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Abstract

Biological and artificial information processing systems form representations of the world
that they can use to categorize, reason, plan, navigate, and make decisions. How can we
measure the similarity between the representations formed by these diverse systems? Do
similarities in representations then translate into similar behavior? If so, then how can
a system’s representations be modified to better match those of another system? These
questions pertaining to the study of representational alignment are at the heart of some of the
most promising research areas in contemporary cognitive science, neuroscience, and machine
learning. In this Perspective, we survey the exciting recent developments in representational
alignment research in the fields of cognitive science, neuroscience, and machine learning.
Despite their overlapping interests, there is limited knowledge transfer between these fields,
so work in one field ends up duplicated in another, and useful innovations are not shared
effectively. To improve communication, we propose a unifying framework that can serve as
a common language for research on representational alignment, and map several streams
of existing work across fields within our framework. We also lay out open problems in
representational alignment where progress can benefit all three of these fields. We hope
that this paper will catalyze cross-disciplinary collaboration and accelerate progress for all
communities studying and developing information processing systems.
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1 Introduction

Cognitive science, neuroscience, and machine learning have a long history of studying the kinds of representa-
tions that humans, machines, and other biological and artificial information processing systems construct.
Numerous factors can affect what representations each system will form, including exposure to and experience
with stimuli, diverging training tasks and goals, and differences in architecture — for biological and artificial
systems alike. Representational alignment refers to the extent to which the internal representations of two
or more information processing systems agree. This concept has gone by many names in different contexts,
including latent space alignment, concept(ual) alignment, systems alignment, representational similarity,
model alignment, and representational alignment (Goldstone and Rogosky, 2002; Kriegeskorte et al., 2008a;
Stolk et al., 2016; Peterson et al., 2018; Roads and Love, 2020; Haxby et al., 2020; Aho et al., 2022; Fel
et al., 2022; Marjieh et al., 2022; Nanda et al., 2022; Tucker et al., 2022; Muttenthaler et al., 2023a; Bobu
et al., 2023; Sucholutsky and Griffiths, 2023; Muttenthaler et al., 2023b; Rane et al., 2023a;b). In addition,
representational alignment has implicitly or explicitly been an objective in many subareas of machine learning
including knowledge distillation (Hinton et al., 2015; Tian et al., 2019), disentanglement (Montero et al.,
2022), and concept-based models (Koh et al., 2020).

While cognitive scientists, neuroscientists, machine learning researchers, and others actively study repre-
sentational alignment (see Figure 1 for some curated examples), there is often limited knowledge transfer
between these communities, which leads to duplicated efforts and slows down progress. We suggest that
this, in part, stems from the lack of a shared, standardized language for describing the full spectrum of
research on representational alignment. While frameworks such as Representational Similarity Analysis (RSA;
Kriegeskorte et al., 2008a) have been broadly adopted as a means of posing comparisons between two systems,
they do not capture the full range of work within representational alignment, nor are they applied alike across
all disciplines. Ironically, what is needed is greater representational alignment between researchers in the
different disciplines that study representational alignment.

In this Perspective, our goal is to provide a theoretical foundation for research on representational alignment
across these different disciplines. We conduct a broad literature review across cognitive science, neuroscience,
and machine learning (see Section 2), and find that studies of representational alignment generally consist of the
same five key components and three objectives. We use this insight to propose a unifying framework (visualized
in Figure 2) for describing research on representational alignment in a common language (summarized in
Section 4 and Table 2 which illustrates how a broad spectrum of existing studies are easily interpretable when
viewed through the lens of our framework). Crucially, our framework provides a way to synthesize insights
across disciplines, paving a path towards making progress on the three central objectives of representational
alignment: measuring alignment, bringing representations into a shared space (which we alternatively refer
to as “bridging representational spaces”), and increasing the alignment between systems. Each of these
objectives arises in cognitive science, neuroscience, and machine learning (see Figure 1 for an illustrated
example of a study from each field for each central objective).

Objective 1 — Measuring: The objective of measuring representational alignment is typically expressed
in terms of determining the degree of similarity between the representational structures of two information
processing systems (Shepard and Chipman, 1970; Kriegeskorte et al., 2008a). Thus, measuring representational
alignment can offer a principled way to compare two systems at an abstracted, information-processing level,
even if those systems appear different at another, often lower, level of detail. This approach can be used to
validate one system as a model of another, or to locate cases in which there are differences between two systems.
For example, cognitive scientists measure representational alignment between semantic neighborhoods in
different languages (Thompson et al., 2020) and different individuals (Marti et al., 2023), as well as between
representational maps of musical priors in different cultures (Jacoby and McDermott, 2017; Jacoby et al.,
2021b; Anglada-Tort et al., 2023). Neuroscientists measure alignment between humans and non-human
primates to establish homology (i.e., the presence of a “common code” in a particular brain region across
species) (Kriegeskorte et al., 2008b), measure alignment between a deep neural network model and neural
activity recordings to infer which models best capture aspects of perceptual or cognitive processes (Yamins
et al.; 2014; Khaligh-Razavi and Kriegeskorte, 2014; Yamins and DiCarlo, 2016; Kell et al., 2018; Conwell
et al., 2022), and measure alignment between two or more individuals to determine shared motifs in neural
activity (Hasson et al., 2004; Stephens et al., 2010; Hasson et al., 2012a) or how synchronization in neural
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responses facilitates cooperative behavior (Hasson et al., 2012a; Haxby et al., 2020). Machine learning
researchers measure the representational alignment of deep neural networks including computer vision models
with humans to test whether these models learn generalizable human-like representations (Langlois et al.,
2021a; Sucholutsky and Griffiths, 2023; Muttenthaler et al., 2023a; Ahlert et al., 2024). Typically, the two
systems are static, and the data used to measure their alignment is paired (i.e., with the same set of stimuli
presented to both systems).

Objective 2 — Bridging: The objective of bringing the representations of two systems into a shared
space (i.e., “bridging” representational spaces) typically involves establishing a correspondence between
the representations of the two systems to enable direct comparison. This correspondence unlocks ways of
pooling representations across different systems, and of making more directed comparisons than simple
measurements of alignment allow.! Cognitive scientists aim to compare the representations of different
individuals along common dimensions that explain those individuals’ behaviors (Wish and Carroll, 1974;
Hebart et al., 2020). Neuroscientists align fMRI responses from different individuals into a common space to
determine what information is shared across individuals and boost the signal for group-level analyses (Haxby
et al., 2011; Chen et al., 2015a; O’Connell and Chun, 2018). Machine learning researchers learn projections
from pre-trained image embedding models and pre-trained text embedding models to a joint space in order
to enable multimodal prompting (Gupta et al., 2017; Ramesh et al., 2022; Huang et al., 2022). Typically, the
two systems are still static, the data may or may not be paired, and the representations from at least one of
the systems are projected into a new space.

Objective 3 — Increasing: The objective of increasing representational alignment of two systems involves
trying to make two systems more similar to each other by updating the representations of at least one of the
systems. Increasing representational alignment thus can help to make the processing in one system more like
another; this can be useful in and of itself (e.g., to improve a computational model of biological system),
or as a means to an end (e.g., improved downstream performance). Cognitive scientists try to increase the
representational alignment of deep neural networks with humans to better predict human judgments (e.g.
Geirhos et al., 2019; Seeliger et al., 2021; Fel et al., 2022; Muttenthaler et al., 2023b). Neuroscientists optimize
deep neural networks to predict brain activity to create computational models of brain function (Schrimpf
et al., 2018; Toneva and Wehbe, 2019; Schrimpf et al., 2021; Allen et al., 2022; Khosla and Wehbe, 2022;
Conwell et al., 2022; Doerig et al., 2023). Machine learning researchers train small, efficient student networks
to be as similar as possible to a much larger, more expensive, but highly-performant teacher network (Hinton
et al., 2015; Phuong and Lampert, 2019; Tian et al., 2019; Muttenthaler et al., 2024a). Typically, at least one
of the systems is dynamic (i.e., it can learn or otherwise update its representations), and the data may or
may not be paired data.

Researchers across and beyond these three fields would benefit from progress in each of these areas. We
hope that our paper will serve as a call to action for researchers working on representational alignment and
catalyze inter-disciplinary collaboration to accelerate progress on these and related problems in the study of
information processing systems. To encourage such cross-disciplinary engagement, in addition to proposing
a unifying framework for representational alignment in §3 and highlighting key works through the lens of
this framework in §4, we also identify key open problems and challenges across disciplines in §5. We believe
that resolving these problems would greatly benefit each of the communities that study representational
alignment.

2 Background and review

Researchers in cognitive science, neuroscience, and machine learning, study various aspects of representational
alignment often from differing perspectives, albeit frequently converging on similar techniques. We next
review related literature across these fields to motivate our unifying framework (see Table 2) and identify
gaps ripe for future work.

1Though note that some measurements could be seen as implicitly bridging into shared representational spaces; e.g., RSA can
be seen as bridging from incompatible representation spaces to compatible kernel-like representations which are defined via
distances from a set of basis elements.
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Figure 1: Examples of contemporary representational alignment research in cognitive science, neuroscience, and
machine learning. We discuss three types of representational alignment research. Measuring representational
alignment aims to measure the degree of alignment between two systems as a dependent measure in an experiment (a.
measuring cross-cultural similarity in priors for rhythm, Jacoby and McDermott (2017), b. measuring similarity in
the representational space of inferior-temporal cortex between humans and monkeys, Kriegeskorte et al. (2008b), c.
measuring similarity in the representational space of different neural network architectures, Kornblith et al. (2019)).
Bridging representational spaces aims to bring representations into a shared space to facilitate some downstream
application (d. bridging different individuals’ behavior into a common representational space for objects, Hebart
et al. (2020), e. bridging fMRI responses and eye movement patterns via alignment between brain responses and
neural networks, O’Connell and Chun (2018), f. bridging language and vision via cross-modal alignment of vision
and language representations in neural networks, Gupta et al. (2017)). Increasing representational alignment aims to
update the internal representations or measurements of one system to increase its alignment with another system (g.
increasing alignment between human and computer vision model behavior with a semantic grouping task, Muttenthaler
et al. (2023b), h. increasing alignment between fMRI responses and neural network activity by direct optimization,
Khosla and Wehbe (2022), i. increasing alignment between two neural networks via knowledge distillation, Tian et al.
(2019)). (Reproduced with permission from the cited papers.)

2.1 Cogpnitive Science

Whether different people have the same representation of the world is a central question in the cognitive
sciences. Questions about potential differences in people’s experience of the same stimuli go back to Locke
(1847), who considered whether it might be possible to identify whether two people had different perceptual
experiences of color. In contemporary cognitive science, questions about whether people share the same
representations are prominent in cross-cultural and developmental psychology (Berry, 2002; Miller, 2002;
Henrich et al., 2010b). Following the work of Sapir (1968) and Whorf (2012), cross-cultural psychologists ask
whether people from different cultures or language groups represent the world in different ways (Berlin and
Kay, 1991; Majid et al., 2004; Frank et al., 2008; McDermott et al., 2010; Henrich et al., 2010a; Dolscheid
et al., 2013; Majid and Burenhult, 2014; Jacoby et al., 2019; Barrett, 2020; O’Shaughnessy et al., 2023).
Likewise, following Piaget (1973), developmental psychologists consider the possibility that children undergo
significant conceptual changes as they develop, creating the possibility of incommensurability between the
mental representations of children and adults (Carey, 1988). Most of these approaches attempt to measure
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alignment between different people, or characterize changes in representations over time (e.g., moral concepts;
Kohlberg, 1984; Turiel, 2008). Typically, cognitive science approaches these questions by treating humans
as black boxes, and indirectly inferring their internal representations and algorithms from their patterns of
behavior—methods that have the benefit of transferring well across many systems.

2.1.1 Similarity judgments and multidimensional scaling

One tool that has proven useful in exploring these questions is multidimensional scaling (MDS) (Shepard,
1962; 1980). MDS generally uses participants’ similarity judgments to embed stimuli into a low-dimensional
vector space where the distance between stimuli is inversely proportional to their similarity (Ekman, 1954;
Tversky, 1977; Kriegeskorte and Mur, 2012; Peterson et al., 2018; Cichy et al., 2019; King et al., 2019; Hebart
et al., 2020), though there exist many popular variants that make additional assumptions — like INDSCAL,
which enables the study of individual differences (Wish and Carroll, 1974; Roads and Love, 2024) — and enable
exciting applications like mapping the changes in children’s representation of numbers as they develop (Miller
and Gelman, 1983). Alternatively, methods like second-order isomorphism rely on analyzing the similarity
between two sets of relations among different representations of the same objects — e.g., measuring correlation
between pairwise similarity judgments for a set of objects and the degree of featural agreement between that
same set of objects (Shepard and Chipman, 1970). Similarly, contrast models analyze similarity of relations
for systems with discrete properties (Shepard and Arabie, 1979; Tversky, 1977; Tenenbaum, 1995).

Representational similarity methods are powerful because they are compatible with systems that are either
continuous or discrete, symmetric or asymmetric, hierarchical or non-hierarchical, etc. (Edelman, 1998)
though they do leave open the question of how to assess whether two representations really capture the same
information about the world. Goldstone and Rogosky (2002) presented a method for answering this question,
based on discovering alignments between two different concept systems that were represented by spatial
locations. Crucially, their approach did not require that the matching concepts be identified in advance,
rather, they were able to extract plausible alignable concepts at the same time as learning the global mapping
between the systems. More recent work demonstrates that natural environments support the alignment
of everyday concepts (Roads and Love, 2020) and that children’s early concepts appear to exploit these
regularities (Aho et al., 2023).

2.1.2 Human-machine alignment

Researchers have also begun to use some of these tools to explore the alignment between humans and machine
learning systems. For example, Peterson et al. (2018) used similarity judgments to compare representations of
images in humans and machines, finding significant correlations between human similarity judgments and the
inner product of the activations at the final layer of convolutional neural networks applied to the same images.
Curiously, improving model performance (i.e., behavior) does not guarantee an improvement in alignment
(Langlois et al., 2021a). In fact, object recognition models that perform better often show worse alignment with
human judgments (Roads and Love, 2021) and the representation structure of state-of-the-art language models
fails to align with key aspects of human representation structures (Suresh et al., 2023). While Muttenthaler
et al. (2023a) found that most computer vision models they tested had low alignment to humans when used
out-of-the-box, a learned linear transformation to the human similarity space could minimize that gap — that
is, they were able to increase representational alignment. However, higher representational alignment does not
always translate to improved performance or more aligned behavior. For example, Sucholutsky and Griffiths
(2023) discovered a U-shaped relationship between the degree of representational alignment of a teacher and
student and their downstream performance on few-shot transfer learning, suggesting that highly aligned and
highly misaligned models can generalize effectively from much less data than models with medium degrees of
representational alignment with humans. This result, along with evidence that models may unintentionally
overfit to the test sets of popular benchmarks and their idiosyncrasies and labeling errors (Recht et al., 2019;
Beyer et al., 2020), may explain why performance is not always correlated with representational alignment.
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2.1.3 Semantic representations

Representational alignment also arises in the study of semantic representations (Rogers and McClelland, 2004;
Bhatia et al., 2019). Measuring alignment of the changing representations over learning (and their decay
under neurodegenerative disease) between humans and computational and mathematical models (Rogers and
McClelland, 2004; Ralph et al., 2017; Saxe et al., 2019) has played an important role in understanding the
computational origins of human semantic cognition. Representational alignment has also been used to study
the neuro-anatomical basis of these processes (e.g. Ralph et al., 2017), as we discuss below. Recently, research
in the alignment of language with other perceptual modalities has been propelled by remarkable advances in
large language models which facilitate the quantitative analysis of semantic similarity and provide a rich
comparison class against which human behavior can be studied (Bhatia and Richie, 2022; Bhatia, 2023). For
example, Marjieh et al. (2023a) showed that embeddings of textual descriptors can be used to construct good
proxies for human similarity judgments across different modalities (visual, audio, and audiovisual) and can
perform on par with a large set of domain-specific neural networks that directly process the stimuli. This
line of work suggests exciting possibilities for bridging between the representational spaces of computational
models and humans.

2.1.4 Alignment across individual participants’ behavior

Research in social psychology and psycholinguistics has also begun investigating alignment across humans.
Prior work in these domains, such as the Stereotype Content Model (Fiske, 2018), focused on characterizing
group-level phenomena to uncover generalizable insights about how people perceive, understand, and interact
with others. For example, distributional semantics investigates bodies of text to understand shared conceptual
relations (Boleda, 2020) and average impression ratings are used to study the systemic dehumanization of
repressed groups (Haslam and Loughnan, 2014). Recent work has also highlighted individual differences in
the structure of representations across people. For instance, differences arise in people’s representations of
basic semantic categories (Hoffman, 2018), such as animals (Marti et al., 2023), as well as representations
of social groups, in the form of stereotypes (Xie et al., 2021), and even complex concepts, such as war and
taxes (Brandt, 2022). Differences in representation can have functional consequences for collaboration and
communication. For instance, misalignment of word meanings predicts failures of communication across
people (Duan and Lupyan, 2023). Strategies for resolving conflict and disagreement hence need to account
for both divergence of opinions and alignment of representations (Oktar et al., 2023).

2.1.5 Alignment across cultures

More generally, the study of representational alignment across different cultures (Berlin and Kay, 1991;
Henrich et al., 2010a; Majid et al., 2004; Majid and Burenhult, 2014; Dolscheid et al., 2013; Barrett, 2020;
McDermott et al., 2010; Jacoby et al., 2019; O’Shaughnessy et al., 2023; Frank et al., 2008) plays an important
role in cognitive science. Cross-cultural research offers an approach to addressing core problems in cognitive
science such as 1) what cognitive and perceptual principles underlie the structure of a given representation (e.g.
statistical learning vs. physiological constraints)?, and 2) how is meaning shaped and (mis-)communicated
across languages and cultures? As a concrete example of the first problem, Jacoby et al. (2021a) analyzed
the representation of musical rhythm in a massive cross-cultural dataset comprising 39 participant groups
in 15 countries and showed that participants exhibited a universal inductive bias towards discrete rhythm
categories at small integer ratios, though the degree in which specific discrete categories emerged was heavily
contingent on culture and the corresponding local musical systems. As for the second problem, Thompson
et al. (2020) analyzed the alignment of semantic neighborhoods of 1,010 meanings in 41 languages and
showed that semantic domains with high internal structure such as number and kinship tend to be the most
aligned, whereas domains such as natural kinds and common actions aligned much less so, suggesting that
the meanings of common words are strongly contingent on the culture, geography and history of their users.

2.2 Neuroscience

Neuroscientists often measure representational alignment to evaluate accounts of the functional role of neural
activity (Turner et al., 2017; Mars et al., 2021). The Representational Similarity Analysis (RSA; Kriegeskorte
et al., 2008a) framework developed in cognitive neuroscience was initially motivated by a fundamental challenge
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to this mission: How can we compare heterogeneous internal activities across individuals, species, and biological
and artificial kinds, especially in advance of a certain account of how these internal activities produce behavior?
RSA and similar frameworks applied in neuroscience answer this question by quantifying a particular notion of
similarity between neural activity spaces, including heterogeneous ones. The development of these frameworks
for measuring alignment between neural activity spaces reflects a longstanding interest in representational
alignment within neuroscience; reciprocally, the frameworks themselves have driven substantial new interest
in representational alignment within neuroscience (e.g., Dabagia et al., 2023; Schneider et al., 2023). Here,
we overview some areas of neuroscience, with a focus on cognitive neuroscience, from the perspective of
representational alignment.

2.2.1 Alignment across heterogeneous measurements

A foundational problem in neuroscience is defining equivalences across brain regions in different individuals
and different species when differing measurement tools are in use. For example, in animals, electrophysiology
(e-phys) and microscopy-based methods are commonplace, whereas in humans functional magnetic resonance
imaging (fMRI), electroencephalogram (EEG), and other non-invasive methods are common. In RSA, data
(neural responses, model activations, behavior, etc.) are converted to a representational dissimilarity matrix
(RDM) capturing the pairwise differences between all stimuli in the dataset and abstracting away from the
space in which representations are defined. These two RDMs are then correlated to determine whether the
two spaces capture the same similarity structurehis technique has been applied broadly in several domains
of cognitive neuroscience; one of its earliest empirical applications was to establish structural similarities
between rhesus macaque and human inferotemporal (IT) cortex (Kriegeskorte et al., 2008b). The same set
of stimuli, consisting of common objects, were shown to monkeys undergoing e-phys recording and humans
undergoing fMRI scanning. Using RSA, Kriegeskorte et al. (2008b) found aligned representations between
monkey and human IT. RSA-based techniques have also been used for cross-modal alignment of neural
responses collected with different modalities. Cichy et al. (2014) derived RDMs over time from human MEG
and monkey electrophysiology recordings and RDMs over space from human fMRI responses, then used RSA
to align MEG and e-phys signals over time, and MEG and fMRI signals over space and time, capturing
spatio-temporal activation patterns not measurable with either modality alone (e.g., Mack et al., 2016).

2.2.2 Alignment across individuals

Representational alignment can be used to bridge neural responses across individuals into a common space
for subsequent analysis. Standard fMRI preprocessing involves warping to a common anatomical space, but
this approach leads to a loss of information due to individual differences in brain morphology. An alternative
set of techniques aims to instantiate a joint representational space in order to alleviate the loss of information
in anatomical alignment. The most prominent of these functional alignment techniques is hyperalignment
(Haxby et al., 2011; 2020), which applies Procrustes transforms to map individual responses to a common
space. Variants of hyperalignment further refine the transformation class using functional connectivity or
spatial response patterns (Busch et al., 2021). Analogous approaches that make use of contemporary deep
learning systems map individual responses to the internal activity space of a deep neural network (Horikawa
and Kamitani, 2017; O’Connell and Chun, 2018; Shen et al., 2019; Horikawa and Kamitani, 2022; Sexton
and Love, 2022). A distinct approach, shared response modeling, uses a probabilistic framework to isolate
individual-specific and shared components in neural responses into a common parameterization (Chen et al.,
2015b), which can be applied to improve searchlight analysis of fMRI data (Kumar et al., 2020). Similarly;
one can estimate principal components (across subjects) of the responses to common stimuli, then use shared
components as a common representational space (e.g. Tuckute et al., 2025). Once all individual responses are
aligned in the same representational space, individual responses can be compared or averaged to perform
a group-level analysis. Furthermore, secondary models trained on the shared representational space can
be applied to brain data in a zero-shot fashion to accomplish decoding feats such as object classification
(Horikawa and Kamitani, 2017; Sexton and Love, 2022), eye movement prediction (O’Connell and Chun,
2018), and image reconstruction (Shen et al., 2019).
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2.2.3 Alignment between brain activity and model systems

Representational alignment between brain regions and computational models has been used to study details
of the relationship between computational models and the anatomy and function of neural processes. For
example, computational models of human semantic representation (Rogers and McClelland, 2004) have been
linked to the neuroanatomy of human multimodal integration — in particular, the idea that anterior temporal
regions produce semantic representations that are aligned across modalities (Pobric et al., 2010), which
play a key role in binding representations across modalities (Ralph et al., 2017). Neuroscientists have also
started to investigate the utility of artificial intelligence (AI) systems as computational models in a variety of
cognitive tasks. In vision, early work by Yamins et al. (2014) revealed a hierarchy of alignment between mid-
and late-vision regions in rhesus macaques and mid- and late-layers in neural networks optimized for image
classification. Contemporaneously, in language research, work by Wehbe et al. (2014b) revealed significant
word-by-word alignment between human brain activity evoked by reading a story and representations from
early language models (e.g., LSTMs). Progress in Al in the last 10 years has spurred much research in this
area, revealing a high degree of brain alignment for more recent models in the domains of vision (Cichy et al.,
2016; Zhuang et al., 2021; Konkle and Alvarez, 2022) and language (Khaligh-Razavi and Kriegeskorte, 2014;
Schrimpf et al., 2018; Jain and Huth, 2018; Hollenstein et al., 2019; Kubilius et al., 2019; Toneva and Wehbe,
2019; Schrimpf et al., 2021; Toneva, 2021; Caucheteux and King, 2022; Goldstein et al., 2022; Kumar et al.,
2023b). Large transformer language models Subsequent work has explored the rich patterns of how alignment
often increases with model scale (e.g. Antonello et al., 2023), data diversity (e.g. Conwell et al., 2022), and
amount of training (e.g. Pasquiou et al., 2022; Hosseini et al., 2024b).

Recently, work has begun to consider how representational alignment across models corresponds with model-
brain alignment. For example, Antonello et al. (2021) construct shared representations across models by
bridging representational spaces via a common encoder, then explore how this predicts model-brain alignment,
and identify a representational component that relates to anatomical organization—suggesting that this
shared space has organizational features that may be reflected in brain anatomy. Complementarily, Hosseini
et al. (2024a) explores how stimuli where different models are poorly aligned tend to be stimuli where none of
the models predict the brain well, whereas stimuli where models align tend to produce higher model-brain
alignment—suggesting that model-brain alignment is driven primarily by shared “universal” components of
representation.

2.2.4 Alignment for hypothesis testing

Neuroscientists often use representational alignment to test hypotheses about information processing in the
brain. For example, representational alignment has been used to contribute to mechanistic explanations of
task-dependent processing in vision (Cukur et al., 2013; Wang et al., 2019) and language (Toneva et al., 2020;
Oota et al., 2022) by investigating which of a number of possible candidate hypotheses aligns best with brain
responses to a new stimulus. Using these approaches, neuroscientists have hypothesized about the processing
of information related to a wide range of stimulus properties, from manipulability and size of individual
objects (Sudre et al., 2012) to changes in the content of continuous visual input (Isik et al., 2018). In language,
where much current AT progress is due to the development of performant language models, scientists have
used representational alignment to claim that a key mechanism that aligns the representations in language
models and brains is the next-word prediction objective function (Schrimpf et al., 2021; Caucheteux and
King, 2022; Goldstein et al., 2022). However, it is still unclear whether next-word prediction is necessary
or simply sufficient to obtain the degree of observed representational alignment (Merlin and Toneva, 2022;
Antonello and Huth, 2022), and other scientists have shown that the alignment is due in part to joint syntactic
processing (Oota et al., 2023) and lexical-level semantics (Kauf et al., 2023). In the context of these debates,
it is often relevant to consider the timecourse of alignment over training—e.g. whether language models can
align with human neural representations before training (Pasquiou et al., 2022), or after a developmentally
plausible amount of language training data (Hosseini et al., 2024b), or whether alignment of vision model
representations to brain responses declines after longer training (Scholte et al., 2024).
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2.2.5 Alignment for stimulus selection or design

Representational alignment can be used to select data for use in stimulus presentations. For example,
“controversial” stimuli, which decrease measured alignment between models, can be tested on humans or
animals to distinguish between competing mechanistic accounts of neural activity (Groen et al., 2018; Golan
et al., 2022) or accounts of behavior (Golan et al., 2020). As another example, Tuckute et al. (2023) used
representational alignment between human neural representations and transformer language models to design
unusual stimuli that drive and suppress activity in the human language network. More recent work has used
more sophisticated methods to design stimuli that drive individual voxels based on automatically-derived
natural-language hypotheses about their selectivity (Antonello et al., 2024). More generally, there is an
extensive literature forming on aligning latent spaces of generative models to reconstruct stimuli from neural
data (VanRullen and Reddy, 2019; Mozafari et al., 2020; Ozcelik and VanRullen, 2023; Park et al., 2023;
Takagi and Nishimoto, 2023). These works demonstrate that representational alignment can be used for
optimization in stimulus space. While these methods are only starting to be explored in neuroscience as well
as cognitive science, we believe they open exciting new directions for representational alignment research
more broadly (see §5.1).

2.2.6 Alignment as communication

Spoken language has been construed as a form of representational transmission in which a speaker uses language
to instantiate a representation in a listener (Hasson et al., 2012b); this construal is supported by experiments
demonstrating representational alignment between speakers and listeners during narration (Stephens et al.,
2010; Silbert et al., 2014; Liu et al., 2017). Using MRI, speaker-listener neural alignment is found across a
diverse range of brain regions spanning temporal, parietal, auditory, and prefrontal cortices and only emerges
during successful communication, when the listener understands the speaker’s utterance (Stephens et al., 2010).
This alignment between subjects also appears to be reflected in the contextual representations of modern
language models (Zada et al., 2024). In a more naturalistic design, adults’ and infants’ neural responses were
measured simultaneously in an unstructured play environment; in this context, neural alignment, especially
in the prefrontal cortex, emerges during joint — but not independent — play (Piazza et al., 2020). Even in
the absence of a structured social task, non-verbal social cues such as eye contact and smiling induce neural
alignment between two interacting individuals (Koul et al., 2023). Moreover, representational alignment
can persist beyond a single interaction; e.g. groups that first saw an ambiguous video independently, then
discussed it in a group and arrived at a consensus, produced more aligned neural representations when they
watched the video again (Sievers et al., 2024). Perhaps through lasting impacts like these, representational
alignment between individuals also appears to potentially play a role in pedagogy, as evidenced by a correlation
between improved teacher-student neural alignment and improved learning outcomes (Meshulam et al., 2021;
Nguyen et al., 2022; Sucholutsky et al., 2025).

2.3 Artificial intelligence and machine learning

Machine learning researchers use representational alignment in diverse ways from measuring the relationship
between models to interpreting their performance, bridging between models to fuse (potentially diverse)
representation spaces into a single, canonical one, learning more robust and general representations by
increasing representational alignment, and mimicking human-like biases and behaviors, among others. In this
section, we provide a non-exhaustive overview of some of these use cases.

2.3.1 Model-to-model alignment

There has been interest in maximizing model-to-model alignment in the machine learning community for
many years (Hinton et al., 2015; Kim and Rush, 2016; Phuong and Lampert, 2019; Cho and Hariharan,
2019; Tung and Mori, 2019). Such questions have taken on a newfound urgency with the rise of large-scale
pre-trained foundation models (Caron et al., 2021; Oquab et al., 2024; Roth et al., 2024; Huh et al., 2024;
Muttenthaler et al., 2024a), which are difficult and expensive to train but can serve as useful priors for other,
smaller models.
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In many cases, increasing alignment begins with measuring model-to-model alignment — often with RSA

— in an attempt to characterize how different learning objectives (Lindsay et al., 2021; Muttenthaler et al.,
2023a), tasks (Hermann and Lampinen, 2020), or simply differences in random initialization (Mehrer et al.,
2020) may lead to differences among model representations. These differences can potentially be deleterious
to reliability, for instance, when one needs to understand when a similar model may fail.

However, differences between models can also be desirable; indeed, there are many cases where one would like
to measure and even decrease alignment between models. For instance, to use multiple models in an ensemble,
one is likely interested in diverse models that have very different representations (Lakshminarayanan et al.,
2017; Fort et al., 2019; Pang et al., 2019; Wu et al., 2021). If diversity is not specifically encouraged, different
deep learning models end up being highly aligned with each other because they tend to converge to similar
local minima (Mania et al., 2019; Geirhos et al., 2020b; Meding et al., 2021; Moschella et al., 2023; Huh et al.,
2024).

We remark that there exist a few alternative approaches to alignment for learning joint representation spaces,
such as Contrastive Predictive Coding (CPC; Oord et al., 2018) or Joint Embedding Predictive Architectures
(I-JEPA; Assran et al., 2023).

Multimodality. Combining several input modalities into a single learning system has a long history (Mori
et al., 2000). Deep learning allows us to combine neural architectures designed for different input modalities,
and to optimize them jointly. For example, an early such model by Karpathy and Fei-Fei (2015) combined
a text representation from an LSTM (Hochreiter and Schmidhuber, 1997) with an image representation
from a Convolutional Neural Network (LeCun and Bengio, 1998), and jointly optimized them to produce
descriptive captions of images. Other models such as CLIP (Radford et al., 2021) explicitly aim to align
visual and textual embeddings using a contrastive learning objective (Sohn, 2016; van den Oord et al., 2018).
Fusing architectures designed for a single modality can both be used to transform from one modality into
another one, e.g., to align visual inputs and their textual descriptions to caption an image (Karpathy and
Fei-Fei, 2015; Xu et al., 2015), to learn a combined embedding space for vision and language (Radford et al.,
2021; Zhai et al., 2023), to generate images from a textual description (Mansimov et al., 2016; Ramesh et al.,
2021; Saharia et al., 2022; Yu et al., 2022) or to combine text, images, and speech into a single prediction
model (Kaiser et al., 2017). All of these models go beyond just bridging the representations learned by their
constituent sub-modules, but rather fine-tune them to optimize the alignment between them.

The techniques involved in this research are often similar to those we see in related fields. For example, a
recent article employed cross-model alignment (Moayeri et al., 2023) to align image representations with
text representations. The technique—which essentially boils down to linear regression—is the same as the
one often employed in neuroscience when bridging representational spaces, where a linear mapping from
one representation space to another is learned from data. Other works in machine learning have used
representational similarity itself as relative representation space, which can allow translating between the
latent spaces of different models with no training (Moschella et al., 2023; Maiorca et al., 2023; Norelli et al.,
2022).

Knowledge distillation. Knowledge distillation (Hinton et al., 2015; Phuong and Lampert, 2019) is another
way of aligning the representation spaces of two models. The goal of knowledge distillation is to distill the
(prior) knowledge of a teacher — usually a large model — about a dataset into a student network — usually a
smaller model than the teacher. Instead of training the student network on the labels associated with the
data, the student is optimized to match the probabilistic outputs (Hinton et al., 2015), the representational
geometry (Cho and Hariharan, 2019), or the pairwise similarities (Tung and Mori, 2019) of a (larger) teacher
network. Knowledge distillation can be seen as a form of neural compression or a regularization technique.
It has seen successes in various fields of ML, such as machine translation (e.g., Kim and Rush, 2016) and
Computer Vision (e.g., Park et al., 2019; Cho and Hariharan, 2019). Part of its success is likely attributable
to the use of soft labels which have been shown to yield tighter class clusters (Miiller et al., 2019) and
improved data efficiency (Sucholutsky and Schonlau, 2021; Collins et al., 2022; Sucholutsky et al., 2023;
Muttenthaler et al., 2024a) compared to hard labels. In contrast to soft labels, hard labels rigidly assign zero
probability mass to all but the correct class. Moreover, the probabilistic outputs of a teacher network convey
implicit information about the relationships between the classes in the data rather than serving the purpose
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of replacing the zero entries of hard labels with non-zero probabilities that contain no class-relationship
information at all (cf., Miiller et al., 2019; Muttenthaler et al., 2024b).

2.3.2 Learning human-like representational geometries

There has recently been growing interest in the machine learning community in increasing alignment between
human and neural network representational spaces (e.g., Peterson et al., 2018; 2019; Attarian et al., 2020;
Roads and Love, 2021; Storrs et al., 2021b; Marjieh et al., 2022; Muttenthaler et al., 2023a; Fu et al., 2023)
either to obtain a better understanding of the (dis-)similarities between these spaces (e.g., Muttenthaler et al.,
2023a; Mahner et al., 2024) or improve the representational structure of neural networks for increasing their
generalizability (e.g., Muttenthaler et al., 2023b; 2024a). Muttenthaler et al. (2023b) attempt to increase
representational alignment to align the outputs of computer vision models with human odd-one-out choices
for the same set of images, thereby altering the original behavior of the models to improve their downstream
task performance on various few-shot learning and anomaly detection tasks. Fu et al. (2023) manipulate the
representation spaces of neural nets to align their local similarity structure with that of human observers
and, as a consequence, improve nearest neighbor retrieval and local structure. Fel et al. (2022) transform
the representations of neural networks to better match the visual strategies used by humans, in doing so
improving object categorization performance of neural network models.

Although this line of research is still developing, increasing representational alignment offers vast potential in
improving the outputs of systems at a relatively low computational cost — learning a linear transformation
(Peterson et al., 2019; Attarian et al., 2020; Muttenthaler et al., 2023a;b) or fine-tuning the parameters of an
information processing function (Toneva and Wehbe, 2019; Schwartz et al., 2019; Fu et al., 2023; Muttenthaler
et al., 2024a; Sundaram et al., 2024) is much cheaper than optimizing these parameters from scratch —-
while at the same time contributing to understanding the factors that drive the alignment between systems
(Konkle et al., 2022; Fel et al., 2022; Muttenthaler et al., 2023a).

2.3.3 Interpretability and explainability

Human-interpretability is often emphasized in efforts to understand neural networks’ representation spaces.
Much of this work can be understood as attempting to bridge between neural network representational
spaces and lower-dimensional or conceptually simpler spaces that human researchers can understand. These
ideas date back to early representation learning work at the intersection of AI and cognitive science (Hinton
et al., 1986), and were reinvigorated by recent findings in representation learning in language and other
areas (Baehrens et al., 2010; Bengio et al., 2012; Mikolov et al., 2013a). In particular, the fact that word
representation spaces of words learned by predicting co-occurrence (Mikolov et al., 2013a; Pennington et al.,
2014) allowed analogical reasoning by simple linear algebra operations (e.g., king — man + woman = queen),
attracted a great deal of interest and investigations into the statistical or information-theoretic properties
that lead to this phenomenon (e.g., see Ethayarajh et al. (2018) for an information-theoretic analysis of vector
arithmetic in skip-gram models).

Some efforts have been interested in interpreting the behavior of artificial neural networks at the level of
individual neurons (Bau et al., 2017; Olah et al., 2018; Geirhos et al., 2023), while others investigated how to
represent and use human-specified concepts in a neural network for post-hoc interpretability (Bach et al.,
2015; Samek et al., 2017a; Kim et al., 2018; Lapuschkin et al., 2019; Samek et al., 2019; 2017b). Embedding
or learning human-aligned concepts during training has also been an active area of research (Koh et al., 2020;
Zarlenga et al., 2022; Fu et al., 2023; Muttenthaler et al., 2024a) as well as discovering new meanings of
learned representations using linear vectors (Yeh et al., 2020; Ghandeharioun et al., 2021). Another notable
attempt at alignment is mechanistic interpretability — the effort to find a procedure in a network (i.e., how a
network does X rather than just a concept Y). For example, finding circuits, using manual hypothesis-driven
probing (Olah et al., 2020) or automatically by using techniques like edge attribution probing (Nanda et al.,
2023), that qualitatively align with semantic meaning (e.g., curves) could provide valuable insights.
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2.3.4 Behavioral alignment

Behavioral alignment is a form of alignment that aims specifically at aligning the output, or behavior, of one
system (often a computational model) with another (often humans). Behavioral alignment can also be seen as
an instance of representational alignment, insofar as output behaviors are produced by a representation (e.g.,
an image embedding) followed by a mapping from representation to output (a softmax layer, a k-nearest-
neighbor classifier, etc.) (LeCun et al., 2015). However, the relationship between penultimate representations
and behavioral outputs is not one-to-one. Two systems that have very different representations and mappings
could still produce the exact same output/behavior (cf. Hermann and Lampinen, 2020), just like very different
sorting algorithms (say, “quicksort” and “bubblesort”) produce the same output. The reverse is not the case:
if there are differences in behavior, this implies differences in either the mapping, the representation, or both.
If the mapping is fixed, perfect behavioral alignment is a necessary condition of perfect representational
alignment.?

Behavioral comparisons between deep neural networks and human perception have seen substantial interest
over recent years. For instance, contrasting error patterns of different systems (a behavioral measure), ideally
at the fine-grained individual stimulus level (Green, 1964), can be a powerful way to learn about differences in
underlying representations (Rajalingham et al., 2018; Geirhos et al., 2020a); and numerous severe differences
between neural networks and human perception have been discovered using behavioral experiments (Baker
et al.; 2018; Peterson et al., 2018; Geirhos et al., 2018; 2019; Peterson et al., 2019; Feather et al., 2019; Jacobs
and Bates, 2019; Serre, 2019; Geirhos et al., 2020a; Hermann et al., 2020; Lonnqvist et al., 2020; Funke et al.,
2021; Geirhos et al., 2021; Storrs et al., 2021b; Kumar et al., 2021; Abbas and Deny, 2022; Bowers et al., 2022;
Dong et al., 2022; Malhotra et al., 2022; Huber et al., 2022; Jaini et al., 2023; Muttenthaler et al., 2023a;
Wichmann and Geirhos, 2023; Kumar et al., 2023a; Muttenthaler et al., 2024a). Similarities in behavior can
also serve as clues to phenomena happening under the surface both in neural networks and in humans. Rane
et al. (2023c) finds a correlation between neural networks’ performance in learning visual words and the age
at which children acquire those same words, ultimately showing that both are capturing human judgments of
how concrete or abstract a word is. Such behavioral insights often serve as a tool for identifying relevant
phenomena that are then further characterized in interpretability and representational alignment work.

Ultimately, different communities weigh output and representational alignment differently. In neuroscience,
for instance, representations are often a central research focus, while robotics and reinforcement learning
focus more on output. At present, one widely used form of behavioral /output alignment is Reinforcement
Learning from Human Feedback (RLHF) (Ziegler et al., 2019; Christiano et al., 2017; Ouyang et al., 2022;
Casper et al., 2023), which uses human ratings of an AI system’s behavior to learn a separate model which
scores new outputs of the system, in an attempt to better align the model’s outputs towards those which a
human would prefer. However, what the right kind of feedback to elicit from people is for building reward
model remains an open question (Casper et al., 2023; Collins et al., 2024a; Wu et al., 2023; Liang et al., 2024).

2.3.5 Value alignment

Behavior-focused methods are commonly used for the daunting goal of value alignment (Taylor et al., 2016;
Gabriel, 2020; Kirchner et al., 2022): the goal of building a model that aligns with the values of humans, often
with the hope that such a model could broadly benefit humanity. Value alignment is notoriously difficult to
define and measure. Thus, researchers often evaluate the alignment of model and human behavioral outputs or
task performance (Hadfield-Menell et al., 2017; Hubinger et al., 2019), However, monitoring output alignment
is insufficient for predicting whether a model will continue to be aligned with humans, or merely appears
that way in a constrained evaluation setting, which is important for detecting the emergence of potentially
charged behavior (Chan et al., 2023). Similarly, researchers often use behavior-focused methods like RLHF or
Constitutional AT (where human oversight is provided via a list of rules or principles) to increase alignment
(Christiano et al., 2017; Bai et al., 2022). However, value alignment may be difficult or impossible to achieve
through these methods (Eckersley, 2018; Casper et al., 2023).

2If alignment is not perfect, the relationship between representation and behavior or output depends on the mapping’s properties,
for instance, whether it preserves monotone relationships. Typically, alignment is best thought of as a spectrum rather than a
binary concept.

14



Published in Transactions on Machine Learning Research (10/2025)

Could representational alignment offer new possibilities for value alignment? Zou et al. (2023) pursue value
alignment via “representation engineering” — finding representational dimensions that are related to valued
behaviors like honesty (cf. Burns et al., 2022), and then manipulating those representations to increase the
models’ tendency to exhibit these behaviors. This strategy hints that aligning the representational structure
of models with that of humans could offer benefits for value alignment and all affected downstream tasks—at
the very least as pre-conditioning for more targeted interventions.

2.3.6 Human-robot interaction

In robotics, we often seek to build robots that perform tasks specified by human users. To do so, robots need
to rely on a representation of salient aspects of the world that capture the end user’s desired task (Bobu et al.,
2023). For example, to make a cup of coffee, the robot must learn features that the human user (implicitly or
explicitly) cares about, e.g., brand and flavor of coffee as well as the cup orientation and the cup’s distance
from obstacles, as part of its representation of the task. There are currently two dominant approaches for
learning human task representations: one that ezplicitly builds in structures for learning salient task aspects,
e.g. feature sets or graphs (Levine et al., 2010; Daruna et al., 2021; Bobu et al., 2021; Peng et al., 2023),
and one that implicitly extracts them by directly mapping the inputs to the desired robot behavior, e.g.
end-to-end approaches like the identity representation (Finn et al., 2016; 2017; Torabi et al., 2018; Xu et al.,
2019). Each of these approaches comes with its own set of trade-offs.

On the one hand, specifying explicit task structure is helpful for capturing relevant task aspects like those
described above. However, the structure baked in explicitly is useful only if correct: without the right
inductive bias, robots may misinterpret the humans’ guidance for the task or execute undesired behaviors
(Bobu et al., 2020). On the other hand, neural networks can implicitly learn task structure in a manner that is
faster and less burdensome on the designer, albeit while potentially containing irrelevant information in their
representations and correspondingly capturing spurious correlations (Zhang et al., 2018; Rahmatizadeh et al.,
2018; Rajeswaran et al., 2018). Recent trends to address this tendency include feature subset selection methods
(Cakmak and Thomaz, 2012; Bullard et al., 2018; Luu-Duc and Miura, 2019), clever ways to efficiently collect
human data (e.g., via YouTube or VR) or reuse past data sets from the robot’s lifespan (Baker et al., 2022).
However, there is still no guarantee that these data will be representative of the end user’s behavior. Rather
than treating humans as static data sources, these methods may benefit from including them as (weak)
supervision signals in the alignment process.

3 Framework for representational alignment

As we have illustrated, representational alignment is an active and fruitful area of research. However, analyzing
the literature from each of the three fields reviewed above makes it clear that representational alignment
is a fragmented area of research, reminiscent of the Tower of Babel. Disparate definitions and insufficient
knowledge sharing across fields have led to the rediscovery of the same ideas under different names, the
repetition of similar mistakes, and underutilized opportunities for cross-disciplinary collaboration. To unify
these fragmented communities, we propose a general formalism of representational alignment — a lingua
franca that we hope will accelerate progress on open problems in representational alignment research.

3.1 High-level overview

Conceptually, we propose that there are five major components to most studies of representational alignment
that researchers have control over (see Figure 2 for a schematic description):

(a) The data used for alignment, which could be sensory data (a subset of a stimulus space, such as an
image set for vision) or higher-level cognitive content. Throughout this paper, we assume that the
data is a static sample (e.g., simple stimuli like images). However, this framework can be generalized
to cases where systems interact dynamically with an environment, in which case data is replaced by
environment states.

(b) The systemns whose representational alignment is being measured (e.g., humans, animals, deep neural
networks, etc.). A system interfaces with the data. This interface is partially controlled by the
experimenter (i.e., the experimenter can choose which stimuli to present and how to present them)
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Figure 2: A general framework for conducting and describing representational alignment research. Most studies of
representational alignment involve five components that researchers can control: data is presented via interfaces to
the two systems. The systems form internal representations of the data and researchers take measurements of
the systems and map them to some embedding space to try to infer the representations. An alignment function
is then applied to those inferred representations to compute a single alignment score. These studies typically have
one of three objectives: measuring the representational alignment between the two systems (i.e., the alignment
score), bridging between two different representational spaces by finding a shared embedding space, or increasing
the representational alignment between the two systems either by updating their internal representations (e.g., via
learning) or how they are measured.

and partially a component of the system (e.g., for humans this can be the periphery of the visual
system). Once the stimulus is internalized in the system (e.g., as neural activity in the human brain),
it forms an internal representation (for example, the neuronal activity through the entire brain during
preconscious processing). The internal representations of many system states are latent. For human
participants, this might be the latent state of their brain as they view an image. In the case of a
machine learning system, however, the system can be accessed in principle. An example would be the
entire network activation pattern in response to a given stimulus. While we assume that all systems
of interest in representational alignment studies can take data as input and form representations of it,
we note that in some cases those systems may also have intrinsic or extrinsic objectives that require
them to produce outputs (e.g., when the study involves monitoring a system while it performs a task
like classification), that those outputs may in some cases affect the data distribution (e.g., by acting
on the environment as mentioned above), and that the objectives themselves may affect the internal
representations (e.g., task-dependent representations).

The measurements that are being collected about each of the systems (e.g. behavioral similarity
judgments, activation of a region for fMRI, hidden layer activations for a neural network, etc.).
Note that the process of measurement also includes the potentially-different processes required
for presenting stimuli to the two systems (e.g., playing audio to a human, versus presenting its
spectrogram to a convolutional network).
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(d) The embeddings or inferred representations that are being extracted or (re)constructed from each
system.

(e) The alignment function that is being used to measure the degree of alignment between the embeddings.

Studies focused on measuring alignment typically just involve computing an alignment score from the
alignment function. Meanwhile, studies focused on bridging representational spaces or increasing alignment
usually involve using this score as a feedback signal on how to update the embedding function (in the bridging
case) and the internal representations or their measurements (in the increasing case). We visualize this
framework in Figure 2.

As a concrete example, consider the work by Kriegeskorte et al. (2008b) highlighted in Panel b of Figure 1.
Say we want to measure the representational alignment of two systems: a rhesus macaque monkey and a
human. In this case, the data over which we want to measure alignment might be a collection of scene
images. In both monkeys and humans, the state of the two systems would be the activation pattern in
all the neurons while they observe the image. This state cannot be directly accessed, but only through
measurement. For the monkey, this could be the neural responses in the inferotemporal cortex measured
with electrophysiology, and for the human, we could define it as neural responses in the inferotemporal
cortex measured with fMRI. A widely used summary statistic of the joint representation of all stimuli is the
representational dissimilarity matrix (RDM), which defines the representational geometry for each system.
The RDM contains the pairwise distances between the activity patterns representing the stimuli, and provides
an embedding in which representational geometries can be compared. The RDM comparator (or alignment
function) can be the cosine similarity, a correlation coefficient, or a metric such as the angle two RDMs span.
This approach is known as representational similarity analysis; e.g., Kriegeskorte et al., 2008a; Diedrichsen
et al., 2020; Schiitt et al., 2023).

We believe that our framework provides a simple, general language for clearly communicating the methodology
and results of representational alignment studies in a way that is accessible to many researchers. In Table 2,
we present diverse examples of literature from various fields summarized by the components of the framework.
The remainder of this section goes into more detail on how to mathematically formalize descriptions of
each of the components and decisions that go into a study of representational alignment. We encourage
researchers to use our framework when formally describing their representational alignment studies to help
others understand the exact details and support reproducibility. In Section 4, we lay out in detail how the
nine highlighted examples from Figure 1 can be described in the language of our formalism.

3.2 Formalizing representation spaces
Figure 2 shows a schematic description of our framework which contains the following components:

Data. Let D := {s;}"; be a dataset of n trials, where each s; € D is a stimulus that can be processed
by any information processing function. Note that a dataset is not restricted to a set of single elements.
Each element by itself can be either an image, a set of images (e.g., triplets), a string, a sequence (of strings
or other realizations of time steps), a video (or frame thereof), etc. In practice, we note that systems can
interact with the environment (for example, in the case of an agent in a game environment) in which case
the data is the states of the environment and is dynamic rather than static. Most of the case studies in this
paper concern the simplified case in which the systems do not modify the environment.

Systems. We assume that there exist two systems A and B, which can be described in terms of functions
that map inputs (s;) to their internal states fp =S — A and g4 = S — B, where A and B denote the
space of all possible states of systems A and B, respectively. For notational simplicity, we abstract away the
interface layer, which may affect how the stimuli are presented to each system, as part of 6 and ¢. We also
note that in some studies, the systems may not only be (passively) processing the stimuli but will be actively
engaging with them in a certain task (i.e., producing outputs). Upon performing this task, the systems may
modify the environment from which the data is drawn. For simplicity, we treat the environment as stationary
and assume that the task context is part of the stimuli.

Measurements. For each of the systems A and B we obtain a summary of the measurement X =
to (fo(si),-- . fo(sn)) € X and Y = vg (g4 (8i),....94(sn)) € Y, respectively. This is obtained by
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sequentially applying the functions fp and g, (returning the state of the systems for each of the stimuli) to
all of the n trials and then passing the output through some (possibly) parameterized functions p, and vga.
The parameters « and 8 will often reflect hyperparameters of the measurement process (e.g., in machine
learning this parameter could specify which layer activations are being measured from; in human fMRI
this can represent parameters of the scanning procedure as well as parameters of processing the raw fMRI
data). However, in some cases (typically in machine learning), we simply directly use the entire internal
state, and thus u, = vg = 1 are the identity maps. In this case, X = (fg (s:),..., fo (s)) € X"*P and
Y = (gp (i), 96 (8n)) € Y™ are the two-dimensional arrays of stacked measurements of lengths p and
d respectively.

Embeddings. To map categorical behavior to a continuous number space, denoise a set of high-dimensional
measurements (that potentially have a low “signal-to-noise” ratio), or essentially any other reason for why we
would need a mapping from the output space (e.g., neural activity) of the information processing functions to
another — possibly lower-dimensional — embedding space (e.g., real-numbered values), we can optionally
define a function that transforms the measurements into an embedding space where similarity can be quantified.
We assume the existence of two embedding functions, ¢y = X — V and x., =Y — W, which can be either
linear or non-linear. We also assume that these functions have two optionally learnable arrays of parameters
¥ and w. ® We emphasize that the embedding function(s) are not necessary but may be advantageous in
specific situations. One such scenario includes increasing representational alignment (cf., Muttenthaler et al.,
2023a;b, see §4 for further examples where this may be desirable). Note that if we do not have an embedding
step we can simply assume ¢y = x,, = 1 are the identity map and do not change the summary measurements.

For simplicity, we consider flattening the representations in all stages into vectors (denoted as lowercase
letters in boldface). However, we emphasize that in general, the measurements can have any shape and type
— e.g., they may be matrices, graphs, programs, or strings — as long as the two sets of measurements admit
an appropriate measure of alignment.

3.3 Measuring alignment

There exists a function 6 : V x W +— R that we can apply to the embedded vectors v and w such
that §(v,w) € R yields a scalar value that quantifies the degree of alignment. For simplicity, we define
d(v,w) = Ay to be a dissimilarity measure where A, ., = 0 implies that v = w, and, therefore the
embedding vector v is fully aligned with w.

General conditions. The following conditions have to be satisfied for any function § that measures
representational alignment.

o Measurable. 6 must be a measurable (dis-)similarity function. However, we do not restrict ¢ to be a
metric because symmetry is not a necessary condition to assess the alignment between two embedding
spaces.

e Scalar-valued. To meaningfully quantify representational alignment, we restrict d to map to a scalar.
Hence, § : V x W — R. For simplicity, in the remainder of this section, for v and w, we focus on
(flattened) vector representations.

o (Dis-)similarity-quantifying. The scalar-valued output of ¢ is required to quantify a (dis-)similarity.
For convenience, we generally use the notation of a dissimilarity measure, where § has a lower bound
at zero at which the two embedding spaces are equivalent. Hence, § : V x W — [0,00) C R. The
advantage of a dissimilarity measure is that it can be viewed as an error function or a loss that can
be minimized. However, alignment functions could also measure similarity (see §3.3.1).

In the following, we will elaborate on properties of alignment functions we think are useful to distinguish
from one another. We distinguish similarity-quantifying from dissimilarity-quantifying, descriptive from
differentiable, and symmetric from directional alignment. A valid alignment function must satisfy at least

3Dimensionality reduction techniques such as SVD or PCA can serve as valid (optional) embedding functions even though they
do not consist of any learnable variables. However, one may be interested in learning a particular (non-)linear transformation
for which learnable variables are necessary (e.g., to increase alignment).
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one of two properties that we contrast in each case. It must be (dis-)similarity quantifying; descriptive,
differentiable, or both; and symmetric or directional. We list examples of alignment functions in Table 1 but
a more in-depth survey can be found in (Klabunde et al., 2023).

3.3.1 Similarity or dissimilarity quantifying

Any alignment function J has to quantify the (dis-)similarity between two representations of a set of stimuli (or
pieces of cognitive content). Although any similarity can in principle be transformed into a dissimilarity and
vice versa, similarity-quantifying and dissimilarity-quantifying alignment functions have distinct advantages
and disadvantages.

Similarity-quantifying. Similarity-quantifying alignment functions are often used for describing the
relationship between two sets of measurements X and ). Among the set of similarity-quantifying alignment
functions exist functions that are bounded in both directions. The upper and lower bounds provide
reference points that can ease interpretation. Examples include the Pearson correlation, the Spearman rank
correlation, the cosine similarity, and any centered or normalized inner product. For these function, we have
d:V x W [-1,1] C R. The bounded nature of these functions renders them particularly insightful for
describing a relationship between representations, as its output is easily interpretable.

Dissimilarity-quantifying. For all dissimilarity-quantifying alignment functions, § : ¥V x W — [0, 00) C R,
holds. That is, dissimilarity-quantifying alignment functions have a lower bound at 0, where we know that
two representation spaces are equivalent. However, it is difficult to put an upper bound on these functions.
Thus, dissimilarity-quantifying functions can be more difficult to interpret. Information-theoretic measures
such as the cross-entropy or relative entropy and ¢,-norms of the difference between two embedding vectors v
and w, e.g., ||[v — wl|3, are common examples of dissimilarity-quantifying alignment functions (e.g., McClure
and Kriegeskorte, 2016). Although their outputs can be difficult to interpret and are not recommended
to (merely) describe the relationship between two sets of measurements, they are useful error functions
that can be minimized by gradient descent. In addition, it is possible to use a dissimilarity-quantifying
function (e.g, cross-entropy) to maximize a similarity-quantifying function (e.g., cosine similarity) as is often
done in contrastive representation learning (Chen et al., 2020; Radford et al., 2021; Muttenthaler et al.,
2023b). Similarity quantifying functions that have been transformed into distances, such as the cosine
distance—or, equivalently, one minus the Pearson correlation coefficient (1 — p)—are better suited to measure
representational alignment. These distances are bounded in both directions with a minimum at 0 and a
maximum at 2. This makes them easier to interpret than information-theoretic measures or f5-norms, which
have no clear upper bound. However, they are not as convenient for increasing the degree of representational
alignment between information processing systems because it is difficult to use them directly for optimization.

3.3.2 Descriptive or differentiable

An alignment function must be descriptive or differentiable or both. These properties are not mutually
exclusive, but in general, we either want to use § for describing or increasing representational alignment.

Descriptive. A descriptive alignment function does not need to be differentiable. Such a function mainly
serves to quantify the (dis-)similarity between the two sets of measurements X and Y. Hence, descriptive
alignment functions are used when researchers aim to measure alignment and establish the conditions and
system setups that cause representational alignment to emerge rather than aiming to increase alignment (see
§5 for a more detailed discussion). Descriptive alignment functions are often symmetric, as it is desirable to
obtain the same measurement of representational alignment if we change the order of the representations:
§(v,w) = §(w,v). An example of a descriptive alignment function used in Representational Similarity
Analysis (Kriegeskorte et al., 2008a) is the rank-correlation between RDMs as measured by Kendall’s 7, (Nili
et al., 2014) or p, (Schiitt et al., 2023)). Rank correlation is attractive for model-comparison in computational
neuroscience because it is invariant to nonlinear monotonic transforms of the RDMs, but it is not differentiable.
A descriptive and differentiable alternative would be the Pearson RDM correlation coefficient.

Differentiable. The objective to increase alignment of a model representation to another model or a brain
region motivates the use of a differentiable alignment function. Generally, any differentiable alignment
function can be regarded as an error function or loss that can be minimized, such that Lajignment == 0(v, w). If
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we want to minimize Lalignment Using a gradient, then ¢ must be restricted to the set of differentiable functions
over the embedding spaces V and W. For all differentiable alignment functions, we consider the settings of
representational transformation and representational fine-tuning, respectively, to minimize Lalignment-

Representational transformation: Representational transformation refers to the case where a model’s parame-
ters are frozen and a transformation of its representation is learned as an add-on to the model. An example is
the use of linear encoding models fitted to map from neural network model representations to single-neuron
responses measured in animals in neuroscience. Representational transformation requires choosing a level of
flexibility for the transformation. Although taking the representation spaces as is (without any transform)
may be descriptive (especially in the field of Machine Learning (c.f., Muttenthaler et al., 2023a)), manipulating
them allows us to compare spaces that are less obviously similar (e.g., by ranking which ones are relatively
more similar to each other). Thus, there exists a spectrum of transformations, ranging from the identity
function (i.e., no transformation), over linear transformations, up until non-linear functions under a constraint
such as Lipschitz continuity, weight bounds, or anything else that constrains the output space of the transform
to not move too far from the original space.

In representational transformation, we consider two sets of stacked embedding vectors V' = (vq,... ,'vn)T and
W = (wy,... ,wn)T to be fixed and immutable tensor representations for the n measurements in the data.
Here, we do not need access to any of the two sets of source parameters 6 or ¢. We learn a transformation
ha(py(2;)) for one of the two embedding spaces. Here, for simplicity, we choose the representation space V.
Hence, we are interested in all first-order derivatives, VL(£2), where we optimize the (bounded) parameters €2
of the transformation by solving the following minimization problem,

arg min Ealignment (hﬂ (V)v W)
Q

In this case, the alignment function is defined to be a dissimilarity measure that can be minimized and used
as an error function rather than a similarity measure that has to be maximized.

Representational fine-tuning: In representational fine-tuning, we are interested in differentiating through the
entire model and update its parameters. Examples include the student-teacher setup in machine learning (e.g.,
Hinton et al., 2015; Tung and Mori, 2019; Oquab et al., 2024; Muttenthaler et al., 2024a) and nonlinear
systems identification approaches in computational neuroscience (e.g., Wehbe et al., 2014a; Fyshe et al., 2015;
Seeliger et al., 2018; Toneva and Wehbe, 2019; Schwartz et al., 2019). To perform representational fine-tuning,
two conditions have to be satisfied:

1. Source parameter fizing: First, we have to fix one of the two sets of parameters 6 or ¢, which can be
seen as a special case of directional alignment (see below). Here, only one of the sets of measurements
X or Y is subject to change, and the other set remains unaltered.

2. Source parameter availability: Second, the parameters of the sources 6 or ¢, depending on which
of the two sets we want to fix, have to be readily available. That is, we need access to the set of
parameters that we want to update. Although theoretically possible Vf € F, in practice, it is unlikely
to have access to the synapses of a human or monkey brain after obtaining measurements from them.
Thus, this step is relevant only when the goal is to alter the parameters of an artificial intelligence
system.

Let us assume that both of the above conditions are met. We fix the parameter set ¢, assume access to 6, and
evaluate the dissimilarity of V from W. That is, we want to differentiate through J, ¢, and fp to minimize
Ay w and consequently updating the source parameters 6. As such, we are interested in the first-order
derivatives with respect to all of those learnable variables. Note that without a restriction in the mapping
function representational fine-tuning is not particularly useful if we are interested in whether two sets of
measurements X and Y are (dis-)similar because, in high-dimensional spaces, it is likely that there exists a
non-linear transformation (e.g., a multi-layered neural network) that can map one space to the other. For
representational fine-tuning to be useful, we must test the generalizability of the learned mapping to held-out
measurements of the target system (here, Y), thereby satisfying at least one of the following two conditions
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(a) Few-shot fine-tuning. We must limit the number of training examples used for fine-tuning the set of
parameters. So, if n denotes the number of training examples used for fine-tuning, n should be small;
how small exactly depends on the particular task and research question.

(b) Regularization. We must put an upper bound on the quantity ||6 — 6*||2 such that sup ||0 — 6*||2 < e,
where 6 is the set of original source parameters and 6* is the set of fine-tuned source parameters and
€ is a small real-numbered value. That is, we do not want the fine-tuned parameters to move too far
away from the original source parameters.

Differentiable alignment functions are specifically of interest for the goal of increasing alignment but under
certain conditions may also be useful for bridging the representation spaces of systems.

3.3.3 Symmetric or directional

An alignment function § can either be symmetric or directional; a function cannot be both at the same
time. We recommend symmetric alignment functions over directional alignment functions for describing the
relationship between two information processing systems if the goal is “just” to measure representational
alignment rather than bridging their representation spaces or increasing their alignment.

Symmetric. For any symmetric alignment function, 6(V, W) = §(W, V') must hold. Changing the order of
W and V as inputs to § is not allowed to change the (dis-)similarity between the embedding spaces W and
V. Symmetric similarity functions may be desirable for describing the relationship between A and ) rather
than optimizing for aligning the two spaces. Examples of symmetric alignment functions that are widely used
are the inner product, the cosine similarity, or the Pearson correlation, of which the latter two are modified
versions of the former.

Directional. Directional alignment functions define alignment in terms of one space. For these functions,
d(V, W) has to be defined in terms of one of the two embedding spaces V or W. Hence, any directional
alignment function either measures the dissimilarity of V' from W or, the other way around, it measures the
dissimilarity of W from V. Most information-theoretic measures are directional alignment functions of which
common examples are the discrete versions of the cross-entropy and the relative entropy (or KL divergence),
where discrete KL divergence is defined as

5 (o (py (i), 0(Xw (91))) = KL (0 (py (1)), 0 (xe (9:))) = — Za(w (®:));log (W) :

j=1
where o : VUW — RF with {J(x) ER*ixg+ -4 xp_1 =125 ZOfori:O,...,k—l} is a function
that transforms the embedding representations into discrete probability distributions (e.g., softmax). Here,
o(py (2;)) and o(xw (¥;)) must have the same shape. Due to their unbounded nature, information-theoretic
directional alignment functions are generally not recommended for describing the relationship between V/
and W because they are difficult to interpret (see §3.3.1). However, they are useful error functions for
minimizing the dissimilarity between two sets of representations and therefore often used for solving general
machine-learning problems.

3.3.4 Different measures afford different inferences

In the points above, we have outlined different attributes that a measure of alignment may have. But which
measure should we use? Rather than advocating for a particular measure, our goal is to communicate that
different measures are sensitive to different features, and therefore afford different inferences. Indeed, we have
been less strict in our analysis than some prior works (e.g. Williams et al., 2021); for example, we do not
require that a measure satisfy the mathematical criteria of a metric (e.g. we accept asymmetric measures).
However, these distinct features can each be advantageous in certain situations.

As a simple conceptual example, suppose that one system encodes signal A in 99% of its neurons and signal
B in 1%, whereas another encodes signal A in 1% and signal B in 99%. Regression would quantify these
systems as identical, despite most of their activity serving different purposes. RSA would classify them as
very dissimilar, despite them representing exactly the same information.
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Alignment function (J) | (Dis-)Similarity | Descriptive/Differentiable | Symmetric/Directional
Centered Kernel Alignment (CKA) Similarity Descriptive & differentiable d(z,y) =0(y, x)
Pearson RDM correlation Similarity Descriptive & differentiable §(z,y) = 0(y, x)
RDM rank correlation coefficient p, Similarity Descriptive o(x,y) =0(y, )
whitened unbiased RDM cos-similarity Similarity Descriptive & differentiable §(z,y) =0(y, x)
RDM cos-similarity Similarity Differentiable d(z,y) =0(y, )
Mutual Information (MI) Similarity Descriptive d(z,y) =0(y, )
{y-distance Dissimilarity Differentiable §(xz,y) = 0(y, x)
KL-divergence (KL) Dissimilarity Differentiable §(z,y) # 0(y, )
Cross-entropy (CE) Dissimilarity Differentiable O(x,y) # 0(y, )

Table 1: Examples of alignment functions and their properties.

More generally, symmetric measures of alignment can be more intuitive, but also elide important distinctions,
such as which of two systems contains more information, or which is noisier (though see Duong et al. 2023).
Asymmetric measures can provide more insight into features like these, but can lead to other kinds of failures
(as above). Likewise, measures that do not fit parameters may underestimate how similar two systems are, if
they use slightly different coding schemes that capture on the same information, However, sometimes methods
that fit parameters — even using methods as simple as linear regression — can be too flexible (Conwell et al.,
2022).

There is also a question of how to normalize measures; e.g. many analyses require specifying a notion of
maximum-achievable alignment. For example, in the presence of noise, this is often denoted by the “noise
ceiling” estimated by comparing representational predictivity across subsets of the data (e.g. Yamins et al.,
2014)—the representational alignment with another system would generally not be expected to exceed this
threshold.* A more sophisticated method is proposed by (Thobani et al., 2025), who use inter-subject
transforms to effectively normalize a measure of model-subject similarity.

Depending on the measures (and normalizations) we use, we may arrive at very different conclusions. Thus,
where possible, it is useful to consider multiple measures of similarity and evaluate how conclusions generalize
(see §5.3 for further discussion). Alignment measures are an active area of research, including work on
measures that more naturally capture relationships between representations that incorporate unit-level tuning
without being restricted to it (Khosla and Williams, 2023), measures that can be reliable over small datasets
(Pospisil et al., 2024), and frameworks that bridge between or unify different measures (Harvey et al., 2023;
2024; Williams, 2024).

3.3.5 What does it take to unambiguously specify a similarity measure?

Comparing similarity scores across studies can be challenging due to variability in naming and implementation
conventions (Cloos et al., 2024b). As an illustrative example, consider the similarity measure CKA. CKA was
defined by Kornblith et al. (2019) in terms of a quantity called the Hilbert-Schmidt Independence Criterion
(HSIC).
CKA(K, L) = HSIC(K, L)
V/HSIC(K, K)HSIC(L, L)

CKA is most commonly written using the linear kernel K = VV' ', L = WW T and the estimator for HSIC
originally proposed by Gretton et al. (2005) as in section 4.3.1.

1
ey Tr(KHLH)

where H,, = I,, — %11T is the centering matrix. However, this estimator is biased (Gretton et al., 2005).
Subsequently, Song et al. (2007) proposed an unbiased estimator of HSIC.

HSICGrctton(Ka L) =

4Except in the presence of unaccounted-for confounds, e.g. fixed stimulus orders across subjects.
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_ 1TK11'L1 2 _
Tr(KL — 1"KIL1
KD+ =y no2

1
HSICSOHg(K, L) = m

where K,;j = (1 - 6;;)K,;; and f,ij = (1 — 0;5)L;; are the kernel matrices with diagonal entries set to zero.
Additionally, Lange et al. (2023) proposed an estimator that can be both written as an inner product and
that has low bias.

HSICponge (K, L) = (tril(HK H), tril( HLH)) -

2
n(n —3)
where tril(A) denotes the vector formed by the elements of the lower triangular part of matrix A, excluding
the diagonal, and (-, -} denotes the Frobenius inner product.

These choices for the HSIC estimator are not just subtleties of the implementation but can have a large
impact on the final similarity score. Murphy et al. (2024) compared CKA with HSICg etton to CKA with
HSICsong and found that the unbiased estimator HSICgq,g is better at detecting stimuli-driven alignment in
fMRI and MEG data.

As this example shows, in order to more unambiguously identify a particular implementation of CKA we
would need to also specify how HSIC is estimated. Additionally, there are other variations to specify, for
example, Williams et al. (2021) proposed taking the arccosine of CKA to satisfy the axioms of a metric;
Ding et al. (2021) used 1- CKA; Huh et al. (2024) used a local version of CKA that considers only the top-k
nearest neighbors. To facilitate comparisons across different studies and make explicit the implementation
choices underlying a given code repository Cloos et al. (2024a) created, and are continuing to develop, a
Python package that benchmarks and standardizes similarity measures. The goal of this repository is to
gather existing implementations of similarity measures with a common naming convention and customizable
interface, ultimately making it easier for the community to make comparisons across studies.

4 Universal notation across diverse communities

The goal of our framework is to introduce a common language that can highlight similarities in the approaches
and goals across a diversity of fields concerned with the alignment of intelligent systems. To demonstrate
how our framework fulfills this role, in this section, we describe how representational alignment plays a role
in specific research projects (those visualized in Figure 1). For each of the highlighted examples, we present
a short conceptual summary followed by a formal mathematical description structured according to the
framework. We hope that illustrating how alignment is studied by different communities will enable readers
to see connections between topics, and hopefully empower them to transfer best practices from other research
communities to their own research topics. Table 2 provides a concise summary of how additional related
literature fits into the unifying framework.

4.1 Cognitive Science

4.1.1 Measuring representational alignment (Figure 1a)

Jacoby and McDermott (2017) use a serial reproduction paradigm (Griffiths and Kalish, 2005) to elicit
rhythm priors from participants. In this paradigm participants are initially introduced with a simple rhythm
that is randomized from the possible “universe”’ of simple rhythmic patterns. Participants reproduced the
pattern, and the average reproduction became the stimulus for a new iteration. After repeating the process
a fixed number of times, the experimenter identifies the density of responses within the stimulus space. In
this way, categories emerge as high-density response areas. One can show that this paradigm, under certain
experimentally verifiable conditions, converges to a sample from the perceptual prior over the relevant domain
(Griffiths and Kalish, 2005; Langlois et al., 2021b). Jacoby and McDermott (2017) showed that categories
identified with this method overlap with integer ratios, and that they differ between speech and musical
stimuli. A big advantage of this paradigm is that it can be used to study non-experts and participants with
no musical experience as it relies on minimal verbal instructions. A large-scale cross-cultural replication of
this work (Jacoby et al., 2021a) tested the paradigm with 39 groups from 15 countries. The results showed
categorical prototypes in all cultures that are near simple integer ratios. However, the weight (importance)
of categories varied substantially from place to place. This is in contrast to another follow-up work where
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\ Data SYSTEMS ALIGNMENT
Research paper(s) \ Setting | Trials | A B | Objective 0 (z,y)
2105 285 Images Monkey (brain) Human (brain) measuring ~ RDM rank correlation
198; 135; 40; 41; 395 Images Human (brain) Human (behavior) measuring ~ RDM rank correlation
285; 183; 135 Images Human (brain) Human (behavior) measuring  RDM linear combination
393 Images Mouse (brain) Mouse (brain) measuring  RDM optimal transport
191 Images Monkey (brain) DNN measuring RDM rank correlation
5; 67; 435; 76; 308 Images Human (brain) DNN measuring RDM rank correlation
95; 195; 191 Images Human (brain) DNN measuring RDM linear combination
383; 288; 289; 321; 256; 257; 212; 159; 158 Images Human (behavior) DNN measuring RDM rank correlation
198; 135; 40; 41; 395 Images Human (brain, behavior) DNN measuring RDM rank correlation
286 Images Human (brain) DNN measuring CKA
392 Images Human (behavior) DNN measuring ~ RDM optimal transport
300; 38 Images Human (brain, behavior) DNN measuring Task accuracy
383 Images Human (behavior) DNN measuring  Pearson RDM correlation
390; 283 Images Human (behavior) DNN measuring Procrustes measure
233 Images, Video Human (behavior) DNN measuring Euclidean distance
260; 257 Audio, Video Human (behavior) DNN measuring Pearson RDM correlation
86; 87 Video Human (brain) DNN measuring RDM rank correlation
406; 87 Text Human (brain) DNN measuring RDM rank correlation
20 Text Human (behavior) Human (behavior) measuring RDM rank correlation
256; 260; 257 Text Human (behavior) LLM measuring Pearson RDM correlation
237; 239 Text Human (behavior) LLM measuring KL-divergence
389 Text Human (behavior) LLM, multi-modal measuring Procrustes measure
394 Odorants Human (behavior) LLM, multi-modal measuring Pearson RDM correlation
189 Colors Human (behavior) Human (behavior) measuring  RDM optimal transport
205; 45 Images DNN DNN measuring CKA
243; 155 Images DNN DNN measuring Pearson RDM correlation
281 Images DNN DNN measuring RDM cos-similarity
310 Time series RNN RNN measuring Angular Procrustes
399 Text LLM LLM measuring Pearson correlation
437; 295; 49; 50 Images Monkey (brain) DNN bridging l5-distance
69 Images Monkey (brain) RNN bridging ly-distance, CKA
367 Images Monkey (brain), Human (brain) DNN bridging Task accuracy
329 Images Mouse (brain) DNN bridging cosine distance
192; 191; 76; 382; 136; 203; 378; 194 Images Human (brain) DNN bridging l5-distance
327 Phosphenes Human (brain) DNN bridging £-distance
297; 419; 402 Images, Text Human (brain) DNN, LLM, multi-modal | bridging {y-distance
395 Images Human (brain, behavior) DNN bridging RDM rank correlation
194 Tmages Human (brain) DNN bridging Pearson correlation
381 Images Human (behavior) DNN bridging RMSE
405 Images Human (behavior) DNN bridging ~ Pearson RDM correlation
238 Images Human (behavior) DNN bridging Cross-entropy
207 Images RL agent RL agent bridging RDM rank correlation
236 Images Human (behavior) Diffusion model bridging Cosine similarity
265; 137; 219; 116 Video Human (brain) DNN bridging lo-distance
361; 13; 14 Text Human (brain) LLM bridging lo-distance
425; 239; 20 Text Human (behavior) LLM bridging lo-distance
124 Images DNN DNN bridging CKA
103 Images Monkey (brain) DNN increasing RDM cos-similarity
80 Images Monkey (brain) DNN increasing CKA
288; 289 Images Human (behavior) DNN increasing Cross-entropy
73; 72; 385 Images Human (behavior) DNN increasing lo-distance
112; 388 Images Human (behavior) DNN increasing Hinge Loss
290 Images Human (behavior) DNN increasing KL-divergence
167 Images DNN DNN increasing Cross-entropy
160; 62; 410; 323; 384 Images DNN DNN increasing KL-divergence
263 Images DNN DNN increasing CCA
422 Images DNN DNN increasing Procrustes measure
244 Text LLM LLM increasing {o-distance

Table 2: Examples of research articles from cognitive science, neuroscience, machine learning, and other fields, that
relate to representational alignment. This table is intended to illustrate the broad interdisciplinary nature of the
field of representational alignment, rather than to provide a complete overview of the literature. It explicitly features
studies that were accepted to the Re-Align workshop at ICLR (Grant et al., 2024). We encourage readers to send us
suggestions for making this table more comprehensive.

American and Canadian children were tested (Nave et al., 2024). Here, there were small differences between
adults and children underscoring the idea that rhythm presentations are learned at an early age.

o Data D: Let D := {(i1,142,13) | i1 +i2+i3 = T, min (¢1,i2,43) > f} be all possible 3-interval rhythms,
where T is the total duration, i1, i2, and i3 are the three intervals and f is the minimal possible
interval (so that we avoid presenting rhythms that are too short).
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o System A: Let fy be a representative group of human subjects who perform the task. The analysis is
done at the group level and the output is a probability function (kernel density) of the three-interval
space.

— Its measurements X: Human tapping response for n randomly sampled initial seeds from D.
Data was collected from a group of m participants. Participants perform the serial reproduction
process and repeat the initial seed. The seed becomes the input of new iterations. After a finite
number of iterations (typically K = 5) the process stops and a new block begins with another
random seed.

— Its embedding V: V is the kernel density estimate for the data from the last two iterations.

e System B: This function stems from the same system as the function fy but for another group of
people — hence, g4 — with corresponding measurements ¥ and embeddings W. For example, the
first system can be participants from the US and the second system can be participants from the
Bolivian Amazon.

« Differentiable and symmetric alignment function §(V,W): JSD(V|W) = 1> V(logV —
log M) + % > W(logW — log M) is the Jensen—Shannon divergence computed over the two kernel
density functions where M = %(V + W) is a mixture distribution of the two kernels.

4.1.2 Bridging representational spaces (Figure 1d)

Hebart et al. (2020) collected 1.46 million human triplet odd-one-out judgments to generate a sparse positive
similarity embedding (SPOSE; Zheng et al., 2019) underlying these similarity judgments. In contrast to
much previous work that has manually identified candidate dimensions, focused on small, non-representative
representational spaces, or yielded low interpretability, Hebart et al. (2020) revealed 49 interpretable embedding
dimensions in a data-driven fashion for a broad set of 1854 object categories that were highly predictive of
single trial choice behavior. Instead of comparing representations using representational similarity analysis
(Kriegeskorte et al., 2008a) or similar measures, this approach of identifying core representational dimensions
allows for direct comparison of candidate dimensions that determine representational alignment. Therefore,
it provides a pathway for interpretable representational alignment between different individuals or modalities.

« Data D: Let D = ({is,js, ks})r_, be a dataset of n sets of three objects where each object in the
triad is an image. Let m denote the number of distinct objects in this dataset where m = 1854.

o System A: Let fy be a representative human participant who outputs a discrete (odd-one-out) choice
for each triplet in the data. The analysis is done at the participant level with choices pooled across
participants, and the output is an odd-one-out choice for each triplet in the data.

— Its measurements X: Asking each human participant to select the odd-one-out object for
each triplet in the data yields X := ({as,bs} | {is, s, ks})rr;, a human-response dataset of n
ordered tuples of discrete choices. Note that fy is a non-deterministic function and thus its
measurements are sampled from different human participants (the responses might as well be
aggregated).

— Its embedding V: Let ¢, (x) be a differentiable embedding function with learnable vari-
ables Wx € R™*P where p < m and W is initialized with Gaussian random variables. Let
S;; = w, w; indicate the similarity between object representations w;,w; in the p-dimensional
embedding space where Sx € R™*™ is the affinity matrix of all pairwise object similarities.
Thus, the embedding V := W is the learnable variables.

» System B: There is no function g4 in Hebart et al. (2020) but in principle one can imagine this
function to stem from the same system as the function f; but for another group of people (e.g.,
different cultural groups). However, it might as well stem from other systems, such as neural
network representations or brain data. In the latter cases, no triplets are directly accessible, but
we can easily generate them from the measurements of the function g4, where the measurements
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Y = (gs(51),.--19¢ (8m)) € R™*? are a stacked matrix of m object representations® from which
we can infer a similarity matrix (e.g., Sy :== Y'Y 7). Subsequently, we can sample triplets from Sy
and learn the low-dimensional SPoSE embedding using these generated triplets.

o Differentiable and directional alignment function §(X, W):

1 o
5(X7 W) = argwr/mnﬁ - ZIng({asvbs} ‘ {ZSvJSaks}v W) +A ”W”l s
s=1

where p({as, bs} | {is,js, ks}, W) = exp (w;rwb) / (exp (w;rwj) + exp (w?wk) + exp (w]—rwk)) and

A is a hyper-parameter that determines the strength of the sparsity-inducing ¢;-regularization.

Similarly, Muttenthaler et al. (2022) used the same set of measurements in combination with a similar
alignment function (same data log-likelihood function but different regularization) for learning a more robust
version of the embedding W using approximate Bayesian inference. They used a spike-and-slab Gaussian
mixture prior instead of vanilla ¢;-regularization and learned a matrix for the variance over the human
odd-one-out choices in addition to the (mean) embedding matrix, demonstrating that this more appropriate
than the above deterministic version when n is small.

4.1.3 Increasing representational alignment (Figure 1g)

Muttenthaler et al. (2023b) use human triplet odd-one-out choices to increase the alignment between neural
network representation and human object similarity spaces. The human odd-one-out choices were collected
using large-scale online crowd-sourcing in a previous study (Hebart et al., 2020). The objective in Muttenthaler
et al. (2023b) was to align a neural network function fy with the behavior of human participants g, where g, is
not a deterministic function and, thus, the human behavior is aggregated across multiple participants. That is,
their goal was to perform representational transformation (see §3.3.2) from the neural network representation
space into the human object similarity space. Therefore, they used a directional and differentiable alignment
function which — as we have seen in §3.3 — are both desirable but not necessary properties of an alignment
function.

o Data D: Let D := ({is, js, ks})._, be a dataset of n sets of three objects where each object in the
triplet is an image. Let m denote the number of distinct objects in this dataset where m = 1854.

o System A: Let fy : REXWXC 4 RP be a deterministic neural network function parametrized by 6
that maps an image tensor to a p-dimensional vector representation (in its penultimate layer/image
encoder space).

— Its measurements X: Applying fy to each image in the data yields X =
(fo(s1),.-., fo(sm)) € R™*P  a stacked matrix of m (penultimate layer) object representa-
tions.

— Its embedding V: Let S;; := x x; be the similarity between object representations x;, ;
in the original representation space and V;; = ¢y (X;;) = (Wea,; + b)' (Wz; + b) indicate the
similarity between object representations x;,«; in the transformed representation space. So,
V € R™ ™ is the affinity matrix of all pairwise object similarities in the transformed space.
Here, the transformation matrix W € RP*P and the bias vector b € R? are both learnable
variables (optimized via SGD).

« System B: Let g4 be a representative human participant who outputs a discrete (odd-one-out) choice
for each triplet in the data.

— Its measurements Y: Asking each human participant to select the odd-one-out object for
each triplet in the data yields Y := ({as,bs} | {is, s, ks})i_;, & human-response dataset of n
ordered tuples of discrete choices. Note that g4 is a non-deterministic function and thus its
measurements are sampled from different human participants.

5The dimensionality d of the object representations may or may not be collapsed. It may be collapsed if the representations are
inferred from brain data or from a convolutional layer of a CNN which are both generally of tensor format.
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— Its embedding W: There is no embedding function. Here, W =Y, a human response dataset
of discrete odd-one-out choices.

» Differentiable and directional alignment function 6(V, W):

1 o 2

oV, W) = ar‘%vrr;m o Zlogp({%, bs} | {iss Js, kst V) + A HW — <Z§:1 Wjj/p) IHF ,

’ s=1

where p({as,bs} | {is,js, ks}, V) = exp (v, vp) / (exp (v v;) + exp (v vi) +exp (v} vy)) and X is
a hyper-parameter that determines the strength of the /s-regularization.

Using the above (constrained) alignment function plus an additional contrastive learning objective that
preserves the local similarity structure from the original neural network representation space allowed the
authors to obtain a human-aligned representation space that showed increased representational alignment with
human perception and better downstream task performance on various computer vision tasks (Muttenthaler
et al., 2023b).

4.2 Neuroscience

4.2.1 Measuring representational alignment (Figure 1b)

Kriegeskorte et al. (2008b) used RSA to measure alignment between neural responses in monkey and human
inferotemporal cortex. The monkey neural responses were measured with multi-array electrophysiology and
the human neural responses were measured with fMRI. The objective was to compare the representational
geometry across monkeys and humans to determine if IT cortex is homologous across primate species using a
descriptive and symmetric alignment function.

o Dataset D: Let D = {s;}; be a set of n images depicting objects on plain white backgrounds.

o System A: Let fp : REXWXC 5 RP he a Rhesus macaque monkey whose neural activity we want to
record for each image in the data using electrophysiology measures. A monkey is a non-deterministic
function parametrized by 6.

— Its measurements X: Let X = (fo(s1),...,fo(sn)) € R™*P be the stacked monkey’s
electrophysiology signals from inferior temporal cortex for each image in the data D. For each
image, the electrophysiology measurements are represented by a vector of p electrodes that
reflect neural activity.

— Its embedding V: Upper-triangular off-diagonal elements of the representational dissimilarity
matrix Sx € R™*" where each entry s;5 = 1— ((:cl — )" (mj — ;) / (|2 — iy |5 — f]||2))
is determined by 1 minus the Pearson correlation coefficient between image representations
x;, ;. Thus, we have that the embedding v € R™*/2=" is a (flattened) vector representation
rather than a matrix.

« System B: Let g4 : REXWXC ., RvXd he a human participant who transforms images into neural
activity. A human participant is a non-deterministic function parametrized by ¢.

— Its measurements Y: Let Y = (g4(s1),...,9s (5,)) € R"***4 be the human participant’s
fMRI responses from inferior temporal cortex for each image in the data D. For each image,
the fMRI responses are represented by a matrix of voxel x individual neuron activities with v
voxels and d neurons.

— Its embedding W: Upper-triangular off-diagonal elements of the representational dissimilarity
. _\T - _ _

matrix Sy € R™ " where each entry s} =1 — ((yz— —9i) (y; —95)/ (lyi —gill ly; — yj||2)>

is determined by 1 minus the Pearson correlation coefficient between image representations

Y, Y;. Thus, we have that the embedding w € R"™™/27" is a (flattened) vector representation of
the same shape as v.
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o Descriptive and symmetric alignment function 6(v,w): Spearman’s rank correlation co-
efficient between the embedding vectors v and w. Note that the Spearman rank correlation is
non-differentiable.

4.2.2 Bridging representational spaces (Figure le)

O’Connell and Chun (2018) introduced techniques to (a) align fMRI responses across different individuals
and (b) align fMRI responses to eye movement behavior within individuals. Humans viewed images depicting
natural scenes while undergoing fMRI scanning, then in a separate session viewed the images while their eye
movements were recorded. To align brain activity across individuals, a linear decoding analysis was used to
map each individual’s fMRI responses into a common space defined as the unit activity of a CNN, which
allowed for group-level analysis over the mean of the aligned responses. To align human brain activity to
eye movements, a computational salience model is applied to the CNN-aligned fMRI responses to derive a
brain-based spatial priority map which was then compared to human eye movement patterns. The objective
was to identify brain regions in humans that capture spatial information predictive of human eye movement
patterns.

(a) aligning fMRI responses across individuals into a common (CNN-determined) representation space:

o Data D: Let D = {s;}7_; be a set of n images, each depicting a natural scene.
« System A: Let fp : REXWXC 3, RVXP he a human participant who transforms images into
neural activity. A human participant is a non-deterministic function parametrized by 6.

— Its measurements X: Let X = (fp(s1),..., fo (sn)) € R"*?*P be the stacked individual’s
fMRI responses for each image in the data D. For each image, the fMRI responses are
represented by a matrix of voxel x individual neuron activities with v voxels and p neurons.

— Its embedding V: Let ¢y (z;) : RV — R? denote partial least-squares (PLS) regression
that learns a linear transformation from the participant’s measurements space X to the
representation space of a CNN. The transformation was applied to held-out data to map the
individual fMRI responses to the embedding space such that V' = (g4 (21), ..., 0p(xn)) €
R™*?, Note that a flattening operation was applied to the rows of X before employing PLS
regression.

« System B: Let g, : REXWXC 1y RVXP he a different human participant who transforms images
into neural activity.

— Its measurements Y: Let Y = (g4(51),.-.,9¢ ($n)) € R"*?*P be the individual’s fMRI
responses for each natural scenes image in the data D.

— Its embedding W: The same PLS regression mapping as above was used to map from the
participant’s measurements space Y to the representation space of a CNN. Similarly, the
transformation was applied to held-out data to map the individual fMRI responses to the
embedding space such that W = (X (Y1), -+, Xew(Yn)) € R"¥4.

(0i=:) " (wi—w;)
lvi =il llwi —wil,°
denotes the Pearson correlation (coefficient) between the representations of function fp and
function g, respectively for the same image in the shared (CNN-determined) embedding space.

o Symmetric alignment function §(V,W): 6 (v;, w;) = where § (v;, w;)

(b) aligning fMRI responses to eye movement behavior:

o Data D: Let D = {s;}! ; be the same set of images as in (a).
o System A: Let fjy : REXWXC 3y RVXP he a human participant whose neural activity is recorded
for each image in the data.

— Its measurements X: Let X = (g (fo (51)),---, 0y (fo (sn))) € R™*4 be the stacked
group-level human fMRI responses transformed into a shared (CNN-determined) representa-
tion space (see embedding space above).

— Its embedding V: The group-level CNN-transformed fMRI responses were averaged across
the CNN activity feature dimension and layers to derive a brain-based spatial priority map
predicting where people would look in an image. So, V' € R™*"
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« System B: Let g4 : RTXWXC s R¥XZ he the same human participant whose continuous eye
movement patterns (instead of neural activity) is recorded for each image in the data.
— Its measurements Y: Let Y = (g4(s1),...,9¢ (8n)) € R"*"** be the individual partic-
ipant’s (continuous)) eye movement recordings (derived from an eye-tracking camera) for
each image in the data D.
— Its embedding W: Let W = {x;,y;}/_, be the set of (z,y) € R coordinates defining the
location of all fixations for a given image in D where n is the number of fixations.
o Descrtiptive and directional alignment function 6(V,W): The Normalized Scanpath
Salience (NSS) is the mean of the spatial priority map activations corresponding to fixation
locations such that NSS(v, w) = %Z(a,b)ew Vab-

4.2.3 Increasing representational alignment (Figure 1h)

Khosla and Wehbe (2022) trained CNNs to predict human fMRI responses in visual brain regions. While
previous work had compared alignment in fMRI and image-optimized CNN representations using descriptive
measures, this work aimed to increase human fMRI and CNN alignment by directly optimizing CNNs to
be aligned with fMRI responses. They find that CNNs optimized to predict responses in high-level visual
brain regions recapitulate visual behaviors including classification and making aligned similarity judgments
to humans.

o Data D: Let D := {s;}"; be a set of n images, each depicting a natural scene.

o System A: Let fy : RIXWXC  RUXP he g human participant whose neural activity we want to
measure for a set of images. A human participant is a non-deterministic function parametrized by 6.

— Its measurements X: Let X = (fo(s1),..., fo(sn)) € R""*P be the individual’s fMRI
responses for each image in the data D. For each image, the fMRI responses are represented by
a matrix of voxel x individual neuron activities with v voxels and p neurons.

— Its embedding V: Let ¢, : R"*? — R” be an aggregation function that maps a matrix of
voxel by neuron activities to a single activity per voxel. Thus, V' € R™*V.

« System B: Let g, : RY *WxC 5 RY be a deterministic neural network function parametrized by ¢
that maps an image tensor to a d-dimensional vector representation (in its penultimate layer space).

— Its measurements Y: Applying g4 to each image in the data D yields Y =
(96 (51) 5+, 96 (8n)) € R™¥4 ] a stacked matrix of n (penultimate layer) image representations.

— Its embedding W: Let x,, : R — R? be a factorized linear readout (with learnable variables)
that transforms penultimate layer image representations into human brain activity. Therefore,

W = (Xw(y1)7 cey Xw(yn)) € R™>v,

o Differentiable and symmetric alignment function J§(V,W): MSE(v;, w;) =

2
32— (vij —wig)”

4.3 Artificial Intelligence and Machine Learning

4.3.1 Measuring representational alignment (Figure 1c)

Just as it is possible to measure the similarity between representations of biological neurons, it is also possible
to measure the similarity between representations of artificial neural networks. A variety of neural network
representational similarity measures have been proposed (Raghu et al., 2017; Morcos et al., 2018; Williams
et al., 2021; Ding et al., 2021). Centered Kernel Alignment (CKA) is a particularly simple and widely-used
approach for this purpose (Kornblith et al., 2019):

o Data D: Let D = {s;}}~; be a dataset of n images (or text sequences).
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« System A: Any neural network function. Let fy : REXWXC JRT*K  RP be a deterministic neural
network function parametrized by 6 that maps a set of inputs (image tensors or text sequences) to a
set of p-dimensional outputs.

— Its measurements X: Let X € R"*P be the matrix of stacked activations extracted from a

layer /module of the neural network function fy where X = (fy (s1),.--, fo (sn))-

— Its embedding V: Here, ¢, is the identity function (in the case of linear CKA) or an arbitrary
feature mapping applied to the set of measurements X where V = (¢y (€1),..., 0y (z)) €
R'lem.

« System B: Any neural network function. Let g, : R¥ XWxC yRT*K 5 R? be another deterministic
neural network function parametrized by ¢ that maps a set of inputs (image tensors or text sequences)
to a set of d-dimensional outputs.

— Its measurements Y: Let Y € R"*? be the matrix of stacked activations extracted from a
layer/module of the neural network function g, where Y = (g4 (s1),---,9¢ (Sn))-

— Its embedding W: Here, Y, is the identity function (in the case of linear CKA) or an arbitrary
feature mapping applied to the set of measurements Y where W := (xu, (¥1),---, Xw (Un)) €
RTIX z .

o Differentiable and symmetric alignment function §(V, W):

CKA — IVTHW|2  w(VVTHWW'H)
CIVTHV|e[WTHW|r  |HVV H|r|HWW H|§’

where H,, = I,, — %11T is the centering matrix.

Depending on the choice of the feature mapping, V and W can be expensive or impossible to compute directly.
For example, the feature mapping associated with the radial basis function kernel is infinite-dimensional.
In these cases one has to compute similarity matrices K = VV'T and L = WW T by evaluating kernel
functions Kij = k(:ci,mj) and LU = l(:cl,ar:])

4.3.2 Bridging representational spaces (Figure 1f)

By enforcing text and image representational alignment, multimodal models achieve better cross-task transfer
compared to standard multitask learning. Specifically, Gupta et al. (2017) demonstrate better inductive
transfer from visual recognition to visual question answering (VQA) than standard methods, stating that
visual recognition additionally improves, in particular for categories that have relatively few recognition
training labels but frequently appear in the query setting. Their setup is the following:

o Data D: Let D := {r;, w;}?_, be a dataset of n images with corresponding text descriptions.

« System A: Any neural network function. Let fy : RI*WXC 5 RP be a deterministic neural network
function parametrized by 6 that maps a set of images to a set of vectorized outputs.

— Its measurements X: Let X = (fg(r1),..., fo (rn)) € R™*P be the stacked average-pooled
features from an ImageNet-trained ResNet-50 — which represents the neural network function
fo — for all n images in the dataset D.

— Its embedding V: Let V = X

« System B: Any neural network function. Let g, : RT*% i R'*? be another deterministic neural
network function parametrized by ¢ that maps a set of text sequences to a set of vectorized outputs.

— Its measurements Y: By applying two fully connected layers (that have 300 output units
each) from the neural network function g, to pretrained word2vec representations (Mikolov
et al., 2013b) of the text descriptions w we obtain Y = (g4 (w}),...,gs (w))) € R™**d 4
stacked tensor of d-dimensional representations for each word in the text description.
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4.3.3

— Its embedding W: Let W =Y

» Differentiable and directional alignment function 6(V, W): Depending on whether a word in

the text description is an object or an attribute, Gupta et al. (2017) use a different loss function for
aligning image and text representations. Therefore, the authors partition the text descriptions into
object and attribute sets. If a word in the text description w; corresponding to an image r; is an
object, then the alignment between the image and text representations is increased by minimizing
the following objective,

objl

|ws
1wl .
S(ViW) = Lovy (for96) = 5 D 57 D max{0mon; + @ g5 (0) =]V},
|wi ‘ lew®? | ke{O\w°}

where OF is the set of the 1000 most frequent object categories in the Visual Genome dataset (Krishna
et al., 2017) and nob; € R is a margin. If the word, however, is an attribute, then the following loss
function is minimized instead,

171
Laver (fo,90) = Y _ [t € T)(1 =T () loglo (] 9o (T),)] + L[t # TIT (t) log[1 — o (2] g (T),)],
teT
where o : R — [0,1] is a sigmoid activation function, I"(¢) is the fraction of positive samples for
attribute ¢ in a mini-batch, and 77 denotes the set of the 1000 most frequent attribute categories in
the Visual Genome dataset (Krishna et al., 2017).

Increasing representational alignment (Figure 1i)

The distillation of knowledge from a teacher network into a student network is a powerful tool in machine
learning. It is used to a) compress a large teacher network into a smaller (and faster) student model, b)
transfer knowledge from one modality to another (e.g. RGB to depth images), and c) combine the knowledge
from an ensemble of teachers into a single student network. While initial work in this area Hinton et al. (2015)
focused on behavioral alignment, Tian et al. (2019) proposed a general framework for transferring knowledge
by aligning (intermediate) representations. Their setup for transfer between modalities (b) is as follows:

o Data D: Let D := {(s;,r;)}_; be a dataset of n pairs of different modalities (e.g., RGB and depth

images).

System A: Let fp : RTXWXC1 3 RP be any (pretrained) neural network function parametrized by 6
that maps a set of inputs (e.g., RGB images) to a set of p-dimensional outputs and takes the role of
the teacher network.

— Its measurements X: Let X € R"*P be the matrix of stacked activations extracted
from a layer/module of the neural network function fp for all n RGB images where X =
(f9 (51) Yt f9 (Sn))

— Its embedding V: Let V = X.

System B: Any trainable neural network function that takes the role of the student network. Let
gy : RIXWXC2 5 R he another deterministic neural network function parametrized by ¢ that maps
a different set of inputs (e.g., depth images) to a set of d-dimensional outputs.

— Its measurements Y: Let Y € R"*? be the matrix of stacked activations extracted
from a layer/module of the neural network function g, for all n depth images where

Y = (g¢ (r),.. fe (rn))-

6Since we deal with non-contextual word representations, here, we can simply treat @ as a sequence of words rather than a set
and apply the neural network function g4 (sequentially) to it.

7Again, here we can treat 7 as a sequence of words rather than a set and apply g¢ to the sequence to obtain a representation
for each attribute word.
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— Its embedding W: Let W =Y.

« Differentiable and directional alignment function §(V, W):
O(V, W) = max Leyitie(94, )
= EP(X,Y) [log h(x,y)] + NEP(X)P(Y) [log(1 — h(z,y))].

Here h : R? x R? + [0,1] is a differentiable function that is trained alongside the student. Thus in
this case, the alignment function §(V, W) is not fixed but instead fitted to the teacher and student
networks fp and g4. Note that the two expectations are taken over sampling matching pairs of inputs
(i.e. (s4,7:)) and over non-matching pairs of inputs (i.e. (s;,r;) with ¢ # j) respectively. The factor
N is a hyperparameter that determines the relative frequency of non-matching pairs with respect to
matching pairs. Tian et al. (2019) show that in this setup Leitic is a lower bound on the mutual
information I(V; W).

5 Open problems & challenges in representational alignment

In the previous sections, we have presented a unifying framework for analyzing representational alignment
that encompasses a wide range of research disciplines. We highlighted commonalities in the work being
pursued by researchers across these fields: despite their seemingly disparate natures, each field is conducting
profound inquiries into representational alignment and researchers from each field bring complementary
perspectives to the table.

We next look ahead and outline a series of challenging unsolved questions that transcend these disciplines.
We hope that by identifying these shared challenges, we promote a holistic approach to problem-solving that
can catalyze inter-disciplinary collaboration and lead to further progress: not just in each individual field,
but across them (and perhaps even sparking new sub-disciplines). We encourage an exchange of ideas and
perspectives among our diverse scientific communities, whose combined efforts are well-positioned to help
unravel the complexities of representational alignment and advance the design of more representation-aligned
information processing systems.

5.1 Selecting data and stimuli

Any attempt to either measure or increase representational alignment begins with selecting the dataset D
over which to compute alignment. The degree of alignment measured, or the results of increasing alignment,
can depend dramatically on the dataset used.

In particular, if the dataset over which representation alignment is computed is too restricted, the results
may not generalize. For example, various features may be confounded in naturalistic data, which can lead to
overestimating alignment between models that rely on different features (e.g. Malcolm et al., 2016; Groen
et al., 2018; Dujmovié et al., 2022). For example, the strong correlation between shape and texture in natural
photos may mask the extent to which humans and CNNs rely on distinct features for object recognition
(Landau et al., 1988; Baker et al., 2018; Geirhos et al., 2019; Hermann et al., 2020; though cf. Jagadeesh and
Gardner, 2022). Likewise, selecting natural stimuli to test an effect of a single feature can introduce biases in
other correlated features (Rust and Movshon, 2005)—for example, confounds between lower-level statistical
features like Fourier power and more conceptual features like subjective distance or object category can make
it harder to identify which is driving neural activity from natural images (Lescroart et al., 2015).

On the other hand, it may be invalid to draw certain inferences based on representations of overly simplistic,
even if carefully controlled, stimuli. For example, processing naturalistic stimuli, such as reading a long,
continuous text, may engage fundamentally different processes than more controlled tasks over shorter stimuli
(Hasson et al., 2015). As a more concrete example, retinal neurons were originally studied with simple bar
and grating stimuli; however, some retinal neurons are sensitive to more complex interactions of features,
such as foreground motion against a moving background (Olveczky et al., 2003). Thus, there are dramatic
representational differences on datasets of naturalistic stimuli (Karamanlis et al., 2022). Research in machine
learning has similarly shown that studying model representations in the context of one dataset may suggest
that neurons encode a particular type of feature that is quite different than what appears to be encoded when
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studying representations in the context of a different dataset. For example, neurons in the language model
BERT (Devlin et al., 2018) appear to encode song titles given one dataset, but dates of historical events
given another (Bolukbasi et al., 2021). Thus, the interpretations we draw from our analyses may be biased by
the limitations of the data we consider. This issue is not restricted to sparse coding: similar issues can arise
under distribution shifts when using RSA or other distributed representation analyses (Dujmovié¢ et al., 2022;
Friedman et al., 2024). Thus, it is important to assess representational similarity on as diverse a dataset as
possible — ideally one that includes both naturalistic stimuli, and more controlled ones that explicitly reduce
confounding among important features (Rust and Movshon, 2005; Bowers et al., 2022; Hermann et al., 2023)
— and to test on held-out categories of stimuli, in order to determine the generality of the analysis.

However, as noted above (§2.2.5), representational alignment and dataset selection can be mutually reinforcing.
Representational alignment can be used to identify key cases where models disagree, by synthesizing optimally
“controversial stimuli’ that maximally distinguish between the representation spaces (Golan et al., 2022;
Groen et al., 2018), or even by selecting the most controversial among large sets of natural stimuli (Hosseini
et al., 2024a), which can then be tested on humans or animals. Likewise, representational alignment can
be used to optimize stimuli that drive a particular response (Tuckute et al., 2023). The mechanisms of
alignment can then be diagnosed through controlled experiments that manipulate stimulus factors (e.g.
Opielka et al., 2024). Thus, there can be a virtuous cycle in which measuring representational alignment
allows for better selection of datasets that support precisely measuring and understanding representational
alignment, and so on. These investigations demand a multidisciplinary perspective drawing on data collection
and experimentation practices across research communities.

5.2 Defining, probing, and characterizing representations

Once we have chosen systems to compare, and stimuli over which to compare them, we must decide how to
present the stimuli to them and how to extract representations. For example, human image processing is
recurrent and in some cases this computation can produce more accurate representations over time; thus
in some cases non-recurrent network behavior may appear similar to humans under time pressure, but not
humans given long times to process a stimulus (e.g. Elsayed et al., 2018)—and presumably some of the
underlying representations would reflect this evolution. Thus, details like time of stimulus presentation may
in some cases substantially affect the measured representational patterns and similarity between two systems.
Likewise, neural representations are dynamic and context-sensitive, and thus presentation order can affect
the representation of stimuli. Thus, the presentations format should ideally be designed to align between the
two systems as closely as possible, and randomize factors that cannot be aligned.

Extracting representations also poses challenges. For example, in a deep transformer language model, which
layers or components (e.g. attention heads or MLPs) should we analyze? If we are interested in human
brain activity, how should we record it? Indirect measures like fMRI or EEG can distort or enhance features
compared to the information that is computationally available to the underlying system (Ritchie et al., 2019).
Or, if we record single-cell neural activity from cortical cells, which regions should we target? These decisions
can radically change the results of the analysis. For example, certain kinds of knowledge may be localized in
particular regions or components in natural (Kanwisher et al., 1997) and artificial (Manning et al., 2020;
Meng et al., 2022) neural networks. Which regions should we study?

Ideally, we would compute representations over all regions and components of each system, and compare
these pairwise. Pairwise comparison can reveal similarities in processing, such as parallels in progression
through regions of the visual cortex and artificial CNNs (Yamins and DiCarlo, 2016). However, it is often
experimentally or computationally infeasible to do these analyses in full. Often, it is necessary to rely on the
prior literature—and the available tools—to constrain the hypothesis space of representations to consider.
Conversations amongst researchers spanning varied disciplines can ensure such choices are well-informed.
However, even once we have selected a method of extracting representations, understanding the role that
these representations play in computation remains conceptually challenging, as we discuss in section 5.2.2.

5.2.1 Eliciting representations from black-box systems

How do we measure the representational alignment of black-box systems whose inner workings we cannot
access? One technique that we described above is collecting similarity judgments, but there are often cases
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where running similarity experiments is not feasible, e.g., when we work with a high dimensional and large
dataset (however, see Marjieh et al. (2023a) for some recent progress in this direction). An alternative is based
on Markov Chain Monte Carlo (MCMC) sampling processes that are widely used in machine learning and
physics (Metropolis et al., 1953; Hastings, 1970). The method was first introduced by Sanborn and Griffiths
(2007) where participants gradually refined high-dimensional objects by acting as the rejection function in an
MCMC sampling chain. Under specific conditions that can be empirically validated, this method converges
to a sample from the hidden distribution or representational prior of the participants (Sanborn et al., 2010).

Another similarly adaptive technique is serial reproduction (Xu and Griffiths, 2010; Langlois et al., 2017).
This method employs a Gibbs sampling algorithm where participants are tasked with directly recalling and
replicating intricate objects, effectively sampling from the underlying prior. Examples include the reproduction
of rhythmic sequences (Jacoby and McDermott, 2017; Jacoby et al., 2021a), melodies (Anglada-Tort et al.,
2023), or specific spatial positions shown to the participants (Langlois et al., 2021b). This methodology is
especially potent in areas where the black-box system, in this instance, a human, can reproduce intricate
objects without intermediaries. A recent advancement by Harrison et al. (2020) suggests a technique for
modifying object dimensions by interacting with it using a computer slider. Using the Gibbs sampler, this
approach has been instrumental in deriving foundational semantic “prototypes” for facial structures (Harrison
et al., 2020), emotional prosody (Van Rijn et al., 2021; van Rijn et al., 2022), visual patterns (Kumar et al.,
2022), and musical chords (Marjieh et al., 2024a).

It is worth noting that while these methods predominantly involve human subjects, there is a significant overlap
with machine learning generative paradigms. Indeed, Marjieh et al. (2023b) have recently demonstrated
the mathematical parallels between serial reproduction and diffusion processes. This connection hints at
the promising potential of representation elicitation methods in enhancing the interpretability of machine
learning, as well as fostering generative models that better resonate with human preferences in forthcoming
research.

5.2.2 The relationship between representation and computation

In general, we are interested in understanding (or modifying) the representational structure of a system in
order to understand (or modify) more abstract computations. However, this raises a thorn for representational
alignment research: our methods and interpretation of results depend upon the complex relationship between
representation and computation (cf. Churchland and Sejnowski, 1988). Here, we highlight some challenges
and questions about this relationship.

Extraneous influences on representations: Representations may be shaped by other implementation-level
factors that are not essential to the computational process. For example, biological representations may be
constrained by energetic demands (e.g., Laughlin, 2001), while deep learning representations may be biased
by which features are already represented before training, or which are learned more readily (Hermann and
Lampinen, 2020; Farrell et al., 2023; Lampinen et al., 2024). These extraneous factors may cause us to either
under- or overestimate representational similarity between systems with different learning processes and
implementations (Dujmovié et al., 2022; Griffiths et al., 2023; Friedman et al., 2023).

Context-dependent & dynamic representation: Biological neural representations are dynamic and
contextual; they change with repetition (Grill-Spector et al., 2006), attention (Cukur et al., 2013; Birman and
Gardner, 2019), context (Brette, 2019; Deniz et al., 2023), and time (Rule et al., 2019). When performing
representational similarity analysis, we are forced to treat a single representation (or a within-participant
average) as though it were a canonical representation of that stimulus. However, this inevitably elides
important details of the dynamic role each representation plays in the system’s computation.

Philosophical issues in representation and computation: The practical issues above hint at deeper
philosophical issues. Representational alignment is grounded in a computational perspective on natural
intelligence, particularly, the notion that a system must necessarily form representations of its inputs in
order to produce intelligent behavior. This perspective underlies, for example, the idea that there exists an
embedding “function” that can be mapped across a set of stimuli to produce a tensor of embeddings.
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However, other perspectives de-emphasize representation and computation in favor of the dynamic interaction
between an intelligent system and its environment (e.g., Brooks, 1991; Cisek, 1999). From such perspectives,
measuring alignment between tensors of “representations” may seem misguided. Indeed, as noted above, the
brain is a dynamical system whose responses to stimuli change and adapt. Thus, how can we philosophically
justify aligning “representations” between artificial and natural intelligence?

While we acknowledge the challenges posed by these issues, we take a more pragmatic perspective on
representation (cf., Poldrack, 2021; Cao, 2022; Cao and Yamins, 2024) and interpret a system’s internal
responses as representations insofar as they play a “representation-like” role in its behavior. The empirical
evidence that aligning representations of neural networks to human ones can improve generalization and
transferability (e.g., Muttenthaler et al., 2023b) helps to justify this approach. However, we believe that
more deeply analyzing the dynamic role of the system’s internal responses in its behavioral interactions
could yield greater insights, or greater ability to align systems. Indeed, some recent works are moving in
this direction; for example, Ostrow et al. (2024) propose a Dynamical Similarity Analysis (DSA) method
that focuses on temporal dynamics, and find that it more accurately identifies similarities among recurrent
networks on various tasks. Additional investigations confirm that DSA, as a metric developed with dynamical
representations in mind, is better at identifying computationally relevant representations in RNNs than
metrics which were conceived for static representations but can be adapted to capture dynamics Guilhot
et al. (2024).

5.3 Measuring alignment

There are also challenges in measuring alignment between systems. As noted above (§3.3.4), different measures
of similarity have distinct advantages and disadvantages. For example, we may be interested in asymmetries
that are obscured by symmetrical metrics, or we may want to evaluate how fitting parameters in the alignment
changes conclusions. In many cases, different metrics can yield different conclusions about the relationship
between two systems (e.g. Minnema and Herbelot, 2019; Cloos et al., 2024a). Thus, as noted above, it is
useful to compare systems using multiple metrics.

Yet, there are also shared challenges across similarity measures that are more difficult to address, again due to
the complex relationship between representation and computation. For example, similarity metrics generally
impose the assumption that smaller differences between two representations are less important than larger
ones. For example, (unregularized) linear regression, or RDMs computed with Euclidean distance, assume
that the squared distance between two representations measures how important the distinctions between
them are. However, this may not always be a good assumption. Sometimes even if a system represents
two signals equally well, and uses them equally often, one will carry much less variance — i.e., changes in
the signal will result in smaller changes in the representations as measured by Euclidean distance metrics —
perhaps due to inductive biases or learning dynamics (Lampinen et al., 2024). Unless we have some way
of knowing how “important” different aspects of a representation are to each system’s computations, and
accordingly adapting our similarity measures, our measures of representational alignment will fail to perfectly
capture the underlying computational similarity.

5.4 Will representational alignment help improve the alignment of behavior?

Representational alignment focuses on the representation space of a system; i.e., the activations yielded by
the information processing function of a system (see §3). However, as noted above (§5.2.2), the relationship
between representation and computation is complex. The outputs of systems can be aligned even if these
systems have different representations, and vice versa (e.g. Hermann and Lampinen, 2020; Davari et al., 2023;
Conwell et al., 2023; Cloos et al., 2024a; Bo et al., 2025); likewise, systems that have similar representations
early in processing may diverge in later regions to produce different outputs (Singer et al., 2022). Thus,
representational alignment between systems is not a prerequisite for aligned outputs, nor will it guarantee
them.

However, initial representations constrain what a system will learn to output, and conversely, what a system
learns to output will shape its representations. Thus, although it may be possible to achieve output alignment
without representational alignment, the tight coupling between representations and outputs motivates studying
representational alignment as one potential tool for achieving output alignment. Representational alignment
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could help researchers to pinpoint potential causes for output (mis-)alignment of systems, and could be used
as a complement to more direct strategies for improving output alignment (Peterson et al., 2018; Barrett
et al., 2018; Toneva and Wehbe, 2019; Fel et al., 2022; Muttenthaler et al., 2023a;b; Fu et al., 2023), which
may be especially important when designing human-centric AI thought partners (Collins et al., 2024b).

5.5 Possible risks of representational alignment

It is worth noting that there may be risks to optimizing AI systems for representational alignment. For
instance, increased representational alignment could potentially make it more difficult to detect that digital
artifacts or communications (e.g., text, video, conversation, etc.) are produced by Al systems rather than
humans. In the case of aligning with a biological system, it is paramount to consider which systems (e.g.,
which humans) we do or do not wish to align towards, and what downstream biases could occur as a result
of these potentially implicit design choices (cf. Gabriel, 2020). We encourage further work to characterize
possible risks and develop frameworks to guard against such possible negative ramifications.

6 Conclusion

Representational alignment is increasingly central to the various fields that study information processing,
including cognitive science, neuroscience, and machine learning. In each field, researchers attempt to measure
the alignment between representations from different systems, to bridge between distinct systems by bringing
their representations into a shared space, and to increase the representational alignment of two systems.
However, there is no clear common language for discussion between these different communities; thus,
researchers are often unaware of related ideas, methods, and empirical results. In this Perspective, we have
attempted to build bridges to help align terminology and methods across these fields, and to highlight
some of the history and recent developments within each. We hope that our work will simultaneously
increase the sharing of related ideas and methods across fields, and raise awareness of common challenges
and open questions. More broadly, we hope that seeing the varied perspectives outlined here will inspire
other researchers to apply the ideas and tools of representational alignment to understanding or building
(more) intelligent systems.
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against each other as models of human cognition. Proceedings of the National Academy of Sciences, 117

48


https://doi.org/10.3115/V1/N15-1004
https://doi.org/10.3115/v1/n15-1004

Published in Transactions on Machine Learning Research (10/2025)

126

127

128

129

130

[131

[132

133

[134

(47):29330-29337, 2020. TLDR (from Semantic Scholar): This work synthesized controversial stimuli:
images for which different models produce distinct responses, and found that deep neural networks,
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so that a robot’s navigation in complicated environments is improved.
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on the same, or differing data splits.

168

Eghbal A. Hosseini, Colton Casto, Noga Zaslavsky, Colin Conwell, Mark Richardson, and Evelina
Fedorenko. Universality of representation in biological and artificial neural networks. bioRziv, 2024a.
URL https://api.semanticscholar.org/CorpusID:275067953.

169

Fghbal A Hosseini, Martin Schrimpf, Yian Zhang, Samuel Bowman, Noga Zaslavsky, and Evelina
Fedorenko. Artificial neural network language models predict human brain responses to language even
after a developmentally realistic amount of training. Neurobiology of Language, 5(1):43-63, 2024b.

170

Qingqing Huang, Aren Jansen, Joonseok Lee, Ravi Ganti, Judith Yue Li, and Daniel PW Ellis. Mulan:
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53


https://api.semanticscholar.org/CorpusID:275067953

Published in Transactions on Machine Learning Research (10/2025)

[175] Robert A Jacobs and Christopher J Bates. Comparing the visual representations and performance
of humans and deep neural networks. Current Directions in Psychological Science, 28(1):34-39, 2019.
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Nori Jacoby and Josh H McDermott. Integer ratio priors on musical rhythm revealed cross-culturally
by iterated reproduction. Current Biology, 27(3):359-370, 2017. TLDR (from Semantic Scholar): The
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178

Nori Jacoby, Rainer Polak, Jessica Grahn, Daniel J Cameron, Kyung Myun Lee, Ricardo Godoy,
Eduardo A Undurraga, Tomas Huanca, Timon Thalwitzer, Noumouké Doumbia, et al. Universality
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Twelfth International Conference on Learning Representations, 2023. TLDR (from Semantic Scholar):
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o4



Published in Transactions on Machine Learning Research (10/2025)

[184]

[185]

[186]

187

[188]

[189)

[190]

[191]

[192]

193]

Lukasz Kaiser, Aidan N. Gomez, Noam Shazeer, Ashish Vaswani, Niki Parmar, Llion Jones, and Jakob
Uszkoreit. One model to learn them all. arXiv preprint arXiv:1706.05137, 2017. TLDR (from Semantic
Scholar): No TLDR found via API.

Nancy Kanwisher, Josh McDermott, and Marvin M Chun. The fusiform face area: a module in human
extrastriate cortex specialized for face perception. Journal of Neuroscience, 17(11):4302-4311, 1997.
TLDR (from Semantic Scholar): The data allow us to reject alternative accounts of the function of
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09-15 Jun 2019. TLDR (from Semantic Scholar): RKD allows students to outperform their teachers’
performance, achieving the state of the arts on standard benchmark datasets and proposes distance-wise
and angle-wise distillation losses that penalize structural differences in relations.

Jean Piaget. The Child’s Conception of the World. Paladin, 1973. TLDR (from Semantic Scholar): No
TLDR found via APIL

Elise A Piazza, Liat Hasenfratz, Uri Hasson, and Casey Lew-Williams. Infant and adult brains are
coupled to the dynamics of natural communication. Psychological Science, 31(1):6-17, 2020. TLDR
(from Semantic Scholar): This investigation advances what is currently known about how the brains and
behaviors of infants both shape and reflect those of adults during real-life communication by revealing
a novel, highly naturalistic approach for studying live interactions between infants and adults.

Gorana Pobric, Elizabeth Jefferies, and Matthew A Lambon Ralph. Amodal semantic representations
depend on both anterior temporal lobes: evidence from repetitive transcranial magnetic stimulation.
Neuropsychologia, 48(5):1336-1342, 2010. TLDR (from Semantic Scholar): No TLDR found via API.

Galen Pogoncheff, Jacob Granley, Alfonso Rodil, Leili Soo, Lily Marie Turkstra, Lucas Gil Nadol-
skis, Arantxa Alfaro Saez, Cristina Soto Sanchez, Eduardo Fernandez Jover, and Michael Beyeler.
Beyond sight: Probing alignment between image models and blind v1. In ICLR 2024 Workshop on
Representational Alignment, 2024. TLDR, (from Semantic Scholar): No TLDR found via API.

Russell A Poldrack. The physics of representation. Synthese, 199(1-2):1307-1325, 2021. TLDR (from
Semantic Scholar): Results from sorting tasks and protocols reveal that experts and novices begin
their problem representations with specifiably different problem categories, and completion of the
representations depends on the knowledge associated with the categories.

Dean A Pospisil, Brett W Larsen, Sarah E Harvey, and Alex H Williams. Estimating shape distances
on neural representations with limited samples. In The Twelfth International Conference on Learning
Representations, 2024. TLDR, (from Semantic Scholar): This work validated an entirely redesigned
version of the neural network-based model, AlphaFold, in the challenging 14th Critical Assessment
of protein Structure Prediction (CASP14)15, demonstrating accuracy competitive with experimental
structures in a majority of cases and greatly outperforming other methods.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning
transferable visual models from natural language supervision. In Marina Meila and Tong Zhang, editors,
Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pages 8748-8763. PMLR, 18-24 Jul 2021. TLDR (from Semantic Scholar):
No TLDR found via API.

Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. Svcca: Singular vector
canonical correlation analysis for deep learning dynamics and interpretability. Advances in Neural
Information Processing Systems, 30, 2017. TLDR (from Semantic Scholar): A novel deep embedding
model for ZSL is proposed, which formulates the embedding space with Deep Canonical Correlation
Analysis (DCCA) and transforms the side information and the visual representation via two independent
deep neural networks, and then they are highly linearly correlated in the final output layer.

Rouhollah Rahmatizadeh, Pooya Abolghasemi, Ladislau Boloni, and Sergey Levine. Vision-based
multi-task manipulation for inexpensive robots using end-to-end learning from demonstration. In
2018 IEEE International Conference on Robotics and Automation, ICRA 2018, Brisbane, Australia,
May 21-25, 2018, pages 3758-3765. IEEE, 2018. doi:10.1109/ICRA.2018.8461076. URL https:
//doi.org/10.1109/ICRA.2018.8461076. TLDR (from Semantic Scholar): It is demonstrated that
it is possible to learn complex manipulation tasks, such as picking up a towel, wiping an object, and
depositing the towel to its previous position, entirely from raw images with direct behavior cloning.
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[333] Rishi Rajalingham, Elias B Issa, Pouya Bashivan, Kohitij Kar, Kailyn Schmidt, and James J DiCarlo.
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Large-scale, high-resolution comparison of the core visual object recognition behavior of humans,
monkeys, and state-of-the-art deep artificial neural networks. Journal of Neuroscience, 38(33):7255—
7269, 2018. TLDR (from Semantic Scholar): The results show that current DCNNIC models cannot
account for the image-level behavioral patterns of primates and that new ANN models are needed to
more precisely capture the neural mechanisms underlying primate object vision.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. In Hadas Kress-Gazit, Siddhartha S. Srinivasa, Tom Howard, and
Nikolay Atanasov, editors, Robotics: Science and Systems XIV, Carnegie Mellon University, Pittsburgh,
Pennsylvania, USA, June 26-30, 2018, 2018. doi:10.15607/RSS.2018.X1V.049. URL http://www.
roboticsproceedings.org/rss14/p49.html. TLDR (from Semantic Scholar): This work shows that
model-free DRL with natural policy gradients can effectively scale up to complex manipulation tasks
with a high-dimensional 24-DoF hand, and solve them from scratch in simulated experiments.

Matthew A Lambon Ralph, Elizabeth Jefferies, Karalyn Patterson, and Timothy T Rogers. The neural
and computational bases of semantic cognition. Nature reviews neuroscience, 18(1):42-55, 2017. TLDR
(from Semantic Scholar): This Review summarizes key findings and issues arising from a decade of
research into the neurocognitive and neurocomputational underpinnings of semantic cognition, leading
to a new framework that is term controlled semantic cognition (CSC).

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and
Ilya Sutskever. Zero-shot text-to-image generation. In International Conference on Machine Learning,
pages 8821-8831. PMLR, 2021. TLDR (from Semantic Scholar): No TLDR found via APIL

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022. TLDR (from
Semantic Scholar): It is shown that explicitly generating image representations improves image diversity
with minimal loss in photorealism and caption similarity, and the joint embedding space of CLIP
enables language-guided image manipulations in a zero-shot fashion.

Sunayana Rane, Polyphony Bruna, Ilia Sucholutsky, Christopher Kello, and Thomas Griffiths. Concept
alignment. 1st NeurIPS Workshop on Al meets Moral Philosophy and Moral Psychology (MP2), 2023a.
TLDR (from Semantic Scholar): An important fraction of the normal population has a natural alignment
at the end of growth of 3° varus or more, which might be a consequence of Hueter-Volkmann’s law.

Sunayana Rane, Mark Ho, Ilia Sucholutsky, and Thomas L Griffiths. Concept alignment as a prerequisite
for value alignment. arXiv preprint arXiv:2310.20059, 2023b. TLDR (from Semantic Scholar): The
concept alignment problem in the inverse reinforcement learning setting is formally analyzed, it is
shown how neglecting concept alignment can lead to systematic value mis-alignment, and an approach
is described that helps minimize such failure modes by jointly reasoning about a person’s concepts and
values.

Sunayana Rane, Mira L. Nencheva, Zeyu Wang, Casey Lew-Williams, Olga Russakovsky, and Thomas L
Griffiths. Predicting word learning in children from the performance of computer vision systems. In
Proceedings of the Annual Meeting of the Cognitive Science Society, volume 45, 2023c. TLDR, (from
Semantic Scholar): The performance of the computer vision systems is correlated with human judgments
of the concreteness of words, which are in turn a predictor of children’s word learning, suggesting that
these models are capturing the relationship between words and visual phenomena.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? In International conference on machine learning, pages 5389-5400. PMLR,
2019. TLDR (from Semantic Scholar): The results suggest that the accuracy drops are not caused by
adaptivity, but by the models’ inability to generalize to slightly "harder" images than those found in
the original test sets.
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[346]

[347]

[348]

[349]

[350]

J Brendan Ritchie, David Michael Kaplan, and Colin Klein. Decoding the brain: Neural representation
and the limits of multivariate pattern analysis in cognitive neuroscience. The British Journal for the
Philosophy of Science, 2019. TLDR (from Semantic Scholar): This work critically evaluates the Dictum,
arguing that it is false: decodability is a poor guide for revealing the content of neural representations,
and suggests how it can be improved on, in order to better justify inferences about neural representation
using MVPA.

Brett D Roads and Bradley C Love. Learning as the unsupervised alignment of conceptual systems.
Nature Machine Intelligence, 2(1):76-82, 2020. TLDR (from Semantic Scholar): By assembling
conceptual systems from real-word datasets of text, images and audio, Roads and Love propose that
objects embedded within a conceptual system have a unique signature that allows for conceptual
systems to be aligned in an unsupervised fashion.

Brett D. Roads and Bradley C. Love. Enriching imagenet with human similarity judgments and
psychological embeddings. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3547-3557, 2021. TLDR (from Semantic Scholar): A publicly-
available dataset that embodies the task-general capabilities of human perception and reasoning, and
uses the similarity ratings and the embedding space to evaluate how well several popular models conform
to human similarity judgments.

Brett D. Roads and Bradley C. Love. Modeling similarity and psychological space. Annual Review of
Psychology, 75, 2024. TLDR (from Semantic Scholar): No TLDR found via API.

Timothy T Rogers and James L McClelland. Semantic cognition: A parallel distributed processing
approach. MIT press, 2004. TLDR (from Semantic Scholar): This special issue on Parallel and Distributed
Processing with Applications, The Journal of Supercomputing provides a forum for computer scientists
and engineers, applied mathematicians and researchers to present and exchange ideas, results, work in
progress and experience of research in the area of parallel and distributed computing.

Karsten Roth, Lukas Thede, A. Sophia Koepke, Oriol Vinyals, Olivier J Henaff, and Zeynep Akata.
Fantastic gains and where to find them: On the existence and prospect of general knowledge transfer
between any pretrained model. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=m50eKHCttz. TLDR (from Semantic Scholar): Across
large-scale experiments, the shortcomings of standard knowledge distillation techniques are revealed,
and a much more general extension through data partitioning is proposed for successful transfer between
nearly all pretrained models, which is shown can also be done unsupervised.

Michael E Rule, Timothy O’Leary, and Christopher D Harvey. Causes and consequences of representa-
tional drift. Current opinion in neurobiology, 58:141-147, 2019. TLDR (from Semantic Scholar): It is
proposed that representational drift may create error signals between interconnected brain regions that
can be used to keep neural codes consistent in the presence of continual change.

Nicole C Rust and J Anthony Movshon. In praise of artifice. Nature neuroscience, 8(12):1647-1650,
2005. TLDR (from Semantic Scholar): Traditional methods for exploring visual computations that use
artificial stimuli with carefully selected properties have been and continue to be the most effective tools
for visual neuroscience.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L. Denton, Seyed
Kamyar Seyed Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, Jonathan
Ho, David J. Fleet, and Mohammad Norouzi. Photorealistic text-to-image diffusion models with deep
language understanding. Advances in Neural Information Processing Systems, 2022. TLDR (from
Semantic Scholar): This work presents Imagen, a text-to-image diffusion model with an unprecedented
degree of photorealism and a deep level of language understanding, and finds that human raters prefer
Imagen over other models in side-by-side comparisons, both in terms of sample quality and image-text
alignment.
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Wojciech Samek, Alexander Binder, Grégoire Montavon, Sebastian Lapuschkin, and Klaus-Robert
Miiller. Evaluating the visualization of what a deep neural network has learned. IEEE Transactions on
Neural Networks and Learning Systems, 28(11):2660-2673, 2017a. doi:10.1109/TNNLS.2016.2599820.
TLDR (from Semantic Scholar): A general methodology based on region perturbation for evaluating
ordered collections of pixels such as heatmaps and shows that the recently proposed layer-wise relevance
propagation algorithm qualitatively and quantitatively provides a better explanation of what made a
DNN arrive at a particular classification decision than the sensitivity-based approach or the deconvolution
method.

Wojciech Samek, Alexander Binder, Grégoire Montavon, Sebastian Lapuschkin, and Klaus-Robert
Miiller. Evaluating the visualization of what a deep neural network has learned. IEEE Transactions on
Neural Networks and Learning Systems, 28(11):2660-2673, 2017b. doi:10.1109/TNNLS.2016.2599820.
TLDR (from Semantic Scholar): A general methodology based on region perturbation for evaluating
ordered collections of pixels such as heatmaps and shows that the recently proposed layer-wise relevance
propagation algorithm qualitatively and quantitatively provides a better explanation of what made a
DNN arrive at a particular classification decision than the sensitivity-based approach or the deconvolution
method.

Wojciech Samek, Grégoire Montavon, Andrea Vedaldi, Lars Kai Hansen, and Klaus-Robert Miiller.
Ezxplainable Al: interpreting, explaining and visualizing deep learning, volume 11700. Springer Nature,
2019. TLDR (from Semantic Scholar): This introductory paper presents recent developments and
applications in the deep learning field and makes a plea for a wider use of explainable learning algorithms
in many applications.

Adam Sanborn and Thomas Griffiths. Markov chain Monte Carlo with people. Advances in Neural
Information Processing Systems, 20, 2007. TLDR (from Semantic Scholar): No TLDR found via API.

Adam N Sanborn, Thomas L Griffiths, and Richard M Shiffrin. Uncovering mental representations with
markov chain monte carlo. Cognitive Psychology, 60(2):63-106, 2010. TLDR, (from Semantic Scholar):
This work uses people as components of a Markov chain Monte Carlo (MCMC) algorithm, a sophisticated
sampling method originally developed in statistical physics to estimate mental representations, such as
object categories, subjective probabilities, choice utilities, and memory traces.

Edward Sapir. Selected Writings of Edward Sapir. University of California Press, 1968. TLDR (from
Semantic Scholar): No TLDR found via API.

Andrew M Saxe, James L McClelland, and Surya Ganguli. A mathematical theory of semantic
development in deep neural networks. Proceedings of the National Academy of Sciences, 116(23):
11537-11546, 2019. TLDR (from Semantic Scholar): Notably, this simple neural model qualitatively
recapitulates many diverse regularities underlying semantic development, while providing analytic
insight into how the statistical structure of an environment can interact with nonlinear deep-learning
dynamics to give rise to these regularities.

Steffen Schneider, Jin Hwa Lee, and Mackenzie Weygandt Mathis. Learnable latent embeddings for joint
behavioural and neural analysis. Nature, May 2023. ISSN 1476-4687. doi:10.1038/s41586-023-06031-6.
URL https://doi.org/10.1038/s41586-023-06031-6. TLDR (from Semantic Scholar): CEBRA
can be used for the mapping of space, uncovering complex kinematic features, for the production of
consistent latent spaces across two-photon and Neuropixels data, and can provide rapid, high-accuracy
decoding of natural videos from visual cortex.

H Steven Scholte, Julio Smidi, Jessica Loke, N Miiller, Iris IA Groen, Marcel AJ van Gerven, and
J Smidi. Convolutional neural networks align early in training with neural representations. In Conference
on Cognitive Computational Neuroscience, 2024.

Martin Schrimpf, Jonas Kubilius, Ha Hong, Najib J Majaj, Rishi Rajalingham, Elias B Issa, Kohitij
Kar, Pouya Bashivan, Jonathan Prescott-Roy, Franziska Geiger, et al. Brain-score: Which artificial
neural network for object recognition is most brain-like? BioRziv, page 407007, 2018. TLDR (from
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Semantic Scholar): The internal representations of early deep artificial neural networks were found to
be remarkably similar to the internal neural representations measured experimentally in the primate
brain, and a composite of multiple neural and behavioral benchmarks that score any ANN on how
similar it is to the brain’s mechanisms for core object recognition is developed.

Martin Schrimpf, Idan Asher Blank, Greta Tuckute, Carina Kauf, Eghbal A Hosseini, Nancy Kanwisher,
Joshua B Tenenbaum, and Evelina Fedorenko. The neural architecture of language: Integrative modeling

converges on predictive processing. Proceedings of the National Academy of Sciences, 118(45), 2021.
TLDR (from Semantic Scholar): No TLDR found via API.

Heiko H Schiitt, Alexander D Kipnis, Jorn Diedrichsen, and Nikolaus Kriegeskorte. Statistical inference
on representational geometries. FElife, 12:e82566, 2023. TLDR (from Semantic Scholar): New inference
methods enabling researchers to evaluate and compare models based on the accuracy of their predictions
of representational geometries, and validate the inference methods on data where the ground-truth
model is known.

Dan Schwartz, Mariya Toneva, and Leila Wehbe. Inducing brain-relevant bias in natural language
processing models. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 32, 2019. TLDR (from Semantic
Scholar): No TLDR found via APIL.

K. Seeliger, L. Ambrogioni, Y. Giiglitiirk, L. M. van den Bulk, U. Gii¢li, and M. A. J. van Gerven.
End-to-end neural system identification with neural information flow. PLOS Computational Biology,
17(2):1-22, 02 2021. doi:10.1371/journal.pcbi.1008558. URL https://doi.org/10.1371/journal.
pcbi.1008558. TLDR (from Semantic Scholar): A NIF model trained on the activity of early visual
areas using a large-scale fMRI dataset is trained and it is shown that it can recover plausible visual
representations and population receptive fields that are consistent with empirical findings.

Katja Seeliger, Matthias Fritsche, Umut Giiglii, Sanne Schoenmakers, J-M Schoffelen, Sander E Bosch,
and MAJ Van Gerven. Convolutional neural network-based encoding and decoding of visual object
recognition in space and time. Neurolmage, 180:253-266, 2018. TLDR (from Semantic Scholar): This
work combines CNN-based encoding models with magnetoencephalography to validate the accuracy
of the encoding model by decoding stimulus identity in a left-out validation set of viewed objects,
achieving state-of-the-art decoding accuracy.

Thomas Serre. Deep learning: the good, the bad, and the ugly. Annual Review of Vision Science, 5:
399-426, 2019. TLDR (from Semantic Scholar): The goal of this review is to provide a comprehensive
overview of recent deep learning developments and to critically assess actual progress toward achieving
human-level visual intelligence.

Nicholas J Sexton and Bradley C Love. Reassessing hierarchical correspondences between brain and
deep networks through direct interface. Science Advances, 8(28):eabm2219, 2022. TLDR (from Semantic
Scholar): Using this approach on three datasets, it was found that all regions along the ventral visual
stream best corresponded with later model layers, indicating that all stages of processing contained
higher-level information about object category.

Guohua Shen, Tomoyasu Horikawa, Kei Majima, and Yukiyasu Kamitani. Deep image reconstruction
from human brain activity. PLoS computational biology, 15(1):e1006633, 2019. TLDR (from Semantic
Scholar): No TLDR found via API.

Roger N Shepard. The analysis of proximities: multidimensional scaling with an unknown distance
function. i. Psychometrika, 27(2):125-140, 1962. TLDR (from Semantic Scholar): The program is
proposed as a tool for reductively analyzing several types of psychological data, particularly measures of
interstimulus similarity or confusability, by making explicit the multidimensional structure underlying
such data.
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Roger N Shepard. Multidimensional scaling, tree-fitting, and clustering. Science, 210(4468):390-398,
1980. TLDR (from Semantic Scholar): Applications to perceptual and semantic data illustrate how
complementary aspects of the underlying psychological structure are revealed by different types of
representations, including multidimensional spatial configurations and nondimensional tree-structures
or clusterings.

Roger N Shepard and Phipps Arabie. Additive clustering: Representation of similarities as combinations
of discrete overlapping properties. Psychological Review, 86(2):87, 1979. TLDR, (from Semantic Scholar):
No TLDR found via API.

Roger N Shepard and Susan Chipman. Second-order isomorphism of internal representations: Shapes
of states. Cognitive psychology, 1(1):1-17, 1970. TLDR (from Semantic Scholar): No TLDR found via
APIL

Beau Sievers, Christopher Welker, Uri Hasson, Adam M Kleinbaum, and Thalia Wheatley. Consensus-
building conversation leads to neural alignment. Nature communications, 15(1):3936, 2024.

Lauren J Silbert, Christopher J Honey, Erez Simony, David Poeppel, and Uri Hasson. Coupled neural
systems underlie the production and comprehension of naturalistic narrative speech. Proceedings of
the National Academy of Sciences, 111(43):E4687-E4696, 2014. TLDR (from Semantic Scholar): It
is argued that a shared neural mechanism supporting both production and comprehension facilitates
communication and underline the importance of studying comprehension and production within
unified frameworks, and widespread bilateral coupling between production- and comprehension-related
processing within both linguistic and nonlinguistic areas is demonstrated.

Johannes JD Singer, Katja Seeliger, Tim C Kietzmann, and Martin N Hebart. From photos to sketches-
how humans and deep neural networks process objects across different levels of visual abstraction.
Journal of vision, 22(2):4-4, 2022. TLDR (from Semantic Scholar): No TLDR, found via API.

Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. Advances in Neural
Information Processing Systems (NIPS), 2016. TLDR (from Semantic Scholar): A non-linear metric
function with a deep convolutional neural network from the input image to a low-dimensional feature
embedding with the visual constraints among face tracks is learned and the network directly optimizes
the embedding space so that the Euclidean distances correspond to a measure of semantic face similarity.

Le Song, Alex Smola, Arthur Gretton, Karsten Borgwardt, and Justin Bedo. Supervised feature
selection via dependence estimation, 2007. TLDR, (from Semantic Scholar): This work introduces a
framework for filtering features that employs the Hilbert-Schmidt Independence Criterion as a measure
of dependence between the features and the labels and demonstrates the usefulness of the method on
both artificial and real world datasets.

Ghislain St-Yves, Emily J Allen, Yihan Wu, Kendrick Kay, and Thomas Naselaris. Brain-optimized
deep neural network models of human visual areas learn non-hierarchical representations. Nature
communications, 14(1):3329, 2023. TLDR (from Semantic Scholar): The result shows that hierarchical
representations are not necessary to accurately predict human brain activity in V1-V4, and that DNNs
that encode brain-like visual representations may differ widely in their architecture, ranging from strict
serial hierarchies to multiple independent branches.

Greg J Stephens, Lauren J Silbert, and Uri Hasson. Speaker—listener neural coupling underlies successful
communication. Proceedings of the National Academy of Sciences, 107(32):14425-14430, 2010. TLDR
(from Semantic Scholar): No TLDR found via AP

Arjen Stolk, Lennart Verhagen, and Ivan Toni. Conceptual alignment: How brains achieve mutual
understanding. Trends in cognitive sciences, 20(3):180-191, 2016. TLDR (from Semantic Scholar): The
evidence suggests that communicators and addressees achieve mutual understanding by using the same
computational procedures, implemented in the same neuronal substrate, and operating over temporal
scales independent from the signals’ occurrences.
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Katherine R Storrs, Barton L Anderson, and Roland W Fleming. Unsupervised learning predicts
human perception and misperception of gloss. Nature Human Behaviour, 5(10):1402-1417, 2021a.
TLDR (from Semantic Scholar): Linearly decoding specular reflectance from the model’s internal code
predicts human gloss perception better than ground truth, supervised networks or control models, and
it predicts, on an image-by-image basis, illusions of gloss perception caused by interactions between
material, shape and lighting.

Katherine R Storrs, Tim C Kietzmann, Alexander Walther, Johannes Mehrer, and Nikolaus Kriegeskorte.
Diverse deep neural networks all predict human inferior temporal cortex well, after training and fitting.
Journal of cognitive neuroscience, 33(10):2044-2064, 09 2021b. doi:10.1162/jocn_a_01755. TLDR
(from Semantic Scholar): Comparing a diverse set of nine DNN architectures on their ability to explain
the representational geometry of 62 object images in human inferior temporal (hIT) cortex, as measured
with fMRI suggests that structured visual features are important for explaining hIT.

Ilia Sucholutsky and Thomas L Griffiths. Alignment with human representations supports robust
few-shot learning. arXiv preprint arXivw:2301.11990, 2023. TLDR (from Semantic Scholar): It is
suggested that human-alignment is often a sufficient, but not necessary, condition for models to make
effective use of limited data, be robust, and generalize well.

Ilia Sucholutsky and Matthias Schonlau. Soft-label dataset distillation and text dataset distillation.
In 2021 International Joint Conference on Neural Networks (IJCNN), pages 1-8. IEEE, 2021. TLDR
(from Semantic Scholar): This work proposes to simultaneously distill both images and their labels,
thus assigning each synthetic sample a ‘soft’ label (a distribution of labels) and demonstrates that text
distillation outperforms other methods across multiple datasets.

Ilia Sucholutsky, Ruairidh M Battleday, Katherine M Collins, Raja Marjieh, Joshua Peterson, Pulkit
Singh, Umang Bhatt, Nori Jacoby, Adrian Weller, and Thomas L Griffiths. On the informativeness
of supervision signals. In Uncertainty in Artificial Intelligence, pages 2036—2046, 2023. TLDR (from
Semantic Scholar): This framework provides theoretical justification for using hard labels in the big-data
regime, but richer supervision signals for few-shot learning and out-of-distribution generalization, and
conducts a cost-benefit analysis to establish a tradeoff curve that enables users to optimize the cost of
supervising representation learning on their own datasets.

Ilia Sucholutsky, Katherine M. Collins, Maya Malaviya, Nori Jacoby, Weiyang Liu, Theodore R.
Sumers, Michalis Korakakis, Umang Bhatt, Mark Ho, Joshua B. Tenenbaum, Zachary A. Pardos,
Adrian Weller, and Thomas L. Griffiths. Representational alignment supports effective teaching. In
Zichao Wang, Simon Woodhead, Muktha Ananda, Debshila Basu Mallick, James Sharpnack, and
Jill Burstein, editors, Proceedings of the Innovation and Responsibility in AlI-Supported Education
Workshop, volume 273 of Proceedings of Machine Learning Research, pages 146-173. PMLR, 03 Mar
2025. URL https://proceedings.mlr.press/v273/sucholutsky25a.html. TLDR (from Semantic
Scholar): This work introduces a new controlled experimental setting, GRADE, to study pedagogy and
representational alignment and finds that improved representational alignment with a student improves
student learning outcomes.

Gustavo Sudre, Dean Pomerleau, Mark Palatucci, Leila Wehbe, Alona Fyshe, Riitta Salmelin, and Tom
Mitchell. Tracking neural coding of perceptual and semantic features of concrete nouns. Neurolmage,
62(1):451-463, 2012. TLDR (from Semantic Scholar): This study presents a methodological approach
employing magnetoencephalography (MEG) and machine learning techniques to investigate the flow of
perceptual and semantic information decodable from neural activity in the half second during which
the brain comprehends the meaning of a concrete noun.

Shobhita Sundaram, Stephanie Fu, Lukas Muttenthaler, Netanel Yakir Tamir, Lucy Chai, Simon
Kornblith, Trevor Darrell, and Phillip Isola. When does perceptual alignment benefit vision represen-
tations? In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.
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