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ABSTRACT

Navigating autonomous robots through the intricate landscapes of construction sites

necessitates an accurate evaluation of traversability, a challenge that our research ad-

dresses with a self-supervised learning strategy utilizing 3D LiDAR point cloud data.

This approach enables ground robots to autonomously identify traversable areas based

on the spatial relationships between their trajectories and the surrounding environmental

features. By employing self-supervised trajectory area labeling and Positive-Unlabeled

(PU) learning, our method classifies points as traversable or non-traversable without

labor-intensive manual annotations. Utilizing the RELLIS-3D and Hilti datasets, cou-

pled with Simultaneous Localization and Mapping (SLAM) for trajectory mapping, we

conducted qualitative and quantitative assessments with vehicle/robot-mounted LiDAR

systems. Results show that the proposed method can reasonably identify traversable

areas from LiDAR data for robots in off-road environments as well as robots on con-

struction sites.

INTRODUCTION

The construction industry, a cornerstone of modern infrastructure development, is

undergoing a transformative shift with the infusion of robotic technologies such as

autonomous excavators (Guan et al. 2021b) and autonomous dump trucks (Komatsu

et al. 2021). These advancements highlight the growing role of robotics in shaping

the future of work in construction environments. Building on these advancements, the

incorporation of sophisticated sensors and a diverse array of learning algorithms into

robots equips them to handle the unpredictable nature of construction sites, supporting
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a variety of tasks including navigation (Jeong et al. 2021) and terrain traversability

(Sevastopoulos and Konstantopoulos 2022), alongside material transport and excavation

with Autonomous Excavator Systems (AES) (Zhang et al. 2021), quality inspection

(Halder and Afsari 2023), surveying, 3D printing (Hossain et al. 2020), logistics, and

safety oversight.

The challenge in deploying robots in construction sites lies in the unpredictable and

dynamic environments typical of construction sites due to changing terrain, moving

equipment, materials, and workers. In order to advance robotic technology, much

research is needed to realize robot navigation in construction sites and allow robots to

traverse challenging terrain safely. The concept of traversability (Sevastopoulos and

Konstantopoulos 2022), refers to a robot’s ability to successfully navigate through an

area, considering terrain features such as inclines, obstacles, states of the surface such as

dirt or concrete, and overall conditions that affect the robot’s ability to move efficiently

and safely in the environment. Despite progress and highly impactful applications, the

dynamic and unpredictable nature of construction sites presents unique challenges for

robotic navigation, which is largely influenced by factors such as the steepness of slopes,

ground cover, and the presence of stairs or irregularities. The terrain’s texture, firmness,

and the presence of obstacles also significantly affect a robot’s traversability.

In this research, we utilize robots equipped with LiDAR sensors that can capture

the geometry of the surrounding environment in the form of a 3D point cloud and use

the point cloud to assess terrain traversability. The tasks for the robot can be defined

as follows: Point cloud Segmentation: Automatically classifying each point in a 3D

point cloud acquired by the LiDAR scanner of the robot. Traversability Estimation:

Performing binary point cloud segmentation where the target classes are (i) traversable

and (ii) non-traversable. Traversable points should be areas which the robot can navigate

through, such as ground or a platform, whereas non-traversable points should be areas

which the robot cannot navigate through, such as walls, temporary structures, or workers.

Supervised learning is a popular machine learning technique where a model can be

trained to recognize different types of terrain from an input point cloud. However, the

issue with using supervised learning for traversability estimation is that it requires a lot

of training data and is extremely time-consuming to annotate.

To address these challenges, this study proposes the application of self-supervised

learning (SSL), a methodology where an AI robotic system autonomously interprets

and labels data in a self-supervised manner, thus minimizing the dependency on ex-

tensive human-annotated datasets (Sevastopoulos and Konstantopoulos 2022), which

is required for purely supervised learning. Reinforcement learning (RL) is a related

concept in which robotic agents learn optimal behaviors through direct interactions

with their environment. The disadvantage of reinforcement learning is that it requires

long training times to converge and design a custom reward function (Sevastopoulos

and Konstantopoulos 2022); whereas our self-supervised learning approach directly

uses demonstration trajectories to provide training data. Self-supervised learning tech-

niques for robot traversability estimation have been previously explored in works such

as BADGR (Kahn et al. 2021) and ScaTE (Seo et al. 2023). Our study extends previous

works in this area by using a more advanced neural network for point cloud processing,

proposing an improved traversability labeling process, and validating the method on
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construction site data.

LITERATURE REVIEW

Traversability estimation for robots

In the pursuit of safe autonomous robot navigation, traditional methods like those

relying on thermal inertia for slip measurements (Cunningham et al. 2019) may be

effective for open, sandy terrain but impractical for more complex construction terrain

with obstacles. Similarly, RADAR systems, though useful, can be too bulky, which may

exceed the load capacities for smaller robotic platforms (Wellhausen et al. 2019). More

recent research has increasingly relied on camera (Hirose et al. 2018) and LiDAR (Seo

et al. 2023) to obtain high-resolution sensor data that can be used to assess traversability.

These methods are often paired with Neural Networks (Pomerleau 1992) or Gaussian

Process Regression (Ho et al. 2013) to process the high-dimensional sensor data.

Traversability estimation for construction sites

In the field of construction site traversability, the Terrain Traversability Mapping

(Guan et al. 2021a) (TTM) and Terrain Traversability Mapping and Navigation System

(Guan et al. 2021b) (TNS) were proposed to guide autonomous excavators through

complex terrains like construction sites using cameras and LiDAR data. TTM focuses on

detailed mapping using a learning-based geometric fusion method and the Autonomous

Excavator Terrain (AET) dataset, while TNS employs additional tools like GPS, other

navigation aids, and the Complex Worksite Terrain (CWT) dataset for dynamic terrain

analysis and generate real-time terrain information. The disadvantage of these methods

is that they still rely on training on pre-labeled datasets, which makes them less adaptable

and efficient for general-purpose construction site navigation.

3D neural networks for point cloud data

Advancements in 3D deep learning have given rise to neural network architectures

that are specifically tailored for processing point clouds. PointNet (Qi et al. 2017) is a

pioneering work that directly processes point clouds without the need for voxelization

or rendering, thus preserving the fidelity of the original data. Later work includes

the Cylindrical and Asymmetrical 3D Convolution Network for LiDAR segmentation

(Zhu et al. 2021), which addresses the sparsity of LiDAR data by exploiting cylindrical

3D convolutions, effectively capturing the unique distributions of points in outdoor

scenes. Similarly, Spherical Transformer (Lai et al. 2023) was introduced to harness

spherical data representations to enlarge the receptive field and improve the recognition

performance for sparse distant points. These methods, while effective when training data

is available, still operate within the supervised learning paradigm and require extensive

manual annotations.

Semi-supervised and self-supervised learning

Semi-supervised models like GONet, enhanced by temporal consistency (GONet+T)

and stereo imaging (GONet+TS) (Hirose et al. 2018), have made strides in the field,

using a DCGAN framework to assess traversability from fisheye camera images. How-

ever, they still partially require hand-labeled image data, which can be a limiting factor.

ScaTE (Scalable Framework for Self-Supervised Traversability Estimation) (Seo et al.
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2023) was later introduced for self-supervised learning of vehicle-specific traversability

in dynamic, unpredictable, and unstructured environments where labeling data is chal-

lenging or impractical. Utilizing Positive-Unlabeled (PU) learning, ScaTE enhances

the capability to accurately identify non-traversable areas, crucial for construction site

navigation.

METHODOLOGY

This study proposes an approach for predicting the traversability of autonomous

vehicles and robots in construction sites. This approach is based on self-supervised

learning methods using past trajectory paths and the corresponding LiDAR point cloud

data. The primary objective of this research is to accurately predict traversable areas

from LiDAR points by comprehensively considering the terrain characteristics and the

driving capabilities and characteristics of the vehicle. To achieve this, Simultaneous

Localization and Mapping (SLAM) is used to reconstruct past trajectories of the robot,

and areas where the robot has actually traversed are labeled as traversable. These

labels are then used to train a deep neural network to generalize and infer the feature

characteristics of traversable points and finally to predict the traversability for new,

unseen LiDAR data.

Fig. 1. SLAM results for Site 2 of the Hilti 2023 dataset

Data Collection

To benchmark traversability estimation, this study first considers the RELLIS-3D

dataset (Jiang et al. 2020), a multimodal off-road dataset that contains sensor data from

off-road environments with varied environmental topography. The dataset contains

13,556 LiDAR scans and 6,235 images collected using a Clearpath Warthog robot from

the Texas A&M Rellis campus. The Clearpath Warthog unmanned ground vehicle

robot is a large-sized robotic platform used to monitor and record site conditions from

varied topographical terrains (Clearpath 2022). The sensor setup includes a 64-channel

Ouster OS1 LiDAR, a 32-channel Velodyne Ultra Puck LiDAR, a 3D stereo Camera,

an RGB Camera, and an Inertial Navigation System (GPS/IMU). In this study, we only

used the LiDAR scans from the 64-channel Ouster OS1 LiDAR because the dataset

only contained sensor pose information for the Ouster LiDAR. The RELLIS-3D dataset

is annotated through crowdsourcing to obtain pixel-wise image labels, then the image

labels are projected to point cloud labels through camera-LiDAR calibration and further
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refined. The labels include 20 semantic classes which are sky, grass, tree, bush, concrete,

mud, person, puddle, rubble, barrier, log, fence, vehicle, object, pole, water, asphalt,

building and dirt and deep water.

In addition, this study uses the Hilti dataset (Zhang et al. 2023) to evaluate traversabil-

ity estimation from multiple active construction site environments. The data was col-

lected from a tracked robot platform, the Hilti Jaibot. We used the Site 2 dataset,

which was collected from a large parking lot under construction. The robot sensor

suite comprises a Robosense BPearl hemisphere LiDAR, an Xsens MTi-670 IMU, and

4x OAK-D cameras (Zhang et al. 2023). The number of LiDAR scans from the robot

sensor suite was 3059 scans and the time for data collection was 305 seconds. Note

that the Hilti dataset was originally used as a benchmark dataset for SLAM algorithms,

but in this study, we use the dataset to evaluate traversability of construction environ-

ments. The Hilti dataset does not contain any semantic labels; in this study, we will use

self-supervised learning to predict the traversable areas.

Simultaneous Localization and Mapping

Simultaneous Localization and Mapping (SLAM) is the process of simultane-

ously building a map and localizing the robot’s position in it. Our study uses the

ℎ3;_6A0?ℎ_B;0< ROS package (Koide et al. 2019), a popular open-source ROS pack-

age, to obtain the 6-DOF SLAM poses from the robot sensor data for the Hilti dataset.

ℎ3;_6A0?ℎ_B;0< is built upon 3D Graph SLAM using NDT scan matching for odom-

etry estimation and loop detection. Even though the SLAM framework supports GPS

and IMU as graph constraints, in this study, we only used the 3D LiDAR scans to

estimate robot pose. Figure 1 shows the trajectory map generated by SLAM along with

a corresponding sample image captured directly by the camera for the ground robot in

the Hilti dataset.

Self-supervised Trajectory Area Labeling

The Trajectory Area Labeling process designed in this study aims to automatically

identify the path traversed by autonomous vehicles or wheeled robots from reference

trajectories or past trajectories. This process utilizes two Oriented Bounding Boxes

(OBBs) to accurately label areas that vehicles or robots can traverse. The first bounding

box covers the area from the ground to the top of the robot, while the second bounding

box includes the area from the clearance point to the top of the robot. By evaluating the

traversability within the areas defined by these two bounding boxes, the traversability

status of points within the point cloud scan for each trajectory path point is determined.

Points not covered by the path of these bounding boxes (areas not included in the path)

are considered non-labeled, ensuring that only areas directly relevant to the vehicle’s or

robot’s potential path are assessed for traversability.

To enhance the precision of the traversability assessment, this study further sub-

divides the bounding boxes into smaller units. This subdivision is necessary to more

accurately distinguish between obstacles of various sizes (e.g., pebbles, grass, peo-

ple, pillars) that may coexist within the bounding box. Using only large bounding

boxes could lead to inaccuracies in distinguishing between obstacles, whereas evalu-

ating traversability independently within each subdivided bounding box achieves more

accurate labeling.
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For points p within the subdivided bounding box, the following condition determines

if the point is labeled as traversable:

p ∈ OBBGround to Top ∧ p ∉ OBBChassis to Top

where p represents points within the subdivided bounding box, OBBGround to Top rep-

resents the bounding box covering the area from the ground to the top, and OBBChassis to Top

represents the bounding box covering the area from the clearance point to the top.

This condition implies that if all points p within a subdivided bounding box are

included in the Ground to Top bounding box and simultaneously not included in the

Chassis to Top bounding box, then all points within that bounding box are considered

traversable. This provides a criterion for judging the traversable areas in the presence

of static and transient obstacles along the vehicle’s trajectory. Figure 2’s (b) and (c)

illustrate the labeled traversable points in point cloud data.

Fig. 2. Self-supervised traversability labeling process: (a) Oriented Bounding Boxes

covering the space around the robot (b) Traversable points in the RELLIS-3D dataset

(c) Traversable points in the Hilti dataset. Red points indicate traversable points and

blue points indicate unlabeled points

Traversability Classification

Based on the data labeled through the aforementioned method, this study employs

the SphereFormer model (Lai et al. 2023), a LiDAR semantic segmentation model,

to classify traversability. During this process, the model’s final linear layer is fine-

tuned for the binary classification task. In the case of traditional supervised learning

for traversability estimation, PN (Positive-Negative) Learning is used where points are

labeled as either traversable (Positive) or non-traversable (Negative). In contrast, for

self-supervised learning, we have to apply PU (Positive-Unlabeled) Learning, where

labeled points are considered positive (traversable), and the remaining points are treated

as non-labeled and can be either traversable or non-traversable. In this study, Non-

negative PU (nnPU) loss is applied to enhance the stability of the learning process, with

the nnPU loss’s prior set to 0.3. PU learning is potentially advantageous compared to

PN learning, because in the process of self-supervised trajectory area labeling, areas

that were not previously traversed by the robot are not strictly "non-traversable", and

may be better considered as "unlabeled" areas. Our implementation for nnPU loss is

adapted from (Kiryo et al. 2017).

RESULTS
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Experimental Setup

The validity of the proposed methodology is verified using the RELLIS-3D and Hilti

datasets. For the RELLIS-3D dataset, scenes 00, 01, and 02 are used as the training set,

and scenes 03 and 04 are used as the test set. In the Hilti dataset, robot LiDAR data

from Site 2 Floor 1 Large room serves as the training set, and Site 2 Robot Floor 2 Large

room -dark is used for testing. Test-Time Augmentation (TTA) techniques such as flip

and rotation were applied during the testing process. To assess the model’s prediction

sensitivity and the confidence of its predictions, the final logits output of the neural

network was evaluated at confidence thresholds ranging from 0.5 to 0.9.

Evaluation Metrics

Performance evaluation is conducted through both qualitative and quantitative anal-

yses. For the RELLIS-3D dataset, since ground truth labels for semantic segmentation

are provided, points belonging to classes such as grass, mud, puddle, asphalt, concrete,

rubble, and dirt are considered traversable. Metrics such as accuracy, precision, recall,

and F1 score are used to evaluate the model’s performance quantitatively, and quali-

tative evaluations are also conducted by visually inspecting the predicted traversable

areas. For the Hilti dataset, only qualitative analysis is performed as ground truth is not

provided.

Traversability estimation results on RELLIS 3D dataset

The qualitative results exhibit relatively high precision contrasted with low recall,

and the quantitative results also show that the model predicts traversable areas more

conservatively. This could be attributed to the nnPU loss function, which assumes

that the distributions of positive (traversable) and negative (non-traversable) data do

not overlap when calculating positive and negative risks. In reality, the distributions

of traversable and non-traversable areas overlap to some extent. This overlap can

lead to the model predicting traversable areas more conservatively. Moreover, the task’s

inherently safety-critical nature necessitates a conservative prior setting for traversability

assessment, set to 0.3. This conservative prior encourages the model to be more

cautious in predicting traversable areas, increasing precision but reducing recall. The

potential inaccuracy of the point cloud segmentation labels provided by the RELLIS-3D

dataset must also be considered. However, as seen in Table 1 and Figure 3, the model

accurately predicts traversable areas, indicating reliable performance in identifying

genuinely traversable regions despite conservative predictions.

Table 1. Performance metrics for the SphereFormer model on the RELLIS 3D dataset

at different output thresholds

Output Thresholds Accuracy Precision Recall F1 Score

0.5 0.78 0.89 0.32 0.47

0.7 0.78 0.93 0.32 0.47

0.9 0.78 0.97 0.31 0.47

7 Yu, December 16, 2025



Fig. 3. Traversability estimation results from 3D point clouds in the RELLIS-3D dataset.

The purple dashed boxes highlight the regions in the point clouds that correspond to the

camera images above.

Qualitative results on Hilti dataset

Figure 4 shows the traversability estimation results for a construction site from the

Hilti dataset. Overall, the method is able to predict ground points as traversable and

columns, walls, and other obstructions as non-traversable.

Fig. 4. Traversability estimation results from 3D point clouds in the Hilti dataset along

with corresponding camera images.

CONCLUSION

In conclusion, this study demonstrated a self-supervised learning method for traversabil-

ity estimation on construction sites where a ground robot can learn to navigate through

reference demonstration trajectories instead of manual annotations, thus saving valu-

able annotation time. The proposed trajectory area labeling approach accurately labels

the traversable parts of the vehicle’s path across various environments and transient

8 Yu, December 16, 2025



objects on the vehicle’s trajectory. However, the method shows limitations in recog-

nizing flexible objects, such as curtains and tall grass, as traversable, even when they

do not impede navigation. Furthermore, it relies predominantly on geometric features

to assess traversability, which poses challenges in accurately identifying traversable

surfaces like calm water due to LiDAR data’s limited ability to capture texture details.

To address these challenges and enhance the method’s effectiveness, future research

will be directed toward developing and integrating strategies to overcome the identified

limitations. Moreover, the training and test sets we used primarily represent specific

construction environments, which may lead to overfitting and cause the model to per-

form poorly in unfamiliar settings. A broader range of datasets and testing scenarios

is necessary to fully evaluate the method’s adaptability. Future work will expand the

method to construction sites with more challenging terrain features and obstacles, such

as uneven ground, raised floors, and stairs.
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