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Abstract

Cardiac diseases are the leading cause of death world-
wide, with ventricular tachycardia (VT) being a major
contributor. Successful VT intervention requires precise
localization of the abnormal activation source, typically
achieved through pace-mapping i.e. pacing different sites
in the heart and comparing the resulting ECGs to the
clinical VT ECG. Pace-mapping is invasive and time-
consuming, motivating the search for more efficient alter-
natives. Active learning methods using Gaussian process
(GP) surrogate models have shown promise in reducing
data requirements, but they rely on initial labeled data
and cannot transfer knowledge between tasks. We propose
a meta-learning–based neural active surrogate approach
that transfers the knowledge learned from one pacing lo-
calization task to subsequent tasks without requiring any
seed labeled data. Evaluated across two conditions (sinus
and infarcted) in a heart geometry, our method achieved
an 94% and 70% reduction in localization steps compared
to random search and GP-based Bayesian optimization,
respectively.

1. Introduction

Cardiac diseases are the leading cause of death world-
wide [1] with ventricular tachycardia (VT) being a major
contributor (more than half [2]) to these statistics. VT is
characterized by abnormally rapid heartbeats due to irreg-
ular electrical activation originating in the ventricles, the
lower chamber of the heart [3]. This results in a disrup-
tion of blood flow to the rest of the body leading to sudden
cardiac death [2]). Successful intervention requires local-
ization of the source of abnormal activation. A common
approach is to stimulate various sites in the heart and then
analyze the resulting ECG, comparing with the observed
faulty ECG [4]. This approach is called pacemapping.

Figure 1. Block Diagram of the Proposed Method

However, this method is largely invasive and relies on trial-
and-error approaches that depend on rapid interpretation
and informed assessments by trained cardiologists.

There have been deep learning and machine learning
based approaches that estimate the origin of VT signals.
Deep learning approaches [5–7] train a surrogate model to
map the relation between ECG and pacing sites by training
on a large dataset from diverse cohort of patients where
trained models are then applied to new patients. These
methods are data intensive and rely on an assumption that
new patients would lie in the same distribution as the train-
ing data. Contrary to these, there are active-learning (AL)
based approaches that learns a patient-specific surrogate
model, such as Gaussian processes (GP), to capture the re-
lationship between pacing sites and the target ECG (i.e.
error metrics between predicted and target ECG signal[8])
for a specific heart. The uncertainty estimates provided by
the GP guide the exploration of the search space, select-
ing subsequent pacing sites via a Bayesian optimization



strategy that balances exploration and exploitation. This
process minimizes the amount of pacemapping required to
obtain sufficient training data for accurate localization.

A key limitation of this approach is that the surrogate
model is tied to mapping relation to a specific target ECG.
As a result, each new VT to localize (which we refer to
as tasks hereafter), characterized by their own distinct tar-
get ECG, requires the development of a separate surrogate
model. This prevents the reuse of a trained surrogate across
tasks, thereby limiting transfer of knowledge.

In this work, our goal is to avoid starting the active learn-
ing process from scratch for every new task. We achieve
this through three key innovations. First, instead of ap-
proximating a function tied to a specific target ECG, we
design a surrogate neural network model that learns a func-
tion shared between tasks by representing ECGs as a func-
tion of pacing sites. Second, we adapt active learning to
train the surrogate model efficiently, requiring only a small
amount of data for each task. Finally, to ensure that the sur-
rogate model retains knowledge across tasks, we propose
a meta-learning-based active surrogate modeling frame-
work that integrates neural surrogates with active learn-
ing to enable efficient knowledge transfer in pacemapping.
By combining continual meta-learning with uncertainty-
driven sampling, the framework reduces the number of re-
quired pacing sites while maintaining accuracy, thus im-
proving the overall efficiency of the pacemapping process.

2. Method

In this section, we define three main components of our
proposed method namely the deep neural network surro-
gate model, active strategy and meta-learning approach to
promote transfer of knowledge.

2.1. Deep Neural Network Surrogate

A deep neural network (DNN) surrogate meta-model is
used to map the relationship between the pacing sites and
their corresponding ECG signals. The model uses a multi-
layer perceptron (MLP) architecture with three hidden lay-
ers of 128 nodes each, followed by ReLU activations. The
output layer consists of two heads that predict the mean
(m) and standard deviation (s), with the final prediction
sampled from a normal distribution N(m, s).

If yq = [yq1 , yq2 , ..., yqt ] denotes the qth predicted ECG
signal of length t for some input xq = (Uq, Vq,Wq) where
t is the total length of the signal.

yq = T (xq) = T (Uq, Vq,Wq) (1)

2.2. Active Learning

2.2.1. Acquisition Function

To guide the selection of new pacing sites, we define an
acquisition function (AF), in terms of the neural surrogate
model introduced in Section 2.1. Specifically, at any pac-
ing site x, we predict an ECG signal using the surrogate
model, which is compared to the target VT ECG ytarget
using the correlation coefficient (CC) as a similarity met-
ric. Bayesian optimization with the expected improvement
(EI) function is then used, balancing the exploration and
exploitation based on the predicted mean µ(x) and uncer-
tainty σ(x) of this CC.

EI(x) = (µ(x)− f+)Φ

(
µ(x)−f +

σ(x)

)
+

σ(x)ϕ

(
µ(x)−f +

σ(x)

)
, (2)

where, f∗ is the best observed CC so far, and Φ and ϕ
are the CDF and PDF of the standard normal distribution,
respectively.

2.2.2. Correlation Coefficient and Uncer-
tainty

The µ(x) and σ(x) in Eq. 2 relies on the outputs of the
neural surrogate model. For a candidate pacing site xd, we
obtain a predicted ECG signal from the surrogate model.
As the prediction includes high-frequency noise, it is first
passed through a band-pass filter to obtain a denoised ver-
sion yd, where the standard deviation std of the removed
noise is also computed. Using yd, the mean and uncer-
tainty of the CC with respect to the target VT ECG are
estimated as follows:

µ(x) = CC(yd, ytarget)

CCupper = CC(yd + std, ytarget) (3)
CClower = CC(yd − std, ytarget)

σ(x) = CCupper − CClower

2.2.3. Stopping Criteria

The newly acquired pacing location and its respective
ECG signal is then used to update the neural surrogate
model. The process is repeated until the correlation co-
efficient between the predicted ECG and the target ECG
is greater or equal to 0.97. This means that the localized
pacing sites are within 5mm of the target pacing site that
resulted in the VT signal.



2.3. Meta Learning

To enable pacing site localization across multiple tasks
or patients, we introduce a meta-learning strategy based
on Meta-Experience Replay (MER). To ensure continual
adaptation across tasks h ∈ H , we maintain a compact
memory buffer M of fixed size m, initially empty, which
stores previously acquired labeled data and is updated
throughout training. We also track g, that records the age
of the memory, i.e. the total number of memory updates
performed.

2.3.1. Model and Memory Initialization

For the first task, we initialize the memory M with the
available labeled data L. The surrogate meta-model is then
trained, and active learning is applied iteratively, following
the procedure described in Section 2.2.1. In the multitask
setting, the key distinction is that after each active learning
iteration, memory M is updated to incorporate newly ac-
quired labeled data using reservoir sampling as outlined in
Algorithm 1. This ensures that the meta-model retains the
knowledge across tasks while continuing to adapt to new
localization problems.

Algorithm 1 Memory Update
Require: Newly acquired data pair (Xnew, Ynew), memory

buffer M , memory size limit m, current age g
1: if size(M) < m then
2: M ←M ∪ {(Xnew, Ynew)}
3: else
4: index← random(0, g)
5: if index < size(M) then
6: M [index]← (Xnew, Ynew)
7: end if
8: end if

2.3.2. Subsequent Tasks and Model Updates

Algorithm 2 outlines the iterative active learning and
meta-learning process. For each task h, the memory buffer
M and meta-model T are carried forward. At the begin-
ning of each active learning iteration, snapshots Tprior and
Tpost of the meta-model are saved. The new data point
is combined with memory samples to update Tpost over
e epochs, after which T is updated based on the differ-
ence between Tpost and Tprior. Finally, the memory is then
updated according to Algorithm 1. This cycle repeats for
each subsequent tasks until the stopping criteria is reached.

Algorithm 2 Meta-Learning with Active Learning and
Memory Update for task h ∈ H

Require: Memory buffer M , meta model T , age g, target
ECG ytarget, candidate data Uh, learning rate α, meta
learning rate β

1: repeat
2: (Xnew, Ynew)← ActiveLearning(T, Uh)
3: Tprior ← copy(T )
4: Tpost ← copy(Tprior)
5: for e in epochs do
6: Lh = (Xnew, Ynew) ∪ shuffle(M)
7: θTpost ← θTpost − α · ∇θTpost

Loss(Lh)

8: θT ← θTprior + β · (θTpost − θTprior)
9: end for
10: MemoryUpdate(M, (Xnew, Ynew), g)
11: until CC(ytarget, Ynew) > 0.97

3. Experiment and Results

3.1. Data

We consider a single human biventricular model ob-
tained from the Experimental Data and Geometric Anal-
ysis Repository (EDGAR) [9]. The model includes a
healthy (sinus) condition and an infarcted condition. For
each condition, 12-lead ECGs were calculated for 924 pac-
ing sites under healthy conditions and 687 pacing sites un-
der infarcted condition. ECG signals are processes such
that each lead signal is of length 170.

3.2. Baselines

We compare our results against two baselines namely:
Random and GP-based Bayesian Optimization (GP BO).
In the Random, candidate pacing sites are randomly se-
lected from the coordinate search space without consid-
ering model uncertainty. In contrast, the GP BO leverages
the uncertainty of a task-specific surrogate model, modeled
for individual target VT ECG for each patient, to guide the
selection of the next candidate site. Importantly, neither
baseline incorporates knowledge transfer, as a new surro-
gate model is created independently for each task.

3.3. Metrics

The number of candidate pacing sites required for the
respective predicted ECG to reach CC of 97% with the tar-
get VT ECG signal is measured.

3.4. Experiment Setup

For the initialization (first) task, the meta-model is
seeded with a total of five labeled data points, which are



Figure 2. Localization steps (mean +/- std) for (A) Si-
nus and (B) Infarct. Results shows our method (bold with
green) reaches target site with minimum number of steps.

stored in the memory M . The memory size is fixed at
m = 10, and the model is trained for 100 epochs. We con-
ducted experiments across 12 tasks within the same heart
condition (i.e., sinus or infarcted), where each experiment
was repeated across 10 random seeds. For the Random
baseline, we limit the number of acquisition steps to 85.

4. Results and Discussion

Figure 2 report the number of acquisition steps (can-
didate sites) required to pace-map given a target ECG in
different tasks, expressed as mean steps ± std. The Ran-
dom baseline generally requires a large number of steps
and exhibit high variability, indicating substantial fluctua-
tion in the steps needed to identify VT source. The GP BO
baseline performs better, requiring fewer mean steps and a
lower standard deviation than Random.

In contrast, our method OURS shows a significantly
lower number of acquisition steps, both in terms of mean
and standard deviation, compared to both baselines. This
demonstrates the effectiveness of our appraoch in mod-
eling a task-independent surrogate model in combina-
tion with meta-learning for knowledge transfer across
tasks. Statistical analysis showed 95% confidence that our
method identifies VT source in significantly fewer steps,
with an improvement of over 94% over Random and 70%
over GP BO. Unlike the baselines that must retrain sur-
rogate models from scratch, OURS leveraged knowledge
transferred across tasks, eliminating the need for initial la-
beled samples. Clinically, this is crucial since patients ar-
rive sequentially, and reusing surrogates can greatly reduce
intervention time and effort.

5. Conclusion

In conclusion, we present a meta-learning–based active
surrogate modeling framework that effectively transfers

knowledge across pace-mapping tasks. By combining con-
tinual and active learning, it reduces the number of pacing
sites needed for accurate VT localization and avoids re-
training from scratch, enhancing both efficiency and clini-
cal applicability for faster, more reliable VT source identi-
fication.
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