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Abstract

The process of reconstructing quantum states from experimental measurements, accomplished through quantum

state tomography (QST), plays a crucial role in verifying and benchmarking quantum devices. A key challenge of

QST is to find out how the accuracy of the reconstruction depends on the number of state copies used in the measure-

ments. When multiple measurement settings are used, the total number of state copies is determined by multiplying

the number of measurement settings with the number of repeated measurements for each setting. Due to statistical

noise intrinsic to quantum measurements, a large number of repeated measurements is often used in practice. How-

ever, recent studies have shown that even with single-sample measurements–where only one measurement sample is

obtained for each measurement setting–high accuracy QST can still be achieved with a sufficiently large number of

different measurement settings. In this paper, we establish a theoretical understanding of the trade-off between the

number of measurement settings and the number of repeated measurements per setting in QST. Our focus is primarily

on low-rank density matrix recovery using Pauli measurements. We delve into the global landscape underlying the

low-rank QST problem and demonstrate that the joint consideration of measurement settings and repeated measure-

ments ensures a bounded recovery error for all second-order critical points, to which optimization algorithms tend to

converge. This finding suggests the advantage of minimizing the number of repeated measurements per setting when

the total number of state copies is held fixed. Additionally, we prove that the Wirtinger gradient descent algorithm

can converge to the region of second-order critical points with a linear convergence rate. We have also performed

numerical experiments to support our theoretical findings.

Keywords: Quantum state tomography, Pauli measurements, Nonconvex optimization.

1 Introduction

In the realm of quantum information processing that encompasses quantum computation [1,2], quantum communi-

cation [3,4], quantum metrology [5,6], and more, a pivotal task lies in acquiring knowledge about quantum states.

The best way of achieving said task is known as quantum state tomography (QST) [7–11], which allows one to fully

reconstruct the experimental quantum state with high accuracy. For an n-qubit quantum system, its quantum state is

represented by a density matrix ρ of dimension 2n × 2n. To estimate an unknown experimental quantum state ρ,

one typically needs to perform quantum measurements on multiple identical copies of the state. In the most general

scenario, these quantum measurements are described by the so-called Positive Operator-Valued Measures (POVMs),

which are collections of positive semi-definite (PSD) matrices or operators {E1, . . . ,EQ} that sum up to the identity

operator. Each operator Eq (q = 1, . . . , Q) in a POVM corresponds to a potential measurement outcome that occurs

with a probability denoted by pq = trace(Eqρ). Due to the inherent probabilistic nature of quantum measurements,

a precise estimation of ρ usually requires repeating the measurements a considerable number of times (say M ) using

one or more sets of POVMs. This repetition allows one to obtain a statistically accurate estimate p̂q of each pq .

An important question in QST is how many state copies are needed for the measurements to reconstruct a generic

quantum state within a given error threshold. The answer to this question depends critically on the choice of measure-

ment settings (i.e., the POVM) used. Commonly studied measurement settings include Pauli measurements [12,13],
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Clifford measurements [14], and Haar-distributed unitary measurements [15], 4-design [16], etc. Unless the mea-

surement setting provides information completeness, more than one measurement setting needs to be used. A simple

example is the Pauli basis measurement used widely in various quantum experiments, where each qubit is measured

in the Pauli x, y, z bases respectively, resulting in 3n different measurement bases/settings necessary for obtaining full

information of the quantum state. In general, we shall denote K as the number of measurement settings, and M as

the number of measurements for each setting. The total number of state copies used for QST is thus given by KM .

In most of the previous studies, M is chosen to be large such that the empirical probabilities p̂q are close to the true

probabilities pq . Conversely, if M is small, the signal-to-noise ratio between the clean measurements {pq} and the

statistical errors {p̂q − pq} could become substantially less than 1, making accurate QST challenging. Surprisingly,

recent works [17,18] show that as long as KM is large, even setting M = 1 can lead to high-accuracy QST, which

is somewhat counter-intuitive as each measurement gives little information of the true probability distribution for the

particular measurement setting. When the total number of state copies KM is held fixed, it appears that the use of a

large number of different measurement settings K can effectively compensate for the large statistical error associated

with a low number of measurements per setting M . Consequently, the primary question we address in this paper is:

Question: What is the trade-off between the number of measurement settings (K)

and the number of repeated measurements per setting (M ) in QST?

Main results Our objective is to answer the main question posed above with a focus on reconstructing a quantum

state represented by a low-rank density matrix using Pauli measurements, a topic that has been studied extensively

[12,19–21]. Specifically, for an n-qubit system, we reconstruct the target state from the experimental measurements

of a set of n-body Pauli observables {Wk}Kk=1. Each Wk is represented by a tensor product of single-qubit Pauli

matrices σ1, σ2, and σ3, as well as the identity matrix σ0 (see (4) for their explicit forms): Wk = σk1 ⊗ σk2 · · ·σkn
,

where ki = 0, 1, 2, 3 for i = 1, 2, · · · , n. Physically, each Wk can be measured by measuring σki
for the i-th qubit for

i = 1, 2, · · · , n. Such measurement is routinely performed in most current quantum computing hardware platforms. In

total, there are 4n distinct n-body Pauli observables denoted by {Wi}4
n

i=1. Our QST protocol randomly chooses K of

them with replacement and measures each of them M times, thus consuming KM total state copies. It is noteworthy

that some {Wk} may be measured more than once. While for a generic quantum state, one needs to measure all

elements of {Wi}4
n

i=1 to gain full information of the state needed for accurate QST, for a low-rank density matrix,

measuring only a small random set of {Wk}Kk=1 is sufficient for recovering the target state with high precision [12,19].

Our main result is to show that for a fixed number of total state copies given by KM , choosing a larger K (for

a sufficiently large K) always leads to a smaller upper bound of the recovery error. Our numerical simulation results

with random low-rank physical states further show that the actual recovery error also decreases as K is increased, with

M = 1 generally giving the smallest recovery error. This suggests that the optimal Pauli observable measurement

strategy is to maximize of the number of measurement settings. Mathematically, we can state our main result with the

following theorem:

Theorem 1. (informal version of Theorem 4 and Corollary 1) Given an n-qubit density matrix ρ of rank r, randomly

select K n-body Pauli observables from the full set {Wi}4
n

i=1 and perform measurements of each M times. For any

ϵ > 0, if K ≥ Ω(2nrn6), M ≤ O(K/n), and KM ≥ Ω(g(K)4nnr/ϵ2), where g(K) is Ω(1) but decreases

monotonically as K increases, then with high probability, every local minimum of a particular low-rank least squares

estimator that involves the measurement results can recover the density matrix with an ϵ-closeness in the Frobenius

norm, and such minima can be achieved by employing a Wirtinger gradient descent algorithm with a good initialization.

Our results quantify the impact of the total number of state copies KM on the recovery error. Importantly, since the

function g(K) and the failure probability are both inversely related to K, increasing K while keeping KM constant can

substantially decrease the recovery error while boosting the success probability. In addition, we propose a Wirtinger

gradient-based factorization approach, which proves the existence of a method that can converge to the region of

favorable local minima with a linear convergence rate when appropriately initialized. Our theoretical findings are

substantiated by numerous experimental results.

Related works Numerous theoretical studies in the QST literature [13,14,16,19,22–24] have proposed methodolo-

gies involving the least-squares loss function to recover low-rank density matrices. It is noteworthy that [13,23]
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primarily investigate error and algorithmic aspects utilizing Pauli measurements. Drawing upon the projected least

squares method and employing Pauli measurements, which include both Pauli observable and Pauli basis measure-

ments, [13] examined the necessary number of total state copies (KM ) to achieve accurate recovery in the trace norm.

However, the trade-off between K and M was not explored. While [23] dealt with a loss function similar to ours, it

did not address measurement noise, which arises due to the utilization of empirical Pauli measurements. Moreover,

the algorithm analysis failed to establish the connection between recovery error and the total number of state copies

(KM ).

The QST problem can be viewed as complex matrix sensing, involving a specific type of measurement operator and

inherently probabilistic measurements. In the last few decades, nonconvex optimization for matrix sensing has evolved

in two main directions: (1) local geometry of two-stage algorithms [25–30], which rely on optimization algorithms with

proper initialization; and (2) global landscape analysis and initialization-free algorithms [31–37]. However, these prior

works have predominantly focused on real matrix sensing in noiseless environments or with Gaussian noise, making

them unsuitable for addressing QST involving complex matrices and measurement noise. Note that as a special case of

matrix sensing, previous studies have explored the local geometry and global landscape of complex phase retrieval with

a rank-one target matrix [38,39]. To solve this problem efficiently, the Wirtinger flow algorithm with a convergence

guarantee has been provided in [38]. We consider an algorithm that is essentially the same as Wirtinger flow, but we

highlight two important differences. First, we employ a different step size than that in [38], where it was prescribed to

be inversely proportional to the magnitude of the initial guess. Second, whereas [38] studied the recovery of a rank-one

matrix from rank-one measurements, our theoretical results extend these findings to the case of rank-r complex matrix

recovery with measurement noise.

1.1 Notation

We use bold capital letters (e.g., X) to denote matrices, bold lowercase letters (e.g., x) to denote vectors, and italic

letters (e.g., x) to denote scalar quantities. The calligraphic letter A is reserved for the linear measurement map. For a

positive integer K, [K] denotes the set {1, . . . ,K}. The superscripts (·)⊤ and (·)H denote the transpose and Hermitian

transpose operators, respectively, while the superscript (·)∗ denotes the complex conjugate. For two matrices A,B
of the same size, ⟨A,B⟩ = trace(AHB) denotes the inner product between them. ∥A∥ and ∥A∥F respectively

represent the spectral norm and Frobenius norm of A. For a vector a of size N × 1, its ln-norm is defined as ||a||n =

(
∑N

m=1 |am|n)
1
n . For two positive quantities a, b ∈ R, the inequality b ≲ a or b = O(a) means b ≤ ca for some

universal constant c; likewise, b ≳ a or b = Ω(a) represents b ≥ ca for some universal constant c. Ur is the set of

unitary matrices of size r.

2 Preliminary

In this section, we provide a brief review of QST based on Pauli measurements, starting from basic concepts in quantum

mechanics such that quantum state and quantum measurement.

Quantum state and measurements For a quantum system composed of n qubits, its quantum state is represented

by a density matrix ρ ∈ C
2n×2n that obeys two properties: (i) ρ ⪰ 0 is a positive semidefinite (PSD) matrix, and

(ii) trace(ρ) = 1. The objective of quantum state tomography is to construct or estimate the density matrix ρ of a

physical quantum system by performing measurements on an ensemble of identical state copies.

The most general measurements on a quantum system are denoted by Positive Operator Valued Measures (POVMs)

[1]. Specifically, a POVM is a set of PSD matrices

{E1, . . . ,EQ} ∈ C
2n×2n , s. t.

Q∑

q=1

Eq = I2n . (1)

Each POVM element Eq is linked to a potential outcome of a quantum measurement. The probability pq of detecting

the q-th outcome while measuring the density matrix ρ can be expressed as follows:

pq = ⟨Eq,ρ⟩ , (2)
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where
∑Q

q=1 pq = 1 due to (1) and the fact that trace(ρ) = 1. Given the probabilistic nature of quantum measurements,

it is necessary to prepare multiple copies of the quantum state in the experiment. In other words, since it is not possible

to directly obtain {pq} in a single physical experiment, one typically repeats the measurement process M times. By

taking the average of the statistically independent outcomes, one can obtain the empirical probabilities as follows:

p̂q =
fq
M

, q ∈ [Q] := {1, . . . , Q}, (3)

where fq denotes the number of times the q-th outcome is observed in the M experiments. The empirical probabilities

{p̂q} can then be used to recover or estimate the unknown density operator ρ.

Collectively, the random variables f1, . . . , fQ are characterized by the multinomial distribution Multinomial(M,p)

[40] with parameters M and p =
[
p1 · · · pQ

]⊤
, where pq is defined in (2). It follows that the empirical probability

p̂q in (3) is an unbiased estimator of the true probability pq . For convenience, we call {pq} and {p̂q} the population

and empirical (linear) measurements, respectively.

Pauli observables Pauli observables/matrices are widely used in quantum measurements. For a single qubit, the

Pauli observables are represented by the following 2× 2 matrices:

σ0 =

[
1 0
0 1

]
, σ1 = σx =

[
0 1
1 0

]
, σ2 = σy =

[
0 i
−i 0

]
, σ3 = σz =

[
1 0
0 −1

]
. (4)

Here we include the identity matrix σ0 which is technically not a Pauli matrix for the purpose of forming an orthonormal

basis for C2×2 (with proper normalization). For n qubits, letting D = 2n, we can obtain D-dimensional Pauli matrices

Wk ∈ C
D×D by forming n-fold tensor products of σ0, σ1, σ2, σ3:

Wk = σk1
⊗ σk2

⊗ · · · ⊗ σkn
, (k1, . . . , kn) ∈ {0, 1, 2, 3}n, ∀k = 1, . . . , D2. (5)

Each D-dimensional Pauli matrix Wk has full rank with eigenvalues ±1. Moreover, the properly normalized D-

dimensional Pauli matrices, 1√
D
{W1, . . . ,WD2}, form an orthonormal basis for CD×D. Because of this, any density

matrix ρ ∈ C
D×D is fully characterized by the inner products ⟨W1,ρ⟩, . . . , ⟨WD2 ,ρ⟩, which are physically the

expectation values of the n-qubit Pauli observable Wk and are referred to as the Pauli observable measurements.

The problem of QST—estimating ρ—can therefore be formulated as the problem of estimating all {⟨Wk,ρ⟩}D
2

k=1.

Experimentally, we can measure each Wk using the following Pauli basis measurement that is routinely performed in

various quantum computing platforms.

Pauli basis measurement Again let D = 2n. Following [19–21], we can expand each Wk using linear combinations

of local Pauli basis measurement operators. Specifically, we can associate each two-dimensional Pauli basis matrix σi

with a two-outcome POVM {E±
i } corresponding to its eigenvectors. For example,

σ1 =

[
0 1
1 0

]
=

[
1√
2
1√
2

] [
1√
2

1√
2

]

︸ ︷︷ ︸
E

+
1

−
[

1√
2

− 1√
2

] [
1√
2
− 1√

2

]

︸ ︷︷ ︸
E

−
1

, (6)

σ2 =

[
0 i
−i 0

]
=

[
1√
2

− i√
2

] [
1√
2

i√
2

]

︸ ︷︷ ︸
E

+
2

−
[

1√
2
i√
2

] [
1√
2
− i√

2

]

︸ ︷︷ ︸
E

−
2

, (7)

σ3 =

[
1 0
0 −1

]
=

[
1
0

] [
1 0

]

︸ ︷︷ ︸
E

+
3

−
[
0
1

] [
0 1

]

︸ ︷︷ ︸
E

−
3

. (8)

Here, each {E±
i } represents a rank-one orthonormal POVM1 for i = 1, 2, 3. It is important to note that since σ0 is

an identity matrix, we can associate σ0 with any of the rank-one orthonormal POVM elements {E±
i }, specifically,

1The measurement operators within a rank-one orthonormal POVM are projection operators onto orthonormal states of the Hilbert space
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σ0 = E+
i +E−

i for all i = 1, 2, 3. To simplify the notation, we can set E±
0 = E±

3 . Thus, we can associate each Pauli

basis matrix σi with a two-outcome POVM {E±
i } in a unified way as

σi = E+
i + α̂iE

−
i , ∀i = 0, 1, 2, 3, where α̂0 = 1, α̂1 = α̂2 = α̂3 = −1. (9)

Furthermore, we can rewrite the k-th D-dimensional Pauli matrix Wk as

Wk = σk1
⊗ · · · ⊗ σkn

= (E+
k1

+ α̂k1
E−

k1
)⊗ · · · ⊗ (E+

kn
+ α̂kn

E−
kn
)

= E+
k1
⊗E+

k2
⊗ · · ·E+

kn
+ α̂k1

E−
k1
⊗E+

k2
⊗ · · · ⊗E+

kn

+ · · ·+ α̂k1E
−
k1
⊗ α̂k2E

−
k2
⊗ · · · ⊗ α̂kn

E−
kn

=:

D∑

j=1

αk,jEk,j , αk,1, . . . , αk,D ∈ ±1, (10)

which implies that we can define a Pauli basis-based D-outcome POVM:

{
Ek,1, . . . ,Ek,D

}
=

{
E±

k1
⊗ · · · ⊗E±

kn

}
. (11)

Quantum measurements with this POVM will be characterized by D probabilities (population measurements), which

we refer to as the Pauli basis measurements:
{
pk,1, . . . , pk,D

}
=

{
⟨Ek,1,ρ⟩, . . . , ⟨Ek,D,ρ⟩

}
. (12)

Finally, the Pauli observable measurement with Wk can be expressed using a linear combination of these probabilities:

⟨Wk,ρ⟩ =
D∑

j=1

αk,j · pk,j . (13)

From the discussion above, it follows that we can obtain empirical estimates of {⟨Wk,ρ⟩} by performing the Pauli

basis measurements in (12). Specifically, for a fixed k ∈ {1, 2, . . . , D2}, we perform the experiments M times and

obtain the empirical probabilities {p̂k,1, . . . , p̂k,D}. Then, the k-th Pauli observable measurement can be estimated as

follows:

⟨Wk,ρ⟩ ≈
D∑

j=1

αk,j · p̂k,j , (14)

where the right-hand side is also called an empirical Pauli observable measurement.

Statistical error in the empirical Pauli observables Since the measurement of each Pauli observable Wk can only

be done experimentally for a finite number of times, the empirical estimate of each ⟨Wk,ρ⟩ is subject to statistical

errors. Intuitively, one might expect that empirical Pauli observables obtained from empirical Pauli basis measurements

could exhibit large statistical errors, as they involve a great number of empirical probabilities. However, according to

Lemma 4 in Appendix E, the following result demonstrates that the statistical error for this case can be bounded by the

order of 1/M .

Lemma 1. For any Pauli matrix Wk ∈ C
D×D as defined in (5), the term

∑D
j=1 αk,j ·p̂k,j in (14) serves as an unbiased

estimator for ⟨Wk,ρ⟩ with a statistical error bounded as:

E






( D∑

j=1

αk,j · p̂k,j
)
− ⟨Wk,ρ⟩




2

 ≤

2− 2/D

M
≤ 2

M
. (15)
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Note that the left hand side of (15) is the variance of the error in estimating ⟨Wk,ρ⟩. The result in (15) indicates that

the statistical error does not increase significantly with respect to D. To support this argument, we conduct a numerical

experiment as follows: We randomly generate 100 Pauli matrices by selecting 100 indices from the set {1, . . . , D2}
with replacement and a density matrix ρ = UUH ∈ C

2n×2n , where U = A+i·B
∥A+i·B∥F

∈ C
2n×r with the entries of A

and B being independent and identically distributed (i.i.d.) from the standard normal distribution. In Figures 1(a)-1(d),

we calculate E[(
∑D

j=1 αk,j · p̂k,j − ⟨Wk,ρ⟩)2] (averaged over 100 Monte Carlo trials) for various numbers of qubits

n and experiments M and show that it generally scales as 1
M , consistent with Lemma 1.

1 5 10 15 20 25 30 35 40 45 50

M

10
-2

10
-1

10
0

E
[
(
∑D

j=1 αk,j p̂k,j − 〈Wk, ρ〉)
2
]
, n = 1

1
M

(a)

1 5 10 15 20 25 30 35 40 45 50

M

10
-2

10
-1

10
0

10
1

E
[
(
∑D

j=1 αk,j p̂k,j − 〈Wk, ρ〉)
2
]
, n = 3

1
M
2−2/23

M

(b)

1 5 10 15 20 25 30 35 40 45 50

M

10
-2

10
-1

10
0

10
1

E
[
(
∑D

j=1 αk,j p̂k,j − 〈Wk, ρ〉)
2
]
, n = 5

1
M
2−2/25

M

(c)

1 5 10 15 20 25 30 35 40 45 50

M

10
-2

10
-1

10
0

10
1

E
[
(
∑D

j=1 αk,j p̂k,j − 〈Wk, ρ〉)
2
]
, n = 7

1
M
2−2/27

M

(d)

Figure 1: Numerical computation of E[(
∑D

j=1 αk,j · p̂k,j − ⟨Wk,ρ⟩)2] for different n and M .

3 Recovery Guarantee for Pauli Observable Measurements

In this section, we will study the recovery of a ground truth density matrix ρ⋆ from the above-mentioned Pauli observ-

able measurements.

3.1 Measurement setting and the matrix factorization approach

Definition 1 (Measurement setting). Suppose we draw A1, . . . ,AK i.i.d. uniformly at random (with replacement) from

the Pauli matrices {W1, . . . ,WD2} defined in (5). We can generate K Pauli observables for ρ⋆ through the linear
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measurement operator A : CD×D → R
K as

y = A(ρ⋆) =



y1
...

yK


 =



⟨A1,ρ

⋆⟩
...

⟨AK ,ρ⋆⟩


 =




∑D
j=1 α1,j · p1,j

...∑D
j=1 αK,j · pK,j


 , (16)

where {pk,1, . . . , pk,D} are the Pauli basis measurements in (12). Note that K also denotes the number of POVMs. For

each D-outcome POVM, suppose we repeat the measurement process M times and take the average of the outcomes

to generate empirical probabilities

p̂k,j =
fk,j
M

, k ∈ [K], j ∈ [D], (17)

where fk,j denotes the number of times the j-th output is observed when using the k-th POVM M times. We further

denote the empirical Pauli observable measurements as

ŷ =



ŷ1
...

ŷK


 =




∑D
j=1 α1,j · p̂1,j

...∑D
j=1 αK,j · p̂K,j


 . (18)

We denote by e the error in the empirical Pauli observable measurements:

e = ŷ − y ∈ R
K . (19)

Before introducing the loss function, it is helpful to incorporate a low-dimensional structure into the ground truth

state ρ⋆. The dimension of a quantum system grows exponentially with its components, such as the number of particles

in the system. Consequently, the matrix size of ρ⋆ becomes very large even for a moderately sized quantum system. To

overcome challenges related to the direct estimation of the density matrix, such as computational and storage costs, we

can exploit the inherent structure of pure or nearly pure quantum states characterized by low entropy and represented as

low-rank density matrices [13–16,41]. However, dealing with the rank constraint in the density matrix often requires an

expensive singular value decomposition (SVD), leading to high computational complexity. To address this, we propose

a Burer-Monteiro type decomposition [42,43] to represent the density matrix as follows:

ρ = UUH, where U ∈ C
2n×r and ∥U∥F = 1. (20)

Based on this parameterization, we might consider a non-convex optimization problem as follows:

minimize
U∈C2n×r

f(U) =
D

2K

∥∥∥∥A(UUH)− ŷ

∥∥∥∥
2

2

, (21)

where A is the induced linear map as defined in (16).

We note, however, that as defined, f(U) is non-holomorphic in the complex variable domain, rendering the com-

putation and analysis of gradients and Hessians cumbersome. For this reason, we consider instead the problem2

minimize
U ,U∗∈CD×r

f(U ,U∗) =
D

2K

∥∥∥∥A(UU∗⊤)− ŷ

∥∥∥∥
2

2

, (22)

where U∗, representing the complex conjugate of the matrix U , is considered a second variable in the optimization.

The benefit of parameterizing the objective function by both U and U∗ is that f(U ,U∗) remains holomorphic in U

for a fixed U∗, and vice versa, allowing the use of Wirtinger derivatives to compute gradients and Hessians. While one

could alternatively parameterize f(U) by Re {U} and Im {U}, this would increase the complexity of the analysis.

We refer readers to [44, Chapter 3] for a comprehensive discussion on complex matrix analysis.

2Note that UU
H is consistently used as shorthand for UU

∗⊤.
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We also note that the solution set presented in (22) only comprises low-rank and PSD matrices, omitting the

unit trace constraint. This omission arises because imposing the unit Frobenius norm does not notably diminish the

magnitude of the recovery error. We refer readers to the additional discussions after Theorem 4 and Corollary 1. Thus,

we will exclusively concentrate on the set of low-rank and PSD matrices without the unit trace constraint.

Despite ℓ2 loss being a convex function, the bilinear form in (20) renders the objective function of (22) nonconvex.

This indicates that (22) may contain many saddle points or spurious local minima at which algorithms like Wirtinger

gradient descent could get stuck. Therefore, it is crucial to conduct a thorough analysis of the landscape of (22)

to better understand the distribution and characteristics of saddle points and local minima. Specifically, through the

following analysis under the restricted isometry property (RIP) for Pauli observable measurements, we divide the

objective function landscape into two regions. In one region, any critical points must be strict saddle points, at which

algorithms like Wirtinger gradient descent will not get stuck. This implies that any local minima in (22) must reside

in the other region. Then, by delving further into the information gleaned from the local minima, we explore the

relationship between the total number of state copies KM and recovery error.

Restricted isometry property with Pauli observable measurements Our goal is to recover the low-rank density

matrix ρ⋆ from the underdetermined set of empirical Pauli observable measurements ŷ, where the number of coeffi-

cients K is much smaller than the total number of entries in ρ⋆, i.e., K ≪ D2. The key property necessary to achieve

this is the restricted isometry property (RIP). The following results establish the RIP for A over low-rank matrices.

Theorem 2. ([12, Theorem 2.1]) Let the linear map A : CD×D → R
K be defined in (16) and 0 ≤ δr < 1. When the

number of coefficients satisfies

K ≥ C · 1
δ2r

Dr(logD)6 (23)

for some constant C, then, with overwhelming probability 1−e−C over matrices A1, . . . ,AK selected i.i.d. uniformly

from the set of Pauli matrices {W1, . . . ,WD2}, A satisfies the (r, δr)-RIP. That is, for all rank-r ρ, we have

(1− δr) ∥ρ∥2F ≤
D

K
∥A(ρ)∥22 ≤ (1 + δr) ∥ρ∥2F . (24)

In accordance with equation (24), when ρ has low rank, the RIP guarantees that the energy D
K ∥A(ρ)∥22 is close to

∥ρ∥2F . The RIP can then be used to guarantee the recovery of ρ using only O(Dr(logD)6) Pauli observables. For

example, for any two distinct low-rank Hermitian matrices ρ1,ρ2 with rank r, the (2r, δ2r)-RIP guarantees distinct

measurements since

D

K
∥A(ρ1)−A(ρ2)∥22 =

D

K
∥A(ρ1 − ρ2)∥22 ≥ (1− δ2r)∥ρ1 − ρ2∥2F . (25)

3.2 Global landscape analysis

Before analyzing the recovery error, we need to characterize the locations of the critical points of f(U ,U∗). It is

also necessary to characterize the second derivative behavior at these critical points. We commence by introducing the

concepts of critical points, strict saddles, and the strict saddle property. Unlike in real matrix analysis, our consider-

ation extends beyond U to also encompass U∗ in the complex variable function, as U and U∗ are regarded as two

independent variables. For a comprehensive understanding of complex variable functions, please refer to [44, Chapters

3-4].

Definition 2. (Critical points) We say (U ,U∗) is a critical point if the Wirtinger gradient at (U ,U∗) vanishes, i.e.,

∇f(U ,U∗) =

[
∇Uf(U ,U∗)
∇U∗f(U ,U∗)

]
= 0. (26)

Note that (∇Uf(U ,U∗))∗ = ∇U∗f(U ,U∗) always holds for a real-valued function f(U ,U∗).
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Definition 3. (Strict saddles) A critical point (U ,U∗) is a strict saddle if the Wirtinger Hessian matrix evaluated at

this point has a strictly negative eigenvalue, i.e.,

λmin(∇2f(U ,U∗)) = λmin

([ ∂2f(U ,U∗)
∂vec(U∗)∂vec(U)⊤

∂2f(U ,U∗)
∂vec(U∗)∂vec(U∗)⊤

∂2f(U ,U∗)
∂vec(U)∂vec(U)⊤

∂2f(U ,U∗)
∂vec(U)∂vec(U∗)⊤

])
< 0. (27)

All other critical points that satisfy the second-order optimality condition, i.e., ∇2f(U ,U∗) ⪰ 0, are called second-

order critical points.

Note that without distinguishing between local maxima and saddle points, we refer to a critical point as a strict

saddle point only if its Wirtinger Hessian matrix has at least one strictly negative eigenvalue. Next, following the

analysis in Appendix A, we formally establish the following theorem.

Theorem 3. Suppose that ρ⋆ ∈ C
D×D is a target density matrix of rank r and linear mapA satisfies the (2r, δ2r)-RIP

with δ2r ≤ 0.09. Then any second-order critical point (U ,U∗) in the optimization problem (22) satisfies

∥∥UUH − ρ⋆
∥∥
F
≤ D
√
rh(δ2r)

∥A∗(e)∥
K

, (28)

where e is defined in (19), A∗ is the adjoint operator of A with A∗(e) =
∑K

k=1 ekAk, and h(δ2r) is defined as

h(δ2r) =

√
2 +

√
82.55− 762.54δ2r − 843.09δ22r

1.5− 15.7δ2r
. (29)

In words, Theorem 3 implies that any critical point (U ,U∗) that is not close to the target solution, i.e., for which∥∥UUH − ρ⋆
∥∥
F
≥ D
√
rh(δ2r)

∥A∗(e)∥
K , must be a strict saddle point. As various iterative algorithms can escape strict

saddles [45], this property ensures the convergence to a solution with the recovery guarantee in (28). The term h(δ2r)
in the upper bound, as illustrated in Figure 2, is monotonically increasing with respect to δ2r, indicating that a smaller

δ2r could give a relatively better recovery as per (28). The term ∥A∗(e)∥/K in (28) can be upper bounded by the

following result.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

δ2r

0

10

20

30

40

50

h
(δ

2r
)

Figure 2: Plot of h(δ2r) in (29).

Lemma 2. Assuming M ≤ O(K/n), then with probability at least 1−e−Ω(n/(1+
√

Mn/K)),A in Definition 1 satisfies

∥A∗(e)∥
K

≲

√
logD

KM
. (30)
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The proof is provided in Appendix B. Lemma 2 shows that the term ∥A∗(e)∥/K caused by the statistical error

in the empirical Pauli observable measurements depends only on the overall experimental resources N = KM , if

ignoring the difference in the failure probability. This suggests that the recovery error remains comparable across

various selections of K and M , provided that N = KM remains constant. However, we note that the probability

of failure may increase significantly when K is excessively small. The assumption M ≤ O(K/n) stems from a

technical difficulty in applying the matrix Bernstein’s inequality, but we believe this assumption can be removed by

more sophisticated analysis. By incorporating this result into Theorem 3, we can then obtain a recovery guarantee in

terms of K and M .

Theorem 4. Under the Pauli observable setting in Definition 1, assume that K ≥ C · 1
δ22r

Dr(logD)6 for a positive

constant C such that A satisfies (2r, δ2r)-RIP with constant δ2r ≤ 0.09, as guaranteed by Theorem 2 with high

probability. Supposing M ≤ O(K/n), then with probability at least 1 − e−C/2 − e−Ω(n/(1+
√

Mn/K)), any second-

order critical point (U ,U∗) in the optimization problem (22) satisfies

∥UUH − ρ⋆∥F ≲ h(δ2r) ·
√

D2 logDr

KM
, (31)

where h(δ2r) is defined in (29).

Quality versus quantity of Pauli observable measurements When ignoring the term h(δ2r), the upper bound for

the recovery error ∥UUH − ρ⋆∥F in (31) decays with the overall experimental resources N = KM . Specifically, a

favorable scaling of 1/KM for the mean-squared error (i.e., ∥UUH−ρ⋆∥2F ) is maintained for all sufficiently large K
such that the RIP is satisfied. On the other hand, the constant δ2r decays with K and h(δ2r) increases monotonically,

albeit slowly, with δ2r as depicted in Figure 2. From this perspective, for fixed total experimental resources N , using

a larger value of K generally results in a smaller recovery error bound. In particular, the extreme case with a single-

sample measurement (i.e., M = 1 and K = N ), where each empirical Pauli observable measurement is extremely

noisy, would give the best bound. This explains the successful application of single-sample measurements in recent

work [17]. We will provide experiments in Section 5 to demonstrate the recovery performance for the different choices

of M and K.

For any ϵ > 0, (31) implies that ∥UUH − ρ⋆∥F ≤ ϵ when the number of state copies KM ≳ D2(logD)r/ϵ2.

By using the inequality ∥UUH − ρ⋆∥1 ≤
√
2r
∥∥UUH − ρ⋆

∥∥
F

since rank(UUH − ρ⋆) ≤ 2r, we can ensure ϵ-

accurate recovery in the trace distance with Ω(D2(logD)r2/ϵ2) state copies. When omitting the logD term, which

might have been introduced for technical reasons, this sampling complexity is optimal for empirical Pauli observable

measurements according to [19]. Finally, we note that while the solution UUH of (22) may be non-physical as it may

not have trace 1, we can easily obtain a physical state without compromising the recovery guarantee in Theorem 4.

Specifically, denoting by S+ := {ρ ∈ C
2n×2n : ρ ⪰ 0, trace(ρ) = 1} the set of physical states and PS+ the projection

onto the set S+ which can be efficiently computed by projecting the eigenvalues onto a simplex [46], we have

∥PS+(UUH)− ρ⋆∥F ≤ ∥UUH − ρ⋆∥F , (32)

where the second inequality follows from the nonexpansiveness property of the convex set. This implies that the

projection step ensures the state becomes physically valid while preserving or even improving the recovery guarantee.

4 Wirtinger Gradient Descent with Linear Convergence

Theorem 4 provides an upper bound on the recovery error for any second-order critical point of the least squares

objective with empirical Pauli observable measurements. This result offers favorable guarantees for many iterative

algorithms, including the computationally efficient gradient descent, which can almost surely converge to a second-

order critical point [45]. However, this does not imply that gradient descent can efficiently find a second-order critical

point. Indeed, gradient descent can be significantly slowed down by saddle points and may take exponential time to

escape [47]. In this section, we study the optimization landscape near the target solution and show that the problem

has a basin of attraction within which Wirtinger gradient descent has a fast convergence, with recovery error similar to

(28).
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In particular, with an appropriate initialization U0, we use the following Wirtinger gradient descent (GD):

Ut = Ut−1 − µ∇U∗f(Ut−1,U
∗
t−1), (33)

where µ is the step size. The complex conjugate part can also be updated as U∗
t = U∗

t−1 − µ∇Uf(Ut−1,U
∗
t−1),

which is exactly the same as taking the complex conjugate of (33) for the real-valued f(U ,U∗). Thus, one only

needs to perform the gradient descent and study the performance for Ut. To analyze the convergence, we need an

appropriate metric to capture the distance between the factors Ut and the ground-truth factor U⋆ that satisfies ρ⋆ =
U⋆U⋆H. Noting that for any unitary matrix R ∈ Ur := {R ∈ C

r×r,RHR = I}, U⋆R is also a factor of ρ⋆ since

U⋆RRHU⋆H = ρ⋆, we define the distance between any factor U and U⋆ as [27]

dist(U ,U⋆) = ∥U −U⋆R∥F , where R = arg min
R′∈Ur

∥U −U⋆R′∥F . (34)

Based on the distance defined above, we can analyze the convergence of the Wirtinger GD by

dist2(Ut,U
⋆) = ∥Ut −U⋆Rt∥2F
≤ ∥Ut−1 − µ∇U∗f(Ut−1,U

∗
t−1)−U⋆Rt−1∥2F

= ∥Ut−1 −U⋆Rt−1∥2F + µ2∥∇U∗f(Ut−1,U
∗
t−1)∥2F

−2µRe
{
⟨Ut−1 −U⋆Rt−1,∇U∗f(Ut−1,U

∗
t−1)⟩

}
. (35)

To enable a sufficient decrease of the distance, the term Re
{
⟨Ut−1 −U⋆Rt−1,∇U∗f(Ut−1,U

∗
t−1)⟩

}
needs to be

sufficiently large, i.e., the search direction −∇U∗f(Ut−1,U
∗
t−1) needs to point towards to the target factor U⋆Rt−1,

which can be guaranteed by strong convexity for convex functions. For real-valued matrix factorization problems, a

regularity condition has been established to achieve that goal [27, Lemma 5.7]. Here, we extend the analysis to the

complex domain.

Lemma 3. (Regularity Condition) Under the Pauli observable setting in Definition 1, assume that K ≥ C· 1
δ23r

Dr(logD)6

for a positive constant C such that A satisfies (3r, δ3r)-RIP with constant δ3r ≤ 1/40, as guaranteed by Theorem 2.

Then, with probability at least 1− e−C/3, any U that is close to U⋆ in the sense dist(U ,U⋆) ≤ σr(U
⋆)

4 satisfies

Re {⟨∇U∗f(U ,U∗),U −U⋆R⟩}

≥ σ2
r(U

⋆)

4
∥U −U⋆R∥2F +

2(1− 4δ3r)

25(1 + 2δ3r)2
∥∇U∗f(U ,U∗)∥2F −

11D2r

K2
∥A∗(e)∥2. (36)

The proof is given in Appendix C. Towards interpreting the right hand side (RHS) of (36), first recall Lemma 2

and the subsequent discussion that the term ∥A∗(e)∥/K decays with the overall experimental resources on the order

of 1/
√
KM . On the other hand, a larger K can result in a smaller δ3r, and hence a larger

2(1−4δ3r)
25(1+2δ3r)2

. This aligns

with the observation in Theorem 4 that performance roughly depends on the entire experimental resources KM , but

increasing K can enhance performance. Note that the first two terms in the RHS of (36) decay as U approaches U⋆,

while the third term is constant for any U . Thus, roughly speaking, the RHS is positive when U is relatively far from

U⋆, ensuring a sufficient decrease of one step of the Wirtinger GD update. However, it becomes negative when U is

close to U⋆, indicating that no further decrease can be ensured. Formally, plugging Lemma 3 into (35) gives

∥Ut −U⋆Rt∥2F ≤
(
1− σ2

r(U
⋆)

2
µ

)
∥Ut−1 −U⋆Rt−1∥2F +

22D2rµ

K2
∥A∗(e)∥2

≤
(
1− σ2

r(U
⋆)

2
µ

)t

∥U0 −U⋆R0∥2F +O

(
D2(logD)r

σ2
r(U

⋆)KM

)
, (37)

where the first inequality assumes µ ≤ 4(1−4δ3r)
25(1+2δ3r)2

and the second inequality uses Lemma 2. We summarize this local

convergence property of Wirtinger GD in the following corollary.

Corollary 1. (Local Convergence) Under the same setup as in Lemma 3, suppose the Wirtinger GD (33) starts with

an initialization U0 that satisfies

∥U0 −U⋆R0∥F ≤
σr(U

⋆)

4
(38)
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and uses step size µ ≤ 4(1−4δ3r)
25(1+2δ3r)2

. Then with probability at least 1− e−C/3 − e−Ω(n/(1+
√

Mn/K)), we have

∥Ut −U⋆Rt∥2F ≤
(
1− σ2

r(U
⋆)

2
µ

)t

∥U0 −U⋆R0∥2F +O

(
D2(logD)r

σ2
r(U

⋆)KM

)
. (39)

As above discussed, the first term in the RHS of (39) indicates that Wirtinger GD achieves a linear convergence rate

in the first phase (when Ut has a large distance to the target), which is similar to the noiseless real-valued cases [27].

The second term in the RHS of (39), which dominates after a certain number of iterations, is consistent with the

recovery guarantee in Theorem 4 except for the additional term σ2
r(U

⋆) that only depends on the target state. Notice

that based on the initialization condition ∥U0−U⋆R0∥F ≤ σr(U
⋆)

4 , we can obtain ∥Ut∥ ≤ ∥Ut−U⋆Rt∥+∥U⋆Rt∥ ≤
5
4 and further derive

∥ρt − ρ⋆∥2F = ∥UtU
H
t −UtR

H
t U

⋆H +UtR
H
t U

⋆H −U⋆U⋆H∥2F

≤ (2∥Ut∥+ 2∥U⋆∥)∥Ut −U⋆Rt∥2F ≤ O

(
D2(logD)r

σ2
r(U

⋆)KM

)
. (40)

Combing (32) and (40), we can conclude that the recovery error bound mentioned above is also applicable to the

physical state.

Spectral initialization To provide a good initialization that satisfies (38), we utilize the spectral initialization ap-

proach that has been widely used in the literature [29,38,48]. Specifically,

U0 =
[
(λ1)

1/2
+ c1 · · · (λr)

1/2
+ cr

]
, CΛCH =

D

K

K∑

k=1

ŷkAk, (41)

where (a)+ = max(a, 0), ci denotes the i-th column of C, and CΛCH is the eigenvalue decomposition of D
K

∑K
k=1 ŷkAk

with nonincreasing eigenvalues λ1 ≥ · · · ≥ λD. The following result guarantees the performance of this initialization.

Theorem 5. (Spectral Initialization) Under the same setup as in Lemma 3, assuming M ≲ K/n, then with probability

at least 1− e−C/3 − e−Ω(n/(1+
√

Mn/K)), the spectral initialization (41) satisfies

∥U0 −U⋆R0∥2F ≤

(
4δ3r∥ρ⋆∥F +O

(√
D2(logD)r

KM

))2

2(
√
2− 1)σ2

r(U
⋆)

. (42)

The proof is provided in Appendix D. The RHS of (42) decays with K and M , which can be chosen relatively

large to ensure the spectral initialization satisfies the requirement in (38). We again observe a similar phenomenon in

how K and M affect the RHS of (42): the first term δ3r decays with K, while the second term O(
√

D2(logD)r
KM ) only

decreases with the total number of state copies.

5 Numerical Experiments

In this section, we present numerical experiments on quantum state tomography, focusing on low-rank density matrices,

to demonstrate the applicability of our theoretical results. To begin, we randomly generate K Pauli matrices and a rank-

r density matrix ρ⋆ = U⋆U⋆H ∈ C
2n×2n , where U⋆ = A

⋆+i·B⋆

∥A⋆+i·B⋆∥F
∈ C

2n×r with the entries of A⋆ and B⋆ being

drawn i.i.d. from the standard normal distribution. For all the following experiments, we simulate each over 20 Monte

Carlo independent trials and compute the average over these 20 trials.

Convergence of Wirtinger GD In the first set of experiments, we evaluate the performance of Wirtinger GD for

various values of n and r. Figures 3(a) and 3(b) illustrate the convergence behavior of the algorithm in minimizing the

loss function defined in (22). We notice that as the values of n or r increase, the convergence rate of the Wirtinger GD

decreases while recovery errors increase, which is aligned with the findings in Corollary 1.
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Figure 3: Performance comparison of Wirtinger GD, (a) for different n with r = 2, µ = 0.3, K = 2000 and M = 100,

(b) for different r with n = 5, µ = 0.3, K = 2000 and M = 100.
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Figure 4: Performance comparison of Wirtinger GD for different N and M with (a) n = 4, r = 1, (b) n = 4, r = 2.

Quality versus quantity of Pauli observable measurements In the second set of experiments, we investigate the

trade-off between the number of POVMs and the number of repeated measurements by choosing different M when

the total number of state copies N = KM is fixed. To ensure convergence, we set step sizes µ = 0.05 for all the

experiments. We plot the results for different choices of r in Figures 4(a)-4(b). As anticipated, when N is fixed, overall

we observe a reduction in the recovery error as M decreases (or K increases). This is because a larger K produces

more measurements and reduces the RIP constant of the measurement operator in (23), overcoming the issue of higher

statistical error in the measurements. This finding corroborates the results presented in Theorem 4 and the practical use

of single-sample measurements [17,18].

Incorporating sphere constraint In the previous analysis, we have omitted the unit trace constraint for the factor in

(20) because imposing the unit Frobenius norm does not notably improve the performance. To support this argument,

in the third set of experiments, we compare the approaches with and without this constraint. Specifically, we impose

the unit trace constraint on the factors {U : ∥U∥F = 1} in (22) and then employ the Riemannian Wirtinger GD to

solve the corresponding problem, with updates

Ût = Ut−1 − µPTU Sp(∇U∗f(Ut−1,U
∗
t−1)) and Ut =

Ût

∥Ût∥F
, (43)
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Figure 5: Performance comparison of different algorithms with µ = 0.1, K = 4000 and M = 50.

where µ is the step size and PTU Sp(V ) = V −⟨U ,V ⟩U denotes the projection onto the tangent space TUSp = {Q ∈
C

D×r : ⟨U ,Q⟩ = 0}, giving a Riemannian gradient. As shown in Figure 5, we observe that the two algorithms,

Wirtinger GD and Riemannian Wirtinger GD, achieve on-par performance.
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Figure 6: Performance comparison of the Wirtinger GD using empirical Pauli observable measurements and Pauli basis

measurements with µ = 1 for different N , M and (a) n = 4, r = 1, (b) n = 4, r = 2.

Directly using Pauli basis measurements for QST Our work focused on the use of the expectation values of n-body

Pauli observables in low-rank quantum state tomography to study the trade-off between the number of POVMs and

the number of repeated measurements since the RIP with Pauli observables facilitates the analysis. Note that the Pauli

observables are actually measured using the local Pauli basis, one could also recover the target state directly from the

empirical probabilities of the Pauli basis measurement (see (14)).

Since Pauli basis measurements are also linear measurements of ρ⋆, as described in (12), we can formulate a sim-

ilar least squares minimization problem (22) and use the same Wirtinger GD to solve the problem. We conduct the

numerical experiments under the same setting as the second set of experiments. By keeping the total number of mea-

surements N = KM constant, it becomes apparent that the Pauli basis measurements outperform Pauli observable

measurements. One plausible explanation for this result is that the Pauli basis measurements involve KD measure-

ments, whereas the Pauli observable measurements involve only K coefficients which are linear combinations of the

Pauli basis measurements. On the other hand, with a fixed N , the recovery error associated with Pauli basis measure-

ments also increases as M grows. While we expect the analysis of the trade-off between the quality and quantity of

measurements can be extended to Pauli basis measurements, one challenge is the lack of the RIP condition [12] for the

Pauli basis measurements. We leave the investigation to future studies.
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6 Conclusion

In this paper, we investigate the trade-off between the number of POVMs and the number of repeated measurements

that control the quality of measurements for quantum state tomography, focusing on low-rank states and Pauli observ-

able measurements for theoretical analysis. By exploiting the matrix factorization approach, we first study the global

landscape of the factorized problem and show that every second-order critical point is a good estimator of the target

state, with better recovery achieved by using a greater number of measurement settings, despite the large statistical

error in each measurement. This finding suggests the advantage of using single-sample measurements when the total

number of state copies is kept constant. Additionally, we prove that Wirtinger gradient descent converges locally at a

linear rate. Numerical simulation results support our theoretical findings.
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Appendices

A Proof of Theorem 3

Proof. Recall the objective f(U ,U∗) = D
2K

∥∥A(UUH)−ŷ
∥∥2
2

in (22). We first derive its Wirtinger gradient as follows:

∇f(U ,U∗) =

[
∇Uf(U ,U∗)
∇U∗f(U ,U∗)

]
=

D

K

K∑

k=1

[
(⟨Ak,UUH⟩ − ŷk)A

∗
kU

∗

(⟨Ak,UUH⟩ − ŷk)AkU

]
, (44)

where we utilize the fact Ak = AH
k . It is noteworthy that within the framework of complex derivatives, the function

f(U) is written as f(U ,U∗) in the conjugate coordinates (U ,U∗). Therefore, we can independently compute the

complex partial derivative ∇Uf(U ,U∗) and the complex conjugate partial derivative ∇U∗f(U ,U∗), treating the

complex variable U and its complex conjugate U∗ as two independent variables.

Now we assume that (U ,U∗) is a critical point, i.e., ∇Uf(U ,U∗) = 0 and ∇U∗f(U ,U∗) = 0. Let PU =
UH†UH be the orthogonal projection onto the range space of U . Then, for any Z ∈ C

D×r, we have

0 = ⟨∇U∗f(U ,U∗),Z⟩ = D

K

〈
A∗A(UUH − ρ⋆),ZUH

〉
− D

K

〈
A∗(e),ZUH

〉

=⇒
〈
UUH − ρ⋆,ZUH

〉
=
〈
UUH − ρ⋆,ZUH

〉
− D

K

〈
A∗A(UUH − ρ⋆),ZUH

〉
+

D

K

〈
A∗(e),ZUH

〉

=⇒
∣∣〈UUH − ρ⋆,ZUH

〉∣∣ ≤ 2δ2r
∥∥UUH − ρ⋆

∥∥
F

∥∥ZUH
∥∥
F
+

D

K

∣∣〈A∗(e),ZUH
〉∣∣

=⇒
∥∥(UUH − ρ⋆)PU

∥∥2
F
≤ 2δ2r

∥∥UUH − ρ⋆
∥∥
F

∥∥(UUH − ρ⋆)PU

∥∥
F
+

D
√
2r

K
∥A∗(e)∥

∥∥(UUH − ρ⋆)PU

∥∥
F

=⇒
∥∥(UUH − ρ⋆)PU

∥∥
F
≤ 2δ2r

∥∥UUH − ρ⋆
∥∥
F
+

D
√
2r

K
∥A∗(e)∥, (45)

where A∗ is the adjoint operator of A and is defined as A∗(x) =
∑K

k=1 xkAk in the first equation, e is defined in

(19), the first inequality follows Lemma 5, and the second inequality uses the substitutions Z = (UUH − ρ⋆)UH†

and
∣∣〈A∗(e),ZUH

〉∣∣ ≤ ∥A∗(e)∥
∥∥(UUH − ρ⋆)PU

∥∥
∗ ≤
√
2r∥A∗(e)∥

∥∥(UUH − ρ⋆)PU

∥∥
F

according to the Von

Neumann trace inequality.

To further characterize the locations of critical points, we need to leverage second derivative information to deter-

mine their signatures. By computing directional second derivatives, we can obtain the Wirtinger Hessian quadrature
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form for ∆̃ =

[
∆

∆
∗

]
∈ C

2D×r as follows:

∇2f(U ,U∗)[∆̃, ∆̃]

=
[
(vec(∆))H (vec(∆∗))H

]
[

∂2f(U ,U∗)
∂vec(U∗)∂vec(U)⊤

∂2f(U ,U∗)
∂vec(U∗)∂vec(U∗)⊤

∂2f(U ,U∗)
∂vec(U)∂vec(U)⊤

∂2f(U ,U∗)
∂vec(U)∂vec(U∗)⊤

] [
vec(∆)
vec(∆∗)

]

=

〈
∆, lim

t→0

∇U∗f(U + t∆,U∗)−∇U∗f(U ,U∗)

t

〉
+

〈
∆, lim

t→0

∇U∗f(U ,U∗ + t∆∗)−∇U∗f(U ,U∗)

t

〉

+

〈
∆

∗, lim
t→0

∇Uf(U + t∆,U∗)−∇Uf(U ,U∗)

t

〉
+

〈
∆

∗, lim
t→0

∇Uf(U ,U∗ + t∆∗)−∇Uf(U ,U∗)

t

〉

=
2D

K

K∑

k=1

|⟨Ak,U∆
H⟩|2 + D

K

K∑

k=1

⟨Ak,U∆
H⟩⟨Ak,U∆

H⟩+ D

K

K∑

k=1

⟨Ak,U∆
H⟩∗⟨Ak,U∆

H⟩∗

+
2D

K

〈
A∗(A(UUH)− ŷ),∆∆

H
〉
, (46)

where we utilize Ak = AH
k and ⟨Ak,U∆

H⟩ = ⟨Ak,∆UH⟩∗ in the last line.

With (45), the Wirtinger Hessian at any critical point U along the direction ∆̃ = U −U⋆ 3 is given by

∇2f(U ,U∗)[∆̃, ∆̃]

≤ 2D

K

〈
A∗(A(UUH)− ŷ),∆∆

H
〉
+

4D

K
∥A(U∆

H)∥22

=
2D

K

〈
A∗(A(UUH)− ŷ), (U −U⋆)(U −U⋆)H

〉
+

4D

K

∥∥A(U(U −U⋆)H)
∥∥2
2

=
4D

K

∥∥A(U(U −U⋆)H)
∥∥2
2
− 2D

K

〈
A∗(A(UUH)− ŷ),UUH − ρ⋆

〉

=
4D

K

∥∥A(U(U −U⋆)H)
∥∥2
2
− 2D

K

∥∥A(UUH − ρ⋆)
∥∥2
2
+

2D

K

〈
A∗(e),UUH − ρ⋆

〉

≤ 4(1 + δ2r)
∥∥U(U −U⋆)H

∥∥2
F
− 2(1− δ2r)

∥∥UUH − ρ⋆
∥∥2
F
+

2
√
2D
√
r

K
∥A∗(e)∥

∥∥UUH − ρ⋆
∥∥
F

≤ 4(1 + δ2r)

(
1

8

∥∥UUH − ρ⋆
∥∥2
F
+

(
3 +

1

2(
√
2− 1)

)∥∥(UUH − ρ⋆)PU

∥∥2
F

)

−2(1− δ2r)
∥∥UUH − ρ⋆

∥∥2
F
+

2
√
2D
√
r

K
∥A∗(e)∥

∥∥UUH − ρ⋆
∥∥
F

≤ −
(
3

2
− 5

2
δ2r − 32(1 + δ2r)δ

2
2r

(
3 +

1

2(
√
2− 1)

))∥∥UUH − ρ⋆
∥∥2
F

+
16D2r

K2
(1 + δ2r)

(
3 +

1

2(
√
2− 1)

)
∥A∗(e)∥2 + 2

√
2D
√
r

K
∥A∗(e)∥

∥∥UUH − ρ⋆
∥∥
F

≤ −(1.5− 15.7δ2r)
∥∥UUH − ρ⋆

∥∥2
F
+

53.7D2r

K2
(1 + δ2r)∥A∗(e)∥2 + 2

√
2D
√
r

K
∥A∗(e)∥

∥∥UUH − ρ⋆
∥∥
F
,

(47)

where the first inequality follows ⟨Ak,U∆
H⟩⟨Ak,U∆

H⟩+ ⟨Ak,U∆
H⟩∗⟨Ak,U∆

H⟩∗ ≤ 2|⟨Ak,U∆
H⟩|2, the sec-

ond equality utilizes the first-order optimality condition∇U∗f(U ,U∗) = 0, the second inequality applies Theorem 2,

the third inequality uses Lemma 7, the fourth inequality uses (45), and the last line uses the assumption δ2r ≤ 0.09.

Now the right hand side of (47) is negative when

∥∥UUH − ρ⋆
∥∥
F
≥
√
2 +

√
82.55− 762.54δ2r − 843.09δ22r

1.5− 15.7δ2r︸ ︷︷ ︸
h(δ2r)

D
√
r

K
∥A∗(e)∥, (48)

3To avoid carrying R in our equations, we perform the change of variable U
⋆
← U

⋆
R.
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ensuring that λmin(∇2f(U ,U∗)) < 0 and hence these critical points are strict saddle points.

In other words, when both the first- and second-order optimality conditions are satisfied at U , the Wirtinger Hessian

matrix is PSD and the right hand side of (47) is non-negative, implying that U satisfies

∥∥UUH − ρ⋆
∥∥
F
≤ h(δ2r)

D
√
r

K
∥A∗(e)∥. (49)

B Proof of Lemma 2

Proof. To bound

∥A∗(e)∥ =
∥∥∥∥

K∑

k=1

ekAk

∥∥∥∥ =

∥∥∥∥
K∑

k=1




D∑

j=1

αk,j p̂k,j − ⟨Ak,ρ
⋆⟩


Ak

∥∥∥∥, (50)

we first utilize E[fk,j ] = Mpk,j to get

E

[( D∑

j=1

αk,j p̂k,j − ⟨Ak,ρ
⋆⟩
)
Ak

]

= Efk,j

[( D∑

j=1

αk,j
fk,j
M
−

D∑

j=1

αk,jpk,j

)
Ak

∣∣∣∣Ak

]
E[Ak] = 0. (51)

It follows from ∥Ak∥ = 1 and

∣∣∣
∑D

j=1 αk,j p̂k,j − ⟨Ak,ρ
⋆⟩
∣∣∣ ≤ 2 that

∥∥∥∥
( D∑

j=1

αk,j p̂k,j − ⟨Ak,ρ
⋆⟩
)
Ak

∥∥∥∥ ≤ 2. (52)

Moreover, with E[A2
k] = ID and E

[(∑D
j=1 αk,j p̂k,j − ⟨Ak,ρ

⋆⟩
)2]
≤ 2

M which follows Lemma 4, we have

∥∥∥∥
K∑

k=1

E









D∑

j=1

αk,j p̂k,j − ⟨Ak,ρ
⋆⟩


Ak




2


∥∥∥∥

≤
K∑

k=1

Ep̂k,j

[


D∑

j=1

αk,j p̂k,j − ⟨Ak,ρ
⋆⟩




2 ∣∣∣∣Ak

]
∥E[A2

k]∥ ≤
2K

M
. (53)

Now, plugging (51), (52) and (53) into the matrix Bernstein’s inequality in Lemma 8 gives that

P



∥∥∥∥

K∑

k=1




D∑

j=1

αk,j p̂k,j − ⟨Ak,ρ
⋆⟩


Ak

∥∥∥∥ ≥ t


 ≤ D exp

( −t2
4K/M + 4

3 t

)
. (54)

Using t = c
√
K logD/M with a constant c and M ≤ O(Kn ) in the above inequality leads to

P

(
∥A∗(e)∥ ≥ c

√
K logD/M

)

= P



∥∥∥∥

K∑

k=1




D∑

j=1

αk,j p̂k,j − ⟨Ak,ρ
⋆⟩


Ak

∥∥∥∥ ≥ c
√
K logD/M




≤ D exp


 −c2 logD
4 + 4

3c
√

M logD
K


 . (55)
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Hence, we have ∥A∗(e)∥ ≤ c
√
K logD/M with probability 1− e−Ω(n/(1+

√
Mn/K)).

C Proof of Lemma 3

Proof. We first define one loss function F (U ,U∗) = 1
2∥UUH −U⋆U⋆H∥2F . Then we analyze

Re

{〈
∇U∗F (U ,U∗)−∇U∗f(U ,U∗),U −U⋆R

〉}

= Re

{〈
(UUH −U⋆U⋆H)U − D

K

K∑

k=1

⟨Ak,UUH −U⋆U⋆H⟩AkU +
D

K

K∑

k=1

ekAkU ,U −U⋆R

〉}

= Re
{
⟨(UUH −U⋆U⋆H), (U −U⋆R)UH⟩

}
− D

K
Re
{
⟨A(UUH −U⋆U⋆H),A((U −U⋆R)UH)⟩

}

+Re

{〈
D

K

K∑

k=1

ekAk, (U −U⋆R)UH

〉}

≤ 2δ3r∥UUH −U⋆U⋆H∥F ∥(U −U⋆R)UH∥F +
D
√
r

K
∥(U −U⋆R)UH∥F ∥A∗(e)∥

= δ3r∥UUH −U⋆U⋆H∥2F + (
1

40
+ δ3r)∥(U −U⋆R)UH∥2F +

10D2r

K2
∥A∗(e)∥2, (56)

where the first inequality uses Lemma 5 and ⟨∑K
k=1 ekAkU ,U−U⋆R⟩ ≤ ∥A∗(e)∥∥(U−U⋆R)UH∥∗ ≤

√
r∥(U−

U⋆R)UH∥F ∥A∗(e)∥ based on the Von Neumann trace inequality.

Moreover, we can also derive

∥∇U∗f(U ,U∗)∥F − ∥∇U∗F (U ,U∗)∥F
≤ ∥∇U∗f(U ,U∗)−∇U∗F (U ,U∗)∥F

=

∥∥∥∥
D

K

K∑

k=1

⟨Ak,UUH −U⋆U⋆H⟩AkU −
D

K

K∑

k=1

ekAkU − (UUH −U⋆U⋆H)U

∥∥∥∥
F

≤
∥∥∥∥
D

K

K∑

k=1

⟨Ak,UUH −U⋆U⋆H⟩AkU − (UUH −U⋆U⋆H)U

∥∥∥∥
F

+

∥∥∥∥
D

K

K∑

k=1

ekAkU

∥∥∥∥
F

≤ 5δ3r
2
∥UUH −U⋆U⋆H∥F +

5D

4K
∥A∗(e)∥, (57)

where the last line follows Lemma 5 and ∥U∥F ≤ 5
4 due to ∥U −U⋆R∥F ≤ σr(U

⋆)
4 and ∥U⋆∥F = 1.

Considering that ∥∇U∗F (U ,U∗)∥F ≤ 5
4∥UUH −U⋆U⋆H∥F , we have

∥∇U∗f(U ,U∗)∥2F ≤
25

8
(1 + 2δ3r)

2∥UUH −U⋆U⋆H∥2F +
25D2

8K2
∥A∗(e)∥2. (58)

Combining Lemma 9 and (56), we finally have

Re {⟨∇U∗f(U ,U∗),U −U⋆R⟩}
= Re {⟨∇U∗f(U ,U∗)−∇U∗F (U ,U∗),U −U⋆R⟩}+Re {⟨∇U∗F (U ,U∗),U −U⋆R⟩}

≥ −δ3r∥UUH −U⋆U⋆H∥2F −
(

1

40
+ δ3r

)
∥(U −U⋆R)UH∥2F −

10D2r

K2
∥A∗(e)∥2

+
1

4
∥UUH −U⋆U⋆H∥2F +

1

20
∥(U −U⋆R)UH∥2F +

σ2
r(U

⋆)

4
∥U −U⋆R∥2F

≥
(
1

4
− δ3r

)
∥UUH −U⋆U⋆H∥2F +

σ2
r(U

⋆)

4
∥U −U⋆R∥2F −

10D2r

K2
∥A∗(e)∥2

≥ σ2
r(U

⋆)

4
∥U −U⋆R∥2F +

2(1− 4δ3r)

25(1 + 2δ3r)2
∥∇U∗f(U ,U∗)∥2F −

11D2r

K2
∥A∗(e)∥2, (59)
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where the second and last inequalities respectively follow δ3r ≤ 1
40 and (58).

D Proof of Theorem 5

Proof. Following [49], we begin by introducing the restricted Frobenius norm, defined as

∥X∥F,r = max
Y ∈Cm×n, ∥Y ∥F ≤1,

rank(Y )=r

|⟨X,Y ⟩| (60)

for any X ∈ C
m×n. Next, we analyze

∥ρ0 − ρ⋆∥F = ∥U0U
H
0 − ρ⋆∥F,2r

≤ 2

∥∥∥∥
D

K

K∑

k=1

ŷkAk − ρ⋆

∥∥∥∥
F,2r

≤ 2

∥∥∥∥
D

K
A∗(A(ρ⋆))− ρ⋆

∥∥∥∥
F,2r

+
2D

K
∥A∗(e)∥2r

≤ 2 max
Y ∈CD×D, ∥Y ∥F ≤1,

rank(Y )=2r

〈(
D

K
A∗A− I

)
(ρ⋆),Y

〉
+

2D
√
2r

K
∥A∗(e)∥

≤ 4δ3r∥ρ⋆∥F +O

(√
D2(logD)r

KM

)
, (61)

where the first inequality follows from the quasi-optimality property of truncated eigenvalue decomposition projection

[50] and the last line uses Lemma 5 and Lemma 2 which are simultaneously satisfied with probability 1 − e−C/3 −
e−Ω(n/(1+

√
Mn/K)).

Furthermore, based on Lemma 10, we can obtain

∥U0 −U⋆R0∥2F ≤
1

2(
√
2− 1)σ2

r(U
⋆)
∥ρ0 − ρ⋆∥2F

≤

(
4δ3r∥ρ⋆∥F +O

(√
D2(logD)r

KM

))2

2(
√
2− 1)σ2

r(U
⋆)

, (62)

where R0 = arg min
R′∈Ur

∥U0 −U⋆R′∥F .

E Auxiliary Materials

Lemma 4. Given a set of probabilities (p1, . . . , pD), we can generate empirical probabilities p̂q = # of q-th output

M , ∀q ∈
[D] := {1, . . . , D} by repeating the measurement process M times and taking the average of the outcomes. So

(p̂1, . . . , p̂D) follows the multinomial distribution Multinomial(M,p) with the covariance matrix Σ. Elements of Σ

are Σi,k =

{
pi(1−pi)

M , i = k,

−pipk

M , i ̸= k.
. Then

E

(
D∑

q=1

αq (p̂q − pq)

)2

≤ 2− 1/D

M
(63)

holds for any αq = ±1, q = 1, . . . , D.
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Proof. Based on the covariance matrix of the multinomial distribution, we have

E [(p̂q − pq)(p̂q′ − pq′)] =

{
− 1

M pqpq′ , q ̸= q′,
1
M pq(1− pq), q = q′,

(64)

and further derive

E

(
D∑

q=1

αj (p̂q − pq)

)2

=
D∑

q=1

D∑

q′=1

αqαq′ E [(p̂q − pq) (p̂q′ − pq′)]

≤
D∑

q=1

D∑

q′=1

|E [(p̂q − pq) (p̂q′ − pq′)]|

=
∑

q ̸=q′

1

M
pqpq′ +

D∑

q=1

1

M
pq(1− pq)

≤ 2− 2/D

M
, (65)

where the last inequality follows
∑

q ̸=q′ pqpq′ −
∑D

q=1 p
2
q = 1− 2

∑D
q=1 p

2
q ≤ 1− 2

D and
∑D

q=1 pq = 1.

Lemma 5. Suppose thatA obeys the (2r, δ2r)-RIP in Theorem 2. Then for any ρ1,ρ2 ∈ C
D×D of rank at most r, one

has
∣∣∣∣
D

K
⟨A(ρ1),A(ρ2)⟩ − ⟨ρ1,ρ2⟩

∣∣∣∣ ≤ 2δ2r∥ρ1∥F ∥ρ2∥F , (66)

or equivalently,
∣∣∣∣
〈(

D

K
A∗A− I

)
(ρ1),ρ2

〉∣∣∣∣ ≤ 2δ2r∥ρ1∥F ∥ρ2∥F , (67)

where A∗ is the adjoint operator of A and is defined as A∗(x) =
∑K

k=1 xkAk.

In addition, we also have

∥∥∥∥
D

K

K∑

k=1

⟨Ak,ρ⟩AkB − ρB

∥∥∥∥
F

≤ 2δ2r∥ρ∥F ∥B∥, (68)

where ρ ∈ C
D×D and B ∈ C

D×r.

Proof. To conveniently analyze Lemma 5. we assume that ∥ρ1∥F = ∥ρ2∥F = 1 for ρ1,ρ2 ∈ C
D×D. We can expand

|⟨A(ρ1),A(ρ2)⟩| as follows:
∣∣∣∣
D

K
⟨A(ρ1),A(ρ2)⟩ − ⟨ρ1,ρ2⟩

∣∣∣∣

=
1

4

∣∣∣∣
D

K

(
∥A(ρ1 + ρ2)∥22 − ∥A(ρ1 − ρ2)∥22 − i∥A(ρ1 + iρ2)∥22 + i∥A(ρ1 − iρ2)∥22

)

−
(
∥ρ1 + ρ2∥2F − ∥ρ1 − ρ2∥2F − i∥ρ1 + iρ2∥2F + i∥ρ1 − iρ2∥2F

)∣∣∣∣

≤ 1

4

(∣∣∣∣
D

K
∥A(ρ1 + ρ2)∥22 − ∥ρ1 + ρ2∥2F

∣∣∣∣+
∣∣∣∣
D

K
∥A(ρ1 − ρ2)∥22 − ∥ρ1 − ρ2∥2F

∣∣∣∣

+

∣∣∣∣
D

K
A(ρ1 + iρ2)∥22 − ∥ρ1 + iρ2∥2F

∣∣∣∣+
∣∣∣∣
D

K
∥A(ρ1 − iρ2)∥22 − ∥ρ1 − iρ2∥2F

∣∣∣∣
)

≤ δ2r
4

(∥ρ1 + ρ2∥2F + ∥ρ1 − ρ2∥2F + ∥ρ1 + iρ2∥2F + ∥ρ1 − iρ2∥2F )
= 2δ2r. (69)
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Now, we can obtain
∣∣∣∣
D

K
⟨A(ρ1),A(ρ2)⟩ − ⟨ρ1,ρ2⟩

∣∣∣∣ ≤ 2δ2r∥ρ1∥F ∥ρ2∥F . (70)

Furthermore, by referring to [48] and utilizing equation (70), we can directly obtain the following result:

∥∥∥∥
D

K

K∑

k=1

⟨Ak,ρ⟩AkB − ρB

∥∥∥∥
F

≤ 2δ2r∥ρ∥F ∥B∥, (71)

where ρ ∈ C
D×D and B ∈ C

D×r.

Lemma 6. Let U ,Y ∈ C
D×r. Additionally, let UHY = Y HU be a PSD matrix. Then, we have

∥(U − Y )UH∥2F ≤
1

2(
√
2− 1)

∥UUH − Y Y H∥2F . (72)

Proof. First we define ∆ = U − Y and then expand the right hand side in (72).

∥UUH − Y Y H∥2F
= ∥U∆

H +∆UH −∆∆
H∥2F

= trace(∆UHU∆
H +U∆

H
∆UH +∆∆

H
∆∆

H + 2∆UH
∆UH

−2∆∆
H
∆UH − 2∆∆

HU∆
H)

= 2 trace(UHU∆
H
∆) + ∥∆H

∆∥2F + ∥
√
2UH

∆∥2F − 2
√
2Re

{
⟨∆H

∆,UH
∆⟩
}

+2
√
2Re

{
⟨∆H

∆,UH
∆⟩
}
− 4Re

{
trace(∆∆

H
∆UH)

}

= 2 trace(UHU∆
H
∆) + ∥∆H

∆−
√
2UH

∆∥2F − 2(2−
√
2)Re

{
trace(UH

∆∆
H
∆)
}

≥ 2 trace(UHU∆
H
∆)− 2(2−

√
2)Re

{
trace(UH

∆∆
H
∆)
}

= 2Re
{
trace(((

√
2− 1)UHU + (2−

√
2)UHY )∆H

∆)
}

≥ 2(
√
2− 1)Re

{
trace(UHU∆

H
∆)
}

= 2(
√
2− 1)∥(U − Y )UH∥2F , (73)

where the third equation follows ∆HU = (U−Y )HU = UHU−UHY = UH
∆. In addition, we use trace(AB) ≥

0 for PSD matrices A and B in the second inequality.

Following Lemma 6, we can directly extend the result from the real case in [36, Lemma 3.6] to the complex case.

Lemma 7. For any matrices C,D ∈ C
D×r, let PC be the orthogonal projector onto the range of C. Let R =

arg min
R′∈Ur

∥C −DR′∥F where Ur denotes the unitary matrix of size r. Then, we have

∥C (C −DR)
H ∥2F ≤

1

8
∥CCH −DDH∥2F +

(
3 +

1

2(
√
2− 1)

)
∥(CCH −DDH)PC∥2F . (74)

Lemma 8. (Matrix Bernstein’s inequality [51, Theorem 6.6.1]) Let A1, . . . ,An ∈ C
D×D be independent, random,

Hermitian matrices, and assume that each one is uniformly bounded:

E[Aq] = 0 and ∥Aq∥ ≤ R, ∀q = 1, . . . , Q. (75)

Then, for any t > 0,

P

(∥∥∥∥
Q∑

q=1

Aq

∥∥∥∥ ≥ t

)
≤ D exp

(
−t2

2∥
∑Q

q=1 E[A
2
q]∥+ 2R

3 t

)
. (76)
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Lemma 9. Consider the loss function F (U ,U∗) = 1
2∥UUH−U⋆U⋆H∥2F for U ,U⋆

C
D×r. For all U satisfying the

condition

∥U −U⋆R∥ ≤ σr(U
⋆)

4
, (77)

we have the following conclusion:

Re {⟨∇U∗F (U ,U∗),U −U⋆R⟩}

≥ 1

4
∥UUH −U⋆U⋆H∥2F +

1

20
∥(U −U⋆R)UH∥2F +

σ2
r(U

⋆)

4
∥U −U⋆R∥2F . (78)

Proof. Let U ,U⋆ ∈ C
D×r, and define ∆ = U −U⋆R, where R is the unitary matrix that minimizes ∥U −U⋆R∥F .

We denote AΣBH as the singular value decomposition of U⋆HU , and we have the optimal R = ABH. Consequently,

we can further obtain UHU⋆R = BΣBH = (U⋆R)HU , which means that UHU⋆R is a Hermitian PSD matrix.

Additionally, we also have ∆
HU⋆R = UHU⋆R − RHU⋆HU⋆R = (U⋆R)HU − (U⋆R)HU⋆R = (U⋆R)H∆.

Hence, ∆HU⋆R is a Hermitian matrix. To avoid carrying R in our equations, we perform the change of variable

U⋆ ← U⋆R. Without loss of generality, we assume R = I and have UHU⋆ ⪰ 0 and ∆
HU⋆ = U⋆H

∆.

Based on the fact

Re {⟨∇U∗F (U ,U∗),U −U⋆⟩}

=
1

2
trace

(
(∇U∗F (U ,U∗))H(U −U⋆)

)
+

1

2
trace

(
(U −U⋆)H∇U∗F (U ,U∗)

)
(79)

and ∇U∗F (U ,U∗) = (UUH −U⋆U⋆H)U , we will instead prove

1

2
trace((UUH −U⋆U⋆H)∆UH) +

1

2
trace(U∆

H(UUH −U⋆U⋆H))

−c1∥UUH −U⋆U⋆H∥2F − c2σ
2
r(U

⋆)∥U −U⋆∥2F − c3∥(U −U⋆)UH∥2F ≥ 0, (80)

where c1, c2, c3 are positive constants.

By U = ∆+U⋆, we can expand the LHS of (80) as following:

1

2
trace((UUH −U⋆U⋆H)∆UH) +

1

2
trace(U∆

H(UUH −U⋆U⋆H))

−c1∥UUH −U⋆U⋆H∥2F − c2σ
2
r(U

⋆)∥U −U⋆∥2F − c3∥(U −U⋆)UH∥2F
= (1− c1 − c3) trace(∆∆

H
∆∆

H)− c2σ
2
r(U

⋆) trace(∆H
∆) + (1− 2c1 − c3) trace(U

⋆HU⋆
∆

H
∆)

+(
3

2
− 2c1 − c3) trace(∆∆

H
∆U⋆H) + (

3

2
− 2c1 − c3) trace(∆

H
∆∆

HU⋆)

+(
1

2
− c1) trace(∆U⋆H

∆U⋆H) + (
1

2
− c1) trace(U

⋆
∆

HU⋆
∆

H)

= (1− c1 − c3) trace(∆∆
H
∆∆

H)− c2σ
2
r(U

⋆) trace(∆H
∆) + (1− 2c1 − c3) trace(U

⋆HU⋆
∆

H
∆)

+(3− 4c1 − 2c3)Re
{
trace(∆∆

H
∆U⋆H)

}
+ (1− 2c1)Re

{
trace(∆U⋆H

∆U⋆H)
}

= (1− c1 − c3) trace(∆∆
H
∆∆

H)− c2σ
2
r(U

⋆) trace(∆H
∆) + (1− 2c1 − c3)∥∆U⋆H∥2F

+(3− 4c1 − 2c3) trace(∆∆
H
∆U⋆H) + (1− 2c1)∥U⋆H

∆∥2F

=

∥∥∥∥
3− 4c1 − 2c3
2
√
1− 2c1 − c3

∆∆
H +
√
1− 2c1 − c3∆U⋆H

∥∥∥∥
2

F

+ (1− 2c1)∥U⋆H
∆∥2F

+

(
1− c1 − c3 −

(3− 4c1 − 2c3)
2

4(1− 2c1 − c3)

)
trace(∆∆

H
∆∆

H)− c2σ
2
r(U

⋆) trace(∆H
∆) (81)

where the third equation follows from the fact that trace(∆∆
H
∆U⋆H) and trace(∆U⋆H

∆U⋆H) are real. This is

due to the property that, by using ∆
HU⋆ = U⋆H

∆, we can respectively show that

(trace(∆∆
H
∆U⋆H))∗ = trace(∆∗

∆
⊤
∆

∗U⋆⊤) = trace(∆H
∆∆

HU⋆) = trace(∆∆
H
∆U⋆H), (82)
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trace(∆U⋆H
∆U⋆H) = trace(∆∆

HU⋆U⋆H) = ∥U⋆H
∆∥2F . (83)

To ensure (81) ≥ 0, by the fact 1− c1 − c3 − (3−4c1−2c3)
2

4(1−2c1−c3)
≤ 0 for 0 ≤ c1, c3 ≤ 1, we need to guarantee that

(1− 2c1)∥U⋆H
∆∥2F + (1− c1 − c3 −

(3− 4c1 − 2c3)
2

4(1− 2c1 − c3)
) trace(∆∆

H
∆∆

H)− c2σ
2
r(U

⋆) trace(∆H
∆)

≥ (1− 2c1)σ
2
r(U

⋆)∥∆∥2F − (c1 + c3 +
(3− 4c1 − 2c3)

2

4(1− 2c1 − c3)
− 1)∥∆∥2∥∆∥2F − c2σ

2
r(U

⋆)∥∆∥2F ≥ 0. (84)

Note that (84) can be satisfied when ∥∆∥2 ≤ 1−2c1−c2

c1+c3+
(3−4c1−2c3)2

4(1−2c1−c3)
−1

σ2
r(U

⋆) ≤ 9
47σ

2
r(U

⋆) ≤ σ2
r(U

⋆)
4 for c1 = c2 = 1

4

and c3 = 1
20 .

This completes the proof.

By directly extending [27, Lemma 5.4] to the complex case, we have

Lemma 10. For any U ,X ∈ C
D×r, we have

∥U −XR∥2F ≤
1

2(
√
2− 1)σ2

r(X)
∥UUH −XXH∥2F , (85)

where R ∈ Ur.

References

[1] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information, 2002.

[2] Yazhen Wang. Quantum computation and quantum information. 2012.

[3] Nicolas Gisin and Rob Thew. Quantum communication. Nature photonics, 1(3):165–171, 2007.

[4] Daniele Cozzolino, Beatrice Da Lio, Davide Bacco, and Leif Katsuo Oxenløwe. High-dimensional quantum

communication: benefits, progress, and future challenges. Advanced Quantum Technologies, 2(12):1900038,

2019.

[5] Vladimir B Braginsky, Vladimir Borisovich Braginskiı̆, and Farid Ya Khalili. Quantum measurement. Cambridge

University Press, 1995.
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[13] Madalin Guţă, Jonas Kahn, Richard Kueng, and Joel A Tropp. Fast state tomography with optimal error bounds.

Journal of Physics A: Mathematical and Theoretical, 53(20):204001, 2020.

[14] Daniel Stilck França, Fernando GS Brandão, and Richard Kueng. Fast and robust quantum state tomography

from few basis measurements. In 16th Conference on the Theory of Quantum Computation, Communication and

Cryptography (TQC 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

[15] Vladislav Voroninski. Quantum tomography from few full-rank observables. arXiv:1309.7669, 2013.

[16] Richard Kueng, Holger Rauhut, and Ulrich Terstiege. Low rank matrix recovery from rank one measurements.

Applied and Computational Harmonic Analysis, 42(1):88–116, 2017.

[17] Jun Wang, Zhao-Yu Han, Song-Bo Wang, Zeyang Li, Liang-Zhu Mu, Heng Fan, and Lei Wang. Scalable quantum

tomography with fidelity estimation. Physical Review A, 101(3):032321, 2020.

[18] Hsin-Yuan Huang, Richard Kueng, and John Preskill. Predicting many properties of a quantum system from very

few measurements. Nature Physics, 16(10):1050–1057, 2020.

[19] Steven T Flammia, David Gross, Yi-Kai Liu, and Jens Eisert. Quantum tomography via compressed sensing:

error bounds, sample complexity and efficient estimators. New Journal of Physics, 14(9):095022, 2012.

[20] Junhyung Lyle Kim, George Kollias, Amir Kalev, Ken X Wei, and Anastasios Kyrillidis. Fast quantum state

reconstruction via accelerated non-convex programming. In Photonics, volume 10, page 116. MDPI, 2023.

[21] Ming-Chien Hsu, En-Jui Kuo, Wei-Hsuan Yu, Jian-Feng Cai, and Min-Hsiu Hsieh. Quantum state tomography

via nonconvex riemannian gradient descent. Physical Review Letters, 132(24):240804, 2024.

[22] Jiaojiao Zhang, Kezhi Li, Shuang Cong, and Haitao Wang. Efficient reconstruction of density matrices for high

dimensional quantum state tomography. Signal Processing, 139:136–142, 2017.

[23] Anastasios Kyrillidis, Amir Kalev, Dohyung Park, Srinadh Bhojanapalli, Constantine Caramanis, and Sujay Sang-

havi. Provable compressed sensing quantum state tomography via non-convex methods. npj Quantum Informa-

tion, 4(1):1–7, 2018.

[24] Fernando GSL Brandão, Richard Kueng, and Daniel Stilck França. Fast and robust quantum state tomography

from few basis measurements. arXiv:2009.08216, 2020.

[25] Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix completion using alternating minimiza-

tion. In Proceedings of the forty-fifth annual ACM symposium on Theory of computing, pages 665–674, 2013.

[26] Qinqing Zheng and John Lafferty. A convergent gradient descent algorithm for rank minimization and semidef-

inite programming from random linear measurements. Advances in Neural Information Processing Systems, 28,

2015.

[27] Stephen Tu, Ross Boczar, Max Simchowitz, Mahdi Soltanolkotabi, and Ben Recht. Low-rank solutions of linear

matrix equations via procrustes flow. In International Conference on Machine Learning, pages 964–973. PMLR,

2016.

[28] Vasileios Charisopoulos, Yudong Chen, Damek Davis, Mateo Dı́az, Lijun Ding, and Dmitriy Drusvyatskiy. Low-

rank matrix recovery with composite optimization: good conditioning and rapid convergence. Foundations of

Computational Mathematics, 21(6):1505–1593, 2021.

[29] Tian Tong, Cong Ma, and Yuejie Chi. Accelerating ill-conditioned low-rank matrix estimation via scaled gradient

descent. Journal of Machine Learning Research, 22(150):1–63, 2021.

[30] Xiao Li, Zhihui Zhu, Anthony Man-Cho So, and Rene Vidal. Nonconvex robust low-rank matrix recovery. SIAM

Journal on Optimization, 30(1):660–686, 2020.

[31] Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro. Global optimality of local search for low rank matrix

recovery. Advances in Neural Information Processing Systems, 29, 2016.

24



[32] Dohyung Park, Anastasios Kyrillidis, Constantine Carmanis, and Sujay Sanghavi. Non-square matrix sensing

without spurious local minima via the burer-monteiro approach. In Artificial Intelligence and Statistics, pages

65–74. PMLR, 2017.

[33] Lingxiao Wang, Xiao Zhang, and Quanquan Gu. A unified computational and statistical framework for nonconvex

low-rank matrix estimation. In Artificial Intelligence and Statistics, pages 981–990. PMLR, 2017.

[34] Rong Ge, Chi Jin, and Yi Zheng. No spurious local minima in nonconvex low rank problems: A unified geometric

analysis. In International Conference on Machine Learning, pages 1233–1242. PMLR, 2017.

[35] Zhihui Zhu, Qiuwei Li, Gongguo Tang, and Michael B Wakin. Global optimality in low-rank matrix optimization.

IEEE Transactions on Signal Processing, 66(13):3614–3628, 2018.

[36] Qiuwei Li, Zhihui Zhu, and Gongguo Tang. The non-convex geometry of low-rank matrix optimization. Infor-

mation and Inference: A Journal of the IMA, 8(1):51–96, 2019.

[37] Zhihui Zhu, Qiuwei Li, Gongguo Tang, and Michael B Wakin. The global optimization geometry of low-rank

matrix optimization. IEEE Transactions on Information Theory, 67(2):1308–1331, 2021.

[38] Emmanuel J Candes, Xiaodong Li, and Mahdi Soltanolkotabi. Phase retrieval via wirtinger flow: Theory and

algorithms. IEEE Transactions on Information Theory, 61(4):1985–2007, 2015.

[39] Ju Sun, Qing Qu, and John Wright. A geometric analysis of phase retrieval. Foundations of Computational

Mathematics, 18:1131–1198, 2018.

[40] Thomas A Severini. Elements of distribution theory, volume 17. Cambridge University Press, 2005.

[41] J Haah, AW Harrow, Z Ji, X Wu, and N Yu. Sample-optimal tomography of quantum states. IEEE Transactions

on Information Theory, 63(9):5628–5641, 2017.

[42] Samuel Burer and Renato DC Monteiro. A nonlinear programming algorithm for solving semidefinite programs

via low-rank factorization. Mathematical programming, 95(2):329–357, 2003.

[43] Samuel Burer and Renato DC Monteiro. Local minima and convergence in low-rank semidefinite programming.

Mathematical programming, 103(3):427–444, 2005.

[44] Xian-Da Zhang. Matrix analysis and applications. Cambridge University Press, 2017.

[45] Jason D Lee, Ioannis Panageas, Georgios Piliouras, Max Simchowitz, Michael I Jordan, and Benjamin Recht.

First-order methods almost always avoid strict saddle points. Mathematical programming, 176:311–337, 2019.

[46] Laurent Condat. Fast projection onto the simplex and the l 1 ball. Mathematical Programming, 158(1):575–585,

2016.

[47] Simon S Du, Chi Jin, Jason D Lee, Michael I Jordan, Aarti Singh, and Barnabas Poczos. Gradient descent can

take exponential time to escape saddle points. Advances in neural information processing systems, 30, 2017.

[48] Cong Ma, Yuanxin Li, and Yuejie Chi. Beyond procrustes: Balancing-free gradient descent for asymmetric

low-rank matrix sensing. IEEE Transactions on Signal Processing, 69:867–877, 2021.

[49] Jialun Zhang, Salar Fattahi, and Richard Y Zhang. Preconditioned gradient descent for over-parameterized non-

convex matrix factorization. Advances in Neural Information Processing Systems, 34:5985–5996, 2021.

[50] Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 33(5):2295–2317, 2011.

[51] Joel A Tropp et al. An introduction to matrix concentration inequalities. Foundations and Trends® in Machine

Learning, 8(1-2):1–230, 2015.

25


	Introduction
	Notation

	Preliminary
	Recovery Guarantee for Pauli Observable Measurements
	Measurement setting and the matrix factorization approach
	Global landscape analysis

	Wirtinger Gradient Descent with Linear Convergence
	Numerical Experiments
	Conclusion
	Appendices
	Proof of Strict saddle points theorem of f
	Proof of upper bound A* e
	Proof of lem:RegularityConditionf
	Proof of The spectral initialization in main paper
	Auxiliary Materials

