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Abstract

We study how inherent randomness in the train-

ing process—where each sample (or client in fed-

erated learning) contributes to only a randomly

selected portion of training—can be leveraged for

privacy amplification. This includes (1) model

partitioning, where a sample updates only a sub-

set of the model parameters, and (2) data parti-

tioning, where a sample participates in only a

subset of training iterations. We apply our frame-

work to model parallelism in federated learning,

where each client updates a randomly selected

subnetwork to reduce memory and computational

overhead, and show that existing methods, e.g.

model splitting or dropout, provide a significant

privacy amplification gain not captured by pre-

vious privacy analysis techniques. Additionally,

we introduce Balanced Iteration Subsampling, a

new data partitioning method where each sam-

ple (or client) participates in a fixed number of

training iterations. We show that this method

yields similar or stronger privacy amplification

than Poisson (i.i.d.) sampling of data (or clients).

Our results demonstrate that randomness in the

training process, which is structured rather than

i.i.d. and interacts with data in complex ways, can

be systematically leveraged for significant privacy

amplification.

1. Introduction

Ensuring user privacy in machine learning is critical, es-

pecially in applications involving sensitive data such as

healthcare, finance, and social networks. Differential pri-

vacy (DP) (Dwork et al., 2006; Dwork, 2006) provides a

rigorous mathematical framework to quantify and limit data
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leakage, offering strong protections even against adversaries

with auxiliary information. The standard way to achieve

DP is to inject randomness into the training process, typi-

cally by adding noise—such as in DP-SGD (Abadi et al.,

2016)—which provides formal privacy guarantees. How-

ever, this comes at a cost: injecting more noise strengthens

privacy protections but often degrades model performance.

In this paper, we ask: instead of relying solely on large

noise injections to achieve strong privacy guarantees, can

we leverage the inherent randomness already present in the

training process? Many widely used techniques, such as

dropout (which helps mitigate overfitting) and model par-

allelism (which reduces memory and computational over-

head), naturally introduce randomness or can be modified

to incorporate randomness without fundamentally altering

the training process. However, this kind of structured ran-

domness interacts with data in complex ways, making the

associated privacy gains difficult to quantify.

The idea of leveraging randomness for privacy amplifica-

tion—to reduce the amount of noise required—has been

previously explored, primarily in two specific settings. The

first is random subsampling, where each data point (or client

in federated learning (Kairouz et al., 2021)) is randomly

selected to participate in each training iteration (indepen-

dently across iterations) (Kasiviswanathan et al., 2011; Li

et al., 2012; Bassily et al., 2014; Wang et al., 2015; Balle

et al., 2018; Wang et al., 2019; Zhu & Wang, 2019; Balle

et al., 2020). The second is shuffling, where client data is

individually privatized and then randomly reordered to am-

plify privacy (Erlingsson et al., 2019; Girgis et al., 2021b;a;

Feldman et al., 2022; 2023; Chua et al.). More recently,

random gradient compression has also been shown to pro-

vide privacy amplification (Chen et al., 2024b;a). However,

amplification by model parallelism techniques has not been

studied before.

In this paper, we investigate privacy amplification in a more

general context: whenever each sample (or client in the FL

setting) contributes to only a randomly selected portion of

the training process, this randomness—if kept secret—can

be leveraged to enhance privacy. This includes data partition-

ing, where a sample (or user) participates in only a subset of

the training iterations, or model partitioning, where a sam-
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ple contributes to updating only a randomly chosen subset

of model parameters in each iteration. The randomness we

leverage in both cases is more structured than independent

subsampling or uniform shuffling and has complex interac-

tions with the samples. For example, gradients computed

for random subnetworks cannot be represented as simply

masked versions of full gradients, so prior privacy amplifi-

cation methods fail under such scenario.

Our Contributions: We develop a unified mathematical

framework for privacy amplification that applies to both

data and model partitioning. Specifically, our theoretical re-

sults establish privacy amplification guarantees in the below

settings.

Model Parallelism: When a model is partitioned into

(disjoint or overlapping) subnetworks and each sample (or

client) is assigned to update only a randomly chosen sub-

network in each iteration, this assignment introduces addi-

tional privacy beyond standard methods. Existing privacy

accounting techniques fail to capture this amplification ef-

fect. This privacy gain is particularly relevant for federated

and distributed learning, where model parallelism is already

employed for computational and memory efficiency, e.g.,

using various model partitioning techniques (Yuan et al.,

2022; Dun et al., 2022; Fang et al., 2024), dropout layers

(Hinton et al., 2012; Konečnỳ, 2016) or training models

in ensemble configurations (Sagi & Rokach, 2018; Ganaie

et al., 2022). Our experiments show that when training a

44 million parameter model with partial model splitting and

DP-SGD with (8, 10−5)-DP, accounting for privacy ampli-

fication with our theory yields higher validation accuracy

than using existing accounting methods.

Balanced Iteration Subsampling: Our framework also

extends privacy amplification beyond standard independent

subsampling across iterations. We introduce a new subsam-

pling method in which each sample is used in a fixed number

of training iterations, rather than being sampled indepen-

dently in each iteration (as in Poisson Subsampling)1. While

Poisson subsampling has been a standard tool in DP due to

its analytical simplicity, its practical limitations—such as un-

even user participation and unpredictable system load—can

undermine fair use and operational stability, so has spurred

interest in alternative subsampling schemes (Chua et al.).

In contrast, Balanced Iteration Subsampling ensures equi-

table contribution and stable system behavior. Our analysis

shows that this method retains the desirable privacy-utility

tradeoffs of Poisson sampling while addressing its prac-

tical drawbacks, further expanding the toolkit of privacy-

preserving subsampling techniques. By rigorously quantify-

ing its privacy guarantees, we offer a compelling alternative

to Poisson subsampling, reinforcing the broader insight that

1Note that this differs from shuffling, which ensures that each
sample appears only once during training.

privacy amplification can be achieved through a variety of

deployment-friendly approaches.

Balanced Iteration Subsampling can be used in both cen-

tralized training and federated learning. In the latter case,

it can be viewed as a generalization of random check-ins

(Balle et al., 2020), where each client in random check-ins

chooses to participate in exactly one iteration with some

fixed probability, whereas in our approach, each client par-

ticipates in exactly k randomly chosen iterations out of T

total iterations.

2. Background and Definitions

In this section, we provide background and definitions for

the paper and set up the problem.

Differenital privacy measures the stability of a randomized

algorithm given changes in an input instance, thereby quan-

tifying the extent to which an adversary can infer specific

inputs based on the algorithm’s output. Mathematically, let

S be the set of all possible datasets. We say that S, S′ ∈ S
are adjacent datasets if S = S′ ∪ {x} or S′ = S ∪ {x} for

some single data point x.

Definition 2.1. (Dwork, 2006) A randomized mechanism

M : S → Ω is said to satisfy (ϵ, δ)-DP if, for all pairs of

adjacent datasets S, S′ ∈ S and for all measurable set A, it

holds that P(M(S) ∈ A) ≤ eϵP(M(S′) ∈ A) + δ.

It is often useful to analyze privacy guarantees under the

notion of Rényi DP (RDP):

Definition 2.2 (Mironov (2017); Abadi et al. (2016)). A

randomized mechanismM : S → Ω is said to satisfy (α, ϵ)-
RDP with α ∈ (1,∞) if for all pairs of adjacent datasets

S, S′ ∈ S , it holds that

Dα (M(S)∥M(S′)) := 1
α−1 log

∫

ω∈Ω

pM(S)(ω)α

pM(S′)(ω)α−1 dω ≤ ϵ.

One key property of RDP is its additive nature under

adaptive composition (Mironov, 2017). If mechanisms

M1,M2, . . . ,Mk each satisfies (α, ϵi)-RDP, their com-

bined mechanism satisfies (α,
∑k

i=1 ϵi)-RDP, simplifying

privacy accounting in iterative algorithms and giving a tight

composition method.

An (α, ϵ(α))-RDP guarantee can be converted to an (ϵ, δ)-
DP guarantee (Bun & Steinke, 2016; Canonne et al., 2020;

Asoodeh et al., 2020):

Proposition 2.3. IfM satisfies (α, ϵ(α))-RDP, it also sat-

isfies (ϵ+
log 1

δ

α−1 , δ)-DP for any 0 < δ < 1.

In this work, we use RDP to analyze the privacy guarantees

of model and data partitioning techniques, allowing for fine-

grained tracking of privacy loss and facilitating efficient

composition analysis in complex training settings.
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3. Main Results

3.1. Main Technical Result

In this section, we present the main result as a mathemati-

cal statement outside of the context of differential privacy,

although we give an overview of why it is what we need

in Remark 3.3. We discuss the intermediate lemmas in the

proof of the theorem in a top-down fashion in Section 3.4

and defer the details to the appendix. In Section 3.2, we

will show how our main theoretical result applies to quan-

tifying the privacy amplification of model parallelism. In

Section 3.3, we will define Balanced Iteration Subsampling

and show how the same result applies to quantifying its

privacy gain.

Theorem 3.1. Let Sd,k = {µ ∈ {0, 1}d | ∥µ∥1= k} be the

set of all binary vectors in R
d with k number of 1s and d−k

number of 0s. Let P = 1
|Sd,k|

∑

µ∈Sd,k
N (cµ, σ2Id) be a

mixture of Gaussians and Q = N (0, σ2Id) be a Gaussian

centered at 0, where c and σ2 are positive constants. Then,

ϵ := max {Dα(P ∥Q), Dα(Q ∥ P )} (1)

≤ max

{

1
α−1 log

∑

I∈[(dk)]
α

1

(dk)
α exp

(

c2

2σ2

∑

i,j∈[α]
i ̸=j

µ
⊺

Ii
µIj

)

,

αc2k2

2σ2d
+ 1

2(α−1) log
exp

(

αc2k(d−k)

σ2d

)

(

α exp
(

c2k(d−k)

σ2d2

)

+(1−α)
)d

}

(2)

≤ max

{

log

(

1
(

d
k

)

k
∑

l=0

(

k

l

)(

d− k

k − l

)

exp

(

αc2l

2σ2

)

)

,

αc2k2

2σ2d
+ 1

2(α−1) log
exp

(

αc2k(d−k)

σ2d

)

(

α exp
(

c2k(d−k)

σ2d2

)

+(1−α)
)d

}

(3)

for all α ≥ 2, α ∈ N, where [
(

d
k

)

]
α

is the set of all α-

length tuples with entries from {1, . . . ,
(

d
k

)

} and µi is the

ith element of Sd,k.

Remark 3.2. In the equation above, the first term of (1) is

upper bounded by the first term of (2), which is in turn upper

bounded by the first term of (3); likewise for the second

terms. Since the Rényi divergence is not symmetric in its

arguments, they are not the same and both are necessary for

the completeness of analysis, but numerically the second

terms are dominated by the first terms in the max. Also,

we note that (2) gives a tighter upper bound while (3) is

much more computationally efficient, so one should use (2)

whenever possible. We discuss this in more detail in later

subsections.

Remark 3.3. Although later sections will show applications

of Theorem 3.1 and prove why it is useful in the appendix,

we preliminarily give an overview of why this is the object

we study in disjoint model splitting where k = 1. In model

splitting, each µ ∈ Sd,k corresponds to a potential gradient

vector, where an entry of 1 in µ corresponds to a block

whose norm is constrained to c (the gradient clipping norm),

while an entry of 0 in µ corresponds to a block whose

gradient is 0 (i.e. not included in the submodel). The set

Sd,k is then the set of possible gradient vectors generated

by the different submodels we could form, before adding

noise. On the other hand, the mean of Q is the gradient of x

if x is not used in training—which is 0.

The above bounds look complicated and not easily inter-

pretable. We argue that this is intrinsic to the problem of

characterizing the Rényi divergence between a mixture of

Gaussian and a Gaussian, which is a a difficult problem

to tightly characterize with existing results (Michalowicz

et al., 2008; Durrieu et al., 2012; Nielsen & Sun, 2016a;b),

which do not yield useful bounds for our purposes. The

bound is designed to be implemented on a computer to get a

numerical answer. In later sections, we will plot this bound

against existing baselines when we plug in suitable numbers

for a variety of training settings.

3.2. Privacy Amplification by Model Parallelism

In this section, we apply Theorem 3.1 to various model paral-

lelism techniques starting with disjoint model splitting. This

approach has been utilized in (Yuan et al., 2022; Fang et al.,

2024) to limit the memory and computational overhead per

node in a distributed setting. We describe this framework

in the language of federated learning where each client is

assigned a random submodel, while the same discussion

also applies to distributed training. In the following sections

we extend model parallelism to overlapping subnetworks,

where only a subset of the parameters of the model are split

between subnetworks (Dun et al., 2022). Finally, we discuss

how the analysis applies to models with dropout layers.

3.2.1. DISJOINT MODEL SPLITTING

Consider a model with m trainable parameters. In each

iteration, we partition the model into d disjoint submodels

(which do not need to contain the same number of param-

eters). The partition may or may not be the same across

iterations. That is, we may form completely different sub-

models in each iteration, or may use the same partitioning

strategy throughout. The model partitioning, random or

not, is assumed to be known by the adversary and is not

used for privacy amplification. What we leverage for pri-

vacy amplification is the random assignment of one of the

d submodels to each client, which remains hidden to an

adversary. More precisely, for each client we independently

and uniformly select one of the d submodels and send it

for an update. The clients compute the gradients on their

corresponding submodels and send these gradients back to

3
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Algorithm 1 Differentially Private Model-Parallel Training

Input: T iterations, m model weights, d submodels,

dataset S, clipping norm c, noise variance σ2

M ← init(m) // initialize weights

for t = 1 to T do

M1,M2, . . . ,Md ← create subnets(M , d)

grad sum ← zero_vector(size=m)

for x in S do

k ← random_integer(1, 2, . . . , d)
grad ← ∂

∂M
Loss(Mk, x) // gradient descent,

treating gradient of entries not in Mk as 0
grad ← clip(grad, c)

grad sum ← grad sum + grad

end for

noisy grad sum ← N(grad sum, σ2)

update_model(M, noisy grad sum)

end for

the server. The server collects the gradients, treating the

gradient of any parameter not in the submodel as 0, and

clips the per-client gradient norm to c. The server then sums

or averages the clipped gradients and adds per-coordinate

Gaussian noise with variance determined through privacy

accounting. We summarize the centralized counterpart of

this in Algorithm 1, which can be extended to the federated

setting by treating the dataset as the set of clients.

Theorem 3.4. Each iteration of Algorithm 1 (d submodels,

noise standard deviation σ, gradient clipping norm c) with a

deterministic disjoint model splitting method satisfies (α, ϵ)-
RDP with ϵ given by Theorem 3.1, where k = 1.

The proof is in Appendix A.9.

Figure 1 compares the DP guarantee provided by Theo-

rem 3.4 to a baseline analysis with no amplification, for

{2, 4, 6, 8} submodels. The baseline is calculated using

RDP accounting for the DP-SGD Gaussian mechanism (and

is shared by all numbers of submodels because existing

methods do not take model parallelism into account). The

improvement is significant. More figures can be found in

the appendix, in Figures 5 and 6.

3.2.2. PARTIAL MODEL SPLITTING

In practice, the model splitting method we use may not split

the entirety of trainable parameters into disjoint submodels.

For example, (Dun et al., 2022) argues that when applying

independent subnet training to ResNet, the first few blocks

and the last few blocks of the model are sensitive to pruning

while the middle blocks are less sentitive. When forming

submodels, we may want to include the first and last blocks

in all submodels while partitioning the middle blocks into d

disjoint sets.

In this such cases, Theorem 3.4 does not directly apply, but

Figure 1. The graph compares the noise standard deviation vs the

ϵ privacy cost in (ϵ, δ)-DP with and without applying our amplifi-

cation, where δ = 10−5 and we train for 1200 iterations. The data

is Poisson subsampled with rate 0.1. Lower ϵ and less noise are

better.

we can proceed by dividing the model into a “non-split” part

and a “split” part. In the example above, the non-split part

would be the first and the last blocks of ResNet and the

split part would be the middle blocks. We can use separate

clipping norms for these two parts, and for the non-split

part we can use a regular privacy accounting method while

the split part can benefit from privacy amplification via the

method described in Sections 3.2.1. The RDP costs of the

two parts can be directly added together by the composition

theorem of RDP.

3.2.3. MODEL SPLITTING WITH DROPOUT

In Sections 3.2.1 and 3.2.2, we show how the analysis ap-

plies to models with some parameters subject to splitting

and some not, while requiring that the parameters subject

to splitting be split into disjoint subsets. This section shows

that the requirement for disjoint subnets can be relaxed. For

example, subnetworks can be created locally and indepen-

dently at each client by using dropout. This approach has

been used in (Konečnỳ, 2016; Wen et al., 2022; Guliani et al.,

2022) to limit per client communication and computation.

In Section 3.2.1, any arbitrary way to split the model into

disjoint submodels is valid. In fact, if we have multiple

ways to split the model into disjoint submodels, we can also

use a probabilistic mixture of these disjoint partitionings as

stated in the next theorem. In order to assign a subnetwork

to a client in a given iteration, we now proceed in two steps.

We first choose a way to partition the model into disjoint

submodels (possibly in a probabilistic manner, not necessar-

ily uniformly at random) and then one submodel from the

chosen partitioning uniformly at random, which is then as-
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signed to the client. While the subnetwork assigned to each

client comes from this probabilistic mixture of disjoint par-

titionings, assignment is still independent across different

users. Also note that with this probabilistic mixture model,

it is possible the submodels trained in a given iteration are

no longer disjoint. In the next theorem, we show that a

similar privacy guarantee to Theorem 3.4 still holds in this

case.

Theorem 3.5. Each iteration of Algorithm 1 (d submodels,

noise standard deviation σ, gradient clipping norm c) with

a model splitting method that is a probabilistic mixture of

disjoint model splitting methods satisfies (α, ϵ)-RDP with ϵ

given by Theorem 3.1, where k = 1.

The proof is in Appendix A.10.

Remark 3.6. We believe Theorem 3.5 can be potentially

tightened. It only utilizes the randomness in submodel se-

lection conditioned on disjoint partitioning of the model,

but not the randomness in how the disjoint partitioning is

selected. Thus, it has the same privacy guarantee as Theo-

rem 3.4.

As a corollary, Theorem 3.5 applies to a special case of

dropout—that is, dropout layers that drop each node in the

layer (and its associated inputs and outputs) with probability

0.5, which happens to be a common choice of dropout rate

when applied to a hidden layer. In a broad sense, dropout

can be seen as a form of implicit model parallelism, as it

effectively trains different submodels by randomly deacti-

vating neurons during training.

To state it formally, we first note that if a node in a network

is dropped out, gradients of the weights touching that node

in the preceding and succeeding layers are 0, because in

the preceding layer, weights that contribute to the dropped

node no longer participate in training, and in the succeeding

layer, weights that interact with the dropped node are no

longer in training. Assuming dropout is applied to a subset

of the hidden layers, we consider the “split part” of the

network (see Section 3.2.2) to be the model coefficients

preceding and succeeding these dropout layers (this is the set

of parameters that can be potentially impacted by dropping

the nodes in these layers). Similar to Section 3.2.2, we use

Algorithm 2 to update the gradients in this “split part” (and

regular DP-SGD on the “non-split part”) which results in

the following privacy amplification guarantee.

Corollary 3.7. Each iteration of Algorithm 2 (noise stan-

dard deviation σ, gradient clipping norm c) satisfies (α, ϵ)-
RDP with ϵ given by Theorem 3.1, where d = 2 and k = 1.

The proof is in Appendix A.11.

Algorithm 2 Differentially Private Training with Dropout

Input: T iterations, m model weights, dataset S, clipping

norm c, noise variance σ2

M ← init(m) // initialize weights

for t = 1 to T do

grad sum ← zero_vector(size=m)

for x in S do

grad ← ∂
∂M

Loss(M,x, dropout rate=0.5)
// gradient descent

grad ← clip(grad, c)

grad sum ← grad sum + grad

end for

noisy grad sum ← N(grad sum, σ2)

update_model(M, noisy grad sum)

end for

3.3. Balanced Iteration Subsampling

In this section, we present a novel data subsampling scheme,

and show that Theorem 3.1 can be applied to analyze its

associated privacy gain. This data subsampling method can

be used both in centralized (single-server) private training or

in a federated scenario. We note that this data partitioning

approach is orthogonal to the model partitioning approaches

we studied in the previous section.

Consider the following sampling scheme for differentially

private neural network training. Let T be the total number

of iterations in the training process. For each sample x

in our dataset, we randomly choose k of the T iterations,

include x in the k chosen iterations, and not include x in

the remaining T − k iterations. Then, for each iteration,

we form our training subset by gathering all samples for

which we chose this iteration. The randomization in the

procedure (i.e. samples used in each iteration) shall remain

hidden from the adversary.2 In the case of federated learning

(where instead of samples we assign clients to iterations),

this procedure is similar to random check-ins (Balle et al.,

2020), in which each client “opts in” at a random iteration

with probability p and “opts out” from training entirely with

probability 1− p. When p = 1, this model corresponds to

Balanced Iteration Subsampling for k = 1.

It is also worthwhile to compare Balanced Iteration Subsam-

pling to Poisson Subsampling (Zhu & Wang, 2019), where

in each iteration, we include each sample with probability γ.

The main difference is that in Poisson sampling, the num-

ber of times each sample is included in training follows a

Binomial(T, γ) distribution, with an expectation of Tγ but

it could range from 0 to T , whereas in our case, each sample

is included in training exactly k times. If γ = k
T

, as T →∞,

2A concurrent work (Feldman & Shenfeld, 2025) analyzes the
same subsampling technique and proposes an RDP bound that is a
special case of our (2) with k = 1. See Remark 3.9 for more.
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these two subsampling schemes become equivalent.

Theorem 3.8. Balanced Iteration Subsampling composed

with Gaussian Mechanism with l2 sensitivity c satisfies

(α, ϵ)-RDP with ϵ given by Theorem 3.1, where d = T , the

total number of iterations, and k is the number of iterations

each sample participates in.

The proof is found in Appendix A.12.

Remark 3.9. When k = 1, the first term in (2) is exactly

the same as the expression computed in the unpublished

work (Liew & Takahashi, 2022) and the concurrent work

(Feldman & Shenfeld, 2025) modulo minor combinatorial

simplifications, where it appears that in the former, the au-

thors mistakenly use the bound for the Shuffle Gaussian

Mechanism. In the Shuffle Gaussian Mechanism, each sam-

ple is used in only one random iteration, but the assignments

of different samples to iterations are dependent since the

batch size used in each iteration is fixed, so the analysis

(A.12) does not apply to this case. Our Balanced Iteration

Subsampling with k = 1 is similar to the Shuffle Gaus-

sian Mechanism in the sense that each sample is used in

only one random iteration but it maintains independence

across samples. We also remark that the second term in

(2) is numerically smaller than the first term, so (2) and the

aforementioned works are practically the same, while (3) is

slightly looser but much more computationally efficient.

Remark 3.10. When applying Balanced Iteration Subsam-

pling, we could also use a small T and k and compose

N sequential training runs, where each run would be one

epoch. Doing so would incur a slightly higher privacy cost

than running TN iterations total and using each data point

in kN random iterations, which is intuitive because there

is less randomness in the first case when the iterations are

organized in smaller epochs. Figure 4 showcases this.

It is natural to compare the privacy guarantee in Theorem 3.8

to Poisson Subsampling, whose RDP privacy guarantee is

stated in the below theorem for reference.

Theorem 3.11. (Zhu & Wang, 2019) The Poisson Subsam-

pled Gaussian Mechanism with l2 sensitivity c and subsam-

pling rate γ satisfies (α, ϵ)-RDP with

ϵ(α) =
1

α− 1
log

{

(1− γ)α−1(αγ − γ + 1)

+
α
∑

l=2

(

α

l

)

(1− γ)α−lγl exp

(

l(l − 1)c2

2σ2

)

}

.

When using the tighter upper bound given by (2), the RDP

privacy guarantee of Balanced Iteration Subsampling is al-

ways better than Poisson Subsampling, with a small margin

when T, k are large and a slightly larger margin when T is

very small. The computationally efficient upper bound (3)

Figure 2. The ϵ(α) vs α graph for Balanced Iteration Subsampling

and Poisson Subsampling, where T = 1000, k = 100, and σ = 2.

Lower ϵ is better. For a large T like this, the noise standard

deviation to achieve the same privacy guarantee is almost identical.

is better than Poisson Subsampling whenever k
T
⪆ 0.2 and

similarly wins by a larger margin when T is very small.

The similarity in performance of these two subsampling

methods when T, k are large is intuitive, because the num-

ber of times a data point gets used by Poisson Subsampling

tends to be close to its expectation as the number of iter-

ations is large, so the two methods become similar in the

limit T →∞. Figure 2 shows this.

On the other hand, when T is small—for example, on the

order of 10—there is a nontrivial probability that the number

of times Poisson Subsampling picks a sample significantly

exceeds the expectation, which will leak more information

about that particular sample. In these cases, a large α will

keenly capture this nontrivial probability of failure, leading

to a sharp increase in the RDP privacy guarantee ϵ we can

provide for Poisson Subsampling, as illustrated in Figure 3.

This comparison also sheds light on why the ϵPoisson(α)
curve spikes up for large values of α relative to T . Fig-

ure 4 showcases the difference between the two subsampling

methods when converted to the (ϵ, δ)-DP domain.

More comparisons of these two subsampling methods (both

the T large and T small cases) can be found in the Appendix

in Figures 7 and 8.

In conclusion, we presented Balanced Iteration Subsam-

pling as an appealing alternative to Poisson Subsampling

with better privacy guarantees. More importantly, we have

shown that two completely different sources of randomness

in model and data partitioning can have a similar structure

underneath and can yield a nontrivial privacy amplification

6
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Figure 3. The ϵ(α) vs α graph for Balanced Iteration Subsampling

and Poisson Subsampling, where T = 10, k = 4, and σ = 2.

Lower ϵ is better. As α becomes large, Balanced Iteration Subsam-

pling starts to perform much better than Poisson Subsampling.

gain via the same analysis.

3.4. Proof Overview of Theorem 3.1

In this final subsection, we present an overview of the proof

of Theorem 3.1.

We first bound Dα(P ∥Q)—which we refer to as the forward

divergence—with the help of the following lemmas.

Lemma 3.12. Let P =
∑n

i=1 νiN
(

µi, σ
2I
)

and Q =

N
(

0, σ2I
)

for some vectors µi, 1 ≤ i ≤ n, and probability

measure ν. Then,

Dα(P ∥Q)

=
1

α− 1
log

∑

I∈[n]α

(

∏

i∈I

νi

)

exp









1

2σ2

∑

i,j∈[α]
i ̸=j

µ
⊺

Ii
µIj









.

The proof is in Appendix A.1. If we apply this to the setting

in Theorem 3.1, it gives the first item in Eq. (2). Although

this gives a non-integral representation of Dα(P ∥Q), the

time complexity to compute the RHS is still O(nα), where

n is the number of mixtures in P , and in this case,
(

d
k

)

, so

the time complexity to compute the RHS is O
(

dkα
)

. In

practice, to do privacy accounting, we need to efficiently

calculate Rényi DP for α = 2, 3, . . . , 100, so we need the

following lemma to further reduce computation.

Lemma 3.13. Let Pi = N (µi, σ
2I) for i = 1, 2, . . . , n

be the elements of a mixture of Gaussians. For a mix-

ture measure ν, if for two randomly chosen mixture centers

Figure 4. The δ vs T graph for Balanced Iteration Subsampling and

Poisson Subsampling, where ϵ = 10, γ = k

T
= 0.4, and σ = 2.

Lower δ and more iterations are better. Balanced Iteration Subsam-

pling Composed treats 10 iterations as an epoch, using each sample

4 times in each epoch, and composing multiple epochs together,

as suggested in Remark 3.10. Poisson Subsampling accounting is

done using RDP with Theorem 3.11 and using PLD with Google’s

PLD library (Google Differential Privacy Team, 2024). Under

these settings, with a commonly used budget δ = 10−5 (the dotted

line), either method of Balanced Iteration Subsampling is able to

perform 10 more iterations out of 60.

µj , µk
i.i.d.
∼ ν it holds that µ

⊺

jµk
dist.
= µ

⊺

jµk | µj , then

Dα

(

n
∑

i=1

νiN
(

µi, σ
2I
)

∥

∥

∥N
(

0, σ2I
)

)

≤ D2

(

n
∑

i=1

νiN

(

µi,
2σ2

α
I

)

∥

∥

∥N

(

0,
2σ2

α
I

)

)

for α ≥ 2, α ∈ N.

The proof is in Appendix A.2. The mixture centers Sd,k

and mixture measure that assigns 1
|Sd,k|

to everything in

Theorem 3.1 satisfy the requirement of Lemma 3.13 because

Sd,k contains all permutations of the vector comprised of

k 1s and d − k 0s, so by symmetry, under µj , µk
i.i.d.
∼ ν,

the distribution of µ
⊺

jµk is invariant given µj . Combining

Lemma 3.13 with Lemma 3.12 and plugging in α = 2, we

get the following upper bound on the forward divergence.

Corollary 3.14. Let P and Q be defined the same way as

in Theorem 3.1. Then,

Dα(P ∥Q) ≤ log

(

1
(

d
k

)

k
∑

l=0

(

k

l

)(

d− k

k − l

)

exp

(

αc2l

2σ2

)

)

.
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When k = 1, the above is further simplified to

log

(

1

d

(

exp

(

αc2

2σ2

)

+ (d− 1)

))

.

Corollary 3.14 merges the summation of
(

d
k

)2
terms into

a sum of combinatorial terms. A detailed breakdown is in

Appendix A.3. It can now be computed in O(dk) time when

k > 1 and O(1) time when k = 1.

The following lemmas build up the upper bound of

Dα(Q ∥ P )—which we refer to as the reverse divergence.

Lemma 3.15. Let Sd,k = {µ ∈ {0, 1}d | ∥µ∥1= k} be

the set of all binary vectors in R
d with k number of 1s and

d − k number of 0s. Let P = 1
|Sd,k|

∑

µ∈Sd,k
N (cµ, σ2I)

and Q = N (0, σ2I), where c and σ2 are constants. Let

Q′ = N ( c
|Sd,k|

∑

µ∈Sd,k
µ, σ2I) = N

(

ck
d
1, σ2I

)

be a

Gaussian centered at the average of P ’s mixture centers.

Then

Dα(Q ∥ P ) = Dα(Q ∥Q
′) +Dα(Q

′ ∥ P )

for all α > 1.

Remark 3.16. The setup in the lemma can be more general-

ized, but the current statement is sufficient for our purpose.

Again, the proof is deferred to Appendix A.4. We now

seek to calculate or upper bound each of Dα(Q ∥Q
′) and

Dα(Q
′ ∥ P ) individually. Since Q and Q′ are both multi-

variate Gaussians with the same covariance matrix, we can

compute the exact divergence between them.

Corollary 3.17. Let Q and Q′ be defined the same way as

in Lemma 3.15. We have

Dα(Q ∥Q
′) =

αc2k2

2σ2d
.

A proof is in Appendix A.6.

The following lemma deals with the second addend on the

RHS of Lemma 3.15.

Lemma 3.18. Let Sd,k = {µ ∈ {0, 1}d | ∥µ∥1= k} be

the set of all binary vectors in R
d with k number of 1s

and d − k number of 0s. For some fixed constants c, σ2,

let µ0 = 1
|Sd,k|

∑

µ∈Sd,k
µ = k

d
be the mean of Sd,k. Let

P ′′ = 1
|Sd,k|

∑

µ∈Sd,k
N (c(µ− µ0), σ

2Id) be a mixture of

Gaussians with centers Sd,k normalized to have a mean of

0 and scaled by c. Let Q′′ = N (0, σ2Id). Then,

Dα(Q
′′ ∥ P ′′) ≤ Dα

(

Q′′
∥

∥

∥
N
(

0, σ2 exp
(

c2k(d−k)
σ2d2

)

Id

))

for all α ≥ 2.

The proof is again deferred to Appendix A.7. Note that

Q′′ and P ′′ in Lemma 3.18 are the same as Q′ and P in

Lemma 3.15 but offset by − ck
d
1, so we can apply the trans-

lational invariance of Renyi divergence.

Now we have two multivariate Gaussians with the same

mean but different covariance matrices, whose Rényi diver-

gence we can also calculate exactly.

Corollary 3.19. Let Q′′ and P ′′ be defined the same way

as in Lemma 3.18. Let Q′ and P be defiend the same way

as in Lemma 3.15. Then,

Dα(Q ∥ P
′)

= Dα(Q
′′ ∥ P ′′) by translational invariance

≤
1

2(α− 1)
log

exp
(

αc2k(d−k)
σ2d

)

(

α exp
(

c2k(d−k)
σ2d2

)

+ (1− α)
)d

.

The proof is in Appendix A.8.

Proof of Theorem 3.1. Combining Corollary 3.17 and

Corollary 3.19 bounds RHS of Lemma 3.15. Further com-

bining with Lemma 3.12 and Corollary 3.14 gives Theo-

rem 3.1.

4. Experiments

4.1. Model Splitting

In this section, we train ResNet-101 on CIFAR-10 with

model splitting under both centralized setting and federated

setting, and analyze their respective privacy guarantees by

using the techniques and theoretical results presented in Sec-

tions 3.2.1 and 3.2.2. We simulate a differentially private

fine-tuning scenario. We split the dataset into two halves,

each containing half of the images from each class. We use

the first half to pre-train the model without DP, but only with

8 of the 10 classes. This non-private pretraining resembles

having access to public data with a different distribution

or a pretrained model for a different task. We end the pre-

training when validation accuracy reaches 70%. Then, we

use the second half of the dataset for private finetuning. Un-

der centralized training, we train for 1000 iterations using

(8, 10−5)-DP. Under federated training, each user holds 2

samples and we train for 250 sessions. In each training

session, each user trains their received model locally for 3 it-

erations, sends the model update to the server, and the server

aggregates the model updates and adds noise to ensure a

user-level (8, 10−5)-DP. To make the training compatible

with DP, we replace the batch normalization layers in the

model with group normalization layers.

We compare three solutions. The first “baseline” uses inde-

pendent subnet training for private fine-tuning as introduced

in Section 3.2.2 but the privacy analysis is done with exist-

ing tools (i.e., the standard RDP accounting for DP-SGD

pipeline). The second “amplification” uses the same exact

8
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Table 1. Comparison of three domain adaptation methods with a

data subsampling rate of 0.1, under centralized setting for sample-

level (8, 10−5)-DP. Noise standard deviation is relative to the

clipping norm (and already divided by expected batch size). Val-

idation accuracies are best of 3 random seeds and have standard

deviations around 0.7%.

METHOD

# OF

SUB-
MODELS

VALIDATION

ACCURACY

NOISE

STD. DEV.

ADDRESSES

LIMITED

COMPUTE?

BASELINE 3 79.80% 6.62× 10−4
√

AMPLIFICATION

(OURS)
3 82.43% 5.44× 10−4

√

BASELINE 8 76.80% 6.62× 10−4
√ √

AMPLIFICATION

(OURS)
8 80.52% 4.96× 10−4

√ √

RELAXATION 1 84.99% 6.62× 10−4 ×

Table 2. Comparison of three domain adaptation methods under

federated setting for user-level (8, 10−5)-DP. Noise standard de-

viation is relative to the clipping norm (and already divided by

number of users). Validation accuracies are best of 3 random seeds

and have standard deviations around 0.7%.

METHOD

# OF

SUB-
MODELS

VALIDATION

ACCURACY

NOISE

STD. DEV.

ADDRESSES

LIMITED

COMPUTE?

BASELINE 3 78.47% 6.75× 10−4
√

AMPLIFICATION

(OURS)
3 80.28% 5.72× 10−4

√

BASELINE 8 76.96% 6.75× 10−4
√ √

AMPLIFICATION

(OURS)
8 79.11% 5.36× 10−4

√ √

RELAXATION 1 82.18% 6.75× 10−4 ×

training method but privacy accounting is done with our

method in Section 3.2. In both cases, we do not split the

first 5 and last 2 blocks of ResNet-101 but partition the

middle 22 blocks into three or eight disjoint sets to form

subnetworks, one of which is then randomly assigned to

each sample. The third “relaxation” assumes client compute

is not a problem and each client tunes the full model (with-

out model splitting). The results are shown in Table 1 for

centralized setting and Table 2 for federated setting. The

results of this experiment show that in both setting, the use

of model parallelism techniques to handle limited client

compute is a viable strategy with some decrease in overall

accuracy due to model splitting, but our privacy amplifica-

tion technique improves the accuracy of model splitting by

allowing to inject less noise for the same privacy guarantee.

4.2. Balanced Iteration Subsampling

We experimented with differentially private training using

Balanced Iteration Subsampling vs Poisson Subsampling

as the data subsampling technique. Since the number of

training iterations is large (on the order of 1000), the two

methods have a similar training dynamic and privacy guar-

antee. In particular, the noise standard deviations differ from

each other by less than 1% (similar to Figure 8b). Thus, the

statistics of the validation accuracy show little difference.

For training WideResNet-40-4 from scratch on CIFAR-10,

(8, 10−5)-DP, 2000 iterations, using each sample 655 times

for Balanced Iteration Subsampling and with probability
655
2000 in each iteration for Poisson Subsampling. Balanced

Iteration Subsampling injects noise with σ = 10.17 for val-

idation accuracy of 70.21%, while Poisson Subsampling

injects noise with σ = 10.20 for validation accuracy of

70.13%. For finetuning ResNet-101 (using the same setting

as Section 4.1 but without model splitting), Balanced Itera-

tion Subsampling injects noise with σ = 2.36 for validation

accuracy of 84.86%, while Poisson Subsampling injects

noise with σ = 2.34 for validation accuracy of 84.99%. The

results are best of 3 random seeds. This shows that the two

subsampling methods achieve very similar privacy-accuracy

tradeoffs experimentally, which reinforces our point that

Balanced Iteration Subsampling is a valid alternative when

we cannot apply Poisson Subsampling.

5. Conclusion

In this work, we identify and leverage the inherent random-

ness in ML training algorithms for privacy amplification.

These sources of randomness emerge whenever each sample

interacts with a randomly selected portion of the training

process, whether through submodels or structured subsam-

pling. However, existing methods have not fully captured

these effects. We introduce a mathematical framework to

quantify the privacy gains achieved through model splitting

and dropout—two techniques used in federated learning that

help reduce computational and communication costs—as

well as through Balanced Iteration Subsampling, an alterna-

tive to Poisson Subsampling that provides improved privacy

guarantees in certain regimes.

This work makes one step forward to systematically quanti-

fying all forms of randomness encountered in training and

their contributions to privacy amplification. To this end,

we provide a deeper understanding of how structured ran-

domness enhances privacy-preserving machine learning. A

more rigorous analysis of these interactions will lead to

better theoretical bounds and improved implementations of

privacy-preserving methods. A promising future direction is

to extend this framework to other training paradigms, further

strengthening the connection between structured random-

ness and differential privacy.
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A. Proofs.

A.1. Proof of Lemma 3.12

Let d be the dimension of µi. Then,

Dα(P ∥Q) =
1

α− 1
log

∫

Rd

PαQ1−αdx

=
1

α− 1
log

∫

Rd

1

(2πσ2)
d
2

∑

I∈[n]α

(

∏

i∈I

νi

)

exp

(

−
1

2σ2

(

∑

i∈I

∥x− µi∥2−(α− 1)∥x∥2

))

dx

=
1

α− 1
log

∑

I∈[n]α

(

∏

i∈I

νi

)

∫

Rd

1

(2πσ2)
d
2

exp

(

−
1

2σ2

(

∑

i∈I

∥x− µi∥2−(α− 1)∥x∥2

))

dx

=
1

α− 1
log

∑

I∈[n]α

(

∏

i∈I

νi

)

exp





1

2σ2

∑

i,j∈[α], i ̸=j

µ
⊺

Ii
µIj



 .

The ⊺ in the superscript means transpose. The second line comes from expanding the exponentials. The third line comes

from linearity. The fourth line comes from completing the squares then integrating multivariate Gaussian densities.

A.2. Proof of Lemma 3.13

Apply Lemma 3.12 to both sides and replace ν with the uniform distribution to get

Dα(P ∥Q) =
1

α− 1
log





1

nα

∑

I∈[n]α

exp





1

σ2

∑

i,j∈[α], i<j

µ
⊺

Ii
µIj







 . (4)

Similarly,

D2

(

n
∑

i=1

νiN

(

µi,
2σ2

α

)

∥

∥

∥N

(

0,
2σ2

α

)

)

= log





1

n2

∑

I∈[n]2

exp

(

1

σ2

α

2
µ
⊺

I1
µI2

)



 .

Exponentiating both sides and rearranging, we want to show that

1

nα

∑

I∈[n]α

exp





1

σ2

∑

i,j∈[α], i<j

µ
⊺

Ii
µIj





?
≤





1

n2

∑

I∈[n]2

exp

(

1

σ2

α

2
µ
⊺

I1
µI2

)





α−1

.

Notice that the LHS is the MGF MX(t) of the random variable

X =
∑

i,j∈[α], i<j

µ
⊺

Ii
µIj

where I ∼ Unif([n]α) and t = 1
σ2 . The RHS is likewise the MGF MY (t) of Y , who is the sum of α − 1 i.i.d. copies of

α
2 µ

⊺

T1
µT2

where T ∼ Unif([n]2), i.e.,

Y =
α

2

α−1
∑

k=1

µ
⊺

Tk
1
µTk

2

where T k i.i.d.
∼ Unif

(

[n]2
)

for k = 1, 2, . . . , α− 1, and t = 1
σ2 . Next, since each entry of T k is chosen according to ν and

we assume that µ
⊺

jµk
dist.
= µ

⊺

jµk | µj for µj , µk
i.i.d.
∼ ν, we can set T k

1 to be equal to T 1
1 for k = 2, . . . , α − 1 and leave

Y with the same distribution (and thus the same MGF). Next, since now the T k
1 ’s are the same, we can set up a bijection

between outcomes of I and the outcomes of Tk as follows:

(I1, I2, I3, I4, . . . , Iα) ←→ (T 1
1 , T

1
2 , T

2
2 , T

2
2 , . . . , T

α−1
2 )

13
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and can verify that both random objects follow the same distribution Unif([n]α). This means if now we let I ∼ Unif([n]α)
and

X =
∑

i,j∈[α], i<j

µ
⊺

Ii
µIj , Y =

α

2

α
∑

i=2

µ
⊺

I1
µIi ,

these two random variables would have the same distribution as first specified. Next, we condition on a specific histogram

h (where histogram is defined in the above section). The random variable X | h is a constant as X sums up all pair-wise

correlations no matter the order. On the other hand, the distribution of Y | h is non-trivial but has mean equal to X | h
because we can rewrite X and Y as

Yj =

α
∑

i=1

µ
⊺

Ij
µIi − µ

⊺

Ij
µIj , X =

1

2

α
∑

j=1

Yj , Y =
α

2
Y1

and the Yj’s have the same distribution given h. So, we have

E[etY | h] ≥ etE[Y |h] = E[etX | h] for t ≥ 0.

Note that t ≥ 0 is always satisfied as t = 1
σ2 ≥ 0. With the Law of Iterated Expectations,

MY (t) = Eh

[

EI [e
tY | h]

]

≥ Eh

[

EI [e
tX | h]

]

= MX(t).

A.3. Proof of Corollary 3.14

The mixture centers of P are

c ·

{

v ∈ {0, 1}d
∣

∣

∣

∣

d
∑

i=1

vi = k

}

.

Combining Lemma 3.13 and Equation 4, we have the following upper bound on the forward divergence:

Dα(P ∥Q) ≤ log







1
(

d
k

)2

(dk)
∑

i=1

(dk)
∑

j=1

exp
( α

2σ2
µ
⊺

i µj

)






.

First, since Sd,k contains all permutations of binary vectors with k 1s, by symmetry, the value of
∑n

j=1 exp
(

α
2σ2µ

⊺

i µj

)

is

not dependent on µi, so we reduce it to

log





1
(

d
k

)

n
∑

j=1

exp
( α

2σ2
µ
⊺

1µj

)



 .

Next, we count how many ways µ
⊺

1µj can equal c2l for 0 ≤ l ≤ k. The vector µj needs to have l number of 1s in the first k

entries, and the rest k − l number of 1s in the last d− k entries, giving a total of
(

k
l

)(

d−k
k−l

)

ways. So,

Dα(P ∥Q) ≤ log

(

1
(

d
k

)

k
∑

l=0

(

k

l

)(

d− k

k − l

)

exp

(

αc2l

2σ2

)

)

. (5)

In the case that k = 1 (used in model splitting), the above is further reduced to

log

(

1
(

d
1

)

((

1

0

)(

d− 1

1

)

exp(0) +

(

1

1

)(

d− 1

0

)

exp

(

αc2

2σ2

))

)

= log

(

1

d

(

exp

(

αc2

2σ2

)

+ (d− 1)

))

.
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A.4. Proof of Lemma 3.15

Without loss of generality, let c = 1 as c is a scaling factor for all Gaussian centers so we can instead re-scale the standard

deviation σ to achieve the same effect. To prove the lemma, we apply an offset vector −kα
d
1 to the integrand of Dα(Q

′ ∥P ),

Dα(Q
′ ∥ P ) =

1

α− 1
log







(

2πσ2
)− d

2

∫

Rd

[

∏d
i=1 exp

(

− 1
2σ2

(

xi −
k
d

)2
)]α

[

1
|Sd,k|

∑

µ∈Sd,k

∏d
i=1 exp

(

− 1
2σ2 (xi − µi)2

)

]α−1 dx1 · · · dxd







=
1

α− 1
log







(

2πσ2
)− d

2

∫

Rd

[

∏d
i=1 exp

(

− 1
2σ2

(

xi −
k
d
+ kα

d

)2
)]α

[

1
|Sd,k|

∑

µ∈Sd,k

∏d
i=1 exp

(

− 1
2σ2

(

xi − µi +
kα
d

)2
)]α−1 dx1 · · · dxd






.

In the exponents of the numerator,

(

xi −
k

d
+

kα

d

)2

=

(

xi −
k

d
(1− α)

)2

= x2
i + 2

k

d
(α− 1)xi +

(

k

d
(α− 1)

)2

.

The numerator can then be re-written as

[

d
∏

i=1

exp

(

−
1

2σ2
x2
i

)

]α

·
d
∏

i=1

exp

(

−
1

2σ2
· 2

k

d
α(α− 1)xi

)

· exp

(

−
1

2σ2
· αd

(

k

d
(α− 1)

)2
)

.

In the exponents of the denominator, µi is either 1 or 0 since µ is a binary vector. Case by case,

(

xi − 1 +
kα

d

)2

= (xi − 1)2 + 2
kα

d
xi − 2

kα

d
+

(

kα

d

)2

and
(

xi +
kα

d

)2

= x2
i + 2

kα

d
xi +

(

kα

d

)2

.

Since every µ contains k number of 1s and d− k number of 0s, exactly k of the terms in the product have the former form

and the rest d− k terms have the latter form. We can re-write the denominator as





1

|Sd,k|

∑

µ∈Sd,k

d
∏

i=1

exp

(

−
1

2σ2
(xi − µi)

2

)





α−1

·
d
∏

i=1

exp

(

−
1

2σ2
· 2

k

d
α(α− 1)xi

)

· exp

(

−
1

2σ2
· (α− 1)

(

d

(

kα

d

)2

− 2k
kα

d

))

.

The middle terms in the numerator and denominator are the same so they cancel out, leaving us with

Dα(Q
′ ∥ P ) =

1

α− 1
log






(2πσ2)−

d
2

∫

Rd

[

∏d
i=1 exp

(

− 1
2σ2x

2
i

)

]α

[

1
|Sd,k|

∑

µ∈Sd,k

∏d
i=1 exp

(

− 1
2σ2 (xi − µi)2

)

]α−1 dx1 · · · dxd

·
exp

(

− 1
2σ2 · αd

(

k
d
(α− 1)

)2
)

exp
(

− 1
2σ2 · (α− 1)

(

d
(

kα
d

)2
− 2k kα

d

))







=
1

α− 1
log






(2πσ2)−

d
2

∫

Rd

[

∏d
i=1 exp

(

− 1
2σ2x

2
i

)

]α

[

1
|Sd,k|

∑

µ∈Sd,k

∏d
i=1 exp

(

− 1
2σ2 (xi − µi)2

)

]α−1 dx1 · · · dxd






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+
1

α− 1
log





exp
(

− 1
2σ2 · αd

(

k
d
(α− 1)

)2
)

exp
(

− 1
2σ2 · (α− 1)

(

d
(

kα
d

)2
− 2k kα

d

))





= Dα(Q ∥ P ) +
1

α− 1
log





exp
(

− 1
2σ2

k2

d
α(α− 1)2

)

exp
(

− 1
2σ2

k2

d
α(α− 1)(α− 2)

)





= Dα(Q ∥ P ) +
1

α− 1
log

(

exp

(

−
1

2σ2

k2

d
α(α− 1)

))

= Dα(Q ∥ P )−
α

2σ2

k2

d

= Dα(Q ∥ P )−
α

2σ2

∥

∥

∥

∥

0−
k

d
1d

∥

∥

∥

∥

2

2

= Dα(Q ∥ P )−Dα(Q ∥Q
′).

A.5. Rényi Divergence between Two Multivariate Gaussians

Proposition A.1. (Gil et al., 2013) Let fi = N (µi,Σ) and fj = N (µj ,Σ) be two multivariate Gaussian distributions with

the same covariance matrix and different means. Then,

Dα(fi ∥ fj) =
α

2
(µi − µj)

⊺Σ−1(µi − µj).

Proposition A.2. (Gil et al., 2013) Let fi = N (µ,Σi) and fj = N (µ,Σj) be two multivariate Gaussian distributions with

the same mean. Then,

Dα(fi ∥ fj) =
1

2(α− 1)
log
|Σi|

1−α|Σj |
α

|(Σα)∗|

for

(Σα)
∗ = αΣj + (1− α)Σi

whenever αΣ−1
i + (1− α)Σ−1

j is positive definite.

A.6. Proof of Corollary 3.17

The two distributions are Q = N
(

0, σ2I
)

and Q′ = N
(

ck
d
1, σ2I

)

. Using Proposition A.1,

Dα(Q ∥Q
′) =

α

2

ck

d
1
⊺
(

σ2I
)−1 ck

d
1 =

αc2k2

2d2

d
∑

i=1

1

σ2
=

αc2k2

2σ2d
.

A.7. Proof of Lemma 3.18

The set Sd,k = {v ∈ {0, 1}d | ∥v∥1= k} lies in a subspace of Rd with dimension d− 1 because there is one and only one

sum constraint on the entries, which removes one degree of freedom. Since we also offset Sd,k by its mean when forming

the mixture centers of P ′′, the zero vector also lies in the same subspace as Sd,k − µ. The following lemma establishes that

we can instead look at Renyi divergence on the d− 1-dimensional subspace instead of Rd.

Lemma A.3. Let Sd−1 be a set of points in R
d−1 and Sd be the same set of points in R

d, where each point’s last component

is 0. Then,

Dα



N
(

0, σ2Id−1

)

∥

∥

∥

∥

1

|Sd−1|

∑

µ∈Sd−1

N
(

µ, σ2Id−1

)



 = Dα



N
(

0, σ2Id
)

∥

∥

∥

∥

1

|Sd−1|

∑

µ∈Sd

N
(

µ, σ2Id
)





for all α ≥ 2.
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Proof. For notational convenience, let x1:d−1 be the vector formed by taking the first d− 1 components of x, where x ∈ R
d.

Dα



N
(

0, σ2Id
)

∥

∥

∥

∥

1

|Sd−1|

∑

µ∈Sd

N
(

µ, σ2Id
)





=
1

α− 1
log

∫

(

2πσ2
)

d
2

exp
(

− 1
2σ2 ∥x∥22

)α

(

1
|Sd−1|

∑

µ∈Sd
exp

(

− 1
2σ2 ∥x− µ∥22

)

)α−1 dx1 . . . dxd

=
1

α− 1
log

∫

(

2πσ2
)

d
2

(

exp
(

− 1
2σ2

(

∥x1:d−1∥
2
2+x2

d

)))α

(

1
|Sd−1|

∑

µ∈Sd
exp

(

− 1
2σ2 (∥x1:d−1 − µ1:d−1∥22+(xd − µd)2)

)

)α−1 dx1 . . . dxd

=
1

α− 1
log

∫

(

2πσ2
)

d
2

(

exp
(

− 1
2σ2 ∥x1:d−1∥

2
2

)

exp
(

− 1
2σ2x

2
d

))α

(

1
|Sd−1|

∑

µ∈Sd
exp

(

− 1
2σ2 ∥x1:d−1 − µ1:d−1∥22

)

exp
(

− 1
2σ2x

2
d

)

)α−1 dx1 . . . dxd

=
1

α− 1
log

∫

(

2πσ2
)

d
2

(

exp
(

− 1
2σ2 ∥x1:d−1∥

2
2

))α

(

1
|Sd−1|

∑

ν∈Sd−1
exp

(

− 1
2σ2 ∥x1:d−1 − ν∥22

)

)α−1 exp

(

−
1

2σ2
x2
d

)

dx1 . . . dxd

=
1

α− 1
log

∫

(

2πσ2
)

d−1
2

(

exp
(

− 1
2σ2 ∥x1:d−1∥

2
2

))α

(

1
|Sd−1|

∑

ν∈Sd−1
exp

(

− 1
2σ2 ∥x1:d−1 − ν∥22

)

)α−1 dx1 . . . dxd−1

= Dα



N
(

0, σ2Id−1

)

∥

∥

∥

∥

1

|Sd−1|

∑

µ∈Sd−1

N
(

µ, σ2Id−1

)



 .

Below is the proof for Lemma 3.18.

Let P ′′′ = N (0, σ2 exp ( c
2k(d−k)
σ2d2 )). We first establish that P ′′(0) = P ′′′(0) ≤ Q′′(0). To see that fact, the set Sd,k − µ is

a set that contains all vectors with k entries equal to
c(d−k)

d
and d− k entries equal to − ck

d
, so

P ′′(0) = (2πσ2)−
d
2 exp

(

−
1

2σ2

(

c2(d− k)2

d2
· k +

c2k2

d2
· (d− k)

))

= (2πσ2)−
d
2 exp

(

−
1

2σ2

c2k(d− k)

d

)

,

P ′′′(0) =

(

2πσ2 exp

(

c2k(d− k)

σ2d2

))− d
2

= (2πσ2)−
d
2 exp

(

−
c2k(d− k)

2σ2d

)

= P ′′(0),

Q′′(0) = (2πσ2)−
d
2 ≥ P ′′(0).

To see the proof, we first look at the simple case when d = 2 and k = 1 so Sd,k contains two elements. By Lemma A.3, we

can reduce the dimension by 1 and look at the scalar case where P ′′
d=2 = 1

2 (N (−1, σ2))+N (1, σ2)) and Q′′
d=2 = N (0, σ2),

where we w.l.o.g. scale c such that P ′′
d=2 has mixture centers at −1 and 1 since scaling c by β is equivalent to scaling σ

by 1
β

. Then, P ′′′
d=2 is a Gaussian centered at 0 and having variance σ2 exp ( 1

σ2 ) > σ2 such that P ′′
d=2(0) = P ′′′

d=2(0). Since

P ′′
d=2 has smaller variance compared to P ′′′

d=3 and has mixture centers that surround 0 on both sides, as |x|→ ∞, for small

values of |x|, P ′′
d=2(x) either increases, or decreases slower than P ′′′

d=2(x), and for large values of |x|, P ′′
d=2(x) decreases

much faster than P ′′′
d=2(x). Combined with the fact that P ′′

d=2(0) = P ′′′
d=2(0), this means there exists a constant a such that

P ′′
d=2(x) ≥ P ′′′

d=2(x) for x ∈ [0, a] and P ′′
d=2(x) < P ′′′

d=2(x) for x ∈ (a,∞). To complete the argument,

Dα(Q
′′
d=2 ∥ P

′′′
d=2)−Dα(Q

′′
d=2 ∥ P

′′
d=2)
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=

∫ ∞

−∞

Q′′
d=2(x)

α

P ′′′
d=2(x)

α−1
−

Q′′
d=2(x)

α

P ′′
d=2(x)

α−1
dx

=

∫ ∞

−∞

∫ P ′′
d=2(x)

P ′′′
d=2(x)

d

du

Q′′
d=2(x)

α

uα−1
dudx by the Fundamental Theorem of Calculus

=

∫ ∞

−∞

∫ P ′′
d=2(x)

P ′′′
d=2(x)

(α− 1)

(

Q′′
d=2(x)

u

)α

dudx

= 2(α− 1)









∫ a

0

∫ P ′′
d=2(x)

P ′′′
d=2(x)

(

Q′′
d=2(x)

u

)α

dudx−

∫ ∞

a

∫ P ′′′
d=2(x)

P ′′
d=2(x)

(

Q′′
d=2(x)

u

)α

dudx









= (⋆).

Since
Q′′

d=2(x)
P ′′

d=2(x)
and

Q′′
d=2(x)

P ′′′
d=2(x)

are both decreasing functions in x for x ≥ 0, we have for x0 ∈ [0, a] and x1 ∈ (a,∞),

Q′′
d=2(x0)

P ′′′
d=2(x0)

≥
Q′′

d=2(x0)

P ′′
d=2(x0)

≥
Q′′

d=2(x1)

P ′′
d=2(x1)

≥
Q′′

d=2(x1)

P ′′′
d=2(x1)

,

so the first integrand is always greater than or equal to the second integrand in (⋆). Finally, since P ′′
d=2 and P ′′′

d=2 are

probability densities and need to integrate to the same value of 1,

∫ a

0

∫ P ′′
d=2(x)

P ′′′
d=2(x)

dudx−

∫ ∞

a

∫ P ′′′
d=2(x)

P ′′
d=2(x)

dudx = 0,

so it follows that (⋆) ≥ 0. It is worthwhile to note the intuition behind the proof. Of Q′′, P ′′, and P ′′′, the distribution Q′′

assigns the most probability mass near 0. So, to minimize D(Q′′ ∥ P ∗) over P ∗, P ∗ needs to assigns more probability mass

near 0. And between P ′′ and P ′′′, the distribution P ′′ is the one that assigns more mass around 0 because they have the

same value at 0, but moving away from 0 in any direction is closer to (at least) one of P ′′’s mixture centers, so around 0, P ′′

always dominates P ′′′ so D(Q′′ ∥ P ′′) ≤ D(Q′′ ∥ P ′′′). The same argument holds true for arbitrary d, k since the mixture

centers of P ′′ surrounds 0, so along any ray from 0, there exists a such that P ′′(x) ≥ P ′′′(x) for x ∈ [0, a], and the claim

follows.

A.8. Proof of Corollary 3.19

In the context of Proposition A.2, we have

Σi = σ2Id, Σj = σ2 exp

(

c2k(d− k)

σ2d2

)

Id, (Σα)
∗ = σ2

(

α exp

(

c2k(d− k)

σ2d2

)

+ (1− α)

)

Id,

|(Σα)
∗| = σ2d

(

α exp

(

c2k(d− k)

σ2d2

)

+ (1− α)

)d

, |Σi|
1−α= σ2d(1−α), |Σj |

α= σ2dα exp

(

c2k(d− k)α

σ2d

)

.

So, by Lemma 3.18 and Proposition A.2,

Dα(Q
′′ ∥ P ′′) ≤ Dα

(

Q′′
∥

∥

∥N

(

0, σ2 exp

(

c2k(d− k)

σ2d2

)

Id

))

=
1

2(α− 1)
log
|Σi|

1−α|Σj |
α

|(Σα)∗|
=

1

2(α− 1)
log

exp
(

αc2k(d−k)
σ2d

)

(

α exp
(

c2k(d−k)
σ2d2

)

+ (1− α)
)d

.
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A.9. Proof of Theorem 3.4

Let T ∈ [d]|S| be a random vector with |S| entries, where the kth entry denotes which submodel is used to train data point

k. Let f : S × [d]|S| → R
m be the gradient function that takes in the dataset and the model correspondence for the first

|S| data points, and outputs the resulting non-noisy sum of gradients. That means, the output of f(S, T ) is deterministic

and f(S′, T ) is a random value that depends on which model is assigned to the last data point x. The function f satisfies

bounded difference as a result of gradient norm clipping of c. That is,

∥f(S′, T )− f(S, T )∥2≤ c

for all adjacent datasets S, S′ and T . We can express the output ofM as a mixture of distributions,

M(S) =
∑

T

pTN
(

f(S, T ), σ2I
)

,

M(S′) =
∑

T

pTN
(

f(S′, T ), σ2I
)

.

By the quasi-convexity of Renyi divergence,

Dα(M(S) ∥M(S′)) ≤ sup
T

Dα

(

N
(

f(S, T ), σ2I
)

∥ N
(

f(S′, T ), σ2I
))

= sup
T

Dα

(

N
(

0, σ2I
)

∥ N
(

f(S′, T )− f(S, T ), σ2I
))

.

where the last line comes as a result of the translational invariance of Renyi divergence.

The first term is a Gaussian centered at 0 and the second term is a mixture of Gaussians centered at the possible outcomes of

f(S′, T )− f(S, T ), which has d different outcomes corresponding to which of the d models the data point x is trained on,

each with probability 1
d

. The d different outcomes have disjoint support because the model parameters of the d submodels

are disjoint. Let the non-zero parts of these d outcomes be c1, . . . , cd such that ∥ck∥≤ c for all 1 ≤ k ≤ d. Since the

covariances are symmetric, we can apply a rotation to each of the d different supports—and leave the first term N
(

0, σ2I
)

unchanged—so that ck becomes ∥ck∥e1, where e1is the first standard basis. Now in each of the d supports, the first and

second terms are both product distributions that are different in the first entry and identical in the rest, so we can drop the

coordinates where they are the same. The divergence thus becomes

Dα(M(S) ∥M(S′)) ≤ sup
∥c1∥≤c,...,∥cd∥≤c

Dα

(

N (0, σ2I)
∥

∥

∥

1

d

d
∑

i=1

N
(

∥ci∥ei, σ
2I
)

)

.

Setting ∥c1∥= · · · ∥cd∥= c would achieve the supremum since they give the maximum divergence from 0, so

Dα(M(S) ∥M(S′)) ≤ Dα

(

N (0, σ2I)
∥

∥

∥

1

d

d
∑

i=1

N
(

c ei, σ
2I
)

)

where the first term matches Q and the second term matches P in Theorem 3.1 where k = 1. Switching the order ofM(S)
andM(S′) requires a similar analysis, with the first and second terms switched. Thus,

ϵ = max
{

Dα(M(S) ∥M(S′)), Dα(M(S′) ∥M(S))
}

≤ max {Dα(P ∥Q), Dα(Q ∥ P )}.

A.10. Proof of Theorem 3.5

If we condition on how the model is split into submodels, then the privacy guarantee is given by Theorem 3.4, which does

not depend on how the model is split. Therefore, if we do not condition on how the model is split, the resulting distribution

of the submodel is a mixture of the conditional distributions, so the resulting distribution of the gradients is a mixture of

the resulting conditional distributions of gradients, conditioned on how the model is split. Thus, by the quasi-convexity of

Rényi divergence, the divergence between the unconditional distributions of gradients (resulting from using S vs S′ for

the dataset) is upper-bounded by the max divergence between the conditional distributions of gradients, which is given in

Theorem 3.4.
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A.11. Proof of Theorem 3.7

The full proof has a lot of similarities to the proof of Theorem 3.4, which we will not repeat but only focus on the different

part.

We first consider the case of one dropout layer then the case of multiple dropout layers.

For one dropout layer, if we let the nodes of the dropout layer be v1, . . . , vn and let the set of weights whose gradients are

set to 0 by dropping node vk be Wk for k = 1, . . . , n, then W1, . . . ,Wn are disjoint sets that cover the parameters of the

preceding and succeeding layers. Let the combined parameters of the preceding and succeeding layers be W such that

W =
⋃n

k=1 Wk. The set of weights W can be treated as a full model for the scope of this proof since it has its own gradient

clipping norm of c. Consider a particular outcome of the dropout layer that keeps nodes {vj}j∈J for some J ⊆ [n], which is

equivalent to forming a submodel WJ =
⋃

j∈J Wj . Consider the complementary submodel W c
J =

⋃

j ̸∈J Wj = W \WJ .

Then, conditioned on the event that the submodel formed by the dropout layer is either WJ or W c
J , each has a conditional

probability of 0.5 because each has the same unconditional probability of (0.5)n, so WJ and W c
J form one way to partition

the model. Then, the dropout layer is a mixture of WJ and W c
J for all possible J , and thus Theorem 3.5 applies where

d = 2.

For the case of multiple dropout layers, if the dropout layers have no overlapping parameters whose gradients are directly

affected (i.e., whose gradient will be 0 if a node it connects to is dropped out), then the analysis remains the same. If there

are, for example in the case where two dropout layers are applied to the input and output of another layer, then conditioned

on J (where J is now a subset of nodes in the union of the two dropout layers), the submodels
⋃

j∈J Wj and
⋃

j ̸∈J Wj no

longer cover W but are still disjoint, so the analysis to quantify the divergence between the two conditional distributions of

gradients (conditioned on J) using Theorem 3.1 is still valid, since the gradients not covered by either the submodels are 0
regardless of which dataset is used, so we can throw away these coordinates in analyzing the Rényi divergence.

A.12. Proof of Theorem 3.8

Consider two adjacent datasets S, S′ ∈ S, where S′ = S ∪ {x}. Let A ∈ R
|S′|×T be the random sampling matrix, whose

entries are binary and each row contains k 1s and T − k 0s, where the entry at i, t is 1 if the ith data point is used in the tth

iteration, and 0 otherwise. Let AS be the first |S| rows of A and A|S′| be the last row of A, where A|S′| will be disregarded if

the dataset is S. Let P denote the implied distribution of any function of A. Let d be the number of parameters in the neural

network with a gradient. Let Yt ∈ R
d be the noisy sum of gradients in iteration t. Let gt be the gradient function of the tth

iteration, which take in as inputs S or S′ (the dataset), A·,t (the sampling mask used in this iteration), and y1, . . . , yt−1 (the

previous gradients, or equivalently, the previous model updates), and satisfies that

∥gt(S,A·,t; y1, . . . , yt)− gt(S
′, A·,t; y1, . . . , yt)∥2 ≤ c

for all t, A, y1, . . . , yt, which follows from l2 norm clipping of each gradient. Let P0(Y1, . . . , YT ) be the joint distribution

of the noise gradients if S is used, and Q0(Y1, . . . , YT ) if S′ is used. Their distributions can be written as

P0(Y1, . . . , YT ) =
∑

AS

P(AS)P0(Y1, . . . , YT | AS)

and

Q0(Y1, . . . , YT ) =
∑

AS

P(AS)
∑

A|S′|

P
(

A|S′|

)

Q0(Y1, . . . , YT | AS , A|S′|).

Since Renyi divergence is quasi-convex, the Renyi divergence between P0(Y1, . . . , YT ) and Q0(Y1, . . . , YT ) is upper

bounded by

Dα(P0 ∥Q0) ≤ sup
AS

Dα



P0(Y1, . . . , YT | AS)

∥

∥

∥

∥

∑

A|S′|

P
(

A|S′|

)

Q0(Y1, . . . , YT | A)





= sup
AS

1

α− 1
log

∫

P0(y1, . . . , yT | AS)
α

(
∑

A|S′|
P
(

A|S′|

)

Q0(y1, . . . , yT | A))
α−1 dy1 . . . dyT
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= sup
AS

1

α− 1
log

∫

∏T
t=1 P0(yt | y1, . . . , yt−1, AS)

α

(
∑

A|S′|
P
(

A|S′|

)
∏T

t=1 Q0(yt | y1, . . . , yt−1, A))
α−1

dy1 . . . dyT = (⋆).

The conditional distributions in the numerator and denominator are

P0(yt | y1, . . . , yt−1, AS) = N (gt(S,A·,t; y1, . . . , yt−1), σ
2Id),

Q0(yt | y1, . . . , yt−1, A) = N (gt(S
′, A·,t; y1, . . . , yt−1), σ

2Id).

Consider the substitution

xt = yt − gt(S,A·,t; y1, . . . , yt−1)

so that

P0(xt | y1, . . . , yt−1, AS) = N (0, σ2Id),

Q0(xt | y1, . . . , yt−1, A) = N (gt(S
′, A·,t; y1, . . . , yt−1)− gt(S,A·,t; y1, . . . , yt−1), σ

2Id)

=

{

N (ctvt, σ
2Id) A|S′|,t = 1

N (0, σ2Id) A|S′|,t = 0

= N
(

ctvt1{A|S′|,t=1}, σ
2Id

)

where ct ≤ c and ∥vt∥2= 1, both of which may depend on A, y1, . . . , yt−1. Also, since there is a bijection between xt and

yt given A, y1, . . . , yt−1, by a recursive argument, there is a bijection between x1, . . . , xt and y1, . . . , yt given A for all t.

Thus, the conditioning on y1, . . . , yt−1 is equivalent to conditioning on x1, . . . , xt−1, so we can write

P0(yt | y1, . . . , yt−1, AS) = P0(yt | x1, . . . , xt−1, AS),

Q0(yt | y1, . . . , yt−1, A) = Q0(yt | x1, . . . , xt−1, A).

Lastly, for each variable yt in the integration in (⋆), we replace it by yt − gt(S,A·,t; y1, . . . , yt−1). The integration over yt
is on R

d so the new integration region over yt − gt(S,A·,t; y1, . . . , yt−1) is still on R
d. Then we apply the substitutions,

(⋆) = sup
AS

1

α− 1
log

∫

∏T
t=1 P0(xt | x1, . . . , xt−1, AS)

α

(
∑

A|S′|
P
(

A|S′|

)
∏T

t=1 Q0(xt | x1, . . . , xt−1, A))
α−1

dx1 . . . dxT

= sup
AS

1

α− 1
log

∫

∏T
t=1N (0, σ2Id)

α

(
∑

A|S′|
P
(

A|S′|

)
∏T

t=1N (ctvt1{A|S′|,t=1}, σ
2Id)

α−1
dx1 . . . dxT

= sup
AS

Dα





T
∏

t=1

N (0, σ2Id)

∥

∥

∥

∥

∑

A|S′|

P
(

A|S′|

)

T
∏

t=1

N (ctvt1{A|S′|,t=1}, σ
2Id)





≤ sup
ct≤c, ∥vt∥2≤1

Dα





T
∏

t=1

N (0, σ2Id)

∥

∥

∥

∥

∑

A|S′|

P
(

A|S′|

)

T
∏

t=1

N (ctvt1{A|S′|,t=1}, σ
2Id)



 = (⋆⋆)

where in the second-to-last line, P
(

A|S′|

)

is a constant that does not depend on the choice of AS , and the only item that

depends on AS is ctvt. The supremum is achieved by the choice of ct and vt such that ct = c and vt = e1 (or any vector

with norm 1, but all are equivalent due to the rotation symmetry of
∏T

t=1N (0, σ2Id) around 0). Then, since x1, . . . , xT

are either e1 or 0 under Q0 and 0 under P0, we only need to integrate over their first components and ignore the rest d− 1
components since the rest have the same distribution under P0 and Q0. So,

(⋆⋆) ≤ Dα





T
∏

t=1

N (0, σ2)

∥

∥

∥

∥

∑

A|S′|

P
(

A|S′|

)

T
∏

t=1

N (c1{A|S′|,t=1}, σ
2)




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= Dα





T
∏

t=1

N (0, σ2)

∥

∥

∥

∥

∑

µ∈ST,k

1

|St,k|

T
∏

t=1

N (c1{µt = 1}, σ2)





= Dα



N (0, σ2IT )

∥

∥

∥

∥

∑

µ∈ST,k

1

|St,k|
N (cµ, σ2IT )





= Dα(P ∥Q).

The same proof goes for Dα(Q ∥ P ) by switching the numerator and denominator, and taking the maximum of the two

completes the proof.
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B. More Graphs.

(a) The graph compares the noise standard deviation vs the
ϵ privacy cost in (ϵ, δ)-DP with and without applying our
amplification, where δ = 10−5 and we train for 400 iterations.
The data is Poisson subsampled with rate 0.1. Lower ϵ and
less noise are better.

(b) The graph compares the noise standard deviation vs the ϵ
privacy cost in (ϵ, δ)-DP with and without applying our am-
plification, where δ = 10−5 and we train for 2000 iterations.
The data is Poisson subsampled with rate 0.1. Lower ϵ and
less noise are better.

(c) The graph compares the noise standard deviation vs the ϵ
privacy cost in (ϵ, δ)-DP with and without applying our am-
plification, where δ = 10−6 and we train for 1500 iterations.
The data is Poisson subsampled with rate 0.08. Lower ϵ and
less noise are better.

(d) The graph compares the noise standard deviation vs the
ϵ privacy cost in (ϵ, δ)-DP with and without applying our
amplification, where δ = 10−5 and we train for 600 iterations.
The data is Poisson subsampled with rate 0.15. Lower ϵ and
less noise are better.

Figure 5. More comparison for disjoint submodel splitting.
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(a) The graph compares the noise standard deviation vs the
number of training iterations with and without applying our
amplification, where (ϵ, δ) = (1, 10−5). The data is Poisson
subsampled with rate 0.1. More iterations and less noise are
better.

(b) The graph compares the noise standard deviation vs the
number of training iterations with and without applying our
amplification, where (ϵ, δ) = (3, 10−5). The data is Poisson
subsampled with rate 0.1. More iterations and less noise are
better.

(c) The graph compares the noise standard deviation vs the
number of training iterations with and without applying our
amplification, where (ϵ, δ) = (5, 10−6). The data is Poisson
subsampled with rate 0.15. More iterations and less noise are
better.

(d) The graph compares the noise standard deviation vs the
number of training iterations with and without applying our
amplification, where (ϵ, δ) = (8, 10−6). The data is Poisson
subsampled with rate 0.3. More iterations and less noise are
better.

Figure 6. More comparison for disjoint submodel splitting.
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(a) The ϵ vs α graph for Balanced Iteration Subsampling and
Poisson Subsampling, where T = 1000, k = 100, and σ = 2.
Lower ϵ is better.

(b) The ϵ vs α graph for Balanced Iteration Subsampling and
Poisson Subsampling, where T = 200, k = 100, and σ = 4.
Lower ϵ is better.

Figure 7. More comparison for Balanced Iteration Subsampling vs Poisson Subsampling.

(a) The ϵ privacy cost (in (ϵ, δ)-DP) vs noise standard devia-
tion σ graph for Balanced Iteration Subsampling and Poisson
Subsampling, where T = 10, k = 5, and δ = 10−6. Lower
ϵ and less noise are better. For small T , Balanced Iteration
Subsampling can achieve the same privacy guarantee with less
noise injection.

(b) The ϵ privacy cost (in (ϵ, δ)-DP) vs noise standard devia-
tion σ graph for Balanced Iteration Subsampling and Poisson
Subsampling, where T = 1500, k = 120, and δ = 10−4.
Lower ϵ and less noise are better. For large T , the two curves
are nearly identical.

Figure 8. More comparison for Balanced Iteration Subsampling vs Poisson Subsampling.
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