
Safe Beyond the Horizon: Efficient Sampling-based
MPC with Neural Control Barrier Functions

Ji Yin1∗, Oswin So2∗, Eric Yang Yu2, Chuchu Fan2, and Panagiotis Tsiotras1

Abstract—A common problem when using model predictive
control (MPC) in practice is the satisfaction of safety specifications
beyond the prediction horizon. While theoretical works have
shown that safety can be guaranteed by enforcing a suitable
terminal set constraint or a sufficiently long prediction horizon,
these techniques are difficult to apply and thus are rarely used by
practitioners, especially in the case of general nonlinear dynamics.
To solve this problem, we impose a tradeoff between exact
recursive feasibility, computational tractability, and applicability
to “black-box” dynamics by learning an approximate discrete-time
control barrier function and incorporating it into a variational
inference MPC (VIMPC), a sampling-based MPC paradigm.
To handle the resulting state constraints, we further propose
a new sampling strategy that greatly reduces the variance of
the estimated optimal control, improving the sample efficiency,
and enabling real-time planning on a CPU. The resulting
Neural Shield-VIMPC (NS-VIMPC) controller yields substantial
safety improvements compared to existing sampling-based MPC
controllers, even under badly designed cost functions. We validate
our approach in both simulation and real-world hardware
experiments.

I. INTRODUCTION

Model Predictive Control (MPC) is a versatile control ap-
proach widely used in robotics applications such as autonomous
driving [71], bio-inspired locomotion [9, 30], or manipulation
of deformable objects [54], to name just a few. These methods
address safety by incorporating state and control constraints
into the finite-horizon optimization problem, ensuring that the
system remains safe over the prediction horizon [9, 44, 54, 69].
However, safety of the system beyond the prediction horizon
is often overlooked by practitioners, potentially leading to the
violations of safety constraints at future timesteps.

This is a well-known problem in the field of MPC. The
question of whether a sequence of safe control actions can
always be found under an MPC controller has been studied
extensively in the literature under the name of recursive
feasibility [37, 47, 11, 27, 45]. A simple method of achieving
recursive feasibility is by enforcing a control-invariant terminal
set constraint at the end of the prediction horizon [37, 11].
However, it is difficult to find such a control-invariant set
for general nonlinear systems. Methods such as bounding the
system dynamics [11, 10, 21] often result in over-conservative
sets, while methods that numerically solve the Hamilton-Jacobi

1Ji Yin and Panagiotis Tsiotras are with D. Guggenheim School of
Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA.
Email:{jyin81,tsiotras}@gatech.edu

2Oswin So, Eric Yang Yu and Chuchu Fan are with the Department
of Aeronautics and Astronautics, Massachusetts Institute of Technology,
Cambridge, MA. Email:{oswinso,eyyu,chuchu}@mit.edu

∗ Equal contribution

Fig. 1: Conventional sampling vs. the proposed Resampling-
Based Rollout (RBR) approach. In this AutoRally example,
the blue dot must sample future trajectories and compute an
optimal control while avoiding the black obstacles. Our method
rewires all sampled trajectories to be safe, resulting in a more
accurate sampling distribution, whereas the standard approach
samples from a Gaussian distribution and wastes computations
on unsafe trajectories.

PDE [46] scale exponentially with the number of state variables,
and hence this approach is computationally infeasible for
systems with more than, say, 5 state variables [48].

Even without considering recursive feasibility, nonlinear con-
strained optimization is a challenging problem. Traditionally,
constraints are handled using techniques such as interior-point,
sequential quadratic programming and augmented Lagrangian
type methods [51], which mostly rely on accurate linear or
quadratic approximations of the cost and constraints. However,
these gradient-based methods can get stuck in local minima
or fail to converge when the problem is highly nonlinear.
Moreover, first and second-order gradient information is
needed to solve these optimization problems, which is often
not available for “black-box” systems. Consequently, MPC
controllers that rely on these underlying nonlinear constrained
optimizers [51, 33, 25] inherit the same limitations.

One way to address these previous limitations is to use
sampling-based optimization methods, which have become
popular within both the robotics and model-based reinforcement
learning communities. In particular, variational inference MPC
(VIMPC) [52, 40, 69, 6, 55, 56] has emerged as a popular
family of methods that pose the control problem as an inference
problem instead of an optimization problem through the control
as inference framework [4, 67, 60], and perform variational
inference to approximate the resulting intractable optimal
control distribution. Popular MPC controllers within this family
include Model Predictive Path Integral (MPPI) [71] and the
Cross-Entropy Method (CEM) [61, 69], which have been
applied to robotics tasks such as autonomous driving [71],

1

Offline

𝐵𝐵𝜃𝜃

Online

Data

Weight
0 1

DPNCBF Training Estimate Optimal ControlResampling-based Rollout

Resample
Weighted
Average{𝑢𝑢𝑖𝑖} 𝑢𝑢∗

Fig. 2: Overview of Neural Shield VIMPC (NS-VIMPC). Offline, using DPNCBFs, we collect a dataset and train a NN
approximation Bθ of a DCBF. Bθ is used to impose the DCBF descent condition (16) as a state constraint. Online, we modify
the VIMPC architecture to use resampling-based rollouts to improve the sampling distribution of the Monte Carlo estimator in
the presence of the DCBF state constraints. In addition, we integrate the DCBF safety condition (14b) into the optimization
objective function as in (18).

bipedal locomotion [9], manipulation of deformable objects
[54], and in-hand manipulation [49], among many others.
Using this framework, constraints can be easily handled by
appropriately manipulating the posterior control distribution
without facing the same optimization challenges as traditional
gradient-based methods. However, the problem of safety beyond
the prediction horizon still remains a challenge and has not
been addressed by existing works that employ VIMPC.

In this work, we present a novel sampling-based MPC
approach that provides safety beyond the prediction horizon by
using control barrier functions to enforce the control-invariant
set constraint for VIMPC controllers. To tackle the challenge
of finding control-invariant sets for general nonlinear systems,
we extend our previous work on learning neural network
approximations of control barrier functions using policy neural
control barrier functions (PNCBF) [64] to the discrete-time
case. Inspired by particle filtering and sequential Monte Carlo
methods, we further propose a novel sampling strategy for
handling state constraints in VIMPC that significantly improves
the sampling efficiency and enables real-time planning on a
CPU. Results from both simulation and hardware experiments
suggest that the resulting Neural Shield-VIMPC (NS-VIMPC)
controller outperforms existing MPC baselines in terms of
safety, even under adversarially tuned cost functions.
Contributions. We summarize our contributions below.

• We extend policy neural CBF (PNCBF) to the discrete-time
case and propose a novel approach to train a discrete-time
PNCBF (DPNCBF) using policy evaluation.

• We propose Resampling-Based Rollout (RBR), a novel
sampling strategy for handling state constraints in VIMPC
inspired by particle filtering, which significantly improves
the sampling efficiency by lowering the variance of the
estimated optimal control.

• Simulation results on two benchmark tasks show the efficacy
of NS-VIMPC compared to existing sampling-based MPC
controllers in terms of safety and sample efficiency.

• Hardware experiments on AutoRally [24], a 1/5 scale
autonomous driving platform, demonstrate the robustness
of NS-VIMPC to unmodeled dynamical disturbances under
adversarially tuned cost functions.

II. RELATED WORK

Sampling-based MPC. Sampling-based MPC has become
a popular alternative to traditional MPC methods that use
gradient-based solvers, in part due to the advent of parallel
computing and the recent advances in GPU hardware. By
not using gradients, sampling-based MPC can be applied
to any problem without having specific requirements on the
problem structure. MPPI [71] is a popular sampling-based MPC
approach that formulates a variational inference problem, then
solves it in the case of the Gaussian distribution, having strong
connections to stochastic optimal control [72] and maximum
entropy control [63]. Separately, the Cross-Entropy Method
(CEM) [61] has become popular in the reinforcement learning
community [69], in part due to its simplicity. Both approaches
were recently shown to be part of the VIMPC family of MPC
algorithms [52]. Consequently, some works have looked at
expanding the VIMPC family to include different choices of
divergences [69] and sampling distributions beyond Gaussians
[40, 52].
Safety in Sampling-based MPC. Research efforts such as
[80] and [3] assess the risk associated with uncertain areas
in the state space during the exploration phase, and enhance
MPPI’s safety by incorporating a risk penalty into its cost
function. While these methods empirically enhance safety, they
lack formal assurances. Another class of MPPI alternatives,
for instance, [72, 57], leverage an auxiliary tracking controller
to follow the MPPI output trajectories, improving robustness
against unforeseeable disruptions, but these improvements are
limited when the simulation-to-reality gap is significant. More
recently, the use of Control Barrier Functions (CBF) [66, 79]
has offered formal safety guarantees for MPPI controllers.

2

Nonetheless, [66] is restricted to linear systems with saturating
CBFs, and also neglects control input limits. This can lead
to Gaussian control distributions constrained by a CBF-based
chance constraint, increasing the likelihood of local optima due
to limited exploration. In contrast, [79] and [81] incorporate
a CBF into the cost function and resolve a local optimization
problem to reinforce CBF safety conditions for more complex
nonlinear systems. However, the approach in [79] and [81]
uses a distance-based CBF while ignoring the control limits.
Our proposed Neural Shield MPPI (NS-MPPI) controller,
as a specific form of the proposed NS-VIMPC framework,
effectively resolves the critical issues identified in [66] and
[79].

Different Proposal Distributions for VIMPC. There are many
works that investigate the sampling distribution of VIMPC.
The MPPI variant in [78] uses covariance steering to assign a
terminal covariance to the sampling distribution, but this relies
on expert knowledge on how the covariance should be designed.
Reference [55] learns a normalizing flow to approximate the
optimal distribution, but it does not address the problem of
recursive feasibility on its own. Another direction looks at
changing the effective sampling distribution by modifying
the underlying dynamics system to be more amenable to
calculations. The works [72, 57] leverage an auxiliary tracking
controller, thus changing the sampling distribution to be the
output of the stable tracking controller. However, this requires
the construction of such an auxiliary tracking controller, which
can be difficult to perform for arbitrary nonlinear discrete-time
systems. In contrast, our proposed resampling-based rollouts
(RBR) can be viewed as a way of easily improving the proposal
distribution without the need for any specialized problem
structure.

Duality between Control and Inference. The proposed
resampling strategy in our work is similar in spirit to [75, 58]
in that factor graphs, a method used originally for estimation,
is adapted for control purposes. In [84] a linear optimal
control was used to improve the performance of particle filters.
However, to the best of our knowledge, our approach is the
first to adopt the resampling mechanism from particle filters to
improve the performance of sampling-based MPC controllers.

Control Barrier Functions. Designing CBFs with control-
invariant safe sets is not a trivial task. As a result, previous
works only seek saturating CBFs that do not consider input
constraints [73, 43, 76]. Some works use hand-tuned CBFs
to prevent saturation [70, 12], which can lead to overly
conservative safe sets. Other works develop CBFs with input
constraints for specific types of systems [13, 14]. The emerging
neural CBFs [85, 83, 59, 86] allow for more general dynamics
utilizing machine learning techniques; however, they can still
saturate the control limits. Our novel Discrete-time Policy
Neural Control Barrier Function (DPNCBF) approach trains
a neural CBF conditioned on the full system state while
respecting control limits, enabling the discovery of a large
control-invariant set. By formulating the problem as a discrete-
time avoid task, DPNCBF customizes safety based on any given

control policy, and can integrate seamlessly with discrete-time
controllers, enhancing its practical utility. Table I compares the
proposed DPNCBF with other reachability-based methods.

TABLE I: Relationship between DPNCBF and other reachabil-
ity methods.

Method Avoid Discrete (Arbitrary) Policy-Conditioned

Bansal and Tomlin [5] ✓ ✗ ✗
Fisac et al. [22] ✓ ✓ ✗
Hsu et al. [32] ✗ ✓ ✗
So et al. [64] ✓ ✗ ✓
He et al. [31] ✗ ✓ ✓

DPNCBF (ours) ✓ ✓ ✓

The proposed novel NS-VIMPC control framework utilizes
DPNCBF to improve the efficiency of sampling by redirecting
control sequences to previously identified safe states, thereby
focusing sampling efforts in secure regions. This efficient
sampling method will be discussed in detail later in Section IV.
As a result, NS-VIMPC tackles the challenge of exploration
versus exploitation by adaptively distributing computational
resources, governed by an innovative neural CBF.

III. PROBLEM FORMULATION

We consider the discrete-time, nonlinear dynamics

xk+1 = f(xk, uk), (1)

with state x ∈ X ⊆ Rnx and control u ∈ U ⊆ Rnu . Let UK
denote the set of control trajectories of length K. Following
the MPC setup, we assume that a cost function J : UK → R
encoding the desired behavior of the system is given. Moreover,
we consider state constraints defined by an avoid set A ⊂ X
described as the superlevel set of some specification function
h, i.e.,

A := {x ∈ X | h(x) > 0}. (2)

The goal is then to find a sequence of controls u =
{u0, u1, . . . , uK−1} ∈ UK that minimizes the cost function J
while satisfying the system dynamics (1) and safety constraints
xk ̸∈ A for all k ≥ 0.

A. Variational Inference MPC For Sampling-based Optimiza-
tion

To solve the above optimization problem, we deviate
from traditional MPC solvers and use a variational inference
MPC formulation to solve the problem via sampling-based
optimization. To this end, we make use of the control-as-
inference framework [41] to model the problem. Specifically,
let o be a binary variable that indicates “optimality” such that,
for all controls u ∈ UK ,

p(o = 1 | u) ∝ exp(−J(u)), (3)

We assume a prior p0(u) on the control trajectory. The “optimal”
distribution can then be obtained via the posterior distribution

p(u | o = 1) =
p(o = 1 | u)p0(u)

p(o = 1)
= Z−1 exp(−J(u))p0(u),

(4)

3

where Z :=
∫
exp(−J(u))p0(u) du denotes the unknown

normalization constant. Since sampling from p(u | o = 1) is
intractable, we use variational inference to approximate the
posterior p(u | o = 1) with a tractable distribution qv(u)
parametrized by some vector v by minimizing the forward KL
divergence, i.e.,

min
v

DKL

(
p(u | o = 1) ∥ qv(u)

)
. (5)

In the special case of qv being a Gaussian distribution with
mean v and a fixed control input covariance Σ, intrinsic to the
robotic system of interest [71], we can solve (5) in closed-form
to obtain the optimal v∗ as (see Section B1 for details)

v∗ = Ep(u|o=1)[u]. (6)

While this expectation cannot be readily computed because
p(u | o = 1) is intractable to sample from, we can use
importance sampling to change the sampling distribution to
some other distribution r(u) that is easier to sample from,
leading to

v∗ = Er(u)
[
p(u | o = 1)

r(u)
u

]
(7)

= Er(u)
[
Z−1 exp(−J(u))p0(u)

r(u)︸ ︷︷ ︸
:=ω(u)

u

]
. (8)

Using samples u1, . . . ,uN drawn from r, we compute a Monte
Carlo estimate v̂ of the optimal control sequence v∗ (see
Section B2 for details) as follows,

v̂ =
N∑
i=1

ω̃iui, (9)

ω̃i :=
ω(ui)∑N
j=1 ω(u

j)
. (10)

Note that the Z in ω(u) is canceled out in the computation of
ω̃i in (10) and hence can be ignored.

Remark 1 (Self-normalized importance sampling). Note
that the weights ω̃i in (9) are not from the regular importance
sampling estimates in (8) due to the normalization by
the sum of the weights in (10). Instead, (9) is a self-
normalized importance sampling estimator (SNIS), which
uses an estimate of the weights ω but results in a biased,
though asymptotically unbiased, estimator. This fact is not
present in many existing works on both VIMPC (e.g.,
[52, 69]) and MPPI (e.g., [71]). See Section B2 for more
details.

Remark 2 (Connections to MPPI and CEM). In the case
where we choose p0(u) = q0(u) and r(u) = qv̄(u) for
some previous estimate of the optimal control sequence v̄,
the above variational inference MPC framework reduces to
MPPI (see Section B3 for details). Moreover, Cross-Entropy
Method (CEM) also falls in the VIMPC framework [52, 69].

B. Constraint Handling In Variational Inference MPC

One advantage of sampling-based MPC is that it is simple
to incorporate hard constraints. One can include an indicator
function in the cost function that heavily penalizes constraint
violations (e.g., see [71, 72, 6, 8]). Specifically, for some large
constant C > 0, we can modify the cost function as

Jnew(u) = J(u) + C
K∑
k=0

1xk∈A. (11)

From the inference perspective (3), we can interpret Jnew (11)
as saying that o = ocost ∧ oconstraint, where,

p(ocost = 1 | u) ∝ exp(−J(u)), (12)

p(oconstraint = 1 | u) ∝ exp

(
−C

K∑
k=0

1xk∈A

)
. (13)

However, a problem with (13) is that it looks at safety
only within the prediction horizon and does not consider the
probability of staying safe beyond the prediction horizon. To
tackle this problem, we will use a discrete-time control barrier
function (DCBF), which we introduce in the next section, to
enforce that the states remain within a control-invariant set.

C. Discrete-time Control Barrier Functions (DCBF)

A discrete-time control barrier function (DCBF) [79] asso-
ciated to the avoid set A is a function B : X → R such that1

B(x) > 0, ∀x ∈ A, (14a)
B(x) ≤ 0 =⇒ inf

u∈U
B(f(x, u))−B(x) ≤ −α(B(x)), (14b)

where α is an extended class-κ function [77]. As in [79], we
restrict our attention to the class of linear extended class-κ
functions, i.e.,

α(B(x)) = a ·B(x), a ∈ (0, 1). (15)

The following theorem from [79] proves that a controller
satisfying the condition (14b) renders the sublevel set S =
{x | B(x) ≤ 0} forward-invariant.

Theorem 1 ([79, Property 3.1]). Any control policy π : X → U
satisfying the condition

B(f(x, π(x)))−B(x) ≤ −α(B(x)), (16)

renders the sublevel set S = {x | B(x) ≤ 0} forward-
invariant.

Hence, one way to guarantee recursive feasibility, and thus
safety beyond the prediction horizon, is to enforce the condition
(16) at every time step of the optimization problem. Another
point to note is that S is a control-invariant set, and thus the
constraint B(xK) ≤ 0 can be imposed as a terminal state
constraint to guarantee recursive feasibility for MPC as is
done classically [37, 11]. Thus, one can try to enforce these
constraints by incorporating them into the cost function as

1Note that we use the opposite sign convention as compared to [79].

4

in (11) [79], i.e., modify the cost according to one of the
following options,

Jnew(u) = J(u) + C
K∑
k=0

1B(f(x,u))−B(x)>−α(B(x)), (17)

Jnew(u) = J(u) + C
K∑
k=0

[
B(f(x, u))−B(x) + α(B(x))

]
+
.

(18)

However, this approach has two problems. First, for sufficiently
large C, samples that violate the DCBF constraint will have
a normalized weight of near zero, rendering these samples
useless. Conservative DCBFs may cause the majority of the
samples to violate the constraint (16) and hence have zero
weight, resulting in poor estimates of the optimal control and
wasted computation. Second, while constructing a function B
that satisfies (14a) is relatively simple, it is much harder to
construct a function B that also satisfies (14b), contrary to the
case with (continuous-time) control barrier functions [64, 83]
(see also Remark 3 below). Consequently, many works that
integrate control barrier functions into MPC often only propose
functions for which (14a) holds and not (14b) [79], rendering
the safety guarantees of Theorem 1 invalid.

In the next section, we address these two problems via a
novel resampling method that reuses computations from zero-
weight samples and learns a DCBF that tries to respect both
(14a) and (14b) using policy value functions.

Remark 3 (Differences between discrete-time and continu-
ous-time control barrier functions under unbounded controls).
Note that in the continuous-time case where having an
unbounded control space U , control-affine dynamics, and
a non-zero ∂Ḃ

∂u are sufficient to guarantee that B is a valid
control barrier function. This is because (14b) generally
holds for a function B that satisfies (14a) in the continuous-
time case under these assumptions. However, the same does
not apply to discrete-time under general nonlinear dynamics
f since (16) is nonlinear in u, let alone the fact that robotic
systems in real life are unable to exert infinite forces and
hence generally do not have unbounded controls.

Remark 4 (Constraint satisfaction in the variational infer-
ence framework). One potential issue with incorporating
DCBF constraints into the cost function J is that, while
p(u | o = 1) may have zero density on the set of controls that
violate the DCBF constraint, this does not necessarily hold
for the approximating distribution q since we are minimizing
the forward KL divergence [34]. In particular, the mean v
of qv, which is the control to be used, may not satisfy
the DCBF constraint. One way to guarantee that v does
satisfy the DCBF constraint is to assume that the set of
controls that satisfy the DCBF constraint is itself convex
(see Appendix F). However, this is an unrealistic assumption
that is often violated by state constraints such as obstacle
avoidance.

Despite these shortcomings, we observed in our ex-
perimental results that this method of enforcing DCBF
constraints on p(u | o = 1) indeed drastically improved
safety. We leave further theoretical exploration of this issue
as future work.

IV. NEURAL SHIELD VIMPC
In this section, we propose Neural Shield VIMPC (NS-

VIMPC), a sampling-based MPC paradigm that efficiently
samples trajectories using a DCBF modeled using a neural
network. We illustrate the proposed NS-VIMPC algorithm in
Fig. 2.

A. Approximating DCBF Using Neural Policy Value Functions
Let xπk denote the state at time k following the control policy

π : X → U . Define the policy value function V h,π as,

V h,π(x0) := max
k≥0

h(xπk). (19)

We have the following theorem.

Theorem 2. V h,π satisfies (14a) and (14b) and is a DCBF.

Proof: From the definition of V h,π (19), we have that

V h,π(xk) ≥ h(xk), (20)

V h,π(xk) ≥ V h,π(f(xk, π(xk))). (21)

Using the definition of the avoid set A (2) and (20), it
follows that V h,π(x) > 0 for all x ∈ A, satisfying the first
condition (14a) of a DCBF. When V h,π(xk) ≤ 0, we have
−α(V h,π(xk)) ≥ 0, and (21) implies that,

V h,π(f(xk, π(xk)))−V h,π(xk) ≤ 0 ≤ −α(V h,π(xk)). (22)

Since π(xk) ∈ U , this implies the second condition (14b).
Thus, the policy value function V h,π is a DCBF.

Although we have constructed a DCBF from (19), the
challenge is that the policy value function V h,π cannot be
easily evaluated at arbitrary states since the maximization in
(19) is taken over an infinite horizon. To fix this, we train a
neural network approximation V h,πθ of V h,π, extending the
approach of [64] to the discrete-time case. To begin, we first
rewrite (19) in a dynamic programming form,

V h,π(x0) = max
{

max
0≤k≤T

h(xπk), V
h,π(xπT)

}
. (23)

We can then train a neural network V h,πθ to approximate the
value function V h,π by minimizing the loss

L(θ) =

∥∥∥∥V h,πθ (x0)−max

{
max

0≤k≤T
h(xπk), V

h,π
θ (xπT)

}∥∥∥∥2
over all states x0. One problem, however, is that the minimizer
of (IV-A) is not unique. For example, if h(x) ≤ h̄ for all x, then
V h,πθ = h̄ is a minimizer of (IV-A) but does not necessarily
satisfy (19). To fix this, we follow the approach of [22, 62] and,
inspired by reinforcement learning [65], introduce a discount
factor γ ∈ (0, 1) to define the discounted value function

V h,π,γ(xk) = max
{
h(xπk), (1−γ)h(xk)+γV h,π,γ(xπk+1)

}
,

(24)

5

and the corresponding loss L,

L(θ) =
∥∥∥V h,π,γθ (xk)− V̂ h,π,γθ (xk)

∥∥∥2 , (25)

V̂ h,π,γθ (xk) = max

{
h(xπk), (1− γ)h(xπk) + γV h,π,γθ (xπk+1)

}
.

(26)

Finally, instead of using the learned V h,π,γθ directly in (16),
we first take the maximum with h and use Ṽ h,π,γθ defined as

Ṽ h,π,γθ (x) := max{h(x), V h,π,γθ (x)}. (27)

This guarantees that Ṽ h,π,γθ (x) ≥ h(x) and hence the zero
sublevel set of Ṽ h,π,γ will be a subset of h. Hence, imposing
the state constraint Ṽ h,π,γ(x) ≤ 0 will, at the very least,
prevent violations of the original state constraints during the
prediction horizon, and potentially also induce a state constraint
that is closer to the true control-invariant set than the original
sublevel set of h.

Remark 5 (Neural Network Verification of DCBFs). We
emphasize that our goal here is to obtain a good approxi-
mation of a DCBF Bθ using a neural policy value function
V h,π,γθ , and not necessarily to obtain a true DCBF. Verifying
whether the learned V h,π,γθ is a true DCBF requires neural
network verification which can be intractable or inconclusive
(see Appendix 1 in [36] on the NP-completeness of the NN-
verification problem). This is especially true in the discrete-
time case where the condition (16) may not be affine in the
control u.

Nevertheless, as we show later, empirical results show that
using an approximation of a DCBF is sufficient for enabling
the use of much shorter prediction horizons without sacrificing
safety.

B. Efficient Sampling Using Resampling-based Rollouts

We tackle the problem of wasted samples with zero weights
by drawing inspiration from the sequential Monte Carlo
[18] and particle filter [28] literature, and by performing a
per-timestep resampling during the rollout, which we call
Resampling-Based Rollouts (RBR). Specifically, the control-
as-inference problem formulation (3) gives us a temporal
decomposition of p(oconstraint = 1 | u) (13) in the case of
state constraints when C → ∞, as follows

p(oconstraint = 1 | u) ∝
K∏
k=0

1xk ̸∈A. (28)

Hence, we can write the posterior p(u | o = 1) as

p(u | o = 1) ∝ p(ocost = 1 | u)p(u)

(
K∏
k=0

1xk ̸∈A

)
. (29)

By treating the term on the right as a “measurement model,”
it allows us to use particle filtering [28] to solve the control-
as-inference problem. The update of the particle filter weights
ŵik at time step k for particle i is written as

ŵik = ŵik−11xk ̸∈A. (30)

Fig. 3: Resampling-based Rollouts (RBR). Inspired by particle
filtering, at each step of the trajectory rollout, we uniformly
resample any samples that violate the state constraints among
the set of safe samples. In this example, since the state xa1
violates constraints, it has a weight ŵa1 = 0. The control ua1 is
rewired to state xc1 (since ŵb1 = ŵc1 = 1, xb1 and xc1 has equal
chance of getting ua1), resulting in a new sample state xa2 .

Then, we resample the particles with probability proportional
to their weights ŵik to obtain a new set of particles ui. Due to
the indicator function in the weight update (30), the weights
are either 0 or 1. Assuming there exists a particle that satisfies
the state constraint, applying systematic resampling [38] results
in “rewiring” particles that violate the constraint to particles
that still maintain safety, reusing the computation from zero-
weight samples (see Fig. 3). Note that we check state constraint
N(K − 1) times for potential resampling during a rollout (once
for each particle, all time steps except the last). When all
particles violate the constraint, we do not resample. In this
case, since we want to minimize constraint violations, we
still use the cost term (18) such that trajectories with higher
constraint violations have higher costs.

While we can prove that this resampling is unbiased from the
particle filter perspective, we also provide a more direct proof
of this fact without the analogy to particle filters.

Theorem 3. For a probability density function f and set S,
let a be sampled from the conditional density f(x | x ∈ S),
and let b be sampled from the unconditional density f, such
that a and b are independent. Define the “rewired” random
variable b̃ to be equal to b if b ∈ S and a otherwise, i.e.,

b̃ = 1b∈Sb+ 1b̸∈Sa (31)

Then, b̃ is also sampled from the conditional density f(x |
x ∈ S), such that b̃ and a have the same distribution, b̃ d

= a.

The proof is given in Section D2. Consequently, we can
use b̃ in a Monte Carlo estimator and still obtain unbiased
estimates, as shown in the following Corollary (proof is given
in Section D3).

Corollary 1. For any function w, the Monte Carlo estimate
of E[w(x)] under the conditional density f(x | x ∈ S) using

6

random variables a and b̃ is unbiased, i.e.,

E[
1

2
w(a) +

1

2
w(b̃)] = E[w(x)]. (32)

Intuitively, resampling improves the efficiency of the Monte
Carlo estimator, since most of the samples do not violate the
state constraints and hence contribute to the weighted sum
with non-zero weight. We can also theoretically prove that
resampling improves the variance of the resulting Monte Carlo
estimator. In the following theorem, we show how resampling
reduces the exponential growth of the variance on the prediction
horizon to a constant factor in the limit as the number of
samples N goes to infinity.

Theorem 4. Let the horizon K > 0, consider U =
[−1, 1], and define the avoid set and the dynamics such
that u ∈ [0, 1]K is safe, and unsafe otherwise. Let the
prior distribution p(u) be uniform on [−1, 1]K and let
p(o = 1 | u) be the indicator function for u ∈ [0, 1] such
that the posterior distribution p(u | o = 1) is uniform
on [0, 1]K , and the proposal distribution r(u) = 1/2K

is uniform on U . Then, the variance of the Monte Carlo
estimator of the optimal control law

v̂ =
1

N

N∑
i=1

p(ui | o = 1)

r(ui)
ui, (33)

grows exponentially in K, i.e.,

Var[v̂k] =
1

N

(
1

3
2K − 1

4

)
, k = 1, . . . ,K. (34)

Using resampling, the variance is upper-bounded by,

Var[v̂k,resample] = O

((
1

1− 2−N

)K
+ (1− 2−N)K

)
.

(35)

The proof of Theorem 4 is given in Section D4. As shown
in Theorem 4, although the variance is still exponential in
K using resampling, the base of the exponential decreases
to 1 exponentially in the number of samples N . In other
words, in the limit as N → ∞, the variance of the estimator
using the proposed RBR is bounded by a constant factor.
This novel approach reduces the variance of the Monte Carlo
estimator of the optimal control law in a way that mirrors
the relationship between Sequential Importance Sampling
(i.e., particle filters without resampling), where the variance
increases exponentially with the horizon length, and Sequential
Monte Carlo (i.e., particle filters with resampling), where the
(asymptotic) variance only increases linearly [19].

Another method to theoretically quantify the improvement
in the variance of the estimator is via the effective sample
size (ESS) [19, 20]. ESS is defined as the ratio between the
variance of the estimator with N samples from the target and
the variance of the SNIS estimator [20]. It can be interpreted as
the number of samples simulated from the target pdf that would
provide an estimator with variance equal to the performance

of the N -sample SNIS estimator. However, since the ESS is
computationally intractable, the approximation (made formal
in [20])

ÊSS :=
1∑N

n=1 w
2
n

, (36)

is more often used in practice. The following theorem shows
that performing RBR results in either the same or higher
ÊSS, given certain assumptions (proof is given in Sec-
tion D5).

Theorem 5. Let w = [w1, . . . , wm, 0, . . . , 0] denote the un-
normalized weight vector without resampling, where the last
N−m entries are zero due to violating the safety constraints.
Let w′ = w + c = [w1, . . . , wm, cm+1, . . . , cN] denote the
unnormalized weight vector resulting from safe resampling,
where c = [0, . . . , 0, cm+1, . . . , cN]. Let w̃ = w/ ∥w∥1
and w̃′ = w′/ ∥w′∥1 denote the normalized weights.
Suppose that the weights of the resampled trajectories c are
not “drastically larger” than the weights of the original
trajectories w, i.e.,

∥c∥1 ≤ 2
N

N − 1

∥w∥22
∥w∥1

. (37)

Then, the ÊSS using RBR is no smaller than the ÊSS
without resampling, and is strictly greater if the inequality
in (37) is strict. In other words,

1

∥w̃∥22
≤ 1

∥w̃′∥22
. (38)

C. Summary of NS-VIMPC

We now summarize the NS-VIMPC algorithm, shown in
Fig. 2.

Offline, we first approximate a DCBF by using the DPNCBF
algorithm to learn the policy value function for a user-specified
policy (Section IV-A). In our experiments, we chose this to
be Shield MPPI (S-MPPI) [79]. Online, we use the learned
DPNCBF to enforce the DPCBF constraint (16) to try to
enforce safety beyond the prediction horizon. During sampling,
we use RBR to efficiently sample control sequences {ũi} from
the raw samples {ui} to satisfy the DPNCBF constraint, thus
improving the sample efficiency of the Monte Carlo estimate
of the optimal control. The sampled control sequences {ũi}
are then used to compute the estimate of the optimal control v̂
using (9). As in MPC fashion, we only execute the first control
v̂0, and v̂ is then used as the parameter vector of the sampling
distribution qv for the next iteration.

V. SIMULATIONS

We first performed simulation experiments to better under-
stand the performance of the proposed Neural Shield VIMPC
(NS-VIMPC) controller. Although many sampling-based MPC
controllers fall under the VIMPC family with different choices
of the prior p0 and r, we choose to instantiate the MPPI
algorithm (see Section B1 for details), and call the resulting
controller Neural Shield-MPPI (NS-MPPI).

7

Fig. 4: AutoRally Trajectories. We visualize the trajectories
of the three MPPI baselines under a challenging target velocity
of 15 ms−1. Both MPPI and S-MPPI veer off course and crash
while NS-MPPI stays within the track even under Gaussian
disturbances.

0.0

0.5

1.0

Cr
as

h
Ra

te

Deterministic Stochastic

0.0

0.5

1.0

Co
l.

Ra
te

MPPI
CEM

S-MPPI
NS-MPPI

6 10 14 18 225.5

6.0

6.5

7.0

Ve
lo

cit
y

6 10 14 18 22
Target Velocity (m/s)

Fig. 5: Varying target velocities on AutoRally. Our method
NS-MPPI achieves the lowest crash and collision (truncated to
Col.) rates under both deterministic and stochastic dynamics.
Although the collision rate is close to 1 for every method in
the stochastic environment, NS-MPPI achieves a crash rate of
near 0.

Baseline methods. We compared NS-MPPI against the follow-
ing sampling-based MPC methods.

• Baseline MPPI (MPPI) [71], which forward simulates a set
of randomly sampled trajectories for optimal control.

• Shield MPPI (S-MPPI) [79], which extends MPPI by taking
h in (2) to be a DCBF and by adding the DCBF constraint
violation into the cost as in (18).

• CEM [7], which samples trajectories similar to the baseline
MPPI but with the weight ω = 1 for only the k-lowest cost
trajectories and 0 otherwise. This corresponds to an average
of the k-lowest cost trajectories.

In all simulations, we use S-MPPI as the control policy
π to learn the DPNCBF. We provide further details on the
simulation experiments in Appendix A.

A. Simulations on AutoRally

We first compare all methods on the AutoRally [26] testbed,
a 1/5 scale autonomous racing car. The goal for this task
is to track a given fixed velocity without exiting the track.

The vehicle collides when it contacts the track boundary and
crashes when it fully exceeds the track boundary.

We tested our algorithm under both deterministic dynamics
and stochastic dynamics with a Gaussian state disturbance
added at each timestep. We visualize the resulting trajectories
in Fig. 4 with a target velocity of 15 ms−1. This is a very high
target velocity, as previous works considered at most velocities
of 8 ms−1 [79] or 9 ms−1 [23]. Under this challenging speed,
both the MPPI and the S-MPPI frequently veer off course.
In contrast, the proposed NS-MPPI successfully retains the
vehicle within the confines of the track, thereby ensuring safety.

Next, we vary the target velocities, showing the resulting
crash rate, collision rate, and velocity in Fig. 5 over 20
trials. With higher velocities, the vehicle has less time to turn,
increasing the likelihood of leaving the track and colliding or
crashing. We see that NS-MPPI consistently outperforms all
other methods in both settings without having a significantly
lower average velocity.

B. Simulations on Drone

We next tested our algorithm on Drone, a simulated planar
quadrotor that incorporates ground effects arising from the
intricate interaction between the blade airflow and the ground
surface. The goal is for the drone to navigate as fast as possible
through a narrow corridor close to the ground. We vary the
control horizon for 200 sampled trajectories and plot the results
in Fig. 6. Only NS-MPPI has a crash rate of zero over all
control horizons. S-MPPI is only able to consistently avoid
crashes with longer control horizons. To understand why this
is the case, we visualize the trajectories for NS-MPPI and
S-MPPI with a control horizon of 10 in Fig. 6b. Due to the
DCBF constraint, NS-MPPI starts descending to avoid the
obstacles even though none of the original collision constraints
have been violated. On the other hand, S-MPPI is unaware of
the obstacles beyond the prediction horizon and keeps moving
to the right. This suggests that enforcing the DCBF constraint
even with only an approximate V h,π,γθ is beneficial in enforcing
safety with very short control horizons.

To assess the impact of the proposed RBR method, we also
implemented Shield MPPI using RBR supervised by a distance-
based CBF (S-MPPI+RBR). Interestingly, the success rate of
this controller initially increases with the control horizon (as
safety increases) but later decreases (as the drone fails to go
through the narrow corridor but remains safe). Similarly, the
success rate of the NS-MPPI also decreases with the control
horizon. This is because the variance of the Monte Carlo
estimator scales exponentially with the control horizon, as
shown in Section IV-B.

To compare the proposed DPNCBF with existing reachabil-
ity method for the discrete-time avoid problem, we use [48],
a grid-based reachability analysis approach in continuous-time,
with the finest discretization allowed by memory and apply
the resulting maximal CBF to NS-MPPI, as demonstrated by
Fig. 7(b). To the best of our knowledge, there is no existing
open-source reachability solver in discrete-time. Simulations
show that safety improves slightly at low control horizons

8

10 20 30 40 50

0.0

0.5

1.0
Success Rate

10 20 30 40 50

Crash Rate

Control Horizon

MPPI CEM S-MPPI S-MPPI+RBR NS-MPPI

(a)

NS-MPPI

S-MPPI

(b)

Fig. 6: Varying control horizon on Drone. (a) Only NS-MPPI has a crash rate of zero even with a control horizon of 10,
demonstrating the benefit of enforcing the DCBF constraint for maintaining safety beyond the prediction horizon. (b) We
compare the sampling trajectory ui (in green) and estimated optimal trajectory v̂ (in orange) for NS-MPPI and S-MPPI for a
control horizon of 10. Due to the DCBF constraint, NS-MPPI starts descending to avoid the obstacles even though none of the
original collision constraints have been violated.

but remains imperfect due to errors from mismatches between
discrete-time (zero-order hold) and continuous-time control.
At longer horizons, success rates drop as state discretization
errors mark the narrow corridor as unsafe, blocking traversal,
as demonstrated by Fig. 7(a).

C. Deeper Investigation Into RBR

We performed a case study to better understand the benefits
of the proposed RBR method on sample efficiency.
RBR improves sample efficiency by 5X. To isolate the effects
of RBR without the other improvements, we considered a new
method that extends S-MPPI with RBR (S-MPPI w/ RBR),
and compared it against the original S-MPPI across different
numbers of sampled trajectories on AutoRally over 100 trials
in Fig. 8. The results show that S-MPPI with RBR can achieve
the same collision rates as S-MPPI without RBR while using
5 times fewer trajectories. This matches our expectations, both
from the intuition that RBR results in a more closely aligned
proposal distribution (e.g., see Fig. 1), and from the theoretical
results in Section IV-B that show that RBR improves the quality
of the estimator.
RBR achieves larger ÊSS. RBR theoretically improves the
ÊSS, as mentioned in Section IV-B. We verified this claim
empirically on the AutoRally and plot the results in Fig. 9.
While MPPI and S-MPPI exhibit values of ÊSS concentrated
near 1, the ÊSS values for NS-MPPI are more uniformly
distributed, indicating a more extensive utilization of the
sampled trajectories and thus a better use of the available
computational resources.
RBR is especially beneficial in harder environments. To
further stress-test RBR, we ran 50 trials with 100 sampled
trajectories on a harder variant of the AutoRally that contains
obstacles of various sizes and compared its performance with
other baseline methods. The cluttered AutoRally environment
can become especially challenging when the sampled trajectory
states fall within a non-convex set caused by close-to-center
obstacles. First, consider the trajectories produced by S-MPPI

[79] and our NS-MPPI in Fig. 10. Since S-MPPI relies on a
heuristic DCBF, it is unable to avoid crashing into the walls
and obstacles, whereas NS-MPPI avoids crashes in almost all
runs as shown in Fig. 10 (b). Furthermore, if we add efficient
sampling to the S-MPPI, we observe a massive performance
boost as seen in Fig. 10, but still not as good as NS-MPPI.

Finally, to demonstrate the enhancement in sampling effi-
ciency achieved by the proposed sampling method, we provide
visual representations of trajectory sampling distributions
obtained from simulations in environments with obstacles in
Fig. 1. As demonstrated by Fig. 1 (b), the RBR concentrates
trajectory samples within a feasible narrow passage that
satisfies the DCBF safety criteria. Conversely, the standard
sampling approach, exemplified by Fig. 1 (a), produces a sparse
distribution, misallocating samples to unsafe zones and thereby
failing to sufficiently explore safe areas. This inadequacy leads
to a collision with an obstacle.
Enhanced sampling efficiency enables real-time planning on
a CPU. To demonstrate the computational benefits provided by
RBR, we evaluated several VI-MPC controllers on a standard
laptop CPU. This assessment sets a target tracking speed of
12 m/s, a horizon of K = 15 and a small sample size of
N = 30 trajectories at each optimization iteration for fast
computation. The resulting statistics are presented in Table II.
From the data presented in Table II, it is evident that NS-
MPPI attains the minimal crash rate, although it operates at a
marginally reduced control update frequency, with S-MPPI next
in line. This challenging task results in both MPPI and CEM
controllers exhibiting crash and collision rates that approach
1. For most robotic applications, a control rate of 70 Hz is
sufficient.

VI. HARDWARE EXPERIMENTS

Finally, we deployed our method and other existing sampling-
based MPC baselines on hardware using the AutoRally ex-
perimental platform [26]. Testing was conducted on a dirt
track outlined by drainage pipes, as depicted in Fig. 11. All

9

px

pz

−0.75 −0.50 −0.25 0.00 0.25 0.50 0.75

Narrow corridor unsafe
from state discretization

5 10 20 30 40
Control Horizon

0.0

0.5

1.0
Success Rate

5 10 20 30 40
Control Horizon

Crash Rate
MPPI S-MPPI+RBR NS-MPPI NS-MPPI (Grid)

(a) (b)
Fig. 7: Comparison between DPNCBF and CBF obtained from a grid-based reachability method (a) Using the V from
reachability on Drone. (b) Due to state discretization, the narrow corridor is marked unsafe, causing the drone to be overly
conservative and not cross the corridor to remain safe.[Note: Data in Fig.7(a) is not consistent with data in Fig.6(a). Fig.7(b) needs to
have a different plot scale, current plot looks very different from Fig.6(b)]

Fig. 8: RBR reduces the samples needed by 5X. On
AutoRally, applying RBR to S-MPPI significantly reduces the
required number of sampled trajectories (190 to 40) to achieve
the same level of safety. From another perspective, RBR reduces
the collision rate by 74% at 50 sampled trajectories.

0.0 0.5 1.0 1.5 2.0 2.5
Log(ESS)

50

150

250

Fr
eq

ue
nc

y

Effective Sample Size (ESS) Frequencies
MPPI
S-MPPI
NS-MPPI

Fig. 9: NS-MPPI has larger ÊSS. The proposed NS-MPPI
achieves larger effective sample sizes, verifying that RBR
enables more efficient use of samples and computations.

TABLE II: Performance and Timing Comparison

Crash Collision Control
Controller Rate Rate Rate (Hz)

NS-MPPI 0.04 0.06 73.64
S-MPPI 0.46 0.70 107.31
MPPI 0.98 1.00 130.05
CEM 1.00 1.00 88.17

S-MPPI
NS-MPPI

(a)

0.0

0.4

0.8

1.0

Cr
as

h
Ra

te

S-MPPI S-MPPI w/ RBR NS-MPPI0.0

0.4

0.8

1.0

Co
llis

io
n

Ra
te

(b)

Fig. 10: AutoRally with obstacles. (a) While NS-MPPI
consistently clears the entire track, S-MPPI often crashes into
obstacles and walls. (b) AutoRally Statistics. The crash and
collision rate statistics supporting the observations made on
the left.

Fig. 11: AutoRally Track Setup. The site is equipped with
a spacious carport, a 3-meters-tall observation tower, and a
storage shed [24]. Each turn of the track is numbered as Ti,
with T1 is the first turn and T9 is the last.

computations use the onboard Intel i7-6700 CPU and Nvidia
GTX-750ti GPU [26]. See Appendix E for more details on the
hardware experiments.

10

A. Robustness Against Adversarial Costs

Robots depend on sensors such as cameras to gather
information about their environment, and use the collected data
to construct suitable cost functions. Deep Neural Networks
(DNNs) are frequently utilized for object detection, classifi-
cation, and semantic segmentation [87]. However, DNNs are
susceptible to adversarial attacks [29], which can mislead the
algorithms into generating incorrect outputs. These attacks often
involve altering the appearance of the object of interest directly
[42], eventually resulting in erroneous cost functions. In this
hardware experiment, we tested the robustness of the proposed
NS-MPPI to these erroneous or misspecified cost functions
by using an adversarial cost function on the actual AutoRally
hardware platform. Namely, instead of penalizing infeasible
system states, we reward unsafe states by assigning negative
costs, effectively incentivizing collisions. We compared against
the S-MPPI and MPPI baselines.

The results are depicted in Fig. 12. As MPPI only uses cost
information, it rapidly steers the AutoRally vehicle toward
the closest boundary, resulting in a crash. S-MPPI crashes
the vehicle at the first turn (T1) as well, but it covers a
greater distance than MPPI. Only NS-MPPI achieves a collision-
free completion of 10 laps. Nonetheless, there are noticeable
oscillatory movements of the car, indicating susceptibility to
attractive costs driving it toward boundary collisions.

B. Safety Under Unsafe User Input

Exceeding speed limits is a significant contributor to road
accidents [50] due to noncompliance by many drivers. The pro-
posed Shield VIMPC control framework can smartly manage
speeds supervised by the NCBF to achieve safety, even given
unsafe user inputs. To this end, we tested MPPI, S-MPPI, and
the proposed NS-MPPI on the AutoRally hardware using large,
unsafe target velocities to examine their safety performance.
The results are shown in Fig. 13. Designating high target
velocities encourages maximizing speed, thus disrupting the
equilibrium in the controllers’ cost structure by diminishing
the emphasis on cost penalties associated with obstacles. As
a result, MPPI causes the vehicle to deviate from the path,
resulting in a crash at the second turn (T2), while S-MPPI
impacts at the seventh turn (T7). In contrast, NS-MPPI ensures
safety, preventing any accidents.

VII. LIMITATIONS

One limitation of our approach is that the DPNCBF is only
an approximation of a DCBF. As such, the typical safety
guarantees of DCBFs may not hold if the function is not
a true DCBF. Moreover, as noted in Remark 4, the use of
variational inference means that v∗ may not satisfy the state
constraints despite the optimal distribution p(u | o = 1) having
zero density at states that violate the state constraints. While
theoretically we were only able to show that v∗ stays safe
under the assumption that UKsafe is convex, empirical results in
Fig. 10 show that NS-MPPI can perform well despite the fact
that UKsafe is typically not convex.

Fig. 12: Adversarial cost. With a cost function that rewards
crashes, both MPPI and S-MPPI crash. Only NS-MPPI com-
pletes 10 laps collision-free.

Fig. 13: Safety under unsafe user inputs. Using an erro-
neously large velocity target, both MPPI and S-MPPI crash.
The visualization on the bottom row visualizes simulation
trajectories that lead to crashes in the same turn.

VIII. CONCLUSION

In this study, we have adapted the policy neural control
barrier function (PNCBF) to a discrete-time setting and
utilized the resulting discrete-time policy neural control barrier
function (DPNCBF) to supervise the proposed resampling-
based rollout (RBR) method. This novel method enhances
sampling efficiency and safety for all variational inference
model predictive controllers (VIMPCs). Leveraging RBR, we
developed the neural shield VIMPC (NS-VIMPC) control
framework and demonstrated its benefits for safe planning
through the novel neural shield model predictive path integral
(NS-MPPI) controller. We conducted tests of the NS-MPPI,
benchmarking its performance against state-of-the-art sampling-
based MPC controllers using both an autonomous vehicle and
a drone. Our simulations and experimental data indicate that
the NS-MPPI outperforms existing VIMPC methods in terms
of safety and sampling efficiency. The improved sampling
efficiency allows NS-MPPI to reach similar performance levels
as other VIMPC methods, while using significantly fewer

11

sampled trajectories, facilitating real-time control on a CPU
rather than necessitating costly GPU resources.

We have used the novel RBR method to concentrate
sampled trajectories on safe regions. While this approach
can significantly improve sampling efficiency in terms of
safety, it does not improve other aspects of performance. To
further enhance performance, we may, for instance, integrate a
Control Lyapunov Function [16] or a Control Lyapunov Barrier
Function [74] with the novel RBR approach to sample safe
and higher-performance trajectories.

REFERENCES

[1] Manuel Acosta and Stratis Kanarachos. Tire lateral force
estimation and grip potential identification using neural
networks, extended Kalman filter, and recursive least
squares. Neural Computing and Applications, 30(11):
3445–3465, 2018.

[2] Mohamadreza Ahmadi, Andrew Singletary, Joel W. Bur-
dick, and Aaron D. Ames. Safe policy synthesis in multi-
agent POMDPs via discrete-time barrier functions. In
IEEE 58th Conference on Decision and Control (CDC),
pages 4797–4803, Nice, France, Dec. 11 – 13, 2019.

[3] Ermano Arruda, Michael J. Mathew, Marek Kopicki,
Michael Mistry, Morteza Azad, and Jeremy L. Wyatt.
Uncertainty averse pushing with model predictive path
integral control. In IEEE-RAS 17th International Confer-
ence on Humanoid Robotics (Humanoids), pages 497–502,
Birmingham, UK, Nov. 15 – 17, 2017.

[4] Hagai Attias. Planning by probabilistic inference. In
International Workshop on Artificial Intelligence and
Statistics, pages 9–16, Key West, FL, Jan. 3 – 6, 2003.

[5] Somil Bansal and Claire J Tomlin. Deepreach: A deep
learning approach to high-dimensional reachability. In
2021 IEEE International Conference on Robotics and
Automation (ICRA), pages 1817–1824. IEEE, 2021.

[6] Lucas Barcelos, Alexander Lambert, Rafael Oliveira,
Paulo Borges, Byron Boots, and Fabio Ramos. Dual
Online Stein Variational Inference for Control and Dy-
namics. In Proceedings of Robotics: Science and Systems,
Virtual, July 12 – 16, 2021.

[7] Homanga Bharadhwaj, Kevin Xie, and Florian Shkurti.
Model-predictive control via cross-entropy and gradient-
based optimization. In Proceedings of the 2nd Conference
on Learning for Dynamics and Control, volume 120 of
Proceedings of Machine Learning Research, pages 277–
286, Virtual, June 11 – 12, 2020.

[8] Mohak Bhardwaj, Balakumar Sundaralingam, Arsalan
Mousavian, Nathan D. Ratliff, Dieter Fox, Fabio Ramos,
and Byron Boots. STORM: An integrated framework
for fast joint-space model-predictive control for reactive
manipulation. In Conference on Robot Learning, pages
750–759, Auckland, New Zealand, Dec. 14 – 18, 2022.

[9] Camille Brasseur, Alexander Sherikov, Cyrille Collette,
Dimitar Dimitrov, and Pierre-Brice Wieber. A robust
linear MPC approach to online generation of 3d biped
walking motion. In IEEE-RAS 15th International Confer-

ence on Humanoid Robots (Humanoids), pages 595–601,
Seoul, South Korea, Nov. 3 – 5, 2015.

[10] José Manuel Bravo, Daniel Limón, Teodoro Alamo, and
Eduardo F. Camacho. On the computation of invariant sets
for constrained nonlinear systems: An interval arithmetic
approach. Automatica, 41(9):1583–1589, 2005.

[11] Wen-Hua Chen, John O’Reilly, and Donald J. Ballance.
On the terminal region of model predictive control for non-
linear systems with input/state constraints. International
Journal of Adaptive Control and Signal Processing, 17
(3):195–207, 2003.

[12] Andrew Clark. Verification and synthesis of control barrier
functions. In IEEE Conference on Decision and Control
(CDC), pages 6105–6112, Austin, TX, Dec. 13 – 17,
2021.

[13] Wenceslao Shaw Cortez and Dimos V. Dimarogonas. Safe-
by-design control for Euler–Lagrange systems. Automat-
ica, 146:110620, 2022.

[14] Wenceslao Shaw Cortez, Xiao Tan, and Dimos V. Di-
marogonas. A robust, multiple control barrier function
framework for input constrained systems. IEEE Control
Systems Letters, 6:1742–1747, 2021.

[15] Li Danjun, Zhou Yan, Shi Zongying, and Lu Geng.
Autonomous landing of quadrotor based on ground effect
modelling. In Chinese Control Conference (CCC), pages
5647–5652, Hangzhou, China, July 28 – 30, 2015.

[16] Charles Dawson, Sicun Gao, and Chuchu Fan. Safe
control with learned certificates: A survey of neural
Lyapunov, barrier, and contraction methods for robotics
and control. IEEE Transactions on Robotics, 39(3):1749–
1767, 2023.

[17] Christopher De Sa, Megan Leszczynski, Jian Zhang,
Alana Marzoev, Christopher R Aberger, Kunle Olukotun,
and Christopher Ré. High-accuracy low-precision training.
arXiv preprint arXiv:1803.03383, 2018.

[18] Arnaud Doucet, Nando De Freitas, and Neil Gordon.
An introduction to sequential Monte Carlo methods.
Sequential Monte Carlo Methods in Practice, pages 3–14,
2001.

[19] Arnaud Doucet, Adam M. Johansen, et al. A tutorial
on particle filtering and smoothing: Fifteen years later.
Handbook of Nonlinear Filtering, 12(656-704):3, 2009.

[20] Víctor Elvira, Luca Martino, and Christian P. Robert.
Rethinking the effective sample size. International
Statistical Review, 90(3):525–550, 2022.

[21] Mirko Fiacchini, Teodoro Alamo, and Eduardo F. Ca-
macho. On the computation of local invariant sets for
nonlinear systems. In IEEE Conference on Decision and
Control, pages 3989–3994, New Orleans, LA, Dec. 12 –
14, 2007.

[22] Jaime F. Fisac, Neil F. Lugovoy, Vicenç Rubies-Royo,
Shromona Ghosh, and Claire J. Tomlin. Bridging
Hamilton-Jacobi safety analysis and reinforcement learn-
ing. In International Conference on Robotics and
Automation (ICRA), pages 8550–8556, Montreal, Canada,
May 20 – 24, 2019.

12

[23] Manan S. Gandhi, Bogdan Vlahov, Jason Gibson, Grady
Williams, and Evangelos A. Theodorou. Robust model
predictive path integral control: Analysis and performance
guarantees. IEEE Robotics and Automation Letters, 6(2):
1423–1430, 2021.

[24] GeorgiaTech. AutoRally. Online. Available: https:
//autorally.github.io/, 2022. Accessed: Nov. 9, 2024.

[25] Philip E Gill, Walter Murray, and Michael A. Saunders.
SNOPT: An SQP algorithm for large-scale constrained
optimization. SIAM Review, 47(1):99–131, 2005.

[26] Brian Goldfain, Paul Drews, Changxi You, Matthew
Barulic, Orlin Velev, Panagiotis Tsiotras, and James M
Rehg. AutoRally: An open platform for aggressive
autonomous driving. IEEE Control Systems Magazine,
39(1):26–55, 2019.

[27] Ravi Gondhalekar, Jun-ichi Imura, and Kenji Kashima.
Controlled invariant feasibility—A general approach to
enforcing strong feasibility in MPC applied to move-
blocking. Automatica, 45(12):2869–2875, 2009.

[28] Neil J. Gordon, David J. Salmond, and Adrian F.M. Smith.
Novel approach to nonlinear/non-Gaussian Bayesian state
estimation. In IEE Proceedings F (Radar and Signal
Processing), volume 140, pages 107–113, 1993.

[29] Amira Guesmi, Muhammad Abdullah Hanif, Bassem
Ouni, and Muhammad Shafique. Physical adversarial
attacks for camera-based smart systems: Current trends,
categorization, applications, research challenges, and
future outlook. IEEE Access, 11:109617–109668, 2023.

[30] Emily Hannigan, Bing Song, Gagan Khandate, Maximil-
ian Haas-Heger, Ji Yin, and Matei Ciocarlie. Automatic
snake gait generation using model predictive control. In
IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 5101–5107, Paris, France, May 31 –
Aug. 31, 2020.

[31] Tairan He, Chong Zhang, Wenli Xiao, Guanqi He,
Changliu Liu, and Guanya Shi. Agile But Safe: Learning
Collision-Free High-Speed Legged Locomotion. In
Proceedings of Robotics: Science and Systems, Delft,
Netherlands, July 2024. doi: 10.15607/RSS.2024.XX.059.

[32] Kai-Chieh Hsu, Vicenç Rubies-Royo, Claire Tomlin, and
Jaime F Fisac. Safety and Liveness Guarantees through
Reach-Avoid Reinforcement Learning. In Proceedings of
Robotics: Science and Systems, Virtual, July 2021. doi:
10.15607/RSS.2021.XVII.077.

[33] Wilson Jallet, Antoine Bambade, Nicolas Mansard, and
Justin Carpentier. Constrained differential dynamic
programming: A primal-dual augmented Lagrangian
approach. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 13371–
13378, Kyoto, Japan, Oct. 23 – 27, 2022.

[34] Ghassen Jerfel, Serena Wang, Clara Wong-Fannjiang,
Katherine A. Heller, Yian Ma, and Michael I. Jordan.
Variational refinement for importance sampling using the
forward kullback-leibler divergence. In Uncertainty in
Artificial Intelligence, pages 1819–1829, 2021.

[35] Zichao Jiang, Junyang Jiang, Qinghe Yao, and Gengchao

Yang. A neural network-based pde solving algorithm with
high precision. Scientific Reports, 13(1):4479, 2023.

[36] Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and
Mykel J. Kochenderfer. Reluplex: An efficient SMT solver
for verifying deep neural networks. In Computer Aided
Verification: 29th International Conference (CAV), pages
97–117, Heidelberg, Germany, July 24–28, 2017.

[37] Eric C. Kerrigan and Jan M. Maciejowski. Invariant
sets for constrained nonlinear discrete-time systems with
application to feasibility in model predictive control. In
Proceedings of the 39th IEEE conference on decision and
control, volume 5, pages 4951–4956, Sydney, Australia,
Dec. 12 – 15, 2000.

[38] Genshiro Kitagawa. Monte Carlo filter and smoother for
non-Gaussian nonlinear state space models. Journal of
Computational and Graphical Statistics, 5(1):1–25, 1996.

[39] Jacob Knaup, Kazuhide Okamoto, and Panagiotis Tsiotras.
Safe high-performance autonomous off-road driving using
covariance steering stochastic model predictive control.
IEEE Transactions on Control Systems Technology, 31
(5):2066–2081, 2023.

[40] Alexander Lambert, Fabio Ramos, Byron Boots, Dieter
Fox, and Adam Fishman. Stein variational model
predictive control. In Proceedings of the Conference on
Robot Learning, volume 155 of Proceedings of Machine
Learning Research, pages 1278–1297, 16–18 Nov, 2021.

[41] Sergey Levine. Reinforcement learning and control as
probabilistic inference: Tutorial and review. arXiv preprint
arXiv:1805.00909, 2018.

[42] Juncheng Li, Frank Schmidt, and Zico Kolter. Adversarial
camera stickers: A physical camera-based attack on deep
learning systems. In International Conference on Machine
Learning, pages 3896–3904, Long Beach, CA, Jun. 10 –
15, 2019.

[43] Lars Lindemann and Dimos V. Dimarogonas. Control
barrier functions for signal temporal logic tasks. IEEE
Control Systems Letters, 3(1):96–101, 2018.

[44] Björn Lindqvist, Sina Sharif Mansouri, Ali-akbar Agha-
mohammadi, and George Nikolakopoulos. Nonlinear
MPC for collision avoidance and control of UAVs with
dynamic obstacles. IEEE Robotics and Automation
Letters, 5(4):6001–6008, 2020.

[45] Johan Löfberg. Oops! I cannot do it again: Testing for
recursive feasibility in MPC. Automatica, 48(3):550–555,
2012.

[46] Kostas Margellos and John Lygeros. Hamilton–Jacobi
formulation for reach–avoid differential games. IEEE
Transactions on Automatic Control, 56(8):1849–1861,
2011.

[47] David Q. Mayne, James B. Rawlings, Christopher V. Rao,
and Pierre O.M. Scokaert. Constrained model predictive
control: Stability and optimality. Automatica, 36(6):789–
814, 2000.

[48] Ian M. Mitchell. The flexible, extensible and efficient
toolbox of level set methods. Journal of Scientific
Computing, 35:300–329, 2008.

13

https://autorally.github.io/
https://autorally.github.io/

[49] Anusha Nagabandi, Kurt Konolige, Sergey Levine, and
Vikash Kumar. Deep dynamics models for learning
dexterous manipulation. In Conference on Robot Learning,
pages 1101–1112, Virtual, Nov. 16 – 18, 2020.

[50] National Highway Traffic Safety Administration
(NHTSA). Speeding. https://www.nhtsa.gov/risky-driving/
speeding. Accessed: Jan. 27, 2025.

[51] Jorge Nocedal and Stephen J. Wright. Numerical
Optimization. Springer, 1999.

[52] Masashi Okada and Tadahiro Taniguchi. Variational
inference MPC for Bayesian model-based reinforcement
learning. In Conference on robot learning, pages 258–272,
Virtual, Nov. 16 – 18, 2020.

[53] Art B. Owen. Monte Carlo theory, methods and examples,
2013.

[54] Thomas Power and Dmitry Berenson. Keep it simple:
Data-efficient learning for controlling complex systems
with simple models. IEEE Robotics and Automation
Letters, 6(2):1184–1191, 2021.

[55] Thomas Power and Dmitry Berenson. Variational In-
ference MPC using Normalizing Flows and Out-of-
Distribution Projection. In Proceedings of Robotics:
Science and Systems, New York City, NY, June 27 –
July 1, 2022.

[56] Thomas Power and Dmitry Berenson. Learning a
generalizable trajectory sampling distribution for model
predictive control. IEEE Transactions on Robotics, 40:
2111–2127, 2024.

[57] Jintasit Pravitra, Kasey A. Ackerman, Chengyu Cao,
Naira Hovakimyan, and Evangelos A. Theodorou. L1-
adaptive MPPI architecture for robust and agile control
of multirotors. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 7661–7666,
Las Vegas, NV, Oct. 25 – 29, 2020.

[58] Mohamad Qadri, Paloma Sodhi, Joshua G. Mangelson,
Frank Dellaert, and Michael Kaess. InCOpt: Incremental
constrained optimization using the Bayes tree. In
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 6381–6388, Kyoto, Japan, Oct.
23 – 27, 2022.

[59] Zengyi Qin, Kaiqing Zhang, Yuxiao Chen, Jingkai Chen,
and Chuchu Fan. Learning safe multi-agent control with
decentralized neural barrier certificates. arXiv preprint
arXiv:2101.05436, 2021.

[60] Konrad Rawlik, Marc Toussaint, and Sethu Vijayakumar.
On stochastic optimal control and reinforcement learning
by approximate inference. In International Joint Confer-
ence on Artificial Intelligence, Beijing, China, Aug. 3 –
9, 2013.

[61] Reuven Rubinstein. The cross-entropy method for
combinatorial and continuous optimization. Methodology
and Computing in Applied Probability, 1:127–190, 1999.

[62] Oswin So and Chuchu Fan. Solving stabilize-avoid
optimal control via epigraph form and deep reinforcement
learning. In Robotics: Science and Systems, Daegu, South
Korea, July 10 – 14, 2023.

[63] Oswin So, Ziyi Wang, and Evangelos A. Theodorou.
Maximum entropy differential dynamic programming. In
International Conference on Robotics and Automation
(ICRA), pages 3422–3428, Philadelphia, PA, May 23 –
27, 2022.

[64] Oswin So, Zachary Serlin, Makai Mann, Jake Gonzales,
Kwesi Rutledge, Nicholas Roy, and Chuchu Fan. How to
train your neural control barrier function: Learning safety
filters for complex input-constrained systems. In IEEE
International Conference on Robotics and Automation
(ICRA), pages 11532–11539, Yokohama, Japan, May 13
– 17, 2024.

[65] Richard S. Sutton and Andrew G. Barto. Reinforcement
learning: An introduction, 2018.

[66] Chuyuan Tao, Hunmin Kim, Hyungjin Yoon, Naira Hov-
akimyan, and Petros Voulgaris. Control barrier function
augmentation in sampling-based control algorithm for
sample efficiency. In American Control Conference (ACC),
pages 3488–3493, Atlanta, GA, June 8 – 10, 2022.

[67] Marc Toussaint and Amos Storkey. Probabilistic inference
for solving discrete and continuous state Markov decision
processes. In Proceedings of the 23rd International Con-
ference on Machine Learning, pages 945–952, Pittsburgh,
PA, June 25 – 29, 2006.

[68] Efstathios Velenis, Emilio Frazzoli, and Panagiotis Tsio-
tras. Steady-state cornering equilibria and stabilisation
for a vehicle during extreme operating conditions. Inter-
national Journal of Vehicle Autonomous Systems, 8(2-4):
217–241, 2010.

[69] Ziyi Wang, Oswin So, Jason Gibson, Bogdan Vla-
hov, Manan Gandhi, Guan-Horng Liu, and Evangelos
Theodorou. Variational Inference MPC using Tsallis
Divergence. In Proceedings of Robotics: Science and
Systems, Virtual, July 12 – 16, 2021.

[70] Tianhao Wei and Changliu Liu. Safe control with neural
network dynamic models. In Learning for Dynamics and
Control Conference, pages 739–750, Palo Alto, CA, June
23 – 24, 2022.

[71] Grady Williams, Paul Drews, Brian Goldfain, James M.
Rehg, and Evangelos A. Theodorou. Information-theoretic
model predictive control: Theory and applications to
autonomous driving. IEEE Transactions on Robotics,
34(6):1603–1622, 2018.

[72] Grady Williams, Brian Goldfain, Paul Drews, Kamil
Saigol, James M. Rehg, and Evangelos A. Theodorou.
Robust sampling based model predictive control with
sparse objective information. In Robotics: Science and
Systems, volume 14, Pittsburgh, PA, June 26 – 30, 2018.

[73] Sean Wilson, Paul Glotfelter, Li Wang, Siddharth Mayya,
Gennaro Notomista, Mark Mote, and Magnus Egerstedt.
The Robotarium: Globally impactful opportunities, chal-
lenges, and lessons learned in remote-access, distributed
control of multirobot systems. IEEE Control Systems
Magazine, 40(1):26–44, 2020.

[74] Zhe Wu, Fahad Albalawi, Zhihao Zhang, Junfeng Zhang,
Helen Durand, and Panagiotis D. Christofides. Control

14

https://www.nhtsa.gov/risky-driving/speeding
https://www.nhtsa.gov/risky-driving/speeding

Lyapunov-barrier function-based model predictive control
of nonlinear systems. In American Control Conference
(ACC), pages 5920–5926, Milwaukee, WI, June 27 – 29,
2018.

[75] Mandy Xie, Alejandro Escontrela, and Frank Dellaert.
A factor-graph approach for optimization problems with
dynamics constraints. arXiv preprint arXiv:2011.06194,
2020.

[76] Bin Xu and Koushil Sreenath. Safe teleoperation of
dynamic UAVs through control barrier functions. In IEEE
International Conference on Robotics and Automation
(ICRA), pages 7848–7855, Brisbane, Australia, May 21 –
26, 2018.

[77] Xiangru Xu, Paulo Tabuada, Jessy W. Grizzle, and
Aaron D. Ames. Robustness of control barrier functions
for safety critical control. IFAC-PapersOnLine, 48(27):
54–61, 2015.

[78] Ji Yin, Zhiyuan Zhang, Evangelos Theodorou, and Pana-
giotis Tsiotras. Trajectory distribution control for model
predictive path integral control using covariance steering.
In International Conference on Robotics and Automation
(ICRA), pages 1478–1484, Philadelphia, PA, May 23 –
27, 2022.

[79] Ji Yin, Charles Dawson, Chuchu Fan, and Panagiotis
Tsiotras. Shield model predictive path integral: A com-
putationally efficient robust MPC method using control
barrier functions. IEEE Robotics and Automation Letters,
8(11):7106–7113, 2023.

[80] Ji Yin, Zhiyuan Zhang, and Panagiotis Tsiotras. Risk-
aware model predictive path integral control using con-
ditional value-at-risk. In IEEE International Conference
on Robotics and Automation (ICRA), pages 7937–7943,
London, UK, May 29 – June 2, 2023.

[81] Ji Yin, Panagiotis Tsiotras, and Karl Berntorp. Chance-
constrained information-theoretic stochastic model predic-
tive control with safety shielding. 63rd IEEE Conference
on Decision and Control, pages 653–658, Dec. 16–19,
2024.

[82] Changxi You and Panagiotis Tsiotras. Vehicle modeling
and parameter estimation using adaptive limited memory
joint-state UKF. In American Control Conference, pages
322–327, Seattle, WA, May 24–26, 2017.

[83] Hongzhan Yu, Chiaki Hirayama, Chenning Yu, Sylvia
Herbert, and Sicun Gao. Sequential neural barriers for
scalable dynamic obstacle avoidance. In IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), pages 11241–11248, Detroit, MI, Oct. 1 – 5,
2023.

[84] Qinsheng Zhang, Amirhossein Taghvaei, and Yongxin
Chen. An optimal control approach to particle filtering.
Automatica, 151:110894, 2023.

[85] Songyuan Zhang, Kunal Garg, and Chuchu Fan. Neural
graph control barrier functions guided distributed collision-
avoidance multi-agent control. In Conference on Robot
Learning, pages 2373–2392, Atlanta, GA, Nov. 6 – 9,
2023.

[86] Songyuan Zhang, Oswin So, Kunal Garg, and Chuchu
Fan. GCBF+: A neural graph control barrier function
framework for distributed safe multi-agent control. IEEE
Transactions on Robotics, 2025.

[87] Bo Zhao, Jiashi Feng, Xiao Wu, and Shuicheng Yan.
A survey on deep learning-based fine-grained object
classification and semantic segmentation. International
Journal of Automation and Computing, 14(2):119–135,
2017.

15

APPENDIX A
DETAILS ON THE SIMULATION EXPERIMENTS

A1 AutoRally Environment

The numerical simulations use the AutoRally platform, a 1/5-scale autonomous vehicle system capable of executing high-speed,
limit-handling maneuvers in complicated environments [26]. Figure14 shows the AutoRally hardware. In this study, we define a
crash as an event when the vehicle makes contact with the track boundary, constructed from soft drainage pipes, resulting
in the inability to continue driving. We define a collision as an event when the vehicle contacts the track boundary but can
continue driving.

Fig. 14: AutoRally chassis and compute box [24].

A2 AutoRally Dynamics Modelling

We model the AutoRally using a rear-wheel drive, single-track bicycle model [39]. The vehicle system is represented in
curvilinear coordinates using the centerline of the track as the reference curve. Using a curvilinear coordinate system provides a
more intuitive interpretation of the vehicle’s position and heading relative to the track, as compared to Cartesian coordinates.

To this end, we consider a nonlinear, continuous-time system,

ẋ = F (x, u), (A.1)

where the system state of the AutoRally is given by,

x =
[
vx, vy, ψ̇, ωF , ωR, eψ, ey, s

]⊺
, (A.2)

and where vx is the longitudinal velocity, vy is the lateral velocity, and ψ̇ is the yaw rate. The front and rear wheel angular
velocities are denoted by ωF and ωR. The yaw error and the lateral distance error from the centerline of the track are denoted
by eψ and ey , respectively (see Fig. 15). The variable s is the curvilinear position along the track centerline. The control input
to the system (A.1) is,

u =
[
δ, T

]⊺
, (A.3)

where δ is the steering angle and T denotes the values for throttle input (if positive) or braking input (if negative). The dynamics
of a single-track dynamic bicycle model [39] used to model (A.1) are given by,

v̇x =
fFx cos δ − fFy sin δ + fRx

m
+ vyψ̇, (A.4a)

v̇y =
fFx sin δ + fFy cos δ + fRy

m
− vxψ̇, (A.4b)

ψ̈ =
(fFy cos δ + fFx sin δ) ℓF − fRyℓR

Iz
, (A.4c)

ω̇F = − rF
IωF

fFx, (A.4d)

ω̇R = Θ(ωR, T), (A.4e)

ėψ = ψ̇ − vx cos eψ − vy sin eψ
1− ρ(s)ey

ρ(s), (A.4f)

ėy = vx sin eψ + vy cos eψ, (A.4g)

ṡ =
vx cos eψ − vy sin eψ

1− ρ(s)ey
, (A.4h)

where m and Iz are the vehicle’s mass and moment of inertia about the vertical axis, respectively. The radius of the front
wheel is rF , and the moment of inertia of the front wheel about the front axle is IωF . The curvature of the track centerline

16

Fig. 15: Schematic of the dynamic bicycle model.

at position s is ρ(s). The front and rear tire frictional forces are denoted by fFx, fFy, fRx, fRy, where the subscripts F,R
indicate front and rear tires and x, y indicate longitudinal and lateral directions. These frictional forces are computed using the
ellipse model in [68],

fix = fizµix, (A.5a)
fiy = fizµiy +Φi(δ, αi), (A.5b)

where i = F,R indicates front or rear wheels, fiz is the normal force acting on the tire. The tire friction coefficients µix, µiy
are dependent on wheel slip angles and the intrinsic tire parameters.

Inspired by [1], we use a neural network to model the residual error Φi(δ, αi), where δ is steering angle, αi = arctan(viy/vix)
is wheel slip angle. Φi is trained using experimental data collected from the AutoRally. The rear wheel angular acceleration ω̇R
is given by (A.4e). Modelling ω̇R is challenging, because it is determined by a variety of mechanical and physical conditions,
including nonlinear tire behavior, dynamic load transfer, road surface irregularities and the complex interaction between these
components. To this end, we use a data-driven approach and utilize a neural network Θ(·, ·) trained on experimental data to
model the rear wheel angular acceleration ω̇R.

The nonlinear, continuous-time system (A.1) is discretized and converted to a discrete-time system using Euler integration,

xk+1 = f(xk, uk) = xk + F (xk, uk)∆t, (A.6)

where ∆t = tk+1 − tk is the discretization time interval. We employ an Unscented Kalman Filter (UKF) on the discrete-time
system (A.6) to identify the vehicle and tire parameters using the approach in [82]. The resulting parameters of the vehicle model
include the vehicle mass m = 22 kg, moment of inertia Iz = 1.1 kg ·m2, lF = 0.34 m, lR = 0.23 m, IωF = 0.10 kg ·m2

and front wheel radius rF = 0.095 m. The parameters in Pacejka’s Magic Formula used by the tire friction elipse model [68]
are computed as tireB = 4.1, tireC = 0.95, tireD = 1.1.

A3 Drone Dynamics Modelling

We model the two-dimensional drone dynamics using the following equations,

v̇x = −F

m
sin θ, (A.7a)

v̇z =
F

m
cos θ − g, (A.7b)

θ̈ =
τ

I
, (A.7c)

(A.7d)

where the total thrust F and the torque τ are given by,

F = F1 + F2, τ = ℓ(F2 − F1), (A.8)

where ℓ is the length from the center of the drone to the center of each rotor, and F1, F2 are thrust forces generated by the left
and right rotors, respectively. The thrust forces are computed considering the ground effect [15], given by,

F1 = Fin1/
(
1− ρ(

r

4zr1
)
)
, (A.9)

F2 = Fin2/
(
1− ρ(

r

4zr2
)
)
, (A.10)

17

where Fin1, Fin2 are the input thrust commands for the left and right rotors, and ρ is an intrinsic property of the drone. The
radius of the rotors is r and the heights from the rotors to the ground are zr1 and zr2, which are given by,

zr1 = z − ℓ sin θ, (A.11)
zr2 = z + ℓ sin θ, (A.12)

where θ is the pitch angle.

APPENDIX B
PROOFS FOR VARIATIONAL INFERENCE MPC

B1 Derivations of the Variational Inference Updates

Let qv be the density function of a Gaussian distribution with mean v and covariance Σ, i.e.,

qv(u) = Z−1
q exp

(
−1

2
(u− v)⊤Σ−1(u− v)

)
, (B.1)

where the normalization constant Zq is independent of the mean v. We wish to solve the variational inference problem

min
v

DKL

(
p(u | o = 1) ∥ qv(u)

)
. (B.2)

Expanding and ignoring terms unrelated to v, we get

DKL

(
p(u | o = 1) ∥ qv(u)

)
=

∫
p(u | o = 1) log

(
p(u | o = 1)

qv(u)

)
du (B.3)

=

∫
p(u | o = 1) log (p(u | o = 1)) du−

∫
p(u | o = 1) log(qv(u)) du (B.4)

= −
∫
p(u | o = 1) log(qv(u)) du+O(1) (B.5)

=

∫
p(u | o = 1)

(
1

2
(u− v)TΣ−1(u− v) + logZq

)
du+O(1) (B.6)

= Ep(u|o=1)

[
1

2
(u− v)TΣ−1(u− v) + logZq

]
+O(1) (B.7)

= Ep(u|o=1)

[
1

2
(u− v)TΣ−1(u− v)

]
+O(1). (B.8)

Taking the derivative with respect to v and setting to zero, we get

Ep(u|o=1)

[
Σ−1(u− v∗)

]
= 0. (B.9)

Rearranging, yields
v∗ = Ep(u|o=1) [u] . (B.10)

B2 Derivations of the Self Normalized Importance Sampling Estimator

We next derive the self-normalized importance sampling (SNIS) estimator v̂ in (9) of v∗ in (8). Note that, since Z =∫
exp(−J(u))p0(u) du is unknown, we cannot compute the weights ω(u) in (8) directly. Hence, the regular importance

sampled Monte Carlo estimator

v̂ =
1

N

N∑
i=1

ω(ui)ui, (B.11)

is not computable. Instead, we can use the SNIS estimator [53], which can be derived as follows. First, note that Z can be
written as the expectation of exp(−J(u)), i.e.,

Z = Ep0(u) [exp(−J(u))] . (B.12)

Hence, one idea is to reuse the samples ui ∼ r to compute an estimate Ẑ of Z, that is,

Ẑ =
1

N

N∑
i=1

exp(−J(ui))p0(ui)/r(ui), (B.13)

18

where Ẑ is a “normal” importance sampled Monte Carlo estimator of Z. If we use the estimate Ẑ to compute the weights
ω̂(u) in the normal importance sampled Monte Carlo estimator v̂ (B.11), we obtain the SNIS estimator as in (9) and (8)

v̂ =
1

N

N∑
i=1

ω̂(ui)ui, (B.14)

=
1

N

N∑
i=1

(
1

Ẑ

exp(−J(ui))p0(ui)
r(ui)

)
ui, (B.15)

=
1

N

N∑
i=1

(
1

1
N

∑N
j=1 exp(−J(uj))p0(uj)/r(uj)

exp(−J(ui))p0(ui)
r(ui)

)
ui, (B.16)

=
1

N

N∑
i=1

(
1

1
N

∑N
j=1 Z

−1 exp(−J(uj))p0(uj)/r(uj)
Z−1 exp(−J(ui))p0(ui)

r(ui)

)
ui, (B.17)

=
1

N

N∑
i=1

(
1

1
N

∑N
j=1 Z

−1 exp(−J(uj))p0(uj)/r(uj)
ω(ui)

)
ui, (B.18)

=
1

N

N∑
i=1

(
ω(ui)

1
N

∑N
j=1 ω(u

j)

)
ui, (B.19)

=
N∑
i=1

(
ω(ui)∑N
j=1 ω(u

j)

)
ui, (B.20)

=

N∑
i=1

ω̃iui, (B.21)

where,

ω̃i =
ω(ui)∑N
j=1 ω(u

j)
. (B.22)

Unfortunately, the use of the estimated Ẑ in the weights ω(u) causes the SNIS estimator to be biased [53].

B3 MPPI as a Special Case of the Variational Inference Update

Theorem 6. When p0(u) = q0(u) := qv=0(u) and r(u) = qv̄(u) for some previous estimate of the optimal control sequence
v̄, the equation for the weights ω(u) in the variational inference MPC update (8) reduces to that of MPPI.

Proof: Let qv be the density function for a Gaussian distribution with mean v and covariance Σ, that is,

qv(u) = Z−1
q exp

(
−1

2
(u− v)⊤Σ−1(u− v)

)
, (B.23)

By choosing p0(u) = q0(u) and r(u) = qv̄(u), we have that

p0(u)

r(u)
=

Z−1
q exp

(
− 1

2u
⊤Σ−1u

)
Z−1
q exp

(
− 1

2 (u− v)⊤Σ−1(u− v)
) (B.24)

= exp(−1

2
u⊤Σ−1u+

1

2
(u− v)⊤Σ−1(u− v)) (B.25)

= exp(−1

2
u⊤Σ−1u+

1

2
u⊤Σ−1u− u⊤Σ−1v +

1

2
v⊤Σ−1v) (B.26)

= exp(−u⊤Σ−1v +
1

2
v⊤Σ−1v). (B.27)

Hence,

ω(u) =
Z−1 exp(−J(u))p0(u)

r(u)
(B.28)

= Z−1 exp(−[J(u) + u⊤Σ−1v]) exp(
1

2
vTΣ−1v) (B.29)

∝ exp(−[J(u) + u⊤Σ−1v]), (B.30)

19

where the last line follows since terms not dependent on u can be canceled out between the numerator and denominator in
(10).

APPENDIX C
NCBF TRAINING DETAILS

The definition of the avoid set is given by (2),

A = {x|h(x) > 0},

where the avoidance heuristic h(x) is used to define the avoid set. Furthermore, the definition of the policy value function
V h,π(x0) given by (19), and the ensuing training losses (IV-A), (25) are all dependent on h(x). A suitable selection of the
avoidance heuristic h(x) must ensure that its corresponding avoidance set A encompasses all system states that overlap with
any obstacles. Additionally, the heuristic should improve the quality of information captured by the loss function (25), thereby
making it more effective for neural network training. To this end, a reasonable choice of the avoidance heuristic utilizes
coordinates in (A.2),

h0(x) = w2
I − e2y, (C.1)

where wI = 1.5 m is half of the track width, and ey is the lateral deviation of the vehicle CoM to the track centerline. The
visualization of h0(x) is demonstrated by the orange curve in Fig. 16.

Fig. 16: Avoidance heuristic visualization. The orange curve shows the original avoidance heuristic h0, while the blue curve
demonstrates the modified avoidance heuristic h used for training the NCBF.

However, the neural network approximation V h0,π
θ (x) of the policy value function V h0,π given by (19) may not accurately

distinguish the unsafe states in the avoid set A0 = {x|h0(x) > 0} from the rest of the state space, due to the fact that trained
neural networks can suffer from insufficient accuracy and precision [35, 17]. This is demonstrated by the orange line and its
error margins in Fig.17. To alleviate this problem, we introduce discontinuity to h0(x) for enhanced tolerance of policy value
function modelling errors while maintaining the same avoid set (2), such that,

A = {x|h(x) > 0} = {x|h0(x) > 0}. (C.2)

where our choice of the avoidance heuristic is given by,

h(x) =


h0(x)− 0.3, if ey < wI ,

h0(x) + 0.2, if wI ≤ ey ≤ wO,

2.8, if wO ≤ ey,

(C.3)

where wO is the“crash width”. If wO < ey , the vehicle crashes and needs to be reset. If wI ≤ ey ≤ wO, the AutoRally collides
with the soft drainage pipes but can still continue driving. As shown by the blue curve in Fig. 16, h(x) is designed to reduce
the error of the avoid set of the resulting NCBF by introducing a discontinuity around zero. This is further demonstrated in Fig.
17.

20

Fig. 17: Improving accuracy and precision of NCBF modeled avoid set boundary by using the modified heuristic h(x). When
using the original avoidance heuristic h0(x) to supervise the NCBF training process, the resulting modeled avoid set boundary
can be anywhere within ey ∈ (a, b) due to model errors. Instead, using h(x) to supervise the training process results in a
modeled avoid set with an accurate boundary shown by the dashed blue line, despite model errors.

Fig. 18: NCBF Training. The left figure shows collected system states (yellow dots) in AutoRally simulations. The right figure
visualizes the resulting Neural CBF. The NCBF B(x) takes the 8-dimensional state x as input. The red color indicates an
unsafe region where B(x) > 0, while the blue color indicates a safe region where B(x) ≤ 0.

The orange dots in the left plot in Fig. 18 represent the vehicle states collected using the training data. The dots outside of
the track show that the autonomous car went off the track at several turns. These data are used to train a neural DCBF, leading
to a visualization as demonstrated by the plot on the right in Fig. 18,in which the NCBF B(x) is mapped onto the 2D Cartesian
plane by utilizing mean values from the training dataset for the remaining state dimensions. The red color shows the area where
B(x) > 0 , and as a result, the neural CBF slows down the Autorally when it approaches sharp turns to ensure safety.

From Fig. 19, we see that the learned NCBF B(x) has a smaller safe set (negative level set) than the avoid set heuristic
h(x), as it turns positive earlier than h(x) when the vehicle approaches the track boundary. When used as a safety filter, B(x)
can slow down the autonomous vehicle much earlier, making its negative level set control-invariant.

APPENDIX D
PROOFS FOR RESAMPLING-BASED ROLLOUTS (RBR) SUPERVISED BY A CBF

D1 Proof of Theorem 1

Proof: Condition (14b) implies that B(xk) ≤ (Id − α) ◦B(xk−1), where ◦ denotes function composition and Id denotes
the identity function [2]. Since B(x1) ≤ (Id − α) ◦B(x0), it follows that,

B(xk) ≤ (Id − α)k ◦B(x0). (D.1)

Since (Id − α) is a class-κ function for a ∈ (0, 1), it follows from B(x0) ≤ 0 that B(xk) ≤ 0. Hence, the set S is forward
invariant for system (1).

21

Fig. 19: A simulation example of the value change of the learned Neural CBF B(x) compared to the avoid set heuristic h(x).
The orange trajectory produced by the standard MPPI results in a collision with the track boundary. The square purple dot
shows the point where B(x) shifts from negative to positive values, corresponding to the purple vertical line in the curve
plot above, which shows the value change of the heuristics B(x), h(x) along the MPPI trajectory. The dots along the track
centerline are observations collected starting at the square red dot, used to augment the training data.

D2 Proof of Theorem 3

Proof: Note that
f(b̃ | a, b) = 1b∈Sδ(b̃− b) + 1b̸∈Sδ(b̃− a). (D.2)

Let f̃ denote the marginal density of b̃. Then, using the independence of a and b,

f̃(b̃) =

∫ (∫
f(b̃ | a, b)f(a | a ∈ S) da

)
f(b) db (D.3)

Simplifying the inner integral first using properties of the Dirac delta function gives∫
f(b̃ | a, b)f(a | a ∈ S) da (D.4)

= 1b∈Sδ(b̃− b) + 1b̸∈S

∫
δ(b̃− a)f(a | a ∈ S) da (D.5)

= 1b∈Sδ(b̃− b) + 1b̸∈Sf(b̃ | b̃ ∈ S). (D.6)

Hence,

f̃(b̃) =

∫ (
1b∈Sδ(b̃− b) + 1b̸∈Sf(b̃ | b̃ ∈ S)

)
f(b) db (D.7)

= f(b̃)1b̃∈S + f(b̃ | b̃ ∈ S)

∫
1b̸∈Sf(b) db (D.8)

= f(b̃ | b̃ ∈ S)P (b ∈ S) + f(b̃ | b̃ ∈ S)P (b ̸∈ S) (D.9)

= f(b̃ | b̃ ∈ S). (D.10)

22

D3 Proof of Corollary 1

Proof: Applying Theorem 3, x, a and b̃ have the same distribution,

x
d
= a

d
= b̃. (D.11)

Hence,

E[
1

2
w(a) +

1

2
w(b̃)] =

1

2
E[w(a)] +

1

2
E[w(b̃)], (D.12)

=
1

2
E[w(x)] +

1

2
E[w(x)], (D.13)

= E[w(x)]. (D.14)

D4 Proof of Theorem 4

We prove the two claims separately.

Lemma 7. The variance of the Monte Carlo estimator of the optimal control law is

Var[v̂k] =
1

N

(
1

3
2K − 1

4

)
, k = 1, . . . ,K. (D.15)

Proof: First, note that the optimal control v∗ is given by

v∗k =

∫
[−1,1]K

p(u | o = 1)uk du (D.16)

=

∫
[−1,1]K

1u∈[0,1]uk du (D.17)

=

∫
[0,1]K

uk du (D.18)

=
1

2
. (D.19)

Using the formula for computing the variance of an importance sampled Monte Carlo estimator [53], we then have that

Var[v̂k] =
1

N

∫
[−1,1]K

(ukp(u | o = 1)− v∗kr(u))
2

r(u)
du (D.20)

=
1

N

∫
[−1,1]K

(ukp(u | o = 1)− 1
22

−K)2

2−K
du (D.21)

=
1

N
2K

(∫
[0,1]K

(uk)
2 du− 2−K

∫
[0,1]K

uk du+
1

4
(2−K)2

∫
[−1,1]K

1 du

)
(D.22)

=
1

N
2K
(
1

3
− 1

2
2−K +

1

4
2−K

)
(D.23)

=
1

N

(
1

3
2K − 1

4

)
. (D.24)

Proof of second claim. We now prove the second claim. When performing resampling-based rollouts, only if uik lies in [−1, 0]
for all k = 0, . . . ,K − 2 does resampling not occur, and the output ũik ∈ [−1, 0] for k = 0, . . . ,K − 2. Otherwise, we have
that ũik ∈ [0, 1] for k = 0, . . . ,K − 2. The last control uiK−1 = ũiK−1 is never resampled. Hence, the probability that all N
samples lie in [−1, 0]K−1 × [−1, 1] is equal to 2−N(K−1).

For all timesteps except the last, we write the joint probability density function (over all N samples) as

p(ũ1k, . . . , ũ
N
k) =


2−N , if ũik ∈ [−1, 0] for all i = 1, . . . , N,

1− 2−N , if ũik ∈ [0, 1] for all i = 1, . . . , N,

0, otherwise,

for k = 0, . . . ,K − 2, (D.25)

23

and

p(ũiK−1) = 1, p(ũ1K−1, . . . , ũ
N
K−1) =

N∏
i=1

p(ũiK−1) = 1. (D.26)

For convenience, let t := 2−N such that P (ũ1:Nk ∈ [0, 1]) = 1− t for k < K − 1, and

P (ũ1:N0:K−2 ∈ [0, 1]) =
K−2∏
k=0

P (ũ1:Nk ∈ [0, 1]) = (1− t)K−1. (D.27)

Next, consider the Monte Carlo estimator v̂k using the resampled controls ũik, defined by

v̂k =
1

N

N∑
i=1

1ũi0:K−1∈[0,1]

1
2 (1− t)K−1

ũik. (D.28)

We will compute the expectation of v̂k using the law of total expectation. To this end, we have that

Eũ1:N
0:K−1

[v̂k] =
1

N
Eũ1:N

0:K−1

[
N∑
i=1

1ũi0:K−1∈[0,1]

1
2 (1− t)K−1

ũik

]
(D.29)

=
1

N

(
P (ũ1:N0:K−2 ≥ 0)Eũ1:N

0:K−1

[
N∑
i=1

1ũi0:K−1∈[0,1]

1
2 (1− t)K−1

ũik

∣∣∣∣ ũ1:N0:K−2 ≥ 0

]
(D.30)

+ P (ũ1:N0:K−2 < 0)Eũ1:N
0:K−1

[
N∑
i=1

1ũi0:K−1∈[0,1]

1
2 (1− t)K−1

ũik

∣∣∣∣ ũ1:N0:K−2 < 0

])
=

1

N

(
(1− t)K−1Eũ1:N

0:K−1

[
N∑
i=1

1ũi0:K−1∈[0,1]

1
2 (1− t)K−1

ũik

∣∣∣∣ ũ1:N0:K−2 ≥ 0

])
(D.31)

=
2

N

(
Eũ1:N

0:K−1

[
N∑
i=1

1ũi0:K−1∈[0,1] ũ
i
k

∣∣∣∣ ũ1:N0:K−2 ≥ 0

])
. (D.32)

We now split into two cases. When k = K − 1,

Eũ1:N
0:K−1

[v̂K−1] =
2

N

(
Eũ1:N

K−1

[
Eũ1:N

0:K−2

[
N∑
i=1

1ũi0:K−1∈[0,1] ũ
i
K−1

∣∣∣∣ ũ1:N0:K−2 ≥ 0

]])
(D.33)

=
2

N

(
Eũ1:N

K−1

[
N∑
i=1

1ũiK−1∈[0,1] ũ
i
K−1

])
(D.34)

=
2

N

(
N∑
i=1

EũiK−1

[
1ũiK−1∈[0,1]ũ

i
K−1

])
(D.35)

=
2

N

(
N∑
i=1

1

4

)
(D.36)

=
1

2
. (D.37)

Similarly, when k < K − 1,

Eũ1:N
0:K−1

[v̂k] =
2

N

(
Eũ1:N

K−1

[
Eũ1:N

0:K−2

[
N∑
i=1

1ũiK−1∈[0,1]1ũi0:K−2∈[0,1] ũ
i
k

∣∣∣∣ ũ1:N0:K−2 ≥ 0

]])
(D.38)

=
1

N

(
Eũ1:N

0:K−2

[
N∑
i=1

ũik

∣∣∣∣ ũ1:N0:K−2 ≥ 0

])
(D.39)

=
1

2
. (D.40)

Thus, v̂k is an unbiased estimator.

24

Next, we look at the variance. Summarizing the above computation, we have that

Eũ1:N
0:K−1

[v̂k | ũ1:N0:K−2 ≥ 0] =
1

2(1− t)K−1
, Eũ1:N

0:K−1
[v̂k | ũ1:N0:K−2 < 0] = 0. (D.41)

Let c := Eũ1:N
0:K−1

[v̂k | ũ1:N0:K−2 ≥ 0] = 1
2(1−t)K−1 for convenience. Computing the conditional variances, for ũ1:N0:K−2 < 0, we

have that

Varũ1:N
0:K−1

[v̂k | ũ1:N0:K−2 < 0] = 0. (D.42)

For ũ1:N0:K−2 ≥ 0 we have,

Varũ1:N
0:K−1

[v̂k | ũ1:N0:K−2 ≥ 0] = Eũ1:N
0:K−1

[v̂2k | ũ1:N0:K−2 ≥ 0]− c2 (D.43)

= Eũ1:N
0:K−1

(1

N

N∑
i=1

1ũi0:K−1∈[0,1]

1
2 (1− t)K−1

ũik

)2

| ũ1:N0:K−2 ≥ 0

− c2 (D.44)

=

(
1

N

1
1
2 (1− t)K−1

)2

Eũ1:N
0:K−1

(N∑
i=1

1ũi0:K−1∈[0,1]ũ
i
k

)2 ∣∣∣∣ ũ1:N0:K−2 ≥ 0


︸ ︷︷ ︸

:= ⋆

−c2 (D.45)

Expanding ⋆ , yields

⋆ = Eũ1:N
0:K−1

 N∑
i=1

1ũi0:K−1∈[0,1](ũ
i
k)

2 +
N∑
i=1

N∑
j=1,j ̸=i

1ũi0:K−1∈[0,1]1ũj0:K−1∈[0,1]ũ
i
kũ

j
k

∣∣∣∣ ũ1:N0:K−2 ≥ 0

 . (D.46)

We now split into two cases.

Case 1: k = K − 1. Looking at the first term of ⋆ in (D.46),

Eũ1:N
0:K−1

[
N∑
i=1

1ũi0:K−1∈[0,1](ũ
i
K−1)

2 | ũ1:N0:K−2 ≥ 0

]
= Eũ1:N

0:K−1

[
N∑
i=1

EũiK−1
[1ũiK−1∈[0,1](ũ

i
K−1)

2] | ũ1:N0:K−2 ≥ 0

]
(D.47)

=
N∑
i=1

EũiK−1
[1ũiK−1∈[0,1](ũ

i
K−1)

2] (D.48)

=
N

6
. (D.49)

For the second term in (D.46), we have

Eũ1:N
0:K−1

 N∑
i=1

N∑
j=1,j ̸=i

1ũi0:K−1∈[0,1]1ũj0:K−1∈[0,1]ũ
i
K−1ũ

j
K−1 | ũ1:N0:K−2 ≥ 0

 (D.50)

=

N∑
i=1

N∑
j=1,j ̸=i

Eũi,jK−1

[
1ũiK−1∈[0,1]1ũjK−1∈[0,1]ũ

i
K−1ũ

j
K−1

]
(D.51)

=
N∑
i=1

N∑
j=1,j ̸=i

Eũi,jK−1

[
1ũiK−1∈[0,1]ũ

i
K−1

]2
(D.52)

=

N∑
i=1

N∑
j=1,j ̸=i

1

4
(D.53)

=
N(N − 1)

4
. (D.54)

25

Substituting the two terms (D.49) and (D.54) into (D.45), yields

Varũ1:N
0:K−1

[v̂K−1 | ũ1:N0:K−2 ≥ 0] =

(
1

N

1
1
2 (1− t)K−1

)2(
N

6
+
N(N − 1)

4

)
− c2 (D.55)

≤
(

1

N

1
1
2 (1− t)K−1

)2
N2

4
− c2 (D.56)

=

(
1

(1− t)2

)K−1

− 1

4

(
1

(1− t)2

)K−1

, (D.57)

=
3

4

(
1

(1− t)2

)K−1

. (D.58)

Case 2: k < K − 1. Looking at the first term of ⋆ in (D.46),

Eũ1:N
0:K−1

[
N∑
i=1

1ũi0:K−1∈[0,1](ũ
i
k)

2 | ũ1:N0:K−2 ≥ 0

]
= Eũ1:N

0:K−1

[
N∑
i=1

EũiK−1
[1ũiK−1∈[0,1]](ũ

i
k)

2 | ũ1:N0:K−2 ≥ 0

]
(D.59)

=
1

2
Eũ1:N

0:K−1

[
N∑
i=1

(ũik)
2 | ũ1:N0:K−2 ≥ 0

]
. (D.60)

From Theorem 3, the marginal of any resampled controls will all be uniform over [0, 1]. Hence,

1

2
Eũ1:N

0:K−1

[
N∑
i=1

(ũik)
2 | ũ1:N0:K−2 ≥ 0

]
=

1

2

N∑
i=1

Eũik [(ũ
i
k)

2 | ũik ≥ 0] =
N

6
. (D.61)

For the second term in (D.46),

Eũ1:N
0:K−1

 N∑
i=1

N∑
j=1,j ̸=i

1ũi0:K−1∈[0,1]1ũj0:K−1∈[0,1]ũ
i
kũ

j
k | ũ1:N0:K−2 ≥ 0

 (D.62)

= Eũ1:N
0:K−2

 N∑
i=1

N∑
j=1,j ̸=i

Eũ1:N
K−1

[
1ũiK−1∈[0,1]1ũjK−1∈[0,1]

]
ũikũ

j
k | ũ1:N0:K−2 ≥ 0

 (D.63)

=
1

4
Eũ1:N

0:K−2

 N∑
i=1

N∑
j=1,j ̸=i

ũikũ
j
k | ũ1:N0:K−2 ≥ 0

 . (D.64)

To make this computation easier, let Ξij = 1 denote the event that ũik and ũjk for i ̸= j were resampled from the same control,
i.e., ũik = ũjk, and let β = P(Ξij = 1). When Ξij = 1, ũik and ũjk are the same random variable, and therefore it follows that

Eũ1:N
0:K−2

[
ũikũ

j
k | Ξij = 1 | ũ1:N0:K−2 ≥ 0,Ξij = 1

]
= Eũik

[
(ũik)

2 | ũik ≥ 0
]
=

1

3
. (D.65)

Otherwise, when Ξij = 0, ũik and ũjk are independent. Hence,

Eũ1:N
0:K−2

[
ũikũ

j
k | Ξij = 1 | ũ1:N0:K−2 ≥ 0,Ξij = 0

]
= Eũik

[
(ũik) | ũik ≥ 0

]2
=

1

4
. (D.66)

Hence, the expectation becomes

(D.64) =
1

4

N∑
i=1

N∑
j=1,j ̸=i

β
1

3
+ (1− β)

1

4
(D.67)

=
1

4
N(N − 1)

(
β
1

3
+ (1− β)

1

4

)
(D.68)

≤ 1

12
N(N − 1). (D.69)

26

Combining the two terms (D.61) and (D.69), we thus have that

Varũ1:N
0:K−1

[v̂k | ũ1:N0:K−2 ≥ 0] ≤
(

1

N

1
1
2 (1− t)K−1

)2(
N

6
+
N(N − 1)

12

)
− c2 (D.70)

≤
(

1

N

1
1
2 (1− t)K−1

)2
N2

6
− c2 (D.71)

=
2

3

(
1

(1− t)2

)K−1

− 1

4

(
1

(1− t)2

)K−1

(D.72)

=
5

12

(
1

(1− t)2

)K−1

. (D.73)

Hence, taking both cases into account, we have that

Varũ1:N
0:K−1

[v̂k | ũ1:N0:K−2 ≥ 0] ≤ 3

4

(
1

(1− t)2

)K−1

. (D.74)

Finally, using the law of total variance, we have that

Var[v̂k] = Esign of ũ1:N
0:K−2

[Var[v̂k | ũ1:N0:K−2]]︸ ︷︷ ︸
1

+Varsign of ũ1:N
0:K−2

[E[v̂k | ũ1:N0:K−2]]︸ ︷︷ ︸
2

. (D.75)

The first term gives

1 = P(ũ1:N0:K−2 ≥ 0)Var[v̂k | ũ1:N0:K−2 ≥ 0] + P(ũ1:N0:K−2 < 0)Var[v̂k | ũ1:N0:K−2 < 0] (D.76)

≤ (1− t)K−1 3

4

(
1

(1− t)2

)K−1

+ 0 (D.77)

=
3

4

(
1

1− t

)K−1

. (D.78)

The second term gives

2 = P(ũ1:N0:K−2 ≥ 0)(E[v̂k | ũ1:N0:K−2 ≥ 0]− E[v̂k])2 + P(ũ1:N0:K−2 < 0)(E[v̂k | ũ1:N0:K−2 < 0]− E[v̂k])2 (D.79)

= (1− t)K−1

(
1

2

1

(1− t)K−1
− 1

2

)2

+ (1− (1− t)K−1)
1

4
(D.80)

=
1

2
(1− t)K−1 − 1 +

1

2

1

(1− t)K−1
+

1

4
− 1

4
(1− t)K−1 (D.81)

=
1

4
(1− t)K−1 − 3

4
+

1

2

1

(1− t)K−1
. (D.82)

Hence, combining both terms gives us

Var[v̂k] ≤
3

4

(
1

1− t

)K−1

+
1

4
(1− t)K−1 − 3

4
+

1

2

(
1

1− t

)K−1

(D.83)

=
5

4

(
1

1− t

)K−1

+
1

4
(1− t)K−1 − 3

4
(D.84)

= O

((
1

1− 2−N

)K
+ (1− 2−N)K

)
. (D.85)

D5 Proof of Theorem 5

Proof: We will prove the equivalent statement that

∥w̃∥22 − ∥w̃′∥22 ≥ 0. (D.86)

To begin, we expand w̃′ to obtain

∥w̃′∥22 =
∥w∥22 + ∥c∥22

∥w′∥21
. (D.87)

27

Then,

∥w̃∥22 − ∥w̃′∥22 =
∥w∥22
∥w∥21

+
−∥w∥22 − ∥c∥22

∥w′∥21
(D.88)

=
1

∥w′∥21

(
∥w′∥21

∥w∥22
∥w∥21

− ∥w∥22 − ∥c∥22

)
. (D.89)

Simplifying the first term, yields,

∥w′∥21
∥w∥22
∥w∥21

=
(
∥w∥21 + 2 ∥w∥1 ∥c∥1 + ∥c∥21

) ∥w∥22
∥w∥21

(D.90)

= ∥w∥22 + 2
∥w∥22 ∥c∥1

∥w∥1
+

∥w∥22 ∥c∥
2
1

∥w∥21
. (D.91)

Substituting (D.91) back into the parenthesis (D.89) gives us that

∥w′∥21
∥w∥22
∥w∥21

− ∥w∥22 − ∥c∥22 = 2
∥w∥22 ∥c∥1

∥w∥1
+

∥w∥22 ∥c∥
2
1

∥w∥21
− ∥c∥22 (D.92)

≥ 2
∥w∥22 ∥c∥1

∥w∥1
+

∥w∥22 ∥c∥
2
1

∥w∥21
− ∥c∥21 (D.93)

= ∥c∥1

(
2
∥w∥22
∥w∥1

+
∥w∥22 ∥c∥1

∥w∥21
− ∥c∥1

)
. (D.94)

Simplifying the parenthesis in (D.94), we obtain

2
∥w∥22
∥w∥1

+
∥w∥22 ∥c∥1

∥w∥21
− ∥c∥1 = 2

∥w∥22
∥w∥1

+ ∥c∥1

(
∥w∥22
∥w∥21

− 1

)
(D.95)

≥ 2
∥w∥22
∥w∥1

+ ∥c∥1

(
1

N
− 1

)
. (D.96)

Using our assumption that c is not “drastically larger” than w in (37) then gives us the desired result.

APPENDIX E
DETAILS ON VIMPC COST DESIGNS

In both simulations and experiments, MPPI variants using DCBF to ensure safety utilized a state-dependent cost function:

q(xmk) = (xmk − xg)
⊺Q(xmk − xg), (E.1)

whereas the standard MPPI employed the cost,

q(xmk) = (xmk − xg)
⊺Q(xmk − xg) + 1(xmk), (E.2)

where Q = diag(qvx , qvy , qψ̇, qωF , qωR , qeψ , qey , qs) represents the cost weights, and xg = diag(vg, 0, . . . , 0) specifies the target
velocity. The collision cost function is defined as:

1(xmk) :=

{
0, if xmk is within the track,
Cobs, otherwise.

(E.3)

Unlike standard MPPI, Shield-MPPI and NS-MPPI incorporate a DCBF constraint violation penalty but do not include an
explicit collision cost.

28

APPENDIX F
CONSTRAINT SATISFACTION ON THE VARIATIONAL DISTRIBUTION

One way of guaranteeing that the variational distribution q(u) satisfies the constraints xk ∈ X̄ := X\A is by making the
strong (but unrealistic) assumption that the set of controls that satisfy the constraints is a convex set. Specifically, for generic
state constraints x ∈ X̄ , define the set of safe control trajectories UKsafe ⊆ UK as

UKsafe(x0) =
{
u ∈ UK | xk ∈ X̄ , k = 0, 1, . . . ,K

}
. (F.1)

We then have the following lemma.

Lemma 8. Assume UKsafe(x0) is convex for all states x0 ∈ X̄ , and suppose that p(u | o = 1) has zero density outside of
UKsafe(x0). Then, the mean v∗ (8) of the variational distribution qv (and the state trajectory resulting from following v∗) will
also satisfy the constraints, i.e.,

v∗ ∈ UKsafe(x0). (F.2)

Proof: By definition (6), v∗ is the mean of the optimal distribution p(u | o = 1). Since p(u | o = 1) has zero density
outside UKsafe(x0), its support is contained within UKsafe(x0). Since UKsafe(x0) is convex, the integral of u over p(u | o = 1) will
also be contained within UKsafe(x0). Hence, v∗ ∈ UKsafe(x0).

29

	Introduction
	Related Work
	Problem Formulation
	Variational Inference MPC For Sampling-based Optimization
	Constraint Handling In Variational Inference MPC
	Discrete-time Control Barrier Functions (DCBF)

	Neural Shield VIMPC
	Approximating DCBF Using Neural Policy Value Functions
	Efficient Sampling Using Resampling-based Rollouts
	Summary of NS-VIMPC

	Simulations
	Simulations on AutoRally
	Simulations on Drone
	Deeper Investigation Into RBR

	Hardware Experiments
	Robustness Against Adversarial Costs
	Safety Under Unsafe User Input

	Limitations
	Conclusion
	Appendix A: Details on the Simulation Experiments
	AutoRally Environment
	AutoRally Dynamics Modelling
	Drone Dynamics Modelling

	Appendix B: Proofs for Variational Inference MPC
	Derivations of the Variational Inference Updates
	Derivations of the Self Normalized Importance Sampling Estimator
	MPPI as a Special Case of the Variational Inference Update

	Appendix C: NCBF Training Details
	Appendix D: Proofs For Resampling-based Rollouts (RBR) supervised by a CBF
	Proof of Theorem 1
	Proof of Theorem 3
	Proof of Corollary 1
	Proof of Theorem 4
	Proof of Theorem 5

	Appendix E: Details on VIMPC cost designs
	Appendix F: Constraint Satisfaction on the Variational Distribution

