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Reliable quantum computation requires systematic identification and correction of errors that occur and
accumulate in quantum hardware. To diagnose and correct such errors, standard quantum error-correcting
protocols utilize global error information across the system obtained by mid-circuit readout of ancillary qubits.
We investigate circuit-level error-correcting protocols that are measurement-free and based on local error
information. Such a local error correction (LEC) circuit consists of faulty multi-qubit gates to perform both
syndrome extraction and ancilla-controlled error removal. We develop and implement a reinforcement learning
framework that takes a fixed set of faulty gates as inputs and outputs an optimized LEC circuit. To evaluate
this approach, we quantitatively characterize an extension of logical qubit lifetime by a noisy LEC circuit. For
the two-dimensional (2D) classical Ising model and four-dimensional toric code, our optimized LEC circuit
performs better at extending a memory lifetime compared with a conventional LEC circuit based on Toom’s
rule in a subthreshold gate error regime. We further show that such circuits can be used to reduce the rate of
mid-circuit readouts to preserve a 2D toric code memory. Finally, we discuss the application of the LEC protocol
on dissipative preparation of quantum states with topological phases.
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I. INTRODUCTION

Quantum error correction (QEC) protects encoded quan-
tum information from experimental noise and is critical to
realizing the full computation power of quantum processors
[1]. By embedding logical information into QEC codes, errors
can be systematically identified and corrected [2]. In recent
years, experimental progress has been rapid with realization of
small codes and simple correction procedures being explored
across various quantum hardware platforms, including the
two-dimensional (2D) triangular color code [3] on trapped
ions, the 2D surface code [4] on superconducting qubits, and
the 2D toric code [5] and three-dimensional (3D) color codes
[6] on neutral-atom arrays. However, the ultimate path to effi-
cient and scalable error correction in large systems is far from
clear. As such, a variety of approaches for reducing hardware
requirements should be considered.

Stabilizer codes are a particularly important class, as
they come equipped with efficient circuits for identifying
and correcting errors without affecting the encoded infor-
mation [7,8]. One approach to implement error correction
with these codes is to use ancillary qubits and readouts to
extract stabilizer eigenvalues. Then, stabilizer information is
aggregated globally using a classical decoding algorithm,
which identifies likely errors and implements corresponding
recovery operations on the data qubits comprising the codes.
These include decoders based on the minimum-weight per-
fect matching algorithm [9-16], machine learning [17-26],
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or other approaches [27-30]. However, in principle, the cor-
rection procedure could be performed without intermediate
communication with a classical processor, using coherent
multi-qubit controlled gates and dissipation [31-37].

More specifically, there are measurement-free QEC proto-
cols utilizing only local operations in its decoding procedure.
These local error correction (LEC) strategies have received
considerable theoretical attention, in particular in higher
dimensions. Indeed, in dimensions D > 4, local cellular
automata-based decoders have reported thresholds under phe-
nomenological noise models, indicating the possibility of
self-correcting quantum memories [38—43]. Moreover, efforts
have extended into optimizing local decoding protocols by
training convolutional neural networks [44,45], and practical
implementation and application of local decoders in near-term
noisy quantum systems [46-51]. Nevertheless, designing LEC
circuits with a restricted faulty multi-qubit gate set is a chal-
lenging task. For this purpose, it is desirable to develop a
systematic optimization framework that enables such circuit
design.

Reinforcement learning (RL) is a powerful framework for
optimizing sequences of operations to perform a particular
task [52]. As such, RL has been applied recently in quan-
tum science and engineering [53] to develop both quantum
error-correcting codes [54-56] as well as decoders [57-60].
RL was also utilized to optimize noisy quantum circuits or
controls that perform variational quantum algorithms [61-63],
logical quantum gates [64], and state preparation [65-68]. For
the state-of-the-art or near-term quantum hardware with few
physical qubits, RL was applied to optimize quantum circuits
that preserve quantum memory [69] and prepare logical states
[70].
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FIG. 1. Overview of circuit-level local error correction (LEC) protocol and the reinforcement learning (RL) optimization framework. The
LEC circuit is a sequence of local coherent quantum operations—not including a mid-circuit projective readout of any qubit—applied to
data qubits (circle) and ancillas (triangle). It takes data qubits with errors (colored red) and initialized ancillas as input and moves errors of
data qubits into ancillas. This local decoding can be repeated over multiple cycles with a finite number of ancillas by resetting them into the
initialized ones. A reinforcement learning (RL) framework constructs an optimized LEC circuit by combining two types of “building block”
operations, followed by corresponding coherent and independent reconfiguration of qubits. First, ancilla-based syndrome extraction operations
enable the ancillas to measure and store syndrome information that indicates the existence of errors on neighboring data qubits. On the other
hand, ancilla-controlled error removal operations provide local feedback operation controlled by ancillas onto data qubits to correct their
errors. All these operations can be achieved experimentally within the state-of-the-art quantum processors, including the Rydberg atom arrays

(see Appendix A).

In this work, we optimize circuit-level LEC protocols that
consist of faulty multi-qubit gates—to perform both syndrome
extraction and ancilla-controlled error removal—by develop-
ing an RL framework. In particular, our RL framework takes a
fixed set of faulty gates as inputs and outputs an LEC circuit,
with optimized length and layout. By performing extensive
circuit-level simulations, we show these circuits successfully
reduce the error density when gate fidelities are high enough.
We then characterize the resulting extension in the lifetime
of a memory encoded in three finite-sized systems: 2D toric
code, 2D Ising model, and four-dimensional (4D) toric code.
Finally, we explore two near-term applications of this scheme:
(1) reducing the rate of mid-circuit readouts required to
preserve quantum memory and (2) dissipatively preparing
quantum states of topological phases.

This paper is organized as follows: we begin in Sec. II
by outlining the key insights and main results of this work.
Section III provides a detailed analysis of a circuit-level
LEC scheme. In particular, we present an implementation
of the basic components of the LEC circuits followed by
characterization and resolution of the error patterns that limit
conventional LEC circuits. Then, Sec. IV discusses a setting
for the RL framework and its optimization of circuit depth
and layout within each code. Section V presents a quantita-
tive characterization of memory lifetime extension by LEC
circuits and a comparison between RL-optimized and con-
ventional LEC circuits. Furthermore, Sec. VI proposes two
near-term applications of this scheme: reducing the rate of
mid-circuit readouts required to preserve quantum memory

in 2D toric code and dissipatively preparing quantum states
of topological phases. Finally, we present conclusions and
outlook in Sec. VII.

II. OVERVIEW OF MAIN RESULTS

We focus on a circuit-level, measurement-free LEC pro-
tocol, composed of faulty multi-qubit gates. As illustrated in
Fig. 1, the circuits are constructed from two types of basic
local quantum operations: (1) ancilla-based syndrome extrac-
tion with a series of two-qubit gates and (2) ancilla-controlled
error removal with three-qubit gates. We focus on three finite-
sized error-correcting codes—the 2D toric code, classical 2D
Ising model, and 4D toric code—and start by studying the
performance of existing LEC approaches, such as nearest-
neighbor matching in 2D toric code [46] or Toom’s rule in the
2D Ising model and 4D toric code [38]. We then develop and
apply an RL framework to optimize LEC circuits and improve
the overall performance in all three cases. Finally, we provide
a detailed and intuitive understanding of how the optimization
achieves improved performance.

We find that the existing LEC methods are limited by
specific low-weight error patterns, which are not removed by
the local error-removal operations comprising the circuit, as
also noted by previous literature [40,44]. To address this, we
introduce additional longer-range operations that are capable
of removing some of these error patterns and thus increase
the weight of the minimum uncorrectable error in each
code. The RL framework, as shown in Fig. 6, assembles
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the operations into optimized LEC circuits that prevent the
accumulation of higher-weight error patterns on average over
multiple rounds of their application. In general, since we
are considering a circuit-level noise model, adding additional
gates also increases the number of errors. Importantly, we
find that the RL can balance this cost, with the benefits
arising from removing such errors: as gates get noisier, the
optimization prefers shorter and simpler LEC circuits to min-
imize errors. In contrast, when we consider gates with higher
fidelity, the RL procedure uses more complex decoding pro-
cedures to further improve performance.

We illustrate the utility of RL-optimized LEC circuits by
showing how they can extend the lifetime of quantum mem-
ory in a subthreshold-gate error regime. In each LEC round,
we introduce “ambient” errors, which model noises arising
from other faulty operations including idling or transversal
logical gates [6,71], with pamp error rate. Then, we apply a
full LEC circuit that consists of faulty multi-qubit controlled
gates with pgy error rate. We define an average logical qubit
lifetime 7 to be an average number of LEC rounds before
encountering the first failure in decoding. Simulating different
values of pmb, We observe a scaling of the error suppression
consistent with a power-law dependence upon 7' and p,n, (see
Fig. 9). To quantify this effect, we introduce the notion of
an effective code distance D¢ as a function of a given LEC
circuit and pgae such that T ~ (Pamb) P . Degr is related to
the ability of a noisy decoding circuit to remove (on average)
error patterns of a certain weight. In the subthreshold pgye
regime, we numerically show that RL-optimized LEC circuits
have higher D¢g compared with conventional LEC circuits in
each code and are thus more effective in removing errors from
noisy states (see Fig. 10).

Finally, we explore two potential applications of our LEC
method. First, we explore how RL-optimized LEC circuits
can be interleaved with standard (global) decoding, to reduce
the number of mid-circuit measurements required to achieve a
target performance, which could be used to e.g., reduce cycle
times in logical processors. For example, we show that using
LEC circuits with high-fidelity multi-qubit gates can reduce
the number of required mid-circuit readouts (see Fig. 11).
Second, noting that ideas from LEC have also been used to
rigorously verify nontrivial, topological phases of matter in
the presence of experimental noises [72,73], we show that
our LEC scheme can similarly be applied in the dissipative
preparation of topological phases with a given Hamiltonian.

III. CIRCUIT-LEVEL LOCAL ERROR
CORRECTION SCHEME

In this section, we overview our family of circuit-level LEC
schemes in 2D toric code, classical 2D Ising model, and 4D
toric code by providing an explicit translation into a quan-
tum circuit with multi-qubit gates from the local decoding
rule [38,46,74,75]. Section III A discusses how to imple-
ment the basic components of the LEC circuit. Section III B
characterizes the error patterns that limit conventional LEC
circuits and then introduces the hierarchically extended set
of error-removal operations to address this limitation of the
circuit-level LEC scheme. To provide relevant details, we in-
clude the considerations of the experimental implementation
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FIG. 2. Data qubits and stabilizers for each error-correcting code.
Pauli X and Z operators on qubits at corresponding lattice positions
are colored red and blue, respectively. Also, gray qubits denote a
periodic boundary condition of a lattice. (a) In the 2D toric code
lattice, data qubits live at edges. Stabilizer A,, and B, are defined
at each plaquette p and vertex v, respectively, by the tensor product
of four Zs and four Xs, respectively, on adjacent edges. (b) In the
2D Ising model lattice, data qubits live at plaquettes. Stabilizer A,
and A, are defined at each edge by the tensor products of two Zs
on adjacent plaquettes. (c) In 4D toric code lattice, data qubits live
at faces. Stabilizer A, and B, are defined at each edge e and cube c,
respectively, by the tensor products of six Zs and X, respectively, on
adjacent faces.

of the LEC scheme in Appendix A and implementation of a
code base outlined in this section in Appendix B.

LEC circuits are constructed as sequences of local co-
herent quantum operations between data qubits and ancillas
(see Fig. 1). Importantly, there is no need for readout and
classical processing in the circuit. Conceptually, the circuit
takes noisy data qubits and noise-free ancillas as input and
reduces errors on the data qubits by moving them to the
ancillas through entangling operations. Thus, the LEC circuit
effectively moves entropy from data qubits onto the ancillas.
In our formulation, we distinguish errors arising from the LEC
correction and errors arising from other sources, such as idling
errors or other logical-circuit elements. As such, after each
application of the LEC circuit, a new set of independent and
identically distributed (i.i.d.) errors are applied to data qubits.
The ancillas are then reset or discarded and the process is
repeated, forming a cycle of LEC.

As depicted in Fig. 1, the RL framework functions as a
“funnel” that takes the set of available local operations as
input and produces a sequence composed of these elements,
with optimized length and layout. We discuss the RL frame-
work in more detail in Sec. IV. The input operations naturally
decompose into two functions:

(1) ancilla-based syndrome extraction by encoding stabi-
lizer operators onto ancillas without readout,

(2) ancilla-controlled error removal by applying local
feedback controlled by ancillas onto data qubits.

Each of these operations requires applying multi-qubit
gates to the system in parallel following a desired layout.

A. Circuit-level local error correction operations in each code

We use three models to develop and test our frame-
work, illustrated in Fig. 2. The 2D toric code is a canonical
quantum error-correcting code, which has been studied ex-
tensively [9,10]. This code, having point-like syndrome
excitations, cannot scalably protect quantum information with
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alocal decoding protocol. Nevertheless, we still observe pseu-
dothreshold behavior, as discussed further below, and gain
simple intuition for how LEC works using this model. To ex-
tend our analysis to models that can, in principle, be protected
by an LEC procedure, we consider the 2D (classical) Ising
model, which realizes a classical memory [76], and the 4D
toric code, which realizes a quantum memory [9,77]. Both
have line-like syndrome excitations, which can be corrected
via local operations [38,74,75,78]. With sufficiently low error
rates, LEC circuits can protect their information indefinitely,
making these codes self-correcting memories. Each model can
be defined by its stabilizers, where their eigenvalues are either
+1 or —1. Then, each model encodes logical qubit(s) where
all stabilizers have 41 eigenvalues. Note that each lattice
of the error-correcting code below has a periodic boundary
condition.

(1) 2D toric code [79]

As in Fig. 2(a), data qubits live on edges of the 2D lattice,
and plaquette-type (Ap) and vertex-type (B,) stabilizers are
tensor products of four Pauli Zs (or Xs) on data qubits neigh-
boring each plaquette p (or vertex v). Two logical qubits are
encoded with logical Z (or X) that correspond to tensor prod-
ucts of Zs (or Xs) along the topologically nontrivial loops.

(2) 2D Ising model [9]

As in Fig. 2(b), data qubits live on plaquettes of the 2D lat-
tice, and vertical-type (A,) and horizontal-type (A,) stabilizers
are tensor products of two Zs on the data qubits vertically
or horizontally adjacent to each edge. Since the 2D Ising
model can detect only a bit-flip error on the qubit, it encodes
a classical memory. Also, one logical qubit is encoded that
consists of all qubits with either |0) or [1).

(3) 4D toric code [9]

As in Fig. 2(c), data qubits live on the faces of the 4D
lattice, and there are edge-type (A,) and cube-type (B.) stabi-
lizers. Each stabilizer is a tensor product of six Zs (or Xs) on
data qubits neighboring each edge e (or cube c). Two logical
qubits are encoded with logical Z (or X) that correspond to
tensor products of Zs (or Xs) on the topologically nontrivial
sheets.

The syndrome extraction circuits are used to measure sta-
bilizers via ancillas. For each of the above error-correcting
codes, the stabilizers are a tensor product of Zs or Xs on
the data qubits. Since Z and X anticommute with each other,
eigenvalue of stabilizer S, (or Sy) is (—=1)*, where n; is
a number of X (or Z) errors on data qubits that support
the stabilizer. Due to the commutation relation between a
controlled-NOT (CNOT) gate and XandZ,a sequence of CNOT
gates performs a syndrome extraction. For example, for 2D
toric code, we put an ancilla initialized to |0) on every pla-
quette and then apply the sequence of parallelized CNOT gates
as shown in Fig. 3(a). Then, each ancilla remains as |0) if
an eigenvalue of corresponding S is +1 and flips into |1)
otherwise. Similar sequences of CNOT gates in parallel can
detect errors by syndrome extraction for the 2D Ising model
and 4D toric code. Note that we assume a reset of ancillas
to their initial states |0) before a new syndrome extraction
operation.

The error-removal operations are more complex and in-
volve applying correction gates conditioned on the state of
the ancillas. Let |A;) and |A;) be two ancillas that store an

(a) Syndrome Extraction

1 2D Toric Code
e =98 o seodg

in parallel

(b) Error Removal

1 2D Toric Code 1 2D Ising Model

4D Toric Code -

FIG. 3. The gate-level implementation of syndrome extraction
and error-removal operation in each code. (a) Syndrome extraction
operation using ancillas is a sequence of CNOT gates in parallel.
An example of such a sequence with unit cells for 2D toric code
is shown. Note that the CNOT gates are applied in the optimized
order (see Appendix B). (b) Error-removal operation to reduce error
density of data qubits controlled by ancillas is a single application
of cCX and CCz gates in parallel. An example of the simplest such
operation with a unit cell for each code is shown. To remove X (or
7) errors, CCX (or CCZ) gates are applied.

eigenvalue of stabilizer S‘ZAI and Sz,Az, respectively. Then,
applying a controlled-controlled-X (CCX) gate controlled by
these two ancillas—without knowing their quantum states—
and targeted on the data qubit |D) results in X |D) if both of the
controlled qubits are |1) s and |D) otherwise. As the simplest
scenario, consider these two stabilizers share one supporting
data qubit |D). If both stabilizers have —1 eigenvalues, we
have |A;) = |A;) = |1) by syndrome extraction and there are
an odd number of errors on data qubits supporting each of
these stabilizers. When data qubits have low error density,
it is likely that the shared data qubit |[D) has an X error,
which gets corrected by applying the above CCX gate. We
can similarly remove a Z error on the data qubit by applying
a controlled-controlled-Z (Ccz) gate. The simplest gate lay-
out for an error-removal operation in each code is shown in
Fig. 3(b).

A typical global decoding approach also uses ancilla-
based syndrome extraction operations. However, instead of
performing the error-removal operation via local three-qubit
gates, all the ancillas are projectively measured after the
syndrome extraction operation. Then, by globally processing
readout outcomes, a classical decoding algorithm infers the
most likely underlying errors, which can be subsequently cor-
rected by applying local Pauli operators. However, in our LEC
scheme, only certain local correction operations are imple-
mented, leading to the existence of additional uncorrectable
error configurations.

B. Extended local error correction operations

The syndrome extraction and error-removal circuits form
the building blocks of LEC circuits. To understand the capa-
bilities of LEC, we start by discussing how different kinds of
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FIG. 4. Uncorrectable error pattern by the simplest error-removal
operation in each code, as introduced in Fig. 3(b). (a) In 2D toric
code, the given error-removal operation removes only length-1 error
chains that consist of a single X or Z error on a data qubit. However,
error chains with more than one error are uncorrectable by the given
operation. (b), (c) In the 2D Ising model and 4D toric code, illustrated
membrane-like error sheets bounded by parallel 1D syndrome lines
that are periodic around the lattice are uncorrectable by the arbitrary
repetition of Toom’s rule error-removal operation.

errors behave under these circuits. Each code has a specific
error pattern where syndromes, which are —1 eigenvalues of
stabilizers, form a boundary of errors on neighboring data
qubits. As shown in the left of Fig. 4(a), 2D toric code has 1D
chains of errors on data qubits, which share a common adja-
cent plaquette or vertex, with endpoints of syndromes. These
error chains can be classified by their lengths, i.e., how many
errors on data qubits are between two syndrome endpoints to
compose the chains. Here, we define the length of an error
chain based on the shortest chain up to multiplication with
stabilizers. Applying the simplest error-removal operation can
remove length-1 X -chains or Z-chains that consist of a single
X or Z error on a data qubit [46].

In contrast, as shown in the left of Figs. 4(b) and 4(c),
the 2D Ising model and 4D toric code have 2D membranes
of data qubit errors with 1D boundaries of syndromes. For
these codes, repeating Toom’s rule operation is an established
cellular automata decoding protocol [74,75]. This operation
can be implemented with CCX and CCZ gate as depicted in
Fig. 4(b) followed by syndrome extraction. As this operation
effectively “shrinks” the size of a 2D error membrane, its
repetition can remove all errors in an infinite-sized system
if the error density of data qubits is below some threshold
[72,78,80]. Due to this property, the 2D Ising model and 4D
toric code are called self-correcting memories.

(a) 2D Toric Code

Toom Sweep d=(1,1)

FIG. 5. Unit cells of extended error-removal operations for each
code. To address the uncorrectable error patterns shown in Fig. 4,
we hierarchically introduce new error-removal operations. (a) In the
2D toric code, we include d = N operations, for N < 3, that can
reduce length-N chains into length-(N — 1) chains. (b) For the 2D
Ising model and 4D toric code, we extend Toom’s rule operation to
Toom sweep operations as generated by 90° rotations of the original
Toom’s rule operation. Additionally, we introduce d = N operations,
for N < 2 in the 2D Ising model and for N =1 and (1,1) in 4D
toric code, which can reduce width-N sheets into width-(N — 1)
sheets. Note that d = (1, 1) operation for 4D toric code can reduce
width-(1,1) sheets into width-1 sheets.

However, we observe error patterns that are uncorrectable
by the simplest error-removal operation, as shown in Fig. 4.
In 2D toric code, the simplest error-removal operation cannot
remove nor reduce the error chains with length >2. Also,
for the finite-sized 2D Ising model and 4D toric code, some
error configurations are uncorrectable by repeated Toom’s rule
operations—even if the error density of data qubits is below
the threshold. These configurations, also called as energy bar-
riers [44,81,82], form periodic 2D sheets of data qubit errors
surrounded by parallel one-dimensional (1D) loops of syn-
dromes. We call these error patterns error sheets with width
defined as the distance between the boundary 1D syndrome
loops. Therefore, each error-correcting code has an issue of
error patterns uncorrectable by the simplest error-removal
operation arising from different reasons: the operation’s lim-
itation for 2D toric code and a system’s finiteness for the 2D
Ising model and 4D toric code.

Now, we introduce how to resolve this issue of uncor-
rectable error patterns that limit the performance of the local
decoding protocol. We design a set of operations for each code
such that any single low-weight error pattern can, in principle,
be corrected.

For 2D toric code, we categorize the simplest removal
operations as d = 1 operations, because they can reduce
length-1 error chains into length-0 error chains, i.e., no error.
As shown in Fig. 5(a), we generalize this to d = N opera-
tions that can reduce length-N error chains into length-(N —
1) error chains. We include up to d < 3 operations in our
optimization.

In the 2D Ising model and 4D toric code, we extend
the simplest operations in two ways, as shown in Fig. 5(b).
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First, we include the Toom sweep operations generated by
90° rotations of the Toom operations, which were shown to
reduce the occurrence of uncorrectable membrane-like error
patterns [40,41]. Moreover, to enable the removal of such
error patterns, we additionally introduce operations designed
to remove errors between the two parallel 1D boundaries of
syndromes. These operations take the same form as thed = N
operations for 2D toric code and can reduce width-N error
sheets to have narrower widths. We include two lowest-weight
operations for both codes—d = 1 and d = 2 operations for
the 2D Ising model and d = 1 and d = (1, 1) operations for
the 4D toric code.

If we did read out the syndromes, then we would apply
the proper combination of these operations within the ex-
tended set to correct any error chain with length <3 or any
error sheet with width <2 and <(1, 1). However, because
the correction steps are applied via noisy controlled gates
without the explicit knowledge of syndromes, constructing
high-performance sequences of operations is quite challeng-
ing. To overcome this challenge, we develop an RL framework
to optimize LEC circuits, which are sequences of the error-
removal operations as well as syndrome extraction operations.

IV. REINFORCEMENT LEARNING
OPTIMIZATION FRAMEWORK

In this section, we provide details about the RL framework
to optimize LEC circuits. Section IV A introduces the setting
of the RL framework in terms of its agent, environment, and
the interplay between them. Then, Sec. IV B discusses the
result of depth and layout optimization of LEC circuits by the
RL framework with varying multi-qubit gate fidelities.

RL is a machine-learning paradigm where an agent learns
which actions to play to maximize the reward through its
interplay with an environment [52,83]. In our setting, the LEC
circuit builder (or agent) learns which sequence of LEC gate
operations (or actions) maximizes the decoding success rate
(or reward) through its interplay with the circuit-level simula-
tor (or environment) until the convergence of the agent-built
LEC circuit. Due to the absence of mid-circuit readout in our
scheme, our environment does not provide the observation to
the agent, unlike the traditional RL setting [52,83].

We aim to optimize an ordered sequence of discrete ac-
tions where an optimizer only observes the reward of the full
sequence. Since the sequence is not adjusted during the exe-
cution and the reward structure is “opaque” to the optimizer,
our setting can be classified as an open-loop control or black-
box sequential optimization. Our problem features (1) a large
search space of size between 10°3 and 10% possible ordered
sequences, (2) the importance of discrete actions’ order in the
sequence, and (3) costly reward computation—especially for
4D toric code.

Due to these features, we choose a proximal policy opti-
mization (PPO) among RL techniques as our optimizer [84].
The RL algorithms have been used to robustly and sample-
efficiently optimize the sequence of actions in large discrete
action spaces [85-88]. In particular, such algorithms have
been successfully applied to the open-loop control problems
[89-91]. More recently, the PPO algorithm has been used
to optimize the quantum gate sequence, such as preparing
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Environment: Circuit-level Benchmark Simulator

FIG. 6. Overview of our reinforcement learning (RL) framework
that consists of an agent, environment, and their interactions to opti-
mize the LEC circuit for a given code and error model. By choosing
the next action based on all previous actions, the agent’s policy
network builds an LEC circuit, which is a sequence of fixed circuit
depth H number of LEC actions, as the environment’s input. Then,
the environment benchmarks a decoding success rate given this LEC
circuit with a fixed error model by simultaneously evaluating the
success or failure of decoding for N copies of codes after multiple
LEC cycles, which are applications of LEC circuits after the intro-
duction of new errors. This rate is then used as a reward to update
the agent’s neural network parameters. These steps are repeated until
the perceived reward saturates, i.e., until the agent receives the same
reward signal and does not design a new LEC circuit for multiple
network updates.

multi-qubit GHZ states [92] or fault-tolerant logical states in
small quantum error-correcting codes [70]. Although there
are alternative optimizing strategies including variations of
genetic algorithms [93] or simulated annealing [94], we find
that the RL method is particularly suitable considering the
purpose and features of our problem.

A. Setting of reinforcement learning framework

We summarize the specific interplay between the RL agent
and environment as in Fig. 6 and Algorithm 1.

First, the RL agent produces an LEC circuit based on its
internal parameters. Then, the RL environment takes this LEC
circuit as an input to compute its decoding success rate with
fixed code and error model parameters. Such a rate is used as a
reward to update the internal parameters of the RL agent. This
training process is repeated to maximize this reward until the
resulting LEC circuit converges.

Let us further discuss each component of our RL frame-
work: an agent, environment, and algorithm updating the
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ALGORITHM 1. RL training algorithm.

Data: Circuit depth H; action space A; code type
and parameters; error model parameters
Result: RL-optimized LEC circuit
LEC circuit + EmptyList;
Initialize parameter 6 of neural network 1
repeat
LEC circuit = BuildLEC(f?, H, A);
Reward = ComputeReward(LEC circuit, code
type and parameters, error model parameters);

G = UpdateNetworkParameters( fg, Reward);
until LEC circuit stays the same for multiple updates;

agent’s neural network based on reward from the environ-
ment: ~

(1) The agent has a neural network f¢ with vectorized
internal parameters 6 that takes a sequence of h (for h < H)
actions as input and returns the next action as output, i.e.,

A% A, (1)

where A denotes a set of all action candidates that depend on
a choice of the error-correcting code. Repeating such next-
action decision-making for H times results in building the
LEC circuit with the circuit depth H. See Appendix C 1 for
more details.

(2) The environment computes the decoding success rate
by a circuit-level Monte Carlo simulation of performing mul-
tiple rounds of applying an LEC circuit produced by the
RL agent. This simulation takes a code type, error model
parameters, and LEC circuit as inputs. Here, we consider two
different error sources: (1) ambient errors introduced every
LEC round before applying the LEC circuit with the rate pymp
and (2) gate errors introduced after applying each parallelized
multi-qubit gate with rate pg,e. Note that the reward compu-
tation is based on the average performance of an LEC circuit
produced by the RL agent, because the decoder cannot access
syndrome information in our measurement-free scheme. See
Appendix C 2 for more details.

(3) We utilize the Python-based package Stable-
Baselines3 to perform the training to implement the RL
framework [95]. Recall that we update the agent’s network
parameters from the reward with the PPO algorithm. To
obtain the best-performing LEC circuit, we run the RL
training four times independently until the training reaches
its termination condition. Among the final LEC circuits from
four trained models, we choose the one that maximizes the
reward.

Appendix C includes more details on our RL framework:
a training termination condition (see Appendix C 3), hyper-
parameters (see Appendix C4), and stability of training (see
Appendix C5).

B. Optimizing depth and layout of local error correction circuit

In each error-correcting code, we provide varying gate
EITOr Trates Pgae as an input to our RL framework to optimize
the length and layout of LEC circuits for each input pgye. We
choose the scale of pgae to be with an order of 10~* for 2D
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FIG. 7. Optimization of depth and layout of the LEC circuit by
the RL framework in each error-correcting code. Each final reward
is computed with 10 000 independent samples (see Appendix D for
the error bar). (a) For 2D toric code, we show the RL training with
variable depth with training pey = 2 x 107*: as number of neural
network (NN) policy updates increases, the LEC circuit’s variable
depth converges. By comparing the final reward of the resulting
LEC circuit trained by the RL framework with fixed vs variable
depth setting, we confirm that the obtained circuit depth is effectively
optimized. (b) For the 2D Ising model and 4D toric code, we show
the final reward after RL training vs fixed circuit depth with training
Peae = 3 x 1073 for the 2D Ising model and 2 x 1073 for 4D toric
code. (c) For each training pg., we classify the components of
RL-optimized LEC circuits as categorized in Fig. 5.

toric code, 103 for the 2D Ising model, and 1073 for 4D toric
code (see Table IV in Appendix C 2 for other code and error
model parameters).

From RL training with varying circuit depth H, we observe
that there exists an optimal circuit depth for 2D toric code, as
shown in Fig. 7(a). As shown in Fig. 7(c), we observe that
the optimized circuit depth Hoy for 2D toric code depends
on training pgue: Hop decreases as training pgae increases.
This trend is because faulty LEC action causes a trade-off
between error removal by parallel three-qubit gate operation
and error introduced by a gate error model. Even in pgye = 0
case, error removal by hth LEC action A; gets marginalized
as h increases. When pg,. increases, A, for large h intro-
duces more errors than it removes. We further observe that
higher-weight LEC actions (d > 1) are more frequently used
for smaller training pgq.. This trend is because higher-weight
error chains are less common than lower-weight error chains
in the lattice and thus lower-weight LEC actions benefit more
from the trade-off of faulty LEC actions for smaller training

Pgate-
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Unlike in 2D toric code, H > H. ~ 45 shows a saturation
of final reward in the self-correcting memories as shown
in Fig. 7(b). This is consistent with the system entering a
steady state, where an action coming after some H, achieves
a balance between errors that it newly introduces by finite
gate error or removes. Note that as H — oo, we expect the
reward to slowly go to zero due to the rare possibility of high-
weight uncorrectable errors. Thus, for the 2D Ising model
and 4D toric code, we use the RL framework that optimizes
circuit layout with fixed H = 60 (see Appendix C1 for de-
tails). However, just as in 2D toric code, Fig. 7(c) also shows
that new LEC actions (d = N) are more frequently used for
smaller training pg,. with the same reasoning. Moreover, in
both the 2D Ising model and 4D toric code, these new LEC
actions appear only after a repetition of multiple Toom sweep
actions. For all training pgye, RL-optimized LEC circuits start
with >10 Toom sweep actions for 2D Ising model and >19
Toom sweep actions for 4D toric code. This is because the
membrane-like uncorrectable error configurations illustrated
in Fig. 4 appear only after applying an iteration of Toom’s
rule decoding.

V. MEMORY LIFETIME EXTENSION BY LOCAL
ERROR CORRECTION

In this section, we provide a thorough analysis of the mem-
ory lifetime extension by the LEC circuits and the comparison
between RL-optimized LEC circuits (or RL LEC) vs con-
ventional LEC circuits (or conventional LEC) in each code.
Recall that the conventional LEC for 2D toric code is called
a nearest-neighbor LEC circuit (or NN LEC) [46] and that for
2D Ising model and 4D toric code is called a Toom’s rule-
based LEC circuit (or Toom LEC) [38]. Section V A explains
the idea of effective code distance that characterizes the life-
time of a memory encoded in the error-correcting code. Then,
Sec. V B provides a comparison of this parameter for RL vs
conventional LEC based on the benchmark simulation results.
To explain why RL LEC performs better than conventional
LEC, we provide the error statistics analysis in Appendix E 1.

A. Idea of effective code distance

We define the average memory lifetime T encoded in each
code to be an average number of LEC rounds before the final
recovery step calls decoding failure for the first time. We now
introduce a parameter that represents the faulty LEC circuit’s
performance in extending the memory lifetime—called effec-
tive code distance.

First, let us consider a case without LEC, i.e., error with
Pamb introduced per qubit per round until the final recovery
failure after multiple rounds is evaluated by performing a per-
fect global decoding. In this case, the error rate is accumulated
approximately p.,n, every round, and the average memory
lifetime 7' can be approximated as

T~ 20 @

Pamb

where py, refers to a threshold error rate for the final decoding
success evaluation step. Note that py, depends on a type of
code: 2D toric code has py =~ 12%, the 2D Ising model has
P = 50%, and 4D toric code has pg &~ 4.5%. This behavior

TABLE I. Number of data qubit errors to compose an effectively
uncorrectable error pattern by entire LEC circuit vs a logical error
in each code. L denotes a system size, and D denotes some constant
that depends on the LEC circuit.

LEC’s uncorrectable error Logical error

2D toric code D L
2D Ising model DxL L?)2
4D toric code DxL L?

is because, for a large enough system size, the final recovery
step can be approximated to perform successful decoding
if the system’s error rate is below py, and failed decoding
otherwise.

Now, let us consider a case with LEC: we repeat error gen-
eration with rate p,n, followed by an LEC circuit application
until the decoding failure is evaluated. First, suppose that gates
are perfect, i.e., pgae = 0. Since an LEC circuit reduces error
density in the system, the LEC circuit is expected to suppress
the accumulated rate of errors p,.. in each LEC round:

Pacc ™ (pamb)DCffa (3)

where the power-law exponent is called effective code distance
D of the LEC circuit. Combining Eqgs. (2) and (3), we obtain

Pth
pacc

T ~

~ (Pamb)iDeff . 4

Thus, for the same final recovery step and p,mp each LEC
round, T gets extended as D increases. Since different LEC
circuits suppress error accumulation by different amounts,
Degr characterizes the performance of the LEC circuit in ex-
tending the memory lifetime.

In particular, D g depends on the size of the uncorrectable
error configuration by the given LEC circuit. Without LEC,
every error in the system survives, gets passed to the next
round and contributes to the accumulation of error density.
However, with LEC, primarily the “uncorrectable” error con-
figuration by the entire LEC circuit survives and contributes
to the error-density accumulation. We summarize the scale of
uncorrectable error by LEC compared with logical error in
Table L.

Although the above discussion is for LEC circuits with per-
fect gates, we also define D for faulty LEC circuits as well
(i.e., pgaie # 0). Note that the LEC circuit can be interpreted as
a dynamical process. The initial error configuration is newly
introduced to the system by ambient or gate errors. Then, the
LEC circuit is applied to correct such an error pattern. When
gates are perfect, the decoding is performed only to these
initial errors as shown in Fig. 8(a). However, when gates are
faulty, new errors introduced after each parallel gate operation
can cause the growth of initial error configuration during the
decoding process as shown in Fig. 8(b). Due to this effect,
D¢ gets decreased when LEC circuits consist of faulty gates.
Also, these faulty gates impact the failure rate in each round
as well due to this insertion of errors by gate errors during the
local decoding process. Thus, we model the average memory
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(a) time (b)

1

| £

FIG. 8. Effect of faulty gates on effective code distance by com-
paring a correction of lower-weight (thick red line) vs higher-weight
(thin red line) initial error configurations. Local decoding with the
same LEC circuit over time is schematically shown for perfect vs
faulty gates. (a) When gates are perfect, the LEC circuit removes
both of the initial error configurations at the end. (b) When gates
are faulty, the LEC circuit still removes an error configuration with
a lower weight at the end by the local decoding process (thick
orange lines with empty arrows). However, an error configuration
with a higher weight “grows” over time by merging with gate errors
introduced during the local decoding process (thin orange lines with
filled arrows). Thus, we expect the effective code distance for a given
LEC circuit to decrease as the circuit’s gate error rate increases.

lifetime T for a given LEC circuit with faulty gates as

1 Dot
T ~ C<—> . (@)
& X Pamb

Both D¢s and o depend on the choice of error-correcting
code, pgae, and an LEC circuit. Physically, the parameter
D¢ describes how fast such errors grow over time, whereas
the parameter o describes how many new errors (including
gate errors) get introduced every LEC round. From Table I,
we expect that (1) Deg is independent of L for 2D toric code
and (2) D¢ o< L for the 2D Ising model and 4D toric code.
Our characterization of memory lifetime by a local decoder
is different from the previous literature [38], which follows
the quadratic relation between lifetime and ambient error rate.
This is due to the difference between gate error regimes of
interest.

B. Fitting effective code distance

In Eq. (5), the parameters C, o, and D¢ can be determined
by fitting the data between average memory lifetime 7} vs
ambient error rate p,mp, as shown in Fig. 9. To achieve this
fitting, we benchmark the average memory lifetime 7; in each
error-correcting code with varying input parameters. Then, we
compare the RL LEC trained with different pg,. and conven-
tional LEC.

In 2D toric code, T is approximately independent of L (see
Appendix E2 for a caveat). Thus, from Eq. (5), we fit the
following model between T and pymp:

10g10 (T) = —Desr x 10glo (pamb) + K, (6)

where k =log;,C — D¢sr x log;y . In the 2D Ising model
and 4D toric code, Dt is expected to be proportional to L.
Thus, from Eq. (5), we fit the following model between 7}
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FIG. 9. Fitting from log-log plot of average memory lifetime
T, for each system size L vs ambient error rate p,,, for fixed
benchmark gate error rate pg,. to compute effective code distance.
In each code, we perform a simulation of multiple LEC cycles on
1000 independent samples to benchmark 77, which is the number
of LEC cycles until the final perfect decoding results in a logical
failure (see Appendix D for the error bar). We compare RL-optimized
LEC circuit (blue gradation for varying L) vs nearest-neighbor LEC
circuit (NN LEC) in 2D toric code or Toom’s rule-based LEC circuit
(Toom LEC) in the 2D Ising model and in 4D toric code (gray gra-
dation for varying L). We train the RL model with pg,e = 1 X 1073,
1 x 107, and 1 x 1073 for 2D Ising model and 2D and 4D toric
code, respectively. Note that the vertical blue dashed line corresponds
to training p,y, for each code.

(average memory lifetime obtained by simulating a code with
system size L) and pamp:

Degr
log,o (T1) = — 3

x L x [logyg (pamb) + ki1 + k2, (7)

where k; and k, are log,, « and log,, C, respectively.

With a fixed LEC circuit, L, and benchmark pg, let each
dataset be the pairs of benchmark p,n, and average lifetime.
Then, to perform a global fitting based on Egs. (6) and (7),
we use the SymFit Python package [96]. Parameters (D, k)
for the 2D toric code and (De, k1, k») for the 2D Ising model
and 4D toric code were shared by datasets varying L with the
same LEC circuit and benchmark pgge.

After the fitting, we plot Deg of each LEC circuit vs bench-
mark pgae, as shown in Fig. 10 (see Appendix E3 for k
fitting). Let pgae,c for RL LEC be a critical gate error rate
such that RL LEC has higher D compared with NN LEC
(if 2D toric code) or Toom LEC (if the 2D Ising model or 4D
toric code). In every error-correcting code, we observe that
the RL LEC trained with lower pga. shows higher fitted Dest
in small pgy. regime but smaller p. compared with the LEC
circuit trained with higher pg,.. For the LEC circuits that are
trained with small pg.e, as shown in Fig. 10, we additionally
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FIG. 10. Fitted effective code distance D, for given LEC circuits vs benchmark gate error rate pgq. in each code (see Appendix D for the
error bar). Gray squares represent data with (a) nearest-neighbor LEC circuit (NN LEC) in 2D toric code and (b), (c) Toom’s rule-based LEC
circuit (Toom LEC) in the 2D Ising model and 4D toric code. Blue circles (or orange diamond) represent data with RL-optimized LEC circuit
trained at pyye with value (a) 1 x 107 (or 2 x 107*) in 2D toric code, (b) 1 x 107 (or 5 x 1073) in the 2D Ising model, and (c) 1 x 107> (or

2 x 1073) in 4D toric code.

find that pgye ¢ is larger than the training pg... Note that this
property does not apply to LEC circuits trained with large pgae
(see Appendix E4). Also, in the 2D Ising model, the LEC
circuit only with Toom actions shows fitted D /L = 1.0. This
is because the minimum uncorrectable error configuration by
the Toom LEC circuit consists of L number of data qubit
errors as shown in Fig. 4(b). Note that this observation and
its explanation are consistent with the intuition from Table I.

VI. APPLICATION OF LOCAL ERROR
CORRECTION SCHEME

In this section, we provide two specific examples of how
this optimized LEC scheme could be used in various quantum
information processing tasks. Section VI A explores how RL-
optimized LEC circuits can be used to reduce the number of
mid-circuit readouts required to preserve a quantum memory
in 2D toric code. On the other hand, Sec. VIB discusses
the dissipative preparation of topological phases with a given
Hamiltonian.

A. Reducing rate of mid-circuit readouts

Section V shows that LEC circuits can be used to remove
errors from encoded qubits and to extend the memory lifetime.
Then, it is reasonable to ask whether such LEC circuits can be
beneficial to extend memory lifetime in practice. We focus
on a 2D toric code to investigate the practical application. In
2D toric code, using only LEC has limitations for a practical
application, because memory lifetime extended by LEC does
not scale with L as observed in Fig. 9. Also, undecoded error
chains get accumulated by the repetition of LECs, which
implies that extending memory lifetime has some upper limit.
However, we can envision a decoding strategy combining the
advantages of both LEC and global decoding. In particular,
repeated application of LEC can be used to reduce the rate of
error accumulation of an encoded logical qubit. Then, we can
periodically perform the global decoding. The key advantage
of this approach is that LEC circuits can be applied more

quickly compared with the global decoding that involves mid-
circuit readouts.

In practice, we aim for the memory to exhibit a logical
error rate P below some target value after a given physi-
cal time T where each unit time step introduces some error
with rate pyn;e to data qubits. We compare original and hy-
brid decoding protocols as shown in Fig. 11(a). The original
decoding protocol performs N((}%;gallnal) global decoding with
equally spaced time intervals throughout the total time 7'. The
hybrid decoding protocol performs Nélﬁ,y&‘d) global decoding
with RL-optimized LEC circuits interleaved between global

(a) Time T, Punit = 0.1%
r A A}
Original (@) | I |
N, (origina) 4
NGlobal —
R ¢ ) _*
NG Naiobal
(b) Fyq = 99.96%; Faq = 99.94%; P, < 15%
5707 L=8 304 L=16
=}
= 35 1 15 -
£
= J
0 - T T 0 T T
1 2 1 2
Punit X T Punit X T

FIG. 11. Original vs hybrid decoding protocol to preserve the
2D toric code memory. (a) At each unit time, new errors with rate
Punit = 0.1% are introduced to data qubits. Throughout total physical
time 7', global decoding (blue, solid lines) is performed regularly
for both the original (blue circle) and hybrid protocol (orange di-
amond). However, the hybrid decoding protocol regularly applies
LEC circuit (orange, dotted lines) between global decoding appli-
cations. After T passes, we evaluate the final logical error rate P..
(b) Minimum number of global decoding vs p,, 7 in each protocol
for given multi-qubit gate fidelities and P (see Appendix F for
details).
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decoding. Our goal is to find the regime of parameters, where

NG > NS ®

When two-qubit gate fidelity Fq = 99.96%, three-qubit
gate fidelity F3q = 99.88%, and target P, < 15%, two pro-
tocols contrast as shown in Fig. 11(b). For an L = 8 lattice,
the hybrid decoding can reduce the number of global de-
coding for the constant amount regardless of 7. In other
words, the gain of using the hybrid decoding protocol gets
decreased as we want to preserve the memory for a longer
time. However, for an L = 16 lattice, we observe that the
hybrid decoding can reduce the number of global decoding
by about half regardless of how long we want to preserve the
memory. Note that each global decoding of 2D toric code
requires L repetitions of mid-circuit readout of ancillas for
faulty syndrome extraction before the 3D minimum-weight
perfect matching algorithm [9,10,16]. Thus, we can conclude
that using an LEC circuit reduces the number of mid-circuit
readouts by L x (Nom&™) — NIUDy throughout the entire
physical time, i.e., we can replace some portion of the mid-
circuit readouts into possibly more cost-efficient operations.
Our investigation confirms that there exists a regime of high
multi-qubit gate fidelity where LEC can be practically useful
for a memory lifetime enhancement.

B. Dissipatively preparing topological phases

The same methods, developed here for suppressing errors
in QEC codes, can be used for the systematic preparation of
certain topological phases. The logical subspace of topologi-
cal error-correcting codes, such as the toric code, is a ground
state of the corresponding commuting-projector Hamiltonian
[79]. Such states can be prepared in constant time by measur-
ing the stabilizers and then applying an appropriate correction
to return to the ground state.

Alternatively, these ground states can be prepared by dis-
sipation, with the circuit depth scaling as the linear size of
the system [97]. The procedure described in this work can be
interpreted as conditional transport of excitations, resulting
in their eventual annihilation and a clean final state. This
stabilization (correction) procedure can be used as state prepa-
ration when applied to an appropriate initial state.

Consider an example of a 2D toric code, starting in the
symmetric product state. This state is stabilized by the X
checks but the Z checks have zero expectation value. This can
be interpreted as a condensate of the m anyons, which need
to be annihilated to prepare the target state. Performing the
conditional gates from our protocol amounts to inducing di-
rectional transport of these excitations, which eventually leads
to their removal and lowering of state energy. Our framework
can be used to systematically construct and optimize such
dissipative cooling protocols.

Extensions of these methods to more general error-
correcting codes, whose parent Hamiltonians can exhibit
exceedingly complicated low-energy manifolds [98], is an
interesting direction for future work.

VII. DISCUSSION AND OUTLOOK

In this work, we develop an RL framework to optimize
measurement-free error-correcting circuits, composed of a

finite number of faulty multi-qubit gates. We specifically fo-
cus on finite-sized 2D toric code, the 2D Ising model, and 4D
toric code. By introducing a notion of effective code distance
D.g, we find that when gate fidelities are high enough, the
RL-optimized LEC circuits are better than conventional LEC
circuits in extending the lifetime of a memory encoded in
these codes. Then, we additionally investigate two potential
applications of this LEC scheme. First, we show that the por-
tion of global decoding, which consists of mid-circuit readout
and classical decoding, can be replaced with LEC circuits with
high-fidelity multi-qubit gates for preserving 2D toric code
memory. Also, we discuss that quantum states with topologi-
cal phases can be prepared dissipatively.

Given an error-correcting code and gate error rate, our
RL framework learns to optimize the decoding strategy as
a sequence composed of operations from a restricted input
gate set. Since our task is to optimize such sequences for
finite-sized systems, we find RL to be a more suitable tool
compared with an analytical method discussed in other litera-
ture targeting systems in a thermodynamical limit [81,99].

Our RL framework is adaptive to the needs of various
changes. For example, keeping the same gate operations as
an input action space, we can simply substitute a biased,
realistic error model into our current noise channel. Since
coherent errors turn into Pauli errors when we trace out the
ancillas at the ancilla reset step [100-103], our RL frame-
work can be used for correcting coherent physical errors in
the code as well. Moreover, we can extend our action space
by introducing additional error-removal operations that can
correct higher-weight errors. It is also possible to apply our
RL framework to different codes not discussed in this work
as well. For example, it would be interesting to consider
higher-dimensional color codes, which support transversal
non-Clifford logical operations [104—106], have interesting
single-shot error correction properties [107,108], and can also
be realized in state-of-the-art quantum platforms [6,109].

Although our RL framework benefits from a simple and
small neural network in terms of the training cost, we can
choose a more complicated optimizer—including transformer
[110] that has already been used in designing an efficient
global decoder for 2D surface code [22,26]. The advantage of
using these more advanced schemes is that we may not need
to provide a fixed gate set—depending on our knowledge of
error patterns on a given error-correcting code—as input. We
can allow RL to find the proper gate input set from scratch by
only providing the type of available gates as input ingredients.
This future direction can also be useful to obtain a general
LEC circuit optimizer with the stabilizer structure of the code
as an input to the RL agent such that we do not have to retrain
the agent for each code.
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APPENDIX A: EXPERIMENTAL IMPLEMENTATION
OF LOCAL ERROR CORRECTION

One of the possible limitations of the LEC circuit is that
we regularly reset the ancillas to initial states |0) before
we perform a new syndrome extraction operation. In certain
state-of-the-art quantum devices, the ancillas with errors can
be reset to the initialized ones—regardless of their quantum
states—through ancilla repumping techniques [34,37]. Thus,
employing these techniques, it is possible for us to perform
multiple LEC cycles with a finite number of qubits. Note that
the advantage of using the LEC scheme over the standard error
correction scheme with ancilla readout is available only if the
local coherent operations are more efficient compared with the
mid-circuit readout. Thus, an adaptation of this LEC scheme
in the actual quantum device should require a careful analysis
of resources available within certain quantum platforms.

Moreover, a layout of which gates are applied to which
qubits is specific to each syndrome extraction and error-
removal operation. Since qubits must be adjacent to each
other to perform multi-qubit gates, we change the spatial
configuration of data qubits and ancillas before applying
each gate for a syndrome extraction and error-removal op-
eration. Note that the qubits can be moved coherently and
independently in several state-of-the-art quantum processors,
including neutral-atom array platforms [111-113]. Thus, each
operation consists of a qubit reconfiguration operation fol-
lowed by corresponding multi-qubit gates. For simplicity, we
ignore the errors from the process of this dynamical rear-
rangement of qubits and suppose that the qubit reconfiguration
operation is perfect.

APPENDIX B: CIRCUIT-LEVEL SIMULATION
OF QUANTUM ERROR CORRECTION

In this section, we discuss how we implement the circuit-
level simulation of QEC in each code: 2D toric code, the 2D
(classical) Ising model, and 4D toric code. Note that for 2D
toric code and the 2D Ising model, our visualization of the

lattice, data qubits, and syndromes as in Figs. 2 and 4 are
modified based on the codebase of previous works [57,59].

We perform stabilizer-level Monte Carlo simulation based
on NumPy for each code, and our error model includes unbi-
ased bit-flip and dephasing errors:

(1) We represent data qubits as three-dimensional arrays:
first dimension for a type of a Pauli error on the qubit, second
dimension for an index of a copy of a code, and third dimen-
sion for an index of a qubit within a code.

(2) To perform a parallelized CNOT, CCX, or CCZ gate op-
eration, we define lists of qubit indices that match with the
gate connectivity. The ith index for each list corresponds to
control or target qubits for the ith multi-qubit gate to be ap-
plied. Although we implement the Pauli error propagation for
each CNOT gate, we model each ancilla classically, i.e., either
|0) or |1), to avoid dealing with error propagation through
non-Clifford cCZ and cCX gates. Physically, this condition can
be approximately achieved by resetting ancillas regularly as
illustrated in Fig. 1.

We define each parallelized d = N gate or Toom sweep
gate as a tessellation of the unit cell as illustrated in Fig. 5.
For 2D toric code and 2D Ising model, the visualization is
straightforward, as shown in Fig. 3. For 2D toric code, we
include four d = 1, eight d = 2, and twelve d = 3 operations
with different unit cells as the candidates of error-removal
operations. For the 2D Ising model, we include four Toom
sweep operations (with 90° rotation), four d = 1 operations,
and four d = 2 operations as the candidates of error-removal
operations.

However, for 4D toric code, we effectively represent the
data qubits and ancillas using odd and even coordinates [114].
Let us consider a coordinate (xg, x;, x>, x3) on 4D lattice,
where each x; has an integer value between 0 and 2L — 1.
We denote odd coordinates as o and even coordinates as e to
classify qubits:

(1) Data qubits are on (o, 0, e, e), (o0, e, 0, €), (0, e, e, 0),
(e, 0,0,¢), (e, 0, e, 0), and (e, e, 0, 0)—6L? in total.

2) 7 stabilizer ancillas are on (0,e,e,¢e), (e 5 o0,e,e),
(e, e, 0,¢), and (e, e, ¢, 0)—4L? in total.

3) X stabilizer ancillas are on (e, 0,0,0), (0,e,0,0),
(0, 0, e, 0), and (o, 0, 0, ¢)—4L? in total.

From this representation, we can easily identify six
independent logical Z and X operators. For example, a topo-
logically nontrivial “sheet” of Z operators on all data qubits
with coordinates (1, 1, 2k, 2k,) with O < ky, k, < L — 1 cor-
respond to logical Z operator, which indeed commutes with
all stabilizers.

Now, we introduce error-removal operations based on CCX
and cCcz gates in parallel for 4D toric code. As shown in
Table II, there are six different configurations of parallelized
Toom sweep operations, where each consists of L? cCxX
gates and L? cCz gates. Since each configuration has four
choices of “direction” just as in the 2D Ising model illustrated
in Fig. 5(b), we have 6 x 4 = 24 parallelized Toom sweep
operations. On the other hand, CCX and CCZ gates for bothd =
1 and d = (1, 1) operations are controlled by the same parity
classification of ancillas. As shown in Table III, there are four
different configurations of parallelized d =1 and d = (1, 1)
operations, where each consists of 312 /2 ccx gates and 3L /2
CCz gates—this is why we choose L to be even. For d = 1

012419-12



ENHANCING QUANTUM MEMORY LIFETIME ...

PHYSICAL REVIEW A 111, 012419 (2025)

TABLE II. Different configurations of parallelized Toom sweep operations. Note that each operation consists of L?> number of CCX gates
and L? number of CCZ gates. Also, each configuration has four different “directions.” For example, a CCX gate targeted to data qubit on (1,1,2,2)
can be controlled by 7 stabilizer ancilla on either (1+1,1,2,2)andeither (1,1+£1, 2, 2).

Control 1 of cCx Control 2 of cCX Target of CCX Control 1 of ccz Control 2 of ccz Target of CCz
Type 1 (0,e,e,e) (e,0,¢,¢e) (0,0,¢,¢e) (e, 0,0,0) (0, e, 0,0) (e, e, 0,0)
Type 2 (0,e,e,e) (e, e, 0,¢) (0,e,0,¢) (e, 0,0,0) (0,0,¢,0) (e, 0,¢,0)
Type 3 (0,e,e,¢e) (e, e, e, 0) (0,e,e,0) (e, 0,0,0) (0,0,0,¢€) (e, 0,0,€)
Type 4 (e,0,¢,¢e) (e, e, 0,¢) (e,0,0,¢) (0, e,0,0) (0, 0,¢,0) (0, e,e,0)
Type 5 (e,0,e,e) (e, e, e, 0) (e, 0,e,0) (0, e, 0,0) (0,0,0,¢) (0,e,0,¢)
Type 6 (e, e, 0,¢e) (e, e, e, 0) (e, e, 0,0) (0,0,e,0) (0,0,0,¢€) (0,0,e,e)

operation, each configuration has two choices for a group
of data qubits. Thus, we have 4 x 2 = 8 parallelized d = 1
operations. For d = (1, 1) operation, there are four additional
degrees of freedom on top of two choices for a group of data
qubits. Thus, we have 4 x 2 x 4 = 32 parallelized d = (1, 1)
operations. In summary, we include twenty-four Toom sweep
operations, eight d = 1 operations, and thirty-two d = (1, 1)
operations as the candidates of error-removal operations. For
simplifying the RL training and reducing the number of syn-
drome extraction operations, we “grouped” parallelized d = 1
and d = (1, 1) operations each into single actions.

From such design of error-removal operations, we optimize
the order of applying parallelized CNOT gates for syndrome
extraction operation. For 2D toric code, there are four “steps”
of parallelized CNOT gates in sequence to perform a syndrome
extraction as illustrated in Fig. 3. For the 2D Ising model and
4D toric code, we perform a syndrome excitation before each
error-removal operation. We only update syndromes for the
ancillas that would be used in the following error-removal
operation. After finding the optimal N number of steps of
parallelized CNOT gates in sequence, we test N! possible
permutations of this sequence and choose the one with the
smallest average number of errors introduced during the entire
syndrome extraction operation. Note that it is also possible to
optimize such sequence more systematically, as discussed in
previous works [115,116].

TABLE III. Different configurations of parallelized d =1 and
d = (1, 1) operations. Note that each operation consists of 3L%/2
number of CCX gates and 3L%/2 number of CCZ gates, and control
ancillas are on the same parity classifications of coordinates.

ccx (Ctrls-Targ)

ccz (Ctrls-Targ)

(0,e,e,e)(0,0,e,¢)

(0, ¢,0,0)-(e, e, 0,0)

Type 1 (e,0,e,e)(e,0,o0,¢€) (0,0,0,¢e)(o,e,o0,e)
(e, e, e, 0)-(0,e,e,0) (e, 0,0,0)-(e,0,e,0)
(e, 0,e,e)(0,0,¢,¢e) (e, 0,0, 0)-(e, e, o0,0)
Type 2 (e, e, 0,e)-(e,0,o0,¢€) (0, e,0,0)(0,e,o0,e)
(0,e,e,e)(o,e,e,0) (0,0, e,0)-(e,0,e,0)
(e, e, 0,e)(e, e, o0,0) (0,0, e,0)-(0,0,¢,¢)
Type 3 (e, e, e, 0)-(e,o0,e,e) (0, e,0,0)(o,e,e,o0)
(0,e,e,e)-(o,e,0,¢e) (0, 0,0, ¢)(e,0,0,e¢)
(e, e, e, 0)-(e, e, o0,0) (0,0,0,¢e)(0,0,e,e)
Type 4 (e,0,e,e)(e,0,e,0) (0,0,e,0)(o,e,e,0)

(e, e, 0,e)(o,e,o0,¢e)

(e, 0,0, 0)-(e,0,0,e¢)

APPENDIX C: DETAILS ON REINFORCEMENT
LEARNING TRAINING

1. Details on agent

We summarize the RL agent’s construction of an LEC cir-
cuit as in Algorithm 2, which defines the “BuildLEC” function
in Algorithm 1.

The size of the action space |.A| depends on the code:
|A| = 24 for 2D toric code, |.A| = 12 for the 2D Ising model,
and | A| = 26 for 4D toric code (see Appendix B). Also, in
practice, we use two fully connected hidden layers with 128
nodes each for both policy and value networks. We provide a
justification of not using bigger networks in Appendix C 4.

To represent the previous actions as an observation for
the RL agent, we one-hot encoded the LEC action sequence
into |.A|-by-H matrix with entries 0 or 1. For 2D toric code,
each action A; is either syndrome extraction or one of error-
removal operations in Fig. 5(a), and we fix that the first action
A; is always a syndrome extraction operation. For the 2D
Ising model and 4D toric code, each action A; is one of the
error-removal operations in Fig. 5(b) followed by syndrome
extraction operation on corresponding ancillas. We do not fix
the first action for the 2D Ising model and 4D toric code,
because a syndrome extraction operation is performed for any
action before an error-removal operation.

As discussed in Sec. IV B, we construct two different types
of RL agents: (1) fixed-depth agent for the 2D Ising model
and 4D toric code and (2) variable-depth agent for 2D toric
code. For a fixed-depth agent, we consider H to be the fixed
LEC circuit depth. However, for a variable-depth agent, we
modify the above scheme such that it optimizes the circuit
depth H < Hpax, Where Hpax is a fixed input parameter. To
achieve this, we additionally include a null action @ where
Aj, = ¢ implies that the Ath LEC action is “skipped” within a

ALGORITHM 2. “BuildLEC” (RL agent).

Data: Neural network with parameters f%; circuit
depth H; actionﬂ space A
Function BuildLEC(f?, H, A):
Circuit < EmptyList;
for h < H do
NewAction := f(Circuit);
Circuit.insert(NewAction)
return Circuit;
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ALGORITHM 3. “ComputeReward” (RL env.).

Data: Code type T’ lattice size L; ambient error rate pamp; gate error rate pgate; sample size N
Function ComputeReward (circuit, T', L, pamb, Pgate, IN):
result <— EmptyList;
for sample € {1,...,N} do
data < initialized data qubits;
for round € {1,..., R} do

data := GenerateError(data, pamb, T);

ancillas <— initialized ancillas;

for gate € circuit do

data, ancillas := ApplyGate(data, ancillas, gate);
L {data, ancillas} := GenerateError({data, ancillas}, pgate, 1);

RewardEach = EvaluateRewardEach(data, T');
| result.insert(RewardEach);

| return Average of result;

Function GenerateError (qubits, perr):
for qubit € qubits do
randX € Uniform([0,1]);
if randX < perr then
L Apply X error on qubit;
if T is 2D or 4D toric code then
randZ € Uniform([0,1]);
if randZ < perr then
L Apply Z error on qubit;

| return qubits;

Function EvaluateRewardEach(data, T):

RewardEach <+ 0;

if T is 2D toric code then

Perform MWPM algorithm on the precise eigenvalues of all stabilizers;

if Resulting state is a trivial ground state of 2D toric code without logical error then
L RewardEach := 1

if T is 2D Ising model then

| RewardEach := 1 — (Number of flipped spins among data qubits) / L?

if T is 4D toric code then

Perform > 50 repetitions of perfect Toom’s rule decoding;

if Resulting state is a trivial ground state of 4D toric code without logical error then

L RewardEach := 1

| return RewardEach;

sequence of Hy,x actions. Then, removing all s from the RL-
optimized LEC circuit with Hy,x results in the RL-optimized
LEC circuit with Hyp, as desired.

Two limitations of this modified RL framework are that (1)
Hope < Hpax and (2) Hop found by RL training is suboptimal
if true Hop, is much smaller than Hp,c. We set initial Hyax to
be 40 for 2D toric code as we confirmed from training with the
fixed-depth agent that Hop, is smaller than 40. Then, after the
termination condition is satisfied and H,p is obtained, we set
the next Hy,x to be the Hoy of the previous training and run
the next training. This is why we emphasize in Sec. IV B that
the training with a variable-depth agent is more “expensive”
than the training with a fixed-depth agent.

We have tried an alternative approach to optimize the LEC
circuit with a variable depth by adding a stop action that
terminates the LEC circuit immediately—instead of the ¢
action. This approach was not successful, because the RL
training resulted in building the NN LEC circuit with circuit
depth 5 [46], even for training pgae = 1 X 10~* where a true

Hope > 30. Since the NN LEC circuit is good enough to possi-
bly form a “deep” local minimum in the reward landscape, we
believe that a sfop action is incentivized enough to be called
early. Although it could be possible to get around this issue
by modifying the reward structure, we find that the {J-action
option is natural to achieve the variable-depth LEC circuit
optimization.

2. Details on environment

We summarize the RL environment’s computation of re-
ward as in Algorithm 3, which defines the “ComputeReward”
function in Algorithm 1.

We first run a simulation that applies multiple rounds of
LEC. In each round, errors are introduced to data qubits, and
then the input LEC circuit (fixed across all rounds) is applied
to data qubits and newly initialized ancillas. Note that we
are interested in extending the lifetime of memory encoded
in the error-correcting code, and local decoding is performed
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TABLE IV. Code and error model parameters used for optimiz-
ing the LEC circuit with our RL framework. L denotes the system
size, p.mp denotes the ambient error rate in each LEC cycle before
applying the LEC circuit, N denotes the number of copies of code,
and R denotes the number of repeated LEC cycles used to compute
decoding success rate, as illustrated in Fig. 6.

L Pamb N R
2D toric code 8 0.02 100 5
2D Ising model 8 0.40 100 1
4D toric code 4 0.03 50 2

multiple times through the lifetime of memory. Thus, we aim
to reduce the accumulated error density over multiple rounds.
Note that the RL-optimized circuits used in Figs. 7-11 are
trained with the code and error parameters in Table IV—pgaee
varies for each training.

After multiple LEC rounds, we evaluate the decoding suc-
cess. This final recovery step is to determine whether the
final state of data qubits after multiple LEC rounds is “close
enough” to the trivial ground state of the error-correcting
code. This step varies among the choice of the code. For 2D
toric code, we perform global decoding by minimum-weight
perfect matching (MWPM) classical algorithm with precise
syndrome information using PyMatching package [14,16].
For 2D Ising model, we perform a majority vote among data
qubits. For 4D toric code, we perform enough (50 rounds)
repetition of perfect Toom’s rule decoding. After this step, 2D
and 4D toric code decoding are evaluated to be successful if
we get a trivial ground state, whereas 2D Ising model decod-
ing is evaluated to be successful if we get less than 50% of
all spins bit-flipped. We repeat this simulation N times with
a fixed LEC circuit. For each simulation, a stochastic error
model results in different configurations of errors applied to
qubits. Thus, we can obtain the decoding success rate through
this benchmark simulation.

As discussed in Sec. III B, the uncorrectable error config-
urations after perfect Toom’s rule decoding in 4D toric code
can have a low error density. In principle, these uncorrectable
errors should be decoded by some nonlocal decoding pro-
tocol [44]. However, we decide to leave these uncorrectable
errors as decoding failures, because (1) the nonlocal decoding
protocol takes significant running time and (2) the prior LEC
reduces the uncorrectable error configurations with low error
density.

For 2D and 4D toric code, the reward is computed as the
number of successful decoding cases divided by the number of
total cases N. However, for the 2D Ising model, the reward is
computed as an average nonerror density, i.e., average number
of nonflipped spins divided by the total number of spins L?.

In particular, we choose R in Table IV to be as small
as possible for each code to minimize the time for reward
computation. However, for 2D toric code, we observe that R <
4 causes the occurrence of repeating syndrome extraction,
which introduces more gate errors into the system without
benefiting decoding. This is because, for such a small R, the
RL agent is not penalized enough by a bad reward to avoid
repeating syndrome extraction and to choose the “do-nothing”

(9) action instead. Thus, we choose R = 5 for the 2D toric
code case.

3. Conditions on training termination

Each epoch of our RL training consists of 500 episodes
with a minibatch size of 50. In other words, we collect 500
samples of LEC circuits and their benchmarked decoding
success rates, divide them into smaller minibatch subsets
with 50 samples each, and perform 10 updates with these
subsets on the policy and value network. Before saving our
updated neural network model, we run 40 epochs for 2D toric
code, 80 epochs for the 2D Ising model, and 40 epochs for
4D toric code. We terminate each RL training when a neural
network model produces the same LEC circuit as output as the
previously saved one throughout these epochs. For 2D toric
code with Hpax = 40 and pgeae = 1 x 10~*, each RL training
requires 200—400 epochs. For self-correcting memories with
H = 60 and any pgye, each RL training requires 800-1000
epochs for the 2D Ising model and 400-600 epochs for 4D
toric code. Note that these are obtained with a fully connected
neural network with two hidden layers of size 128. Also,
we use a variable depth agent for 2D toric code and a fixed
depth agent for the 2D Ising model and 4D toric code (see
Appendix C 1).

4. Details on reinforcement learning hyperparameters

We utilize the initial given values of hyperparameters for
the PPO algorithm in the Stable-Baselines3 library [95] with
the following exceptions:

(1) Since we compute the reward only at the end of each
episode, we set a discount factor y to be one.

(2) The parameters n_steps and batch_size are set to be
500H and 50H, where H is Hp,,x for 2D toric code and a fixed
circuit depth for the 2D Ising model and 4D toric code.

(3) We use a fully connected neural network with two
hidden layers of size 128 for both policy and value net-
works. The reasoning for this choice is based on the following
paragraph.

As shown in Table V, we compare the final reward from
RL training with a fully connected neural network with two
hidden layers of size dyy with four independent runs. We
observe that the final reward gets improved until dxy = 128.
However, for dyn > 128, we observe that a similar reward
was obtained with shorter training epochs before termination.
Considering the size of saved neural networks after training,
we choose dyn = 128 for our RL training. Also, this is why
we did not have to implement a more complicated neural
network structure—such as a transformer—because a simple
fully connected neural network with two hidden layers of size
128 was enough for our optimization task.

We attempt the optimization of other hyperparameters—
such as learning_rate or n_epochs—via Optuna framework
[117]. However, we find that our RL training has an expensive
reward computation and thus is not ideal for such hyperpa-
rameter optimization. Furthermore, we observe that, even with
the hyperparameters given by Stable Baselines 3, we obtain a
satisfactory optimization of the LEC circuits as discussed in
Secs. IV and V. Therefore, we did not further investigate such
optimization of RL hyperparameters other than the network
parameters.
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TABLE V. RL training results for 2D toric code and the 2D Ising model with various network sizes dxn. We construct the RL agent with
a fully connected neural network with two hidden layers of size dxn (for both the policy and value network of a PPO algorithm) and the RL
environment with the parameters shown in the table. In each cell, we record a final reward and the required number of epochs before training
termination—"“Reward (Number of epochs)”—for each dyy and training index.

2D toric code 2D Ising model
(L, HpaxN, R, Pamb» Peaie) = (8,40, 100,7,0.02, 1 x 1074 (L, HpaxN, Pamb» Peac) = (8, 60, 100, 0.40, 1 x 1073)
daN Run 1 Run 2 Run 3 Run 4 dan Run 1 Run 2 Run 3 Run 4

32 0.1440 (440)
64  0.1668 (280)
128 0.1476 (280)
256 0.1392 (200)
512 0.1559 (120)

0.1668 (480)
0.1468 (360)
0.1505 (240)
0.1453 (240)
0.1694 (160)

0.1463 (520)
0.1489 (400)
0.1498 (240)
0.1374 (160)
0.1311 (120)

0.1467 (520)
0.1634 (320)
0.1263 (280)
0.1513 (160)
0.1429 (160)

32 0.1022 (1520) 0.1011 (1600) 0.0973 (1360) 0.0981 (1520)

64 0.1015 (1120) 0.0975 (1360) 0.1021 (1120) 0.0986 (1120)
128  0.0981 (1120) 0.1080 (1040) 0.0973 (1280) 0.0968 (1120)
256 0.0964 (960)  0.0991 (800)  0.1017 (720)  0.0972 (880)
512 0.0993(960)  0.1007 (1040) 0.1056 (1120) 0.0953 (1040)

5. Stability of reinforcement learning training

As discussed in Sec. IV A, we choose one LEC circuit
out of four RL executions that maximizes the reward. We
record rewards by RL LECs from four runs as well as the
reward by the conventional LEC with the same parameters
as in Table VI. Also, we perform 40 runs of RL training for
2D toric code and the 2D Ising model with pgye = 1 x 107
and 1 x 1073, respectively. As shown in Fig. 12, we record
the maximum and minimum rewards by RL LECs out of the
first 4 and all 40 runs for each code as well as the reward
by the conventional LEC with the same parameters. The final
reward of any RL LEC is higher than that of conventional
LEC, against which we benchmark the decoding performance.
Also, we find that the best final reward out of 4 and 40
runs is marginally different, which justifies the number of RL
training executions. These results support the stability of RL
training, i.e., RL training results do not vary significantly in
performance with respect to our demand.

This stability of RL training can be explained by a simple
state transition, which, in principle, results in low variance
in training. In general, RL is applied to problems where the
next state s” is obtained from the conditional probability dis-
tribution P, given the current state s and action q, i.e., s’ ~
P(s'|s, a) [52,83]. For example, in the Gym Acrobot game
[118], s" would be updated from s and a based on stochastic
laws of physics, which are hidden from the RL agent and have
to be “learned.” However, in our problem, s’ is determined
simply by appending a to s. Thus, our RL training is expected
to find the optimized solution more reliably compared with
the general application of RL methods, which often report
substantial training instabilities [119,120].

APPENDIX D: ERROR BAR COMPUTATION WITH DATA

Each error bar represents a 95% confidence interval for
each parameter.

(1) Final reward (in Figs. 7 and 12):

The final reward is either a decoding success rate (for
2D and 4D toric code) or a “survival” rate of an initial spin
direction (for the 2D Ising model). From large-N samples
noted in the captions, we compute each of their estimates as a
mean of a binomial distribution.

(2) Average memory lifetime 7 (in Fig. 9):

We compute its estimate as a mean of 1000 samples of
independently simulated memory lifetime.

(3) Effective code distance D, (in Fig. 10):

We obtain fitting parameters and their standard deviations
with the SymFit library [96]. Note that we set the parameter
absolute_sigma to be False.

APPENDIX E: DETAILS ON MEMORY
LIFETIME EXTENSION

1. Effect of local error correction on error statistics

In Sec. IV B, we confirm that the RL LEC performs better
than the conventional LEC in each code. More specifically,
RL LEC shows a lower decoding failure rate compared with
conventional LEC after a certain number of repeated LEC
cycles. To analyze the reason for this behavior, we classify
remaining error patterns after repeated LEC cycle(s) in each
code, as shown in Fig. 13. Although both RL and Toom LEC
show similar occurrences of logical errors, we observe that
RL LEC is effective in suppressing nonlogical errors that are

TABLE VI. Reward of LEC circuit optimized by four RL training executions and a conventional LEC circuit. The reward is computed out
of 10 000 independent samples, and the unit of reward is percent. Also, we choose pge = 1 x 107 and pgye = 1 x 107> for 2D and 4D toric
code, respectively, and pge = 1 x 107 for the 2D Ising model (with other parameters as in Table IV). For all training executions in the same

code, we use the same code and error model parameters.

RL LEC, Run 1 RL LEC, Run 2 RL LEC, Run 3 RL LEC, Run 4 Conventional LEC
2D Toric Code 90.62 £ 0.57 90.29 £+ 0.58 91.46 £ 0.55 91.54 £ 0.55 86.39 + 0.67
2D Ising Model 90.28 £ 0.58 90.64 £+ 0.57 89.85 £ 0.59 89.80 + 0.59 86.48 + 0.67
4D Toric Code 95.28 £0.42 92.82 £0.51 92.47 £0.52 93.90 £ 0.47 87.06 + 0.66
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FIG. 12. Final reward comparison of conventional vs RL LEC
chosen from worst or best runs out of multiple training executions.
Note that conventional LEC is a nearest-neighbor LEC circuit for
2D toric code and Toom’s rule-based LEC circuit for the 2D Ising
model and reward is computed out of 10 000 independent samples
(see Appendix D for the error bar). RL training for 2D toric code and
the 2D Ising model are done with pgye = 1 x 107 and 1 x 1073,
respectively, and with other parameters as in Table IV.

either correctable or uncorrectable by a single LEC action that
consists of the circuits.

In each error-correcting code of Fig. 13, it is indeed ex-
pected that the RL LEC reduces the occurrence of the error
patterns correctable by their own individual operations. How-
ever, over repeated cycles of application, the LEC circuits also
reduce the accumulation of higher-weight error patterns that
are uncorrectable by their own individual operations. Since
these high-weight errors lead to the logical error rate after the

I NN LEC (2D toric) & Toom LEC (self-correcting) @ RL LEC

6000 - 2D Toric Code

3000 A

0_

800 - 2D Ising Model
400 A

0_

800 A 4D Toric Code

400 +
0- SN
Non-logical error ~ Non-logical error
correctable by uncorrectable by

single LEC action  single LEC action

Occurrence out of 10000 samples

T

Logical error
undetectable
by syndromes

FIG. 13. Classification of remaining errors after LEC cycle(s)
in each code. Let a single LEC action be any LEC action among
extended error-removal operations as in Fig. 5. Then, we perform a
benchmark simulation for applying LEC cycle(s) with 10 000 inde-
pendent samples. Note that, for each LEC circuit, pgye is 1 x 107
for 2D toric code, 1 x 103 for the 2D Ising model, and 1 x 1073
for 4D toric code. Each error pattern after LEC cycle(s) is either (1)
a nonlogical low-weight error pattern correctable by one of single
LEC actions, (2) a nonlogical high-weight error pattern uncorrectable
by any single LEC action, or (3) a logical error undetectable by
extracting syndromes. In each code, we compare the occurrence of
each category between RL-optimized LEC circuits (blue) trained
with parameters in Table IV and above pg,. vs conventional LEC
circuits (gray).

1500 £ (@) ; 107 (b)
(%)
™ 1000{ ®_ € 10t
‘1‘43—‘*#» 8 100
500 += —
8 16 24 32 40 length-1  length-2 length > 2
Benchmark L chain chain chain

Benchmark L =8
mm Benchmark L =12

§ TrainedatL=8
Trained at L =12

B Benchmark L =16

FIG. 14. Comparison between data with varying L benchmarked
with perfect gates. (a) Average memory lifetime 7 vs benchmark
lattice size L for an LEC circuit trained with L = 8 (blue circles)
and an LEC circuit trained with L = 12 (orange squares). See (2) of
Appendix D for the error bar. For both training, Hy.x = 40, pumy =
0.02,N =100, R = 7, and pgae,irain = 1 X 10~*. (b) Number of error
chains out of one million samples divided by L? for each category of
error chain after two LEC rounds. For each benchmark L case, we use
the common RL-optimized LEC circuit trained at L = 8, Hy,, = 40,
Pamb = 0.02, N = 100, R =7, and pgyee.irain = 1 x 107*. Note that
logical error occurs in only three samples for the L = 8 case and
none for other Ls.

final recovery step, preventing such errors enable the RL LEC
to suppress the logical error rate more effectively compared
with the conventional one.

2. Lifetime vs size for two-dimensional toric code

In Fig. 9, we observe that T slightly decreases as L in-
creases for the RL-optimized LEC circuit. We conclude that
this is because length-N error chains contribute differently
to T. As L gets larger, final recovery by perfect syndrome
extraction with perfect ancilla readout and MWPM classical
algorithm can correct longer error chains. Thus, the effect of
LEC circuits in extending the memory lifetime gets weaker
due to the varying power of final global decoding as L varies.

Figure 14 supports this explanation. In Fig. 14(a), we find
that 7' decreases as the benchmark L increases for both RL-
optimized LEC circuits with perfect gates trained at L = 8
and L = 12, respectively. Especially, we observe the “drop” of
lifetime between benchmark L = 8 and L = 12. This implies
that the relation between a lifetime and lattice size is indepen-
dent of the training lattice size for optimizing the LEC circuits.
Also, in Fig. 14(b), we observe that each length-N error chains
occur with a similar density regardless of benchmark L for a
fixed LEC circuit with perfect gates. This implies that before
the final recovery, the effect of the LEC circuit in reducing the
number of error chains is similar regardless of benchmark L.
Thus, we explain this relation between a lifetime and lattice
size based on the role of final recovery.

3. Other parameters from log-log fitting between
lifetime and ambient error rate

Although Sec. VB focuses on the fitting parameter Deg
from fitting log,, T and log,o(pamb), there exist other fitting
parameters as well: k for 2D toric code and k; and k; for self-
correcting memories. For the 2D Ising model and 4D toric
code, we plot the fitted k; vs benchmark pg,. as shown in
Fig. 15 to check whether its behavior is consistent with the
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FIG. 15. k; vs Benchmark pg,. for RL-optimized LEC circuits as
in Fig. 10 trained at pgq,; (blue circles) and pyq,» (orange diamonds)
as well as Toom LEC circuit (gray square) in (a) a 2D Ising model
and (b) 4D toric code. See (3) of Appendix D for the error bar (same
as Deff).

intuition on «. Note that we also confirm from the fitting that
the standard deviation for k and k;, do not diverge as well.

Note that k; shows different values for different pgae and
LEC circuits. We expect that o varies for different pgae and
LEC circuits. From Eq. (7), increasing k; implies increasing
o, because a logarithm function is monotonically increasing.
Physically, « denotes how many new errors get introduced
every LEC round. Then, we can explain two general trends
observed in Fig. 15 based on this intuition on «.

For each LEC circuit, k; increases as benchmark pgae
increases. This trend is consistent with the intuition on «—as
Dgate InCreases, more new errors are introduced to the system.
Also, for each benchmark pg,e, ki is the biggest for the
RL-optimized LEC circuit trained with smaller pg,. and the
smallest for the Toom LEC circuit. Note that, in Sec. IV B, we
show that RL-optimized LEC circuit trained with larger pgye
includes less higher-weight error-removal operations. This is
because the higher-weight error-removal operations may in-
troduce more errors into the system compared with the Toom
operation. Thus, for the same benchmark pgue, k1 is largest
for the most “complicated” LEC circuits that are trained
with smaller pgye and smallest for the “simplest” Toom
circuits.

4. Local error correction circuits with large gate error rate

For 2D toric code, RL training with large pg,. results in
the simplest NN decoder. Note that we fix our first action
in the LEC circuit to be a syndrome extraction (see Ap-
pendix C 1). Thus, we do not observe that the RL framework
produces a do-nothing LEC circuit. However, we find that for
Peae > 0.01, the simplest NN circuit performs worse than just
do-nothing.

On the other hand, as shown in Fig. 16, we observe that
the RL-optimized LEC circuit trained at pgge, irain performs
as much as—or even worse than—the Toom LEC circuit
when benchmark pgaee 1S Pgate,train if Peate,wain 18 large enough.
In other words, we observe that pgaec & Pgate,train OF €ven
Peate,c < Dgate,train 10T 1aI8€ Poate train Case, unlike as shown in
Fig. 10. This feature is the limitation of our RL framework,
and this is the reason why we do not investigate improving
the threshold gate error rate of Toom’s rule decoder using our
RL framework.

(a) 1 pgate,train (b) ’L pgate,train

: 4D Toric

2D Ising

2 3 4
Dgate %10-5

FIG. 16. D, vs Benchmark pgy. for RL-optimized LEC circuit
trained at large pgae,main (green circles) as well as Toom LEC circuit
(gray squares) in (a) a 2D Ising model and (b) 4D toric code. See
(3) of Appendix D for the error bar. Here, we choose pgae, irain t0 be
9 x 1073 for the 2D Ising model and 3 x 1073 for 4D toric code and
other parameters to be as in Table IV.

APPENDIX F: DETAILS ON LOCAL ERROR
CORRECTION APPLICATION

From our choice of the error model, the fidelity of a CNOT
gate Foq = 14 X pgae, and the fidelity of a CCX or CCZ gate
F3q = 1-6 X pgaee. Thus, multi-qubit gates with pgye =1 X
10~ have Foq = 99.96% and Fsq = 99.94%. In this regime,
we investigate what is the minimum number of global MWPM
decoding for the original vs hybrid decoding protocol to
achieve the final logical error rate after total time 7' to be
below 15%.

As shown in Fig. 17, we perform 1D and 2D optimization
in Sec. VI A for the original and hybrid decoding protocol,
respectively. For the original decoding, we vary Nywpm and
check the final P, after time 7. On the other hand, for the
hybrid decoding, we first fix a total number of global decoding
and then find N gc that minimizes P after time 7. Then, we
choose the minimum number of global MWPM decoding for
each of the protocols that satisfy P, < 15%.

On top of the minimum Nyrwpm for pgae = 1 X 10~* dis-
cussed in Sec. VIA, we also compare minimum Nywpm
for larger pgue as well. When pgye = 3 X 1073, ie., Fq =
99.88% and F3q = 99.82%, we obtain that the hybrid protocol
can reduce the number of global decoding by one or two
compared with the original protocol regardless of 7. Also,
note that we observe the same results for these comparisons,
even though the original decoding protocol is improved by
replacing the 3D MWPM following repeated faulty syndrome
extractions with the 2D MWPM following perfect syndrome
extraction.

15 MWPMs
< -§- 16 MWPMs
-~
A
b e -f —‘* ————————
31 33 35 9 13 17 21
(Original) (
NMWPM NLEC

FIG. 17. Method of finding minimum number of global decoding
for original vs hybrid decoding protocol in Sec. VI A to achieve P, <
15% for fixed T = 2000 with 5000 samples of 2D toric code lattice
with L = 16. See (1) of Appendix D for the error bar (same as final
reward).
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