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Abstract

The Time-Dependent Traveling Salesman Problem (TDTSP) extends the classical
TSP by allowing dynamic edge weights that vary with departure time, reflecting
real-world scenarios such as transportation networks, where travel times fluctu-
ate due to congestion patterns. TDTSP violates symmetry, triangle inequality,
and cyclic invariance properties of classical TSP, creating unique computational
challenges. In this paper, we propose a neural model that extends MatNet from
static asymmetric TSP to time-dependent settings by using an adjacency tensor to
capture temporal variations, followed by a time-aware decoder. Our architecture
addresses the unique challenge of asymmetry and triangle inequality violations
that change dynamically over time. Beyond architectural innovations, our research
reveals a critical evaluation insight: many practical TDTSP instances maintain the
same optimal solution regardless of time-dependent edge weights. This exposes a
fundamental limitation in current evaluation practices for TDTSP that rely solely
on average travel time metrics across all instances. Such metrics fail to effectively
distinguish between methods that genuinely capture temporal dynamics and those
that merely perform well on static routing problems. Instead, we present extensive
experiments on real-world datasets, evaluating our approach on both entire datasets
and specifically filtered instances where temporal dependencies alter the optimal
solution. Results show that our method achieves state-of-the-art average optimal-
ity gap on full instances and significant travel-time reduction on instances where
time-aware routing saves time. These results demonstrate state-of-the-art ability to
identify and exploit temporal dependencies, setting new standards for evaluating
time-dependent routing problems.

1 Introduction

The Traveling Salesman Problem (TSP) is a widely studied optimization problem with applications
in logistics and transportation. However, the classic TSP assumes static edge weights, failing to
capture real-world dynamics in which travel times vary with departure time due to traffic patterns.
This limitation is particularly relevant in urban environments where optimal routes during off-peak
hours may become inefficient during rush hour. As cities continue to grow and delivery demands
increase, the ability to optimize routes with time-dependent considerations becomes increasingly
valuable for logistics operations, environmental impact reduction, and customer service.

The Time-Dependent Traveling Salesman Problem (TDTSP) [23] extends the classical TSP by
incorporating time-varying edge weights. In TDTSP, the cost of traversing an edge depends not
only on the distance but also on the departure time from the origin node. This time dependency
reflects real-world scenarios where traffic patterns, weather conditions, or operational schedules
create dynamic travel costs throughout the day. Compared with the metric TSP, TDTSP violates the
symmetry, triangle inequality, and cyclic invariance properties, making it more challenging.
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While traditional exact and heuristic methods exist, finding near-optimal solutions efficiently remains
difficult. Recent Neural Combinatorial Optimization approaches using deep reinforcement learning
(DRL) have shown promise. However, current DRL approaches exhibit limitations in learning
spatiotemporal dynamics and in their evaluation methodology. Existing models either separate
the time-dependent adjacent tensor by node [38, 16] or by time [8], failing to capture both spatial
and temporal structures simultaneously. Meanwhile, existing works evaluate methods across all
instances in datasets, using only the average tour duration as the evaluation metric. Through our
analysis of real-world datasets from 12 cities, we identify a shared instance distribution, where
most instances randomly generated from a practical dataset maintain the optimal solution regardless
of time-dependent edge weights. Under such a distribution, a well-designed ATSP solver could
also achieve low average durations, rendering the metric insufficient to demonstrate the model’s
effectiveness in learning time dependencies. To overcome these limitations, we introduce a novel
neural model that learns spatial and temporal structures simultaneously, and a post-processing step to
improve solution quality based on the data distribution.

In summary, the contribution of the paper can be highlighted as:

1. Empirical analysis of practical TDTSP data, identifying the limitations of the evaluation
method in existing DRL work and proposing a new evaluation method.

2. An end-to-end neural network model that directly encodes the time-dependent adjacency
tensors, effectively capturing the complicated spatiotemporal dynamics in TDTSP.

3. An effective inference process to enhance the solution quality based on the data distribution.

4. We conduct comprehensive experiments on real-world datasets using the proposed evaluation
method, demonstrating our method’s state-of-the-art performance and strong support for
learning spatiotemporal dependencies.

2 Related Work

2.1 Time Dependent Traveling Salesman Problem

The Time-Dependent Traveling Salesman Problem (TDTSP) is used to refer to two different problems:
the scheduling problem where job time depends on the order in the sequence [30, 15, 1], and the
routing problem where the traveling time depends on the distance and departure time [23, 24, 21].
In this paper, we focus on the latter one. This problem is sometimes studied within the broader
framework of Dynamic TSP (DTSP) and Dynamic VRP (DVRP) [12, 38, 9, 32, 29].

Solution methods fall into three categories, each with distinct advantages and limitations:

Exact methods include Branch-and-Cut [10], Branch-and-Bound [2], and Constraint Programming
[26]. While these guarantee optimal solutions, they scale poorly to practical instances, with computa-
tional complexity growing exponentially with problem size.

Heuristic approaches such as Ant Colony Optimization [12, 25, 27], Monte-Carlo [4], Neighborhood
Search [36, 33], Tabu Search [17, 14], and Simulated Annealing [31] offer better scalability and can
handle larger instances. However, they can still not provide a satisfactory solution within a short
computational time.

Neural methods [38, 16, 8] use the Attention Model [18] structure and the REINFORCE [35]
training algorithm, providing remarkably short inference time and a small optimality gap. Taking
the time-dependent adjacency matrix as input, Guo et al. [16] and Zhang et al. [38] encode each row
separately as a node feature, focusing on temporal structure while overlooking asymmetric spatial
relations. On the contrary, Chen et al. [8] processes the adjacency matrix only at a specific time point
during decoding, thereby failing to incorporate temporal structure. Our method directly encodes the
time-dependent adjacency matrix, capturing the spatiotemporal dynamics simultaneously.

2.2 Neural Combinatorial Optimization for Routing

The pioneering work of Vinyals et al. [34] introduced Pointer Networks, a sequence-to-sequence
learning method with attention to output permutations for TSP, which is effective but requires
expensive labeled training data. The follow-up work [3] addresses the issue by combining pointer
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Figure 1: Example showing the changing weights results in a changing optimal solution. We mark
the starting node and the solution in yellow. In the TSP instance, the shortest tour is ACDBA, with a
traveling time of 6. The TDTSP instance, sharing the same adjacent matrix with the TSP instance at
starting time t = 0, has the optimal solution ABCDA, which differs from the TSP instance with a
traveling time of 8. Note that the tour ACDBA now has the traveling time (1+0)+2+(1+3)+2 = 9.

networks with reinforcement learning (RL) to train without labels. Kool et al. [18] further advanced
this direction with the Attention Model (AM), which uses a multi-head attention encoder and a single-
head attention decoder to construct TSP tours auto-regressively. Following the same structure, Bresson
and Laurent [7] replaces the attention encoder with a transformer encoder for better performance.

The early works focus on metric TSP [34, 3, 11, 18, 28, 19, 7, 22], which can be easily encoded by
node coordinates in Rn×2. Recent advances have begun to explore the more general routing problem
in non-Euclidean spaces using edge features. Kwon et al. [20] proposes the MatNet to encode the
adjacency matrix for Asymmetric TSP (ATSP) with a separation of nodes’ departure and arrival roles,
which is also used by Gaile et al. [13]. Zhang et al. [37] proposes a variant of the graph attention
network to take edge features as input. Our work follows MatNet for encoding tensor inputs.

3 Preliminary

In this section, we will first give a formal problem statement of TDTSP with a theorem of its hardness.
Then we will briefly introduce the existing method that encodes matrix input for Asymmetric TSP.

3.1 Problem Statement

The Time-Dependent Traveling Salesman Problem (TDTSP) is a generalization of the classical TSP
where the travel time between locations varies as a function of time. Formally, we define it as follows:

Given a complete directed graph G = (V,E) where V = {v1, v2, ..., vn} is the set of nodes (cities
or locations) and E is the set of edges connecting these nodes. Unlike the classical TSP, where
each edge (vi, vj) has a constant cost cij , in TDTSP, the cost of traversing an edge depends on the
departure time from the origin node.

Let cij(t) denote the time needed for traveling from node vi to node vj when departing node i at
time t. We do not assume symmetry, which means cij(t) ̸= cji(t) in general. We assume cij(t) is a
continuous function for t ∈ [0, T ]. The arrival time at node vj when departing from vi at time t is
t+ cij(t). We assume the salesman is not waiting at any nodes, which is valid when the property of
the First-In-First-Out (FIFO) [17] holds. Then the departure time is the same as the arrival time.

The objective of TD-TSP is to find a permutation π = (π1, · · · , πn) of nodes in V where π1 = v1 is
typically designated as the depot, such that the total traveling time is minimized:

min
π

n−1∑
k=1

cπkπk+1
(tπk

) + cπnπ1
(tπn

), (1)

where tπ1
≥ 0 is the initial departure time and tπk

is the arrival time at πk which is defined as

tπk
= tπk−1

+ cπk−1πk
(tπk−1

). (2)

We show an example in Fig. 1. Next, we present the hardness of approximating TDTSP.
Theorem 1 (Hardness of TDTSP). TDTSP cannot be approximated by any a(n)-approximation
algorithm unless P=NP, where a(n) is a function that can be computed in polynomial time.
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Figure 2: Distribution of travel time savings achieved by time-aware routing compared to static
routing on randomly sampled instances from real-world datasets. The x-axis shows percentiles of
instances, and the y-axis shows the corresponding travel time saved (in percentage). Note the long-tail
distribution, indicating that significant time savings occur in a small but important subset of instances.

The proof can be found in Appendix A due to space limitations.

TDTSP can be described by the time-dependent adjacent matrix A(t) = [cij(t)]i,j∈V . Since the
continuous function c(t) is usually not analytical in practice, we approximate it by interpolating
samples of {cij(0), cij(1), · · · , cij(T − 1)}. In this paper, the input of TDTSP is a tensor A[t] =
{A(t) : t = 0, 1, · · · , T − 1} with linear interpolation to approximate A(t).

3.2 Encoding Adjacent Matrix Input

To solve the asymmetric TSP (ATSP) with neural methods, Kwon et al. [20] proposes a dual graph
attention layer. The static adjacency matrix A of a set of node V = {v1, · · · , vn} is treated as the
weights of a bipartite graph (V +, V −), where V + = {v+1 , · · · , v+n } is the set of nodes with outgoing
edges and V − = {v−1 , · · · , v−n } is the set of nodes with incoming edges. The edge weight is defined
as d(v+i , v

−
j ) = d(vi, vj) = Aij . This bipartite construction elegantly addresses the asymmetric

nature of ATSP, where generally Aij ̸= Aji.

The nodes in V + and V − are encoded into two separate set of vectors: {h+
vi
} and {h−

vi
}. The

embedding {h+
vi
} is initialized as zero vectors and {h−

vi
} as one-hot vectors. To encode the asymmetric

distance information, {h+
vi
} and {h−

vi
} are iteratively updated using both current node embeddings

and the edge weights A.

Inside each update iteration, {h+
vi
} and {h−

vi
} are processed through a dual graph attention layer,

which consists of two attention-based update functions F+ and F− with identical structure. Function
F+ updates the embeddings {h+

vi
} based on the embeddings of all nodes in V −, while F− updates

{h−
vi
} based on the embeddings of all nodes in V +:

(h+
vi
)′ = F+(h+

vi
, {(h−

vj
, Aij) : v

−
j ∈ V −}),

(h−
vj
)′ = F−(h−

vj
, {(h+

vi
, Aji) : v

+
i ∈ V +}).

(3)

Through this iterative process, each node accumulates information about its distance relationships
with other nodes, enabling the model to learn effective representations for the ATSP.

4 Data Analysis

We analyze time-dependent travel time data from 12 cities across three benchmarks [26, 38, 5]. Fig. 2
shows 4 examples (remaining in Appendix C). The travel time saved by considering time-dependent
edge weights follows a Pareto distribution consistently across all cities. Approximately half of the
instances show no change in optimal tours despite varying edge weights, while roughly 20% of
instances contribute more than 80% of total savings, resulting in low average improvement.

This distribution pattern creates two significant challenges. First, evaluating algorithms by average
performance across all instances, as done in previous works [38, 16, 8], fails to distinguish between
general routing capability and the specific ability to exploit time-dependent patterns. Second, the
limited number of meaningful time-dependent instances complicates the learning process. For
supervised learning, obtaining labels is prohibitively expensive due to the NP-hard nature of TDTSP.
For DRL, quantifying the potential improvement without ground truth becomes difficult.
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Figure 3: Architecture of our time-dependent method. The encoder processes the adjacency tensor
A[t] and its transpose A⊤[t] (where rows and columns represent departure and arrival nodes, respec-
tively) through N iterative dual graph attention layers to produce node embeddings. The decoder
then constructs the tour auto-regressively, maintaining a state of (partial tour, current time) and using
masked attention with temporal embeddings to select each subsequent node.

Despite these challenges, the problem remains economically significant. In logistics markets worth
trillions, even a 1% improvement yields substantial cost savings.

5 Methodology

To extend current methods to TDTSP and develop an effective solver in practical scenarios, we must
address two key challenges:

• The complex spatio-temporal features in TDTSP, where the adjacency matrix is expanded to
A[t] include one more dimension of time t, making neural methods challenging to train.

• The Pareto distribution of TDTSP solutions, where problem instances whose optimal solu-
tions differ from their static counterparts are rare but critically important in practice.

Our methodology addresses these challenges through two components: (1) a neural architecture
directly encoding the time-dependent adjacency tensor to capture spatio-temporal structures and
decode complete trajectory solutions; and (2) a post-processing refinement method enhancing solution
quality while preserving computational efficiency. The following sections detail each component and
demonstrate how each component addresses the identified TDTSP challenges.

5.1 Model Structure

Our model, shown in Fig. 3, uses an encoder-decoder architecture based on AM [18]. It takes
the time-dependent adjacency tensor A[t] as input, encoding it into two sets of node embeddings
{h+

vi
} and {h−

vi
}, representing nodes with outgoing and incoming edges, respectively. Using these

embeddings, the decoder then auto-regressively constructs the full trajectory step by step.

5.1.1 Encoder

The goal of the encoder is to transform the adjacency tensor A[t] into two sets of node embeddings
{h+

vi
} and {h−

vi
}. As introduced in Section 3.2, encoding a static adjacency matrix A for spatial

information has been well-established. The challenge lies in extending the approach to the time-
dependent adjacency tensor A[t] to capture both spatial and temporal information simultaneously.

For the higher dimensional A[t], similar to the operation of static A, we treat the input time-dependent
adjacency tensor A[t] as a bipartite vector-weighted graph G = (V +, V −, A[t]), where V + and
V − correspond to the nodes of outgoing edges and incoming edges. Each edge (v+i , v

−
j ) has a

vector weight Aij [t] with costs at discrete time steps. The node embedding h+
v and h−

v are similarly
initialized as zero and one-hot vectors and updated according to the mechanism in Eq. (3).

To facilitate the exchange of temporal information while keeping computational cost manageable, the
update function F+ is designed as a three-stage process. First, we compute attention scores between
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outgoing and incoming nodes:
W+ = Score({h+

v }, {h−
v }) (4)

where W+ is an n × n matrix representing the importance of each outgoing-incoming node pair.
Intuitively, this matrix represents how much attention each source node should pay to each destination
node, independent of the specific time of travel.

Second, we then integrate the temporal information by concatenating these attention weights W+ with
the time-dependent adjacency tensor A[t] along the time dimension. This combined representation is
then processed through a multi-layer perceptron (MLP) that learns to compress the temporal patterns
into the attention weights:

(W+)′ = MLP([A[t],W+]) (5)

This step allows the model to selectively focus on the most relevant temporal patterns for each node
pair (v+i , v

−
j ) while reducing the computation from naively processing the full temporal dimension.

Finally, we update the embedding by a weighted aggregation

(h+
v )

′ = Softmax((W+
v )′)⊤[h+

v1
, · · · , h+

vn
]. (6)

The softmax operation ensures that the attention weights are normalized, allowing the model to focus
on the most relevant connections while maintaining a consistent scale for the embeddings.

The update function F− shares the same update mechanism for nodes with incoming edges. We
stack N of these dual graph attention layers, allowing the embeddings to progressively refine their
representation of spatio-temporal patterns. The final embeddings {h+

vi
}(N) and {h−

vi
}(N) capture the

rich spatio-temporal structure of the problem instance and are passed to the decoder.

5.1.2 Decoder

Our decoder constructs the complete tour in an auto-regressive manner, meaning it sequentially
predicts the next node πl+1 at each time step based on previously selected partial tour π1:l until the
entire trajectory is constructed. This approach is particularly well-suited to TDTSP, as it naturally
accommodates the problem’s time-dependent nature by updating temporal information at each step.

At each step of decoding, the decoder takes two state variables: the partial tour π1:l (containing l
visited nodes) and the current time tl that tracks when we would arrive at node πl. The probability
distribution of the next node is computed via a masked attention mechanism, where the query vector
q = MLP([h+

vπ0
, h+

vπ−1
]) is extracted from current node and the start (which is also the destination)

node. The key, value, and logit key k,v, k̄ = MLP({h−
v }) are extracted from the node set V −.

To take into account the time information, we encode the current time with Sinusoidal embedding
into t, and compute the probability of the next node as

pθ(v|π1:l) = Softmax
[(

(q+ t)(k+ t)⊤√
dk

)
vk̄⊤

]
v

. (7)

One key insight about the sinusoidal embedding’s role in the attention mechanism involves its addition
to node embeddings. This operation introduces temporal information while leveraging the fixed norm
property of sinusoidal embeddings. Specifically:

(q+ t)(k+ t)⊤ = qk⊤︸︷︷︸
node−node

+(q+ k)t
⊤︸ ︷︷ ︸

node−time

+ ∥t∥22︸︷︷︸
constant!

. (8)

5.2 Training

Unlike static ATSP models, our time-dependent approach cannot use the POMO [19] training frame-
work directly. The challenge arises from the addition of edge weights, which result in asymmetric
travel times for a cycle with different starting nodes. As a result, we choose to train our model with
the classic REINFORCE algorithm [35], employing a rollout baseline with a reward signal equal to
the negative tour completion time.

6



Table 1: Summary of test datasets.
City Size Start Time End Time Interval Sample Dilatation (%) Instance Size

Beijing 100 0:00 0:00 (+1) 2 h Uniform 0 10, 20, 50
Lyon 255 6:00 12:30 6 min Uniform 20 10, 20
Nairobi 2000 15:00 21:00 10 min Congestion 0 10, 20
London 2000 15:00 21:00 10 min Congestion 0 10, 20

5.3 Inference

During inference, we employ two types of post-processing refinement methods sequentially to
improve solution quality without introducing significant computational overhead.

Mixture of Experts (MoE). Due to the Pareto distribution property of TDTSP solutions, a large
fraction of instances share the same optimal solutions with their corresponding ATSP counterparts,
where a dedicated ATSP solver may excel. Leveraging this insight, we implement a Mixture of
Experts (MoE) approach that evaluates solutions from both our neural model and a state-of-the-art
ATSP solver, selecting the one with lower time-dependent cost.

Local Search. We treat the output trajectory of our method as a high-quality warm start of a near-
optimal solution and apply a local search procedure to refine it further, including two-opt, three-opt,
or-opt, exchange, and relocate, which are commonly used in solving TSP [6]. We limit the local
search to k = 2 iterations to ensure computational efficiency.

This hybrid approach combines our neural model’s fast inference and ability to learn spatio-temporal
patterns with the strengths of existing methods, while addressing potential suboptimalities in the
neural solution arising from the REINFORCE algorithm.

6 Experiments

In this section, we validate the effectiveness and scalability of our method on real-world datasets.
Our proposed approach was programmed with PyTorch. All the experiments were conducted on a
workstation with 128 Ryzen Threadripper PRO 7985WX 64-Cores CPU and 4 NVIDIA A800 GPUs.

6.1 Experiments Setup

Baselines. We compare our algorithm to typical algorithms that accept tensor input for TDTSP,
which can be further categorized into three types:

1. Exact method. We implement a dynamic programming (DP) to solve TDTSP as the
representative of the exact method. The computational cost is low on 10-node instances,
expensive on 20-node instances, and unacceptable on 50-node instances.

2. ATSP. As shown in Sec. 4, the average travel time saving is relatively low due to the data
distribution. We select the DP for ATSP and MatNet as baselines to test the ability of
learning time-dependent patterns.

3. Heuristic Algorithms. We implement three heuristic algorithms, including the greedy
algorithm (GR), the Simulated Annealing algorithm (SA), and the Ant Colony Optimization
algorithm (ACO). The greedy algorithm always selects the next unvisited node with the
shortest time needed. The SA follows the pseudo code provided by Zhang et al. [38] with
the same parameters. Details of GR and ACO are provided in Appendix B.

To ensure rigorous experimental fairness, we implement baselines using PyTorch tensors with
GPU acceleration for all methods. All evaluations use identical conditions: single GPU hardware,
consistent datasets, a uniform batch size of 1024, and identical data ordering.

Dataset. We generate data from real-world datasets across four cities: Beijing [38], Lyon [26],
Nairobi, and London [5]. These datasets contain time-dependent travel times between nodes, with
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Table 2: Computational results on TDTSP.

(a) Scalability experiments.

Method Obj ↓ Gap(%) ↓ Time(s) ↓ Obj ↓ Gap(%) ↓ Time(s) ↓ Obj ↓ Gap(%) ↓ Time(s) ↓
Beijing-10 Beijing-20 Beijing-50

DP, TDTSP 2.59 0.00 15.00 4.27 0.00 - - - -

DP, ATSP 2.70 4.43 5.08 4.46 4.52 - - - -
MatNet, ATSP 2.71 4.66 1.06 4.48 5.18 2.33 8.38 - 8.61

GR 3.34 19.72 0.16 5.90 38.58 0.98 11.66 - 14.16
SA 2.60 0.06 226.03 4.30 0.85 3491.62 8.17 - 38112.78
ACO 2.95 14.23 77.86 4.93 15.51 314.47 9.40 - 1128.55

Ours (Raw) 2.63 1.60 1.20 4.39 3.14 2.66 8.24 - 9.37
Ours (Imp) 2.59 0.21 14.06 4.30 0.89 108.25 8.09 - 1549.88

(b) TDTSP results on 10 cities.

Method Obj ↓ Gap(%) ↓ Time(s) ↓ Obj ↓ Gap(%) ↓ Time(s) ↓ Obj ↓ Gap(%) ↓ Time(s) ↓
Lyon-10 Nairobi-10 London-10

DP, TDTSP 18.79 0.00 27.48 18.18 0.00 30.31 24.54 0.00 27.38

DP, ATSP 18.92 0.66 10.63 18.43 1.32 10.57 24.60 0.25 10.50
MatNet, ATSP 18.94 0.78 0.84 18.45 1.41 0.91 24.65 0.47 0.98

GR 28.09 50.31 0.45 25.46 40.29 0.62 33.38 36.22 0.70
SA 18.80 0.07 353.17 18.19 0.02 345.15 24.55 0.01 376.58
ACO 19.64 4.78 141.84 18.63 2.49 171.71 24.91 1.50 139.77

Ours (Raw) 18.95 0.87 0.78 18.23 0.28 0.77 24.64 0.43 0.99
Ours (Imp) 18.81 0.11 29.63 18.19 0.04 23.06 24.55 0.04 40.00

(c) TDTSP results on 20 cities.

Method Obj ↓ Gap(%) ↓ Time(s) ↓ Obj ↓ Gap(%) ↓ Time(s) ↓ Obj ↓ Gap(%) ↓ Time(s) ↓
Lyon-20 Nairobi-20 London-20

DP, TDTSP 27.64 0.00 - 24.78 0.00 - 32.29 0.00 -

DP, ATSP 27.76 0.48 - 25.19 1.67 - 32.49 0.61 -
MatNet, ATSP 27.97 1.19 2.35 25.29 2.06 1.95 32.65 1.11 2.06

GR 40.85 87.52 4.50 41.07 65.84 4.11 61.26 89.63 4.90
SA 27.83 0.72 4362.10 24.87 0.35 4870.34 32.35 0.19 5008.44
ACO 29.33 6.60 500.63 26.09 5.41 566.32 33.38 3.38 570.10

Ours (Raw) 28.13 1.83 2.63 25.31 2.85 2.17 32.38 0.30 2.79
Ours (Imp) 27.74 0.40 221.59 24.88 0.40 290.73 32.31 0.08 297.61

varying sampling intervals and time horizons. For Nairobi and London, we create smaller datasets by
selecting the 50 most congested nodes based on the average edge-weight variance over time. From
each city’s data, we generate problem instances with n ∈ {10, 20} nodes via downsampling (50-node
instances were generated only for Beijing due to time-horizon constraints in the other cities). For
each problem size and city combination, we generated 10,000 test instances. Dataset characteristics,
including sampling frequencies and time periods, are summarized in Table 1.

Hyper Parameters. We train our model with a batch size of 1024 for instances of size 10 and 20,
and 256 for instances of size 50. We use Adam optimizer with a learning rate 1× 10−4. We train
200, 300, and 500 epochs, respectively, with each epoch 1,280,000 data. We train MatNet with the
same batch size and epochs, and a learning rate of 4× 10−4. All training is distributed on 4 GPUs.
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Table 3: Average gaps tested on two sets of selected instances. Gaps report in %.
= 0 > 3% = 0 > 3% = 0 > 3% = 0 > 3%

Model Beijing-10 Lyon-10 Nairobi-10 London-10

DP 0.00 9.46 0.00 4.68 0.00 4.76 0.00 3.20
MatNet 0.70 9.11 0.24 4.04 0.25 4.41 0.33 1.52
Ours (Raw) 1.42 1.70 0.72 1.25 0.24 0.22 0.40 1.00
Ours (Imp) 0.05 0.32 0.03 0.29 0.01 0.06 0.02 0.00

Model Beijing-20 Lyon-20 Nairobi-20 London-20

DP 0.00 6.94 0.00 3.92 0.00 4.61 0.00 3.31
MatNet 2.31 6.94 1.03 2.14 0.86 4.22 0.89 2.21
Ours (Raw) 2.75 3.32 1.75 2.03 3.14 3.66 0.33 0.10
Ours (Imp) 0.34 1.34 0.35 0.69 0.19 0.88 0.05 0.10

6.2 Comparison Results

In the comparison experiments, we test both the direct output of our neural model (Raw) and the
improved solution with MoE and local search (Imp). We evaluate the methods based on average tour
duration, average gap to the optimal solution, and running time.

Full Instances. We first evaluate our method on all instances and show the results in Table 2. Our
method achieves competitive performance with the best heuristic, SA, on small cases with n = 10.
As the problem size n increases, our method outperforms all baseline methods, demonstrating the
effectiveness of our pipeline for TDTSP. On the Beijing dataset, our method successfully scales to
50-node instances, as shown in Table 2a, demonstrating its scalability. The strong performance across
four datasets also supports the general applicability of our method. We also compare two variants of
our method. The sole neural model produces a slightly worse solution but runs much faster, revealing
the great potential of solving TDTSP with a learning-based method alone.

Selected Instances. To better understand our model’s performance, we evaluate it on two distinct
subsets of the data. The first contains instances where time-dependent routing offers no duration
reduction, while the second includes instances where it provides a reduction greater than 3%. This
threshold is based on the 90th percentile of improvement in our dataset, adapting the methodology
of Melgarejo et al. [26] to our stronger static baseline. As shown in Table 3, our neural model is
generally worse than MatNet in the first type of instances, but consistently outperforms both ATSP
solvers. The results suggest that our method excels at capturing temporal structure but slightly falls
short of MatNet in capturing spatial structure, which motivates the use of MoE during inference.

6.3 Ablation Study

We conduct an ablation study to evaluate the impact of key design choices and hyperparameters,
including the inference improvement methods, the number of encoder layers, the learning rate, and
the temporal embedding technique.

Inference. We assess our solution improvement methods on 10-node instances from the Beijing
dataset. As shown in Table 4, both MoE and local search enhance solution quality. The MoE
effectively addresses the limitations of our neural model in learning spatial structure. The local search
delivers significant improvements in the first iteration, with diminishing returns thereafter. The first
iteration alone yields a substantial improvement, reducing the optimality gap from 1.60% to 0.39%.
A second iteration yields a more moderate gain of 0.30%, while subsequent iterations, up to the tenth,
offer minimal further improvement, reaching 0.20% at a similar computational cost per iteration.
Given the computational cost per iteration, we recommend using the MatNet-based MoE with a
single local search iteration for large-scale problems.

Number of layers. As detailed in Table 5a, both training time and GPU memory consumption
scale linearly with the number of encoder layers, N . Model performance improves substantially as
N increases to 3, but shows little to no further improvement for N > 3.
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Table 4: Comparison of different improving methods on Beijing-10.
Iterations 0 1 2 10

Expert Obj Gap(%) Obj Gap(%) Obj Gap(%) Obj Gap(%)

None 2.6298 1.6017 2.5990 0.3851 2.5970 0.3034 2.5945 0.2081
DP, ATSP 2.6120 0.8648 2.5956 0.2472 2.5946 0.2073 2.5930 0.1467
MatNet, ATSP 2.6129 0.9056 2.5960 0.2640 2.5946 0.2091 2.5930 0.1470

Table 5: Ablation Study for structural and training parameters.

(a) Number of encoder layers N .

N 1 2 3 4 5

GPU Memory (GiB) 2380 3018 3764 4478 5212
Training Time (s / epoch) 33.06 52.56 72.24 91.63 111.59
Obj ↓ 2.93 2.66 2.63 2.63 2.63
Gap(%) ↓ 13.43 2.63 1.80 1.63 1.60

(b) Learning rate.

lr 3e-3 1e-3 3e-4 1e-4 3e-5 1e-5 3e-6

Obj 4.2230 2.6409 2.6305 2.6293 2.6468 2.6852 2.8778
Gap(%) 65.7460 2.0525 1.6316 1.5793 2.2775 3.8439 11.4468

(c) Time embedding.

Embedding Sinusoidal MLP Linear

Obj 2.6298 2.6409 2.6447
Gap(%) 1.6018 2.0443 2.1953

Learning rate. The results in Table 5b indicate that the optimal learning rate lies between 3e− 5
and 1e−3. An excessively large rate (3e−3) causes the training to diverge, whereas a rate that is too
small (3e−6) results in the model converging to a poor local minimum.

Temporal embedding. We compared three different temporal embedding methods, as shown in
Table 5c. The sinusoidal embedding proved to be the most effective, outperforming both MLP-based
and linear embeddings. While other embedding strategies may exist, a broader investigation is beyond
the scope of this paper.

7 Conclusion and Discussion

In this paper, we investigated the Time Dependent Traveling Salesperson Problem (TDTSP), which ex-
tends classic TSP by incorporating dynamic edge weights to reflect real-world environmental changes.
Our primary contribution is a novel neural-based approach that directly encodes time-dependent
tensors to effectively capture spatial-temporal dynamics. We identified limitations in evaluating
with average tour duration on full datasets—insufficient for showing effective temporal structure
learning—and proposed a new evaluation method. Experimental results validate our method’s
state-of-the-art performance and effectiveness in capturing complex spatial-temporal structures.

Our approach shows limitations on problem instances where TDTSP solutions coincide with static
ATSP counterparts, where specialized ATSP methods slightly outperform our approach. This stems
from a key challenge: training with REINFORCE compromises spatial structure learning because
TDTSP violates the cyclic invariance property present in ATSP. While we demonstrated mitigation
through an MoE approach during inference, developing training algorithms that better preserve spatial
structure learning without relying on cyclic invariance remains an important direction for future work.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction summarize the scope and contributions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Yes, it is discussed in the conclusion.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The theorem is in section 3 with the proof and assumptions.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have reported all the hyperparameters used. We also provide code in the
supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We upload the data and code in the supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: It is in the experiment part. It can also be found in the code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Error bars are reported in appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: It can be found at the beginning of section 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read the code of ethics and carefully checked our paper.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: It can be found in the introduction and the conclusion.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work does not pose such risks
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All used assets are publicly available and cited
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]

Justification: We provide a readme file for how to run the code

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: we do not have crowdsourcing nor human subjects in the research

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not involve crowdsourcing nor research with human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
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Figure 4: Distribution of travel time savings achieved by time-aware routing compared to static
routing on randomly sampled instances from real-world datasets. The x-axis shows percentiles of
instances, and the y-axis shows the corresponding travel time saved (in percentage). Note the long-tail
distribution, indicating that significant time savings occur in a small but important subset of instances.

A Proof of Theorem 1

Theorem 1 (Hardness of TDTSP). TDTSP cannot be approximated by any a(n)-approximation
algorithm unless P=NP, where a(n) is a function that can be computed in polynomial time.

Proof. For any Hamiltonian problem G = (V,E), let cij(t) = 1 for t ≤ n and (i, j) ∈ E in graph.
Otherwise, cij(t) = a(n) · n. The FIFO property holds. If a Hamiltonian cycle exists, the salesman
can travel along the cycle with a traveling time of n. Otherwise, the salesman needs at least a(n) · n
traveling time. So a(n)-approximation exists if and only if P equals NP.

B Baseline Algorithms

This section describes the details of the baseline algorithms we use.

B.1 Greedy Algorithm

The pseudo code of the greedy algorithm is presented in Algorithm 1. The greedy algorithm chooses
the earliest reachable node among unvisited nodes at each step based on the current node. The
bottleneck of the algorithm is the computation speed of the function c by interpolation.

Algorithm 1 Greedy Algorithm
Input: node set V , start node π1, start time t1, time dependent cost function c
Output: A permutation π of the node set V as a TDTSP tour.

1: for i = 2, 3, · · · , n do
2: πi = argminv∈V \π[1:i−1] cπi−1,v(tπi−1

)
3: ti = ti−1 + cπi−1,πi(tπi−1)
4: end for

B.2 Ant Colony Optimization

The pseudo code of the Ant Colony Optimization is presented in Algorithm 2. For the visited node,
we do not compute its score and assign a value −∞.
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Algorithm 2 Ant Colony Optimization
Input: node set V , start node π1, start time t1, time dependent cost function c
Parameters: number of ants Nant = 20, number of iterations Niters = 100, pheromone importance
α = 1, heuristic importance β = 2, evaporation rate ρ = 0.1, exploitation rate q0 = 0.9
Output: A permutation π of the node set V as a TDTSP tour.

1: for u, v ∈ V do
2: pheromone[u][v]← 1
3: end for
4: for i = 1, 2, · · · , Niters do
5: for j = 1, 2, · · · , Nant do
6: for k = 2, 3, · · ·n do
7: for v ∈ V \ π[1 : k − 1] do
8: heuristic[v]← 1/cπk−1v(tk−1)

9: score[v]← (pheromone[πk−1][v])
α · (heuristic[v])β

10: q ∼ Uniform[0, 1]
11: if q ≤ q0 then
12: πk ← argmaxv score[v]
13: else
14: πk ∼ softmax(score)
15: end if
16: tk ← tk−1 + cπk−1πk

(tk−1)
17: end for
18: end for
19: deposit← 1/(tn + cπnπ1

(tn)− t1)
20: pheromone[πi−1][πi]← pheromone[πi−1][πi] + deposit
21: end for
22: pheromone← ρ · pheromone
23: end for

Table 6: Performance comparison against baselines on 100-node problem instances.
Method Random Greedy ACO Ours

Obj mean (std) 26.98 (1.60) 8.30 (0.51) 7.40 (0.40) 7.43 (0.40)
Time (s) 4.75 172.24 2741.25 42.24

C Data Analysis

We show the data analysis of the remaining eight cities in Fig. 4. The cities show similar distributions
to Beijing, London, Lyon, and Nairobi.

D Encoder Scalability

To further evaluate the scalability of our method, we conducted an additional experiment on 100-
node instances. The following results were obtained after approximately 100 hours of training for
100 epochs. As shown in Table 6, our method’s solution quality (objective score of 7.43) remains
comparable to the strong ACO baseline (7.40), even though our model had not yet fully converged.
Critically, our method’s runtime of 42 seconds is approximately 65 times faster than ACO’s 2741
seconds, demonstrating that its significant computational advantage scales to larger problem sizes.

We also report the training resource used by our method, shown in Table 7. The GPU memory
usage grows quadratically with the number of nodes, which is proportional to the size of the graph’s
adjacency matrix. The bottleneck to scale up is the training time. As the problem scales, the training
time needed to converge quickly scales up and becomes difficult to track.
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Table 7: Scalability analysis of computational resource
Nodes 10 20 50 100

GPU Memory (GiB/batchsize) 5212/1024 14326/1024 18748/256 35884/128
Train Time (s/epoch) 111.60 201.08 687.10 3463.77

Table 8: Performance using different random seeds.
Metric Seed

0 132 1178 1234 203681 385172 759043 847592

Obj mean 2.6314 2.6299 2.6289 2.6298 2.6313 2.6300 2.6290 2.6301
Obj (std) (0.5786) (0.5768) (0.5765) (0.5770) (0.5771) (0.5768) (0.5768) (0.5776)

Gap(%) mean 1.6532 1.6065 1.5678 1.6018 1.6587 1.6097 1.5659 1.6048
Gap(%) (std) (2.4259) (2.4204) (2.3958) (2.4561) (2.4427) (2.4195) (2.3820) (2.3326)

Table 9: Cross-city generalization analysis using Beijing-10 and Lyon-10
Method ACO Beijing trained only Beijing trained, Lyon tuned 10 epochs Lyon trained only

Obj 19.64 19.72 19.09 18.95
Gap (%) 4.78 3.69 1.61 0.87

Table 10: Computational results with statistical significance on Beijing-10
Method DP, TDTSP DP, ATSP MatNet GR SA ACO Ours(Raw) Ours(Imp)

Obj mean 2.59 2.70 2.71 3.34 2.60 2.95 2.63 2.59
Obj (std) (0.57) (0.63) (0.63) (0.74) (0.57) (0.68) (0.58) (0.57)
Gap(%) mean - 4.43 4.66 19.72 0.06 14.23 1.60 0.22
Gap(%) (std) - (5.83) (5.97) (14.73) (0.40) (10.25) (2.46) (0.72)

E Training Stability

To show the stability of training, we evaluate our trained neural policy under different random seeds.
Shown in Table 8, the policies trained from different random initializations perform similarly.

F Cross-City Generalization

We test the cross-city generalization ability using the Beijing-10 and Lyon-10 datasets. As shown in
Table 9, the performance is competitive with ACO for direct cross-city generalization, and further
improved with 10 epochs of tuning on the Lyon dataset, showing superior cross-city generalization.

G Experiment Statistical Significance

In this section, we present the experiment results, including both the mean and the standard deviation.
The Beijing-10 results demonstrate that standard deviations of the gap on the 10000 instances often
match or exceed the mean of the gaps. This table confirms our finding that the time saved by
considering the time-varying edge weights follows a Pareto distribution.
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Table 11: Ablation Study for structural and training parameters.

(a) Number of encoder layers N .

N 1 2 3 4 5

GPU Memory (GiB) 2380 3018 3764 4478 5212
Training Time (s / epoch) 33.06 52.56 72.24 91.63 111.59
Obj ↓ 2.93 (0.64) 2.66 (0.58) 2.63 (0.58) 2.63(0.58) 2.63 (0.58)
Gap(%) ↓ 13.43 (9.02) 2.63 (3.33) 1.80 (2.59) 1.63 (2.44) 1.60 (2.45)

(b) Learning rate.

lr 3e-3 1e-3 3e-4 1e-4 3e-5 1e-5 3e-6

Obj mean 4.2230 2.6409 2.6305 2.6293 2.6468 2.6852 2.8778
Obj (std) (0.7554) (0.5773) (0.5766) (0.5775) (0.5800) (0.5814) (0.6259)
Gap(%) mean 65.7460 2.0525 1.6316 1.5793 2.2775 3.8439 11.4468
Gap(%) (std) (22.6098) (2.8460) (2.4443) (2.4065) (3.0714) (4.2814) (8.2724)

(c) Time embedding.

Embedding Sinusoidal MLP Linear

Obj mean (std) 2.6298(0.5770) 2.6409 (0.5783) 2.6447 (0.5790)
Gap(%) mean (std) 1.6018 (2.4561) 2.0443 (2.8317) 2.1953 (2.9547)
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