
ar
X

iv
:2

5
0
5
.0

5
6
4
5
v
1
  
[q

u
an

t-
p
h
] 

 8
 M

ay
 2

0
2
5
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Abstract. We study causality and criticality in a one-dimensional fractional

multiscale transverse-field Ising model, where fractional derivatives generate long range

interactions beyond the scope of standard power laws. Such fractional responses

are common in classical systems including the anomalous stress–strain behaviour of

viscoelastic polymers, Lévy-like contaminant transport in heterogeneous porous media,

and the non-Debye dielectric relaxation of glassy dielectrics. Furthermore, these unique

interactions can be implemented in current quantum information architectures, with

intriguing consequences for the many-body dynamics. Using a truncated Jordan-

Wigner approach, we show that in the long wavelength limit of the mean field, the

dynamical critical exponent is set by the fractional order q as z = q/2. To probe

genuine many-body dynamics, we apply matrix-product-state simulations with the

time-dependent variational principle adapted to nonlocal couplings. Tracking the

entanglement-entropy light cone and performing finite-size scaling of the many-body

gap for 0 < q < 2.5, we confirm a continuously tunable exponent z(q): for q < 2

the entanglement front broadens with a sublinear light cone; for 2 < q < 2.5 we

observe a faint superlinear cone indicative of z < 1; and for q ≳ 2.5 the system reverts

to the ballistic nearest-neighbour regime with z = 1. The correspondence between

quantum entanglement fronts that spread as t1/z and classical Lévy flights whose mean-

square displacement grows as t2/q provides a direct physical link between fractional

interactions and Lévy statistics. Fractional derivatives therefore offer a unified

framework in which short-range, power-law, and frustrated long-range interactions

emerge as limiting cases, enabling controlled exploration of nonlocal causality bounds

and exotic entanglement dynamics within current quantum information platforms.

Keywords : fractional derivative, Lévy flights, quantum Ising model, long-range

interactions
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1. Introduction

Understanding how quantum information propagates in many-body systems is a central

theme in quantum information science and technology (QIST), motivated by both

foundational questions on non-equilibrium physics and practical considerations for

quantum simulators/emulators. In systems with short-range interactions, Lieb and

Robinson established rigorous bounds on the speed of information transfer, enforcing a

linear light cone for correlation growth [1]. However, numerous quantum platforms—

including trapped ions, Rydberg atoms, and ultracold atoms in optical lattices—exhibit

long-range couplings that deviate substantially from these short-range models [2, 3, 4].

Such power-law decays of the form 1/rα can give rise to faster-than-linear light cones

and other exotic dynamical phenomena [5, 6, 7, 8, 9, 10].

Despite this progress in power-law decaying systems, many open questions remain

regarding how genuinely nonlocal interactions reshape quantum information transfer,

especially when the range and sign of the couplings vary beyond standard power-law

forms. Examples of more intricate interaction profiles include Lennard-Jones potentials

in chemistry, Yukawa interactions for screened fields, DLVO potentials for colloids, and

various effective couplings in active matter. In these scenarios, the interplay of heavy-

tailed distributions and potentially sign-alternating couplings can lead to dynamics

far richer than those seen in purely ferromagnetic or anti-ferromagnetic power-law

interacting spin models.

Fractional quantum mechanics provides a framework for tackling such nonlocal

effects by introducing Riesz fractional derivatives ∂q
x ≡ ∂q

∂xq into the Hamiltonian [11, 12,

13, 14]. In momentum space, these derivatives act as Fourier multipliers −|k|q, thereby
interpolating continuously between short-range and long-range regimes. Crucially, this

formulation emerges naturally from stable Lévy flights, a generalization of Brownian

motion whose jump-length distributions remain heavy-tailed under convolution. Unlike

artificially constructed 1/rα models, fractional derivatives encode both long-range and

sign-alternating effects within a single operator.

In single-particle quantum mechanics, extending the usual dispersive term to

include fractional derivatives was pioneered by Laskin, who reinterpreted the Feynman

path integral so that it encompasses Lévy flights instead of standard Brownian

paths [11, 12, 13, 14, 15, 16]. In the conventional Gaussian picture, typical paths exhibit

Hausdorff (fractal) dimension HD = 2 in a two-dimensional embedding, where HD is

defined by the filling of a space when considering an infinite random walk. By contrast,

Lévy flights are governed by a stable distribution whose jump-length probability density

falls off as Pq(x) ∝ 1/|x|q+1, allowing HD to vary with the Lévy stability index q.

Because Lévy distributions remain stable under convolution, these microscopic nonlocal

jumps can produce robust, emergent macroscopic laws. Such phenomena have been

studied in a variety of contexts, including dynamical correlations in low-dimensional

Hamiltonian systems [17, 18, 19, 20], turbulence [21], non-Newtonian fluids [22], animal

foraging patterns [23, 24, 25], neuron signaling [26], and financial market data [27].
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Experimental realizations of Lévy statistics in designer materials built from the ground

up have also emerged in optical platforms [28, 29, 30, 31, 16], with recent demonstrations

in Lévy-based waveguide experiments [32].

When translated to many-body settings, fractional derivatives can introduce a

discrete spin–spin coupling J(r) whose decay and sign depend on the fractional order

q. These interactions are well characterized by a asymptotic power law, r−(1+q), with

additional subleading power laws. Notably, for q ≤ 2, the fractional multiscale model

observes a sublinear light cone—while continuously matching the short-range limit

at q = 2. However, once q > 2, the long-range couplings no longer behave as a

mere decaying tail but instead manifest sign-alternating (frustrating) interactions. This

yields a subtle superlinear light cone and a departure from standard Lieb-Robinson-like

bounds, pointing to a new regime of dynamics. Indeed, as we recently showed, fractional

multiscale media can give rise to a new tunable universality class in both classical and

quantum systems [33].

Viewed from a Lévy-flight perspective, the fractional multiscale transverse-field

Ising model is more than a convenient interpolation, it is the quantum analog of

a classical Lévy walk. Varying the fractional order q reshapes the heavy-tailed

statistics encoded in the spin–spin coupling, continuously connecting the short-range

limit at q = 2 to a genuinely multiscale regime. Because those statistics stem

from the same stable-distribution framework that underlies anomalous transport in

turbulence, finance, biology, and soft matter, the fractional multiscale transverse-field

Ising model offers a physically motivated backbone for long-range quantum matter.

This unified viewpoint links current experiments on trapped ions, Rydberg arrays, and

cavity-mediated cold atoms to the rich physical structure of Lévy processes, supplying

clear, tunable predictions for how non-Gaussian propagation and frustration should

emerge in near-term quantum simulators.

In this work, we investigate these multiscale phenomena through a one-dimensional

fractional multiscale transverse-field Ising model, employing matrix product state (MPS)

methods specifically adapted for long-range interactions [34, 35]. By utilizing the

time-dependent variational principle (TDVP), we simulate the real-time evolution of

localized perturbations and systematically analyze how fractional derivatives reshape

causality. In particular, we uncover a superlinear light cone for q > 2 and extract the

corresponding dynamical critical exponent z, establishing direct links between fractional

order and anomalous correlation spreading. Our results unify short-range, long-range,

and frustrated regimes under a single framework, revealing how heavy-tailed Lévy

statistics can control novel quantum dynamical phases. We conclude by discussing the

implications of these findings for near-term quantum simulators and future directions

in nonlocal quantum many-body physics.
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2. The Fractional Ising Model

Historically, many classical and quantum field theories can be derived from the stochastic

motion of virtual particles mediating interactions in a many-body system. In cases

dominated by Brownian motion, the resulting interaction kernels are effectively local

or rapidly decaying, allowing them to be approximated by second-derivative terms.

However, when one extends to Lévy flights with heavy-tailed distributions, long-range

correlations naturally emerge. This distinction leads to fractional or otherwise nonlocal

derivatives appearing in the effective Hamiltonian.

A standard way to define the fractional derivative of order q is through its action

in momentum space. Specifically,

∂q
xf(x) = F−1[−|k|q F(f(x))] , (1)

where F is the Fourier transform. This definition makes explicit that ∂q
x is a nonlocal

operator in position space, but corresponds to multiplying by −|k|q in momentum space.

Lévy flights provide a natural origin for such terms. Their stable probability

distribution Pq(x) ∝ 1/|x|q+1 has the characteristic function e−|k|q , indicating that

an infinite product of small-step propagators will accumulate a factor of −|k|q in

the exponent independent of initial condition. As shown in fractional quantum

mechanics [11, 12, 13], this construction leads to an interaction kernel that departs

from ordinary local behavior and instead captures multi-scale correlations reflective of

the heavy-tailed distribution. When viewed through the lens of field theory, these Lévy-

based processes produce fractional derivative operators ∂q
x in the Hamiltonian. The

construction of such materials can be engineered with artificially induced scattering

mechanisms such as in optical systems [36].

Upon discretizing the fractional derivative induced by these Lévy flights applied

onto a many body system, one obtains a quantum spin chain in which the fractional

derivative induces long-range interactions among lattice sites. Concretely, let σ̂z
j and σ̂x

j

denote the usual Pauli operators at site j, and define r = |i − j|. We then write the

fractional multiscale transverse-field Ising Hamiltonian as

Ĥ = −J0
∑

i<j

J(r)σ̂x
i σ̂

x
j + g

∑

j

σ̂z
j , (2)

where J0 sets the overall interaction scale and g is the transverse-field strength; we

treat the analog to the ferromagnetic case, J0 > 0. The coupling J(r) encodes nonlocal

interactions derived from the Riesz fractional derivative, which can be implemented via

a second-order discretization scheme [37].

For q = 2, J(r) reproduces the familiar nearest-neighbor or short-range limit,

whereas q > 2 yields sign-alternating, faster-decaying couplings that induce frustration.

Conversely, q < 2 corresponds to more strongly nonlocal interactions. The coupling

function itself is given by

J(r) = (−1)r+1

(

q
q
2
+ r

)

. (3)
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However, for q = 2 these asymptotic tails vanish. In this discrete setting, the resulting

spin model captures how Lévy-type nonlocalities reshape the competition between

ordering (σ̂x
i σ̂

x
j ) and quantum fluctuations (σ̂z

j ), thus generalizing the transverse-field

Ising model to a genuinely fractional regime. The discrete coupling J(r) behaves

asymptotically like a power law with subleading power law corrections. Asymptotically,

for large r the coupling behaves as

J(r) ∼ r−(1+q) + r−(3+q) , (4)

while short- to medium-range distances exhibit additional nontrivial local structure.

3. Numerically Extracting the Dynamical Critical Exponent

One-dimensional matrix product states (MPS) have become a powerful tool for studying

quantum many-body systems. Their chief advantage lies in the ability to compactly

represent states obeying area-law entanglement, such as the ground states of most

gapped, one-dimensional Hamiltonians. As a result, MPS methods provide a tractable

way to explore phase diagrams, compute ground states, and simulate real-time dynamics

in spin chains and fermionic systems.

Long-range interactions, however, pose a well-known challenge for standard MPS

implementations. A naive approach to incorporating extended couplings often requires

rapidly growing bond dimensions, ultimately thwarting efficient simulations. Even the

straightforward task of building the Hamiltonian in a suitable MPS-friendly format can

become prohibitively expensive when interactions extend across large distances.

To address this issue in our fractional (long-range) Ising model, we employ a

matrix product operator (MPO) representation of the Hamiltonian. Specifically, we

approximate the fractional coupling profile by a finite sum of exponentials [34, 38],

allowing the resulting MPO to remain at a manageable bond dimension. This

construction preserves the computational benefits of MPS—chiefly their efficiency for

states with limited entanglement—while enabling handling of genuinely long-range

interactions. Consequently, we can accurately study the exotic nonlocal physics arising

from fractional derivatives without the exponential overhead typical of unstructured

long-range couplings. In general, an MPO for a length-L spin chain can be written as

Ĥ =
∑

s1,...,sL

∑

s′1,...,s
′

L

W
[1]

s1,s′1
W

[2]

s2,s′2
· · ·W [L]

sL,s
′

L

|s1, . . . , sL⟩⟨s′1, . . . , s′L|, (5)

where each W
[j]

sj ,s′j
is a matrix of dimension χj−1 × χj (the so-called “virtual” bond

dimension), and sj, s
′
j label the physical basis states (e.g. spin up/down). By maintaining

relatively small bond dimensions χj, an MPO provides a compact factorization of a

potentially complicated and nonlocal many-body operator.

In our case, the spin–spin coupling J(r) extends over long distances. A direct

summation of all pairs (i, j) in an operator form would require bond dimensions growing
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with system size. Instead, we exploit an exponential decomposition of form

J(r) ≈
Nexp
∑

α=1

aα e
−bα r, (6)

where r = |j−i|, and the coefficients {aα, bα} are chosen to fit J(r) over the system size to

a specified tolerance (e.g. 10−9). Each exponential term e−bαr admits a straightforward

MPO representation with small bond dimension, and the total operator becomes an

additive combination of these individually manageable pieces. Consequently, the bond

dimension of the final MPO scales (at most) linearly in Nexp rather than in L, allowing

for efficient tensor contractions in MPS-based time evolution or ground-state searches.

In practice, approximately 10-14 terms are required in order to reach our tolerance to

fit to J(r).

This decomposition thus renders the fractional multiscale Hamiltonian amenable to

established MPS/MPO techniques [39]. Even though the physical interactions are long-

range, the use of a finite sum of exponentials in Eq. (6) yields an MPO of moderate bond

dimension, thereby enabling simulations of larger systems at high accuracy without an

exponential increase in computational cost.

Although the exponential sum in Eq. (6) provides a compact operator

representation, identifying the specific coefficients {aα, bα} requires a robust fitting

procedure. We adopt an iterative least-squares approach starting with a minimal two-

term fit, then progressively adding one more exponential at each step until the maximum

deviation from the exact fractional coupling J(r) is below a target threshold (e.g. 10−9).

At each iteration, the previously optimized parameters serve as the initial guess, which

accelerates convergence and ensures a stable search in the high-dimensional parameter

space. Figure 1 illustrates the result of this procedure for q = 1.5 and a system of

1000 sites. With each additional exponential term, both short-range features and long-

distance tails are captured more accurately, making it possible to achieve high precision

across the entire range of r.

3.1. Ground State and Critical Point Computation

To obtain the ground state of the fractional multiscale Ising Hamiltonian, we employ

the OpenMPS library, which provides a highly optimized (Fortran-based) environment

for constructing the ground state of a MPO defined Hamiltonian [40, 38]. This approach

leverages translational invariance and adaptively increases the bond dimension as needed

to capture the essential correlations of the system.

Convergence is monitored through the energy variance,

σ2
E = ⟨Ĥ2⟩ − ⟨Ĥ⟩2 . (7)

The ground state search continues iteratively until σ2 falls below a target threshold

(here, 10−10). This variance makes a convenient measure of convergence as it directly
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Figure 1. Example of the iterative exponential decomposition for a fractional order

q = 1.5 on a chain of 1000 sites with a final finite sum of 12 decaying exponentials.

(a) Comparison of the original coupling J(r) (circles) and its fitted sum of exponentials

(solid line). (b) Pointwise error ∆(r) between the exact and approximated profiles,

showing that the error remains safely below the chosen threshold for all site separations

r.

determines an upper bound on the overlap between the numerically constructed ground

state and states orthogonal to the true ground state [40].

Locating the quantum critical point (QCP) in the fractional multiscale Ising model

requires scanning across different values of the transverse field g and examining an

order parameter that signals criticality. One might at first attempt to compute the

energy gap directly. However this requires the high precision computation of not only

the ground state, but also excited states. An often more practical criterion in one-

dimensional systems is the bipartite entanglement entropy. In particular, at or near

a QCP, the entanglement entropy typically reaches a pronounced maximum, reflecting

strongly correlated degrees of freedom [38].

We thus prepare the ground state for a range of transverse field g values, each

time computing the bipartite entanglement entropy SL/2 (the bond entropy), where the

system is cut into two halves of equal size. Figure 2 shows an example of this procedure

for q = 1.5 and a chain of 400 sites. The entanglement entropy displays a clear peak

at g ≈ gc, providing a numerical estimate for the critical transverse field. Once gc is

identified, all subsequent dynamical studies focus on this parameter regime, where the

system is most susceptible to long-range fluctuations and critical scaling.
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Figure 2. Bipartite entanglement entropy SL/2 versus transverse field g for a chain of

L = 400 sites at fractional order q = 1.5. A clear maximum signals the critical point

gc. The solid line is a Gaussian process regression fit used to pinpoint the entropy peak

from the discrete data points, providing a refined numerical estimate of gc. Uncertainty

associated with individual measurements was produced via repeated measurement and

have a magnitude significantly smaller than displayed markers.

3.2. Finite-Size Gap Analysis

The dynamical critical exponent z establishes how time scales diverge relative to spatial

correlation lengths near a phase transition. If ξspace denotes the correlation length, then

the corresponding correlation time ξtime scales as

ξtime ∼ ξ z
space . (8)

In a quantum many-body system, this relationship dictates the low-lying excitation

spectrum. Near a critical point, ξspace → ∞ implies ξtime → ∞, leading to long-lived

fluctuations.

One standard strategy to determine z is to examine how the energy gap ∆ scales

with the system size L. In a finite system, let ∆(L) denote the gap between the ground

state and the first excited state at or near the critical point. For large L, one typically

expects a power-law decay,

∆(L) ∼ L−z , (9)

but subleading corrections can obscure the precise exponent if left unaccounted for. To

mitigate this issue, we include a next-order term in the fitting function, for instance:

∆(L) = aL−z
[

1 + b L−ω
]

, (10)

where a, b, and ω > 0 are additional parameters determined by a global fit. This form

helps separate universal scaling from non-universal finite-size effects, allowing for a more

robust estimate of z.
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Figure 3. Example fitting routine shown for a fractional order of 1.5 and linear

system sizes from 10 to 200. (a) Energy gap ∆(L) versus transverse field g for various

chain lengths L. (b) Extracted dynamical exponent z from a global fit of ∆(L) across

multiple system sizes. Data points show numerical results, while the solid lines are fits

to the leading power law and its subleading correction, as described in (9) and (10).

A similar approach is used to extract the pseudocritical transverse field gc(L), which

drifts toward the thermodynamic value gc as L grows. Concretely, we fit

gc(L) = gc + aL−1/ν [1 + b L−ω′

], (11)

where gc is the asymptotic (infinite-size) critical point, and ν, a, b, ω′ encapsulate the

leading and subleading scaling behavior. By applying these refined fitting forms to

system sizes ranging from L = 10 up to L = 200, we are able to disentangle the

universal features of the fractional multiscale Ising transition from spurious finite-size

corrections, ultimately yielding more accurate values of both z and gc.

3.3. Local Perturbation Time Evolution Analysis

While finite-size gap analysis provides one measure of z, we also examine critical

dynamics via a local perturbation protocol. Specifically, we initialize the system at

the critical point (g = gc) in its ground state for a chain of L = 200 sites, then apply a

time-dependent transverse bias along σ̂z at the center of the lattice, at site j∗. From a

quasiparticle perspective, this local injection of energy at criticality launches low-energy

excitations whose velocity is governed by the dynamical exponent z.

We modulate the perturbation amplitude λ0 with a Blackman–Harris window

ωBH(t). Over an interval 0 ≤ t ≤ τ , the perturbation Hamiltonian is

∆Ĥ(t) = λ0 ωBH(t) σ̂
z
j∗ . (12)

Outside the time window [0, τ ], we set ωBH(t) = 0. Concretely, the Blackman–Harris
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function is

ωBH(t) =







a0 − a1 cos
(

2πt
τ

)

+ a2 cos
(

4πt
τ

)

− a3 cos
(

6πt
τ

)

, 0 ≤ t ≤ τ,

0, otherwise ,
(13)

with standard coefficients {a0, a1, a2, a3} (e.g. a0 = 0.35875, a1 = 0.48829, a2 =

0.14128, a3 = 0.01168). This particular choice of coefficients strongly suppresses

large-momentum (high-frequency) components, thereby allowing the perturbation to

selectively excite the long-wavelength sector most relevant for uncovering universal

scaling behavior [41].

Although one might track the propagation of a local perturbation by examining

correlation functions or local magnetization, these observables often produce oscillatory

interference patterns that obscure the light-cone boundary. In contrast, the bond

entropy, Sbond(j, t), provides a comparatively monotonic signal of quasiparticle passage.

As each quasiparticle moves through a bond, it entangles the two partitioned halves of

the chain, causing Sbond(j, t) to rise above its baseline. Once the disturbance passes,

the entropy saturates, producing a plateau within the light cone and leaving the outer

region at its original, low-entropy value.

This behavior is particularly relevant in the fractional multiscale Ising model, where

the usual short-range quasiparticle motion is replaced by Lévy-flight dynamics arising

from the Riesz fractional derivative. By modifying the dispersion and speeds of low-

energy excitations, such fractional effects reshape how entanglement spreads. Plotting

Sbond(j, t) in the (j, t)-plane and identifying contours of constant entropy thus yields

a direct visualization of the spreading of the initially local disturbance. Fitting these

contours to

| j − j∗ | ∼ t
1
z (14)

provides another robust estimate of the dynamical critical exponent z. Larger z values

correspond to slower-moving quasiparticles and narrower cones, while smaller z values

signify faster propagation and wider cones. An example for a fractional order q = 1.5

and q = 2.2 is shown in Figure. 4.

4. Truncated Jordan-Wigner Mapping: Mean Field Diagonalization

To gain further insight into how low-energy excitations shape the dynamical

critical exponent, we transform the fractional Ising model via the Jordan–Wigner

transformation, followed by Fourier and Bogoliubov transformations. In a mean-field

approach, fractional interactions manifest as momentum-dependent dispersion terms,

clarifying how nonlocal couplings modify the quasiparticle spectrum.

The Jordan–Wigner mapping identifies each spin operator with fermionic creation

and annihilation operators ĉ†i , ĉi, satisfying

{ĉi, ĉ†j} = δij, {ĉi, ĉj} = 0 = {ĉ†i , ĉ†j} . (15)
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Figure 4. Bond-entropy contours Sbond(j, t) revealing the light-cone structure for

fractional orders (a) q = 1.5 and (b) q = 2.2. In each panel, color indicates Sbond(j, t)

as a function of position j (horizontal axis) and time t (vertical axis), measured after

applying a local at site j∗. The solid contour lines correspond to three representative

entropy levels, the propagation front of the disturbance. The dashed lines show a

linear reference to emphasize how, for q = 1.5, the light cone scales sublinearly, while

for q = 2.2, the cone is subtly superlinear and narrower than the linear reference.

In particular, one can write
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σ̂z
j = 1− 2ĉ†j ĉj, σ̂x

j = (ĉ†j + ĉj)
∏

k<j

σ̂z
k , (16)

where the latter product (often expressed as a Jordan-Wigner string) ensures the correct

anticommutation relations between neighboring spins. Substituting into (2),

Ĥ ′ = −J0
∑

i<j

J(|j − i|)(ĉ†i + ĉi)

[

j−1
∏

k=i+1

(σ̂z
k)

]

(ĉ†j + ĉj) + g
∑

j

(1− 2ĉ†j ĉj) . (17)

In the standard Jordan–Wigner transformation, the operators σx
i carry a string of σz

k

factors for k < i. These strings ensure the correct fermionic anticommutation relations,

but they also introduce higher-order (beyond quadratic) coupling terms when two spins

at sites i and i + r interact. To simplify the fractional multiscale Ising Hamiltonian,

one can truncate these non-quadratic contributions by effectively replacing the Jordan–

Wigner strings with unity. Physically, this neglects nonlocal fluctuations not captured by

a uniform magnetization. Because the bilinear terms already fix the softest dispersion,

any 2n > 2 fermion vertex generated by the Jordan–Wigner string carries extra powers

of the bilinear propagator and therefore a higher canonical dimension as long as we are

within the mean field window for the model. As such, the result is consistent with a

mean field dynamical critical exponent. Under the renormalization group rescaling

x → b x, τ → bzτ , these higher-order operators become irrelevant to the leading

space–time anisotropy; they merely renormalize non-universal amplitudes and do not

alter the exponent determined from the quadratic term [42]. Truncating Ĥ ′ to only

bilinear terms simplifies to

Ĥ ′ ≈ −J0
∑

j

∑

r>0

J(r)
(

ĉ†j ĉ
†
j+r + ĉ†j ĉj+r + ĉ†j+rĉj + ĉj+rĉj

)

+ g
∑

j

(

1− 2ĉ†j ĉj

)

, (18)

consistent with the long-range Kitaev model solved exactly in [43, 44]. A standard

Fourier transform for the creation and annihilation operators is

ĉj =
1√
N

∑

k

ei k j ĉk, ĉ†j =
1√
N

∑

k

e−i k j ĉ†k , (19)

where j labels sites, k is the momentum, and i =
√
−1. Substituting these into

our fermionic creation and annihilation operators yields a quadratic expression in

momentum space. Each term, for example

ĉ†j ĉj+r =
1

N

∑

k,q

e−i (k−q) jei q r ĉ†kĉq , (20)

becomes part of a double sum over j, r. Crucially, summing over j enforces

∑

j

e−i (k−q) j = Nδk,q (21)
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which collapses the sums over k and q into a single momentum index. The resulting

terms form a purely bilinear Hamiltonian in momentum space

Collecting all diagonal and off-diagonal terms in momentum space, we obtain

Ĥ ′ ≈
∑

k

[ξkĉ
†
kĉk +

1

2
∆k(ĉ

†
kĉ

†
−k + ĉ−kĉk)] + const. , (22)

where

ξk = 2g − 2J0
∑

r>0

J(r) cos(k r), ∆k = 2J0
∑

r>0

J(r) sin(k r) . (23)

One then performs a standard Bogoliubov transformation to diagonalize the

Hamiltonian. Defining new quasiparticle operators γ̂k, γ̂
†
k through a rotation in each

momentum sector, the final result is

Ĥ ′ =
∑

k

Ek

(

γ̂†
kγ̂k −

1

2

)

, (24)

where the Bogoliubov dispersion is

Ek =
√

ξ2k +∆2
k . (25)

Labeling these trigonometric summations as,

Ck = J0
∑

r>0

J(r) cos(k r), Sk = J0
∑

r>0

J(r) sin(k r) , (26)

the dispersion term may be rewritten as

Ek = 2
√

C2
k + S2

k + 2gCk + g2 . (27)

Remarkably, the sum

∑

r>0

J(r) cos(k r) (28)

admits a closed-form expression once rewritten in terms of complex exponentials over

all integer distances. Extending the summation to negative r and absorbing r = 0 into

a global shift,

∑

r>0

J(r) cos(k r) =
1

2

∞
∑

r=−∞

J(|r|)ei k r − 1

2
J(0) . (29)

As shown by Ortigueira in [37],

∞
∑

r=−∞

(−1)r
(

q

q/2 + r

)

eikr =

∣

∣

∣

∣

2 sin

(

k

2

)
∣

∣

∣

∣

q

, (30)
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which is precisely the fractional multiscale Ising interactions J(r) applied as a cosine

summation, yielding

Ck =
1

2

(

J0J(0)− J0

∣

∣

∣

∣

2 sin

(

k

2

)∣

∣

∣

∣

q)

. (31)

Although the cosine series admits a simple closed-form solution, the sine series involves

the imaginary part of a hypergeometric function. Specifically, both sine and cosine

summations can be compactly written in terms of

Γ(q + 1)

Γ(q/2 + 1)2
2F1(1, −

q

2
;
q + 2

2
; e i k) =

=
∞
∑

r=0

(−1)r
(

q

q/2 + r

)

cos(kr) + i(−1)r
(

q

q/2 + r

)

sin(kr) = F (q, k)

(32)

where the real part reproduces the cosine sum and the imaginary part gives the sine

sum. Unlike its cosine counterpart, however, the sine summation does not collapse to a

simple power-law expression and retains a hypergeometric form

Ck/J0 = −ℜ
[

Γ(q + 1)

Γ(q/2 + 1)2
2F1(1, −

q

2
;
q + 2

2
; e i k)

]

+

(

q

q/2

)

,

Sk/J0 = ℑ
[

Γ(q + 1)

Γ(q/2 + 1)2
2F1(1, −

q

2
;
q + 2

2
; e i k)

]

.

(33)

Substitution of (33) into (27) yields

Ek =

√

|F (q, k)|2 +
[(

q

q/2

)

− g

] ∣

∣

∣

∣

sin

(

k

2

)∣

∣

∣

∣

q

+ g

[

g −
(

q

q/2

)]

. (34)

We then observe a critical point associated with momenta k=0 for gc = 1
2

(

q
q/2

)

. To

derive the dynamical critical exponents, we observe how energy scales with the lowest

energy perturbations (the limit of k → 0 at gc).

Ek =

√

|F (q, k)|2 −
[

1

2

(

q

q/2

)]2

+

[

1

2

(

q

q/2

)] ∣

∣

∣

∣

sin

(

k

2

)∣

∣

∣

∣

q

. (35)

We then note that the hypergeometric function term approaches exactly 1
2

(

q
q/2

)

as k

approaches 0 such that,

lim
k→0

∣

∣

∣

∣

Γ(q + 1)

Γ(q/2 + 1)2
2F1(1, −

q

2
;
q + 2

2
; e i k)

∣

∣

∣

∣

−
(

1

2

(

q

q/2

))

= 0 . (36)

By then performing a Euler transform we may obtain exactly the leading power law

behavior of the hypergeometric function as we approach k = 0 (z = eik = 1) given by,

2F1(a, b; c; z) = (1− z)c−a−b
2F1(c− a, c− b; c, z) . (37)
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This transform extracts the leading scaling behavior and implies

∣

∣

∣

∣

Γ(q + 1)

Γ(q/2 + 1)2
2F1(1, −

q

2
;
q + 2

2
; e i k)

∣

∣

∣

∣

2

−
(

1

2

(

q

q/2

))2

∝ |k|2q . (38)

However, it is the second term that applies the dominant scaling behavior of Ek as,

1

2

(

q

q/2

) ∣

∣

∣

∣

sin

(

k

2

)∣

∣

∣

∣

q

∝ |k|q , (39)

implying that with small perturbations at exactly the critical point, the fractional

multiscale Ising model scales with momenta as

Ek ∝ |k|q/2 , (40)

so that in the mean-field approximation, the model already predicts

z =
q

2
. (41)

5. Anomalous Dynamical Scaling and Lévy Causality

Figure 5 traces the critical transverse field gc in the thermodynamic limit as a function

of the fractional order q. The threshold rises monotonically: for q < 2 the chain

retains genuine power-law couplings, while at q = 2 it reduces to the nearest-neighbour

transverse-field Ising model and reproduces the textbook critical point. When q > 2

the spectrum is governed by effectively local ferromagnetic bonds frustrated by a weak

long-range antiferromagnetic tail, so the transition persists yet shifts to larger gc. The

reflection formula applied to the kernel in Eq. 3 shows that the integrated coupling

strength grows with q; even after enforcing a Kac normalization that fixes the total

weight to unity, the field required to close the gap continues to increase as a result of long

range interactions beyond quadratic after a Jordan-Wigner transform [45]. Intuitively,

the emergent antiferromagnetic tail for q > 2 counteracts the dominant ferromagnetic

alignment, demanding a stronger transverse field to disorder the spins and thereby

elevating gc.

We next examine the dynamical critical exponent z using two complementary

methods: (1) finite-size gap scaling and (2) local-perturbation wavefronts. Figure 6

summarizes our main findings. For 0 ≤ q ≤ 1, both methods agree within an uncertainty

of 0.01, that z ≈ q
2
, closely matching earlier analytical predictions for power-law Ising

chains [46]. This relationship implies that reducing q lowers the effective dispersion

relation of the model, speeding up quasiparticles, then at q = 2, we recover the

conventional nearest-neighbor universality.

However, as the fractional order increases, the extracted dynamical critical

exponents observe a distinct deviation from the mean-field prediction as fluctuations

become significant, and faithful finite-size scaling demands much larger lattices to

uncover the true asymptotic behaviour. As an additional check, we extracted z from the
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Figure 5. Thermodynamic critical transverse field gc versus fractional order q,

determined by finite-size scaling of chains up to L = 200. The data points show a

monotonic increase in gc with growing q. Beyond q > 2, where frustration emerges

from sign-alternating long-range interactions, larger transverse fields are necessary to

disrupt the ordered phase. Error bars are smaller than markers.

asymptotic power-law dependence of the band gap. This independent estimate agrees

with the wavefront analysis to within 5% across all q, with the largest discrepancies

appearing in the fluctuation-dominated regime.

For q > 2, we still find a well-defined scaling form for z, but the system no longer

maps smoothly onto standard power-law models. Instead, the frustrated interactions

induce a superlinear light-cone that lies outside of the universality class associated with

simple power law models. Importantly, at larger fractional orders (beyond q ≳ 2),

our results also reveal a distortion in the dynamical critical exponent possibly due

to crossover effects toward an effectively local regime, especially in one dimension.

Although z remains close to q/2 in principle, the low-dimensional setting amplifies

corrections from finite-size and frustration-driven crossovers, causing a nontrivial drift

in the exponent.

A useful point of comparison arises in the standard transverse-field Ising model,

where introducing a transverse field at criticality effectively upgrades the low-energy

description to a relativistic-like conformal field theory with z = 1. In the absence of

a transverse field, pure Ising interactions simply disperse excitations with mean-square

displacement proportional to t, indicative of first-order time evolution. The addition of

a critical transverse field modifies the effective equation of motion, furnishing a second-

order time derivative and driving the system to a universality class characterized by

z = 1.

In the fractional multiscale transverse-field Ising model, a mean field analysis yields

a dynamical exponent z = q/2 as shown in (41). Consequently, whereas a wave packet

governed by the fractional Schrödinger equation spreads sub-ballistically as r(t) ∝ t1/q,

the emergent Lorentz-like symmetry at the Ising critical point doubles this exponent,

producing a elevated scaling with r(t) ∝ t2/q exactly as with the standard q = 2



Lévy Light Cones and Critical Causality in Fractional Multiscale Quantum Ising Models17

case. Such behavior is consistent with how fractional derivatives naturally connect to

Lévy-flight statistics, providing a more fundamental foundation for analyzing nonlocal

quantum criticality.

Our results can be compared with the two-loop renormalization-group study of

long-range criticality in Ref. [46]. That work demonstrated that, for couplings J(r) ∼
r−(1+q) in one dimension, the mean-field relation z = q/2 holds only within the strictly

long-range window 0 < q < 2/3; for q > 2/3 critical fluctuations introduce nonlinear

corrections that bend z away from q/2 and drive the flow toward short-range behaviour

with z → 1. We hypothesise that these discrepancies arise from finite-size effects, and

that at larger system sizes fluctuation-driven corrections will diminish the apparent

mean-field window, bringing the crossover closer to the two-loop prediction.

Figure 6. Dynamical critical exponent z as a function of the fractional order q.

Blue markers denote data from finite-size gap scaling, while red markers come from

local-perturbation wavefront analysis (bond-entropy contours). The black dashed

line indicates the mean field prediction z = q
2
. Finally, green markers denote the

calculated dynamical critical exponent for the asymptotic power law of the fractional

interactions. For q > 2, z initially exceeds 1, producing superlinear light cones arising

from the frustration from sign-alternating interactions. However, at larger q, the

antiferromagnetic couplings cease to affect the critical scaling, causing z to drift back

toward unity leading to the system to become effectively local again.
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Although a superlinear light-cone is evident for q > 2, it remains relatively

subtle in one dimension. Because the sign-alternating couplings still decay as 1/r1+q,

their frustration effect is significant enough to distort the universality class yet not

overwhelming; the resultant superlinear cone ultimately competes with the short-range

ferromagnetic response. In higher-dimensional fractional multiscale models, however,

we expect this frustrated regime to become more pronounced, as the number of such

long-range, sign-changing bonds grows faster with system size. This could enhance the

superlinear behavior and potentially bring the numerical results into closer alignment

with mean-field predictions. Exploring higher-dimensional fractional multiscale Ising

systems is thus a natural next step to fully uncover the interplay between frustration,

heavy-tailed couplings, and anomalous dynamical scaling.

6. Conclusion

Fractional derivatives establish a connection between heavy-tailed Lévy-flight statistics

and quantum criticality, extending single-particle formulations [11, 13] to many-body

spin systems. For q < 2, our simulations confirm that the effective quasiparticle

dispersion reconstructs the dynamical exponent within 5% of z = q/2, matching known

results for power-law interactions, whereas for q > 2 sign-alternating couplings emerge

and drive a distinct, super-linear light cone. This continuous crossover from near

power-law physics (q < 2) to a non-local, frustrated regime (q > 2) provides a theoretical

richness of the fractional multiscale Ising model and shows how tuning the fractional

order q unlocks unconventional phase structures beyond both nearest-neighbour and

conventional long-range systems.

A natural next step is to lift the model to higher dimensions. In d ≥ 2 the

larger phase-space volume suppresses the one-dimensional infrared fluctuations that

cause deviations from mean-field theory; consequently we expect the mean-field long-

wavelength prediction z = q/2 to observe less deviation throughout the q > 2 regime,

producing an even more pronounced superlinear ”Lévy light cone” that could help

confine information propagation and, by reducing available transport channels, mitigate

decoherence in planar or three-dimensional qubit arrays. Fractional extensions in 2D

and 3D therefore offer a controlled arena for studying unique quantum dynamics and

may guide the design of novel architectures that exploit frustrated, non-local couplings.

On the experimental front, modern quantum simulators—such as trapped-ion

chains [47], programmable Rydberg-atom arrays [48], and circuit- or cavity-QED

architectures with photon-mediated couplings [49]—already enable approximate

realizations of fractional kernels. These platforms could directly probe the predicted

Lévy-like light cones and anomalous critical exponents. Taken together, the

fractional multiscale Ising framework unifies short-range, extended-range and frustrated

interactions in a single tunable model, provides fresh insight into nonlocal models in

terms of Lévy statistics, and opens multiple experimental and theoretical avenues for

exploring non-local quantum matter.
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