solve

(=9, — A)u; =0
’U,@'(', tg) = min{dt2 (l‘i, '), 2dt2 (561, .732)}
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Then wu; satisfies the hypotheses of Lemma 3.9 and maxs |Vu,|(-,t2) =1, so we can
estimate

|VU¢|($,t1) S 1 +C\/t2 —tl,

for all x € M. Moreover, the triangle inequality gives uy(+,t2) +usa(-,t2) > dp, (21, 22),
so the maximum principle implies

di, (21,22) < uy + ug < 4dy, (21, 9).
In particular, uy(xo,t1) > di, (21, 22) — ug(ze,t1), so that
di, (z1,72) — (w1 (71, t1) +uz(w2, 1)) Sur(wo,t1) — ui(z1,t1)
< (1 + C’Jﬂ) dy, (z1,2).
By [JST1, Proposition 7.6], if we choose 6 small enough, then we have
di(wi,p) < C,
for all ¢ € [t1, 2], hence d¢(x1,22) < C, hence we obtain
diy (11, 22) < dy, (21, 72) + CV/ta — t1 + (ur (21, t1) + ua(wa,t1)) . (3.30)

It remains to estimate w;(z;,t1).
For any x € M, t € [t1,ts], we have

R(z,t) < Co(z,t) < Cv(z,t1) < C(1+d; (z,p) < C(1+d; (z,2;)), (3.31)

hence by Lemma 3.4, if we choose 6 small enough, then we have

K(z,t;z,t) < ﬁ exp (—%) , (3.32)

for all x € M, t € [t1,t5]. We then claim that, if we choose 6 small enough, then for
any t € (t1,t2], k=0,1,2, we have

/ K(x,t;x;,t1)exp (df1 (x,mz)) df (x,2;)dgy, (v) < C(t — 1) (3.33)
M
Indeed, for j=0,1,2..., by (3.32) and Proposition 3.8 we have

/. _ K(x,tastr) oxp (&, (,2)) df, (v, 2,)dg, (2)
B(zi,t1,29 1 (t—t1)V/2)\B(zi,t1,29 (t—t1)1/2)

/ C dfl (x,x;)
< O [T
Bli b1, 2011 (t—11) Y/ 2)\B(as 11,29 (1—t1)1/2) (£ —t1)" C(t—t1)

cexp (df, (2,,)) df, (2,:)dgi, ()
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< —exp (fc—122j) 2jk(t B tl)k/2|B($i,t1, 97+1 (t o t1)1/2)|t
(t—tl)"

C ~152j 9jk k/292nj n j+1 1/2
S—(t_tl)nexp(—(] 2 )2 (t — 1) 225 (t — 1) exp(CQ (t—t1) )

< Cexp (—C_122j) (t—t1)*/2,

summing over j proves (3.33).
Now from (—9; — A+ R)u; = Ru;, and the fact that dg, < Cdg,, for all t € [t1,1s],
we have

ui(whtl) < C/ K(I’,tg;l’i,tl)dtQ(l',{L'i)dgtl (1.)
M

t2
+ Cdy, (331,372)/ / K(z,t;z;,t1)R(x, t)dgy, (z)dt.
t1 M
For the first term, by Proposition 3.7 and (3.33), if we let # small enough, we have

. K (x,to; 24, t1)dy, (2, 75)dgs, ()

<

/ K (2, ta; 24, 61)C (s — 1)V 2dgs, (2)
B(Ii,tl,(tz—tl)l/z)

+ / K(x,ty;x;,t1)C exp (dfl (x,xz)) dy, (z,2;)dgy, ()
M
<C(ty — )"

For the second term, by (3.31) and (3.33), we have
t2
[ [ Kt ) RG, Odg ()t
tn JM

t2
g/ / K, t;00,4)C(1 + d2 (2, 2:))dge, (2)dt < C(ty — 1),
t1 M
Combining expressions gives

ui(zi, t1) < Cv/ta — 1y,

combine this with (3.30), we finish the proof. O

3.5 Continuity of the limiting metric flow. In this section, we first use the
good distance distortion estimates to prove the Gromov-Hausdorff continuity of the
limiting metric flow X, then we prove the Gromov-W; continuity.

For pointed metric spaces (Xi,dy, 1), (X2,ds,x2), we denote by

dpau (X1,d1,21), (X2, da, 22))



1932 M. HALLGREN ET AL. GAFA

the pointed Gromov-Hausdorff distance between the pointed metric spaces (for def-
initions and basic properties, see Chaps. 7,8 of [BBIO1]). For convenience, when
(X;,d;, x;) are not bounded, we define

dpar ((X1,d1,x1), (X2, da, z2))

:i dpcu ((BX*(21,7),d1,21), (BX2(22,7), da, 2))
1+ dpau ((BXi(21,7),d1,21), (BX2(22,7),d2, x2))’

Jj=1

which metrizes the pointed Gromov-Hausdorff topology on the class of isometry
classes of complete metric length spaces.

PROPOSITION 3.11. For every t € (—oo,0], we have pointed Gromov-Hausdorff con-
vergence

(Mi7 dgi,ﬂpi) — (Xtv dt7Qt>7

where q; € Xy satisfy iy - (Vgyss50q.) S Cy/t — s for s,t € (—00,0] with s <t. Moreover,
the convergence is locally uniform in time in the sense that

hm sup dPGH ((Mlv dg-;,t’pi)a (Xta dtv Qt)) =0

1— 00 teJ
for any compact subset J C (—o00,0]. Finally, the map
t—= (X, di,qe), t€(—00,0],

s continuous in the pointed Gromov-Hausdorff topology.

Proof. Let I' C (—o0,0] be the set of times where F-convergence (3.22) is time-wise;
by passing to a subsequence, we may assume |(—00,0]\ I’| =0. Let v, : U; — M; be
the diffeomorphisms realizing locally smooth convergence of the F-convergence. Let
I" C I be a dense countable subset of (—o0,0]. By [JST1, Theorem 7.3|, passing to
a subsequence, for every t € I, we have

}i}lgo dPGH ((Mza dgi,ﬂpi)a (Xh dt7 Qt)) = 07

for some ¢; € X;. Moreover, by [Hal, Proposition 2. 7] we can pass to a subsequence
so that v; extend to (not necessarily continuous) r; *-Gromov-Hausdorff approxima-
tions

Vit B(ge,ri) = B(pi,t,1i)

for all t € I”, where r; /oo and ¢; € X;.

Note that if ¢ € (—o0,0] and z; € M; are such that (x;,t) = zo, € X; with respect
to the Gromov-Hausdorff convergence, this means ¢i(z;) — ¢°(2oo) in (Z;,d?), so
x; converge strictly to x. within € in the sense of [Bam23, Definition 6.22]. By
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[Bam23, Theorem 6.23], we thus have (x;,t) L) Zoo. In particular, we then have
1—00

. Xs % % o] —
zliglodwl ((ws)*ywi,t;w ((105 )*Vifoo§5) =0

for all s € (—oo0,t)NI".

CrLamv 3.12. d;‘{;l(yqt;s,éqs) < C(s)Vt—s for all s,t € I" with s <t, t—s<0(s),
where O(s) >0 is a small constant.

Proof. For sufficiently large i € N, we can estimate
X, Zs A is (i
dWl (V‘Jt?s’ 5qs) SdVV1 <((‘0§O)*V‘1t?5’ (902’5)*1/7271,%%):1‘45) + dng (Vf/)i,t((h)vﬁs’ 5wi,t(‘h))

+ dgi,s (¢i,t(Qt)’ ¢i,s(qs» + dsZ ((902 o ¢i,s)(qs)7 SOEO(QS)) )

and previous arguments give

im a7, ((92°)Vausss (P2t (g i) = 0= lim dZ (¢} 0 05)(as), 93 (as) ) -

i—00
Moreover, Lemma 2.9 gives
9i,s 3
dW1 (Vf/’i,t(%)vt;s’61/1i,t(¢1t)) <C(s)Vt—s.
Using the short-time distortion estimate Proposition 3.5, we moreover have

dgi,s (d)i,t(qt)a 1/%',3(%)) S dgi,t (wi,t(qt)vpi) + dgi,s (¢i,8(qs)7pi) + C(S) \% t— S,

for all ¢ close to s, so combining estimates gives the claim. O

CrLAM 3.13. v:I" = X, t — q; uniquely extends to a continuous path 7y : (—o0,0) —
X (with respect to the natural topology of X'), satisfying

dg/sl (V'y(t);sa 57(3)) < C(S)\/ t—s,
forall s<t, t—s<0(s), where 6(s) >0 is a small constant.

Proof. Fix tg € (—00,0), and define ju, : I” N (to,0) — P (X4, ), t > V1), For any
ti,ta € I" N (to,0) with t; <ty, Claim 3.12 gives

diet® (114 (81, tito (£2)) < Ay (Ve 1000, ) < Cto)V/E — F1.

In particular, py, is local %-Hélder continuous, so extends uniquely to a local %—
Holder continuous map i, : [to,0) — P(Xy,). Moreover, by [Bam23, Lemma 2.10],
Var(pu, (t)) < Hon(t — to) passes to the limit to give Var(u,(to)) = 0. That is,
[t (to) = g, for some g, € &j,; this allows us to define v as (not a priori continuous)
map (—o0,0) — X. Also observe that

Ayt (85(10): V(eyt0) < C(to) VE—To, (3.34)
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for any ¢ € [to,to + 60(to)) N I"; by Claim 3.12, we have v|;» agrees with its original
definition.

Suppose t; € (—00,0) satisfy t; -t € (—00,0). Fix s € (—o0,t) N I", choose t} €
(max(t;,t), max(t;,t) +i~ 1) N 1", by (3.34) we can estimate

dl//YI;1(V’Y(ti);S’V'Y(t); )<d ( Vr(ti)iss Vr(t)); )"’dwl( ();89 Vn(t5);s )
<d't (8 v (eies) + Aty (80 Vo)

<C(s)y/it + [t —til.

Therefore, we have lim; ., d)vf,sl(yw(ti);s, Vs(t);s) = 0, hence v : (—00,0) — & is contin-
uous. Il

CLAM 3.14. For any t € (—o0,0)NI', D < oo and r > 0, there exists ¢ = c(t, D,
r) >0, such that v;° (B(z,r)) > c for all x € B(py, D).

Proof. In fact, for any such x, we know that

Vi (BU(@).5)) 2 t.D.r) >0,

for all sufficiently large i € N, see the proof of [JST1, Theorem 7.3]. Then the weak
convergence

(@t) pl,O ¢ (pt) v poo,t
and (@} 0 ;) (x) = ¢i°(x) imply

v (Bl > (90w )<BZt<sot<x> )

>lim sup (BZt ))
i—00

>hmsup (BZt (Ptowzt (3;-%5))
i—00 2

=limsup v, o, (B(is(), 5)) >c(t,D,r). 0
1— 00

CrAM 3.15. For every ty € (—00,0), (X, di,,qr,) is the pointed Gromov-Hausdorff
limit of (X, di,qi) as t \(to forteI”.

Proof. Because X is future-continuous, we know that

A dow, (X, de 232 ), (Xigr i V% 4,)) =0

Moreover, Claim 3.14 implies that the measures v;° ., v;° ;  satisfy the hypotheses

of [Hal, Proposition 2.7], so that after passing to a subsequence, we have

I”IBI}/Q‘I‘, dPGH ((detvqt)v (Xtovdtquo)) =0



GAFA GEOMETRIC REGULARITY OF BLOW-UP LIMITS OF THE KAHLER-RICCI FLOW 1935

for some ¢;, € A},. Moreover, the Gromov-Hausdorff convergence can be realized by
metric embeddings

¢2 . (Xt,dt) — Zz
gb:ﬁo : (Xtoadto) — Ztl
such that

. Z! / /
I”lal?\l,to dVI}I ((th)*’/;:o;tv (¢t0)*V;:o;t0) =0.

The proof of [Bam23, Lemma 4.18] shows that we can choose Z] := X, U &}, along
with the natural embeddings, where

df'(@,y) = inf (di(9,2) + 2 (v, 82) ) + 1

for x € X, and y € A}, where limy\ 4, ¢, = 0. Claim 3.13 then implies

X

dW10 (VQt§t0’6¢1t0) < O(tO) V't — to,
for all ¢ close to tg, so that
’ X
dtZ (qtm Qt) < dwjlo (VQt;t075€{t0) + €,

hence limg 4, d7' (qiy,q:) = 0. That is, ¢, converge to g, with respect to the Gromov-
Hausdorff convergence, so we must have g; = gy, - O

Now, for any t € (—00,0), choose a sequence t; € I"” with ¢; \ t. Then we can
estimate

dPGH ((Mz'?dgi,tapi)v (Xtvdtyqt)) < dPGH ((Mi7dgi,t?pi)7 (Mz dgi,tivpi)>

+dpau ((sz dg: ..+ Di)s (Xtmdtupt,-)) +dpar (X, de, e ), (X, dey ),

but lim; o dpgn ((Mi,dgi,t,pi), (Mi,dy, ,. ,pi)) =0 via the identity map and locally
uniform distortion estimates, say Proposition 3.5 and Proposition 3.10,

lim dpan ((Mu dg: . »Di)s (Xtiadtia%i)) =0
71— 00
by the Gromov-Hausdorff convergence at times in I”, and

hm dPGH ((thdthti); (Xta dtaqt)) =0

1—00

by Claim 3.15. Thus, the locally uniformly continuous maps
L (Mh dgi,wpi)

converge pointwise to t +— (X, dy,q:); this implies that the convergence is actually
locally uniform in ¢, and in particular that the limit is continuous. O
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PROPOSITION 3.16. X is a Gromov-W; continuous metric flow.

Proof. We use the notations from the Proposition 3.11.
Let tp € (—00,0) be any fixed time. By Theorem 4.31 in [Bam23], it suffices to

show that for all x1, 29 € X}, we have

g}%}) dg/tl (le;ta V:L'Q;t) 2 dto (xla $2)-

Fix e > 0, and let I” be as in the Proposition 3.11. By an extension of Proposition 4.40
of [Bam23] (using the fact that X" is future-continuous), we have

CLAIM 3.17. For allt' € I" N (tg,00) sufficiently close to ty, we can find x'y,xh € Xy
such that

Xt
de'f (5$j7VZ;-;t0) <§, |dt’ (56/17'%'/2) - dto (xlv'x?)‘ <§,

|dt’ (:U;’vqt’) - dto(xjvqto)’ <1

for j=1,2.
Proof. Let ¢y, : (Xy,dy) — Z,, ¢y, : (Xio,diy) — Zj, be as in the Proposition 3.11, so
that

. / / —
R, B ) 0l fa)) =0

and limy 4, df‘}f (8410 Vayrito) = 0. B(i;(/?ause X is future continuous, Claim 4.41 of
[Bam23] gives 2, % € Xy such that dy,° (0z, > Varst) < 5 and d?e (¢}, (), b1, (7)) < 5
if ' € I" N (tg,00) is sufficiently close to ty. Then
|der (), ) — diy (@1, w2)| = [d7v (¢4, (1), B (2)) — A7 (8, (1), &, (w2))]
<d%v (g (24), 8, (x1)) + A7 (0} (), 0}, () < e,
and the estimate for |dy (27, qr) — di, (5, 1, )| is similar. O

Assuming t' € I”, we also have 1;,(2}) — 2 with respect to the Gromov-
1— 00

. . ¢
Hausdorff convergence, and in particular ¢; ;/(2};) — 2. Thus, we have
1— 00

dy (wy,w5) = lim dy, ,, (P10 (21), i (25))-
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Now for any t € I” N (—o0,ty), by triangle inequality we have

dI/‘/Y[}:l (Vxl;tayﬂm;t)
zdl)/% (V:c'l;ta l/x'g;t) - dI)/I(/tl (Vx'1§ta Vm;t) - d%ﬁ (V%?t’ sz;t)

‘ oy A . o
> lim sup {divl (W, @)t Vi o) arst) — Aiady (08 )alatses (P Vi, () i) (3.35)

—+00
Zi ({000 N g Lo
- dW1 ((th )*V1,2§t7 ((pt)*ylbi,t/(wlg),t’;t)} - dW1 (V37/1§t0’5371) - dWl (Vxé?to’éa”)
. it (i i
> limsup dyy| (Vwi,t/(z’l),t’%t’ V¢i7t,(r’2),t/;t) - 2e.

—>00
Next, observe (by the Claim 3.17)

lim dgiyt/ (wi,t’ (-:U;):pz) = dt’ (3737 qt/) <1+ 2+ dto (xj7pto)7 (336)

1—00

hence by Proposition 3.5 and Proposition 3.10, we have

limsup |dg, , (Y3 (27), Yig (25)) = dg, , (i (7)), i (23))| < C(to, 21, 22) VY — 1,

1—00

and by Lemma 2.9 we have

limsup dygs’ (Vy, , (00).0505 O, o)) < Clto, 2)VE — 8,

1—>00

both for all ¢ € I” N (ty,00) and t € I" N (—o0,ty) both sufficiently close to ty. Com-
bining estimates and Claim 3.17, we get

d‘l)/[(/t'1 (Vxl;ta Va?z;t) - dto (xluxQ) Z _36 - C(t(hffl,.fg) t/ —1

for all ¢ € I" N (tg,00) and t € I" N (—o0,ty) both sufficiently close to ty. Taking
t' \ to along ¢’ € I"” then yields

d/’[/\i/;l (Va:1;t7 Va?z;t) - dto ($1,$C2) 2 _36 - C(t();ml)xQ) V to - t7

so that
th/‘rg) d‘;[(}fl (le;ta Vrg;t) - dto (xlv m2) > —3e.
Since € > 0 was arbitrary, the claim follows. O

Now we can finish the proof of the main results.

Proof of Theorem 1.1. Theorem 1.1 follows immediately from Proposition 3.11 and
Proposition 3.16. O

REMARK 3.18. In Proposition 3.11 and Proposition 3.16, we only consider the time
t € (—00,0), but the results also hold for the time ¢t = 0. This can be seen in the
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following way. When we form the Type I blow-up limits of our original Kéhler-
Ricci flow, we take any sequence of times ¢; /1, and choose the base point as the
Ricci vertex p;, associated to the given 6y. Here we can perturb the time ¢; to
ti=t; + (1 —t;)/2, but still with the base point as the Ricci vertex p;,. After this
perturbation, the time £ = 0 in this section is the time t = —1 in the new sequence and
limit, and Theorem 6.40 of [Bam23| would allow us to change the base point of the
F-convergence from (p;,0) to (p;, —1). Now our Proposition 3.11 and Proposition 3.16
apply for the new sequence of flows and limit, which implies the continuity of the
original limit at time ¢ =0.

4 Structure of noncollapsed Ricci flows with locally bounded
scalar curvature

In this section, we consider the more general set-up of Ricci flows with locally
bounded scalar curvature, which is already appeared in [JST1]. First, we recall the
definition of based barrier of the scalar curvature. Let (M, g(t)).er be a smooth Ricci
flow on a compact n-dimensional manifold with the interval I C R.

DEFINITION 4.1 (Based barrier of the scalar curvature). Let v: M x I — R be a
C'-function and C < oo be a constant. We call v a C-barrier of R, if the following
hold on M x I:

(1) v=1;

(2) |0 Inv|+ |[VInov|* < C;
(3) R, <Cw.

t

Let (xg,t9) € M x I and B < oo. Then we say v is B-based at (xo,t) if
U(l‘o,to) < B.

REMARK 4.2. For finite time solution of Kéhler-Ricci flow on projective manifolds,
such based barrier functions arise naturally from the normalized Ricci potential.

Suppose I =[—T,0] for some T € (0,00]. Let A >0 be a rescaling factor. Denote
by G = A2gx2; and 9(t) = v(A%t), where t € [-A72T,0]. If v is C-barrier B-based at
(zo,to) of Ry, then ¥ is A?C-barrier B-based at (xg, \"%ty) of Rj.

Now, let (Mj, (i t)te[—1,.0]> (i, 0)) be a sequence of pointed Ricci flows on compact
manifolds of dimension n and Ty, :=lim;_,~ T;. By the results of [Bam23], passing to
a subsequence, we can obtain F-convergence (see Definition 2.12 and Definition 2.14)
on compact time-intervals

F,&
(M, (git)te(—1:.00 (Vps,0it) e[ .01) Q (X, (Vpooit ) te(~Too 0] (4.1)
within some correspondence €, where X is a future continuous and H,-concentrated
metric flow of full support over (-7, 0].
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For the non-collapsing assumption, we assume that, for some uniform Yy < oo,
we have

v(gi-1;,2T}] > —Yp. (4.2)
According to [Bam2], we can decompose X into its regular and singular part
X=RUS, (4.3)

where R is a dense open subset of X'. The singular set S has parabolic x-Minkowski
dimension < n—2. Also, R carries the structure of a Ricci flow spacetime (R, t,0y,9).
For any t € (—T,0), Ry = X N'R, we have that (X, d;) is the metric completion of
(Rt gt)-

For the local scalar curvature bound assumption, we suppose there exist a se-
quence of constants C; < oo and a sequence of functions v;, such that v; is a C;-barrier
of Ry, and Yp-based at (p;,0) for each i.

We have the following improvement on the convergence.

Theorem 4.3 (Theorem 7.3 in [JST1]). Suppose we have C; <Yy for all i. Then
for every t € (—Tx,0) where (4.1) is time-wise, passing to a subsequence, we have
that (M;, dy, ,,p;) converge to (Xy,dy,q;) in the Gromov-Hausdorff topology for some
qi € ;.

The main result of this section is the characterization of the time-slices of the
limiting metric flow X.

Theorem 4.4. Suppose we have C; <Yy for all i. Then for every t € (—=T,0), the
following statements hold.

(1) (X, de,Re,9¢) is a singular space of dimension n, in the sense of Defini-
tion 2.16.
(2) We have the Minkowski dimension estimate

We first remark that, when the sequence of Ricci flows have globally uniformly
bounded scalar curvature, Theorem 4.4 is proved by Bamler (cf. [Bam18]). Here we
extend Bamler’s results to Ricci flows with locally bounded scalar curvature.

We also remark that, if we assume lim; o C; = 0 and lim; o inf s, (1,3 Ry, >0,
then X is a static limit, hence the conclusion of [Bam2, Theorem 2.16] holds for
the limiting metric flow X. Hence in such case, Theorem 4.4 is already proved by
Bamler. In conclusion, we have the following corollary.

COROLLARY 4.5. Suppose lim; o C; =0 and lim; o0 inf s, (—7,3 Ry, > 0. Then the
conclusion of [Bam2, Theorem 2.16] holds for X. Moreover, for every t € (—Tw,0),
passing to a subsequence, we have (M;,dg, ,,p;) converge to (X;,di,qs) in the
Gromov-Hausdorff topology for some o € X;.
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Throughout this section, unless otherwise stated, all the constants will depend
on n, Yy. We will omit this dependence in this section for convenience.

4.1 Preliminary results. In this section, we recall some results established in
[JST1]. First, we have

LEMMA 4.6 (Lemma 7.4 in [JST1]). For any A,D < oo, there exists a constant C <
oo depending on A, D, such that the following statements hold on the Ricci flow

(Mi, (git)te|-1:,0))-
For any (wo,to) € M; x [=T5,0], if

vi(2o,t0) < A,

then we have

(1) vi(zo,t) <C forallt e[ty — D,to+ D] N[-T;,0];
(2) vi(z,tg) < C for all x € By, (xg,t0, D).

The next lemma states that the boundedness of the barrier function propagated
in the P*-parabolic neighborhoods.

PROPOSITION 4.7 (Proposition 7.5 in [JST1]). For any n € (0,1), A,D,T* < oo,
there exists a constant C < oo depends on n, A, D, T*, such that the following
statements hold on the flow (M, (git)ie[—1,.0))-

Suppose (xg,tog) € M; x [=T; + T~ + 10n,0] satisfies

vi(xo, to) < A.
Then for any (yo, s0) € P*(xo,to; D,—T~,TT), we have
i (Yo, 50) < C.

Next, we have the following short time distance distortion estimate.

PROPOSITION 4.8 (Proposition 7.6 in [JST1]). For any n € (0,1), A, D < oo, there
exist constants § € (0,n), C' < 0o, both depending onn, A, D, such that the following
statements hold on the Ricci flow (M, (git)ie[-T,,0))-

Suppose (xo,ty) € M; x [-T; + 10n,0] satisfies that

’Ui(.%'o,to) < A,
then for any yo € By, (x0,t0, D), we have
dgi,t(y(]?xo) < C:

for all t € [to — 0, min {tg + 6,0}].

Finally, we have the following heat kernel lower bound estimate.
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PROPOSITION 4.9 (Proposition 7.7 in [JST1]). For any n € (0,1), A, D < oo, there
exists constant C < oo depends on n, A, D, such that the following statements hold
on the Ricci flow (M, (git)ie|-1,,0))-

If (x9,t0) € M; x [=T; 4+ 10n,0] satisfies

vi(wo,t0) < A,
then for any so € [max {toc —n~ ', —T; +n},to —n] and yo € By, (z0, S0, D), we have
Ki(zo,t0; Yo, 50) > C ™,

where K;(z,t;y,s), s <t denotes the heat kernel along the flow g;;.

4.2 TF-limit and local smooth convergence. Let us start with (4.1), that is, we
have the F-convergence on compact time-intervals

F,¢
(M, (9it)te(—1;,00» (Vpi 05t ) te[—T:,0]) - (X (Vpaoit)te(- T 01) (4.4)
within some correspondence &€, where X is a future continuous and H,,-concentrated
metric flow of full support over (—T,0]. We can decompose X into it’s regular and

singular part
X=RUS, (4.5)

where R is dense open subset of X. Also, R carries the structure of a Ricci flow
spacetime (R,t,0¢,g). For any t € (—T,0], R, = X, N R, we have (X;,d;) is the
metric completion of (R, gt).

We denote the conjugate heat kernels restricted to R as follows:

dvg,s =1 K(x;-)dgs, x€X, s€(—Tx,t(x)),
where
K:A{(z;y) e X xR : tz)>ty)}— Ry,

is a continuous function. For any = € X, the function K(z;-): Reys) — Ry is a
smooth function and satisfies the conjugate heat equation [*K(z;-) = 0; for any
y € R, the function K(-;y): R-yy) — Ry is a smooth function and satisfies the heat
equation K (-;y) =0.

We can find an increasing sequence of open subsets U; C Uy C --- C R with
U2, U; = R, open subset V; C M; x [—T;,0] and time-preserving diffeomorphisms
¥; : U; = V; such that on R, we have

(o5 NS cre
Vigi —=g, ;O —50y, Ki(z;,t;;) oty — K(Too;-) (4.6)
71— 00 1— 00 1— 00

for any sequence (x;,t;) e EX (see Definition 2.15). On
1—00

{(my) eRxR = Hz)>Hy)},
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we have the convergence of the heat kernels

Co:(?
1—00
4.3 Compactness of points under uniform geometry. In this subsection,

we prove compactness of points with uniform bounded geometry under the F-
convergence (4.4). For the definition of P°-parabolic neighborhood, see [Bam23,
Sect. 9.5].

As usual, we define the curvature radius rgm(z,t) at a point (z,t) of a Ricci flow
(M, (gi)ter) to be the supremum of r > 0 such that |Rm| <r~2 on P(z,t;r). For a
non-collapsed F-limit X', the curvature radius 7ry, is defined in [Bam2, Lemma 15.16].

PROPOSITION 4.10. For any te € (—Tx,0), D < 00, there exists 6 = 0 (too, D) > 0,
such that for any o € (0,a], the following statement holds.
Assume (z4,t;) € M; x (—T5,0) satisfy

(1) lim; o0 6 = too;
(2) dy,, (pi,zi) < D;
(3) o <rrm(wi,t;) <ot

for all i € NT. Then, after passing to a subsequence, we can find a point To, € Ry,
such that the following hold:

¢
(1) (x%ti) : > Loos
1—00

(2) o< me(woo) < 0'_1;

(3) There exists a compact subset K CC R, such that whenever i is large enough,
we have (x;,t;) € Vi and ; (x,t;) € K CC Uy;

(4) P°(700; o0, (coo)?, —(coo)?) C R is unscathed with Fry > coo everywhere,
where ¢y = co(n) > 0 is a dimensional constant, and P(z;,t;;co0) converge
to P°(Zoo; o0, (coo)?, —(coo)?) in the Cheeger-Gromov sense.

Proof. The proof of Proposition 4.10 consists of a series of lemmas. Throughout the
proof, unless otherwise stated, all the constants will depend at most on t.., D.

Let n:= (T + tx)/100 > 0 (if T, = 00, simply take n = 1). Hence passing to a
subsequence, we may assume that t; > —T; + 50n and |t; — too| < n for all . All the
times for each i we consider in this proof is in [—T; + 7,0], hence we have R,, > —C
when we need the lower scalar curvature bound.

To start, since v;(p;,0) < C, by Lemma 4.6, we have

vi(pi,t) < C, (4.8)

for all t € [t; — 10n,0], hence we have Ry, (p;,t) < C for all t € [t;,0]. Hence by
Lemma 2.9, we have

i, t;
dW1 (Vm,U;tmépi) <C,
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combining with assumption (2), we have
dgll/ltl (Vpia();ti’émi) <C.

Hence we can apply [Bam23, Theorem 6.49] to obtain that, after passing to a sub-
sequence, we can find a conjugate heat flow (u§°);c(—1 +..) on X with

tl/n;rolo Var(u;®) =0, (4.9)
such that on compact time-intervals,
(in,ti;t)te(—Ti,ti) Z—_%j (:u?o)te(—Too,too)' (4.10)
Since X is H,-concentrated, from (4.9), we have
Var(u;®) < Hy(too — t), for all te€(—Tw,too). (4.11)

By [Bam23, Lemma 6.7], passing to a subsequence if necessary, we can find a subset
E. C (—Tw,0), which is of measure zero, such that both (4.4) and (4.10) are time-
wise outside of Fn.

Now for any j € N*, we let ¢; — 07, £; <n, such that

Sj i =too —€j ¢ Exo.
Then for each j, we let y; € X, be an H,-center of (11§°)¢c(—7. ¢..), and hence
Var(ugy, 6y;) < H(too — 85) = Hyej. (4.12)

Now we apply [Bam23, Theorem 6.45] to each y; to find y; € M;, such that
i ¢ .
(Y5, 55) — = Vs (4.13)

and (4.13) is time-wise outside of E, for each j.
Then for each j, we can find 0, € (0,¢;], such that

Sj _(5j¢EOO,

hence (4.13) is time-wise at s; — d;. For each j, we let (z},s; — d;) be {,-center of
(yj-,sj), that is

E(y;;’sj)(zj’i,sj —0;) <n/2, (4.14)

hence we can find smooth spacetime curve 7, : [0,9;] — M; X [s; — d;,5;] connecting
J

(y;‘v sj) to (Z;" S5 — 5]) such that ,C(’Yy;) < né;/Q.

First, we have the following lemma.
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LEMMA 4.11. There exist constant C < oo, such that for each j, there exists iy(j) <
00, such that for all i >iy(j), we have:

dy,.,. s (wi,2)) < Ce;%. (4.15)

Ay

Proof. We will apply the triangle inequality to the dy;’ *_distance along the follow-
ing diagram:

0, () (d) (e) 5

5:51 ( ) Vi tizsj—d; > g =05 Vyjis5—6; Vy 7'S]7SJ_6

(4.16)

For (a) in (4.16), from (4.8), we have v;(p;,t;) < C, hence by the assumption
dg, ,. (pi;r;) < D and Lemma 4.6, we have v;(z;,t;) < C, hence by Lemma 4.6 again,
we have

vi(zi,t) < C, (4.17)
for all ¢ € [t; — 1,0]. Hence we have Ry, (x;,t) < C for all t € [t; — 1,0]. Hence we can
apply Lemma 2.9 to obtain that

dill/: N (Vo tizs;—0;0a) < 081/27 (4.18)

if we choose ig(j) large enough such that [t; — to| < ¢; for all i > iy. Hence we can
compute

Zs; s,

dy; 7 ((@ij—éj )*(6Zi)7(cp:ij—6j )*(Vzi,ti;sg- -3 )

g74 5' 1 2
< dW (6901')7/:1:1'71‘/1';53'—53') < C‘Sj/ .

(4.19)

where (Z;,d;) and ¢! are from Definition 2.14.
For (b) in (4.16), since (Ve, t;:¢)te(—T; t:) LN (%) te(~T o) 1s time-wise at s; —
1— 00
0, we have

Zs;—5; i S 0o 1/2
A" (P 0,)+ Vot —a,): (355, )13 5,)) < 57, (4.20)
for i >ig(j), i0(j) large enough.
For (c) in (4.16), since y; € X;, is Hy-center of (uf°)ie(—1oo,to) and X is Hp-
concentrated, we can compute that

L6,
dwlj ! ((90;)?—6] )* (:U’gj—éj )7 (SOSJO—(;J )* (Vyj;sj *5]' )) S \/V&r(ugjféj ’ Vy]';sj 75]‘)

(4.21)

< \[Var(us. 8,,) + Hud; < V Houltoo — 85) + Hy8; < Cel/”.

For (d) in (4.16), since (y},s;) L) y; is time-wise at s; — d;, we have
1— 00

Lsj—5; 0 i 1/2
dW1 (((psj-—éj)*(yyj;sjflsj)v (@sj—éj)*(yyé,s]';s]'—t%)) < € / ) (4.22)

for i >ig(j), i0(j) large enough.
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For (e) in (4.16), we can apply Lemma 2.8 to obtain that

Zeios. . i
dy? ((gosj,(;j)*(Vy;:,sj;sj—aj)a (%J-fsj)*(‘gz;i))

1/2 (4.23)
L(7y:) ,
: (H 251372 _Ns’iaj(yﬁwsj)) 5% < o},

j

Now, we can combine (4.19), (4.20), (4.21), (4.22), (4.23) and the triangle inequality
along the order (a), (b), (c), (d), (e) in (4.16) to obtain that

((h,-5,)+(02,), (L, 5,)4(0:1)) < O™, (4.24)

Since gpijﬂ;j : (Mi,dgiysj_éj) — (Zsj_(;j,dszjféj) is isometric embedding, we obtain
from (4.24) that

Zg._5.
5570
dWl

1/2

dgi,Sj—éj ('ria Z;) S CE]

This completes the proof of Lemma 4.11. O
Next, we have the following lemma.

LEMMA 4.12. There exists jo < oo, such that for all j > jo, there exists ig(j) < oo,
such that for all i >1iy(j), we have

i 1/2.
(1) dgi,sj—éj (y],xl) < CS/ ;
(2) dy,,, ., (W}pi) < C;
(3) TRm(y}, ;) > 0/2.
Proof. First, recall that lim; oo t; = teo = s; + 7 '. From (4.17) we have v;(z;,s; —
0;) < C, hence by Lemma 4.6 and Lemma 4.11, we have vi(zé,sj — 5]‘) < C. Hence

we can apply Proposition 4.7 to obtain that vi(yj-, s;) < C, hence by Lemma 4.6, we
have v;(y},t) < C for all t € [t; — 1,0]. Hence we have

Rgi (yéa t) < C:

for all ¢t € [t; — 1,0]. Hence we can apply Lemma 2.9 to obtain that
gi,Sj —5,

dyw,” (Vy§75j;5j—5j ’ 5y§) < C(Sjl‘/z' (4.25)

Combining this with (4.23), we can compute

gi,a'jf(Sj

i i Gi 55 =85 _ )
dgi,sréj (¥}, 25) < dyy, (6?;; ) Vy;78j;3j—5j) + dyy,

1/2
(Vyi:,Sj;Sj —8;0 6z;) < C(Sg :

J

Combining this with Lemma 4.11, we have dg, ., s, (Y}, i) < Ce;/ ®. this proves
item (1).
Next, since dg, , (pi, ;) < D, by applying Proposition 4.8, we have
o, o, (pin) < C,

provided j > jo, jo large, and i >ip(j). This proves item (2).
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Finally, from rgm(2;,t;) > o, from Lemma 2.4, we have rgm(x;,s; —6;) > 90/10
provided j > jo, jo large, and i > ip(j). Hence by Lemma 2.4 and item (2) of this
lemma, we have rgm(y}, s; — d;) > 80/10 provided j > jo and i > ig(j). Hence by
Lemma 2.4 again, we have rru(yj, s;) > 0/2 provided j > jo. This proves item (3).

This completes the proof of lemma 4.12. O

Next, we let ¢ < 7. Then we have

LEMMA 4.13. There ezists jo < oo, such that for all j > jo, there exists ig(j) < oo,
such that for all i > ig(j), for all y € B(y},s;,0/2), for all t € [s; — (0/2)%,5; +
(0/2)%], we have

K(p;,0;y,t) > C 1. (4.26)
Proof. From item (2) of Lemma 4.12 and (4.8), we apply Proposition 4.8 to get
d,.., (y;,pi) < C. (4.27)

provided j > jo and i > 49(j). Hence for any y € B(y},s;,0/2), we have dy... (y,pi) <
C. By Proposition 4.8 again, if we choose ¢ > 0 small enough, then we have

dgz‘,t (yapz) S C

for all t € [s; — (0/2)%,s; + (0/2)?]. Then (4.26) follows immediately from Proposi-
tion 4.9. This completes the proof. O

From Lemma 4.12, we have for j > jo, ¢ > ig(j), rRm(y;.,sj) > 0/2, and since
(yj-, 55) L> yj, we can apply [Bam23, Theorem 9.58] to each j > jo, to obtain that,
11— 00

there is a maximal T} € (0, (0/2)?] such that the open parabolic neighborhood (see
[Bam23, Sect. 9.5]) P°(y;;0/2,—(0/2)?,T;) C R is unscathed. The point is to obtain
uniform lower bound of 77. We have the following lemma.

LEMMA 4.14. There exists jo < oo, such that for all j > jo, we have
* 2
T =(0/2)".

In particular, we have P(y},s5;0/2) converge to P°(y;;0/2,—(0/2)%,(0/2)*) CR in
the Cheeger-Gromov sense as i — 0.

Proof. Choose jy large such that Lemma 4.13 holds. Assume that for some j > jg,
we have T3 < (0/2)%. Then according to [Bam23, Theorem 9.58], we have

im K (i) =0 (4.28)

where y;(t) € R(t) denotes the point survive from y; € R(s;) to time ¢.



GAFA GEOMETRIC REGULARITY OF BLOW-UP LIMITS OF THE KAHLER-RICCI FLOW 1947

On the other hand, we have the smooth convergence of the parabolic neigh-
borhoods P(y!,s;;0/2,—(0/2)?,T;) to the unscathed open parabolic neighborhood
P°(yj;0/2,—(0/2)?,T;) C R, hence for any t € [s;,s; + T), by [Bam23, Theo-
rem 9.31, (e)] we have

K (pooiy; (1)) = lim K (p;, 035, 1). (4.29)
Hence combining (4.29) and Lemma 4.13, we obtain
K (pooiy;(t)) = lim K (p;,0;95,t) > C 7,
1—>00
for all ¢ € [s;,s; + 1), this however contradicts (4.28). This contradiction means

that T = (0/2)?, hence completes the proof. O

Next, we have the following distance distortion estimate, which holds trivially
true on ordinary Ricci flows.

LEMMA 4.15. Assume r € (0,1), 2o € Ry, satisfy that P°(xg;r,—r?,r%) C R is un-
scathed and Trm(xo) > 1. Then for any x € B(xo, ;) and t € [ty — r?,to + %], we
have

eIl (20, 2) < dy(wo(t), z(t) < e 1l (20, 2).

Proof. Since P°(xzo;r, —1r%,7?) C R is unscathed, for any x € B(zo, 7), we can find a
smooth curve v: [0,1] — B(wo,r) connecting g to x, such that £y, (v)=dg, (zo,).
Hence for any t € [tg — 72,to + 2], we have

() < gyt = | e ELAL)

ds <172l (7).

Integrating this we obtain
e_r_2|t_t0‘d9to (.flj'g, x) < dgt (l'o(t), x(t)) < er_zlt_t()ldgto (.%'0, x)?

then we recall that for any ¢ <0, (X;,d;) is the metric completion of (R, g;), which
completes the proof. O

Now we can finish the proof of Theorem 4.10.

First, due to Lemma 4.12 and Lemma 4.14 and [Bam2, Lemma 15.16], for j > jo,
we have Frum(y;) > 0/2 and P°(y;;0/2,—(0/2)?,(0/2)*) C R is unscathed. Hence we
can apply [Bam2, Lemma 15.16, (e), (f)] to find a dimensional constant ¢y = co(n) >
0, such that

TRm(y) > 0/4, for any y € P°(yj;2co0, —(2000)2, (2000)2). (4.30)

Indeed, given y € P°(y;;2co0, —(2¢o0)?, (2¢00)?), we have |Frm(y(s;)) — Frm (¥;)|
2co0, hence Trm(y(sj)) > o/3 if co < 1/1000; then from |7, (y) — Fam(¥(s;))]
Co(n)(2coo)?, hence 7r(y) > /4 is co(n) is small enough.

<
<
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Next, we claim that if we choose co(n) small enough, then for any y €
P°(y;;2co0, —(2¢90)?, (2¢90)?), we have

P(y;2¢00, —(2¢00)?, (2000)%) € P°*(y;30/2,~(0/2)%,(0/2)?). (4.31)

Indeed, let #:=t(y), x € P°(y;2co0, —(2¢00)?, (2¢c90)?), then we have dj(z(%),y) <
2coo. But from Lemma 4.15, we have d(y,y;(t)) < eds, (y(s;),y;) < 6coo, hence we
have di(z(t),y;(t)) < 8coo. But we have Frum(y;(f)) > 0/4 > 4 - 8cyo, hence again
by Lemma 4.15, we have dg, (z(s;),y;) < edi(2(t),y;(f)) < 20co0 < /10, hence x €
P°(yj;0/2,—(0/2)% (c/2)?). This proves (4.31). Similar proof of (4.30) shows that
we can further require that

Frm(2) > coo, for any x € P°(y;2c00, —(2¢00)?, (2¢00)?). (4.32)
Next, the same arguments in the proof of Lemma 4.14 show that
K(ps;y) >C™ ', ¥V y€e P°(y;;0/5,—(0/5)% (0/5)%) (4.33)

but from [Bam2, Lemma 15.9, (a)], we have

Xe(y
(4 ><upm;t<y>,5y>>2) | i)

K(poo; y) < Cexp (— o

hence we can combine (4.33) and (4.34) to obtain that
s ™ (1. () 6y) < A,
for all y € P°(y;;0/5,—(c/5)%, (0/5)?). Hence if we set
W= {frm > 0/10} N P*(poo; A, too — 100) N Rt 02t +07]

then from (4.30), for j > jo, we have P°(y;;2coo, —(2¢o0)?, (2c00)?) C W. Using
[Bam2, Lemma 15.16, (h)], we know W C R is a relatively compact subset of R,
hence for ¢ large enough, we have W C U;, then from Lemma 4.14, we have

P(y;, 853 C(]O') C V; = ’l[)Z(UZ), (435)
for i >ig(j), i0(j) large enough, and we have
w;l(P(y;»,sj;coa)) C P°(y;;2c00, —(2c00)?, (2¢00)?).

Recall that rgm(z;,t;) > 0 and lim; o t; = toe = s; + €5, we have rgm(x;,s; — ;) >
o/2 for j > jo, i >ip(j). From item (2) of Lemma 4.12, we have dy, .. s, (y5,2:) <
Ce; '/2 hence by Lemma 4.15, we have (zi,ti) € P(y}, s5;co0) for j > jo, i >19(j). We
can ﬁx one such j from now on. Hence ; *(2;,t;) is well-defined, and

w;l(xi,ti) € P°(yj;2¢co, —(2000)2, (2000)2) cw.
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Since W C R is relatively compact, passing to a subsequence, we have

V7 (@i, t) —— Too € P°(y432c00, —(2¢00)2, (2¢00)2) C K :=W C R,
1—00
hence apply [Bam23, Theorem 9.31, (c)|, we have (z;,t;) —C——> Zoo, this proves items
71— 00
(1) and (3). Item (2) follows since Trm(%oo) = iMoo rRm (T4, t;). Item (4) follows
from Lemma 4.14, (4.31) and (4.32).
This completes the proof of Proposition 4.10. O

4.4 Long-time distance distortion estimates at small scales. In this section, we
prove the following long-time distance distortion estimates at small scales.

PROPOSITION 4.16. For any n € (0,1), A, D < oo, there exist constants C' < oo and
r >0, both depend onn, A, D, such that for any 0 <r <7, the following statements
hold on the Ricci flow (M, (git)te[-,,0])-

Suppose (xg,tg) € M; x [=T; 4+ 10n,0] satisfies that

vi(o, o) < A,
then for any ty € [to — 2, to + 12| and yo € By, (z0,to, Dr), we have
dy, ., (0,90) < Cr.

Proof. Throughout the proof, unless otherwise stated, all the constants will depend
at most on 1, A, D. All the times we consider in this proof is in [-T; 4+ 7, 0], hence
we have R,, > —C when we need the lower scalar curvature bound.

By Lemma 4.6, we have

’Ui(l'o,t) < C, (436)

for all t € [tp —n,0]. We then have

LEMMA 4.17. There exists a constant 0 < a < ﬁ, Co < oo, 0<7 <1, such that the
following statement holds.

Assume 0 <r <7, 't € [to —n,0] with |t —t"| < ar?, and (z1,t') € M; x {t'}
with dg, , (xo,21) <7, then we have

d (1’0,3]1) < C()T.

i, ¢!

Proof. Consider the rescaled flow (Mj, (it)te|—r—21,0)) With Gis = r2g; ;2. Denote
by t*:=r~2t' and t** :=r~2t", then we have [t* —t**| < a. Let v:[0,1] — M; be a
i t+-minimizing geodesic between (zo,t*) and (z1,t*).

Let (zo,t* — 1) be an £,-center of (z¢,t*), hence we have

Czopny (20,8 —1) < /2.



1950 M. HALLGREN ET AL. GAFA

Then we consider the function K(z,t) := K(x,t; zo,t* — 1), which satisfies that 0, K =
AK. Then we have

G [, K= [ (AK(.0 = R (0K (.00 <C [ Kt

k3

Hence for t € [t* — $,¢* + 1], we have
/ K(-,t)dg;, < e*nt="=1), (4.37)
M;
Also, for all ¢ € [t* — 1,¢* + ], we have

K(-,t) < B, (4.38)

on M;, for some constant By = Bj(n,w) < co. Hence we can apply [Zha06, Theo-
rem 3.2] to obtain that

<10, (4.39)

for all ¢ € [t* — §,t* 4 5. But we have

%
1
(an(t = (E — 1)

K(y(0),8) = K (w0, ") = e~ fron Gl > ¢,

for some constant ¢y = cp(n) > 0, hence we can integrate (4.39) at t =t* along 7 to
obtain that
K(y(s),t") > co, for all sel0,1]. (4.40)

Now, for any time ¢ between t* and t**, we can apply [BZ17, Lemma 3.1] to obtain
that

0K (7(s), )] < Bi(Rg, (7(s),1) + C(n,w0)), (4.41)

for all s € [0,1], t € [t* — §,t* + 1]. From (4.36), we have v;(y(s),t') < C for all
s € [0,1]. Hence we have v;(y(s),t) < C for all s € [0,1] and t € [-T — n,0], which
gives Ry, (v(s),t) < C for all s €[0,1] and t € [-T —n,0]. Hence we have

Rg,(v(s),t) < Cr? <1, (4.42)
for all s €[0,1], t € [t* — &,¢* + ]. Hence from (4.41), we have
|0 K (v(s),t)| < 2By, (4.43)

for all s € [0,1], t € [t* — §,t* + 4]. Hence if we choose a > 0 small enough, we can
integrate (4.43) and use (4.40) to obtain

K(y(s),t™)>c1 >0, for all sel0,1]. (4.44)
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Then we can integrate (4.39) at ¢t =™ to obtain that, for all s € [0, 1]
K(-,t7)>c2>0, on By (v(s), t™,1). (4.45)

Now we let @@ > 1 be maximal subject to the fact that there are parameters 0 <
51 < 83 <--- < 59 <1 such that the balls By, (v(s1),t*,1), ..., Bg (v(sq),t*,1)
are mutually disjoint. Then the balls By, (v(s1),t*,2), ..., By (7(sq),t**,2) cover
7([0,1]). Hence we have dy, .. (v0,71) < 4Q.

So we only need to bound Q. From v;(v(s),t") < C for all s € [0,1], for any
x € By, (v(s),t™,1), we have v;(x,t") < C, hence Ry, (x,t") <C, hence we have

Ry () <Cr? <1, on By (v(s;),t™1),
for all 1 <j <@, hence we can apply Lemma 2.5 to obtain that
VOlgi,t** (Bﬁz (V(Sj%t**a 1)) >c3>0.

Combining this with (4.37) and (4.45), we have

elO’n Z /M K( dgz P > Z/ ( t**)dgi,t** Z Q < Cy - C3,

By, (v(s5),t**,1)
hence we have Q < Cj. This completes the proof of Lemma 4.17. O

Given t; € [to — r%,to + 2], then let yo € B(xo,to, Dr). We only consider the case
to < t1, the other case is similar. Let Q:=|a™ | +1, &g := (t1 — t0)/Q, s; :=to+ jdo
for j=0,1,...,Q. We then choose 7 > 0 small enough such that

CEDF <7

where Cp and 7 are the constant from Lemma 4.17. We have dy, . (%o,%0) < Dr. We
prove by induction that

dgi,sj (SC(), $1) < CgDT, (4.46)
for each j=1,...,Q. Indeed, if (4.46) holds for j — 1, then we have
sj—8j_1=0<1*/Q<ar*< a(C’g*lDfr)Q,

and we have C} ™' Dr < C(?DF <7, hence we can apply Lemma 4.17 with r « CJ ™ 'r
to obtain (4.46) holds for j. Apply (4.46) with j = @ shows that

dg, ., (zg,21) < Cr.

This completes the proof of Proposition 4.16. O
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4.5 Integral curvature bounds. In this subsection, we will first prove integral
curvature bounds on the flows (M, (gi)iej-1,,0), then pass it to the limit metric
flow X.

First, we have the following covering result.

PROPOSITION 4.18. For any T € (0,T), A,B < 00, 0 < p < 4, there ezists con-
stants H = H(A, B,T,p) < 00, By = By(A,T) < 00, A= \(A, B, T,p) >0, such that
whenever B > By, then the following statement holds.

For any to € (=T,0), A € (0, ), there exists constant ¥ > 0 depends on \, to, A,
B, T, p, such that the following statement holds for all i large enough.

Given any i > ig, for any (zo,to) € P*(pi,0;A,—=T), 0 <r <7, we can find Q-
many points yi,...,Yyq € M;, such that

(1) Q<HNT™;

(2) (yk,to) € P*(xo,to + 77 Br, —2r?%);

(3) {rrm < A} N P*(xg,to + 1% Br,—2r?) N (M; x {to}) C U?:l P*(yj,to + (Ar)?;

BAr,—2(\r)?).

Proof. We choose n € (0,1) such that —T — 1001 > —T,, then we consider all i large
enough such that —7"— 501 > —T;. We will determine 0 <7 =7(\,ty, A, B,T,p) <1
in the course of the proof. We always require that Br <1, tg — 72 > —T, tg+ 72 <0,
O<r<r.

We choose points

(Y1,t0), - -5 (Yg, to) € {rrRm < A} N P* (g, to + 7% Br, —2r%) N (M; x {to}),
with ) being maximal subject to the fact that the subsets
P*(yj,to + (\r)% 3H YA, —2(Ar)%) 0 (M; x {to})

are mutually disjoint for 1 <7 < Q.
First, we have

LEMMA 4.19. There exists constant By = B1(A, B,T) < 0o, such that if we choose
io =10(A,T) < oo large enough, then we have

P*(yj, to + ()\r)z; 3H,11/2)\r, —2()\7")2) C P*(xo,to + r?: By, —27"2),
forall 1 <j<Q.

Proof. First, since (xq,ty) € P*(p;,0; A, —T), we can apply Proposition 4.7 to obtain
that v;(zo,t9) < C, hence

vi(wo,t) < C(A, T), (4.47)

for all ¢t € [-T',0]. Hence we have Ry, (zo,t) < C(A,T) for all t € [-T,0], then we can
apply Lemma 2.9 to obtain

9i tn—r2 %,
dV[L/fO i (V:vo,t0+7"2;to—T27Viro,to;to—?"g) < d?/VltO (on,t0+7“2;t075:60) < C(A7 T)T‘ (4’48)
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Next, from (yj,t0) € P*(zo,to + r% Br,—2r%) we have
d!é[z}’lto_TZ (on,to+r2;to—r2 ) Vyj,to;tofﬂ) < Br, (4-49)
hence we can combine (4.48) and (4.49) to obtain that
A2 Vg 0 Vigy o) < Ayt (Vg torto 12+ Vs st —r2) < C(A, B, T)r.  (4.50)
Combining this with (xg,t) € P*(p;,0; A, —T), we have
d?/li/fT(Vpi,O;—Ta Vy,to;-1) S A+ C(A, B, T)r <A+1, (4.51)

if we choose 7 > 0 small enough. Using (4.51), we can apply Proposition 4.7 to obtain
that v;(y;,t0) < C(A,T), hence

T)Z'(yj,t) < C(A,T), (452)

for all t € [-T,0]. Hence we have Ry, (y;,t) < C(A,T) for all t € [-T,0], then we can
apply Lemma 2.9 to obtain

i tg—r it
dW10 ’ (Vyj to+(Ar)2to—12) Vy; ,to;t07r2) < d?/{/10 (Vyj stot+(Ar)2ito 6yj) < C(A,T)T (453)
Hence we can combine (4.49) and (4.53) to obtain that
9; -7
dWltO 2 (l/:rg,t0+7‘2;t0—1”2 y Vyj,t0+()\T)2;tof’l‘2) S 61(147 B7 T)?" (454)
On the other hand, for any (§,%) € P*(y;,t0 + (Ar)%; 3HY A, —2(\r)?), we have

gi,to —r2
dyy, (Vyj sto+(Ar)25to—r25 Vzif;toﬂ“?)

i tg—(ar)2 1/2 (4.55)
< dW1 (Vyj 7t0+()\T)2§t0*()\7‘)27ngf;tof()\r)?) < SHn AT
Combining (4.54) and (4.55), we obtain
gi to—r
dW10 ’ (l/a707t0+7“2;t0—7’2 ) V;L),f;to—rz) < C(Av B, T)’l“
This completes the proof of Lemma 4.19. O

Next, we have

LEMMA 4.20. There ezists constant By = By(A,T') < 00, such that
P*(yjsto + (Ar)%; 3Hy 2 Ar, =2(Ar)?) C {rrm < BaAr}

forall 1 <j <Q.

Proof. First note that rrm(y;,%0) < Ar, using Lemma 2.4, we have

TRm (Y5, to — (Ar)?) < Co(n)Ar. (4.56)
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Next, we fix (,) € P*(y;,to+ (\r)?; 3H, *\r, —2(Ar)?). Then from (4.52) and Propo-
sition 4.7, we can get v;(¢,1) < C(A,T), hence

vi(§,t) < C(A,T), (4.57)

for all t € [T, 0]. Hence we have Ry, (,t) < C(A,T) for all t € [-T,0], then we can
apply Lemma 2.9 to obtain

gi,tof )2
dyylo” " (835 Vg a0 —(ary2) < C(A, T)Ar. (4.58)

Next, we have

i to—(Ar)2
dy, (

Vg,f;tof(/\r)Q 5 I/y‘7'7t0+()\7')2;t07()\7')2) § 3H711/2>\T‘ (459)

Finally, similar to (4.53), we have

d!I],[i/’tO_(M')Q (Vyj ,t0+(/\r)2;t0—(>\r)2 s 6yj) S C(A, T)T‘ (460)

1

Combining (4.58), (4.59) and (4.60), we obtain from the triangle inequality that

(y5,9) < C(A, T)Ar. (4.61)

g, 10— amy
Combining Lemma 2.4, (4.56) and (4.61) we obtain
R (9, t0 — (Ar)?) < C(A, T)Ar. (4.62)
But we have £ — (tg — (Ar)?) < 2(\)?, hence by Lemma 2.4 again, we have
rRm(7,1) < C(A, T)Ar.

This completes the proof of Lemma 4.20. O
Next, we have

LEMMA 4.21. There ezists constant Ep = Ep(A,B,T) < 00, 0 <7 =7(\,t0,A,B,T,

p) <1, such that for all i large enough, we have

< E APr™. (4.63)

9i,tg

‘{rRm < BoAr} N P* (o, to + 1% Bir, —202) 0 (M x {to})

Proof. We will determine the constant Ep, = E,(A,B,T) < oo in the course of the
proof.
Assume such 7 does not exist. Then passing to a subsequence, for each i, we can
find a point (z;,t0) € P*(p;,0; A,—T), r; — 0T such that
’{TRm < ByAri} 0 P*(wi to + 173 Birg, —2r7) N (M; x {to})

2

> E APr,  (4.64)

9i,tg
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for all i € N. Let (M; (9it)ie—1,0) be the flows arise from (M, (git)ie[-1:,0]) by
setting

A

Mi = Mi7 gi,t = rZQgi,r%t-l—(to‘f‘T'?)’ t e {—E, 0],

where Tj — 0o as i — 0o are chosen such that —T; = —r2T; + (to + 7). Then from
(4.64), on the flow (M; g, (gik.t)ie[-T, ,,0), We have

> EpP. (4.65)

{rrm < BaA} N P*(i,03 B, —2) N (0 x {~1})
Ggi,—1

Passing to a subsequence, we have F-convergence on compact time-intervals

~ ~ F,C )
(Mz (giat)te[—ﬁ-,(]]’ (Vwi,O;t)te[_'jﬂi’O]) z_—>;?) (Xy (Vzoc;t)te(—oo,O])a (466)

within some correspondence €, where X is a future continuous and H,,-concentrated
metric flow of full support over (—oo, 0]. We denote by X =RUS the regular-singular
decomposition with R carries the structure of a Ricci flow spacetime (7@, t,0,9),
and let U; C R, V; C M; x [—Ti, 0] be the open subsets where we have local smooth
convergence, with time-preserving diffeomorphisms 1@ :U; =V foreach i =1,2,....

Let § =6(\, Ep, A,B,T) >0 be a small constant to be determined. Then we can
apply [Bam2, Lemma 15.27, (a)] to obtain that

[{rrm <26} 0 P* (@i, 0By, =2) N (W x {—1})| < C(ABT),  (467)
gi,—1
hence we can combine (4.65) and (4.67) to get
1
Wilg, _, = 3B, (4.68)

where W; C M; is defined by
Wi = {26 < rrm < BoA} N P*(x;,0; By, —2) N (M; x {—1}),

provided that ¢ is chosen small enough.
We claim that, for all i large, for any (y,—1) € P*(z;,0; By, —2), we have

dg, ., (y,2:) <C(A,B,T). (4.69)

Indeed, by Proposition 4.7: since (z;,tg) € P*(p;,0; A, —T), we have v;(z;,tg) <
C(A,T); then from (y,ty) € P*(z;,to+72; Biry, —212), we have v;(y,to) < C(4, B, T).
Hence v;(z;,t),vi(y,t) < C(A,B,T) for all t € [-T,0], and we then have

for all ¢t € [-T,0]. Hence we can apply Lemma 2.9 to get

9ito—r2
1,tQ 'r‘i

dW1 (in7t0+rl_2;t0,r12,6$i) < C(A)BaT)Tia (471)
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and

9ito—r2
1,10 ’!‘i

dW1 (l/y,to;to—r,? ) 5y) S C(A7 B7 T)ria (472)

(y,x;) < C(A,B,T)r;. Then for all
i large enough (hence r; small enough), we can apply Proposition 4.16 to obtain
(4.69).

Now, if we set 9;(t) = v;(r?t + (to +r?)), then 9; is a r?Cj-barrier of Ry,, and is
C(A, B,T)-based at (x;,0). Hence by (4.69), we can apply Proposition 4.10 to obtain
that W; C V; for all i large enough (if this is not true, we can pass to a subsequence
to find points (y;, —1) € W; \ V;, this contradicts to item (3) of Proposition 4.10).
Hence for ¢ large enough, 1[1; 'w;) ¢ U; is well-defined. Then we have

hence by the triangle inequality, we have d,_

_ 2
0—r;

CramM 4.22. For i large enough, we have

U (Wi) C {0 < Pran < 2BoA} N P (003 2B1, —3) TR 1.

1

Proof. If this is not true, passing to a subsequence, we can find a sequence of points
(i, —1) € W; but o; (ys, —1) ¢ {6 < R < 2BoA} N P* (2003 2By, —3). Using Proposi-

tion 4.10 again, passing to a subsequence, there exists a point 9, € R_1, such that we

have (y;,—1) L> Yoo, and TRm (Yoo ) = iMoo "R (v, —1) € [2d, BoA]. According to
71— 00

[Bam2, Lemma 15.8], we have yoo € P*(Zs;2B1,—3), and since ﬁ;l(yi, —1) = Yoo in

R_1, we have ;! (y;, —1) € {0 < Frm < 2BoA} N P* (50528, —3) for i large enough.

This is a contradiction which proves the claim. O

Due to [Bam2, Lemma 15.16, (h)], the set {0 < 7rm < 2BoA} N P*(200;2B1,—3)N
R_1 is relatively compact in R_1, hence due to the local smooth convergence on

A

R_1, we have from (4.68) and Claim 4.22 that

A 1
{0 < P < 2BoA} N P (100281, ~3) "Ry | > S E\P. (4.73)
9-1
On the other hand, from (4.70), we have
Ry, (zi,to +17) < C(A,B,T), (4.74)

for all i large. Also, we have Ry, > —C(T') on M, x [-T,0]. Hence we have
Ry (24,0) < C(A,B,T)r; =0, as i— oo,

and R;, > —C(n,wo)r? on M; x [=T",0] for any T’ < oo, for i large enough. Hence
we have

0
/ / IRicg, |* dva, odt < Ry, (2:,0) + C(A, B,T)r? =0, as i—o0.  (4.75)
—1 J

Hence we can apply [Bam2, Theorem 15.60] to obtain that (X, (Varooitte(—o0,0]) 18 2
static limit.
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We claim that, there exists Cy = Cy(Yp) < 0o, such that for any x € P*(x; 2B,

—3) NR_4, for any t € [-2,—1], we have
2(t) € P*(200; 2By + Cp, —3) N Ry, (4.76)

where z(t) denotes the point survive to time t. Indeed, let ¢ € [—2,1), consider the
curve y(7) =x(—1—7), 7 € [0,—1 —¢]. Since Ric =0 on R, we have L(v) =0, hence
from [Bam2, Lemma 22.2], we have

Ay (Vas—3, Va)—3) < dyy” (Vase, Oary) < C(Yo),
hence by triangle inequality,
d%;(vjla (me;—& Vx(t);—S) < d>{;([;13(yzoo;—3a Vz;—3) + d)[i;ls (Vz;—3a Vx(t);73) <2B; + C(Yb)y

this proves (4.76).
Then we can apply the first inequality in [Bam2, Lemma 15.27, (a)] (taking
I, =[—2,—1] there is enough) to obtain that (note that p € (0,4))

—1
/. dgudt < By\P,
-2 J{0<FRm <2B2AINP* (200;2B1+Co,—3)NR,;

for some constant Bs = Bs(p, Bi, B2) = B3(p, A4, B,T) < co. Using (4.76) and the
fact that X is static limit, we conclude

‘{0 < Frm < 2BoA} N P* (2003 2By, —3) N 7%_1’ < B3)P, (4.77)

g-1

Hence if we choose Ep, > 1083, then we obtain a contradiction from (4.73) and (4.77).
This completes the proof of Lemma 4.21. O

LEMMA 4.23. There exists constants H = H(p, A, B,T) < o0, 0 < 7 =7(\,t9, A, B, T,
p) <1, such that

Q< H\P™™, (4.78)

Proof. Let 0 <7 =7(\,to, A, B,T,p) <1 be the constant from Lemma 4.21.
For each 1 < j < Q, we let (zj,t9) be an H,,-center of (y;,to+ (\r)?), then we have

i to—(Ar it
dyro™? ” (Vg 0+ ) 2t0— ()25 Vg osto—(0r)2) < A ® (Vi g0 (Ar)2it0 > 02, )
< H?\r, (4.79)
But for any (z,ty) € By, (25, t0, (2H,)/?\r), we have
gi,t —(Ar
dW10 on? (sz',to;tof()\r)%Vz,to;tof(/\r)Q) S dgi,to (zjv Z) S 2H'rlz/2)‘r (480)
Hence we can combine (4.79) and (4.80) to obtain that

9i —(Ar
dwfo (n)? (Vyj,to-i-()\r)Q;to—()\r)zvVz,to;to—()\r)Q) S 3H71/2/\T, (4.81)
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hence we have
B(zj, to, (2H,)Y?\r) € P*(yj,to + (Ar)%; 3HY 2 Ar, —2(\rr)?).
Hence from Lemma 2.6, we have

> c(Ar)", (4.82)

Gi,tg

[P (g5, to + ()% BHLAr,—2(Ar)?) 0 (M x {to})

for some constant ¢ = ¢(n,wy) > 0, but these subsets are mutually disjoint, hence we
can combine Lemma 4.19, Lemma 4.20 and Lemma 4.21 to obtain that, for all 7 large
enough, we have

Q- c(Ar)*" < E,\Pr?",
where Ej, is the constant from Lemma 4.21. This completes the proof. O

Lemma 4.23 proves item (1) of Proposition 4.18.
Finally, we come to prove item (3) of Proposition 4.18. Assume there is a point
(Yo, t0) € {TRm < AT} N P*(x0,to + 72; Br, —2r?%), but

gi,t —(Ar
dyy, o (Vyo.toito— (A2 Yy, to+(Ar)2ito—(ar)2) = BAT, (4.83)

for all j =1,...,Q. As the arguments of (4.51) to (4.53) we have Ry, (yo,t) < C(A,T)
for all t € [-T,0] and

i tg—(Ar)2 Ji,to
dW1 (Vyo,to;t()f()\r)%Vyo,toJr(M)z;tOf()\r)?) < dwl (Vyo,to+(/\r)2;t075yo)

< C(A,T)Ar. (4.84)
Let (¢,) € P*(yo,to + (Ar)?; 3HY Ar, —2(A\r)?), then from (4.84), we have

9ito—(Ar
dWltO o (V@,f;to*(kr)zvVyo,to;to*()\r)z) < C(AT)Ar. (4.85)

Combining (4.83) and (4.85), we have

gi, —(Ar
thO () (Vﬂf;tof()\r)%Vyj,to+()\7")2;to—(>\7’)2) > (B - C(A,T)))\T’ > 10H711/2)\7’, (486)

1 Y
provided that B > 2C(A,T). Hence we have
P*(yo,to + ()2 3HY 2 Ar, —2(Ar)?) 0 P* (yj, to + (M) % 3HY 2 A, —2(Ar)?) = 0

for all j=1,...,Q. But this contradicts the maximality of Q.
This completes the proof of Proposition 4.18. U
Applying Proposition 4.18 successively for sufficiently small A yields

PROPOSITION 4.24. For any T € (0,T), A,B < o0, 0 <p <4, ty € (-=T,0), there
exists constant Ep, = Ep(A, B,T) < 0o, such that the following statement holds.
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For any ty € (=T,0), there exists constant ¥ >0 depends on tg, A, B, T, p, such
that the following statement holds for all i large enough.
Given any i > iy, for any (zo,to) € P*(p;,0; A,—T), 0<r <7, 0<s<1, we have

‘{rRm < sr} N P*(xo, to + 12 Br, —2r2) 0 (M; x {to})

< EpsPr™. (4.87)

Gi,tg
Proof. We choose n € (0,1) such that =T — 100n > T, then we consider all i large
enough such that —7T — 501 > —T;. We always require that to — 2 > =T, to + 72 < 0,
O<r<r.

Let By = Byo(A+1,T) be the constant from Proposition 4.18. We the replace B
by max {B, By}.

Let p' = (p +4)/2 € (p,4), then let H = H(A+ 1,B,T,p') and A = \(A +
1,B,T,p’) > 0 be the constants from Proposition 4.18. Choose 0 < A = A(4, B, T,
p) < \/2 such that

HMP' P <1, (4.88)

Now, for any k € N, we apply Proposition 4.18 successively for k times to find points
(y1,t0),-- -, (Yg, to) € P*(zo,to + r%2Br, —2r?) with Q < (HAP'~™)* such that

{TRm < )\kr} N P*(xo,to +r%;Br, —2r?) N (M; x {to})

Q
C U P*(y;,to + (Ner)2 BAEr, —2(NFr)?),

j=1
hence we can apply [Baml, Theorem 9.8] to obtain that

HrRm < )\kr} N P*(xo,to + r%; Br, —2r?) N (M; x {to})’

9i,tg
< (HXNP'™™MF . C(A, T)(BNer)™ < E,(HAP'P)kAPRpn < 1 \Ppn
This completes the proof. O
Now we can pass the integral curvature bound in Proposition 4.24 to the limit X.

PROPOSITION 4.25. For any T € (0,T), A,B < o0, 0 <p <4, ty€ (—T,0), there
exist constants 0 <7 =7(t9,A,B,T,p) <1, Ep = Ep(A,B,T) < 00, such that the
following statement holds.

For any Yoo € P*(Poo; A, —T)N Xy, 0<r <7, 0<s<1, we have

< EpsPr?., (4.89)

gt0—1-2

3
{0 < 7Rrm < sT}NP* (yoo; Br, —57"2) NRiy—r2

Proof. We choose n € (0,1) such that =7 — 100n > —T,. We then require that © <.
Using [Bam23, Theorem 6.45], we can find points (y;,to) € M; x {to} such that

¢
(yi7t0) ; ? Yoo
1—00



1960 M. HALLGREN ET AL. GAFA

Let 0 > 0 be any small constant, then we define the region
~ * 3 2
Ws:={20 <Tpm <sr}NP yoo;Br,—§r NRig—r2.

According to [Bam2, Lemma 15.16, (h)], we know W5 C Ry, _,2 is a relatively compact
subset, hence W C U; for i large enough. Hence 1;(Ws) C V; are well-defined subsets.
Let

W;:={0 <rgrm <2sr}NP* (yi,to; 2Br, —27“2) N (M; x {to - r2}).

We claim that ;(Ws) C W; for i large enough. If this is not true, passing to a subse-
quence if necessary, we can find points (g, to —r?) € 1;(W5) \ W;. Since W5 C Ry, 2 is
relatively compact, passing to a subsequence if necessary, we have ;" Ygs, to—12) —
oo € Ws. Hence by [Bam23, Theorem 9.31], we have (§;,to — r?) ﬁ Yoo, hence

im0 7R (Gis to — %) = R (Joo) € [20, s7], combining with [Bam2, Lemma 15.8],
we have (§;,to — r?) € W; for i large enough, which is a contradiction.

Again by [Bam2, Lemma 15.8], we have (y;,to) € P*(p;,0; A+ 1,—T —n) for all ¢
large enough. Using Proposition 4.7, we have v;(y;,ty) < C(A,T), hence

Vi (yz; t) S C(A7 T)7
for all t € [-T —n,0]. Hence we have
Rgi (yiat) < C(A,T),

for all t € [-T —n,0]. Hence we can apply Lemma 2.9 to obtain that

9i,—T—n Jito—r?
dW1 (Vyi,to;fom Vyz‘,tO*T'Q;*T*W) < dW1 (Vyi,to;tcrr2 ) 5yi)

<C(A,T)r <1, (4.90)

if 7 is small enough. Hence we have (y;,to — r%) € P*(p;,0; A+ 2,—T —n) for i large
enough. Hence we can apply Proposition 4.24 to obtain that

9i(Ws)

gz‘,tofwz S ‘Wz

, < EpsPr”, (4.91)

gi,tofr

ifr<r=r(A,B,T,p,to), i large enough, where E, = E,(A, B,T) < co. Again, since
W5 C Ry,—r2 is relatively compact, we have 17 g; ;o2 = gio—r2 in C°°(W;)-sense,
hence we can pass i — oo in (4.91) to obtain

|W5|Qt0_r2 § Epsp,rn’

this holds for any 6 > 0 with Ej, being independent of ¢, hence we let § — 0 to obtain
(4.89).
This completes the proof of Proposition 4.25. O
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4.6 Proof of Theorem 4.4. First, we need the following result.

PROPOSITION 4.26. For any A < oo, tg € (—T,0), there exists constants 7 > 0,
A>0, C < oo, all depend on ty, A, such that the following statement holds.
Suppose T, € Xy, satisfies that

dﬁ? (Vpoo§t0’ 65300) S A

Then for any 0 <r <7, there exists a point oo € Ryt (ar)2, @ POINE Yoo € Rigy, Joo 18
the point survive from Yoo, Such that

(1) Joo € P*(pooi Oy to — 7);

(2) B(2oo,7) C P*(foos Or, —(Ar)?);

(3) d(Zoo,Yoo) < CT, TR(Yoo) = C7 ' and | B(yoo, ) N Ry lg,, = C~ ™.
Proof. Throughout the proof, unless otherwise stated, all the constants will depend
at most on ty, A. First, we choose n € (0,1) such that t; — 100n > —T,. We then
require that © <n.

Since Ry, is a dense subset of X}, we can find a point 2, € B(Zeo,7) NRy,. Using
[Bam23, Theorem 6.45], we can find points (z;,tg) € M; x {to} such that (z;,to) z—>%>
Zoo. Since

X, X, X
dV;IO (6Zoo7ypoo§t0) S dVtho ((57500753300) + dI/I;f (5xoo7ypoo;t0) S A + 17

from [Bam2, Lemma 15.8], we have (z;,t9) € P*(p;,0; A+2,ty—n) for i large enough.
According to Proposition 4.7, we have v;(z;,t9) < C, hence

vi(zi,t) < C, (4.92)
for all t € [tp — n,0]. Hence we have
Rgi(zi’ t) <C, (4.93)

for all ¢t € [ty — n,0], for i large enough. We have the following lemma.

LEMMA 4.27. For any A € (0,1), let to :=to+ (Ar)?, then for i large enough, for any
s€(0,1), we have

{rrm < sr} N By, (2i,to,7) |9i,£o < Csr". (4.94)
Proof. From (4.93) and Lemma 2.9, we have
Ay (Ve fysr2iins 022) < O (4.95)
and similarly
dyye (v

zi,tosto?

5.) < C(AT)Ar <1, (4.96)
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for i large enough. Let (x,%) € By, (2i,%0,7), then from (4.95) we have

9i, 85 —r2 _ ~ o 9i,tg ~ _
Ay, (Ve grriio—r2s Vaiosto—r2) < Ay (Vs o2ty Oa)

it
< dWltO (Vas otr2iiyr 02) dg, : (z;,x) < Br,

to
for some constant B < co. Hence we have
By, (2i,to,7) C P* (2,10 + r?; Br, —2r?).
Also from (4.96) we have

gi,to—n ~
dW1 ( zitosto—n? Vpho;t()*n)
Jitg—n 5 i, tg—n
< dW1 (Vzi,to;tofm Vzi,t0§t0*7]) + dW1 (sz‘at0§t0*7)7 VphO?tO*n)

<dp (v 5.)+A+2<A+3,

zi,to;to?

hence we can apply Proposition 4.24 to obtain that

[{rem < sr} N By, (2, t0,7) ‘g_

1,t0
< ’{T‘Rm < sr} N P*(zi,t0 + % Br,—2r?) N (M; x {to}) < Osr*,
9i,to
for some constant C' < oo, provided that » < 7. This completes the proof. O

From (4.92), we have v; < C on By, (2;,to,7), hence we have
Ry, (z,19) <C, for all z€ By, (z:,t0,7),
for ¢ large enough. Hence from Lemma 2.5, we have

|Bg (Zi,f(),’r) |g

i

>0 b
0

i,E

for some C' < 0o. Combining this with Lemma 4.27, we can find a constant § > 0,
such that there exists a point (y;, %) € By, (zi,%0,r) such that

R (i, to) > 207 (4.97)
Using Lemma 2.4, there exists a dimensional constant Cy(n) < oo such that
[fen (95 ) = T (Y t0)| < Co(n) A1,
for all ¢ € [to, o], hence if we choose A > 0 small enough, then from (4.97) we have
TRm (Yi, t) > 07, (4.98)

for all t € [to, o).
From (4.93) and Lemma 2.9, we have

d?/Vi’fO_n (5217”%7750;150*77) < Cnl/z < L. (499)
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But we also have (z;,%0) € P*(p;, 0; A+2,t0—n) and dyy° " (Vp, 06—, 0p;) < C, hence
by triangle inequality, we have
dgi oo (2is0i) < C,
hence by Proposition 4.8, if we choose 1 and 7 small enough, then we have
dg, . (zi,pi) <C (4.100)

for all ¢ € [ty — n,%]. Hence
dg, ;. (Wi, pi) < C.
Hence by Proposition 4.8 again, if we choose 7 small enough, then we have
dg, . (yi:pi) < C, (4.101)

for all t € [ty,%o]. Hence we can apply Proposition 4.10 to find points s € Rig+(r)2
and Yo € Ry, such that (passing to a subsequence)

(yisto + (Ar)*) —— s,

and
¢
(Yi, t0) — Yoos
71— 00

with s being the point survive from yo.. From (4.101) we have dij;’ (0y,,vp,,04) < C
for all ¢ € [t, o). Hence item (1) is clear from [Bam2, Lemma 15.8].

Next, we prove item (3). Since z € R¢,, we can find a constant 0 < 7o < Ar such
that 7rm(ze0) > 79. From (4.100), if we choose 7 small enough, then we can apply
Proposition 4.10 to find a dimensional constant c¢o(n) > 0, such that the worldline
of 2o in R survives from Ry, t0 Ryyt(coro)2, and for any t € [to, to + (coro)?], if we
denote by z.(t) € R; the point survives from z.,, then we have

(2iy 1) —— 20o(t),
71— 00

with 7rm (200 (t)) > coro. Similar to (4.96), we have

it +(corp)2
dWIU ore (Vzi,to+(/\r)2;to+(coro)27621-) < CT»

hence we have

9ito+3 (coro)?
tot3
dW1 (Vyi,to-l-()\f‘)z;to-%%(Coro)z ) Vzi7t0+(007"0)2§t0+%(COTO)Q)

< dgi,t0+%(c0r0)2( )
= "W Vyito+(Ar)25to+4 (cor0)? Vai to-+(Ar)25t0+ 4 (coro)?

9i,t0+% (coro)?
tot3
dW1 <Vzi7t0+()\7")2§t0+%(COTO)z ’ l/Zuto-‘r(COTO)Z;to-‘r%(COT0)2)

Ji,to+(coro)?
S dgi1t0+(kr)2 (yla ZZ) + d[/{/1 (Vzi,t0+()\7‘)2;to+(007‘0)2 ) 521) S CT?
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hence from [Bam2, Lemma 15.8], we have

X
dW10 (VﬂocﬂfmVzoo(to-i—(coro)z);tg) < Cr. (4102)

If we consider the spacetime curve (7) = 2o (to + (cor0)? — 7) with 7 € [0, (cor0)?],
then 7rm(7(7)) > coro, hence we have L(7y) < ¢yro, then from [Bam2, Lemma 22.2],

we have

Xt
dW10 (5Zoo7VZoo(tO+(COTO)2);tO) S C’I"o S Cr. (4103)
According to Proposition 4.10, we can choose A = A(A,T) even smaller, such
that the worldline of y,, in R survives from Ry, t0 o € Ryg4(rr)2, and for any

t € [to, to + (Ar)?], we have (y;,t) LN Yoo (t). Hence Trm (Yoo (t)) > 07 from (4.98) for
1—>00
all t € [to, to + (Mr)?]. Similarly to (4.103), we can prove

dy? (Byee Vinity) < C (4.104)
Now we can combine (4.102) (4.103) and (4.104) with the triangle inequality to
obtain

dto (2007 yoo) < Cr.

Hence diy (oo, Yoo) < CT.

Also, there is a constant ¢y = ¢p(n) > 0, such that P(y;,to;codr) converge in the
Cheeger-Gromov sense to P°(yoo; codr, (codr)?, —(codr)?) C R, which is unscathed.
But By, , (yi,to,co0r) C P(yi,to;codr) and |By, . (yi,to, 3¢007)]g, ., = C~'r", hence

we have | B(Yoo, co07)|g,, > C~'r™. This proves item (3).
Finally, we prove item (2). Let x € B(2,7), hence by item (3) we have

dto (x7y00> < dto (iL‘,iI}oo) + dto (xomyoo) < CT,

hence by (4.104), we can compute

it (80, Voo to) < Ay (80,0, ) + d (8, s Vjty) < O

this proves item (2).
This completes the proof of Proposition 4.26. O

Now we can prove Theorem 4.4.

Proof of Theorem 4.4. We fix a time ty € (=T, 0). Let n € (0,1) be a small constant
such that tg — 1001 > —T.

For item (1), we only need to verify condition (4) in Definition 2.16. Let K C A,
be any compact subset, then there is a constant A = A(K) < oo such that K C
P* (pos; A, ).
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Hence for any z, € K, we can find constants 0 < 7 =7(K,t)) <n, 0 < A=
MK, ty) <1, C=C(K,ty) < oo, and for any r € (0,7), we can find points g €
Rig+(ar)2» Yoo € Ryy, such that the statements of Proposition 4.26 hold. Hence we
have

|B(Z00, 2C7) N Riglgey = 1B (Yoor ) N R lge, = c~tm >t 2eor)n, (4.105)

for some constant C' = C' (K,tp) < 00, this proves the volume non-collapsing estimate
in condition (4) in Definition 2.16.

Next, for the volume non-inflating estimate, we let r € (0,7). We have B(x oo, 1) C
P*(§o0; Cr, —(Ar)?). For any 6 > 0, we set Wy := {Frm > 20} N P*(Joo; Cr, —2(Ar)?) N
Ri,. According to [Bam23, Theorem 6.45], we can find points y; € M; such that
(yi, to + (Ar)?) i Uso- Then similar to the proof of Proposition 4.25, we have

Ws C Ry, is relatively compact, W5 C U; for i large enough, and ¢;(Ws) C V; are
well-defined, and if we let

Wi = {rm > 6} 01 P* (g, to + ()% 2Cr, —10A2) 1 (M; x {to}),

then we have 1;(Ws) C W; for i large enough. Since (tg + (Ar)?) —20\*r? > —T, and
to € [(to + (Ar)?) — 10A%r%, (o + (Ar)?)], according to [Bam1, Theorem 9.8], we have

|9i(Ws)

for all ¢ large enough, hence by the smooth convergence of ¥*g;;, to g, on Ws, we
have [Wslg,, < C(K,to)r", letting § — 0, we obtain | B(zs,7) NRiolge, < C(K, to)r™.
This proves the volume non-inflating estimate in condition (4) in Definition 2.16,
and proves item (1).

Finally, we prove item (2), we consider the case K = {z,}. Since § €
P*(poo; Cytg — 72) with (o) = to + (A1) < tg/2 if we choose 7 small enough, we
can apply Proposition 4.25 to obtain that, for any 0 <s <1, 0 <p <4,

i, tg é ‘VVZ

Gi,tq S CN’(Kv tO)rnv

3
{0 <7gm < sr}NP* (g]oo; Cr, —5()\7")2> N Ry, < EpsPrn,

Jto

for some Ey, = Ep(Zoo, to) < 00, hence from B(2oo, ) C P* (fio; O, — 3 (Ar)?), we have
{0 < Frm < 87} N B(Zoo,7) N Ry, ’910 < EpsPr.

Combining with item (1), we have (X}, ds,, Riy, i) 18 a singular space of dimension
n, which has singularities of codimension 4 in the sense of [Bam17, Definition 1.9].
This proves item (2). O

Proof of Corollary 4.5. Since v; is a Cj-barrier of R, and Yj-based at (p;,0),
and C; — 0 as i — 0o, we have lim;_,o Ry, (p;,0) < lim; o C;Yy = 0. If we have
lim; o0 inf s, « (—1;1 Ry, > 0, then the same computation as (4.75) and [Bam2, The-
orem 15.60] show that X" is a static limit. This implies that X" is continuous in the
Gromov-W; sense, hence by [Bam23], for every ¢ € (=T, 0) the F-convergence (4.1)

is time-wise. By Theorem 4.3, this completes the proof. O
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4.7 Tangent spaces of the limiting space. In this section, we have the following
corollary for the tangent spaces of the limiting singular space.

COROLLARY 4.28. Suppose we have C; <Yy for all i. Then for every t € (—T,0)
where the F-convergence (4.1) is time-wise, the following statements hold.

(1) For any sequence of scales o, — 0%, for any q € X;, by passing to a subse-
quence, we have

(Xt7 O_I;Idta q) m} (A?—h di\?lv (j), (4106)

in the pointed Gromov-Haudor(f sense for some § € X_1, where X_; is the —1-
time-slice of a static metric flow X, which is a limit arising as in Corollary 4.5.
(2) For any sequence of scales m — 0%, by passing to a subsequence, we have

('Xﬁ*lu nk_ld/’—vla qN) m (22717 di(la 6)7 (4107)

in the pointed Gromov-Haudorff sense, where X_q is the —1-time-slice of a
static metric flow X, which is a limit arising as in Corollary 4.5. Moreover,
(X_1,dY,) is a metric cone.

Proof. Fix a time ty € (—Tw,0) where the where the F-convergence (4.1) is time-wise.
We choose 7 € (0,1) such that tg — 100 > —T. Fix a point ¢ € X},. Let o — 0" be
any blow-up scales. We want to study the blow-up sequence (Xto,agldto, q).

Since (4.1) is time-wise at g, by the proof of [JST1, Theorem 7.3], the condition
of [Hal, Proposition 2.7] hold for (M;,dy, , ,Vp,01,), With base-point (p;,to), which
converge to (X, , diy, Vpooito) in the Gromov-W;-Wasserstein sense. Hence, we can find
points ¢f € M;, such that (g}, to) strictly converge to ¢ within € and

(Mi,dy, ., 7) ——> (Xio, dgy ), (4.108)

in the pointed Gromov-Haudorff sense.

We need to do blow-up at the time to + o7. By Proposition 4.26, passing to a
subsequence (such that all o3 > 0 small enough, depending on ¢y, ¢), for each k,
there exists a point §x € P*(poo; C,t0 — 1) N Xiy102 such that

A2 (34s Vi) < Co. (4.109)

Since (4.1) is time-wise at tg, by [Bam23, Theorem 6.45], for each k, there exists
qi. € M;, such that

7 ¢ ~
(ks to + 0%) —— s (4.110)

where is time-wise at tg.
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LEMMA 4.29. There exists a constant C = C(tg,q) < oo, such that for each k, there
exists ig(k) < oo, such that for all i > iy(k), we have
dy, ., (4} i) < Co. (4.111)
Proof. By [Bam2, Lemma 15.8], for all i > io(k) with ig(k) large enough, we have
(ks to +03) € P*(p;, 0;2C, 8o — 2n).
Hence from v;(p;,0) < Yy and Proposition 4.7, we have v;(g.,to+032) < C(to,q), hence
vi(gh.t) < Clto,q), (4.112)
for all ¢ € [ty — 27, 0], hence
Ry, (i, t) < C(to, q), (4.113)

for all t € [tp — 27,0].
Now, since (¢, o) strictly converge to ¢ within €, we have

a0 (1)« (042), (952)4(8,)) < o, (4.114)

for all i >ig(k) with ig(k) large enough. Next, by (4.109), we have

Ztg oo 00 Xt
dyyy (055 )(09), (055 )« (Varsto)) < dyy) (0g; Vi) < Coe. (4.115)

Next, since (4.110) is time-wise at ¢y, we have

Z 00 %
420 (052)+ Wasta)s (20« Vit 1o o2.0)) < O (4.116)

for all ¢ >ig(k) with iy(k) large enough. Finally, from (4.113), we have

Zt 3 7
Q20 (20 + (Vg 1o 020)s (910)+(0,1)) < C. (4.117)

Now, by the triangle inequality and (4.114), (4.115), (4.116), (4.117), we have

a2 (1) (@), (21, (@) = 2 (#1,)+(642), (1, ) (3 )) < Con, (4.118)

for all i > ig(k) with ig(k) large enough. Since ¢, : (M;,d
embedding, we conclude

gi,to) - (Ztoadi) is isometric

dg, .. (4}, qi) < Coy,

for all i > (k) with io(k) large enough. This completes the proof. O

From (4.108), we can choose iy(k) large enough, such that for all i > iy(k), we
have

dPGH((M%d!]i,toaqz‘)v(thd?;?q)) SO’I% (4'119)
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Now, for each k € N, we choose iy(k) large enough, such that Lemma 4.29 and (4.119)
hold. Then we set

Mk = Mio(k)a Okt = Uk_QQio(k),agtJr(toJrag)a L = qff(k), te [*Tka 0],
where Ty = a,;Q(TZ-O(k) —n+to+0}) = o0 as k— oo. We also set
T = Gy (k)
then from Lemma 4.29, we have
gy, (G, wi) < C. (4.120)
Also, from (4.119), we have

dPGH((Mk’ dﬁk,qumv (Xtoaak_ld?;vQ)) < 0. (4'121)

Next, recall that v; is Cj-barrier of Ry, , hence if we set O (t) = vy ) (it + (to + 07)),
t € [~Tk,0], then from (4.112), ¥, is o7Yp-barrier of R; and C-based at (wy,0).
Moreover, due to the choice of T, we have Ry, > —C(to,q)o:. Hence, Corollary 4.5
applied here, that is, by passing to a subsequence, we have F-convergence on compact
time-intervals

~ _ F:é: ~
(Mlm (gk,t)te[f’fk’()]a (ka,o;t)te[f’fk’[)]) — (X7 (Vmoo;t)te(—oo,o])7 (4]‘22)

1—00
within some correspondence €, with X being a static limit, satisfies the conclusions of
[Bam2, Theorem 2.16]. Moreover, since X is static, it’s continuous on (—ooc,0) in the
sense of [Bam23, Definition 4.25], hence by [Bam23, Theorem 7.6], the F-convergence
(4.122) is time-wise at every ¢ € (—o0,0). Hence we can apply Theorem 4.3 to con-
clude that,

dPGH((Mkvdgk,fqu)?(i‘fladflaq)) _>07 (4123)

as k — oo for some ¢ € X_;. Note that here we have used (4.120). Combining (4.121)
and (4.123), we conclude that

dPGH((Xtoao-k_lth;v q)a (')E‘fla di?la Q)) - 07

which proves item (1). Finally, due to [Bam2, Theorem 2.16], every tangent cone
of (f_l,dfl) at any point is a metric cone, repeating the above arguments prove
item (2).

This completes the proof. O

As a consequence, we have the following corollary.

COROLLARY 4.30. Under the set-up of Theorem 1.1, for every t € (—o0,0], the con-
clusions of Corollary 4.28 hold.
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4.8 Proof of Theorem 1.2. In this subsection, we come back to the set-up of
Sect. 3.1. Under this Ké&hler-Ricci flow set-up, we actually have stronger results than
Corollary 4.30 due to our distance distortion estimates.

PROPOSITION 4.31. Under the set-up of Theorem 1.1, for any ty € (—o0,0), and any
xo € Xy, any tangent cone of (Xy,,dy,) at xo is a metric cone.
Proof. Let XM denote the parabolic rescaling of X by ), based at time ty; in
particular, we have (Xt’\’to,df"to) = (Xy1r—2¢, Adyy 4 2—2¢). Then, for any sequence \; —
00, we can pass to a further subsequence so that
. F
(X/\“toy (Vto-i-)\*?t)te(fooi)]) — (ya (Mt)te(—oo,o])
1—00
where (), (ut)) is a static cone, which is itself a rescaled limit of the original flow

(M, (gt)tefo,1))- Let (C(Y),dy, (V;;t)mec(y)yte(_oovo}) be the model of the metric cone,
with y, the vertex. Because the F-convergence

F,¢
(Mia (gi,t)te[—Ti,O}a (Vpi,o;t)te[—Ti,O]) — (Xv (Vpoc;t)te(—oo,()])

1—00

is time-wise at every time ¢ € (—o00,0), Claim 3.14 implies that (X%, d}"™, z,) sat-

isfy the hypotheses of [Hal, Proposition 2.7], so after passing to a further subsequence,
we have

(thi,tojdt)‘iﬁto’zt) H—OO> (C(Y)7dY7yt)

in the pointed Gromov-Hausdorff sense, for any fixed t € (—00,0), where z; € Xy a2
is an Hyy,-center of zg, and y, € C(Y) is a 2Hy,-center of y,. The distance distortion

estimates and the proof of Claim 3.15 then imply that
dpcH ((Xt/\i’to ) di\i’tov Zt)? (Xto ’ )‘idto ) ZL‘())) < E(t),

where lim; o €(t) = 0. By choosing the original sequence \; so that (X, Xidy,, o)
converges in the pointed Gromov-Hausdorff sense to a given tangent cone (X,d, )
of (X, ds,) at xg, we obtain

dpcu ((C(Y)adY7yt)7 (X, (Zf))

S hm sup (dPGH ((Xt)\i7t0 ) dt)\i’to 9 Zt)v (Xt(w Aidt(n x()))

17— 00
+ dPGH ((Xtoa)\idtoax())a <X7 C/i\a ‘:L‘\)))
<e(t).

Moreover, because y; is an 2Hs,-center of y, and Y is a static cone, it follows that
dy (yt,y«) < C|t|, so that (C(Y),dy,y:) — (C(Y),dy,y.) in the pointed Gromov-
Hausdorff sense as t /0. In particular, taking ¢ /0 above tells us that (C(Y),dy, y«)
is pointed isometric to ()A(,J@) O
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We can finish the Proof of Theorem 1.2.

Proof of in Theorem 1.2. Let (M, (git)ic[—1,,0) be the sequence of Ricci flows de-
fined in Sect. 3.1. According to Lemma 3.3, we conclude that v; is a C-barrier of R,
and is 2By-based at (p;,0), where v; is the Ricci potential defined in (3.16). Hence
Theorem 1.2 follows immediately from Theorem 4.4 and Proposition 4.31. U
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