

The Power of Connections: A Mixed Methods Approach to Understanding Social Capital's Influence on Engineering Students' Professional Skills

Abstract

4 *Background:* Providing engineering students with the non-technical professional skills they will
5 need in the workforce, including communication, teamwork, and leadership, requires repeated,
6 contextually embedded development opportunities. Yet, limited research has explored how
7 such opportunities vary by institutional type and academic year, or how students gain access to
8 them. This study examines the relationship between engineering students' social capital and
9 their access to professional skill development, focusing on variation across institution types
10 (e.g., research-intensive, minority-serving institutions) and school years.

11 *Results:* We employed an explanatory sequential mixed methods design using a probabilistic
12 stratified cluster sampling strategy. A total of 1,234 undergraduate engineering students across
13 13 institutions completed two assessment instruments, and 20 students were selected for
14 follow-up interviews. Quantitative analysis using linear mixed models revealed that instrumental
15 social capital significantly predicted access to professional skill development. Qualitative
16 findings elaborated how students utilize relationships with faculty, instructors, advisors, and
17 organizational peers to practice problem-solving, communication, and leadership skills. These
18 interactions served as key enablers of access.

19 *Conclusions:* Social capital plays a pivotal role in facilitating engineering students' access to
20 professional skill-building opportunities. Faculty, academic advisors, and student organization
21 leaders should foster relationship building and mentor networks to support students'
22 professional growth throughout their academic journey.

23 **Key words:** *multi-institutional, professional skills, social capital, mixed methods*

24 **Introduction**

25 Engineering undergraduates increasingly need professional skills to complement their
26 technical skills if they are to navigate the collaborative, interdisciplinary realities of modern
27 engineering practice. Accrediting bodies such as the Accreditation Board for Engineering and
28 Technology, Inc. (ABET) and the UK's Engineering Council as well as groups such as the National
29 Academies of Sciences, Engineering, and Medicine (NASEM) have long emphasized that
30 professional competencies (e.g., communication, leadership, teamwork, and ethical
31 responsibility) are necessary in the workforce (ABET, 2021; NASEM, 2016, National Academy of
32 Engineering, 2005; Volkwein et al., 2004). This imperative is strengthened by a rapidly changing
33 technological landscape and the increasingly complex and interdisciplinary nature of
34 contemporary engineering problems.

35 Despite broad recognition of their importance, the opportunities to develop professional
36 skills are not evenly woven into the fabric of undergraduate curricula. Certainly, accreditation
37 bodies require that degree programs provide curricular evidence of student learning inclusive of
38 professional skills (ABET, 2021; NAE, 2005), but institutional and departmental curriculum
39 committees do not tend to think about students' professional skill learning progression with the
40 same rigor as engineering, mathematics, and science content (Shuman et al., 2005). Some
41 engineering programs incorporate professional skill-building through design courses (e.g.,
42 Sperling et al., 2024) or structured internships (e.g., Dym et al., 2005) or even throughout the
43 curriculum (e.g., Mitchell et al., 2019), but many do not implement a deliberate, program-wide
44 strategy for embedding these competencies across the curriculum.

45 Many students instead rely on developing professional competencies through activities
46 outside of the classroom such as student organizations, undergraduate research, or industry
47 cooperative education (“co-ops”; Hinkle & Koretsky, 2019; Martin et al., 2015; Coyle et al., 2005;
48 Dalrymple & Evangelou, 2006; Garrett et al., 2021; Simmons et al., 2018; Winberg et al., 2020).
49 Traditional models of skill development often center on individual traits or perceived
50 competencies and perhaps optimistically assume a level playing field, but this framing neglects
51 the critical influence of social systems and institutional structures. Access to cocurricular and
52 extracurricular experiences often hinges on students’ social networks and institutional support
53 structures (Millunchick et al., 2021). Social ties with peers, faculty, and mentors often act as
54 essential gateways to skill-building experiences (e.g., professional societies and cocurricular
55 programs; Martin et al., 2016; Moreira et al., 2019) and skill-building roles (e.g., leaderships
56 roles in cocurricular programs and undergraduate researcher positions; Martin et al., 2014;
57 Revelo & Baber, 2018).

58 Relying on social networks to access opportunities for professional formation thus
59 compounds societal inequities. Among engineering students, students of lower academic
60 standing, who are first generation college attending, of Color, and/or are at institutions with
61 lower levels of research activity may have less access to opportunities to practice professional
62 skills than their peers (Martin et al., 2020; Skvoretz, et al., 2020; Li et al., 2023). This raises
63 important equity questions in terms of who gets the chance to practice professional skills, who
64 is inadvertently left behind, and how can we ensure all students have opportunities to develop
65 these skills.

66 Disruptions brought on by the COVID-19 pandemic potentially deepened the disparities
67 in opportunities to practice professional skills by disrupting students' access to critical
68 relationship-based and experiential-learning contexts. Students who began their undergraduate
69 programs remotely due to the pandemic missed foundational opportunities to form social ties
70 with peers, faculty, and mentors (Martin et al., 2022; Wiggins et al., 2022). Students relied on
71 intentional instructional decisions in remote learning, such as pre-recorded videos, virtual
72 teamwork assignments, and online discussion boards; however, these supports may not be as
73 impactful to building social capital compared to pre-pandemic opportunities (e.g., in-person
74 socialization during class time, hands-on laboratories; Emberley et al., 2022), and it is unknown
75 how the loss of in-person connections during lockdowns affected students' opportunities to
76 practice professional skills. These conditions have left lasting questions about the importance of
77 social capital's role in providing students with opportunities to practice professional skills and
78 the degree to which personal and institutional characteristics influence students' access to
79 these skill-building opportunities.

80 This study uses Lin's (2001) network theory of social capital, which posits that a person's
81 network of relationships mediates their access to resources. Here, we suggest that students'
82 networks mediate their access to knowledge about skill-building opportunities and the support
83 to pursue those opportunities. Prior research has shown that engineering students' social
84 capital from peer and faculty networks supports their persistence in the major and identity
85 formation (Martin et al., 2014; Renata & Baber, 2017). Thus, this study examines how students'
86 relationships shape their ability to engage in opportunities for skill development. We also
87 incorporate Dall'Alba's (2009) ontological perspective on professional learning, which moves

88 beyond the notion of skill “acquisition” to view development as a process of becoming that is
89 deeply embedded in practice and identity. Together, these frameworks shift the focus from
90 studying students’ professional skills competencies to understanding how students access
91 opportunities to practice professional skills, and what those opportunities look like.

92 We present a sequential explanatory mixed methods study to examine how engineering
93 students’ social capital predicts and enables access to opportunities to practice professional
94 skills, addressing a notable gap in the literature. While prior research has established that social
95 capital influences student persistence, belonging, and identity in engineering (e.g., Martin et al.,
96 2014; Skvoretz et al., 2020), fewer studies have directly modeled the relationship between
97 students’ networks and their access to professional skill development opportunities. Moreover,
98 little is known about how these relationships vary across institution types and academic
99 progression.

100 Our study integrates Lin’s (2001) social capital theory with Dall’Alba’s (2009) ontological
101 framework to conceptualize access to skill-building not merely as an individual achievement,
102 but as a relational process shaped by institutional and network contexts. In the quantitative
103 phase, we analyze how well students’ expressive and instrumental support predict their
104 opportunities to practice professional skills and the extent that institution type and school year
105 indirectly influence those opportunities. In the qualitative phase, we explore students’
106 experiences leveraging social networks to access these opportunities. To address potential
107 variation in campus experiences due to the COVID-19 pandemic, we collected data from a
108 diverse sample across institution types and academic levels, enabling nuanced group
109 comparisons.

110 Four research questions guided this study. The first two we answer primarily through
111 quantitative research: RQ #1) *To what extent does engineering students' social capital predict*
112 *their opportunities for practicing professional skills?* and RQ #2) *To what extent do student's*
113 *institution type and their year in school mediate the relationship between social capital and*
114 *opportunities to practice professional skills?* The latter two we explored qualitatively through in-
115 depth interviews with engineering students focused on how they used their social networks to
116 access opportunities to practice professional skills: RQ #3) *Where and through whom do*
117 *students describe opportunities for practicing professional skills across their undergraduate*
118 *experiences?* and RQ #4) *How do students use social capital to practice professional skills across*
119 *school year and institution type?*

Literature Review

121 Engineering Students' Professional Skill Attainment

122 Engineering students' acquisition of professional skills has become a central concern in
123 higher education research as programs strive to prepare graduates for dynamic, collaborative
124 work environments. Researchers have used a variety of methods and instruments, including
125 self-reports, assessments of reasoning, and third-party evaluations, to gauge competencies such
126 as teamwork, creativity, and ethical decision-making (e.g., Avec and Savec, 2019; Zhu et al.,
127 2014; Hundhausen et al., 2022). While these different approaches offer valuable insights, the
128 inconsistency in constructs and measurement techniques complicates efforts to draw general
129 conclusions about the state of professional skill education.

130 Nonetheless, there are apparent reasons for concern about engineering programs'
131 success in imparting professional skills education, as well as researchers' ability to consistently

132 measure those professional skills. Researchers are finding that engineering students often
133 exhibit lower levels of professional skills than their non-engineering peers. For example, using
134 the Creative Engineering Design Assessment, Charyton and Merrill (2009) and Avsec and Savec
135 (2019) found that non-engineering students—such as pre-service teachers and chemistry
136 majors—outperformed engineering students by approximately 10%. In line with accreditation
137 requirements, engineering programs provide targeted ethics instruction to their students
138 (Feister et al., 2014; Zhu et al., 2014), but a study using the Engineering Ethical Reasoning
139 Instrument reported no significant differences in ethical decision-making between engineering
140 students and students from other majors who do not typically have targeted ethical instruction
141 (Zhu et al., 2014).

142 Moreover, the evidence that engineering students progressively develop professional
143 skills over the course of their degree program is less robust than expected. Multiple studies
144 using the Comprehensive Assessment of Team Member Effectiveness (Ohland et al., 2012) have
145 reported that class standing (e.g., first-year vs. fourth-year) does not predict higher teamwork
146 scores, potentially suggesting that students do not increase their teamwork skills over their
147 undergraduate years, although the measure's reliance on peer evaluation complicates our
148 understanding of these results (Hundhausen et al., 2022; Pejcinovic et al., 2018; Vasquez et al.,
149 2020). When comparing findings from Zhu et al. (2014) and other studies utilizing the
150 Engineering Ethical Reasoning Instrument, we found first-year engineering students scores were
151 not statistically different than their first-year peers in non-engineering majors in Cimino et al.'s
152 (2024) study across three institutions. Moreover, both undergraduate groups reported higher
153 levels of ethical reasoning engineering graduate students (Hess, Beever et al., 2019; Hess,

154 Kisselburgh et al., 2016). These findings underscore the difficulty of evaluating professional skills
155 such as ethical behavior, where progression in ethical reasoning is not clearly tied to degree
156 progress. One interpretation of these discrepancies may be that institutional factors,
157 demographics, and access to learning opportunities can significantly shape attainment of these
158 skills.

159 **Social Capital as a Mechanism to Access Professional Skill Opportunities**

160 To get a clear picture of engineering students' access to professional development, we
161 need to ask how, where, and through whom the opportunities to build those skills arise. Social
162 capital theory gives us a lens to examine the "how" of access. Lin (2001) defines social capital as
163 the set of resources embedded in social networks that individuals can mobilize toward their
164 goals. These networks, comprised of peers, institutional actors, and members of organizations,
165 have been linked to student outcomes ranging from persistence to well-being and college
166 enrollment (Martin et al., 2020; Puccia et al., 2021; Glass, 2023; Skvoretz et al., 2020). Lin's
167 theory distinguishes between strong ties (such as with family, close mentors, and close friends)
168 and weak ties (such as with more casual acquaintances or distant contacts). Both types of ties
169 help engineering students to navigate both academic and professional challenges. While strong
170 ties can offer sustained emotional support and identity reinforcement, weak ties are often
171 critical for uncovering new opportunities—they bridge gaps between social circles and open
172 doors that students may not otherwise know exist (Granovetter, 1973; Lin, 2001). Both strong
173 and weak ties are essential in mapping how students navigate professional learning landscapes.
174 Peers serve as strong ties for STEM students, helping each other navigate course
175 requirements, build belonging, and overcome microaggressions, fostering both academic and

176 emotional resilience (Campbell-Montalvo et al., 2022a, 2022b; Mondisa, 2020; Smith et al.,
177 2021). Peers act as mentors and cultural guides, shaping students' academic and professional
178 decision-making (Beard, 2021; Brouwer et al., 2016). Meanwhile, institutional actors such as
179 faculty and advisors may play a more crucial role in expanding students' professional access as
180 either strong or weak ties. Faculty connect students to opportunities like research positions,
181 scholarships, and leadership roles while also providing motivational support and mentorship
182 (Henderson et al., 2023, Martin et al., 2020; Sausner et al., 2024). These relationships often
183 serve as pivotal enablers of professional identity and career exploration, particularly for
184 students from marginalized backgrounds (Salazar et al., 2020).

185 Social capital is further accumulated through involvement in cocurricular (i.e., out-of-
186 class activities that complement engineering coursework) and extracurricular (i.e., out-of-class
187 activities not related to engineering coursework) organizations, where students can grow their
188 personal and professional networks. Participation in cocurricular groups like the Society of
189 Women Engineers or National Society of Black Engineers offers students access to both peer
190 mentorship and industry-facing events (Garrett et al., 2021; Martin et al., 2016; Smith et al.,
191 2021). Such organizations foster emotional engagement and boost self-efficacy (Wilson et al.,
192 2014), enabling students to access high-impact learning experiences (e.g., applying theories
193 learned in coursework to hands on projects, developing leadership skills, and connecting with
194 industry professionals; Olewnik et al., 2023).

195 Despite growing interest, relatively few studies directly examine the link between social
196 capital and access opportunities to practice professional skills. Some research highlights that
197 cocurricular engagement promotes both social bonding and skill acquisition (Buckley & Lee,

198 2021; Garrett et al., 2021), while others shows that social capital and participation in
199 organizations enhances students' leadership and professional growth, respectively (Gholami et
200 al., 2020; Volpe et al. 2023). Our study builds on these findings to investigate how engineering
201 students' expressive and instrumental social capital predicts and enables access to professional
202 skill opportunities across diverse institutional contexts.

203 **Theoretical Framework**

204 Social capital theory offers a promising framework to explain disparities in access to
205 professional skill-building opportunities among engineering students. Lin's (2001) network
206 theory of social capital positions individuals (egos) within a web of supportive relationships
207 (alters), which provide both expressive (emotional, psychological) and instrumental (goal and
208 career-oriented) support. Through a lens of social capital, researchers can identify how and why
209 certain students gain easier access to leadership roles, internships, or other developmental
210 learning experiences than their peers. For example, in the context of engineering education,
211 students have been found to mobilize the resources in their network, such as leveraging
212 information about employment opportunities or receiving invitations to participate in
213 undergraduate research, to practice technical and professional skills and progress towards their
214 professional goals (Martin et al., 2014; Volpe et al., 2023).

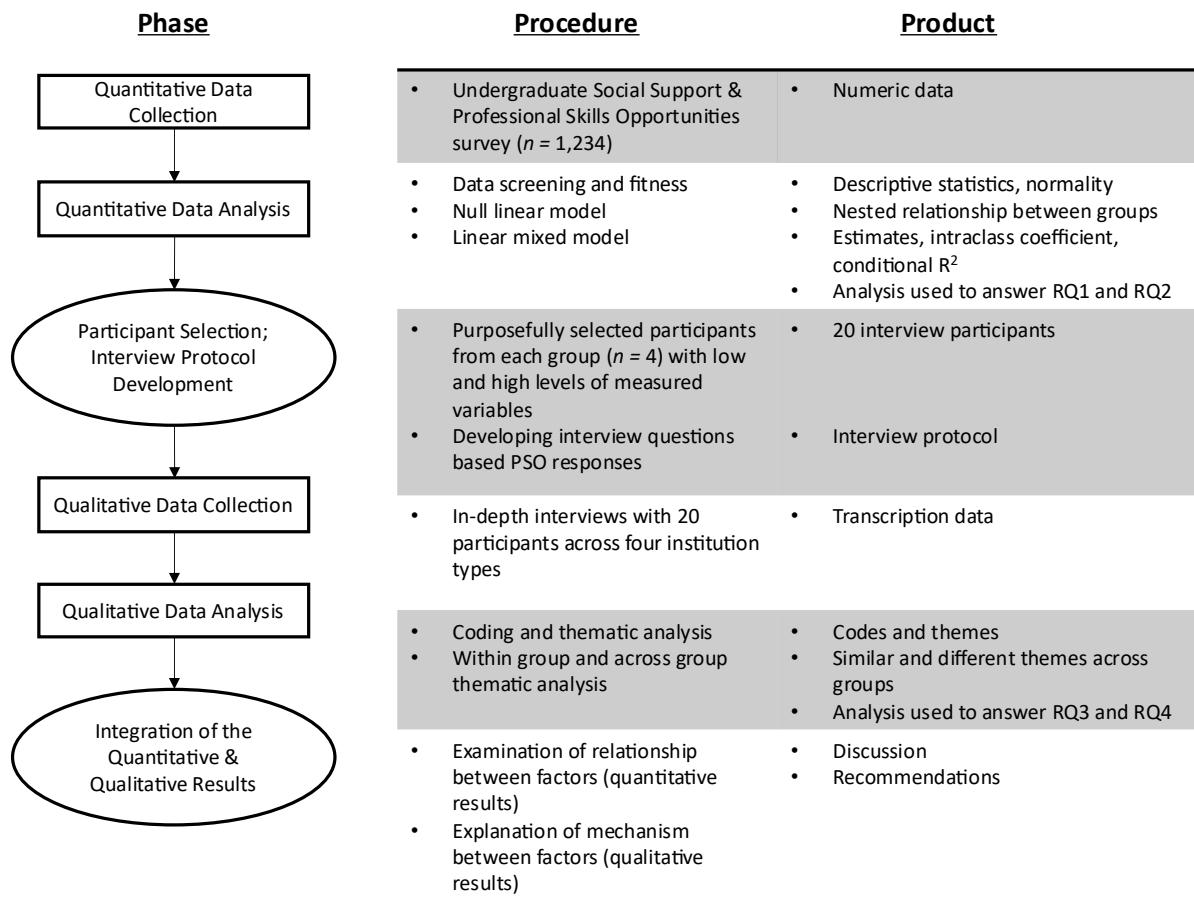
215 While Lin's framework helps us understand the mechanisms of access, Dall'Alba's (2009)
216 "ways of being" framework explains why access matters in a deeper sense. Rather than viewing
217 it as a process that culminates in a static collection of skills, Dall'Alba frames students'
218 development of professional competence as an ontological process—a way of becoming that
219 unfolds through situated engagement in professional practice. In this view, learning professional

220 skills is not simply the internalization of content but a transformation of identity, shaped by
221 participation in meaningful, real-world contexts. Thus, access is not just an equity issue; it is a
222 prerequisite for becoming an engineer in any full and authentic sense.

223 Together, social capital theory and Dall'Alba's "ways of being" framework underscore
224 that professional skills are not simply about what students know or can do—it is about whether
225 they have had the opportunity to participate, reflect, and grow in ways that are socially and
226 contextually meaningful. This study aligns with and builds upon the professional skills
227 opportunities framework (Author et al., under review), which seeks to capture the richness of
228 students' actual opportunities to engage in core practices like teamwork, leadership, and
229 communication. By bringing together a relational model of access and an ontological view of
230 learning, our approach surfaces the often-invisible structures that shape who gets to learn, how,
231 and under what conditions.

232 **Methods**

233 Reflecting our disciplinary backgrounds, identities, and institutional affiliations, our
234 positionality inevitably influences our research choices, methods, and interpretations (Secules
235 et al., 2021). Our team includes one PhD student, two postdoctoral scholars, two tenured
236 faculty, and one professor of practice with backgrounds spanning three engineering subfields
237 (i.e., materials science, mechanical, and chemical), engineering education, and educational
238 psychology. All faculty and postdocs have taught engineering courses with professional skill-
239 building components, which informed our design of interview protocols and deepened our
240 interpretive engagement with students' experiences.


241 Our research questions reflect the convergence of our expertise in social capital,
242 professional skill development, and mixed methods approaches (e.g., Authors, 2011, 2022,
243 2024). While senior team members brought established knowledge in these areas, research
244 trainees developed expertise through collaborative engagement on this project. For example,
245 senior members of the team mentored the early career researchers in conducting mixed
246 method research designs, performing thematic analyses, and disseminating the findings
247 through multiple avenues (e.g., conferences, journals, workshops, and infographics). Both our
248 institutional positions and our diverse gender identities (two nonbinary individuals, three
249 women, and one man) shaped our methodological decisions, including survey item design and
250 sampling. Thus, our survey intentionally provided inclusive options for self-identification, and
251 we interviewed nonbinary engineering students.

252 As researchers based at highly intensive research institutions, we recognize that our
253 experiences may shape our assumptions about students' access to resources and networks. To
254 avoid a myopic focus on students familiar to our own context, we recruited a representative
255 sample of engineering students from a range of institutional types (e.g., research institutions,
256 undergraduate institutions, HSI/MSIs, and HBCUs). We also utilized a probabilistic sampling
257 approach, rather than relying on our own social capital to recruit participating institutions. We
258 were also mindful of the extractive nature of academic research and committed to reciprocity,
259 which we fulfilled by providing all participating institutions with individualized reports offering
260 specific, actionable, and timely feedback tailored to their results (Author, 2020). These reports
261 allowed institutions to benchmark their own outcomes against peer institutions and develop
262 strategies to expand access to professional skill-building opportunities for their students.

263 **Overall Study Design**

264 To answer our research questions, we employed a sequential explanatory mixed
265 methods design (Creswell & Clark, 2017), where we first used quantitative methods to establish
266 whether social capital predicts access to professional skill practice opportunities (see Figure 1).
267 This phase addressed RQ1 and RQ2, which focused on whether and to what extent social
268 capital, particularly instrumental support, was associated with students' opportunities across
269 institution type and academic year. The qualitative phase was then designed to answer RQ3 and
270 RQ4, which asked how students use social capital to access these opportunities. Because our
271 goal in the qualitative phase was to explain the mechanisms of access, we purposefully sampled
272 students based on their levels of social capital, not on their level of opportunity. This design
273 allowed us to explore the ways students with high or low social capital utilize their networks to
274 access opportunities, building conceptual depth around the predictive patterns found in the
275 quantitative model.

276 In our study design and implementation, we addressed measures of quality for the
277 quantitative methods, qualitative methods, and sequential explanatory method (Creswell &
278 Guetterman, 2019). We used a well-defined methodological framework (sequential explanatory
279 mixed methods) and theoretical framework (Lin's network theory of social capital, 2001) to
280 guide each phase of the study. Our study followed the order and focus specified by the
281 sequential explanatory method—that is, the collection and analyses of the quantitative data
282 then qualitative data with a focus on the qualitative portion. Additionally, our work applied
283 rigorous methods for each phase and addressed the quality of each phase separately (specified
284 in their following respective sections).

285 **Figure 1**286 *Visual model of mixed methods research design*

287

288 A crucial aspect of mixed methods quality is in the integration of the quantitative and
 289 qualitative data. Using results from the Undergraduate Social Support survey (USS; quantitative
 290 phase), we selected interview participants based on (1) their reported level of instrumental and
 291 expressive support (low or high) and (2) equal representation from each institution type. We
 292 then tailored the interview guide for each participant based on their responses to both the USS
 293 and the Professional Skills Opportunities survey (PSO) to capture rich context and nuance about

294 their quantitative responses. Lastly, we used the qualitative findings as additional evidence for
295 our interpretation of the quantitative findings and reported the meaning of integrated results.

296 **Quantitative Phase**

297 **Measures Used**

298 In spring of 2022, we distributed the USS and PSO and collected demographic data,
299 including students' year in school, gender, and racial demographic information.

300 *Undergraduate Student Support Survey*

301 The USS instrument (Author et al., under review) consists of three distinct yet
302 interconnected scales that capture different dimensions of students' social capital: *Expressive*
303 *Support, Instrumental Support, and Accessed Support*. The *Expressive Support* and *Instrumental*
304 *Support* scales are scored out of five, where a zero indicates that no alters have provided
305 support and five indicates that five unique alters have provided support. The validation study
306 reports strong internal consistency for each subscale, with Cronbach's alpha coefficients greater
307 than $\alpha > 0.80$, indicating that the items effectively capture their intended skill domains (Author
308 et al., under review).

309 The *Expressive Support* scale focuses on identifying students' close relationships—what
310 Lin (2001) refers to as *strong ties*—and the emotional or relational supports these individuals
311 provide. This includes dimensions such as mentorship and advice, personal well-being, and
312 outreach behaviors. To gather this information, the section employs a *name generator*
313 technique, asking participants to list individuals who provide them with various types of
314 supports. This section comprises 15 items.

315 The *Instrumental Support* scale, comprising seven items, explores the extent to which
316 students' strong ties offer assistance directly related to academic and career objectives. This
317 includes supports such as help with finding internships, securing employment, and accessing
318 professional opportunities. These questions follow up on the named strong ties from the
319 previous section, focusing on tangible outcomes facilitated by those relationships.

320 The third section, *Accessed Support*, contains 13 items designed to measure the
321 instrumental benefits students receive from their broader social network—specifically, *weak*
322 *ties* (Lin, 2001). These more casual or acquaintance-level connections often serve as important
323 conduits for information, opportunities, and access to professional resources, even if they lack
324 the emotional intimacy of strong ties. This portion of the survey draws on a *resource generator*
325 methodology, asking respondents to indicate the nature of these relationships and the
326 resources made accessible through them. The categories covered in this section include
327 academic guidance, scholarship information, and pathways to professional growth.

328 According to exploratory and confirmatory analyses, the USS has strong evidence of
329 validity for assessing students' social capital (Authors, 2024). It also has strong evidence of
330 fairness and can be used to assess social capital fairly across gender, race, ethnicity and
331 students' year in school. For more information on the items and factor structure, see Authors
332 (2024).

333 *Professional Skills and Opportunities Survey*

334 The PSO survey is designed to assess undergraduate engineering students'
335 opportunities to practice professional skills across curricular, cocurricular, and extracurricular
336 contexts. It includes four subscales: (1) shared leadership, (2) business management, (3)

337 problem-solving, and (4) communication, measured on a 7-point Likert scale from “do not
338 practice at all” to “practice very frequently.” These four skill domains were selected based on a
339 thorough review of the literature and prevailing frameworks for professional competencies in
340 engineering education, including ABET (2021), the National Academies (NASEM, 2016), and key
341 empirical studies (Authors, 2022). The goal was to capture skills that are both broadly
342 emphasized in professional formation and feasibly measurable through student-reported
343 opportunity contexts. While we initially intended to include ethical decision-making as a fifth
344 domain, psychometric analysis during validation did not support its inclusion at the time of this
345 study. The validation study reports strong internal consistency for each subscale, with
346 Cronbach’s alpha coefficients ranging from $\alpha = 0.73$ to $\alpha = 0.87$, indicating that the items
347 effectively capture their intended skill domains (Authors et al., 2022; Authors et al., under
348 review).

349 The PSO remains, to our knowledge, the only published instrument focused specifically
350 on measuring *opportunities* for professional skill practice, rather than skill attainment or
351 perception of skill attainment, and does so from a developmental and theoretically grounded
352 lens. It is supported by strong validity evidence from expert review, cognitive interviews
353 (Authors et al., 2022), exploratory and confirmatory factor analysis, and measurement
354 invariance testing (Authors, 2024). For our purposes, the PSO was appropriate because it
355 aligned with our focus on how access is shaped, rather than what students have already
356 achieved. When used alongside the USS, the PSO provides a robust, empirically supported lens
357 into the relational and developmental aspects of professional formation in engineering
358 education.

359 ***Research Setting & Data Collection***

360 To address our research questions and make claims about engineering students
361 attending ABET-accredited schools in the United States, we sought to obtain a representative
362 cross-section through a probabilistic stratified cluster sampling approach as described by Blair et
363 al. (2014). We used the 2021 Carnegie Classification (Indiana University Center for
364 Postsecondary Research, n.d.) to classify ABET-accredited schools into four categories of
365 sampling strata. (While Carnegie updated the classification system in 2025, our study was
366 already underway at the time of their publication.) The classification definitions from Carnegie
367 2021 are as follows:

- 368 • Research—doctoral universities with very high research profiles
- 369 • Undergraduate—teaching-focused, exclusively or very high undergraduate
370 populations
- 371 • Hispanic serving and minority serving institutions (HSI/MSIs)—institutions with at
372 least 25% Hispanic enrollment
- 373 • Historically Black colleges and universities (HBCUs)—institutions founded with a
374 mission to educate students of African American descent

375 The strata are not necessarily mutually exclusive (e.g., some research institutions are also
376 MSI/HSIs).

377 Cluster sampling is particularly effective for achieving cost-effective, probabilistic
378 samples when the researcher has a list of clusters (here, ABET-accredited programs), but not a
379 list of individuals (Blair et al., 2014). We strove for approximately equal sample sizes between
380 groups of students located within each of the four strata. The universities that fall into two or

381 more strata were placed in the smallest stratum it falls under in terms of number of institutions
382 (thus a research institution that is also an HSI/MSI was classified as the latter). From each
383 stratum, we randomly selected three institutions (clusters) to recruit from to achieve
384 approximately equal sample sizes in each stratum. We reached out to the associate dean for
385 undergraduate engineering education (or equivalent) at the selected institutions and asked if
386 they would be willing to have their institution participate. We obtained institutional review
387 board approval to recruit institutions who would then email the advertisement for the survey to
388 their undergraduates.

389 We determined the minimum sample size based on expected standard deviation in our
390 outcome variables of interest (social capital and professional skill opportunities) and population
391 sizes of each stratum (Blair, et al., 2014). There is typically greater variance within larger strata
392 than in smaller ones in terms of size of institution (Blair et al., 2014); thus, the minimum sample
393 size for each stratum was based on achieving a representative sample for the largest strata and
394 oversampling if smaller strata (e.g., HBCUs) to create equal sample sizes across types of
395 institutions. Our previous work using a sample of 1,613 undergraduate students at a large
396 research institution found a standard deviation of 8.39 in scores on the USS (Authors, 2020). To
397 achieve a 95% confidence interval of +/- 1 from the true mean with largest standard deviation
398 of 10, we estimated we needed 384 samples from each stratum (Blair, et al., 2014 p. 157).
399 Based on our previous survey research and that of others (Kost & da Rosa, 2018), we anticipated
400 that compensation of \$10 would result in an approximately 50% response rate and would
401 support a diversity of respondents.

402 While our strategy was effective for research, undergraduate, and MSI/HSI institutions,
403 the initial round of data collection from HBCUs was far lower than the desired sample size.
404 Therefore, we recruited from an additional institution and increased compensation to \$20 for
405 survey completion for all HBCU students. In total, we collected 2,246 student responses from 13
406 institutions.

407 ***Data Preprocessing***

408 Prior to data analysis, we performed data preprocessing to ensure data quality based on
409 three criteria, following Meade and Craig (2012): completion rate, filter question response
410 (asking respondents to select “Not at all”), and cohort information. We eliminated 658
411 responses with a completion rate of less than 50% and 354 responses based on the filter
412 question. Our finalized sample, then, was 1,234. Table 1 contains the demographic information
413 for the respondents included in our finalized dataset.

414 ***Data characteristics***

415 We considered multiple factors, such as normality and the nested relationship between
416 groups, when selecting a model for our dataset. Linear mixed models, a special case of
417 generalized mixed models, are ideal for understanding the linear relationship between multiple
418 variables while considering the effect of normally distributed random effects (Fox et al., 2015).
419 Thus, we performed checks for normality on the response variable, opportunities to practice
420 professional skills, to determine suitability. The PSO dataset was within range for normally
421 distributed data with a slight negative skew ($Skew = -0.72$, $Kurt = 1.01$), making our data ideal for
422 a linear mixed model. Additionally, random effects, sometimes called conditional modes, are
423 ideal for modeling the underlying effects of group membership. As we were interested in

424 modeling the main effects and the effects of collecting data at different sites (institutions) and
 425 populations (students across differing school years), our data was an ideal fit for a mixed model.

426 **Table 1**

427 *Demographic information and descriptive statistics for research participants*

Measure	n	%
Gender		
Women	522	42
Men	678	55
Other ^a	34	3
Race/Ethnicity		
White	648	52
Asian	206	17
African American	123	10
Hispanic/Latino	172	14
Other ^b	85	7
Strata		
Research	460	37
Undergraduate	336	27
MSI/HSI	310	26
HBCU	128	10
Year in School		
First-Year	317	26
Second-Year	239	19
Third-Year	305	25
Fourth-Year	273	22
Fourth-Year+ and up	93	8

428 Note. n = 1,227. Demographics were collected through self-identified responses in surveys.

429 ^a Other gender includes students who selected non-binary or N/A as their responses.

430 ^b Other race/ethnicity includes students who selected multi-racial, Native Americans, Pacific
 431 Islanders, Arabic/Middle Eastern, or other.

432 **Linear Mixed Model Methods**

433 We performed a linear mixed model to examine the relationship between students'
 434 instrumental and expressive support and their opportunities to practice professional skills.

435 Mixed models have two parts: fixed effects and random effects. The former model the linear
436 relationship between the response variable and the explanatory variable, and the latter model
437 the unmeasured, underlying effects controlled for by group membership (Fox et al., 2015). In
438 this study, the fixed effects are the linear relationship between students' expressive and
439 instrumental support, the predictor variables, and their opportunities to practice professional
440 skills, the response variable. The random effects are expressed in a hierarchical, nested
441 structure with the first group being the year they entered college (i.e., year in school) and the
442 second group being students' university classification (i.e., research, undergraduate, HBCU,
443 MSI/HSI). This created 20 intersectional groups: four from the Carnegie classification and five
444 from year in school. The random effects illustrate how far that intersectional population varies
445 from the group mean (the intercept; Fox et al., 2015). For this study, we allowed for random
446 intercepts to show how the group varies from the population mean, where positive random
447 effect intercepts are that much above the population average.

448 We conducted multiple linear mixed models with increasing levels of specification in R-
449 4.3.3 using the *lme4* and *nlme* packages. By performing multiple models with increasing levels
450 of specification, we are able to compare model fit and thus quality of the models. We first
451 performed a null model, a linear mixed model without fixed effects, to determine the portion of
452 variance the random effects capture (Nakagawa et al., 2017). From the null model, we found
453 that strata and year nested captured approximately 3% of the random effects variance. Next, we
454 conducted a linear mixed model with fixed effects being the relationship between students'
455 opportunities to practice professional skills and their expressive and instrumental support and
456 random effects being the nested relationship between students' university strata and their year

457 in school. We assessed the model based on model fit with a conditional R^2 value and proportion
458 of variance captured with the intraclass correlation coefficient (ICC). Model fit was acceptable:
459 the R^2 value was 0.102, indicating fixed and random effects explain 10% of the model. The
460 random effects model fit was small but relevant to our study with the nested relationship
461 between strata and school year, explaining approximately 4% of the random effects model.

462 **Qualitative Phase**

463 ***Quality considerations***

464 We adhered to Walther et al.'s (2013) "quality in qualitative interpretive research" (Q³)
465 management typology, a well-recognized measure of quality in engineering education research,
466 to ensure quality and robustness in all aspects of our work. We particularly addressed three
467 types of validation (Walther et al., 2013, p.641): theoretical (the fit between the social reality
468 under investigation and the theory produced), procedural (which suggests incorporating
469 features into the research design to improve this fit), and communicative (which accounts for
470 co-construction of knowledge in the social context under investigation as well as within the
471 research community). We addressed theoretical validation through purposeful sampling of
472 participants based on school year, institution type, and level of social capital. Our research team
473 further supported communicative validation of the work by tailoring interview prompts to
474 student survey responses, inductive coding, and peer debriefing.

475 We also addressed procedural validation through the use of critical incident technique
476 and negative case analysis. In addition to identifying critical instances where participants
477 described accessing social capital (e.g., strengthened relationships or resource sharing), we also
478 actively searched for accounts where social capital was hindered, diminished, or inaccessible.

479 These negative cases highlighted actions and conditions that undermined access to professional
480 skill practice opportunities, which allowed us to refine our analysis with nuance and identify
481 interactions and practices that facilitate social capital accumulation but also those that may
482 inadvertently harm it. Throughout the qualitative methods section we parenthetically describe
483 how we attended to each type of validity.

484 ***Participant Recruitment***

485 We used purposeful sampling aligned with our explanatory sequential mixed methods
486 design for participant recruitment. Because the goal of this phase was to explore how social
487 capital serves to provide access to opportunities to practice professional skills (RQ3 and RQ4),
488 we selected participants based on their levels of instrumental and expressive social capital as
489 reported in the USS survey. This approach allowed us to obtain rich, explanatory data from
490 students who had utilized their social networks for opportunity access. While the quantitative
491 model established that social capital significantly predicts opportunities, it does not account for
492 all variance, meaning students with high opportunity scores may not necessarily have relied on
493 social capital to access them. Therefore, selecting interviewees based on social capital (rather
494 than PSO scores) was critical for investigating our central mechanism of interest. Nonetheless,
495 our interview participants did have a variety of PSO scores (shown in Table 2).

496 To ensure variation in context, we also stratified participants by institution type and
497 academic year, including students who began college during the COVID-19 pandemic. We used
498 each participant's PSO responses to tailor interview protocols, focusing on the three
499 professional skills they reported most frequently practicing. This approach allowed us to center
500 the interview on specific lived experiences while preserving our focus on social capital as the

501 primary lens. Because students reported more frequent opportunities in communication and
 502 shared leadership, these skills were emphasized more heavily in the interviews than less
 503 commonly practiced areas like business management. Table 2 displays the demographics of the
 504 interviewees, who selected their own pseudonyms and pronouns.

505 **Table 2**

506 *Participant demographic information*

Pseudonym	Pronouns	School Year	Institution Type	Expressive Social Capital ^a	Instrumental Social Capital ^a	Total PSO ^b
Olin	He/him	1	HBCU	Low	Low	Medium
Nathaniel	He/him	2	HBCU	Low	Low	Medium
Eeyore	She/her	3	HBCU	High	Low	Medium
Frank	He/him	3	HBCU	Low	High	High
Ingrid	He/him	3	HBCU	High	High	High
Doria	She/her	4	HBCU	High	Low	Low
Samantha	She/her	1	MSI/HSI	High	Low	Medium
Rachel	She/her	2	MSI/HSI	Low	Low	High
Tamara	She/her	2	MSI/HSI	Low	Low	High
Pennelope	She/her	3	MSI/HSI	High	High	High
Mariana	She/her	1	Research	Low	Low	High
Bennett	She/her	2	Research	High	High	High
Christina	She/her	3	Research	Low	Low	Low
Garry	He/him	4	Research	Low	High	High
Quinn	He/him	4	Research	High	High	High
Heather	She/her	5	Research	High	Low	High
Katie	She/her	1	Undergraduate	Low	High	Medium
Lucas	He/him	2	Undergraduate	Low	Low	High
Albert	He/him	2	Undergraduate	High	High	High
Jackelob	He/him	5	Undergraduate	Low	High	Medium

507 ^a Low social capital was operationalized as having an expressive or instrumental support score of
 508 less than 2.5 alters and high social capital was operationalized as having more than 2.5 alters
 509 providing expressive or instrumental support.

510 ^b Low PSO total score ranges from 4-13.99, medium PSO total score ranges from 14-21.99, and a
511 high PSO total score ranges from 22 to 28. Scoring is based on frequency of opportunities to
512 practice professional skills. See Authors (2024) for additional information on score
513 interpretation.

514 ***Data collection***

515 Each interview guide was tailored to participants' responses on the USS and PSO
516 instruments, allowing us to align questions with their reported levels of social capital and
517 opportunities to practice specific professional skills (procedural, theoretical, and communicative
518 validation). We conducted and recorded semi-structured interviews via Zoom (Version 5.11.0),
519 with participant consent. A member of our research team designed the protocol with guidance
520 from the second author, who has extensive qualitative research experience. Interviews were
521 conducted with an ethic of care, using accessible, student-friendly language and avoiding jargon
522 related to social capital to ensure clarity and comfort for participants.

523 The interview consisted of two sections: the first focused on opportunities to practice
524 professional skills and the second on access to those opportunities through students' social
525 networks. We used the critical incident technique (Flanagan, 1954; Simmons & Trenor, 2010) to
526 prompt participants to recall specific instances where they practiced professional skills they had
527 rated highly in the PSO survey (procedural, communicative validation). We asked participants to
528 recall instances where they were able to practice certain professional skills which they had
529 reported practicing through the USS and PSO surveys. Our prompts focused on the top-rated
530 skills from their survey to explore how opportunities manifested in practice.

531 In the second section, we asked participants to reflect on individuals they named in the
 532 USS survey's name generator, exploring how those alters provided access to skill-building
 533 opportunities. This portion adapted elements from prior protocols (e.g., Authors, 2020) and
 534 enabled us to examine how different forms of instrumental and expressive support facilitated
 535 access across settings (procedural and communicative validation). Table 3 provides a summary
 536 of the interview structure and examples.

537 **Table 3**

538 *Overview of interview protocol including sample questions for each section*

Topic	Sample Questions
Professional skills: critical incidents ^a	In the survey, you indicated that you had many opportunities to develop communication skills, such as adapting your communication to fit different audiences. Can you tell me about a particular time where you felt that skill was being enhanced? What was the context of this situation? Who was involved in your learning experience?
Name generator critical incidents: professional skills	In the survey you mentioned that [Name of alter listed] has supported you in school. Can you tell me about how they contributed to your professional skills development?
Name generator critical incidents: general engineering studies	Tell me about how [Name of alter listed] has helped you be successful in your major or persist in engineering. Can you think of a specific time when [Name of alter listed] said or did something that contributed to your success or persistence?

539 ^aThis question was repeated to elicit critical incidents for other skills that were also highly rated,
 540 tailored to each participant's survey responses.

541 We used Zoom audio transcription function to generate transcripts. Members of our
 542 research team verified each interview transcript for accuracy and cleaned them to remove any
 543 potentially identifying information that could compromise participant identity (procedural and
 544 communicative validation).

545 ***Data analysis***

546 We analyzed our qualitative data in two distinct phases using a coding scheme (Table 4)
547 with Dedoose 9.2.12. We employed first and second cycle coding, as described by Saldaña
548 (2013), to capture thematic instances of social capital and professional skill opportunities (first
549 cycle) and the connection between their social capital and opportunities to practice professional
550 skills across institution types and school years (second cycle). We coded these two cycles using
551 deductive codes directly aligned with social capital theory and the PSO factors and inductive
552 coding emergent from the data (theoretical, communicative, procedural, and pragmatic
553 validation). The team met regularly to discuss ongoing analysis, findings, and implications
554 (process reliability).

555 The first cycle focused on coding participants' actions to utilize their social capital and
556 practice their professional skills. We deductively coded each instance of accessed social capital
557 as instrumental or expressive support (Lin, 2001) and then inductively coded how instrumental
558 and expressive support was accessed (e.g., expressive support: encouraging to persist). We used
559 emergent coding to define subcodes for both instrumental and expressive support to help us
560 capture actions specific to this context. For each instance of support, we also coded who
561 provided the support (i.e., alter; faculty) and the setting where the support was accessed (e.g.,
562 cocurricular; Simmons et al., 2017). We followed a similar process for coding instances of
563 opportunities to practice professional skill by deductively using the four professional skills
564 assessed by the PSO (Authors, 2024) and inductively coding how students practiced these skills
565 (e.g., shared leadership: considering others).

566 In the second cycle, we analyzed the coded excerpts for trends across institution type
 567 and school year separately. We categorically analyzed interview transcripts by school year and
 568 institution type and wrote memos during each coding session, identifying major overarching
 569 themes across both school year and institution type (procedural validation). Lastly, we
 570 deductively coded the setting where the support was accessed or skill was practiced using
 571 Simmons et al.'s (2017) definitions for curricular, cocurricular or extra-curricular.

572 **Table 4**

573 *Interview Coding Structure*

Phase	Accessed Social Capital	Opportunities to Practice Professional Skills		
Alter		Professors		
		Faculty Advisors		
		Teaching Assistant		
		Peer/Friends		
		Family		
Process	<i>Instrumental support</i> (Lin, 2001)	Involving in activities Helping with assignments Instilling curiosity in engineering	<i>Problem-solving</i> (Authors, 2024)	Problem-solving Generating ideas to solve problems Optimizing design Evaluating feasibility
	<i>Expressive support</i> (Lin, 2001)	Encouraging to persist Supporting during challenges	<i>Shared Leadership</i> (Authors, 2024)	Managing teams Considering others Supporting others Accepting responsibility Being professional
			<i>Communication</i> (Authors, 2024)	Communicating effectively

Setting^a

Curricular: Activities in the classroom

Cocurricular: Activities outside of the classroom related to engineering coursework

Extracurricular: Activities outside of the classroom not related to engineering coursework

574 ^aCodes are derived from definitions by Simmons et al. (2017). See publication for complete
 575 definitions.

576 **Results**

577 **Social capital and prediction of professional skill opportunities (RQ#1)**

578 The linear mixed model revealed that instrumental support ($\beta = 1.2, t = 5.0, p < 0.005$)
 579 was a significant main effect in predicting students' opportunities to practice professional skills,
 580 but expressive support was not (see Table 5). As well, the fixed effect size of instrumental and
 581 expressive support was 0.13 and 0.04, respectively (Table 5). The averages for each scale and
 582 subscale reflect positive relationships between instrumental support and opportunities to
 583 practice professional skills, meaning increases affected total average and each individual
 584 professional skill (see Table 6). The finding is unsurprising as instrumental support tends to offer
 585 actionable and professionally focused resources, such as opportunities for professional
 586 development, whereas expressive supports are more focused on support for emotional health
 587 and well-being (Martin et al., 2020).

588 **Table 5**

589 *Results from final linear mixed model*

Fixed Effects

<i>Predictors</i>	<i>Estimates (β)</i>	<i>p</i>	<i>Fixed Effect Size</i>
Intercept (b_0)	23.18	<0.001	4.77
Expressive SC	0.35	0.081	0.04
Instrumental SC	1.24	<0.001	0.13

Random Effects

σ^2	26.29
$\tau_{\text{Strata:Year}}$	0.96
N_{Strata}	4
N_{Year}	5

ICC	0.04
Conditional R ²	0.102

590

591 **Table 6**592 *Relationship between instrumental support average and average for each professional skill and*593 *PSO total score*

Quantiles	Instrument. support avg.	PSO avg	Shared leadership avg.	Business avg.	Problem- solving avg.	Com. avg.
0%	0	23.6	4.9	3.7	5.1	5.4
25%	0.5	24.2	5.2	3.7	5.1	5.5
50%	1	25.3	5.3	4.2	5.4	5.6
75%	1.66	26.9	5.6	4.5	5.7	5.9
100%	5	30.2	6.1	6.0	6.1	6.0

594 *Note.* Sample sizes for each quartile differ: 0 % quartile ($n = 267$), 25% quartile ($n = 303$), 50%595 quartile ($n = 361$), 75% quartile ($n = 301$) and 100% quartile ($n = 2$).596 **Potential mediators of social capital and professional skill opportunities? (RQ #2)**

597 We examined the random effects to explore how institution type and school year, both
 598 independently and in combination, contribute to students' access to opportunities to practice
 599 professional skills. While random effects do not test statistical significance directly, they
 600 highlight patterns of variation that may inform the model's structure and interpretation.

601 When modeled independently, institution type showed little variation in mean from the
 602 population mean. For instance, research institutions had a group-level intercept of $b_0 = 0.002$,
 603 while undergraduate institutions were slightly below the mean ($b_0 = -0.013$), with a total range
 604 of only 0.03. These small differences suggest that institution type alone does not meaningfully

605 affect access to opportunities. In contrast, when we examined nested groups—students
606 grouped by both institution type and school year—more meaningful differences emerged. The
607 lowest opportunities were observed among first-year students at undergraduate institutions
608 ($b_0 = -1.33$), while the highest were among fifth-year and above students at research institutions
609 ($b_0 = 1.78$). Notably, across institution types, first-year students consistently reported lower
610 access than more advanced peers. Additionally, students in their second or third year at HBCUs
611 or HSIs/MSIs often had means below the population mean (e.g., second-year HBCU students:
612 $b_0 = -0.89$), whereas students in their later years (fourth year and beyond) showed positive
613 intercepts across all institution types indicating means above the population mean.

614 These results suggest that access to opportunities to practice professional skills
615 increases over time, especially at research institutions, and support the mediating role of school
616 year and institution type identified in our model. Appendix A provides the full list of the
617 intercept values across nested groups.

618 **How students use social capital to access opportunities to practice professional skills across**
619 **school year and institution type (RQ#3) and how students describe those opportunities**
620 **(RQ#4)**

621 To answer RQ#3 and RQ#4 qualitatively, we first address how the data reflect
622 differences between expressive and instrumental supports and how students use their social
623 capital to access opportunities to practice professional skills. We then summarize student
624 descriptions of the opportunities they used to practice professional skills in curricular,
625 cocurricular, and extracurricular settings, facilitated by different individuals in their networks.

626 ***Expressive Supports***

627 Participants described utilizing expressive support—that is, supports that encourage
628 emotional, physical, and mental health—from strong ties (e.g., friends, family; Lin, 2001) to
629 bolster their persistence in engineering. Students did not rely on expressive support to create
630 or access opportunities to practice their professional skills. Although no participants related
631 expressive support to their ability to practice professional skills, our findings suggest that these
632 supports may more generally contribute to the decision to persist in practicing professional
633 skills when difficulties arise.

634 ***Instrumental Supports***

635 Students described a variety of alters in their social networks who provided
636 opportunities to practice professional skills through instrumental supports across school years
637 and institution types (Table 7). They utilized relationships with professors, advisors, and peers
638 to access a multitude of opportunities to practice professional skills in curricular, cocurricular,
639 and extracurricular contexts (Table 8).

640 **Table 7**

641 *Sources of students' instrumental support leading to professional skill opportunities*

Alter	Type of Instrumental Support	Context
Professors	Involving in activities	Curricular cocurricular
	Introducing to connections	
Advisors	Involving in activities	Cocurricular
	Introducing to connections	
	Supporting with resources	
Peers	Involving in activities	Cocurricular, extracurricular

642

643

644 **Table 8**645 *Students' social capital accessed to practice different professional skills*

Source of support (alter)	Professional skill	Context
Professors, peers	Shared leadership (leadership and teamworking)	Curricular, cocurricular
Professors, advisors, peers	Communication	Cocurricular
Professors, advisors	Problem-solving	Curricular, cocurricular

646

647 ***Curricular Settings***648 *Professors in curricular contexts*

649 Students' access to professional skill opportunities in curricular contexts was primarily
 650 dependent on leveraging weak ties with the instructors teaching their courses. Students
 651 reported that many of their opportunities to practice professional skills came through their
 652 professors, whose teaching provided such opportunities. These reports came more frequently
 653 from first- and second-year students as well as students at undergraduate institutions who
 654 relied on curricular opportunities, especially in their introductory level (i.e., first and second
 655 year) engineering courses to practice professional skills. As the examples students provided
 656 were often in required courses, curricular opportunities provided easy access to professional
 657 skill practice opportunities at early points in students' academic careers.

658 Students across all institutions and across school years reported utilizing engineering
 659 design coursework to improve their problem-solving skills. While some participants discussed
 660 practicing other professional skills, such as communication and shared leadership skills, in
 661 curricular contexts they often described these other skills in direct relation to problem-solving

662 skill practice. For example, Bennett, a second-year student at a research university, recalled

663 that in a design course,

664 we had to design a robot to complete some tasks involving sorting different size balls....

665 [The task] involved a lot of problem-solving in terms of weight constraints [and] having

666 to use the right motors.... [It] was really fun for problem-solving [and] working in a team.

667 Bennett's experience illustrates the interrelation of technical expertise and problem-solving

668 skills, which aligns with the simultaneous practice of these skills in engineering course contexts

669 (Litzinger et al., 2011).

670 Participants from undergraduate institutions in particular relied on curricular context for

671 professional skill practice and attributed many of their opportunities to practice those skills in a

672 curricular context to stronger relationships and higher frequency of interaction between

673 students and faculty due to small class sizes (Beattie & Thiele, 2016). Jackelob, a student at an

674 undergraduate institution, recalled how his senior design professor spent time with him to

675 overcome and reflect on a teamwork issue, and that the professor "was helpful with the

676 disagreements" that arose in Jackelob's senior design project team.

677 [T]hat was something I was able to go into his office and we spent a decent amount of

678 time unpacking that, trying to figure out what had happened, what had really gone on

679 there. That type of his perspective was very valuable in those types of things.

680 As well, a professor from another class provided invaluable feedback throughout Jackelob's

681 senior design experience "even though he had no obligation to do so, he wasn't our advisor or

682 anything, he still spent a lot of time working with us and discussing." These stronger

683 connections from more frequent interactions may contribute to stronger social networks and

684 increased interaction frequency between professors and students at these institutions than
685 others.

686 At the same time, curricular contexts were most important for professional skill practice
687 in the first and second years of college, and students reported relying on curricular contexts less
688 heavily in their third and fourth years as their social capital grew. Pennelope, a student at an
689 HSI/MSI institution, recalled a teamwork experience that helped practice professional skills
690 from her first year in college, two years earlier, thus:

691 [W]e had to develop a prototype of a prosthetic for my biomedical engineering class.... It
692 was a group project, and I don't really know the people I was in a group with.

693 Everybody's going to have their own idea of things. In those situations, I think it's
694 important to do my fundamental research and then, hear people out, give my own
695 input, and then, try to decide. If someone says, "Oh, we should make it out of this
696 material," I have to look at that and be like, "Okay, is that durable? Is that going to hold?
697 Is that cost efficient? Is this going to work?" If not, then you get to say, "No, let's find
698 something else."... [W]hen judging feasibility of different ideas, it's important to relate it
699 back to your main goal over and over again.

700 According to her account, Pennelope had the opportunity to practice problem-solving skills in
701 her first year throughout the team project by evaluating multiple designs under the engineering
702 constraints of the assignment. This experience related to Pennelope's first year, and our data
703 shows that students rely less on structured curricular contexts to practice professional skills as
704 they develop broader social networks.

705 ***Cocurricular Settings***

706 *Faculty advisors and professors in cocurricular contexts*

707 Students reported practicing their professional skills through cocurricular
708 opportunities—that is, opportunities that complement what students are learning in their
709 engineering courses but are not directly connected to their coursework—such as teaching
710 assistantship opportunities and undergraduate research with faculty (Simmons et al., 2017).

711 These contexts allowed them to practice leadership and communication skills, sometimes with
712 high levels of autonomy.

713 Participants frequently discussed discovering undergraduate research opportunities
714 through professors and faculty advisors who directed them to meet faculty conducting research
715 in the participant's area of interest. Frank described how his relationship with one faculty in his
716 engineering department led him to make connections with other faculty in the department that
717 ultimately led to the research opportunity he was working on at the time of the interview. Thus,
718 for multiple participants, instrumental support led to opportunities to practice professional
719 skills in participating in research opportunities. Disseminating and presenting their research
720 findings in conference proceedings and journals became an opportunity to practice
721 communication skills, and the research process itself posed challenges that became
722 opportunities to practice professional skills.

723 A few first- and second-year students had already started practicing professional skills in
724 undergraduate research. Olin, a first-year student at an HBCU, described generating ideas to
725 meet a research goal of creating experimental module kits for all engineering fields as part of
726 his undergraduate research position. Olin highlighted the autonomy he had to set objectives
727 within that goal and manage the tasks associated with it. In this way he had practiced problem-

728 solving skills, shared leadership (i.e., being a teammate and a leader), and communication skills
729 through the deliverables he was assigned to create.

730 The difference in the opportunities of students of higher class standing like Heather and
731 those of lower class standing like Olin demonstrate how social capital is not a static entity and
732 changes over time, increasing involvement in research efforts and providing more intellectual
733 contribution to the work. Heather's experience undertaking research at a research university as
734 a fourth-year student was common amongst third and fourth year students. She described how
735 her professor encouraged her to write a journal manuscript about her experiences in
736 undergraduate research and took her to a professional conference in biomedical engineering.
737 Her interactions with professors at schools where she was applying to attend graduate school
738 were very encouraging. All of these experiences amounted to opportunities to practice written
739 and oral communication skills for Heather, and such experiences were typical for students later
740 in their college years. The close working relationships that students in their third and fourth
741 years developed with professors generally led to opportunities to practice high level
742 professional skills.

743 Teaching assistantships, while less commonly mentioned, also provided valuable
744 opportunities to practice professional skills, specifically leadership and communication skills.
745 For example Heather said this about serving as a teaching assistant for a statistics class for
746 second-year students:

747 [The students] were not only struggling with the class, but they were struggling with
748 their career paths. So, I was there, even though I was already in my major, I was there to
749 redirect them.... This girl was in materials science, but she wanted to do research [in]

750 bioengineering and I'm like, "Why are you in materials science if you want to do
751 [something else]? Here, I'll help you. Jump in my office hours. We'll go over your resumé
752 [and] get you into the bioengineering field."... Even in harsh times I was able to help her
753 pursue her dreams.

754 Heather's description demonstrates how she practiced her leadership skills, through
755 "redirecting" other students, and communication skills, through advising and giving feedback.
756 She also served as a source of social capital to second-year students.

757 Students who accessed teaching assistantships earlier in their college trajectory also
758 described benefits of those opportunities to practice professional skills. Bennett, a second-year
759 student, said that seeing how she could "hel[p] other students" through her teaching
760 assistantship had helped "develo[p] [her] confidence and skill sets, and also encourag[ed] [her]
761 to keep researching, keep learning so that [she could] help other people better." The professor
762 who was in charge of Bennett's teaching assistantship also provided instrumental supports,
763 such as help with her resumé and writing recommendation letters for her.

764 *Industry professionals in cocurricular settings*

765 Other cocurricular activities students mentioned included industry internships and co-
766 ops, which offered opportunities for students to further their communication skills
767 (encompassing writing, presentations, and phone conversations) and expand their professional
768 networks. Ingrid, a third-year student at an HBCU, described how his boss went over emails
769 with him that were intended for the client and they edited them together. He said that this
770 helped him understand "how to email teachers and other students, and putting the information
771 I needed in there so that everybody could understand."

772 *Friends and peers in cocurricular settings*

773 Students across all school years and institution types accessed cocurricular
774 opportunities—such as engineering clubs and student chapters of engineering professional
775 societies—through entry points made available by peers. These student-driven cocurricular
776 activities were available to students at all academic levels and were more varied in terms of
777 professional skills practiced (e.g., communication, leadership, and problem-solving skills) than
778 those associated with curricular and cocurricular supports from faculty and advisors. However,
779 there were fewer instances of student-driven cocurricular activities than faculty-provided
780 curricular and cocurricular opportunities (e.g., teaching assistantships).

781 Samantha, a first-year student at an HSI/MSI institution, was among those who
782 referenced student-driven cocurricular activities. More senior students invited Samantha to
783 participate in a make-a-thon event that required that every team include a first- or second-year
784 member, and this gave her experience practicing problem-solving skills. She said of the team:

785 They all worked [together] really nicely. So there was leadership and critical thinking and
786 there was the creative part of the project. It was kind of nice to see each part of the
787 project and how they complement each other. And I think that kind of influenced me to
788 learn a little bit about [leadership, critical thinking, and creativity] and apply it on my
789 own project later on.

790 Samantha's experience of accessing opportunities through her social capital aligns with past
791 research showing that more advanced peers often have greater access to resources (Martin et
792 al., 2020) and can use these resources to provide opportunities to younger students. Rachel, a
793 second-year student at an HSI/MSI institution, also accessed a cocurricular opportunity because

794 of a peer; a friend of hers contacted her over the summer and asked her to join the executive
795 board of her school's chapter of the National Society of Black Engineers. Rachel said that she
796 experienced "a lot of growth" through serving as treasurer, including "develop[ing] more public
797 speaking skills, learning how to speak to a large crowd." She had also developed her leadership
798 skills by running meetings of 20 to 50 people.

799 ***Extracurricular Settings***

800 *Peers in Extracurricular Settings*

801 Most students participated in extracurriculars that were related to their engineering
802 identity in some way but did not necessarily supplement their course work. For example,
803 Samantha served as a representative on her university's student government as a
804 representative for the College of Engineering. A few were involved in activities unrelated to
805 their engineering coursework. These students shared their reason for participation as having
806 little to do with professional skill growth and instead focused on social activities and
807 employment opportunities. For example, Christina attributed her involvement in the Japanese
808 student association to social opportunities, and Olin was paid to work as committee member
809 for the university.

810 **Discussion**

811 **Social capital as a predictor (RQ#1)**

812 Our quantitative results showed that students' social capital—in the form of
813 instrumental supports—is strongly predictive of their opportunities to practice professional
814 skills, explaining approximately 10% of the variance in skill levels. While expressive supports are
815 crucial to engineering students' persistence and well-being in their majors (Puccia et al., 2021),

816 our findings differ in that it is instrumental supports that are the most crucial for professional
817 skill opportunities. The value of instrumental support in providing access to professional skill
818 development opportunities aligns with prior research on agricultural students, which found that
819 participation in cocurricular activities offering instrumental resources—such as major-specific
820 organizations and networks linked to professional associations—accounted for a significant
821 portion (33%) of students' professional skill development (Gholami et al., 2020).

822 When analyzing the qualitative findings in light of the quantitative results, we explored
823 social capital as a mechanism to access opportunities to practice professional skills. Similar to
824 the quantitative findings, the qualitative findings produced little to no evidence of engineering
825 students using expressive supports to access opportunities to practice professional skills.
826 Instead, we found evidence of students mobilizing instrumental supports from weak ties with
827 faculty who taught their courses to access professional opportunities. Students also reported
828 instrumental supports from faculty advisors, professors, industry professionals, and peers in
829 cocurricular settings. These findings illustrate the strength of an explanatory mixed methods
830 research design, where our quantitative results found a significant relationship between
831 instrumental supports and opportunities to practice professional skills, and our qualitative
832 findings shed light on how engineering students mobilized these instrumental supports to
833 practice professional skills.

834 While we found that instrumental social capital was predictive of opportunities to
835 practice professional skills, some interview participants with low levels of instrumental social
836 capital still shared rich opportunities to practice professional skills (see Table 2). These instances
837 were less common than students who had high levels of instrumental social capital and

838 professional skill practice opportunities but still highlighted that methods of accessing
839 opportunities for professional skill practice can come from outside of one's social capital. These
840 findings opens potential future work on holistic understandings of how engineering students
841 access opportunities to practice professional skills.

842 **Role of institution type and year in school (RQ#2)**

843 The nested relationship between institution type and school year played a modest but
844 meaningful role in predicting students' opportunities to practice professional skills. Because
845 data were collected in 2022, we anticipated that students' entry year relative to the COVID-19
846 pandemic might affect their access. During the early phases of the pandemic, instructors
847 struggled to recreate pedagogical environments conducive to collaboration and skill
848 development in online formats (Emberley et al., 2022). These disruptions may partially explain
849 why school year accounted for most of the observed random effects, with more advanced
850 students (i.e., those in their fourth and fifth years) reporting greater access to professional skill
851 opportunities across all institution types.

852 However, these findings are consistent with our qualitative results and existing literature
853 suggesting that undergraduate engineering students' social capital is temporal, that is, it builds
854 over time. Prior work has shown that students both retain early ties (e.g., family, K-12 peers)
855 and gradually expand their networks through academic and cocurricular engagement (Martin et
856 al., 2020; Puccia et al., 2021). Our qualitative data similarly indicated that students' later
857 academic years involved more intentional leveraging of faculty, research mentors, and peer
858 networks.

859 While institution type alone showed limited predictive power, differences became
860 clearer when considered in combination with school year. First-, second-, and third-year
861 students at HBCUs, HSIs/MSIs, and undergraduate institutions consistently reported below-
862 average access, while students at research institutions reported above-average access after
863 their first year. This pattern may reflect structural disparities in institutional resources, as
864 research-intensive universities typically offer greater access to research programs, faculty
865 networks, and funding for professional development (Williams et al., 2019; Fletcher et al.,
866 2024).

867 These findings carry important implications for engineering programs committed to
868 expanding equitable access to skill-building opportunities. The lower access reported by early-
869 career students, especially at less-resourced institutions, underscores the need for intentional
870 scaffolding of professional learning from the outset of students' academic journeys. In contrast,
871 the relatively higher access seen in later years and at research institutions points to the
872 cumulative advantages of structured environments and strong support networks. Taken
873 together, these results suggest that equitable access is not automatic—it must be cultivated
874 through both institutional investment and proactive mentoring, particularly in students' early
875 years.

876 **Accessing curricular activities (RQ#3 and RQ#4)**

877 In pursuing a deeper understanding of our quantitative results, we qualitatively explored
878 how students across varying institution types and school years accessed support that led to
879 professional skill development. While coursework does not fit within the traditional
880 conceptualization of resources being accessed through individuals' social networks (i.e., as a

881 source of social capital; Mishra, 2020), we found that students accessed opportunities to
882 practice problem-solving skills through weak ties with faculty and the engineering coursework
883 assigned. Students in their first and second years of their engineering major, as well as students
884 at undergraduate institutions, relied more heavily on curricular professional skill opportunities
885 than other students. For first- and second-year students, this reflected their nascent social
886 networks; for students at undergraduate institutions, it reflected lower access to undergraduate
887 research and teaching assistantship opportunities (Dahlberg et al., 2021). Additionally, course
888 work provided a rich but narrow variety of opportunities to practice professional skills, limited
889 primarily to problem-solving skills.

890 **Accessing cocurricular activities (RQ#3 and RQ#4)**

891 Our qualitative results demonstrated that student access to cocurricular activities varied
892 heavily depending on their institution type and school year. Literature shows that
893 underrepresented and minoritized engineering undergraduate students often find support in
894 cocurricular spaces, such as professional organizations, that bolsters their sense of belonging
895 and persistence in their engineering studies (Campbell-Montalvo et al., 2022a, 2022b; Skvoretz
896 et al., 2020; Smith et al., 2021). More broadly, we found in our qualitative data that students
897 from undergraduate institutions were less likely to access cocurricular opportunities to practice
898 professional skills than their peers at HBCU, HSI/MSI, and research institutions. This is a novel
899 finding and could be partially attributed to the high teaching and service loads that faculty at
900 many undergraduate institutions carry. When combined with the documented tendency for
901 these institutions to have fewer graduate assistants to assist faculty or lead research labs, these
902 higher teaching and service loads could be reducing faculty's availability to mentor

903 undergraduate researchers and teaching assistants at the same rate as their peers at highly
904 research-intensive institutions (Dahlberg et al., 2021). Faculty play crucial roles in aiding
905 engineering students' engineering identity, persistence in their majors, and career
906 development; without these supports, the retention and well-being of marginalized students
907 may be particularly at risk (Sausner et al., 2024).

908 In interviews, students in their third and fourth year and students at research
909 institutions described leveraging support from faculty advisors and professors to become
910 involved in undergraduate research and teaching assistantships, where they practiced a diverse
911 set of professional skills such as communication, shared leadership, and problem-solving. Our
912 findings align with those of Martin et al. (2021), who found faculty provided career
913 development support in the form of research opportunities. From students' descriptions of
914 diverse professional skill development opportunities through undergraduate research and
915 teaching assistantships, we concluded that students rely on cocurricular supports to develop the
916 diverse array of professional skills they need to thrive in modern engineering workplaces.

917 Our interviews also revealed that first- and second-year students seldom accessed
918 cocurricular opportunities compared to their third- and fourth-year peers. Social ties can grow
919 over time with prolonged engagement between individuals (Granovetter, 1973), and the
920 number of social ties is likely to increase in environments where individuals frequently engage
921 (Corbin et al., 2023). As a result, we found that students' social networks expanded over the
922 course of their undergraduate degree to include more professors in their field with whom they
923 may interact in smaller, field-specific courses. Our finding is consistent with other literature that
924 discusses the temporal nature of social capital, where students develop engineering-related

925 social networks over time, and therefore can access opportunities from a larger number of
926 alters as their network grows (Martin et al., 2020; Puccia et al., 2021).

927 In investigating the peer-to-peer social networks as described in participants' survey
928 responses and interviews, we found that students accessed instrumental supports from friends
929 and peers through cocurricular activities, in line with previous literature (Garrett et al., 2021;
930 Martin et al., 2020). Cocurricular opportunities such as student-led engineering clubs and
931 professional societies provided opportunities for students to practice practicing problem-
932 solving, communication, and shared leadership.

933 The role of friends and peers in accessing cocurricular opportunities showed no
934 discernable differences across institution type or school year in the qualitative findings.
935 Likewise, institution type did not affect how students reported accessing professional skill
936 opportunities from friends and peers. However, in the few situations where first- and second-
937 year students shared that they accessed support through cocurricular organizations, their roles
938 differed from those of their more advanced peers. Less advanced students described being
939 assisted and guided by their peers to access professional development opportunities through
940 their organizations, while more advanced students described taking active and leadership roles
941 in organizations and clubs, creating deeper and rich opportunities to refine their communication
942 and leadership skills.

943 **Limitations**

944 Our findings should be interpreted with awareness of the context in which data were
945 collected, particularly the varying impacts of the COVID-19 pandemic. Students' educational
946 experiences differed based on their year in school and their institution's pandemic response.

947 While we expected disruptions during students' first year to influence access to social capital,
948 especially for second- and third-year students, our findings did not indicate this was a major
949 source of variance. Another limitation relates to the fact that our sampling focused on variation
950 across institution type and school year, which limited our ability to examine differences in social
951 capital and opportunity access by race, gender, or other intersecting identities. Future studies
952 should explore these dimensions to better understand structural inequities in access to
953 professional skill development.

954 Despite intentional recruitment efforts, students from HBCUs were underrepresented in
955 our sample. We mitigated this by oversampling and conducting careful data validation, resulting
956 in comparable variance in social capital scores between HBCU and research institutions.
957 Nonetheless, future research should focus more deeply on HBCU contexts to better understand
958 student experiences and opportunity structures. Finally, student-reported opportunities to
959 develop business management skills were lower than for other professional skills, which limited
960 the emphasis on this area in interviews. Future work should examine why this gap exists and
961 how to expand access to these less commonly practiced, but equally important, skill areas.

962 Additionally, our study is limited to understanding the relationship between social
963 capital and opportunities for practicing professional skills and how social capital serves to
964 provide access to those opportunities. Future research should explore how students are
965 afforded those opportunities through means other than their social capital.

966 **Conclusion and Future Work**

967 Engineering undergraduate students need access to opportunities to foster their
968 development of professional skills that are essential for their growth as engineering

969 professionals. This study provides a significant contribution to understanding how engineering
970 students gain access to professional skill development opportunities by identifying where these
971 opportunities exist and then examining how social capital enables access to them. By combining
972 predictive modeling with qualitative analysis, we demonstrate that instrumental social capital is
973 a key mechanism through which students engage in professional development.

974 Our results show that engineering students draw on relationships with professors,
975 faculty advisors, and peers to access opportunities in curricular and cocurricular spaces,
976 particularly for practicing communication, leadership, and problem-solving skills. We also found
977 that access is not uniform. Students' ability to access social capital to practice professional skills
978 varies by institution type and academic year, with more advanced students and those at
979 research-intensive institutions reporting greater opportunities. This work thus moves beyond
980 prior studies focused on belonging or persistence to provide empirical and conceptual clarity on
981 the relationship between social capital and access to professional learning.

982 By identifying the mechanisms through which students access professional development
983 opportunities, this study offers actionable insights for faculty, advisors, and institutional leaders
984 aiming to promote equitable access. Supporting the cultivation of instrumental social capital,
985 particularly for early-year students and those at smaller or lower-resourced campuses, can help
986 close opportunity gaps and better prepare all students for the demands of engineering practice.
987 Faculty can play a vital role by connecting students to research, teaching assistantships, tutoring
988 roles, and cocurricular activities such as engineering clubs or professional societies. At teaching-
989 focused institutions, faculty may also guide students toward external opportunities, such as
990 summer undergraduate research programs at research-intensive universities or participation in

991 international exchanges, that can broaden access to social capital beyond local constraints.

992 Extracurricular spaces like student government offer further avenues for practicing

993 communication and leadership skills, and peer encouragement remains an important catalyst in

994 helping students navigate and pursue these opportunities.

995 In sum, this study provides empirical and conceptual clarity on how engineering

996 students' social capital functions as a gateway to professional skill development opportunities.

997 By identifying instrumental support as a key predictor of access, and revealing how students

998 mobilize these networks across institutional and developmental contexts, we illuminate a

999 pathway that is often overlooked in engineering education. As professional formation is deeply

1000 relational and unevenly distributed, expanding access to supportive networks must become a

1001 priority for institutions committed to equity. Future work should continue to explore how social

1002 capital evolves over time and intersects with students' identities to shape their professional

1003 trajectories.

1004 **Declarations**

1005 ***Human ethics and consent to participate***

1006 This work was approved by [blinded for review] Institutional Review Board under protocol

1007 number [blinded for review].

1008 ***Availability of data and materials***

1009 The datasets used and/or analyzed during the current study are available from the

1010 corresponding author on reasonable request.

1011 ***Competing interests***

1012 The authors declare that they have no competing interests.

1013 **Funding**

1014 Funding blinded for review.

1015 **Authors' contributions**

1016 Author 1 (A1), A2, and A5 made substantial contributions to the conception, design, and
1017 supervision of this work. A3 analyzed and interpreted the quantitative dataset. A4 analyzed and
1018 interpreted the interview data along with A3 and A6. A3 and A4 were major contributors in
1019 writing and editing the manuscript; A6, A2, A5, and A1 substantially edited and reviewed this
1020 manuscript. All authors read and approved the final manuscript.

1021 **Acknowledgements**

1022 Acknowledgements blinded for review.

1023 **Consent to Publish Declaration**

1024 Not applicable.

1025 **References**

1026 ABET. (2021). *Criteria for accrediting engineering programs*.

1027 [https://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-
1028 engineering-programs-2022-2023/](https://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-engineering-programs-2022-2023/)

1029 Avsec, S., & Savec, V. F. (2019). Creativity and critical thinking in engineering design: The role of
1030 interdisciplinary augmentation. *Global Journal of Engineering Education*, 21(1), 30–36.

1031 Beard, T. A. (2021). Emerging Social Capital in the Lives of Latinx First-Generation College
1032 Students: The Case for “Apprentice Agents” in a Social Capital Framework. *Journal of
1033 First-Generation Student Success*, 1(2), 92–110.

1034 <https://doi.org/10.1080/26906015.2021.1940389>

1035 Blair, E., & Blair, J. (2014). *Applied survey sampling*. Sage Publications.

1036 Beattie, I. R., & Thiele, M. (2016). Connecting in Class? College Class Size and Inequality in
1037 Academic Social Capital. *The Journal of Higher Education*, 87(3), 332–362.

1038 <https://doi.org/10.1080/00221546.2016.11777405>

1039 Brouwer, J., Jansen, E., Flache, A., & Hofman, A. (2016). The impact of social capital on self-
1040 efficacy and study success among first-year university students. *Learning and Individual
1041 Differences*, 52, 109-118. <https://doi.org/10.1016/j.lindif.2016.09.016>

1042 Buckley, P., & Lee, P. (2021). The impact of extra-curricular activity on the student experience.
1043 *Active Learning in Higher Education*, 22(1), 37–48.

1044 <https://doi.org/10.1177/1469787418808988>

1045 Campbell-Montalvo, R., Kersaint, G., Smith, C. A., Puccia, E., Sidorova, O., Cooke, H., ... & Lee, R.
1046 (2022a). The influence of professional engineering organizations on women and
1047 underrepresented minority students' fit. *Frontiers in Education*, 6(1), 755471.

1048 <https://doi.org/10.3389/feduc.2021.755471>

1049 Campbell-Montalvo, R., Kersaint, G., Smith, C. A., Puccia, E., Skvoretz, J., Wao, H., ... & Lee, R.
1050 (2022b). How stereotypes and relationships influence women and underrepresented
1051 minority students' fit in engineering. *Journal of Research in Science Teaching*, 59(4), 656-
1052 692. <https://doi.org/10.1002/tea.21740>

1053 Charyton, C., & Merrill, J. A. (2009). Assessing general creativity and creative engineering design
1054 in first year engineering students. *Journal of Engineering Education*, 98(2), 145–156.

1055 Cimino, R. T., Streiner, S. C., Burkey, D. D., Young, M. F., Bassett, L., & Reed, J. B. (2024).
1056 Comparing first-year engineering student conceptions of ethical decision-making to

1057 performance on standardized assessments of ethical reasoning. *Science and Engineering*
1058 *Ethics*, 30(3), 23. <https://doi.org/10.1007/s11948-024-00488-y>

1059 Corbin, H., Aulakh, N., Herrman, A., Peterson, C., Mollah, S. S., Riley, D. R., & Mallouk, K. (2023,
1060 June). *The effect of a collaborative environment on engineering students' social networks*
1061 [Paper presentation]. 2023 ASEE Annual Conference & Exposition, Baltimore, Maryland.
1062 <https://doi.org/10.18260/1-2--44094>

1063 Coyle, E. J., Jamieson, L. H., & Oakes, W. C. (2005). EPICS: Engineering projects in community
1064 service. *International Journal of Engineering Education*, 21(1), 139–150.

1065 Creswell, J. W., & Clark, V. L. P. (2017). *Designing and conducting mixed methods research*. Sage
1066 Publications.

1067 Creswell, J. W., & Guetterman, T. C. (2019). *Educational research: Planning, conducting, and*
1068 *evaluating quantitative and qualitative research*. Pearson.

1069 Dahlberg, C. L. L., King-Smith, C., & Riggs, B. (2021). Building a laboratory at a Primarily
1070 Undergraduate Institution (PUI). In *BMC proceedings* (Vol. 15, No. Suppl 2, p. 2). London:
1071 BioMed Central. <https://doi.org/10.1186/s12919-021-00208-5>

1072 Dall'Alba, G. (2009). Learning professional ways of being: Ambiguities of becoming. *Educational*
1073 *Philosophy and Theory*, 41(1), 34–45. <https://doi.org/10.1111/j.1469-5812.2008.00475.x>

1074 Dalrymple, O., & Evangelou, D. (2006). *The role of extracurricular activities in the education of*
1075 *engineers*. International Conference on Engineering Education, San Juan, PR, 24–30.

1076 Dym, C. L., Agogino, A. M., Eris, O., Frey, D. D., & Leifer, L. J. (2005). Engineering Design Thinking,
1077 Teaching, and Learning. *Journal of Engineering Education*, 94(1), 103– 120.
1078 <https://doi.org/10.1002/j.2168-9830.2005.tb00832.x>

1079 Emberley, A. C., Douglas, K. A., Martin, J. P., Short, T., & Soto-Pérez, R. A. (2022). Promoting
1080 student support in an online fundamental of electronics course. *IEEE Transactions on*
1081 *Education*, 65(4), 602-607. <https://doi.org/10.1109/TE.2022.3154674>

1082 Fletcher, T. L., & Nicholson, S., & Carr, C. A., & Boyd, B. (2024), Race to R1: An Analysis of
1083 Historically Black Colleges or Universities (HBCUs) Potential to Reach Research 1
1084 Carnegie Classification® (R1) Status. *Paper presented at 2024 ASEE Annual Conference &*
1085 *Exposition*, Portland, Oregon. <https://doi.org/10.18260/1-2--47915>

1086 Feister, M. K., Zoltowski, C. B., Buzzanell, P. M., Oakes, W. C., & Zhu, Q. (2014, June 15–18).
1087 *Leadership in multidisciplinary project teams: Investigating the emergent nature of*
1088 *leadership in an engineering education context*. 2014 ASEE Annual Conference &
1089 Exposition, Indianapolis, IN, 24-846.

1090 Flanagan, J. C. (1954). The critical incident technique. *Psychological Bulletin*, 51(4), Article 4.
1091 <https://doi.org/10.1037/h0061470>

1092 Fox, G. A., Negrete-Yankelevich, S., & Sosa, V. J. (2015). *Ecological statistics: Contemporary*
1093 *theory and application*. Oxford University Press.

1094 Garrett, S. D., Martin, J. P., & Adams, S. G. (2021). Developing nontechnical professional skills in
1095 African American engineering majors through cocurricular activities. *IEEE Transactions*
1096 *on Education*, 65(3), 394–401. <https://doi.org/10.1109/TE.2021.3120210>

1097 Gholami, H., Alambeigi, A., Farrokhnia, M., Noroozi, O., & Karbasioun, M. (2020). The role of
1098 social capital in Iranian agricultural students' acquisition of generic skills. *Higher*
1099 *Education, Skills and Work-Based Learning*. <https://doi.org/10.1108/HESWBL-01-2019-0015>

1101 Glass, L. E. (2023). Social capital and first-generation college students: Examining the
1102 relationship between mentoring and college enrollment. *Education and Urban Society*,
1103 55(2), 143–174. <https://doi.org/10.1177/00131245221076097>

1104 Granovetter, M. S. (1973). The strength of weak ties. *American journal of sociology*, 78(6), 1360-
1105 1380.

1106 Henderson, J. A., Junqueira, W., Benjamin, L. S. S., Hines, E. M., Alarcón, J. D., Davis, J. L., &
1107 Cavazos, S. (2023). Circle of success—An interpretative phenomenological analysis of
1108 how Black engineering students experience success. *Journal of Engineering Education*,
1109 112(2), 403–417. <https://doi.org/10.1002/jee.20509>

1110 Hess, J. L., Beever, J., Zoltowski, C. B., Kisselburgh, L., & Brightman, A. O. (2019). Enhancing
1111 engineering students' ethical reasoning: Situating reflexive principlism within the SIRA
1112 framework. *Journal of Engineering Education*, 108(1), 82–102.
1113 <https://doi.org/10.1002/jee.20249>

1114 Hess, J. L., Kisselburgh, L. G., Zoltowski, C. B., & Brightman, A. O. (2016). *The development of
1115 ethical reasoning: A comparison of online versus hybrid delivery modes of ethics
1116 instruction*. 2016 ASEE Annual Conference & Exposition, New Orleans, LA.
1117 <https://doi.org/10.18260/1-2--29822>

1118 Henderson, J. A., Junqueira, W., Benjamin, L. S. S., Hines, E. M., Alarcón, J. D., Davis, J. L., &
1119 Cavazos, S. (2023). Circle of success—An interpretative phenomenological analysis of
1120 how Black engineering students experience success. *Journal of Engineering Education*,
1121 112(2), 403-417. <https://doi.org/10.1002/jee.20509>

1122 Hinkle, C. M., & Koretsky, M. D. (2019). Toward professional practice: Student learning
1123 opportunities through participation in engineering clubs. *European Journal of
1124 Engineering Education*, 44(6), 906–922.

1125 <https://doi.org/10.1080/03043797.2018.1477119>

1126 Hundhausen, C. D., Conrad, P. T., Carter, A. S., & Adesope, O. (2022). Assessing individual
1127 contributions to software engineering projects: A replication study. *Computer Science
1128 Education*, 32(3), 335–354. <https://doi.org/10.1080/08993408.2022.2071543>

1129 Indiana University Center for Postsecondary Research. (2021). *The Carnegie Classification of
1130 Institutions of Higher Education*. Carnegie Foundation for the Advancement of Teaching.

1131 Li, T., & Holloway, E., & Douglas, K. A., & Martin, J. P., & Bill, V., & Guanes Melgarejo, G. (2023).
1132 *Undergraduate's Social Capital and Engineering Professional Skills: Comparison between
1133 Different Types of Institutions*. Paper presented at 2023 ASEE Annual Conference &
1134 Exposition, Baltimore, Maryland. <https://doi.org/10.18260/1-2—42973>

1135 Lin, N. (2001). *Social capital: A theory of social structure and action*. Cambridge University Press.

1136 Litzinger, T., Lattuca, L. R., Hadgraft, R., & Newstetter, W. (2011). Engineering education and the
1137 development of expertise. *Journal of Engineering Education*, 100(1), 123–150.

1138 Martin, J. P., Miller, M. K., & Simmons, D. R. (2014). Exploring the theoretical social capital
1139 “deficit” of first generation college students: Implications for engineering
1140 education. *International Journal of Engineering Education*, 30(4), 822-836.

1141 Martin, J. P., Revelo, R. A., Stefl, S. K., Garrett, S. D., & Adams, S. G. (2016). *Ethnic student
1142 organizations in engineering: Implications for practice from two studies*. In Proceedings

1143 of the 2016 American Society for Engineering Education Annual Conference and
1144 Exposition. <https://doi.org/10.18260>

1145 Martin, J. P., Stefl, S. K., Cain, L. W., & Pfirman, A. L. (2020). Understanding first-generation
1146 undergraduate engineering students' entry and persistence through social capital
1147 theory. *International Journal of STEM Education*, 7(1), 1–22.

1148 <https://doi.org/10.1186/s40594-020-00237-0>

1149 Martin, J. P., Emberley, A. C., Douglas, K., & Soto-Perez, R. (2022). Engineering Students' Social
1150 Networks and Alters During the COVID-19 Pandemic. *International Journal of
1151 Engineering Education*, 38(5), 1643–1659.

1152 Meade, A. W., & Craig, S. B. (2012). Identifying careless responses in survey data. *Psychological
1153 Methods*, 17(3), 437.

1154 Millunchick, J. M., Brennan-Wydra, E., Henderson, T., Johnson, A., & Finelli, C. J. (2021). The role
1155 of college knowledge and proactive behavior on participation in cocurricular activities.
1156 *Journal of Engineering Education*, 110(1), 114–142. <https://doi.org/10.1002/jee.20380>

1157 Mishra, S. (2020). Social networks, social capital, social support and academic success in higher
1158 education: A systematic review with a special focus on 'underrepresented' students.
1159 *Educational Research Review*, 29. <https://doi.org/10.1016/j.edurev.2019.100307>

1160 Mitchell, J. E., Nyamapfene, A., Roach, K., & Tilley, E. (2019). Faculty wide curriculum reform: the
1161 integrated engineering programme. *European Journal of Engineering Education*, 46(1),
1162 48–66. <https://doi.org/10.1080/03043797.2019.1593324>

1163 Mondisa, J.-L. (2020). The role of social capital in African American STEM mentoring
1164 relationships. *Journal of Women and Minorities in Science and Engineering*, 26(2), 125–
1165 153. <https://doi.org/10.1615/JWomenMinorScienEng.2020022267>

1166 Moreira, R. G., Butler-Purry, K., Carter-Sowell, A., Walton, S., Juranek, I. V., Challoo, L., ... &
1167 Spaulding, A. (2019). Innovative professional development and community building
1168 activity program improves STEM URM graduate student experiences. *International
1169 Journal of STEM Education*, 6(1), 34. <https://doi.org/10.1186/s40594-019-0188-x>

1170 Nakagawa, S., Johnson, P. C., & Schielzeth, H. (2017). The coefficient of determination R² and
1171 intra-class correlation coefficient from generalized linear mixed-effects models revisited
1172 and expanded. *Journal of the Royal Society Interface*, 14(134), 20170213.
1173 <https://doi.org/10.1098/rsif.2017.0213>

1174 National Academies of Sciences, Engineering, and Medicine (with Committee on Improving
1175 Higher Education's Responsiveness to Regional STEM Workforce Needs: Identifying
1176 Analytical Tools and Regional Best Practices, Board on Higher Education and Workforce,
1177 & Policy and Global Affairs). (2016). *Promising practices for strengthening the regional
1178 STEM workforce development ecosystem*. National Academies Press.
1179 <https://doi.org/10.17226/21894>

1180 National Academy of Engineering. (2005). *Educating the engineer of 2020*. The National
1181 Academies Press. <https://nae.edu/25677/Educating-the-Engineer-of-2020>

1182 Ohland, M. W., Loughry, M. L., Woehr, D. J., Bullard, L. G., Felder, R. M., Finelli, C. J., Layton, R.
1183 A., Pomeranz, H. R., & Schmucker, D. G. (2012). The comprehensive assessment of team

1184 member effectiveness: Development of a behaviorally anchored rating scale for self-and
1185 peer evaluation. *Academy of Management Learning & Education*, 11(4), 609–630.

1186 Olewnik, A., Chang, Y., & Su, M. (2023). Cocurricular engagement among engineering
1187 undergrads: Do they have the time and motivation? *International Journal of STEM
1188 Education*, 10(1), 27. <https://doi.org/10.1186/s40594-023-00410-1>

1189 Pejcinovic, B., Bass, R. B., & Wong, P. (2018). *Assessing Scrum project management and
1190 teamwork in electrical and computer engineering courses*. 2018 ASEE Annual Conference
1191 & Exposition, Salt Lake City, UT. <https://doi.org/10.18260/1-2--29822>.

1192 Puccia, E., Martin, J. P., Smith, C. A. S., Kersaint, G., Campbell-Montalvo, R., Wao, H., Lee, R.,
1193 Skvoretz, J., & MacDonald, G. (2021). The influence of expressive and instrumental social
1194 capital from parents on women and underrepresented minority students' declaration
1195 and persistence in engineering majors. *International Journal of STEM Education*, 8(1), 20.
1196 <https://doi.org/10.1186/s40594-021-00277-0>

1197 Revelo, R. A., & Baber, L. D. (2018). Engineering resistors: Engineering Latina/o students and
1198 emerging resistant capital. *Journal of Hispanic Higher Education*, 17(3), 249-269.
1199 <https://doi.org/10.1177/1538192717719132>

1200 Salazar, C., Park, J. J., & Parikh, R. M. (2020). STEM student-faculty relationships: The influence
1201 of race and gender on access to career-related opportunities. *Journal of Women and
1202 Minorities in Science and Engineering*, 26(5).
1203 <https://doi.org/10.1615/JWomenMinorScienEng.2020031959>

1204 Saldaña, J. (2013). *The coding manual for qualitative researchers* (2nd ed.). Sage Publications.

1205 Sausner, E. B., Wentzel, C., & Pitarresi, J. (2024). "I know what I need to learn": The intersection
1206 of aspirational and navigational capitals for marginalized-identity STEM students. *Journal
1207 of Engineering Education*, 113(2), 488–508. <https://doi.org/10.1002/jee.20595>

1208 Secules, S., McCall, C., Mejia, J. A., Beebe, C., Masters, A. S., L. Sánchez-Peña, M., & Svyantek, M.
1209 (2021). Positionality practices and dimensions of impact on equity research: A
1210 collaborative inquiry and call to the community. *Journal of Engineering Education*,
1211 110(1), 19–43. <https://doi.org/10.1002/jee.20377>

1212 Simmons, D., & Trenor, J. (2010). Use of the critical incident technique for qualitative research in
1213 engineering education: An example from a grounded theory study. *2010 Annual
1214 Conference & Exposition Proceedings*, 15.1310.1–15.1310.13.
1215 <https://doi.org/10.18260/1-2--15712>

1216 Simmons, D. R., Creamer, E. G., & Yu, R. (2017). Involvement in out-of-class activities: A mixed
1217 research synthesis examining outcomes with a focus on engineering students. *Journal of
1218 STEM Education: Innovations and Research*, 18(2).
1219 <https://www.jstem.org/jstem/index.php/JSTEM/article/view/2238>

1220 Simmons, D. R., Van Mullekom, J., & Ohland, M. W. (2018). The popularity and intensity of
1221 engineering undergraduate out-of-class activities. *Journal of Engineering Education*,
1222 107(4), 611–635. <https://doi.org/10.1002/jee.20235>

1223 Skvoretz, J., Kersaint, G., Campbell-Montalvo, R., Ware, J. D., Smith, C. A. S., Puccia, E., Martin, J.
1224 P., Lee, R., MacDonald, G., & Wao, H. (2020). Pursuing an engineering major: Social
1225 capital of women and underrepresented minorities. *Studies in Higher Education*, 45(3),
1226 592–607. <https://doi.org/10.1080/03075079.2019.1609923>

1227 Smith, C. A. S., Wao, H., Kersaint, G., Campbell-Montalvo, R., Gray-Ray, P., Puccia, E., Martin, J. P.,

1228 Lee, R., Skvoretz, J., & MacDonald, G. (2021). Social capital from professional

1229 engineering organizations and the persistence of women and underrepresented minority

1230 undergraduates. *Frontiers in Sociology*, 6, 671856.

1231 <https://doi.org/10.3389/fsoc.2021.671856>

1232 Smith, E., Pardo, A., Mills, J., & Birbeck, D. (2024). Curriculum renewal to enhance the

1233 acquisition of professional skills and engagement with professional practice across

1234 engineering programs. *Australasian Journal of Engineering Education*, 29(2), 154-165.

1235 <https://doi.org/10.1080/22054952.2024.2384144>

1236 Sperling, J., Mburi, M., Gray, M., Schmid, L., & Saterbak, A. (2024). Effects of a first-year

1237 undergraduate engineering design course: Survey study of implications for student self-

1238 efficacy and professional skills, with focus on gender/sex and race/ethnicity.

1239 *International Journal of STEM Education*, 11(1), 8. <https://doi.org/10.1186/s40594-024-00467-6>

1240

1241 Vasquez, E. S., DeWitt, M. J., West, Z. J., & Elsass, M. J. (2020). Impact of team formation

1242 approach on teamwork effectiveness and performance in an upper-level undergraduate

1243 chemical engineering laboratory course. *International Journal of Engineering Education*,

1244 36(1B), 491–501.

1245 Volkwein, J., Lattuca, L., Terenzini, P., Strauss, L., & Sukhbaatar, J. (2004). Engineering change: A

1246 study of the impact of EC2000. *International Journal of Engineering Education*, 20(3),

1247 381–328.

1248 Volpe, E., Polmear, M., Simmons, D. R., & Weisenfeld, D. (2023). Exploring the role of social
1249 capital in civil engineering students' leadership development. *Journal of Civil Engineering
1250 Education*, 149(3), 04023002. <https://doi.org/10.1061/JCECD.EIENG-1870>

1251 Walther, J., Sochacka, N. W., & Kellam, N. N. (2013). Quality in interpretive engineering
1252 education research: Reflections on an example study. *Journal of Engineering Education*,
1253 102(4), Article 4. <https://doi.org/10.1002/jee.20029>

1254 Williams, K. L., Burt, B. A., Clay, K. L., & Bridges, B. K. (2019). Stories untold: Counter-narratives
1255 to anti-Blackness and deficit-oriented discourse concerning HBCUs. *American
1256 Educational Research Journal*, 56(2), 556-599.
1257 <https://doi.org/10.3102/0002831218802776>

1258 Wilson, D., Jones, D., Kim, M. J., Allendoerfer, C., Bates, R., Crawford, J., Floyd-Smith, T., Plett,
1259 M., & Veilleux, N. (2014). The link between cocurricular activities and academic
1260 engagement in engineering education: Cocurricular and engagement activities and
1261 academic engagement. *Journal of Engineering Education*, 103(4), Article 4.
1262 <https://doi.org/10.1002/jee.20057>

1263 Winberg, C., Bramhall, M., Greenfield, D., Johnson, P., Rowlett, P., Lewis, O., Waldock, J., & Wolff,
1264 K. (2020). Developing employability in engineering education: A systematic review of the
1265 literature. *European Journal of Engineering Education*, 45(2), 165–180.
1266 <https://doi.org/10.1080/03043797.2018.1534086>

1267 Zhu, Q., Zoltowski, C. B., Feister, M. K., Buzzanell, P. M., Oakes, W. C., & Mead, A. D. (2014). The
1268 development of an instrument for assessing individual ethical decision making in

1269 project-based design teams: Integrating quantitative and qualitative methods. *2014 ASEE Annual Conference & Exposition*, 24-1197.

1270

1271

Appendix A

1272

1273 **Table A**

1274 *Random effects intercepts—interpreted as variations from the population mean—for each*
 1275 *nested group.*

School year	Institution type	Random Effects Intercepts
-	Research	0.022
-	Undergraduate	-0.013
-	HSI/MSI	-0.011
-	HBCU	0.00059
1	Research	-0.64
1	Undergraduate	-1.33
1	HSI/MSI	-1.19
1	HBCU	-0.46
2	Research	0.0063
2	Undergraduate	-0.41
2	HSI/MSI	-0.89
2	HBCU	-0.22
3	Research	0.95
3	Undergraduate	-0.37
3	HSI/MSI	-0.59
3	HBCU	-0.17
4	Research	0.31
4	Undergraduate	0.64
4	HSI/MSI	0.95
4	HBCU	0.42
5	Research	1.78
5	Undergraduate	0.14
5	HSI/MSI	0.57
5	HBCU	0.49

1276

1277