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Abstract—In this paper we develop a novel disruption-
resilient approach for real-time, high-resolution sensor data de-
livery over multiple wireless channels for military autonomous
systems such as drones, autonomous vehicles and robots. We
design two innovative neural multiple description codecs (neural
MDCs) which compress and encode images into multiple
independently decodable and mutually refineable streams. Our
approach not only achieves high compression efficiency, but
also enables the effective use of multiple diverse radio channels
for real-time delivery of high-resolution sensor data while
ensuring disruption resiliency. Using benchmark image/video
sensor datasets as well as real-world 5G traces, we evaluate and
demonstrate the efficacy of both neural MDC codecs for high-
resolution sensor data streaming over multiple radio channels
under various jamming scenarios.

I. INTRODUCTION

Grounded and aerial autonomous systems such as un-
manned ground vehicles (UGVs), unmanned aerial vehicles
(UAVs or “drones”) and robots are integral part of emerging
and future warfare. Apart from allowing warfighters to
engage in combat activities remotely, these autonomous sys-
tems are especially useful in providing surveillance and real-
time situation awareness to assist effective command-and-
control and decision-making. Due to processing and power
constraints, autonomous systems will likely have limited Al
(artificial intelligence) capabilities, e.g., by running “small
Al models” that do not require large onboard memory
and processing powers, that are primarily used for their
autonomous operations. To equip them with advanced deep
learning capabilities — especially generative Al, it will be
necessary to connect the autonomous systems wirelessly to
backend (edge or cloud) Al systems running state-of-the-art
large models.

Streaming (real-time) sensor data — especially high-
resolution camera images, video and 3D point data — faces
several challenges. Wireless channel bandwidth is often
limited and is known to suffer high variability. This is
particularly the case when mobility is involved. For real-
time situation awareness, ensuring timely delivery of sensor
data with low latency is also critical. In military applica-
tions, intentional radio interference and signal jamming are
common techniques used by adversaries to disrupt electronic
communications. One effective approach to prevent channel
disruption and jamming is to utilize multiple radio channels
from different radio bands. For example, channel surfing
and frequency hopping [1]-[3] are commonly used to evade
jamming. These methods require tight synchronization and
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coordination of the sender and receiver. Further, if the
current channel used for sensor data delivery is disrupted,
retransmissions using a different channel will be needed,
incurring longer delay which may render the sensor data
obsolete. Another simple strategy is to replicate and transmit
the same sensor data simultaneously using multiple channels.
This not only makes jamming in general more difficult!,
but also reduce the need for retransmissions. However, this
strategy wastes valuable radio capacity, and may not be
suited for high-resolution sensor data delivery when the
bandwidth of individual channels is insufficient to transmit
the sensor data in a timely manner.

In this paper we develop a novel disruption-resilient
approach for real-time, high-resolution sensor data delivery
over multiple wireless channels for military autonomous
systems such as UAVs and UGVs. By leveraging recent ad-
vances in neural image codecs, we advocate the use of neural
multiple description coding (neural MDC) to compresses and
encodes images into multiple independently decodable and
mutually refineable streams for disruption resiliency. In par-
ticular, we design two neural MDC codecs, Pixel MDC and
TokenMDC, for effective high-resolution image compression
and streaming over multiple radio channels. Both neural
codecs not only achieve high compression efficiency, but also
enable the effective use of multiple diverse radio channels
for real-time delivery of high-resolution image sensor data
while ensuring disruption resiliency. Using visual quality,
object detection accuracy and stall ratios as key metrics and
nuScenes and VisDrone benchmark sensor datasets as well
as real-world 5G channel throughput traces, we evaluate and
demonstrate the efficacy of both neural MDC codecs for
high-resolution sensor data streaming over multiple radio
channels subject to various jamming scenarios. The key
results are summarized below:

e PixelMDC and TokenMDC both retain high visual
quality and detection accuracy when only one or two
channels are disrupted, and maintain good graceful
performance degradation when more channels are dis-
rupted.

o TokenMDC provides more favorable compression-
detection trade-offs, saving 29.5% bitrate compared to

Constantly and simultaneously jamming multiple channels operating on
diverse frequency bands not only require high power and more advanced
equipment/technologies; the high power used also likely exposes the loca-
tion of a jammer, risking detection and elimination [4]-[7].
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JPEG and 67.3% compared to PixelMDC for similar
detection accuracy.

o TokenMDC outperforms PixeIMDC in terms of loss
resiliency, attaining 27% higher MS-SSIM of recon-
struncted images with losses.

o Both PixeIMDC and TokenMDC achieve excellent real-
time streaming performance, with stall ratios below
0.81% and 0.11%,respectively, across all jamming sce-
narios.

e Overall, TokenMDC achieves the best trade-offs be-
tween low latency, visual quality, detection accuracy
and disruption resiliency.

II. BACKGROUND & RELATED WORK

We provide a brief background on jamming and neural
codes and contrast our approach with related work.

A. Jamming Attacks, Detection and Mitigation Strategies

Jamming is a classic technique in electronic warfare [6],
[7]. There is a vast research literature on jamming attacks,
their detection and prevention strategies (see, e.g., [1]-[3],
[8] and the references therein). Depending on the perspec-
tives used, jamming attacks may be broadly classified into
i) passive vs. active jammers (the latter includes constant,
deceiptive and random jammers) [1]; ii) general vs. function-
specific jammers [3] where the latter targets specific func-
tions such as time synchrononization, control channels, etc.;
and iii) spot jamming, barrage jamming, sweep jamming
and digital frequency radio memory (DFRM) [4], [5], where
the first two target a specific channel either randomly or
constantly, the third aims to jam multiple frequencies in
quick succession, although not all at the same time; whereas
the last one is a repeater technique typically used for
jamming radar signals — it alters and re-transmits received
radar energy to confuse a radar. The recent survey paper [3]
provides in-depth discussion of various jamming attacks,
their detection and mitigation methods for various types of
wireless networks. In military applications, a jammer needs
to weigh effectiveness of jamming vs. the possibility of
detection (thereby risking being destroyed). For example,
sweep jamming spreads power across multiple frequencies,
making it comparatively less powerful at a single frequency,
whereas barrage jamming has a high probability of being
detected [4]-[7].

Most anti-jamming studies either employ PHY/MAC
and resource allocation techniques or focus on mitigating
function-specific jamming. Some recent studies leverage
Al methods for jamming detection and mitigation (see,
e.g., [8]), whereas others target specific use cases (e.g.,
drones [9], [10] or autonomous vehicles [11]). In this work,
we advocate a novel general approach based on innovative
neural codecs that employs multiple diverse channels (in-
stead of channel surfing/hopping) to simultaneously achieve
high bandwidth, low latency, application performance and
disruption resiliency.

(€ W)

Mobile Device (UAV/UGV) ((A)) Jammer

Fig. 1: System overview of sensor data delivery to a backend
Al system over diverse radio channels under jamming,
enabling advanced deep vision tasks: an example where two
uplink channels are disrupted by a jammer.

B. Neural Image/Video Codecs

Image/video compression is a widely studied and mature
field. Multiple Description Coding (MDC) using classical
signal processing techniques have been proposed decades
ago [12]; however, due to inefficiency and high overheads,
it has never become practical. With rapid advances in Al,
deep learning-based neural image and video codec designs
have seen a flurry of activities in recent years (see, e.g., [13],
[14]). In contrast to these studies, our work revisits the idea
of MDC for its anti-jamming properties. Inspired by our
earlier work on neural MDC codecs for video streaming over
5G networks [15], this work develops two novel neural MDC
image codecs for disruption-resilient, real-time delivery of
high-resolution images using diverse radio channels, with
the goal to support military autonomous systems for real-
time situation awareness, object detection, tracking and other
mission-critical tasks.

III. METHODOLOGY
A. System Overview

Fig. 1 illustrates the system overview of our framework,
which utilizes diverse radio channels to transmit sensor data
under jamming attacks, enabling advanced deep vision tasks
on resource-constrained UAVs and UGVs via a backend
Al system. First, UAVs or UGVs capture raw images via
onboard cameras. Due to their limited computational and
battery resources, these devices offload advanced vision
tasks (e.g., object detection) to a more powerful backend Al
system over radio uplinks. However, the uplink bandwidth
of a single radio channel is ofen limited and particularly
vulnerable to jamming attacks. To ensure sufficient data
throughput, the system employs multipath streaming over
multiple radio channels, providing both increased bandwidth
and resilience to jamming. Crucially, we employ a loss-
resilient compression technique that reduces image size
to accommodate limited bandwidth and tolerates partial
data loss due to jamming without requiring retransmission,
thereby enabling real-time streaming, object detection, track-
ing and other mission-critical tasks.

B. Loss Resilient Compression

MDOC is a loss-resilient compression method that encodes
an image into multiple independently decodable and mu-
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Fig. 2: Overview of PixelMDC and TokenMDC, exempli-
fying the generation of four descriptions and successful
decoding from two received descriptions.

tually refinable streams. The key design principles of an
MDC image codec are: 1) determining the type of source
information (e.g., spatial regions, semantic features) from
the original image to distribute across multiple correlated
descriptions with intentional redundancy; 2) leveraging this
redundancy to recover lost descriptions from the received
ones.

Inspired by recent advances in generative Al for images
and vision, we design two MDC image codecs by splitting
different types of source information, pixel blocks and latent
tokens, into multiple descriptions. We leverage two distinct
generative models, the LaMa image inpainting network [16]
and a Masked Transformer [13], to infer lost descriptions.
Fig. 2 illustrates the frameworks of the two codecs: Pix-
elMDC and TokenMDC.

1) PixelMDC: We extend traditional spatial MDC
codecs, which interleavingly distribute pixel blocks of an
image into multiple descriptions and encode each description
independently using JPEG. Unlike prior methods, we incor-
porate LaMa, a state-of-the-art image inpainting network, to
reconstruct missing blocks and enhance loss resilience.

2) TokenMDC: We design TokenMDC based on recent
Masked Transformer-based neural codecs [13], [15]. It con-
sists of three key components: an AutoEncoder, a source
information splitting and merging module, and a Masked
Transformer. Given a raw input image, TokenMDC first
uses the AutoEncoder [17] to transform the image from
the pixel domain into a quantized latent representation y.
Because the latent tokens are spatially correlated after the
AutoEncoder transform, TokenMDC splits the tokens into
multiple descriptions by interleavingly masking portions of

y with a special learnable mask token. This process creates
multiple masked latent representations, whose combination
equals the original. According to Shannon’s source coding
theorem, the more accurately the distributions of the latent
tokens are estimated, the fewer bits are required to transmit
them. Motivated by the superior performance of Masked
Transformers in image generation, TokenMDC employs a
Masked Transformer to estimate the token distributions for
each description. These estimated distributions, combined
with arithmetic coding, are then used to compress each de-
scription into a bitstream to transmit over cellular networks.

At the receiver side, each MDC stream is independently
decodable since each one is independently entropy encoded.
When some MDC streams are lost, their missing tokens
are filled with the mask token and inferred by the Masked
Transformer using the received tokens and the estimated
token distributions. Any combination of received streams
contributes to the reconstructed latent representation’s ac-
curacy and improves the decoded image’s quality. Further
details can be found in the technical paper [15].

C. Multipath Streaming against Channel Disruption

Instead of transmitting a single MDC stream across mul-
tiple uplink channels, we assign each MDC stream to a
separate channel. This design ensures that the delivery of
each stream depends solely on the condition of its assigned
channel, making it resilient to disruptions on other channels.
We estimate the available bandwidth using the most recent
sending rate and compress images to match this estimated bi-
trate. When jamming or interference disrupts some channels,
or when available bandwidth is overestimated, TokenMDC
and PixelMDC reconstruct the image as long as at least one
MDC stream is received, without waiting for delayed streams
or retransmitting lost streams. This enables real-time, robust,
and bandwidth-adaptive streaming. In contrast, JPEG-based
streaming requires full bitstream reception for successful
decoding, meaning any lost or delayed data must be re-
transmitted or waited on, leading to significant delays under
fluctuating network condition or jamming/interference.

D. Object Detection

We uses object detection as a representative case study of
advanced deep vision tasks. The backend (edge or cloud)
server runs YOLO [18], a state-of-the-art deep learning
model for object detection. YOLO is a single-stage detector
that predicts bounding boxes and class probabilities directly
from the input image in a single forward pass, making it well
suited for time-sensitive applications such as autonomous
navigation and remote monitoring. It remains robust to
degraded inputs by preserving structural features such as
overall shape and spatial patterns, even when fine details
are lost.

IV. EXPERIMENTAL RESULTS

This section evaluates: (1) the rate-distortion and loss
resilience performance of neural multiple description codecs
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Fig. 3: Impact of lost streams on visual quality.

and their impact on object detection; and (2) the streaming
and object detection performance over 5G under jamming.

A. Experiment Setup

Multimedia Dataset: We conduct evaluations on the
nuScenes [19] and VisDrone [20] datasets. nuScenes pro-
vides high-resolution 360-degree camera images captured
from autonomous vehicles in urban settings, with annota-
tions of vehicles, pedestrians, and other road users. VisDrone
contains aerial images taken by drones in urban and suburban
areas, containing small objects and complex backgrounds.
These datasets represent complementary terrestrial and aerial
use cases, allowing for a comprehensive evaluation of our
streaming and detection pipeline.

Network Trace: We use Xcal to collect the unlink network
traces from major U.S. 5G operators concurrently. We ran-
domly select 4 channel traces from the collected traces to
emulate four-path multipath scenarios, resulting in total 20
test cases.

Evaluation Metrics: We use bits per pixel (BPP) to measure
the image size after compression and Multi-Scale Structural
Similarity Index Measure (MS-SSIM) to measure the visual
quality of an image. Streaming performance is evaluated
based on the trade-off between visual quality and real-
timeness, measured by stall time (i.e., the transmission delay
beyond the expected decoding time based on the streaming
frame rate). Based on decoded images, mean Average Pre-
cision (mAP) is used to quantify object detection accuracy.
Testbed: We implemented TokenMDC based on M2T [13],
and PixeIMDC using FFmpeg JPEG and LaMa [16]. We
use these two MDC codecs to compress images into 10
independent streams. We conducted multipath streaming in
a controlled environment by replaying channel bandwidth
traces using Mahimahi. During streaming, a simulated jam-
mer randomly targets 1 to 3 channels with concentrated
jamming signals to disrupt data transmission. The mobile
devices (i.e., vehicle and drones) send images at the frame
rate of 12. On the edge server, two YOLOVS8s [18] models,
fine-tuned on the nuScenes and VisDrone datasets respec-
tively, are used to detect objects from the images decoded
from the received bitstreams. We measure transmission delay
by accounting for the network delay, neural codec runtime,
LaMa inpainting runtime, and retransmission overhead.

B. Compression Performance & Impact on Object Detection

1) Loss Resilience: MDC coding schemes are inherently
loss resilient, as the image can still be decoded—albeit
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Fig. 4: Impact of lost streams on object detection accuracy.
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Fig. 5: Image reconstruction and object detection examples
when 50% of the streams are lost.

with reduced quality—as long as one or more streams are
received. We evaluate the loss resilience of our two MDC
codecs by measuring visual quality and object detection
accuracy under various stream loss ratios (see Fig. 3 and
Fig. 4). TokenMDC outperforms PixelMDC, achieving 27%
higher MS-SSIM, indicating more effective inference of
lost tokens from received ones compared to pixels. This
improvement translates to a 72% increase in object detection
accuracy. When comparing performance across the two
datasets, we observe that nuScenes images exhibit greater
loss resilience than VisDrone images, as the small, aerially
captured objects in VisDrone are more sensitive to loss and
harder to reconstruct accurately.

Fig. 5 shows the reconstructed images and their object
detection results when 50% of the MDC streams are lost.
TokenMDC produces reconstructions that are visually closer
to the original images, preserving object contours even
though fine details are blurred. These structural features
help YOLO detect objects more accurately and in greater
numbers, despite the data loss. In contrast, PixeIMDC per-
forms well when large objects are present (e.g., Fig. 5 (e)),
but struggles to recover small objects if their corresponding
pixel blocks are lost. This is because pixel blocks carry
only limited local spatial information, whereas tokens in
TokenMDC encode richer semantic context from the entire
image. When no semantically similar blocks are available
(e.g., people in Fig. Fig. 5 (b)), even advanced inpainting
models like LaMa cannot reliably reconstruct them.

2) Rate-Distortion: Fig. 6 compares the compression
efficiency of our two MDC codecs with JPEG. TokenMDC
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achieves 34.3% higher compression efficiency than JPEG
and 70.1% higher than PixelMDC. Additionally, Token-
MDC can compress images to a bitrate 87.2% lower than
JPEG’s lowest quality setting, which indicates that Token-
MDC can significantly reduce network bandwidth consump-
tion. This high compression efficiency improves adaptability
to low-bandwidth conditions caused by poor channels or
jamming, enabling real-time streaming, and also reduces
transmission costs, making it more economical for usage-
based or bandwidth-constrained networks. The superior rate-
distortion performance of TokenMDC stems from its use of
masked Transformers, which capture richer spatial relation-
ships among tokens and enable more accurate token distri-
bution prediction for improved entropy coding. In contrast,
PixeIMDC'’s reduced spatial redundancy and reliance solely
on JPEG limit its ability to exploit spatial correlations among
pixels, leading to much lower compression efficiency.

3) Rate-Detection: Fig. 7 presents object detection ac-
curacy for images compressed at various bitrates. It il-
lustrates the trade-off between compression and detection
performance by showing how bitrate translates to mAP.
TokenMDC achieves more favorable compression-detection
trade-offs, saving 29.5% bitrate compared to JPEG and
67.3% compared to PixelMDC for similar detection accu-
racy. Detection accuracy on the VisDrone dataset is lower
than on nuScenes and degrades more rapidly with decreasing
bitrate. This is because small drone-captured objects are
harder to detect and more sensitive to compression.

C. Streaming & Detection Performance Against Disruption

This section evaluates the multipath streaming and object
detection performance under jamming attacks and interfer-
ence that randomly disrupt uplink channels.

1) Streaming Peformance: Fig. 8 shows that streaming
nuScenes and VisDrone images to the edge server using
PixeIMDC and TokenMDC achieves real-time performance,
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Fig. 8: Streaming performance across four channels under
different jamming scenarios. Streaming with MDC achieves
real-timeness. Error bars show 95% confidence intervals.
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Fig. 9: Object detection performance across four channels
under different jamming attacks. Streaming with TokenMDC
achieves the best trade-offs between real-timeness and de-
tection accuracy. Error bars show 95% confidence intervals.

with stall ratios below 0.81% and 0.11%, respectively, across
all disruption scenarios. This is because both MDC codecs
can reconstruct an image as long as at least one stream is
received, even if others are lost due to channel disruption.
In contrast, streaming with JPEG experiences significant
delays, particularly as the number of disrupted channels
increases. Since JPEG requires complete bitstream reception
for successful decoding, lost data must be retransmitted
over the remaining undisrupted channels, which adds delay.
Disrupted channels reduce the aggregate network throughput
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below the planned upload rate, further slowing transmission.
These results also highlight JPEG’s limited ability to adapt
to dynamic network conditions under jamming.

While maintaining real-time performance, PixelMDC and
TokenMDC codecs sacrifice visual quality under stream loss.
However, TokenMDC achieves 14.97% to 51.79% higher
visual quality than PixelMDC, owing to its superior rate-
distortion and loss resilience capabilities, as shown in the
previous two subsections.

2) Detection Peformance: Fig. 9 demonstrates that To-
kenMDC offers the best trade-off between detection accu-
racy and real-time performance. In the absence of jamming
or interference, TokenMDC matches JPEG in detection
accuracy but achieves significantly lower latency (0.1%
vs. 3.16%), due to its superior compression efficiency that
allows higher-quality images at lower bitrates, despite its
higher runtime. As channel disruptions increase, detection
accuracy drops across all codecs. While JPEG’s accuracy
degrades slightly, its latency rises sharply, up to 45.22%,
due to retransmission delays. In contrast, TokenMDC and
PixeIMDC maintain real-time performance under disruption,
as they eliminate the need for retransmission. TokenMDC
is notably more robust than PixelMDC. The accuracy of
TokenMDC drops only 4.76% with one of four channels
disrupted (~25% data loss), 13.96% with two channels
disrupted, and 27.85% with three. This accuracy decline
is much slower than the rate of data loss, confirming
that TokenMDC ensures real-time detection with graceful
accuracy degradation under adverse conditions.

V. CONCLUSION

We advocate a novel disruption-resilient approach for
real-time, high-resolution sensor data delivery over multiple
wireless channels for military autonomous systems. We
have developed two innovative neural multiple description
coding (neural MDC) codecs — PixelMDC and TokenMDC
— both of which compress and encode images into multiple
independently decodable and mutually refineable streams.
Using benchmark sensor datasets and real-world 5G traces,
we have evaluated the performance of Pixel and Token
MDC codecs for high-resolution sensor data streaming over
multiple radio channels under various jamming scenarios.
The evaluation results demonstrate the efficacy of our ap-
proach. In particular, TokenMDC achieves the best trade-offs
between low latency, visual quality, detection accuracy and
disruption resiliency.

VI. ACKNOWLEDGMENT

This research is supported in part by the National Science
Foundation (NSF) under grants number 2106771, 2128489,
2212318, 2220286, 2220292, 2321531 and 2436333, as well
as an InterDigital gift.

REFERENCES

[1] W. Xu, W. Trappe, Y. Zhang, and T. Wood, “The feasibility of
launching and detecting jamming attacks in wireless networks,” in
Proceedings of the 6th ACM international symposium on Mobile ad
hoc networking and computing, 2005, pp. 46-57.

793

[2] A. Siemens and M. van Hecke, “Jamming: A simple introduction,”
Physica A-statistical Mechanics and Its Applications, vol. 389, pp.
4255-4264, 2010.

[3] H. Pirayesh and H. Zeng, “Jamming attacks and anti-jamming strate-
gies in wireless networks: A comprehensive survey,” IEEE communi-
cations surveys & tutorials, vol. 24, no. 2, pp. 767-809, 2022.

[4] C. Insight, “How jamming attacks work: A breakdown of the
three types,” 2021. [Online]. Available: https://cyberinsight.com/how-
jamming-attacks-work-a-breakdown-of-the-three-types/

[5] J. Engineering, “An introduction to jammers and jamming techniques,”
2020. [Online]. Available: https://jemengineering.com/blog-an-
introduction-to-jammers/

[6] C.-H. Cheng and J. Tsui, An introduction to electronic warfare; from
the first jamming to machine learning techniques. CRC Press, 2022.

[7]1 L.Boudreaux and U. Army, COMMUNICATIONS JAMMING HAND-
BOOK. Independently published, 2021.

[8] P. Lohan, B. Kantarci, M. A. Ferrag, N. Tihanyi, and Y. Shi, “From
5g to 6g networks, a survey on ai-based jamming and interference
detection and mitigation,” IEEE Open Journal of the Communications
Society, 2024.

[91 L. Ye, J. Zhang, H. Chen, Z. Lin, J. Li, Z. Lv, and L. Xiao,
“Learning-based edge-assisted uav object detection against jamming
for extended reality,” in 2024 IEEE/CIC International Conference on
Communications in China (ICCC). 1EEE, 2024, pp. 1287-1292.

[10] Z. Lv, L. Xiao, Y. Du, G. Niu, C. Xing, and W. Xu, “Multi-agent
reinforcement learning based uav swarm communications against
jamming,” IEEE Transactions on Wireless Communications, vol. 22,
no. 12, pp. 9063-9075, 2023.

[11] Q. Zhang, S. Sleder, X. Hu, F. Bilal, W. Ye, and Z.-L. Zhang,
“Impact of data compression on downstream ai tasks: A study using
teleoperated driving over 5g,” in 2024 IEEE International Workshop
Technical Committee on Communications Quality and Reliability
(COR). 1EEE, 2024, pp. 25-30.

[12] M. Kazemi, S. Shirmohammadi, and K. H. Sadeghi, “A review
of multiple description coding techniques for error-resilient video
delivery,” Multimedia Systems, vol. 20, pp. 283-309, 2014.

[13] F. Mentzer, E. Agustson, and M. Tschannen, “M2t: Masking trans-
formers twice for faster decoding,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2023, pp. 5340-5349.

[14] J. Li, B. Li, and Y. Lu, “Neural video compression with diverse
contexts,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. Vancouver, BC, Canada: IEEE, 2023,
pp. 22616-22626.

[15] X. Hu, W. Ye, J. Tang, E. Ramadan, and Z.-L. Zhang, “Robust
multiple description neural video codec with masked transformer for
dynamic and noisy networks,” arXiv preprint arXiv:2412.07922, 2024.

[16] R. Suvorov, E. Logacheva, A. Mashikhin, A. Remizova, A. Ashukha,
A. Silvestrov, N. Kong, H. Goka, K. Park, and V. Lempitsky,
“Resolution-robust large mask inpainting with fourier convolutions,”
in Proceedings of the IEEE/CVF winter conference on applications
of computer vision, 2022, pp. 2149-2159.

[17] D. He, Z. Yang, W. Peng, R. Ma, H. Qin, and Y. Wang, “Elic:
Efficient learned image compression with unevenly grouped space-
channel contextual adaptive coding,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp.
5718-57217.

[18] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp.
779-788.

[19] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu,
A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A
multimodal dataset for autonomous driving,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 11621-11631.

[20] P. Zhu, L. Wen, D. Du, X. Bian, H. Fan, Q. Hu, and H. Ling,
“Detection and tracking meet drones challenge,” IEEE transactions
on pattern analysis and machine intelligence, vol. 44, no. 11, pp.
7380-7399, 2021.



