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Abstract

Ambiguity surrounding the term ‘representation’ in biological and artificial neural
systems hampers our ability to assess their alignment. In this paper, we draw a
critical distinction between two notions of representation: the conventional ‘rep-
resentation’ as a mere encoding, and ‘Representation-with-a capital-R’, which
entails functional use within a system. We argue that while current methods in
neuroscience and artificial intelligence often focus on the former, advancing our
understanding requires a shift toward the latter. We critique existing linking meth-
ods such as representational similarity analysis and encoding models, highlighting
key limitations in their ability to capture functional correspondence. We then pro-
pose an updated paradigm that involves specifying explicit models of information
readout and testing their functional properties using causal perturbation. This
framework, which treats neural networks as a new species of model organism, may
help reveal the principles governing functional representations in both biological
and artificial systems.

Introduction

The goal of understanding how the visual system represents and transforms information has driven
widespread efforts to model brain responses using deep encoding models. Initiatives like Brain-Score
(1, 2), Algonauts (3), and Sensorium (4) benchmark the predictive power of deep neural networks
(DNNs) against large-scale datasets of neural activity and behavior, aiming to reveal core principles
of information processing. These efforts and other related studies (e.g. 5) have sparked extensive
debate about the most appropriate methods for encoding: linear vs. nonlinear regression models
(6), rotation-invariant vs. rotation-sensitive mappings (7, 8), and, approaches that emphasize tuning
properties vs. the overall geometry of the representations (9, 10, see 11 for review). Why, as a
field, have we yet to reach consensus on which procedures provide the most valuable insights? This
lack of consensus may stem from an over-reliance on representational measures that fail to capture
the functional aspects of the underlying processes. At the heart of this debate is a deeper issue:
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Figure 1: Two notions of what we mean by “representation.”

viewing ‘representation’ merely as an encoding format fails to account for the functional role these
representations play in downstream processes.

Two competing notions of representation

Encoding models and representational similarity analysis (RSA, 12) index what we call represen-
tation with a lowercase ‘r’: how information is encoded in a system. This is a broad notion of
representation, reflecting any static mapping of stimuli into different bases, such as neural measure-
ment units or model activations, or even pixel space. The modeling aim is to capture the structure of
the encoding, and understand its format. This approach is safe, pragmatic, leveraging measurable
data from biological and artificial systems and allowing for ranking of DNN feature spaces based on
predictivity. However, typical similarity metrics stop far short of addressing whether a given set of
internal representations play a similar functional role within both systems. As a result, they provide
an incomplete picture of how encoded information is actually used to drive behavior or cognition.

In contrast, Representation with a capital ‘R’ refers to the functional use of encoded information
within the system (Figure 1). It is not enough for a model to account for the brain’s encoding format
of stimuli; for information to qualify as capital ‘R’ Representation, the system must actively use
it in ways that mirror the biological processes driving perception or behavior. This idea, rooted in
philosophical discussions of mental representation (see 13 for review), emphasizes the functional
role of different activity patterns with respect to behavior (see also 14, 15, 16, 17). For example,
patterns of activity across face-selective neurons can reliably enable experimenters to decode non-face
object information such as houses, chairs, and other objects (18). However, if this encoding does
not contribute functionally to the brain’s recognition of these items (19, 20), it would fall short of
capital ‘R’ Representation. The key is functional relevance: the system must read out the content
meaningfully. Testing for these signatures requires causal perturbation of the system, for instance by
silencing model units to simulate the effect of lesions on behavior.

Why do we need Representation with a capital ‘R’?

Lower-case ‘r’ representations capture a static, often disconnected, view of neural activity

While vision models increasingly succeed in matching neural data from different stages of the visual
hierarchy in isolation, they often fail to replicate the actual interactions governing information flow
from V1 to high-level visual cortex. The best layer for V1 in one model might appear mid-way
through, while for V4, it might come from an earlier layer in another model. Feature reweighting
makes divergence from hierarchical correspondence even more likely, and there’s often no expectation
that one single model will successfully account for multiple stages of the hierarchy (though some
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Figure 2: Dissociating representational and functional alignment. (A) Two different linear encoding
models are fit to predict mean responses in the fusiform face area (FFA) from AlexNet layer fc6.
Data are from the Natural Scenes Dataset (25), subject 01, right-hemisphere. Scenario A uses ridge
(L2) regression with no positivity constraint, while Scenario B uses lasso (L1) regression with a
positivity constraint. (B) Pearson correlation scores when predicting mean FFA responses to a
held-out validation set of 1000 images. (C) Functional impact of lesioning the fc6 units with top 1%
greatest absolute encoding weight magnitude. The scatter plot shows the drop in top-1 accuracy for
different ImageNet categories when lesioning the critical units for each scenario.

have pursued these modes of comparison, e.g. 21, 22, 23). This limitation is evident in the current
implementation of Brain-Score, where any layer of any model can be deemed the best match for
a given benchmark. The risk with this approach is that it may isolate models based on superficial
pattern matching, without necessarily advancing our understanding of the causal principles driving
visual function.

Representation with a capital ‘R’ entails causal perturbation of neural systems

We advocate for developing new alignment procedures that directly test whether the information
measured in a system is functionally used. This is important, as current linking methods may convey
that different models have similar alignment, while masking that they make very different functional
predictions. To illustrate this point, we implement a simple case study involving two linear encoding
models of brain responses from the fusiform face area (FFA) of human visual cortex (Figure 2A).
The two regression scenarios both take as input activations from the same DNN layer (AlexNet fc6),
but map onto FFA data using different regularization constraints (see Appendix for complete details).
One approach uses standard ridge regression, while the other employs sparse (lasso) regression with
an added positivity constraint (20, 24).



Both regression methods yield comparable predictions on held-out data, appearing similar on the
surface in their ability to account for lower-case ‘t’ representations. However, with free access to the
models’ internals, we can perform causal perturbations to test the underlying commitments of these
different encoding models. After lesioning the 1% of layer units that received the highest absolute
weight (importance) in the regression, we observe that the two models produce very distinct patterns
of functional predictions about what impairments are likely. For example, across the 1000 ImageNet
categories, we computed which categories would have the most impaired recognition, finding a
correlation between the two models’ lesion-induced deficits of only r=0.149. Moreover, several of
the most-impaired categories for lesions derived from sparse-positive regression contained faces (e.g.
trombone, balance beam), unlike those derived from ridge regression weights (e.g. container ship,
pole).

In sum, while encoding models may show similar performance in a lowercase ‘r’ sense of representa-
tion, they can obscure critical (and untested) differences in a capital ‘'R’ sense. Causal perturbations,
such as lesioning highly weighted units, provide a powerful way to distinguish models’ functional
alignment and reveal the different commitments they make about underlying processes. Models
that predict equally well under normal conditions can behave very differently when the systems are
perturbed, providing key insights about the relationship between activation patterns and functional
properties. These signatures may support stronger metrics of alignment to human brain and behavior.

Toward mapping methods that respect functional properties

Overcoming these limitations requires making explicit commitments about how information is used
and propagated within both systems. Popular linking methods like RSA and encoding models make
implicit assumptions about readout. For instance, RSA assumes that tuning directions in neural
populations do not matter for readout, as arbitrary rotations of the feature space do not alter the
overall geometry. Instead, RSA focuses on matching population-level geometry between model
layers and brain areas, assuming that the downstream system has access to the entire population of
neural signals. Similarly, encoding models allow for arbitrary transformations of model unit tuning
relative to their brain counterparts, implying that tuning matters less in models than it does in the
brain. To move beyond these limitations, it is essential to make explicit commitments about how
information flows through the system (e.g. 26) and how representations are read out to drive behavior.

In feedforward hierarchical ReLU models, tuning directions—the patterns of a unit’s responses to
different inputs—are critical for information propagation. In these models, only positive signals are
passed on to subsequent layers, making tuning a key determinant of function. Neuropsychological
evidence suggests a similar link between high neural activity (i.e., selectivity) and functional outcomes
in the brain’s visual system (27, 28, 29, 30). By designing comparison methods that respect these
known signatures, we may naturally gain deeper insight into functional roles of representations.

In line with this, some have proposed incorporating positivity and sparsity constraints into linear
encoding models of the ventral visual stream to pressure them toward better alignment with capital
"R’ representations (24). The positivity constraint minimizes tuning reorientation (how much the
feature weights warp the original tuning directions of the model layer), which reflects the operating
principles of networks that propagate only positive activations. The sparsity constraint reduces feature
remixing, encouraging a one-to-one alignment between DNN and brain feature tuning (see also
10). We hypothesize that these constraints will lead to model-to-brain links that better capture the
functional relevance of information flow in both systems, providing a more faithful index of capital
"R’ representation.

Challenges in measuring capital ‘R’ representations

What techniques will promote better investigation of functional or mechanistic alignment? Lesion
studies, transcranial magnetic stimulation (31, 32, 33), electrical microstimulation (34), pharmaco-
logical inactivation (35), and optogenetics (36) are powerful tools for understanding causal structure-
function relationships, but they are costly and difficult to conduct. This hinders our ability to directly
observe how representations in one brain region contribute to downstream functions.

DNNSs enable us to simulate scenarios that are difficult or impossible to explore in biological systems.
By systematically lesioning or pruning layers, or inactivating specific subcircuitry, we can study



how representations in earlier layers contribute to those in downstream layers, and directly link
each to functional outcomes (37, 38). This provides a powerful framework for exploring capital ‘R’
representations. Complementary insight could be gained from applying recent techniques from the
fields of mechanistic interpretability and Al safety, which explore how information routes and circuits
operate in neural networks (e.g. 39, 40, 41, 42).

In this way, we stand to learn about information transmission and Representation with a capital ‘R’
by studying the models directly. Each DNN can be conceived of as a simplified model organism,
with more constrained inputs and outputs relative to the human brain. Crucially, a model’s ability to
perform meaningful tasks, such as object categorization, makes it valuable to study in its own right,
regardless of whether its solution is human-like. The key idea is that the more we understand the
internal processes of these models, and how different computational units contribute to the behavior
of interest, the more likely we are to uncover principles of information transmission that could shed
light on the function of biological systems.
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Appendix

Supplementary encoding methods for FFA analysis

The encoding analyses involved data from right-hemisphere FFA-1 from subject 01 of the Natural
Scenes Dataset (25). The subject-native surface space data preparation was used, and a stringent
noise ceiling signal-to-noise ratio (NCSNR) threshold of 0.4 was applied prior to analysis. For the
sake of simplicity, the average activation within the FFA-1 region was used as the encoding prediction
target.

We fit linear encoding models from the basis of AlexNet (43) layer fc6 activations. The default
ImageNet-pretrained (44) version of AlexNet included in the TorchVision library was used. We
implemented two encoding scenarios: for Scenario A, we used unconstrained ridge regression, and
for Scenario B, we used lasso regression with a positivity constraint implemented via the sklearn
‘Positive=True’ argument. Optimal ridge and lasso alpha hyperparameter values were obtained
by iteratively fitting the models using a training set of 1000 images, testing either a range of 25
log-spaced values between 102 and 10® for ridge, or, 25 log-spaced values between 10~ and 10°-2
for lasso. Each model was scored using an independent validation set of 1000 images, and the models
with the best-scoring alpha values for ridge and positive-lasso were used for subsequent lesioning
analyses.

Encoding scores were computed as the Pearson correlation between the model-predicted mean
responses of the region and the true mean responses of the region. A noise ceiling value for the
performance of computational models of the mean FFA-1 response profile was computed by inputting
the matrix of shape (1 neuroid, 1000 images, 3 trials) to the same analytical formula that was used to
compute NCSNR for individual voxels, as described in 25.

To assess the functional role of units that received high importance in the regression fits, we first
applied a threshold to identify the top 1% of fc6 units with the highest absolute weight value,
separately for the ridge and positive-lasso scenarios. This meant that 41 units out of the full 4096
in the layer were identified for each lesion. Prior to implementing the lesions, we assessed baseline
top-1 ImageNet category recognition over the 1000 categories using the validation stimuli. Then,
separately for the two regression scenarios, and with the entire model frozen, we implemented a
lesion to the fc6 layer by setting the outputs of the critical units to 0. At this point, with no further
re-training of the model, we again assessed category-wise ImageNet recognition performance and
computed the category-wise lesioning cost as the drop in top-1 accuracy caused by each of the two
lesions. The scatter plot in Figure 2C compares the 1000-dimensional category cost profiles obtained
from these two lesions. For the sake of visualization, a small amount of random jitter (values drawn
from a normal distribution with mean 0, standard deviation 0.01) was added to each datapoint’s x and
y coordinates. The reported Pearson similarity value between the cost profiles does not consider this
Jitter.



