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(nous montrons aussi que cette mesure est Bernoulli) sous 'hypothése htop(<I>1)Tmin > 59 log 2,
ol sg € (0,1) mesure le taux de récurrence aux singularités. Cette hypotheése est vérifiée dans
de nombreux exemples (on s’attend & ce qu’elle soit génériquement satisfaite).

1. Introduction and Main Result
1.1. Background

Let ®! be a continuous flow on a compact manifold. The topological entropy of
the flow, hiop(P), is the supremum, over ergodic probability measures v invariant
under the (continuous) time-one map ®' of the Kolmogorov entropy h,(®'). If a
measure realising the supremum exists, it is called a measure of maximal entropy

(MME) for the flow.

For geodesic flows, the study of the MME has a rich history. In the case of strictly
negative curvature, the flow is Anosov, i.e. smooth and uniformly hyperbolic, and
the pioneering works of Bowen [Bo2] and Margulis [Mal, Ma2] half a century ago
established existence, uniqueness, and mixing of the MME, leading to remarkable
consequences, in particular on the structure (counting and equidistribution) of peri-
odic orbits. For more general continuous flows, it became apparent [Bo0, Bol, BW]
that (flow) expansivity implies existence of the MME, and combined [Fr| with the
(Bowen) specification property, also gives uniqueness.

Starting with the groundbreaking work of Knieper [Kn], most developments in the
past 25 years have concerned smooth geodesic flows for which the hyperbolicity or
compactness assumption are relaxed. In recent years, Climenhaga and Thompson
[CT] have revisited the Bowen specification approach, which has allowed them to
obtain several striking [CKW, B-T] results.

Sinai billiard flows, our object of study, are natural dynamical systems which
are uniformly hyperbolic, but not differentiable (we refer to [CM] for a full-fledged
introduction to mathematical billiards): A Sinai billiard table () on the two-torus
T? is a set Q = T? \ U;O;, for finitely many pairwise disjoint convex closed domains
O; with C® boundaries having strictly positive curvature K. The billiard flow ®?,
t € R, is the motion of a point particle traveling in ) at unit speed and undergoing
specular reflections™ at the boundary of the scatterers O;. The associated billiard
map T : M — M, on the compact metric set M = 9Q x [—F, 7], is the first collision
map on the boundary of (). Grazing collisions cause discontinuities in the map 7', but
the flow is continuous (after identification of the incoming and outgoing angles). The
map is expansive [BD1], but this property is not automatically® inherited by the
flow, since neither the map nor the return time is continuous. In particular, it is not
obvious that the flow satisfies a condition (such as asymptotic h-expansiveness [Mi])
sufficient for the upper-semi continuity of the Kolmogorov entropy (see [Ca, App.

WAt a tangential collision, the reflection does not change the direction of the particle.

(2)See [BW] for a definition of expansiveness for the flow. See [Bo0, Ex. 1.6] for a weaker sufficient
condition for existence.

ANNALES HENRI LEBESGUE



Measure of maximal entropy for finite horizon Sinai billiard flows 3

A-B]), and there does not appear to exist an unconditional proof of the existence —
let alone uniqueness — of a MME for the billiard flow.

The purpose of the present paper is to furnish mild conditions guaranteeing exis-
tence, uniqueness, and mixing (in fact, the Bernoulli property) of the MME for Sinai
billiards. This can be viewed as a first step towards the much harder open problem
of establishing equidistribution results for Sinai billiards.

Our results are stated precisely in §1.2, after furnishing the necessary notation.
In particular, Corollary 1.5 of Theorem 1.4 guarantees existence, uniqueness and
Bernoullicity of the MME for all finite horizon Sinai billiard flows ®' such that

(11) htop(q)l)Tmin > S0 10g2>

where T, is the minimum time between collisions, and sy € (0, 1) quantifies the
recurrence rate to singularities. The sufficient condition for the existence, uniqueness
and Bernoullicity of the MME for billiard maps obtained in [BD1] is

(1.2) hs > solog2,

where h, > 0 is a combinatorial definition of the topological entropy of the map (see
(1.5)). We show below (see the last claim of Lemma 1.3) that (1.1) implies (1.2).
Section 2.4 of [BD1] describes two billiard classes (periodic Lorentz gas with disks of
radius 1 centered in a triangular lattice, and periodic Lorentz gas with two scatterers
of different radii on the unit square lattice) where (1.2) can be checked for many
parameters. In Remark 5.6 of [Ca], the author checks (1.1) for an open subset of
these parameters. No example is known where (1.2) or (1.1) can be shown not to
hold.

Our proof is based on previous work of Carrand [Ca] (Chapter 3 of his thesis
[Ca0], itself relying on [BD1]) and on [BD2]. These three papers use the® technique
of transfer operators acting on anisotropic spaces, which was first introduced to
billiards by Demers-Zhang [DZ1], and recently applied to construct the measure of
maximal entropy of the billiard map [BD1].

1.2. Results

To state our main results, Theorem 1.4 and® Corollary 1.5, we introduce some
basic notation. For x € M, let 7(x) denote the flow time (return time) from x to
T(x), let Kyin = inf £ > 0, and set

Tmin = INf7 >0, Tpax =sup7, A =1+ 27, Knin -

Throughout, we assume finite horizon, that is: there are no trajectories making only
tangential collisions. Finite horizon implies Ty < 0.

(3)To our knowledge, the Climenhaga—Thompson specification approach has not been implemented
yet for Sinai billiards.
() The condition (1.7) there is discussed in Lemma 1.3.
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Set

P(—tr) = sup {hH(T) - t/Tdu} , t>0.
p:T-invariant ergodic probability measure
The real number P(—t7) is called the pressure of the potential —¢7, and a probability
measure i, realising P(—t7) is called an equilibrium measure for —¢7. For simplicity,
we just® write P(t) instead of P(—t7).
Viewing ® as the suspension of 7" under 7, Abramov’s formula says that any
ergodic probability measure v invariant under the time-one map ®! satisfies

!

1.3 = Leb

where i is an ergodic T-invariant probability measure, and, in addition,
h, (T

(1.4) h,(®') = h(T)
Jrdp

In the coordinates x = (r,¢), where r is arclength along 0O; and ¢ is the post-
collision angle with the normal to 00;, let Sy = {(r,¢) € M : ¢ = £7} denote
the set of tangential collisions on M. Then for any n € Z,, the set S, = U;{T'S,
is the singularity set of 7™. Following [BD1], define M to be the set of maximal
connected components of M \ S, for n > 1, and set

1
(1.5) h, = lim —log #M{

n—oo n,

(existence of the limit is easy [BD1]). Then, for fixed ¢ < 7/2 close to 7/2 and large
n € N, define so(¢,n) € (0,1] to be the smallest number such that any orbit of
length equal to n has at most sgn collisions whose angles with the normal are larger
than ¢ in absolute value. If there exist ¢ and n such that sy = s¢(p, n) satisfies

(1.6) he > solog2,

then [BD1] proves that P(0) = h., and there is a unique equilibrium measure p, =
for t = 0, which is the unique MME of T'. As already mentioned, there are many
billiards [BD1, §2.4] satisfying (1.6), and in fact we do not know any billiard which
violates it. Moreover, Demers and Korepanov showed [DK] that a conjecture of
Balint and Téth [BaT], if true, implies that, for generic finite horizon configurations
of scatterers, one can choose ¢ and n to make sy arbitrarily small.

Using Abramov’s formula, Carrand showed the following:

PROPOSITION 1.1 ([Ca, Lemma 2.5 and its proof, Cor. 2.6]). — The function t —
P(t) is continuous and strictly decreasing on (—oo,00), with —lim;_,4., P(t) = £oo.
The real number t = hiop(®') > 0 is the unique t such that P(t) = 0. In addition,
the set of equilibrium measures of T' for —hop(®')7 is in bijection with the set of
MME:s of the flow via (1.3).

®)In [BD2] we studied P(—tlog J*T)) = sup, {h,(T) — t [log J*T'du}, for J*T the unstable
Jacobian of T'. There is no risk of confusion since we only consider P(—¢7) in the present paper.
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Denote ¥, 7 := ZZ;% 70T"* (to avoid confusion with S,, and the notation Sg below).
We next state Carrand’s main results (see also Proposition 3.1 below).

THEOREM 1.2 ([Ca, Theorem 2.1, Theorem 1.2]). — (a) The following® limits
exist:

1 | .
P.(t) = lim —log Qu(t), with Qu(t) = AEXA:A” le™ | cogay , ¥t = 0.
0

Moreover, P,(t) > P,(s) > P(s) for all 0 <t < s, and") t — P,(t) is convex.
(b) If t > 0 is such that

(1.7) P.(t) 4 tTmin > Solog2,
and
(1.8) log A > t(Tmax — Tmin) ;

then there is a unique equilibrium measure u,; for —t7. This measure charges all open
sets, is Bernoulli, and P,(t) = P(t). Finally, pi; is T-adapted,® that is

(1.9) /|logd(x,8i1)| dpy < 0.

The work of Lima and Matheus [LM] shows the usefulness of the T-adapted
property.
In view of Proposition 1.1 and Theorem 1.2, to establish existence and uniqueness

of the MME of the finite horizon flow ®, it suffices to check (1.7) and (1.8) for
t = hiop(®') > 0. We next discuss these conditions. The first one is very mild:

LEMMA 1.3. — The bound (1.7) holds at t = hiop(®') if

(1.10) htop(q)l)Tmin > s0log2.

The bound (1.10) holds if

(1.11) T s log 2.
Tmax

If (1.7) holds for some t' > 0 then it holds for all t € [0,t']. In particular, if (1.7)
holds at t = hop(®') then (1.6) holds since P.(0) = h..

It is not hard to find [Ca, Remark 5.6] billiards satisfying (1.10). The idea there is
to compare a computable lower bound for the left-hand-side of (1.10) with an upper
bound for the right-hand-side. In the examples from [BD1, §2.4], this comparison is
sufficient to check that (1.10) holds, as long as 7, is large enough.

) By [BD1] we always have P,(0) = h, > P(0).

(") The fact that P.(t) is strictly decreasing is immediate, see (3.11). Convexity follows from the
Holder inequality as in [BD2, Prop 2.6].

(8)To establish (1.9), Carrand shows that the y; measure of the e-neighbourhood of S is bounded
by C¢|loge|~7 for some v > 1 and Cy < 0.
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Proof. — The first claim follows from Proposition 1.1 and the bound P, (t) > P(t)
for all + > 0. The second claim holds because (1.4) implies hiop(®!) > +L2— >

f’rdp* =
T},ZK Finally, the first claim of Lemma 4.1 below implies that ¢ — P.(t) + t7iin iS
nonincreasing. O

Obviously, for any finite horizon billiard, there exists > 0 such that (1.8) holds for
all t € [0,%]. However, we do'® not know any billiard such that (1.8) can be verified
for t = hiop(®'), that is, log A > htop(P)(Tmax — Tmin)- Fortunately, it turns out that
(1.8) is not necessary: Assuming only finite horizon and (1.7) at ¢ = hiep(P*), we will
extend the conclusion of Theorem 1.2 to ¢ = hyop(®') by adapting the bootstrapping
argument in [BD2, Lemma 3.10] (used there to cross the value x = 1 at which the
pressure for —z log J*T" vanishes). This is our main result:

THEOREM 1.4. — Let T be a finite horizon Sinai billiard map such that (1.7)
holds at hiop(®'). Then for all t € [0, hiop(P')], we have P.(t) = P(t), and there
exists a unique T-invariant probability measure y; realising P(t). This measure
charges all nonempty open sets, is Bernoulli and T-adapted.

Our proof furnishes to > hiop(®') such that the key Small Singular Pressure
properties (3.1), (3.2), and (3.3) hold for all ¢ € [0,%]. Note that if (1.7) holds at
some to € (hiop(Ph), too], the conclusion of Theorem 1.4 holds for all ¢ € [0, ).

Theorem 1.2 and Proposition 1.1 of Carrand, combined with Theorem 1.4 and the
proof of [Ca, Props. 7.1 and 7.2] for Bernoullicity of the flow, give:

COROLLARY 1.5. — Let T be a finite horizon Sinai billiard map such that (1.7)
holds at t = hiop(®'). Then

'uhtop(q’l)

= ® Leb
de'uhtop(@l)

Uy

is the unique measure of maximal entropy of the billiard flow. This measure is
Bernoulli, it charges all nonempty open sets, and it is flow adapted, that is*?)

(1.12) / |log do(z, SF)|dv, < 00, Q=Q xS',
Q

where dq is the Euclidean metric, Sy = {®_4(2) : z € S, s < 7(T7'2)}, and
Sy ={Ps(2): 2€ S, s <7(2)}.

Contrary to [BD2|, homogeneity layers are not used for our potentials —t7. They
are not needed because 7 is piecewise Holder and thus e” satisfies piecewise bounded
distortion. The results of Carrand [Ca] that we build upon are based on bounds
for transfer operators acting on Banach spaces of distributions defined with the
logarithmic modulus of continuity of [BD1]. We could not find a Banach norm giving
a spectral gap (there is no analogue of [BD2, Lemmas 3.3 and 3.4] for ¢ # 0, see
[Ca, Lemma 3.1] for v # 0 where (log |W|/log |W;|)? replaces (|W;|/|[W])). We thus

(9)Note that (1.4) implies hop () (Tmax — Tmin) < s (Tmax/Tmin — 1)
(10)Note that (1.12) implies that log || D®,|| is integrable for each t € [—Tmin, Tmin] SO that, by
subadditivity, it is integrable for each ¢ € R.
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do not have exponential mixing for (7 uhtop(qﬂ)). (Even if we had, it would not

immediately imply exponential mixing for (@', v,).)

The paper is organised as follows: Section 2 is devoted to recalling notation from
[BD1] and to two basic lemmas on cone stable curves iterated by the billiard map.

Section 3 contains key ingredients from [Ca] as well as the crucial new definition
(3.5), as we explain next: To show Theorem 1.2, Carrand introduced a key technical
condition of Small Singular Pressure (SSP). The pressure P,(¢) is a thermodynamic
limit corresponding to sums (for the weight exp(—t7) arising from Abramov’s for-
mula) over stable curves iterated (in the past), and cut by billiard singularities. As
usual for hyperbolic systems with singularities, for fixed ¢ > 0, we must see that
the contraction coming from the weight exp(—t7) < exp(—t7Tyi) beats the growth
due to summing over bits fragmented by the singularities. (This is necessary to get
good bounds on the iterated transfer operators associated to the map 7" and the
weight exp(—t7). These bounds are needed to construct maximal eigenvectors for
this operator and its dual on suitable Banach spaces of distributions.) Condition
SSP for a parameter t > 0 essentially says that there exists a scale §; > 0 such that,
at all large times, the contribution of those thermodynamic sums which correspond
to curves which have become shorter than d,/3 is at most a controlled fraction of the
sum over all curves. In §3.1, we first recall the SSP conditions (3.1), (3.2), and (3.3)
from [Cal], and we then state Carrand’s conditional Theorem 3.1. This theorem says
that, if SSP holds at ¢, then there is a unique equilibrium measure for the potential
—t7, and it thus reduces Theorem 1.4 to showing SSP for some ¢t > hyop(P'). We
set up the bootstrap mechanism by introducing in (3.5) the supremum t,, > 0 of
parameters satisfying SSP (this is the new idea). The first key lemma, Lemma 3.5,
inspired by [BD2, Lemma 3.10] exploits the Hélder inequality to estimate weighted
thermodynamic sums for ¢ by using the pressure P,(u) and its one-sided derivative
P, _(u), for 0 <u <t <ty It is stated and proved in §3.2.

The actual bootstrapping argument is carried out in §4. Lemma 4.1 embodies our
version of “pressure gap” (inspired by [BD2, Definition 3.9]): This lemma constructs
a “pivot” t, < to and its associated parameter s,(t,) > to. (The pivot is chosen in
such a way that the first key lemma can be exploited at u = t..) Lemma 4.3, the
second key lemma (inspired by [BD2, Lemma 3.11]), says that, if P.(¢.) > 0, then
SSP holds in the interval [t,, s.(t.)). (The proof uses the first key lemma, taking
advantage of the choice of the pivot.) Finally, Theorem 1.4 is proved in §4.3: We
assume for a contradiction that to, < hiop(P'). Since . < to, this implies, by results
from [Ca] recalled in Proposition 1.1 and Theorem 1.2(a), that the pressure Pj(t.)
is nonnegative. The second key lemma can thus be applied and gives the desired
contradiction since s, (t.) > tx.

2. Notations. n-Step Expansion. Growth Lemma

We recall here some facts about hyperbolicity and complexity of finite horizon
Sinai billiards. There exist continuous families of stable and unstable cones, C* and

TOME 1 (-1)
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C*, which can be taken constant in M, and a constant C; € (0,1) such that,
(2.1)  ||IDT™(x)v]| = CLiA||v||, Yo e C*, || DT "(x)v|| = CiA"||v]|, Vv € C*,

where, as before, A = 1 + 27,;, i is the minimum hyperbolicity constant.
A fundamental fact about this class of billiards is the linear bound on the growth
in complexity due to Bunimovich [Ch, Lemma 5.2],

59 There exists K > 1 such that for all n > 0, the number of curves in Sy,
(2:2) that intersect at a single point is at most Kn.

The parameter v > 1 defining the Banach space norms in [Ca] is chosen so that
h. > so7ylog 2, which is possible due to (1.6). Next, choosing m so large that,

Llog(Km+1) < h, — syylog2,

we take dg = dp(m) € (0,1/C}) so that any stable curve of length at most dy can be
cut by S_; into at most K/ + 1 connected components for all 0 < ¢ < 2m.

Let W* be, as in [BD1, §5], the set of (cone-stable) curves whose tangent vectors
lie in the stable cone for 7', with length at most oy and curvature bounded above by
a constant C depending only on the table (homogeneity layers are not used). The
constant C'c is chosen large enough that T-Ws C We, up to subdivision of curves.
For n > 1,6 € (0,8)], and W € W?, let GS(W), LS (W), SS(W), and Z3(W) be as
in [BD1, §5]: Set G3(W) = W and define G3(W) for n > 1 to be the set of smooth
components of T-1W’ for W' € G°_ (W), with elements longer than § subdivided
to have length between 0/2 and §. More precisely, if a smooth component U has
length 0 + p with £ > 1 and 0 < p < 9, we decompose U into:

e cither ¢ > 2 pieces of length 4, if p =0,

e or / > 1 piece(s) of length 0 and one piece of length p, placed at one of the
edges of U, if p > §/2,

e or { —1 > 0 piece(s) of length d, one piece of length §/2 (at one tip) and one
piece of length p + 0/2 (at the other tip), if p € (0,9/2).

Let L° (W) denote the set of curves in G (W) that have length at least §/3 and let
SSW) =GS(W)\ LE(W). For 0 < k < n, we say that U € G(W) is an ancestor of
V € GS(W) if T"*V C U, and we define Z2(W) to be those curves in G2 (W) that
have no ancestors of length at least 6/3 (aside from perhaps W itself).

Finally, let 0; < dp and ny > m be chosen so that [BD1, eq. (5.6)] holds: For any
stable curve W with |W| > 6,/3 and n > ny,

(23) LB (W) > 2HGH (W),

Up to replacing d; by a smaller constant, we may and shall only consider values
of ¢ of the form

(2.4) §=00/2", N=0.
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The convention (2.4) is used (only) to allow us to ensure that™ for all W € W,
(25)  Vn>=1,if 0" <& then VU" € L' (W), IU" € GO(W) with U" c U".

(To prove (2.5) using (2.4), use induction on N, selecting the short tips in a com-
patible way when dividing § by two.) Property (2.5) is used only in the proof of
Lemma 4.3 below.

For t > 0, we introduce the following shorthand notation,

SSWot) = 3 e ooy, AWt = > e |cows s
W;eS3 (W) WieGd (W)
and
Ly(Wot) == Go(W,t) = Sp(Wit), To(Wit) == 3 [e ™ ooy -
WieZ{ (W)

The lemma below replaces the usual one-step expansion (see [BD2, Lemma 3.1]):

LEMMA 2.1 (n-Step Expansion). — For any ty > 0 and 0 € (e~ Tmin e~ Tmin/2)
there exist a finite ng(ty, 0y) = 2 and dy = 2‘5—}3, > 0 such that

(2.6) S (W, 1) < G2 (W,t) < 65, YW € W* with [W| < &, Yt >t

See also [Ca, Lemma 3.1(a)].

Proof. — Clearly, sup —t7 < —t7im < 0 if £ > 0. For any ng > 1, there exists
do(no) = 2% such that any W € W with [W| < & is such that 770 (W) has at most
(Kng+ 1) connected components [Ch, Lemma 5.2]. In addition using [CM, Ex. 4.50]
as in [BD1, Proof of Lemma 5.1], we have [T-/W| < C'|[W |2 for a uniform C’ > 0
and all j > 1 (see also [Ca, Lemma 3.1]). Up to taking smaller 0y, depending on d
(and ng), we can assume that [T7W| < dy for all 0 < j < ng. Then, for |W| < &,
there can be no additional subdivisions of T (W) due to pieces growing longer
than dg, so that

(2.7) GO (W,t) < (Kng + 1)e mommin

The same bound applies to S (W, t), since any element of S2 (W) must be created
by a genuine cut by a singularity, not an additional subdivision due to pieces growing
longer than dy. For any fixed ¢, > 0 and 6, € (e~ ™, e ™in/2) we can find ng =
no(to, o) = 2 such that (Kng + 1)/ < g™t Since @ emminto < G emint for all
t > to, it follows that (2.6) holds for &y = do(n0, do)- O

Lemma 2.1 implies the following analogue® of [BD2, Lemmas 3.3-3.4, ¢ = 0]:

(11) An alternative way to guarantee (2.5) for a fixed length scale & is to define G (W) as usual and
treat it as the canonical partition of T~"W. Then for any §” < ¢’/2 one can define G2 (W) as a
refinement of G5 (W), guaranteeing (2.5). This is done implicitly in the proof of [BD2, Lemma 3.11]
and could be applied in our Lemma 4.3 below by taking 6’ = §;, of that lemma. We do not adopt
this approach since the canonical scale would not be chosen until nearly the end of our proof.

(12) Gee [Ca, Lemma 3.1(b)] for the replacement for [BD2, Lemmas 3.3-3.4, { # 0], using a logarith-
mic weight with v > 0 as in [BD1].
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LEMMA 2.2 (Growth Lemma). — Fix 6, € (e~ ™ e*Tmi"/Q) and ty > 0. Suppose

§ < 8y and my(8) = no(to,0y) are such that any W € W* with |W| < & has the
property that W \ S_; comprises at most K j + 1 1 connected components for all

1 < j < 2my. Then for any t >ty and each W € W* with |W| < 8, we have

(2.8) 2(W,t) <O, Yn>m
(2.9) (W, t) < Km 03, ¥n < my,
and, setting Ly = m\/1 + K2,
2L
(2.10) GOW,t) < =2 Qn(t),Yn =1,
Ci0

Proof. — Let ng(to, #y) and 8y(ng, &) be given by Lemma 2.1. By choice of ng, if
€ = Toin + log 6y > 0, then (Kng+ 1)/ < e, Remark that (Kn + 1)/ decreases
to 1 for n > 2 since K > 1. Thus (Kn + 1)V/" < e for all n > ny. With this
observation, for 6 and m; as in the statement of the lemma, if n < m; then (2.9)

follows immediately since each element of Z° (W) must terminate on an element of
Sn,

T(W,t) < (Kn 4 1)e™™™min < Km, 67

On the other hand, for n > my, we write n = gm; + ¢, with ¢ > 1 and 0 < £ < m;.
Then, since elements of Iz(W) have been short at each intermediate step, we use
(2.7) once with m; + ¢ in place of ng and ¢ — 1 times with m; in place of ng to obtain,

Ig(W, t) < Z ‘@—tzm—l)ml

Vi GI(q 1)my

< (Kmy + DT YK (my + £) + 1) min L gfton=tnTmin

> et
co(V;)

(W) WieTd, (V)

CoO(Ws)

which implies (2.8) by choice of ny and ¢.

Finally, to show (2.10), first note that each W; € G°(W) is contained in a single
element of M, and that multiple W; € G3(W) only belong to the same element
of M{ as a result of artificial subdivisions at time n or at a previous step. Since
|T—"V| > C1A"|V] for any stable curve |V| (due to (2.1)), each such curve must

have length at least C6/2. Thus there can be at most 2Lo/(C16) elements of G° (W)
in one element of M, where Ly = m\/1 + K3, is the maximum length of a stable
curve in M{ using [BDl, §3]. Note also that |e "] o) < |e 7|04y whenever

W; Cc A € Mj. This gives the required bound. O

ANNALES HENRI LEBESGUE
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3. Preparations
3.1. Small Singular Pressure. Two Bounds from [Ca]

Recall that n; and §; were defined by (2.3). We say that Small Singular Pressure
#1 (SSP.1) holds at™® ¢ > 0 if

4
(3.1) there exist 0, = 6 = —= € (0,0;] and a finite n, = ny > ny

2N
S (Wt o~
such that QgtEVV:t; <1/4,Yn > n, YW € W? with |W| > §;/3,
and, in addition,
e_ntTmin
(3.2) sup  ————— < 00
n;t WGV/\\/S L(TSLt(Wv t)
[W|>6:/3

together with its “time-reversal,” obtained by replacing 7" with its inverse 71, W
by W, and replacing 7 with 7 o T (that is, replacing ¥, 7 with 7, 70 T~ =
(X,7) o T7™), both hold.

Assume that (3.1) and (3.2) hold at t > 0 for J;, and n;. Then we say that Small
Singular Pressure #2 (SSP.2) holds at ¢ if1¥

(3.3) for any W € W there exists n}(|W/|,d,) € [ny, 00) such that
Sp(wit) _ 1
I < -,
G (W,t) = 2

together with its time-reversal (in the sense defined above) both hold.

vn Z n:(‘w|75t) )

Note that the time-reversal of conditions (3.1), (3.2), and (3.3) involve stable curves
for T, that is, unstable curves for 7. In view of the time reversibility of the billiard
dynamics (see [CM, Sect. 2.14] for the precise involution ¢), since 70 T™! = 70y,
and 7 o is precisely the free flight time under 7!, the conditions for T" and T are
equivalent™ with those for T-' = (Tv and 70 T~' = 704

To establish Theorem 1.2, Carrand proved*®) the following consequence of SSP:

PROPOSITION 3.1 ([Ca, Theorem 1.2]). — Assume!” (1.7) and that SSP.1 and
SSP.2 hold™® at t > 0. Then there is a unique equilibrium measure p, for —tr, this

(13) Our formulation of (SSP) corresponds to the choice ¢ = 1/4 in the formulation of (SSP) in [Cal,
and in the analogous condition appearing in [BD1, Cor. 5.3].

(4 In the analogous condition of [BD1, Cor 5.3], there exists a uniform C; such that

* o ¢
n; (|W|,0,,1/4) = Cyn, WBITYRIL

(15) This equivalence does not always hold in [Ca] where t7 is replaced by a more general g.

(16) 1y particular, Carrand shows that (3.1) and (3.2) imply the analogues [Ca, Prop. 3.7 and 3.10]
of [BD2, Prop. 3.14 and 3.15] for the Banach norm of [BD1]. He does not get a spectral gap.

(17) See also Lemma 1.3.

(18)SSP.1 suffices to construct the invariant measure w¢ and check it is T-adapted. SSP.2 is used to
show ergodicity, which gives that p; is an equilibrium state for —t7, as well as the other claims.

TOME 1 (-1)



12 V. BALADI, J. CARRAND & M.F. DEMERS

measure is T-adapted, charges nonempty open sets, and is Bernoulli. In addition,

We state more facts from [Ca] and their consequences. Setting

log A
(3.4) to=——20  ~,

Tmax — Tmin
[Ca, Lemmas 3.3 and 3.4 and Corollary 3.6] give that each t € [0,t¢) satisfies SSP
(that is, (3.1), (3.2), and (3.3)) for §; > 0, n; < oo, and C} < oc.

The key to our bootstrap argument is the following definition.
DEFINITION 3.2 (Largest SSP Parameter). —
(3.5)  too = sup{ > 0 such that (3.1),(3.2), and (3.3) hold for all 0 < t < t'} :

We will use that d, and n; exist for all ¢ < {.

By the results of [Ca] recalled after (3.4), we already know that ¢, > tc > 0. We
will bootstrap from this fact: If P(ts) < 0, then to, > hiop(P'), and Proposition 3.1
implies Theorem 1.4. Otherwise, Lemma 4.3 below will establish that any 0 < ¢ < s,
satisfies (3.1), (3.2), and (3.3), where s, > to, will be constructed in Lemma 4.1.

We conclude this section with two key bounds due to Carrand and a lemma which
follows from them. Assume that (3.1) (3.2) hold for ¢, then by [Ca, Prop 3.7] there
exists cp; > 0 such that

(3.6) GO W, 1) > cope™™® | Wn > 1, YW € W* with |W| > 6,/3,
and by [Ca, Prop 3.10] there exists ¢;; > 0 such that

2
(3.7) Qn(t) < —e*® vn > 1,

Cit

Observe that (3.7) together with (2.10) give the upper bound (to be used in the
proof of Lemma 3.5)

2LO 4L0 TLP (t

5 2lo
(3.8) GL(W.1) < G30n(0) < pte™ ™ W 21, %5 < bo.

Finally, (3.1) and (3.6) imply the following lower bound for any scale § = &,/2".

LEMMA 3.3. — For all t € (0,t.) and § = &y/2", there exists ¢y () > 0 such
that
(3.9) GI(W,t) = o (8)e"™ O Vn > 1, YW € W* with |W| > /3.

The time reversal of the statement holds for T,

Proof. — First, assume § < &;. Each element of L% (W) contains at least &;/(34)
elements of G3(W). So if |W] > §;/3, then (3.1) and bounded distortion for 7 give

—tC

5t 5 €_t05tC0t P
Wt 2 b n *(t)
B 9 T

e—tC

30

for all n > n;, where we have used (3.6) in the last step.

e

(310) G0 > LW

ANNALES HENRI LEBESGUE
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Next, if |W| € [§/3,d:/3), then there exists ny < C’log(d;/0) such that 7w (W)
has a connected component V' of length at least d,/3. This is because while T-"W
remains short, the number of components of 7-"W is at most Kn+ 1 by (2.2) while
|T—"W| > CA"|W| according to (2.1). Thus setting n = max{nw,n;}, we apply
(3.10) to V to estimate for n > n.

Qﬁ(W t) > ng_L(V, t)e—f”max > e MTmaxtPi(t) ,—tC j; Cos o Pu(®) ’

which proves (3.9) by definition of nn. If n < n, then trivially
gz(VVa t) > o MTmax > e—n\Tmax-l-P*(tHenP*(t) > e—ﬁ\T,nax—i-P*(tﬂenP*(t) ‘

Finally, if § > §;, then since each element of G° (W) contains at most 35 /9, elements
of L3(W) and S% (W) C S3(W), we have

30 30
G2 (W) = S (W) + L (W) < S3W.0) + 2 6am) < (14 )@ we),
t t
which gives the required lower bound on G (W, t), applying (3.6).
The time reversed statement of the lemma follows immediately using the reversibil-
ity of the billiard, as explained earlier. 0

3.2. First Key Lemma

We start with the following easy observation:

LEMMA 3.4. — Forallt > 0, the following limit exists and belongs to [—Tmax, —Tmin) :
P.(t) — P,
P (1) = tim D = P(5)
’ st t—s

Proof. — Existence of the limit follows from the convexity of P,(¢) which implies
that left (and right) derivatives exist at every ¢ > 0. Next, if 0 < s < ¢, we have

(3.11) Z |€_t2”T|CO(A) < |€n(s_t)Tmi“ Z |€_SE”T|CO(A), Vn>1,
AeMp AeMg
which implies P () < —7in- A similar computation gives P, () = —Tmax- O

Our first key lemma in view of Lemma 4.3 below is the following adaptation of
[BD2, Lemma 3.10]:

LEMMA 3.5 (Using the Holder Inequality). — For all 0 < u < t < to, and kK > 0
there exists w, = wy(u,t) > 0 such that for all W € W* with |W| > 6,/3,

(3.12) GO(W,t) > “’“((;‘7”.enua(u)—(P;,_<u>|+m>(t_u)>’

%) %

In addition, for each § = 25—1% < 0p there exists wf = w’(u,t,d) > 0 such that for all
W e W* with |W| > §/3,
(3.13) GE (W, 1) > wi(u,t,8) - " Po~(PL_@m(-0) > 1

TOME 1 (-1)



14 V. BALADI, J. CARRAND & M.F. DEMERS

Finally, the time reversals of (3.12) and (3.13) also hold for the billiard map T~*.
The proof gives constants w,(u,t) and w?(u,t,d) which tend to zero as t — oo

(because the constant 7 in the proof tends to zero as t — 00).

Proof. — We start with (3.12) (for ¢ > u). Recall from the proof of (3.10) that for
u € (0,t) and 0 < &, if |W| > 6,/3 and n > n,, then

)
(3.14) G (W, u) > e_“czgco,uenp*(“) , VO < by,

since each V; € L% (W) contains at least §,/30 elements of G2 (W).
Now, for s € (0, u), taking n(s, t,u) € (0, 1] such that nt + (1 —n)s = u, the Holder

1—
inequality gives >, af < ( iaf)n( iaf) " for any positive numbers a;. It follows
that for all 6< 4, each W € W* with [W| > 6,/3 and any n > n,,,

(GA(W, u)) M/
(G3(W, 3))(1—77)/n

1 _
> (e“cauco,uenp*(u)> <4L0 eﬂﬂ(s))

Go(W,t) >

01561’8
1 S 1/n AL 1-1/n -
(315) = — <euCZCO,u) (C 0 ) @n(P*(u)_P*(S))Te"P*(“)
1C1,s

where we used (3.14) with w for the lower bound in the numerator, and (3.8) for s for
the upper bound in the denominator, recalling that {s,u} C (0,t) and 6, < 07 < dg.
Since n(s,t,u) = (u — s)/(t — s), we have

Y

(P(u) — Pu(s)) 1 = L=

n u—Ss

(Pu(u) = Pu(s)).-

Fix £ > 0 and choose s = s(k,u) € (0,1) close enough to u (i.e. small enough
e = n(s(k,u),t,u) > 0) such that (since 0 < s <u and P, _(u) <0 for all u > 0)
(3.16) (Pu(s) = Pu(u))/(u = 5) < [P _(u)] + .

The bound (3.12) follows, setting, for s = s(k, u) (recall that 7, depends on t),

5 1/77m 4L0 1—1/%
wlU, 1) = Tuet U .
w(u, t) <e 1 €0 ) <0101,s

For (3.13), we use that (3.8) for s and Lemma 3.3 for v imply that for any ¢ € (0, d,,),
for each W € W?* with |W| > §/3, and all n > 1,

5 (Gh(W,u))!/m wP@\ Y1 Ao p e\ (= D/
(3'17) gn<W7 t) 2 (gg(m S))(l_")/ﬂ 2 (CO,u(5> e ) (01501,36 )

where we used (3.9) for u. We conclude by taking s = s(k,u) € (0,1) close enough
to u such that (3.16) holds, setting (again, 7, depends on )

W (U, t,8) = cou(0)/ ™ (4Lo) 7Y™ (Croey o)t

)
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4. Proof of Theorem 1.4
4.1. Choosing the Pivot t,.

The next lemma is inspired by [BD2, Definition 3.9]. Recall —7ax < P;’_(t) <
—Tmin from Lemma 3.4.

LEMMA 4.1 (Pressure Gap: Constructing the “Pivot” t,). — For any t > 0 and
0y € (e~ Tmin e~Tmin/2)  defining
t|\P._(t
(4.1) s.(t) == = £, ()] :
[P~ ()] + (log b) /2

there exists t, € (0,ts) such that s, = s,(ts) > teo.

t€(0,tx0),

Remark 4.2. — The parameter s,(t.) = s.(t«,0y) > t, is defined such that
(4.2) QS*/QGIP’,(t*)\(S*—t*) —1.

The reason for this will become clear in the proof of Lemma 4.3. In particular, we shall
use the value of 6y from Lemmas 2.1 and 2.2 for ¢, = t.(0y) and s.(t.) = s.(t«, o)
in Lemma 4.3. Note also that replacing (log#y)/2 by alogfy in (4.1) and taking
Oy € (e~ min e~bTmin) for a,b € (0,1), would replace 1/2 by a in (4.2), (4.4), (4.5),
(4.8) (and the line above it), (4.9), and (thrice) in the two lines after (4.14), and it
would replace 4 by (ab)~! in (4.3), (4.6), and (4.7). Taking a and b close to 1, this
would give a larger value for s, (up to taking x smaller in (4.14)). Since e™™min is a
rough bound on the n-step expansion of Lemma 2.1, and (more importantly) our
argument is by contradiction, there is no reason to optimise here.

Proof. — To construct t,, we first check that

Tmin
(4.3) s.(t) >t (1 + 4Tmax) , V€ (0,ts)
Indeed, since
1 | log 6|
(4.4) — > 14+
__|logbo| / ’

the bound (4.3) follows from the fact that 7, < [P ()] < Tmax implies

’ 10g 90' |: Tmin 1
4.5 -
(4.5) 2|P, _(t)] ATax 2
Then, taking t, = t,, — v for v € (0,t), it suffices to pick v > 0 such that
Tmin
(46) (1 + ?m) (too — U) > foo -
Since to = to = 10g A/(Tmax — Tmin) by (3.4), the bound (4.6) holds as soon as
T —1
4.7 <10g A (Twmax — Tmin) "+ - (14+422) .
(4.7) v <logA - (7 Tinin) ( + Tmin)

TOME 1 (-1)
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4.2. Second Key Lemma

The second key lemma is inspired by [BD2, Lemma 3.11] (the proof below requires
a more involved decomposition of orbits):

LEMMA 4.3. — Fix 0y € (e7™min e~™min/2) Let t, < to and s.(t.) > to be as in
Lemma 4.1. If P,(t.) > 0 then the SSP conditions (3.1), (3.2), and (3.3) hold at all
t € [ts, Si).

The proof below uses (2.5) and thus the convention (2.4).

Proof of Lemma 4.3. — We first consider condition (3.1) of SSP.1.
By definition of s, (recall that inf |P _(s)| > —logty/2)

(4.8) Oy /2Pl =) 1, < < s,
Thus for all ¢’ € [t,, s.) there exists k1 = k(t.,t') > 0 such that
(4.9) £:= sup (96/26(\1);,7(t*)|+m)(t*t*)) <1.

ta <t

For my > max{ng(t.,6p),ns, } to be chosen later depending on £, ¢&;,, and k1, pick
83(m1)€ (0,6;,] (similarly to the choice of &y in the proof of Lemma 2.1) so small
that any stable curve of length at most d3 can be cut into at most K j + 1 connected
components by S_; for 0 < 7 < 2my.

For n > m,, write n = ¢my + r, for some 0 < r < mj; and £ > 1. Let W € we
with |[W] > 65/3. We group the curves W; € S%(W) with |[W;| < d5/3, as in
the proof of [BD2, Lemma 3.11], according to the largest & € {0,...,¢ — 1} such
that TEKmitriy, C V, € Lkml(W) (such a k must exist since |W| > d3/3 while

|W;| < d3/3). Denote(19 by Iég’ pymi (V) the set of W; € G% (W) thus associated

with V; € L, (W) (such elements are known to be small only at iterates jmy + r).
For such W;, TU=F)m+r(117;) is contained in an element of gm w (W) shorter than
d3/3 for k' < k. So for k > 0, we may apply the inductive bound (2.8) since elements
of f&”_ }yma+-(Vj) can only be created by intersections with S_,,, at the first £ —k —1
iterates and with S_,,,, - at the last step. For £ = 0, W itself may be longer than ds.
Thus we first subdivide W into at most dy/d3 curves of length at most d3 and then

apply (2.8) to each piece. This yields, for ¢, <t < ¥/,

Sy (Wit) < Z Z [e™ " oy > = emm T | oy

k=0 76
V; eLkm1 (W) WieI<g’7k)m1+r(I/j)

(4.10) etn + Z 3 e e (Vj)@(t)((efk)mlm .
k=lyierfs (W)

Next, recalling (2.5), for any k > 1, each V; € L%, (W) is contained in an element

U; € G (W). Since |V;| = 03/3, there are at most 30;, /d3 different V; corresponding

kmq

(19) Note that f‘se 5 V;) in the proof of [BDI,

(—kyma
Lemma 5.2], see footnote 23 there.

V;) was abusively denoted I?szz)ml i
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to each fixed U;. Then we group each U; € Qét* (W) according to its most recent
long ancestor W, € L(St*(W) for some j € [0, kml]. Note that j = 0 is possible if
|\W| > 6., /3. If |W| < 4, /3, and no such time j exists for U;, then by convention
we also associate the index j = 0 to such U;. In either case, U; € I,ff;l(W), and we
may apply (2.8) after possibly subdividing W into at most dy/d;, curves of length at
most &;,. Then, for j > 1, we apply (2.9) from Lemma 2.2 to each Ikm () (since
03 < 0, , the constant ml(ét*) < mq(d3), so the bound holds with our chosen my,
although it may not be optimal),

30;, N .
L,ml(W,t) < 5;( Z le Sy oo

UieI,iﬁ;jl(W)
kmq
> > e o > |€_t2’“’"1‘j7|00(m)>
1=t weLt (w) UieIZﬁ,tl,j(Wa)
35 1) kemy m
525* (50 9tl~cm1 + Z Z |€ tY; T|CO )Kmleok 1 J)> )

5
1= waeL) (w)

Combining this estimate with (4.10) yields (summing over k for the j = 0 terms and
adding the term corresponding to k = 0),

£—1 kmy
(4.11) S (W, 1) < 30 m — 0+ 35t* SN Km 8y LY (Wt
Oy my k=1 j=1

For fixed k € {1,...,¢ — 1}, and for each 1 < j < km; such that Lét*( W) # 0,
the lower bound (3.12) in Lemma 3.5 (for u = t*) and the distortion constant
e~ > eC imply (note that n — j > my + 7 — kmy > 7 +my > ny,),

GrW.ty= > e e ™Moo > &= =37 | coqwny

Waeth* (W) Wiegfij(wa)
Weg t*,t n—i D—(IP! Ol4+r1) (E—t —
(4.12) > (;gitlc)e( I (Pet) (1] _ ()| H51) (t=1x)) S e o

4
Wo€eL;™ (W)

TOME 1 (-1)
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Combining (4.11) with either (4.12) (for j > 1) or (3.13) from Lemma 3.5 (for j =0
and u = t,) and setting A = 3¢"“5,, K'm,, yields (using that P,(t.) > 0),

63mq 0
G (W,1) S "t (1.1, bg)e (P ) ~(PL G FEr) (-12))
K1 s by

>3 e Km0y L (W)
+ ;
=5 w~;ef; o(n— ASE (P! (R0t [ Oe (17 )
3(50 » —1 kmq
< - *(t*)g P(t*
S Gy wr (B, 0) - e )"+ wm(t*,t) : 2 (e
380 A R
< g = N
53 : W;:l (t*,t, 53) ’ mln * wm(t*>t) - ;
360 N 3¢5, Kmy gm
T, .
T 03w (te, 1, 03) -y Wi, (te,t) (1 —&)(1 —&m)

S(SJ(W t) < _3%_gtn

(4.13)

To establish (3.1), choose first m; > n,, such that the second term is less than 1/8
setting d; := d3(mq), and then n; > m; such that the first term is less than 1/8, for
n = n.

We next show (3.2). For n > n;, we deduce from (3.1) and (3.13) (for small x > 0)
that, for all W € W* with [W] > 6,/3,

3 (bt 6)e nP.(t) g=n(t=t) (| Pl _ (t)4++)

3
au LY > g >
Since e 17— tl(t—te) - 96/2 > e~tmin/2 by (4.8), while P,(t,) > 0, it suffices to take
r such that (& —t,)k + L7 < t7min to complete the proof of (3.2).

It remains to consider SSP.2. We may assume |W| < §;, /3 since otherwise (3.1)
from SSP.1 implies (3.3) with n; = n;. As observed in the proof of [BD1, Cor. 5.3],
there exists Cy (depending only on the billiard table) such that the first iterate ¢,

at which QZ* (W) contains at least one element of length more than d,, /3 satisfies
lo < ny = na(6y,) := Caollog(|W|/6.)] .

Since |W| < d;,/3, it suffices to consider the term corresponding to j = 0 (and
k = 0) in (4.13) (the other one is bounded by 1/8, for n > m; for m; chosen as
above). For this purpose, for any n = ¢m; +r > my, the first term of (4.11) is
replaced by

6t 1 35t* 36t

415 Ot gin pin < 20t pin
( ) 3(53 z:l 53 0 (ngl 0

where we have applied (2.8) from Lemma 2.2. For any n > max{ns, m;}, the bound
(3.13) from Lemma 3.5 (for u = t,) is replaced by

(4.16) gfg(w, t) > W:1 (ti,t,03) - e tn2Tmax o (n—n2) (P(t) = (1P _(t:)[+r1)(t=ts))
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Measure of maximal entropy for finite horizon Sinai billiard flows 19

Dividing (4.15) by (4.16), the term corresponding to j = 0 in (4.13) is bounded by

80, -0t
5y 0 (Lot Bg) - c—trammm =) (P =(PL_( FR (1)
K1 *9 Uy
35t* etn27—max iy

ne
= mq - w,’;l (t*,t, 63) . (53

We conclude, since, if n}/ny is large enough (depending on ¢, £, d3 = d;) then
1 ™ -m1~53'w:1(t*,t,53)
8 34,.

n(EM/m2elmma)n2 < , Vn = nj.

4.3. Proof of Theorem 1.4

If P(te) < 0 then to > hiop(P'), using Proposition 1.1, and we are done by
Proposition 3.1 and the definition of ¢, since we assumed (1.7) at hop(P'). Assume
for a contradiction that P(t.) = 0. Let t, < to and s.(t.) > t» be as in Lemma 4.1,
and fix to < t2 < s4. Since Pi(t.) > Pi(too) = P(ts) (by Theorem 1.2(a) applied to
s =l and t = t,), our assumption that P(t,) = 0 implies that P,(¢,) > 0. Then
Lemma 4.3 applied to ¢, and s.(t.) gives that the SSP conditions (3.1), (3.2), and
(3.3) hold for all t € [0,%y]. Since ty > to, this is a contradiction, which concludes
the proof of Theorem 1.4.
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