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Abstract. The generic group model (GGM) is fundamental for evalu-
ating the feasibility and limitations of group-based cryptosystems. Two
prominent versions of the GGM exist in the literature: Shoup’s GGM
and Maurer’s GGM. Zhandry (CRYPTO 2022) points out inherent limi-
tations in Maurer’s GGM by demonstrating that several textbook cryp-
tographic primitives, which are provably secure in Shoup’s GGM, cannot
be proven secure in Maurer’s model.

In this work, we further investigate Shoup’s GGM and identify novel
limitations that have been previously overlooked. Specifically, to prevent
generic algorithms from generating valid group elements without query-
ing the oracle, the model typically employs sufficiently large encoding
lengths. This leads to sparse encodings, a setting referred to as the sparse
generic group model (sparse GGM). We emphasize that this sparseness
introduces several constraints:

— Groups with AE and Black-Box Separation: Shoup’s GGM is
typically instantiated with elliptic curve groups, which admit admis-
sible encodings (AE)—functions mapping from Z, to elliptic curve
points. We establish a black-box separation, showing that the sparse
GGM fails to capture cryptographic groups that are both (1) com-
putational Diffie-Hellman (CDH) secure and (2) compatible with
admissible encodings.

— Comparison with EC-GGM: We examine the relationship
between the sparse GGM and the Elliptic Curve Generic Group
Model (EC-GGM) introduced by Groth and Shoup (EUROCRYPT
2022), which inherently yields CDH-secure groups with admissible
encodings. Within the framework of indifferentiability, we prove that
EC-GGM is strictly stronger than sparse GGM.

— Dense Groups and Black-Box Separation: We revisit groups
with dense encodings and establish a black-box separation between
CDH-secure dense groups and the sparse GGM.
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— Extension to Bilinear Settings: Our results naturally extend to
the sparse Generic Bilinear Group Model (GBM), demonstrating
that the aforementioned constraints still hold.

In conclusion, our findings indicate that both feasibility and impossi-
bility results in Shoup’s GGM should be reinterpreted in a fine-grained
manner, encouraging further exploration of cryptographic constructions
and black-box separations in EC-GGM or dense GGM.

1 Introduction

Since the seminal work of Diffie and Hellman [DH76], group-based cryptosys-
tems have become a cornerstone of modern cryptography, enabling secure key
exchange, public key encryption, digital signatures, and many more. Build-
ing on this foundation, various types of cryptographic groups have been
proposed, including multiplicative groups [DH76,EIG85], elliptic curve (EC)
groups [Mil86, Kob87], and pairing-friendly groups [FR94,BGOS07], all of which
play crucial roles in constructing cryptographic schemes and protocols.

In practical group-based cryptosystems, the length of group encodings plays
a crucial role in efficiency, particularly affecting communication complexity. At
equivalent security levels, groups with more compact encodings are typically
preferred for implementation. NIST SP 800-186 [CMR+23] lists several recom-
mended curves with 128-bit security, including Curve 25519, an elliptic curve
defined over a 255-bit prime field. With standard point compression, a group
element on Curve 25519 can be encoded in 256 bits (255 bits plus 1 for sign).
Because EC groups generally offer more compact encodings at the same security
level, they are widely favored for practical cryptographic constructions.

Importantly, EC groups always have admissible encodings; see [BF03,
Ica09, BCI+10,1LPS23]. Admissible encodings are broadly defined as efficiently
computable functions that map from Z,' to group elements, satisfying two
key properties: regularity (having constant preimage sizes) and preimage-
computability (enabling efficient computation of all preimages for a given ele-
ment in the range). These encodings enable the oblivious sampling of group
elements without revealing their discrete logarithms, a critical feature for many
group-based cryptosystems [BF03, BBB+18, MR19).

However, a fundamental limitation arises when attempting to prove the secu-
rity of group-based cryptosystems—the inability to establish the unconditional
hardness of the underlying computational assumptions (e.g., discrete logarithm,
computational or decisional Diffie-Hellman) for any specific group. Over the past
few decades, researchers have explored various approaches to establishing lower
bounds on computational hardness, with the most prevalent method being the
generic group model (GGM), where algorithms are limited to performing only
generic group operations.

! Here, p denotes the prime modulus used in elliptic curve groups, where the curve is
typically defined by the equation y* = z® + Az + B mod p.



Attention is still what you need 241

Roughly speaking, there are two widely accepted versions of the generic group
model: Maurer’s GGM [Mau05] and Shoup’s GGM [Sho97]. Maurer’s GGM is
modeled as a stateful system where algorithms make queries by referencing two
group elements encountered during the computation (e.g., the 5th and 9th ele-
ments). In contrast, Shoup’s GGM is modeled as a random injection from the
additive group Zy to sufficiently long strings, where algorithms specify queries
by providing two previously encountered strings from the computation.

Although both formulations appear in the literature, Maurer’s GGM is gen-
erally viewed as more restrictive. In particular, digital-signature schemes are
impossible in Maurer’s GGM [DHH+21], and foundational constructions such as
the Blum-Micali pseudorandom generator and the Goldreich-Goldwasser-Micali
pseudorandom function cannot be realized in this model [Zha22]. For these rea-
sons, we focus exclusively on Shoup’s GGM.

In Shoup’s GGM, the length of group encodings also plays a significant role.
Numerous applications (e.g., [Grol6,Zha22, HMQS23,1.Z24]) within this model
rely on the requirement that algorithms cannot produce valid group elements
without querying the oracle. To uphold this property, the generic group model
must employ sparse encodings, making the sparse GGM a critical component of
Shoup’s framework. However, sparse GGM does not support oblivious sampling,
which implies that admissible encodings are effectively absent in sparse
GGM!

Attention is still needed! A potential gap arises between sparse variant of
Shoup’s GGM and practical cryptographic groups, such as elliptic curve groups
or other dense groups. Therefore, we plan to conduct further exploration of
Shoup’s GGM, leading to the following research question:

Can sparse GGM effectively and accurately model elliptic curve groups or
other dense cryptographic groups?

1.1 Our Results

In this work, we answer the question above negatively. Specifically, let G be
a cryptographic group such that: (1) computational Diffie-Hellman (CDH) is
assumed to hold with respect to G; (2) the group encodings are dense or the
group is associated with nice admissible encodings. Then G does not exist in the
sparse GGM unconditionally.

In order to understand our results better, we start with a brief explanation of
several important concepts including (1) sparse generic group models (GGMs),
(2) dense groups, and (3) groups with nice admissible encodings. Let A be the
security parameter,

— Sparse and dense GGMs. We say GGM G is sparse if the GGM represents
a random injection from Zy to S, where N is a A-bit prime, S = {0,1}™,
and the difference m — A satisfying m — A > w(log A). Conversely, we say the
GGM G is dense if the difference m — A < O(log A).
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— Sparse and dense group encodings. Similarly, we say a cryptographic group
G of order N is sparse if the length of its group encodings, denoted by m,
satisfies m — A > w(log A\), and we say the group is dense if m — A < O(log \).

—  Groups with nice admissible encodings. We define a group G of order N to
have a nice admissible encoding with respect to a constant o and a polyno-
mial poly,g if there exists an efficiently computable function AE : Z, — G
satisfying the following conditions: (1) the preimage of any group element
under AE is efficiently computable; (2) the encoding is g-regular, meaning
the size of any preimage set is at most p; (3) the domain size p is sufficiently
large, i.e., & > polyag. As shown in [Ica09], all elliptic curve groups satisfy
these conditions with o = 4, and are therefore considered groups with nice
admissible encodings.

1.1.1 TImpossibility Results in Sparse GGM/GBM

Impossibility of Groups with Admissible Encodings in a Sparse GGM.
As previously discussed, the sparse GGM does not provide an admissible encod-
ing. We argue that this limitation is an inherent drawback of the sparse GGM
and proceed to establish a black-box separation between CDH-secure groups
with admissible encodings and the sparse GGM.

Theorem 1.1 (Informal). For any constant o, CDH-secure groups with admis-
stble encodings with respect to o do not exist in the sparse generic group model.

Impossibility of Dense Groups in a Sparse GGM. We now turn our atten-
tion to the dense groups. Intuitively, the encodings in sparse GGM cannot be
compressed in a generic manner and we demonstrate that this limitation repre-
sents another inherent drawback of the sparse GGM and proceed to establish a
black-box separation between CDH-secure dense groups and the sparse GGM.

Theorem 1.2 (Informal). CDH-secure dense groups do not exist in the sparse
generic group model.

Remark 1.1. In [JZW+24], Ji et al. investigate the relationship between CDH-
secure groups with varying lengths of group encodings and demonstrate that
shorter CDH-secure groups are separated from longer GGMs. However, we high-
light that their analysis heavily depends on the assumption that both the groups
and the GGM share the same security parameter—a condition we believe is not
fully justified. In contrast, our results establish the black-box separation between
dense groups and sparse GGM, resolving the open problem posed in [JZW+24).

Impossibility of Groups with Admissible Encodings or Dense Groups
in a Sparse GBM. We further argue that the inherent difficulty in constructing
groups with admissible encodings or dense groups persists as long as the idealized
model remains sparse, even when the model is extended to the generic bilinear
group model (GBM). The GBM B models two generic groups, i.e., the source
generic group and the target generic group, and we say B is sparse if both the
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source generic group and the target generic group are sparse. We then establish
black-box separations between CDH-secure groups with admissible encodings
(CDH-secure dense groups) and the sparse GBM.

Theorem 1.3 (Informal). For any constant o, CDH-secure groups with admis-
sible encodings with respect to o does not exist in the sparse generic bilinear group
model.

Theorem 1.4 (Informal). CDH-secure dense groups do not exist in the sparse
generic bilinear group model.

1.1.2 Exploring the Relationship Between EC-GGM and Sparse
GGM

Groth and Shoup [GS22] introduce a variant of the GGM, known as the elliptic
curve generic group model (EC-GGM). Let E be the set of all points on an elliptic
curve group of order N. The EC-GGM models a random injection from Zy to
E, while preserving certain structural properties inherent to elliptic curves—
for instance, the preservation of which points share the same z-coordinate. It

follows that CDH-secure groups with nice admissible encodings exist relative to
the EC-GGM.

Theorem 1.5 (Informal). CDH-secure groups with nice admissible encodings
exist in the elliptic curve generic group model.

Relationship Between EC-GGM and Sparse GGM. We next study the
relationship between the EC-GGM and the sparse GGM in the framework of
indifferentiability. Following Zhang and Zhandry’s analysis [ZZ23], we explore
the relationship against computationally bounded adversary and prove that:

Theorem 1.6 (Informal). In the framework of indifferentiability, EC-GGM 1is
strictly stronger than sparse GGM.

Remark 1.2. In [JZW+2}], Ji et al. also prove that, within the framework
of indifferentiability, the dense GGM is strictly stronger than the sparse GGM.
However, we stress that their analysis also highly depends on the assumption that
both the dense GGM and the sparse GGM share the same security parameter,
which we believe is not fully justified. In contrast, our separation between the
dense GGM and the sparse GGM is unconditional.

Theorem 1.7 (Informal). CDH-secure dense groups exist in the dense GGM.

1.2 Interpretation

Shoup’s GGM serves as the foundation for the group-based cryptosystems. Our
findings show that extreme caution must be taken when proving security or
establishing black-box separations within Shoup’s GGM. We next elaborate it
from two perspectives.
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Instantiating the GGM with Elliptic Curve Groups. In the generic group
model, algorithms are required to be generic. However, not all algorithms for
group-based assumptions, such as the discrete logarithm problem, adhere to this
requirement—for example, the index calculus attack against Z% [Ad179]. Fortu-
nately, in the case of elliptic curve groups, the only known attacks are generic
in nature. As a result, the generic group model is typically instantiated using
elliptic curve groups. However, to the best of our knowledge, in many practical
cryptographic constructions (e.g., the zk-SNARKs in [Grol6]), the generic group
model is often treated as a sparse GGM, where adversaries are restricted from
obtaining valid group elements without making explicit queries. Furthermore, as
shown in [Ica09], all elliptic curve groups fall into the category of groups with
nice admissible encodings.

Our results establish a black-box separation between CDH-secure groups with
admissible encodings and the sparse GGM, highlighting a potential and previ-
ously overlooked gap when instantiating the GGM with elliptic curve groups.

Black-Box Separations within the GGM. The generic group model is used
to demonstrate the limitations of certain group-based cryptosystems. Notably,
most known separations [Zha22, HMQS23| are established within sparse GGM.
Our findings highlight important limitations of the black-box impossibility of
sparse GGM, as it excludes both CDH-secure groups with nice admissible encod-
ings and CDH-secure dense groups. Consequently, the relativizing separation
between these groups and identity-based encryption (IBE) remains unresolved.
Since many practical groups used fall under the category of groups with nice
admissible encodings, our results motivate the further study of the complexity
of such groups.

Furthermore, our findings indicate that, when examined in a fine-grained
manner, the relationship between the GGM and the GBM must be reinterpreted.
Specifically, Zhang and Zhandry [ZZ23] demonstrate that the GBM is strictly
stronger than the GGM. In contrast, our results reveal that EC-GGM (or dense
GGM) and sparse GBM are, in fact, incomparable.

In conclusion, our results encourage further investigation into both the con-
struction of practical schemes and the establishment of black-box separations
within the EC-GGM (or dense GGM). Additionally, our findings offer a deeper
understanding of the complexities in GGMs and GBMs.

1.3 Technical Overview

We now provide an overview of the core intuition and novelty behind our tech-
niques.

1.3.1 Impossibility of Groups with AE in Sparse GGM.

To demonstrate the impossibility of a cryptographic primitive P within an ide-
alized model O, we typically employ the black-box separation methodology.
Specifically, for any instantiation IT® of P, we construct a computationally
unbounded adversary A such that (1) A breaks the security of I79; and (2) A is
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query-efficient. The seminal result of Impagliazzo and Rudich [IR89], tells that
the key agreement primitive cannot exist in the random oracle model (ROM).
Specifically, for any protocol in this model, there exists an adversary capable of
winning in a key recovery attack (KRA), which breaks the fundamental security
requirement for key agreement. Returning to our context, it is important to note
that CDH-secure groups with admissible encodings inherently imply KRA-secure
key agreement (e.g., the Diffie-Hellman key exchange protocol). Therefore, if we
could establish that KRA-secure key agreement is impossible in sparse GGM,
the analysis would be complete.

For clarity of elaboration, we focus our analysis on a particular case of the key
agreement primitive, i.e., the non-interactive key exchange (NIKE). We begin by
briefly reviewing the key concepts behind the impossibility of KRA-secure NIKE
in the random oracle model [IR89,BKSY11], and then proceed to integrate those
insights into our analysis.

KRA-Secure NIKE vs. ROM. Let I := (KGen™, SHK™) be a NIKE
scheme in the random oracle model H, where (1) II™ achieves perfect correct-
ness, and (2) both KGen and SHK make at most ¢ queries. Consider Alice and
Bob as two honest parties, each associated with public keys pk; and pk,, respec-
tively. We then construct an adversary A that, given pk; and pk,, outputs the
valid shared key with a good probability. Specifically, the adversary A initializes
two empty sets Sque-res and Skey, and then proceeds through 4¢ + 1 iterations of
the following phases:

— Simulation. Simulate a proper view for Alice. Specifically, this view contains
a set of query /response pairs S 4 along with a private key sk; such that: (1)
S 4 is consistent with Squeres®; and (2) this view induces the correct public

key for Alice: KGengAUSq”e"es(&l) = pky. Next, compute the shared key based

on the simulated view, i.e., shk = SHK¥4YSwuers sk pk,), and insert shk into
the set Skey.

— Update. Update all queries in S 4\ Sque-res by accessing the random oracle H,
and add the corresponding query/response pairs into the set Sqye-res-

Finally, A outputs the majority of the shared keys from the set Skey.

Next, we outline the key intuition behind why A is likely to win in the KRA-
secure game with a good probability. Let Sgop denote the set of query/response
pairs made by Bob during the real execution of the key exchange protocol. For
any iteration, there are two cases:

— Case 1 (Bad): 3(quey,resy) € Sa, (queg, resp) € Spob 8.t. que, = quep but
resa # resp.

~ Case 2 (Good): Y(quey,ress) € S4,(quep,resp) € Sgop, We have that if
que, = quep, then resy = resp.

2 Since Sque-res 15 only a subset of H, it is possible that SA may be inconsistent with
the random oracle H.
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Observe that case 1 can occur in at most 2¢ iterations, as |Sgob| < 2g.
Once this case takes place, the update phase will absorb at least one pair
(queg,resp) € Spopb into Sque_,es For case 2, we note that when it occurs, there
exists an alternate oracle H that remains consistent with both S 4 and Sgep. Due
to perfect correctness, the shared key computed during that iteration is guaran-
teed to be valid. Furthermore, since case 2 occurs in at least 2q 4+ 1 iterations,
this ensures that the majority of keys in Siey are valid.

However, in the case of GGM, the attack fails immediately, as the GGM
itself implies the KRA-secure NIKE. Next, we explain the reasoning behind the
failure of the attack.

Why the Attack Fails in GGM? In contrast to the ROM, the GGM features
two types of queries: labeling queries (e.g., z,G(x)) and addition queries (e.g.,
G(x),G(y),G(x +y)). Hence, to guarantee the validity of the shared key, we
should define Sgop to include all group encodings present in the queries (both
labeling and addition) along with their corresponding discrete logarithms (which
Bob may not know). Consequently, for any iteration, there are three cases:

— Case 1 (Bad): 3(quey,resy) € Sa, (queg,resp) € Spob 8.t. que, = quep but
resa # resp. -

— Case 2 (Bad): 3(que,,resa) € S4, (queg,resg) € Sgob S.t. quey # queg but
res, = resp.

— Case 3 (Good): V(que,,resy) € SA,(queB,resB) € Sgob, we have that if
que, = quep then resy = resp, and vice versa.

Observe that case 1 and case 3 can be handled similarly as above. However, case
2 may always occur, meaning it is impossible to find a GGM instance that is
consistent with both S 4 and Sgop. This implies the aforementioned attack fails.

Upon further exploration, we observe that the occurrence of case 2 indicates
that the adversary is able to generate a valid group element without knowing its
discrete logarithm, i.e., without making labeling queries. Therefore, to advance
the analysis, it is necessary to handle the NIKE and GGM with a more fine-
grained approach, ensuring that no query-efficient adversary can generate a valid
group element without knowing its discrete logarithm. Specifically, the analysis
aims to identify a hard problem related to the fine-grained NIKE and GGM,
and prove that if an adversary, given the public keys pk; and pk,y, succeeds in
outputting a valid group element without making queries, then the hard problem
does not hold anymore.

Solution in [JZW+24] and Its Limitations. Recently, Ji et.al. [JZW+24]
demonstrated that CDH-secure cryptographic groups with shorter group descrip-
tions cannot exist in the generic group model with longer encodings. Specifically,
they establish a somewhat black-box separation between KRA-secure NIKE
schemes associated with shorter public keys and the GGMs with longer group
encodings®. The key idea in their work is that, given the public keys pk; and

3 The formal primitive can be trivially constructed via shorter CDH-secure groups.
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pko, the extracted group element str can fall into one of two cases: (1) str is
related to both pk; and pky; or (2) str is related to only one of the public keys
but independent of the other. In the former case, Ji et.al. explain that str is
typically a frequent query, which can be easily handled by repeatedly running
the key generation algorithm on sufficiently many random inputs. In the latter
case, where str is only relevant to only one public key (e.g., pk,), they observe
that pk; is the sole carrier of information about str. However, since the length
of pk; is significantly shorter than that of str, it lacks the necessary capacity
to encode all the information required for the recovery of str. Consequently, no
query-efficient algorithm can extract str with a non-negligible probability.

Furthermore, the hard problem identified in [JZW+24] can be interpreted as
follows: given any public key (which is shorter), no query-efficient algorithm can
extract a valid group element (which is longer) except with negligible probability.

However, the hard problem in [JZW+24] faces an inherent limitation. Specifi-
cally, it holds only if the length of pk; is significantly shorter than that of str. This
condition is guaranteed when both the KRA-secure NIKE and the GGM share
the same security parameter. However, if NIKE and the GGM are associated
with different security parameters, this condition may no longer hold. Explor-
ing deeper, we observe that the reason for this limitation lies in the fact that
“shorter” and “longer” are relative terms with respect to the security parame-
ter. A public key considered “shorter” under a large security parameter may still
carry enough information to extract a “longer” GGM encoding when the secu-
rity parameter is small. Therefore, we argue that the hard problem in [JZW+24]
is based on an unjustified assumption, and their analysis deviates from the con-
ventional black-box separation®.

Our Techniques. To establish a black-box separation between groups with
nice admissible encodings and sparse GGMs, it is essential to identify a new
and wunconditional hard problem. We leverage the sparseness property of the
GGM and define the hard problem as follows: for any query-efficient algorithm
with access to the sparse GGM, which only receives the security parameter as
input, it cannot output a new and valid group element except with negligible
probability®. By saying that a group element str is new, we mean that: (1) str
has been used as an input in some addition queries made by the algorithm,
and (2) str has not appeared as the output of any prior queries. As discussed
in [Zha22], the hardness of this problem holds unconditionally. Next we elaborate
on the high-level strategy for intergrating this hard problem into the black-box
separation.

Roughly speaking, we show that if the adversary A, given inputs pk; and
pk,, is able to generate a new group element with a good probability, then we

4 The conventional black-box separation framework establishes impossibility results
unconditionally, whereas [JZW+24] demonstrates impossibility only under certain
unjustified conditions.

5 The probability is taken over the sampling of the GGM instances and the internal
randomness of the algorithm.
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can construct an extractor £ which, given only the security parameter as input,
can also output a new group element with a good probability.

The first technical challenge of our analysis is determining how the extractor
& generates the two public keys. A natural approach would be:

Step 1: £ randomly selects two private keys (sk; and sks), computes the corre-
sponding public keys (pk; = KGen9(sk;)), and runs A9 (pk,, pks).

Step 2: Whenever A issues an addition query using a new group element
(denoted as str) as input, £ outputs str.

Unfortunately, this approach fails immediately. Given the fact that the GGM
is sparse, any new group element str generated by A should be related to
either pk; or pky. More precisely, str is likely to appear during the execution
of KGen¥(sk;) or KGen?(sky) with high probability. As a result, if following the
aforementioned approach, then the extractor would fail to output a new group
element, even if A does so.

To overcome this challenge, we must adopt an alternative method for gen-
erating the public keys, leveraging admissible encodings as part of the solution.
Specifically, we configure the NIKE as a KRA-secure NIKE with nice admissible
encodings, meaning there exists an admissible encoding that maps from Z, to
the public keys, where p is sufficiently large. Clearly, CDH-secure groups with
nice admissible encodings implies such a NIKE. We then construct the extractor
£ as follows:

Step 1: &£ randomly selects two seeds (seed; and seeds), computes the corre-
sponding public keys via admissible encodings (pk; = AEY(seed;)), and runs
Ag(pkla ka)

Step 2: Whenever A issues an addition query using a new group element
(denoted as str) as input, £ outputs str.

At this point, the second technical challenge emerges. Specifically, let Sag
denote the set of the query/response pairs that arise during the execution of
pk, = AEY(seed;) and pk, = AEY(seeds). Note that if the new group element
generated by the adversary A consistently falls within the set Sag, the extractor
above will still fail to output a new group element.

To address this challenge, we refine the adversary’s strategy. Specifically, we
introduce a preprocessing phase for the adversary, define as follows:

—  Preprocessing. Given the inputs pk; and pks, the adversary A runs the inverse
of the admissible encodings, computing seed; = inv—AEg(pki). Subsequently,
A recalculates pk; = AEY(seed;) and collects all associated query/response
pairs into the set Sque-res-

The adversary then proceeds as follows: before entering the iteration phase,
it first executes the preprocessing phase.

Next, we explain why the preprocessing phase is effective. It is important
to note that, following the preprocessing phase, the adversary A has already
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gathered all the query/response pairs contained in Sag. As a result, whenever A
generates a new group element, it will also be new to &£.

The above outline is not comprehensive; for detailed technical explanations,
please refer to Sect. 3.

The key idea of our analysis is that valid public keys can be generated through
two distinct methods. In the context of NIKE with dense encodings, there are
likewise two methods for generating public keys, one of which even does not
require making any queries. Thus, our analysis can be naturally extended to
establish a black-box separation between CDH-secure dense groups and sparse
GGM. Furthermore, the hard problem above remains valid within the sparse
generic bilinear group model (GBM), allowing all impossibility results to natu-
rally extend to the sparse GBM as well.

1.3.2 EC-GGM vs. Sparse GGM

To demonstrate that the elliptic curve generic group model (EC-GGM) is strictly
stronger than the sparse generic group model (sparse GGM), we frame our goal
within framework of indifferentiability. In particular, we establish that EC-GGM
(denoted as ec-G) statistically implies sparse GGM (denoted as G); while the
sparse GGM does not computationally imply EC-GGM.

EC-GGM Statistically Implies Sparse GGM. We begin by explaining how
ec-G implies G against statistical adversaries. Let ec-G = (ec-G', ec-G*) denote an
EC-GGM corresponding to an elliptic curve defined over Z,, where each group
element is represented as (u,b) € Z, x {0,1}. According to the Hasse bound,
the encoding of EC-GGM is inherently dense. To extend the encoding length
to m bits for the sparse GGM, we introduce an additional oracle, the random
permutation Perm over {0,1}", along with its inverse, Perm™. The labeling
function is then defined as follows:

L9 (2) := Perm (ec-G-(2)[|0---0) .

The addition algorithm is constructed by applying the inverse oracle Perm'™.
To demonstrate indifferentiability, we need to construct a simulator S that, with
access to G, can accurately simulate both ec-G and (Perm, Perm'™).

To simulate ec-G, the simulator maintains a tabel to record the corre-
spondence between the elliptic curve points P := (u,b) and str := G(z). An
important property of the EC-GGM is that for any (u,b) « ec-G-(z) and
(u',b') + ec-G-(—z), it holds that u = u’ and b = 1 — b'. Consequently, when-
ever the simulator records the tuple (P, str), where P := (u,b) and str := G(z),
it additionally records (—P,G(—x)) with —P := (u,1 — b). Notably, G(—x) can
be obtained by making additional queries to G on str, even without knowledge
of z.

To simulate Perm, the simulator S first checks whether the query corresponds
to an elliptic curve point and whether there exists a corresponding G(x). If both
conditions are satisfied, S just responds with G. If not, S responds with G(x)
for a randomly sampled € Zy or with a randomly chosen invalid string str,
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depending on whether the query corresponds to a valid point. The simulation of
Perm'™ follows a similar strategy.

Remark 1.3. Careful readers might argue that, within the elliptic curve generic
group model, adversaries could perform certain non-generic operations, such as
oblivious sampling. As a result, EC-GGM extends the adversaries’ capabilities,
necessitating a reinterpretation of the hardness of certain security assumptions
(e.g., DLOG or CDH).

Fortunately, due to statistical indifferentiability, the hardness of the CDH
assumption remains intact. Specifically, we demonstrate that if a statistical yet
query-efficient adversary exists that can break CDH in EC-GGM, we can con-
struct a differentiator capable of breaking indifferentiability. More precisely, the
differentiator acts as the challenger in the CDH game, interacts with the adver-
sary, and distinguishes between the real and ideal worlds by observing whether
the adversary successfully wins the CDH game.

Next, we demonstrate that even in the context of computationally bounded
adversaries, it is not possible to construct an indifferentiable EC-GGM within a
sparse GGM.

Sparse GGM Does Not Computationally Imply EC-GGM. Suppose we
have a proposed construction of an elliptic curve generic group model derived
from a sparse GGM, denoted as IT9 := (L9, AY). How can we demonstrate that
a computationally bounded adversary is able to differentiate I79 from ec-G? A
common approach is to identify a security game that remains secure in ec-G but
can be easily broken in any construction of I79.

Following the strategy outlined in [ZZ23], we define the security game as dis-
crete logarithm identification (DLI), a variant of the discrete logarithm problem.
Intuitively, the DLI game involves the following: given str := L(z), construct a
probabilistic, efficient, and query-free circuit C such that C'(z) accepts with high
probability, while C'(z’) overwhelmingly rejects for all 2’ # x.

Next, we briefly recall the techniques from [ZZ23], where Zhang and
Zhandry establish a separation between GGM and ROM against computation-
ally bounded adversaries. Clearly, DLI is secure in GGM. To establish the sep-
aration, Zhang and Zhandry show that DLI can be easily broken in any group
constructed from the ROM. In a nutshell, the adversary constructs the circuit
C as follows: C(-) functions identically to L(-), but without access to H, and
accepts the input if the reconstructed result matches L™(z) (hardwired in C).
The key idea in [ZZ23] is to anticipate the queries that C will make to the ran-
dom oracle model. This enables the adversary to make all sensitive queries in
advance and hardcode the corresponding query/response pairs into C, thereby
creating an oracle-free circuit. Zhang and Zhandry demonstrate that, with high
probability, all sensitive queries can be collected as follows:

1. randomly sample r,71,...,7,% execute L™(r), L*(—r), L™ (ry),..., L (1),
and collect all the queries into Sque-res;

5 Here n is a sufficiently large integer.
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2. execute L (x — r) « AY(L"(z), L™ (—r)) and A* (L™ (x — r), L™ (r)), and col-
lect all the queries into Sgue-res-

Next, we outline our approach for the incorporating aforementioned tech-
nique into the analysis within sparse GGM. Specifically, given an input LY(z),
the adversary A collects all the queries as described above, hardwires both the
query /response pairs and LY(x) into the circuit C, which operates identically to
LY(-), and then outputs C(-). We then analyze the probability of A wins. Let Q.
be the set of all query/response pairs generated during the execution of LY (z)7,
for each pair (que,res) € @, there are four possible cases:

— Case 1: The label LY(x) does not depend on res at all;

— Case 2: The label LY(x) depends on res, but res does not appear in the
response when computing A9 (LY (x — r),LY(r));

— Case 3: The label LY (z) depends on res, which is obtained by making “label-
ing” query to G when computing AY (LY (z — ), L9(7));

~ Case 4: The label LY(x) depends on res, which is obtained by making “addi-
tion” query to G when computing A9 (LY (x — r), LY (r));

Next, we present the analysis for handling each of the four cases.

For (que,res) in case 1 (same as in [ZZ23]), referred to as a non-sensitive
query, since LY(x) does not depend on res, we can replace the response to que
with a uniformly sampled string without affecting the final outcome.

For (que,res) in case 2 (same as in [2Z23]), referred to as a sensitive but
frequent query, since the computation of A9 (LY (x —7),LY9(r)) does not obtain
res by making queries, res must be extracted from the inputs, i.e., LY(z — r)
and/or LY (r). This indicates that, with high probability, (que, res) € Q,N(Qy_,U
Q). Moreover, since x, x — r and r are pairwise independent, which means
that Q. N Q,—, and Q, N Q, only contains “frequent” queries. Therefore, this
query/response tuple can be collected by running LY(-) on sufficiently many
random inputs.

For (que, res) in case 3 (same as in [Z2723]), referred to as a sensitive label-
ing query, we can collect all labeling queries made during the computation of
A9(LY(z —r),L9(r)) directly.

For (que,res) in case 4 (different from [ZZ23]), referred to as a sensitive
addition query, where que = (stry,stry) consists of two valid group elements.
Although res appears in this query, collecting this kind of query is not usually use-
ful for our purpose. Specifically, when executing LY (x), the algorithm may only
issue labeling queries at points (z1,...,x,), whereas Sgyeres might only contain
query /response pairs in the form of addition, such as (G(v:),G(2:),G(yi + 2:)),
without explicitly knowing ¥; or z;. Consequently, during the reconstruction
of LY9(x), the algorithm may issue labeling queries at certain points, but C' is
unable to identify which tuple corresponds to the correct response, resulting in
the reconstruction failure.

T Without loss of generality, we assume that LY(-) only makes labeling queries.
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To overcome this technical challenge, we once again leverage the sparseness
property of the GGM. Note that the occurrence of the query in case 4 indicates
that the adversary is able to generate a new and valid group element without
knowing its discrete logarithm. Thus, by applying the same analysis as outlined
in Sect. 1.3.1, we can construct an extractor that, given only the security param-
eter as input, is able to produce a new and valid group element whenever the
query in case 4 occurs. This demonstrates that the query in case 4 occurs with
negligible probability.

2 Preliminaries

Notations. In this paper, let A\ € Z denote the security parameter. We use ||y
to represent the concatenation of the strings « and y. For a finite set S, we denote

a random sample s from S according to the uniform distribution as s RS , and
the size of S as |S|. For a probabilistic algorithm Alg, we overload the notation

and write y & Alg(I) to denote that the variable y is obtained by running Alg
on input I, where I may be a tuple I = (Iy,...,I,,). If Alg is deterministic, we
use the notation “—” instead of “>7.

A positive function negl(-) is said to be negligible if, for all positive polynomial
poly(-), there exists a constant Ag > 0 such that for all A > Ag, it holds that
negl(A) < 1/poly(\). We say that a function p(-) is noticeable in X if its inverse,
1/p(N), is polynomial in .

2.1 Groups with Admissible Encodings

In this work, we treat groups with admissible encodings as a cryptographic
primitive. We first recall the formal definition of a primitive given by [RTV04].

Definition 2.1 (Cryptographic Primitive [RTV04]). A primitive P is a pair
(F,R), where F is a set of functions f : {0,1}* — {0,1}* specifying correctness
property, and R is a relation on pairs (f, A), with f € F and A an adversarial
machine, specifying security property.

-~ Efficient implementation. A function f is said to implement P or be
an implementation of P if f € F. An efficient implementation of P is an
implementation of P that is computable in polynomial time.

— Secure implementation. An adversarial machine A is said to P-break
feFif{f,A) € R. A secure implementation of P is an implementation of
P such that no PPT adversarial machine can P-break f.

We say that the primitive P exists if there is an efficient and secure imple-
mentation of P.

To ensure correctness, we consider cryptographic groups that support an
efficiently computable encoding from Z, (for some integer p) into the group.
Various formulations of such admissible encodings appear in the literature [BF03,
BCI+10,LPS23]; in this work, we adopt the definition from [LPS23].
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Definition 2.2 (Admissible Encodings). A function AE : S — T between
two finite sets is an admissible encoding with respect to o if it satisfies the fol-
lowing conditions:

Computable: The function AE is computable in polynomial time.

Sampleable: Given any element t in the image of AE, one can efficiently
compute its full preimage inv-AE(t).

o-regular: For any t € T, the size of the preimage |inv-AE(t)| is at most o,
where o is a samll constant.

Remark 2.1. The definition of admissible encodings in [BCI+10] differs
slightly from that in Definition 2.2. Specifically, it requires that for uniformly
distributed inputs s € S, the output distribution AE(s) is statistically close to uni-
form over T. However, most known admissible encodings—such as Icart’s encod-
ing [Ica09, FT10]—do not produce uniformly distributed outputs. In this work,
we adopt the definition from [LPS23], and note that the formulation in [BCI+10]
can be seen as a special case of Definition 2.2 with o = 1.

When working with admissible encodings for cryptographic groups, the target
set T is typically identified with the set of group elements. A key application of
admissible encodings is oblivious sampling, which requires that the encoding’s
image covers a noticeable fraction of the set T'. This, in turn, requires the domain
to be sufficiently large. Specifically, we say an admissible encoding AE for a group
G is nice if: (1) AE maps from Z, to G, and (2) the ratio I%\ is not small.

As shown in [Ica09], all elliptic curve groups admit nice admissible encod-
ings. We now formalize the notion of CDH-secure groups equipped with nice
admissible encodings.

Definition 2.3. (CDH-Secure Group with Nice Admissible Encod-
ings). The CDH-secure group with nice admissible encoding with respect to
a constant o and a polynomial polysg, denoted ae-PPH s defined as a pair
(ae-FCPH 2 RPHY ' satisfying the following conditions:

1. The set ae-FPH consists of group-generation functions f that, on input a
security parameter, f outputs the description of a finite cyclic group along
with an additional function. Specifically, we write (G, g, N,AE) «— f(1),
where G is a cyclic group of A-bit prime order N, g is a generator of G,
and AE : Z, — G is a p-regular admissible encoding, with p > N/polyag(A).

2. The pair {f, A) belongs to ae-RPH for a function f € ae-FPH and a ppT
adversarial machine A if there exists a polynomial poly 4(-) such that

Pr[A(G, g, N,AE, "', g") = g***2] > 1/poly 4(A)

for infinitely many values of X\, where (G, g, N,AE) « f(1*) and z1,22 are
chosen uniformly from Zy .

We say that a CDH-secure group with nice admissible encoding ae-PPH exists
if there is a function f € ae-FPH such that no PPT adversarial machine A
satisfies (f, A) € ae-RPH,
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2.2 Dense Groups

We also consider cryptographic groups with dense encodings and formalize this
primitive following the definition style in [RTV04].

Definition 2.4. (CDH-Secure Dense Group). The CDH-secure dense
group, denoted d-PPH is defined as a pair (d-FPH d-RPH) satisfying the
following conditions:

1. The set d-FPH consists of group-generation functions f that, on input of
a security parameter \, output the description of a finite cyclic group with
a dense encoding. Specifically, we write (G, g, N,m) « f(1*), where G is a
cyclic group of A-bit prime order N, g is a generator of G, and m is the length
of the group encoding. Here, m satisfies m —log N < O(log \), meaning that
each group element in G can be represented as an m-bit string.

2. The pair {f, A) belongs to d-RPY for a function f € d-FPH and a PPT
adversarial machine A if there exists a polynomial poly 4(-) such that

Pr[A(G,g,N,m,g"",g"*) = g”'*2] > 1/poly 4())

for infinitely many values of \, where (G,g, N,m) « f(1*) and x1,2o are
chosen uniformly from Zy .

We say that a CDH-secure dense group d-PPH exists if there is a function

f € d-FPH such that no PPT adversarial machine A satisfies (f, A) € d-RPH.

2.3 Idealized Models

In this subsection, we introduce the idealized models discussed in this paper,
including the Generic Group Model (GGM) [Sho97], the Generic Bilinear Group
Model (GBM) [BB04], and the Elliptic Curve Generic Group Model (EC-GGM)
[GS22]. In each model, all entities, including the adversary and the challenger,
have access to the corresponding oracle. Below, we specify the behavior of the
oracle in each idealized model.

Definition 2.5. (Generic Group Model [Sho97]). For a given security
parameter A € N, let Iz, s denote the set of all injections from Zy to S, where
N is a A-bit prime number and S = {0,1}™. The generic group model Gy , is
an idealized model that samples a random injection o from Iz, s and provides
two oracles, g}e,f’f,[ and Q?\?gn. Concretely,

—  The labeling oracle Qk’,?f,'L takes as input © € Zy and returns o(x);

— The addition oracle gj‘\‘,{% takes as input strings str,str’ € S and behaves as

follows: if there exist x,x’' € Zn such that o(x) = str and o(z') = str’, the
oracle returns o(x + x'); otherwise, it returns L.
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In this work, we further say that the generic group model Gy, is dense if
m —log N < O(log A). Otherwise, we refer to it as sparse.

Definition 2.6. (Generic Bilinear Group Model [BB04]). For a given
security parameter A € N, let Iz, s, denote the set of all injections from Zy
to S;, where N is a A\-bit prime number and S; = {0,1}™ for i € {1,2,T}.
The generic bilinear group model B is an idealized model that samples random

injections o1, 02, and ot from Iz, g,, respectively, and provides seven oracles:
Bl—label, Bl—add’ B2—Iabe|} B2—add7 BT—Iabte BT—add and B™ap, Concretely,

~  The labeling oracle B¢ for i € {1,2, T}, takes as input x € Zy and
returns o;(x);

~  The addition oracle B3, fori € {1,2, T}, takes as input strings str,str’ €
Si, and behaves as follows: if there exist x,a’ € Zy such that o;(x) = str and
o;(x') = str’, the oracle returns o1(x + x'); otherwise, it returns L.

—  The bilinear map oracle B™P takes as input strings stry € S1 and stry € Sy,
and behaves as follows: if there exist x1,xo € Zy such that o1(x1) = stry and
o2(xp) = stra, the oracle returns ov(x1 - x2); otherwise, it returns L.

In this work, we consider only symmetric generic bilinear group models,
meaning that Bl1abel — p2label 5pq pl-add — p2add Ve make the functions
N, ms and mt explicit®, and refer to the model as

S-label S-add T-label T-add
BNvava = ( Nai’l;mT’ BN?ms,mﬂ BN;”:J”T’ Bmes,mT’ Blrs?fns,mT)'

We say that the model By me.my is sparse if both ms — log N > w(log A) and

mt —log N > w(log A).

Definition 2.7. (Elliptic Curve Generic Group Model [GS22]). Let A € N
be the security parameter. Let E be the set of all points on the elliptic curve
y? = F(u) over Z,, where |E| = N and N is a A-bit prime number®. For any
point P = (u,b) € Z, x {0,1} in E, we denote by —P the point (u,1 —b) € E.
Let Iz, i be the set of all injections o from Zy to E such that:

1. 0(0) = O, where O is the point at infinity.
2. For all x € Zn, it holds that o(—z) = —o(x).

The elliptic curve generic group model ec-Gy is an idealized model that samples
a random injection o from Iz, g and provides two oracles, ec-G¥*® and ec-G33¢.
Concretely,

— The labeling oracle ec-G*® takes as input x € Zy and returns o(z);
— The addition oracle ec-g?\}’d takes as input two points P, P’ € E, where
o(x) = P and o(z') = P’, and returns o(x + ).

8 GBM is symmetric indicating that m; = ma, and we redenote by ms the encoding
length of source group.

9 For any u € Zyp there are at most two points on the curve with u as their x-coordinate,
namely, (u, £y) for some y. To simplify, point compression is applied, and we denote
the point (u,y) by the pair (u,b), where b =0 if y is even and b = 1 if y is odd.
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2.4 Indifferentiability

The framework of indifferentiability is proposed by Maurer, Renner, and Holen-
stein [MRHO04], which formalizes a set of necessary and sufficient conditions
for securely replacing one cryptosystem with another in an arbitrary envi-
ronment. This framework is used to justify the structural soundness of vari-
ous cryptographic primitives, including hash functions [CDMP05, DRS09], block
ciphers [ABD+13,CHK+16,DSSL16,GWL23|, domain extenders [CDMS10],
authenticated encryption with associated data [BF18], and public-key cryptosys-
tems [Z2Z20]. It can also be used to study the relationship between idealized mod-
els [Z2723]. In the following, we proceed to the definition of indifferentiability:

A cryptosystem X consists of a set of algorithms. Here, X' is accessible via two
interfaces X.hon and X.adv, where X.hon provides an honest interface through
which the system can be accessed by all parties in a black-box manner, and
2).adv models the adversarial access to Y.

Definition 2.8 (Indifferentiability [MRHO04]). Let Xy and Xo be two cryp-
tosystems and S be a simulator. The indifferentiability advantage of a differen-
tiator D against (X1, Xo) with respect to S is

Advigi"’fxzys’p(l)‘) := Pr[Realy, p] — Pr[ldeals, s p],

where games Realy, p and Ideals, s p are defined in Fig. 1. We say X is indif-
ferentiable from X, if there exists an efficient simulator S such that for any
efficient differentiator D, the advantage above is negligible. Moreover, we say X
1s statistically indifferentiable from X, if there exists an efficient simulator such
that, for any unbounded differentiator D, the advantage above is negligible.

Indifferentiability
Reals, p: HonestR(X) Ideals, s p: HonestI(X)
b « pHonestR,AdVR Return Xq.hon(X).| p « pHonestLAdvI Return Xo.hon(X).
Return b. AdvR(X) Return b. AdvI(X)
Return ¥;.adv(X). Return S$¥2-24V0) (X)),

Fig. 1. Indifferentiability of Xy and X5, where S is the simulator and D is the adversary.

Below, we also use the notations in [BF18] and consider the definition above
to two systems with interfaces as:

(X1 hon(X), ¥y .adv(z)) := (IT7(X), Fi(x)),
(ZQ.hOH(X), Eg.adv(m)) = (fg(X),fQ(l‘)),

where F; and F> are two ideal objects sampled from their distributions and IT 1
is a construction of F5 by calling ;. MRH prove the composition theorem for the
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framework of indifferentiability; for simplify, we give a game-based formalization
from [RSS11].

Theorem 2.1 (Composition Theorem [MRH04]). Let ¥y := (II"*, Fy) and
Yo = (Fa, F2) be two systems that Xy is indifferentiable from Xy with respect
to a simulator S, then X7 is as secure as Yo for any single-stage game. More
concretely, let Game be a single-stage game, then for any adversary A, there is
an adversary B and a differentiator D such that
Pr[Gamej 7 47 ] < Pr[Gameg, =] + Advig“’fZ%S,D.

The proof of Thm. 2.1 is straightforward; due to space limit, we skip it
here. Next, we give the formal definition of the separation between two idealized
models in the framework of indifferentiability against computational adversaries.

Definition 2.9 (Computational Indifferentiable Separation [MRHO04]).
Let Xy, X5 be two idealized models, we say X5 is computationally indifferentiably
separated from X7 if for any efficient algorithm II and any efficient simulator
S, there exists an efficient differentiator Di,s and a noticeable function p such
that

Advi,"fziﬂ’z%wm(ﬂ) := | Pr[Reals, p, 5] — Pr[ldeals, s.p, s]| > p(\).

Observe that, if an idealized model X5 is computationally indifferentiably
separated from another idealized model X7, it means that, we cannot build a
scheme IT*' such that IT*' is indifferentiable from X, even under arbitrarily
strong computational assumptions.

3 Impossibility of Groups with Admissible Encodings

In this section, we elaborate the main constraint of the sparse GGM/GBM.
We demonstrate that any the cryptographic group with nice admissible encod-
ings that is CDH-secure, denoted as ae-P“PH cannot exist within the sparse
GGM/GBM. Roughly speaking, to establish the black-box separation, the stan-
dard approach is to build an adversary that, while computationally unbounded,
is query-efficient and capable of breaking the CDH game with respect to any
construction of ae-P“PH in the sparse GGM/GBM.

For easier readability, our strategy follows the one in [IR89]. We introduces
an intermediary primitive, i.e. non-interactive key exchange (NIKE) with nice
admissible encoding that is secure against key-recovery attack (KRA-secure),
denoted as ae-PNXEand prove that:

— ae-PPH implies ae-PNKE,
ae-PNIKE does not exist in the sparse GGM/GBM.
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3.1 Non-interactive Key Exchange with Nice AE

In this section, we present the formal definition of the KRA-secure non-
interactive key exchange with nice admissible encoding.

Definition 3.1 (NIKE with Nice AE). A KRA-secure non-interactive key
exchange protocol with nice admissible encoding, denoted ae-PN'E s defined as
a pair (ae-FNKE e RNIKE)

1. The set ae-FNXE consists of functions f, each associated with a constant
o and a polynomial polyag in A. For a given input security parameter, f
outputs the description of a non-interactive key exchange protocol along with
an additional function. Specifically, we write (KGen, SHK, AE) « f(1*), where
algorithms are associated with SIC, PIC, and K.

- SK, PK, and K are the private-key space, public-key space and shared-key
space, respectively, satisfying that SKC := Zy, where N is a A-bit integer.

— The public-key generation function KGen : SK — PK is an injection,
for generating a public key pk € PK from a randomly chosen private key
sk € SK.

— The shared-key generation function SHK : P x SK — KU{_L} for gener-
ating a shared key shk € KU{ L}, where L indicates a failed computation.

—  The encoding function AE : Z, — PK is a p-regular admissible encoding
from Z,, to the codomain of KGen, with p > N/polyag(A).

Concretely, for randomly chosen sk & SK and sk & SK, compute pk
KGen(sk) and pk’ «— KGen(sk'). We write shk « SHK(pk’,sk) and shk’ «
SHK(pk, sk’). The protocol is required to achieve perfect correctness, meaning
that:

Pr [shk = 1 Vshk' = L Vshk # shk/} =0.

2. For a function f = (KGen,SHK,AE) € ae-FNKE and a PPT (adversarial)
machine A, we define (f, A) € ae-RNE if A can break the security property
of f against key-recovery attack (KRA). Specifically, there exists a polynomial
poly 4(-) such that:

Pr[A(pk, pk’) = SHK(pk', sk) = SHK(pk,sk") # L] > 1/poly 4())
for infinitely many values of \. Here, for randomly chosen sk & SK and
sk’ & SK, compute pk «+ KGen(sk) and pk’ « KGen(sk'), respectively.

We say ae-PN'KE exists if there is a function f € ae-FNKE such that no pPT
adversarial machine A satisfies (f, A) € ae-RN'KE,

It is apparent that ae-P“PH implies ae-PN'KE by defining KGen(x) := ¢* and
SHK(pk, sk') := pk® . Therefore, it is sufficient to prove that ae-PN'KE does not
exist in the sparse GGM.
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3.2 ae-PNKE Does Not Exist in the Sparse GGM/GBM

In this section, we establish the black-box separation between ae-PN'XE and the
sparse GGM. Specifically, we construct an adversary that, while computationally
unbounded, is query-efficient and capable of breaking the KRA-secure game with
a noticeable probability. The corresponding proof for the sparse GBM proceeds
analogously and is deferred to the full version of this paper.

Theorem 3.1. Let Gy, be a generic group model such that m — log N >
w(log ). Let IT9%m = (KGengN””,SH KgN”",AEgN””) be any non-interactive key
exchange protocol with nice admissible encoding parameterized by a constant o
and a polynomial polyag. Then there exists an adversary A and two polynomials
poly; and poly, such that:

— A makes poly, queries to Gy m;

— A breaks the KRA-secure game with advantage —

poly, *

Proof. To establish the proof, we present a formal description of the adversary
A, as illustrated in Fig. 2. Here, we specify that any algorithm in IT9%.m makes at
most g queries, where ¢ is a polynomial. We then clarify some undefined notions:

By {(que;,resy), ..., (que,, res,) LY KGen9™™ (1), we mean that when running
KGengN*m(x), the algorithm makes queries (quey,...,que,) to the oracle Gy m,
and obtains (resy, ..., res,)'.

Trivial to note that the adversary A9~ is query-efficient. We next prove
that the adversary A9~ can successfully guess the valid shared key with a
noticeable probability. Let Sgop.. denote the set of all valid group encodings
that appear when running the algorithms KGen9~ (ske) and SHKYIN.m (pkyq, ska);
these encodings are either the responses of labeling/addition queries or the valid
inputs of the addition queries. Clearly, |Sgop.L| < 6¢, since each algorithm makes
at most ¢ queries to Gy ,,. We then define:

SBob := {(:U7str)|str € SBob-L, g}i‘,f’ﬁ'l(x) = Stl’} .

Note that in each iteration, if the encoding pairs in S 4 are consistent with
Sgob, the shared key computed in that iteration would be correct. Specifically, in
such a context, there exists another instance of GGM that is consistent with both
the simulation view of A and the real view of user Bob. The perfect correctness
of ae-PNXE guarantees that the shared key computed in this iteration must be
equal to the true key computed by Bob. However, without knowledge of sk, Sa
might be inconsistent with Sgop with high probability. In fact, there are three
events:

— Event 1: There exist (z,str) € S4 and (2/,str’) € Sgop such that = = 2’ but
str # str’.

10 As explained above, we assume that the algorithms KGen9~-m and AE9N.m only
make labeling queries.
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r—‘ Adversary A9N.m N

-AgN’m(Pku pks):

Skey <~ @; Sque-res <~ 0;
if inv-AE9N.m (pk;) = ) or inv-AE9¥.m (pk,) = 0: return 1;
Preprocessing phase: //coliect queries from admissible encoding
for every seed € inv-AEIN.m (pk,) U inv-AEIN:m (pk,):
{(que,,res1), ..., (que,, resq) } L AEIN ™ (seed); //queries from AE
Sque-res <— Sque-res U {(quel, resi), ..., (que,, resq)};
for i € {1, 2}: //queries from AE-inverse
{(que,,resy), ..., (que,, resq) } T= inv-AENm (pk,);
for j =1 to ¢
if que; is a labeling query: Sque-res = Sque-res U {(que;, res;)};
if que; = (str,str2) is an addition query:
if I(w1,str1), (z2,5tr2) € Sque-res: Sque-res < Sque-res U { (21 + w2, res;) };
Iteration phase:
fori=1to 12 + 1:
Simulation: search a proper view of Alice 5
search a private key sk; and a set of encoding pairs S4 satisfying the following
properties:
1. S4 is consistent with Squeres and [S4| < 12¢;
2. pk; + KGenSwerestSa (s~k1);
3. 8.4 is sufficient for the algorithm shk; < SHKSaeresUS4 (pk, sky):
- if que = x is a labeling query, then = should be covered in Sque-res U SA;
- if que = (stry, str2) is an addition query and there are (z1,str1), (22, strz)
in Sque-res US4, then (z1 + 22, strg) should also be covered in Sque-res U S4;
- if que = (stry, str2) is an addition query but there is no (x1,stri) and/or
(2,str2) in Sque-res US4, then respond with L.
Skey — Skey U {Shki};
Updating: replace the guessing labeling queries with valid encodings
for each (.Z', Str) S SA \ Sque—res: Sque-res — Sque-res ) (.Z', gllgfl?srll(m)L
Final phase: //output the guessing shared key

return the majority value in Siey.

Fig. 2. The description of A that breaks the KRA-secure game of ae-PNE in Gy .

— Event 2: There exist (x,str) € S4 and (2/,str’) € Sgop such that x # 2/ but
str = str’.

— Event 3: For any (z,str) € S 4 and (2',str’) € Sgob, we have that if z = 2’
then str = str’, and vice versa.

We immediately observe that Event 1 occurs at most 6¢g times, since the
updating phase would eliminate at least one pair in Sgop, with each occurrence.
Next we show that, with a noticeable probability, Event 3 would deduce the valid
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shared key. According to the adversary, decipted in Fig.2, we note that the set
5.4 U Sque-res Tesponds to the labeling queries properly. For the addition queries,
say que = (stry, strg), there are two cases:

~ Case 1: S4 U Sque-res COVers (x1,stry), (z2,stra), and (z1 + x2,strs);

— Case 2: either str; or stry is not collected in S4 U Sque-res-

For the former case, S4U Sque-res responds to the addition query properly; for
the latter case, S 4 U Sque-res always responds with L, which means that if both
stry and stro are valid group elements then the response is invalid. Therefore, the
only bad case that prevents Event 3 from guessing a valid shared key is that the
adversary A generates valid group elements str without making labeling queries
(i.e., without knowing the corresponding discrete logarithm). Besides, we observe
that, when Event 2 occurs, the adversary also generates valid group elements
without making labeling queries. Hence, if the probability of such a bad case is
small, then the adversary AY¥m can break the KRA-secure game and output
the valid shared key with a good probability.

According to the description of the adversary A9Ym, we immediately observe
that, A9~ aborts if either pk, or pky has no preimage with respect to AE9N
To analyze the probability of such a bad event, we define a tuple (G, ski,ska)
is invertible if the following conditions are satisfied:

1. inv-AE9Nm (KGen9™ ™ (sky)) # 0
2. inv-AE9¥-m (KGen9¥™ (ska)) # 0.

Due to the fact that AE9N™ is a o-regular admissible encoding from Z, to
the N valid public keys, there are at least {%—‘ public keys with preimages under
AESY™  Each such public key corresponds to a unique private key. Therefore,

we have that
Pr[(G skq,sks) is invertible] 1 (2)2
N,m, K1, K2 Vi 92 N
1

v

1

> R
= 0% polyae(N)?

where the probability of over the sampling of the instance of the GGM and
private keys.

Moreover, we observe that once the randomness of the adversary is fixed,
then the algorithm AngM(pkl, pksy) is deterministic. Let r be a nonce, we say
the adversary performs good with respect to the tuple (Gn m, ski, ska, ), if the
adversary A9V (pk,, pky), utilizing r as its source of randomness, is unable to
generate a valid group element without knowing the discrete logarithm. Here,
pk, represents the public key generated from the private key sk;.

Next, we introduce the concept of “good” for the tuple (G m, ki, skz). More
formally, we say a tuple (Gn,m,Ski,sks) is good if

1
Pr[A performs good with respect to (Gn,m, ki, ske, )] > 3
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where pk, «— KGen~ ™ (ski) and pk, < KGen9~ (sky), and the probability is
over the internal randomness of A. Analogously, we say a tuple (Gn,m,ski, ska)
is bad if

DN | =

Pr[A performs good with respect to (G, m,ski,ske, )] <

For clarity, we denote these three events in which the tuple (Gn m,ski,sks)
is invertible, good or bad as Invertible, Good and Bad, respectively. Due to the
perfect correctness of IT9Vm | it is apparent that the probability .4 wins the KRA-
secure game, conditioned on Good A Invertible, is > % Thus, the probability of
A wins can be bounded by

Pr[A wins] > Pr[A9Y" wins|Good A Invertible] - Pr[Good A Invertible]

Y

1
Pr[Good A Invertible] = 3 PrInvertible] - Pr[Good|Invertible]

1 1
> — . ————— - Pr[Good|Invertible].
20%  polyse(N)? [Good| |

1
2

Therefore, it suffices to prove that Pr[Good|Invertible] is noticeable. To finalize
the proof, we utilize the sparsity property of the GGM. As discussed in [Zha22],
given access to a sparse GGM, any algorithm that receives only the security
parameter as input cannot output a valid group element without knowledge of
the corresponding discrete logarithm except with negligible probability'!. For
ease of exposition, we refer to this event as the algorithm outputs a new group
element. More precisely, we say an algorithm £ outputs a new group element str,
if (1) str has been used as an input to some addition queries made by £, and (2)
str has not appeared as the output of any previous queries (whether labeling or
addition) made by &.

We note that, if Pr[Good|Invertible] is small, then, conditioned on Invertible,
the adversary A is likely to generate a new group element with a good probability.
Consequently, our proof strategy proceeds in two steps:

1. Construct an extractor £ that takes only the security parameter as input;
2. Demonstrate that, if Pr[Good|lInvertible] is small, then £ outputs a new group
element with a good probability.

We now present the formal description of the extractor &£, as depicted in
Fig. 3. The extractor £ takes only the security parameter as input, randomly
selects two seeds (i.e., seed; and seeds), and computes the corresponding public
keys (i.e., pk; and pk,) using admissible encodings. Following this, the extractor
proceeds in a manner closely resembling the adversary in the KRA-security game,
as shown in Fig. 2. Specifically, the extractor proceeds the preprocessing phase
and the iteration phase. During the simulation process of each iteration phase,
if a new and valid group element appears, either in S 4 or as an input of some

11 We establish the concrete upper bound for this event in the full version of this paper.
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r—(Extractor E9Nm (1)‘)}

seed, seeds & Zp; pk, < AE9N.m (seed;); pky < AEIN.m (seedy);
Sque-res < 0;
Preprocessing phase: //collect queries from admissible encoding
for every seed € inv-AE9N.m (pk,) U inv-AEIN.m (pk,):
{(que,,res1), ..., (que,,res,) } L AE9N.m (seed); //queries from AE
Sque-res <= Squeres U { (quey, resy), ..., (que,, resq) };
for i € {1,2}: //queries from AB-inverse

{(que,,res1), ..., (que,, resq) } LY inv-AEIN.m (pk,);
for j=1to ¢:
if que; is a labeling query: Sque-res = Sque-res U {(que;, res;)};
if que; = (str1, str2) is an addition query:
if A(zq, strl), (z2, Stl’z) € Sque-res: Sque-res <— Sque-res U {(1171 + x2, resj)};
if str1 € Sque-res and Q?\?in(stn,str—l) # 1, return strq;
if stra & Squeres and G309, (stra,stra) # L, return stra;
Iteration phase:
fori=1to 12¢g + 1:
Simulation: search a proper view of Alice

properties:
1. S4 is consistent with Sque-res and |SA\ < 12¢;
2. pk, + KGenSeweresUSa (k)
3. S4 is sufficient for the algorithm shk; SHKS“"‘E'”Sugv“(pk27 s~k1):

(z2,str2) in Sque-res U S.4, then respond with L.

For each (z,str) € Sa \ Squeres: if G339 (str,str) # L, return str;

addition query during the execution:
if str1 ¢ Squeres and G339 (stry,str1) # L, return stry;
if stro € Sque-res and gi’\‘?:dm (stra,stra) # L, return stro;
Updating: replace the guessing labeling queries with valid encodings
for each (I, str) S gA \ Sque—res: Sque-res <~ Sque—res ) (371 gllﬁll?ilz(x)):
return L.

search a private key sk, and a set of encoding pairs S 4 satisfying the following

- if que = x is a labeling query, then = should be covered in Sque-res U Sa;

- if que = (stry, str2) is an addition query and there are (x1,str1), (z2,str2)
in Sque-res U S.4, then (z1 + 2, str3) should also be covered in Sgye-res U S4;

- if que = (stry, strz) is an addition query but there is no (x1,str1) and/or

Re-run the algorithm sﬁki — SHKS““G"“USA(ka, s~k1) and que = (strq,stry) is an

Fig. 3. The description of £ w.r.t. ae-PNE

that outputs a new group element of Gn .

addition queries, then £ outputs this element (highlighted in red). Observe that
the randomness of £ is composed of three components: seed;, seeds, and r,
where r represents the randomness used during the iteration phase. Furthermore,
once the GGM instance and the two seeds are fixed, the extractor £ proceeds
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identically to the adversary A in the KRA-security game, continuing until &£
successfully outputs a new and valid group element.

Next, we analyze the probability of the extractor wins, which occurs when
& outputs a new and valid group element. Let Gy ,, denote the GGM to which
the extractor £ has access. Let seed; and seedy denote the seeds sampled by
the extractor. We define the seed pair, (seed;,seeds), to be bad with respect
t0 GN,m, if the tuple (Gn m,ski,sks), deduced from (seed;,seeds), is a Bad and
Invertible tuple. More precisely, when we say a tuple (Gn m,ski,sks) deduced
from (seedy, seeds) with respect to Gy m, we mean that

KGen9™ - (sk;) = AE9N™ (seed;) and KGen9™™ (sky) = AEIN ™ (seedy).

For clarity, we refer to this event as BadSeed in the following analysis. Accord-
ing to the definition of Bad, we note that if £ fortunately samples a bad seed
pair, i.e., BadSeed occurs, then £ wins with a good probability. Concretely,

1
Pr[£9%m wins|BadSeed] > 3

Next, we analyze the probability of BadSeed with respect to any specific GGM
instance. To facility the analysis, we introduce several concepts relevant to the
generic group model. For any instance of the GGM, denoted as G, we define
Qgy.., as the set of all private keys such that for any private key sk € Qgy ..,
the corresponding public key (denoted pk = KGen9~:m (sk)) has valid preimages
under the admissible encodings. Moreover, due to that the admissible encodings
is p-regular, it is apparent that

m < Qg < N.
0

We then categorize all instances of the GGM into two types: good GGM
instances and bad GGM instances. Specifically, let Gy, be a GGM instance,
and Qg . := {ski,...,sk¢}. Let (i,7) be a pair where 4,5 € [1,]'?. We classify
GN,m as a bad instance if there are more than 2—22 -t? pairs such that each induces
a Bad and Invertible tuple. More precisely, when we say a pair such as (i*,j*)
induces a Bad and Invertible tuple, we mean that the tuple (G m,ski«, skj+) is
bad and invertible. Analogously, we classify Gn  as a good instance if there are
at most ﬁ -t2 pairs, each of which induces a Bad and Invertible tuple. Therefore,

for any good GGM instance, there are at least (1 — ﬁ) -12 tuples that are both
Good and Invertible.

Furthermore, for any GGM instance Gy, if a tuple (Gn m, ski, ske) is invert-
ible, then there are at least one seed pair, such as (seed;,seeds), from which
(GN,m.,ski,sks) can be deduced from. Consequently, for any fixed GGM instance,
we have that,

Num of bad and invertible tuples < Num of bad seed pairs.

12 Here, i and j may be equal.
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We are now prepared to establish the lower bound on the probability of the
extractor £ wins when accessing Gy, conditioned on Gy ,,, being a bad GGM
instance. Concretely, let ¢ be the size of Qg, ., we have that,

Num of bad seed pairs

PriEIN.m wi ; > Prl€9N.m wi .
r[€ wins|Gn ., is bad] > Pr[€ wins|BadSeed] Num of all seed pairs

S } - Num of bad and invertible tuples
-2 Num of all seed pairs
1 g0t
= 5 . p2
> L
= 1t

Next, we analyze the probability of £ wins, where the probability is also
considered over the uniform sampling of the GGM instance. Specifically,

. . . Num of bad GGM instances
Pr(€ wins] > Pr{g= wins|Gn.m is bad] Num of all GGM instances

L Num of bad GGM instances
~ 40* Num of all GGM instances

For clarity in exposition, we define TotalGGM as the set of all GGM instances,
BadGGM as the subset of bad GGM instances, and GoodGGM as the subset of
good GGM instances. Moreover, we define

|BadGGM| - GoodRatio |GoodGGM|

BadRatio i= ————MM— ="
A0RatO = otalGGM] [TotalGGM|

Thus, the probability of the extractor £ wins is bounded by
1
Pr[€ wins] > 1 BadRatio.

According to the sparsity property of the GGM, we know that the probability
of £ outputs a new group element is negligible, indicating that BadRatio is negli-
gible. Therefore, it suffices to prove that, if Pr[Good|Invertible] is not noticeable,
then BadRatio is not negligible.

Claim. If Pr|Good|Invertible] < ;75 - oop—5y7, then BadRatio > 3.

We proceed our analysis by contraposition. Specifically, we prove that if

: 1 : 1 1 ‘e
BadRatio < 3, then Pr[Good|Invertible] > 7~ - oy z - By definition, we
have that

Pr[Good A Invertible]
Pr[Invertible]
~ Ygy ., Num of Good and Invertible tuples w.r.t. Gn,m

Pr[Good|Invertible] =

9

Y6y, Num of Invertible tuples w.r.t. Gnm
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where the summation Yg, . is taken over all GGM instances. Note that for any
GGM instance Gn,m, since the size of the private-key space is N, there are at
most N? relevant tuples associated with Gy ,,,. This implies that

gy, Num of Invertible tuples w.r.t. Gn m < |TotalGGM| - N2

Furthermore, by the definition of good GGM instance, for any good GGM

instance Gy m, there are at least (1 — ﬁ) -2 tuples that are both Good and

Invertible tuples associated with Gy ,,. Therefore, we know that

1
Y6y ., Num of Good and Invertible tuples w.r.t. Gn,m > |GoodGGM\-(1—@)-t2,
where ¢ = [Qg, ,,| = L. Thus, we have that
PriGoodll el > |GoodGGM| - (1 — ﬁ) 12
t
r[Good]invertible] > | Total GGM| - N2
1 1
> (1 — BadRatio) - — - —.
( ) 32 polyae(A)?
Therefore, we conclude that, if BadRatio < %, then
Pr[Good|Invertible] > !
T verti —_—
~ 40?7 polyae(N)?
Combining together, we establish the entire proof. O

4 Impossibility of Dense Groups

In this section, we focus on cryptographic groups with dense group encodings,
demonstrating that any such group that is CDH-secure, denoted as d-P<PH,
cannot exist within the sparse GGM/GBM. Following a similar strategy as in
Sect. 3, we introduce an intermediary primitive, i.e. non-interactive key exchange
(NIKE) with dense public-key space, which is secure against key-recovery attack
(KRA-secure), denoted as d-PN'®E and prove that:

d-PCPH implies d-PNKE;
d-PNIKE does not exist in the sparse GGM/GBM.

Definition 4.1 (NIKE with Dense Public-Key Space) A KRA-secure
non-interactive key exchange protocol with dense public-key space, denoted as
d-PNIKE " consists of the pair (d-FNKE d-RNIKE).

1. The set d-FNKE consists of functions f that, on input of a security parameter,
output the description of a non-interactive key exchange protocol. Specifically,
we write (KGen, SHK) « f(1*), where algorithms are associated with SK,
PIC, and K.
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- SK, PK, and K are the private-key space, public-key space and shared-key
space, respectively, satisfying that SK := Zy, where N is a A-bit integer,
and log |[PK| — log |SK| < O(log \);

— The public-key generation function KGen : SK — PK is an injection,
for generating a public key pk € PK from a randomly chosen private key
sk € SK.

— The shared-key generation function SHK : PICx SK — KU{ L} for gener-
ating a shared key shk € KU{L}, where L indicates a failed computation.

Concretely, for randomly chosen sk & SK and sk & sk , compute pk —
KGen(sk) and pk’ «— KGen(sk'). We write shk « SHK(pk’,sk) and shk’ «
SHK(pk, sk’). The protocol is required to achieve perfect correctness, meaning
that:
Pr [shk = 1 Vshk' = L Vshk # shk/} =0.

2. For a function f = (KGen,SHK) € d-FNKE and a PPT (adversarial) machine
A, we define (f, A) € d-RNKE if A can break the security property of f against
key-recovery attack (KRA).

We say d-PNKE exists if there is a function f € d-FNKE such that no PPT
adversarial machine A satisfies (f, A) € d-RNKE,

It is apparent that d-P°PH implies d-PN'®E by defining KGen(z) := ¢ and
SHK(pk, sk’) := kak/. Therefore, it is sufficient to prove that d-PNE does not
exist in the sparse GGM/GBM. Due to space limit, we leave the proof in the
full version of this paper.

5 Sparse GGM vs. EC-GGM

In this section, we analyze the relationship between the Elliptic Curve Generic
Group Model (EC-GGM) and the sparse GGM within the framework of indif-
ferentiability.

5.1 EC-GGM Statistically Implies Sparse GGM

We describe how to build a sparse generic group from an EC-GGM equipped with
an independent random permutation. Denote Orac as the tuple (ec-Gy, Perm),
where ec-Gy = (ec-GRP¢! ec-G3d9) is an elliptic curve generic group model over
a point set E, and Perm is a random permutation over {0,1}™. Define Am :=
m — ([logp] + 1), the construction 1797 = (LOr¢ AOra) is depicted in Fig. 4.

Theorem 5.1. Let Gy, be a sparse generic group model. The scheme I7072¢ s
indifferentiable from Gy . More precisely, there exists a simulator S such that
for all q-query differentiator D, we have

36¢°>  12¢* +¢q q
+ + ow(log A) ©

indif
Advipon gy .50 < >

The simulator makes at most A\q queries to Gy .

Due to space limit, we leave the proof in the full version of this paper.
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f—(Construction I O”’C) N
[ Orec (z): AOrac (stri,stra):
P ec-G%P¥(z); for i € {1,2}:
if P =0, return Perm(0™); if Perm'™ (str;) # w;[|b;|[0°™: return 1;
parse P into (u, b); if wg||b; = 0™ 4™: P = O
str < Perm (u|[b][0°™); else P; := (ui, bs);
return str. if PP ¢ Eor P, ¢ E: return L;
P+ ec-GX(P1, P2);
if P = O: return Perm(0™);
parse P into (u,b), return Perm (u|[b][04™).

Fig. 4. The construction I7°7 in ec-Gy and Perm.

5.2 Sparse GGM Does Not Computationally Imply EC-GGM

Theorem 5.2. Let Gy, be a sparse generic group model, and let ec-Gn be an
elliptic curve gemeric group model over a point set E defined by the equation
y* = F(u) over Z,. Then, ec-Gn is computationally indifferentiably separated

from Gy m -

Our strategy fundamentally builds on the analytical framework developed by
Zhandry and Zhang [ZZ23]. Due to space limit, we leave the proof in the full
version of this paper.
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