








hinders the utilization of data-driven solutions requiring real-

time or sub-millisecond control decisions, such as scheduling

and beam management in sub-THz communication. These

challenges are expected to intensify with the introduction of

sensing, localization, and vertical applications demanding real-

time performance and reliability. To address these limitations,

O-RAN architectures should evolve to support control deci-

sions across different timescales, including real-time operation

with control loops shorter than current capabilities [18]. This

requires consideration of factors like data availability and qual-

ity, application requirements, geographical constraints, and

network workload. To that end, respecting timing aspects while

ensuring a level of statistical guarantees on the offered end-to-

end services involves designing communication protocols that

involve privacy-aware, multi-modal, multi-party knowledge

and data acquisition methods at scale. This demands efficient

integration/aggregation of distributed intelligence and informa-

tion in network planning, management, control, and operation.

Furthermore, efficient quality-aware data compression and

management is needed due to vast amounts of data.

Decentralizing the RIC architecture requires a balance

between data availability and use-case-specific constraints,

particularly in terms of latency and data quality. While data

exchange between distributed RIC instances is essential, min-

imizing overhead and securing sensitive information are cru-

cial considerations. Federated reinforcement learning, which

enables cooperation without data sharing, offers a potential

approach to address these challenges. The proposed DMMAI

framework facilitates a platform to experiment with different

strategies and measure the impact on the data exchange

overhead, latency and data quality related to decision-making.

The AIC architecture, with its modular design, allows us to

quickly build prototypes of decentralized AI-based decision

entities and instantiate them within different network entities.

This further allows us to design intelligent algorithms to rely

only on the data available at different network nodes and at

different protocol layers.

D. Security and Authentication

The integration of AI/ML into the O-RAN architecture

introduces new security challenges beyond the ethical concerns

associated with AI/ML, such as potential biases and data pri-

vacy issues. A significant concern is the reliance on third-party

ML models for zero-touch network management could open

up vulnerabilities to malicious agents through the distribution

of models via the public Internet. Phishing and Domain Name

System (DNS) spoofing techniques can redirect legitimate

model requests to repositories of malicious models, which can

disrupt network performance in various ways. These malicious

models can be (i) hampered by fine-tuning or retraining with

intentionally flawed data, (ii) impersonated by counterfeit

models that appear legitimate but provide inaccurate results,

or (iii) neural trojans that function like genuine models but

secretly incorporate malicious code without affecting system

performance, making them difficult to detect [19].

Trust in AI systems is crucial, particularly in network envi-

ronments where security, privacy, explainability, and reliability

are paramount. In the complex multi-party, multi-network

landscape, trust becomes even more challenging due to the

increased number of stakeholders and potential attack vectors.

The modular nature of the DMMAI framework supports the

multi-party, multi-network vision and enables the quick proto-

typing of algorithms running in such environments. Therefore,

it provides the necessary tools to study trust from three per-

spectives: 1) identifying attack surfaces in multi-party, multi-

network architectures; 2) developing validation and testing

methodologies; and 3) ensuring privacy preservation and ex-

plainability of AI methods. The framework is also envisioned

to be easily integrated with existing testbed infrastructures,

enabling data collection. This will also facilitate the detection

of anomalies in such datasets, which may reveal vulnerabilities

and attacks more rapidly and reliably.

IV. RESEARCH CHALLENGES

As previously highlighted, 6G networks are not just about

faster data transfer anymore. They are set to be adap-

tive compute-and-communicate systems. The DMMAI frame-

work’s flexibility allows easy integration with existing orches-

tration frameworks in different network domains and enables

practical experiments and use-case studies. However, this

flexibility opens up new research questions. This section aims

to unpack these complex challenges, focusing on how the

DMMAI framework prepares us for the multi-functional and

dynamic nature of future 6G networks.

1) Orchestration of AI Controllers: A fundamental aspect

of the DMMAI framework is the orchestration of different

AI controllers to support both user and network services.

This orchestration is heavily reliant on the management and

curation of data and models across various network envi-

ronments. It requires an understanding of how to harmonize

these controllers end-to-end to support 6G network functions.

The orchestration processes will focus on adopting a modern,

modular, and cloud-based implementation that can be deployed

in a cloud-native environment enabled to interact with all the

other elements, e.g., the RICs, transport SDN, and NOS.

2) Decentralized AI Network Operations: Our framework

serves as a foundational structure for studying decentralized

AI operations across multiple network platforms. This includes

the integration of AICs within software-defined networking

environments, such as near-RT and non-RT RICs, SDN, and

NOS. It aims to provide a cohesive framework for investigating

research topics related to AI in network operations.

3) Energy Efficiency in AI and Communications: Address-

ing energy efficiency is a critical challenge for the DMMAI

framework. This requires clarifying the energy cost by devel-

oping energy models for AI operations/computation, sensing,

and communication, as well as the energy harvesting aspects.

DMMAI aims to minimize energy usage in decentralized AI

setups, ensuring that resources do not operate at full capacity

during idle periods.



4) Complexity and Scale Management: The DMMAI

framework is integral to managing the complexity and scale

of future 6G networks. It addresses various challenges, in-

cluding AI control plane coordination across different network

technologies and domains, end-to-end data management and

curation with quality-aware compression [20].

5) AIaaS Integration and Data Curation: The DMMAI

framework involves specifying and implementing interfaces

for inter-communication among various AIC instances, de-

veloping capabilities for optical AIC and inter-AIC optical-

radio communication, and designing data curation functions.

It is also crucial for defining and implementing workflows to

facilitate the training and deployment of AI/ML models in

AIaaS setups.

6) Data Collection and AI Foundation Model Research:

A critical challenge that can be addressed with the DMMAI

framework is efficiently collecting and processing vast, diverse

data essential for AI foundation model research in 6G net-

works. This involves not only gathering data from multiple

network sources but also ensuring its quality for developing

scalable AI models. These models are fundamental for various

intelligent network functions and must be computationally

efficient and adaptable to the dynamic nature of 6G environ-

ments. Additionally, the framework must address data gov-

ernance, ensuring privacy, security, and ethical AI practices.

This encompasses managing data bias and maintaining model

transparency and accountability.

7) Validation, Dissemination, and Standardization: It is

critical to enable efficient and scalable inter-working and

interoperability of AI/ML-based technologies in the multi-

party eco-system of telecommunication systems while target-

ing 6G use cases and deployments. Validation and demon-

strations of interoperability, preferably participated by and

disseminated to main stakeholders such as operators, equip-

ment, device and application vendors, shall pave the way for

global standardization of AI-native networks as they iron out

important issues such as training data sharing, model shar-

ing/adaptations/versioning, reference models based minimum

performance guarantees, and associated signaling etc. that the

standardization must tackle.

V. CONCLUSION

This paper presents a vision for the evolution of 6G com-

munication networks through the DMMAI framework. Moving

beyond traditional data delivery, our approach focuses on de-

veloping networks into decentralized intelligence and response

systems, essential for meeting the complex demands of future

communications. Our work lays out a foundational strategy for

AI-driven 6G networks, encapsulating the need for intelligent,

flexible, and secure network systems. The DMMAI framework

is designed to seamlessly integrate AI/ML technologies into

network architectures across both radio and optical domains.

Its structure is both detailed for immediate implementation

and adaptable for future enhancements. Our exploration in-

cludes the framework’s adaptability and integration in testbed

environments and its capability for prototyping existing frame-

works and investigating advanced network functionalities, e.g.,

security and authentication of AI/ML solutions. Our work also

touches on various research challenges, underscoring the role

that DMMAI will play in facilitating the development and

application of AI in 6G networks.
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