

Third-Order Harmonic Generation in Bulk Topological and Non-Topological Crystals

Tigges-Green, Isabelle ; Mason, Matthew ; Fasano, Nicholas ; Giakas, Andreas ; Dewan, Vedin ; Wang, Michelle ; Hejazi, Ava ; Biswas, Somnath ; Bennett, Timothy ; Edwards, Matthew ; Karpowicz, Nicholas ; Scholes, Gregory ; Mikhailova, Julia

Solid-state harmonic generation (HG) offers insights into sub-femtosecond phenomena within condensed matter systems. We select a series of crystals with different electronic band-structure features to work toward elucidating the effect of topological surface states on third-order harmonic generation (THG). We compare Al_2O_3 , a direct band-gap material, and Fe_2O_3 , an indirect band-gap material, and in the future will add $\text{Cr:Al}_2\text{O}_3$, a direct band-gap material, and Bi_2Se_3 , a topological insulator. We use a 20-TW Ti:Sapphire laser (?central =800nm, 25 fs, 10 Hz) inside a vacuum chamber at 10^{-6} Torr, in the reflection geometry with the sample at 45° relative to the incident beam. The THG signal was detected by either a UV CCD camera or spectrometer which was in the atmosphere. We first studied the THG dependence on laser polarization and then on driving laser intensity, from $\sim 0.2 \text{ TW/cm}^2$ to $\sim 1.2 \text{ TW/cm}^2$. The THG dependence on laser polarization was studied and no such dependence was observed. We have experimentally compared the THG energy in Al_2O_3 and Fe_2O_3 through laser intensity scans on these materials and observed differences in generated THG energy between both materials.

This research was partially supported by the NSF under Grant No. PHY 2206711, through the Princeton University's Materials Research Science and Engineering Center DMR-2011750, and the Gordon and Betty Moore Foundation, GBMF12255, Grant DOI 10.37807/gbmf12255. I.T-G. gratefully acknowledges the support of the NSF through a Graduate Research Fellowship.

Publication: APS Division of Atomic and Molecular Physics Meeting 2024, abstract id.D00.036

Pub Date: June 2024

Bibcode: 2024APS..DMPD00036T

 Feedback/Corrections?