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Abstract. The generic group model (GGM) is fundamental for evalu-
ating the feasibility and limitations of group-based cryptosystems. Two 
prominent versions of the GGM exist in the literature: Shoup’s GGM 
and Maurer’s GGM. Zhandry (CRYPTO 2022) points out inherent limi-
tations in Maurer’s GGM by demonstrating that several textbook cryp-
tographic primitives, which are provably secure in Shoup’s GGM, cannot 
be proven secure in Maurer’s model. 

In this work, we further investigate Shoup’s GGM and identify novel 
limitations that have been previously overlooked. Specifically, to preven t
generic algorithms from generating valid group elements without query-
ing the oracle, the model typically employs sufficiently large encoding
lengths. This leads to sparse encodings, a setting referred to as the sparse
generic group model (sparse GGM). We emphasize that this sparseness
introduces several constraints:
– Groups with AE and Black-Box Separation: Shoup’s GGM is 

typically instantiated with elliptic curve groups, which admit admis-
sible encodings (AE)—functions mapping from Zp to elliptic curve 
points. We establish a black-box separation, showing that the sparse 
GGM fails to capture cryptographic groups that are both (1) com-
putational Diffie-Hellman (CDH) secure and (2) compatible with
admissible encodings.

– Comparison with EC-GGM: We examine the relationship 
between the sparse GGM and the Elliptic Curve Generic Group 
Model (EC-GGM) introduced by Groth and Shoup (EUROCRYPT 
2022), which inherently yields CDH-secure groups with admissible 
encodings. Within the framework of indifferentiability, we prove that
EC-GGM is strictly stronger than sparse GGM.

– Dense Groups and Black-Box Separation: We revisit groups 
with dense encodings and establish a black-box separation b etween
CDH-secure dense groups and the sparse GGM.
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– Extension to Bilinear Settings: Our results naturally extend to 
the sparse Generic Bilinear Group Model (GBM), d emonstrating
that the aforementioned constraints still hold.

In conclusion, our findings indicate that both feasibility and impossi-
bility results in Shoup’s GGM should be reinterpreted in a fine-grained 
manner, encouraging further exploration of cryptographic constructions
and black-box separations in EC-GGM or dense GGM.

1 Introduction 

Since the seminal work of Diffie and Hellman [DH76], group-based cryptosys-
tems have become a cornerstone of modern cryptography, enabling secure key 
exchange, public key encryption, digital signatures, and many more. Build-
ing on this f oundation, various types of cryptographic groups have been
proposed, including multiplicative groups [DH76,ElG85], elliptic curve (EC) 
groups [Mil86,Kob87], and pairing-friendly groups [FR94,BGOS07], all of which 
play crucial roles in constructing c ryptographic schemes and protocols.

In practical group-based cryptosystems, the length of group encodings plays 
a crucial role in efficiency, particularly affecting communication complexity. At 
equivalent security levels, groups with more compact encodings are typically
preferred for implementation. NIST SP 800-186 [CMR+23] lists several recom-
mended curves with 128-bit security, including Curve 25519, an elliptic curve 
defined over a 255-bit prime field. With standard point compression, a group 
element on Curve 25519 can be encoded in 256 bits (255 bits plus 1 for sign).
Because EC groups generally offer more compact encodings at the same security
level, they are widely favored for practical cryptographic constructions.

Importantly, EC groups always have admissible encodings; see [BF03, 
Ica09,BCI+10,LPS23]. Admissible encodings are broadly defined as efficiently 
computable functions that map from Zp

1 to group elements, satisfying two 
key properties: regularity (having constant preimage sizes) and preimage-
computability (enabling efficient computation of all preimages for a given ele-
ment in the range). These encodings enable the oblivious sampling of group
elements without revealing their discrete logarithms, a critical feature for many
group-based cryptosystems [BF03,BBB+18,MR19]. 

However, a fundamental limitation arises when attempting to prove the secu-
rity of group-based cryptosystems—the inability to establish the unconditional 
hardness of the underlying computational assumptions (e.g., discrete logarithm, 
computational or decisional Diffie-Hellman) for any specific group. Over the past 
few decades, researchers have explored various approaches to establishing lower
bounds on computational hardness, with the most prevalent method being the
generic group model (GGM), where algorithms are limited to performing only
generic group operations.

1 Here, p denotes the prime modulus used in elliptic curve groups, where the curve is 
typically defined b y the equation y2 = x3 + Ax + B mod p.
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Roughly speaking, there are two widely accepted versions of t he generic group
model: Maurer’s GGM [Mau05] and Shoup’s GGM [Sho97]. Maurer’s GGM is 
modeled as a stateful system where algorithms make queries by referencing two 
group elements encountered during the computation (e.g., the 5th and 9th ele-
ments). In contrast, Shoup’s GGM is modeled as a random injection from the
additive group ZN to sufficiently long strings, where algorithms specify queries
by providing two previously encountered strings from the computation.

Although both formulations appear in the literature, Maurer’s GGM is gen-
erally viewed as more restrictive. In particular, digital-signature schemes are
impossible in Maurer’s GGM [DHH+21], and foundational constructions such as 
the Blum-Micali pseudorandom generator and the Goldreich-Goldwasser-Micali 
pseudorandom function cannot be realized in this model [Zha22]. For these rea-
sons, we focus exclusiv ely on Shoup’s GGM.

In Shoup’s GGM, the length of group encodings also plays a significant role.
Numerous applications (e.g., [Gro16,Zha22,HMQS23,LZ24]) within this model 
rely on the requirement that algorithms cannot produce valid group elements 
without querying the oracle. To uphold this property, the generic group model 
must employ sparse encodings, making the sparse GGM a critical component of 
Shoup’s framework. How ever, sparse GGM does not support oblivious sampling,
which implies that admissible encodings are effectively absent in sparse
GGM!

Attention is still needed! A potential gap arises between sparse variant of 
Shoup’s GGM and practical cryptographic groups, such as elliptic curve groups 
or other dense g roups. Therefore, we plan to conduct further exploration of
Shoup’s GGM, leading to the following research question:

Can sparse GGM effectively and accurately model elliptic curve groups or 
other dense cryptographic groups?

1.1 Our Results 

In this work, we answer the question above negatively. Specifically, let G be 
a cryptographic group such that: (1) computational Diffie-Hellman (CDH) is 
assumed to hold with respect to G; (2) the group enco dings are dense or the
group is associated with nice admissible encodings. Then G does not exist in the
sparse GGM unconditionally.

In order to understand our results better, we start with a brief explanation of 
several important concepts including (1) sparse generic group models (GGMs), 
(2) dense groups, and (3) groups with nice admissible encodings. Let λ be the
security parameter,

– Sparse and dense GGMs. We say GGM G is sparse if the GGM represents 
a random injection from ZN to S, where N is a λ-bit prime, S = {0, 1}m, 
and the difference m − λ satisfying m − λ ≥ ω(log λ). Conversely, we say the
GGM G is dense if the difference m − λ ≤ Θ(log λ).
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– Sparse and dense group encodings. Similarly, we say a cryptographic group 
G of order N is sparse if the length of its group encodings, denoted by m, 
satisfies m −λ ≥ ω(log λ), and we say the group is dense if m−λ ≤ Θ(log λ).

– Groups with nice admissible encodings. We define a group G of order N to 
have a nice admissible encoding with respect to a constant and a polyno-
mial polyAE if there exists an efficiently computable function AE : Zp → G 

satisfying the following conditions: (1) the preimage of any group element 
under AE is efficiently computable; (2) the encoding is -regular, meaning
the size of any preimage set is at most ; (3) the domain size p is sufficiently
large, i.e., p

N ≥ polyAE. As shown in [Ica09], all elliptic curve groups satisfy 
these conditions with = 4, and are therefore considered groups with nice
admissible encodings.

1.1.1 Impossibility Results in Sparse GGM/GBM
Impossibility of Groups with Admissible Encodings in a Sparse GGM. 
As previously discussed, the sparse GGM does not provide an admissible encod-
ing. We argue that this limitation is an inherent drawback of the sparse GGM
and proceed to establish a black-box separation between CDH-secure groups
with admissible encodings and the sparse GGM.

Theorem 1.1 (Informal). For any constant , CDH-secure groups with admis-
sible encodings with respect to do not exist in the sparse generic group model.

Impossibility of Dense Groups in a Sparse GGM. We now turn our atten-
tion to the dense groups. Intuitively, the encodings in sparse GGM cannot be 
compressed in a generic manner and we demonstrate that this limitation repre-
sents another inheren t drawback of the sparse GGM and proceed to establish a
black-box separation between CDH-secure dense groups and the sparse GGM.

Theorem 1.2 (Informal). CDH-secure dense groups do not exist in the sparse
generic group model.

Remark 1.1. In [JZW+24], Ji et al. investigate the relationship between CDH-
secure groups with varying lengths of group encodings and demonstrate that 
shorter CDH-secure groups are separated from longer GGMs. However, we high-
light that their analysis heavily depends on the assumption that both the groups 
and the GGM share the same security parameter—a condition we believe is not 
fully justified. In contrast, our results establish the black-box separation between
dense groups and sparse GGM, resolving the open problem posed in [JZW+24]. 

Impossibility of Groups with Admissible Encodings or Dense Groups 
in a Sparse GBM. We further argue that the inherent difficulty in constructing 
groups with admissible encodings or dense groups persists as long as the idealized 
model remains sparse, even when the model is extended to the generic bilinear
group model (GBM). The GBM B models two generic groups, i.e., the source
generic group and the target generic group, and we say B is sparse if both the
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source generic group and the target generic group are sparse. We then establish 
black-box separations between CDH-secure g roups with admissible encodings
(CDH-secure dense groups) and the sparse GBM.

Theorem 1.3 (Informal). For any constant , CDH-secure groups with admis-
sible encodings with respect to do es not exist in the sparse generic bilinear group
model.

Theorem 1.4 (Informal). CDH-secure dense groups do not exist in the sp arse
generic bilinear group model.

1.1.2 Exploring the Relationship Between EC-GGM and Sparse
GGM
Groth and Shoup [GS22] introduce a variant of the GGM, known as the elliptic 
curve generic group model (EC-GGM). Let E be the set of all points on an elliptic 
curve group of order N . The EC-GGM models a random injection from ZN to 
E, while preserving certain structural properties inherent t o elliptic curves—
for instance, the preservation of which points share the same x-coordinate. It
follows that CDH-secure groups with nice admissible encodings exist relative to
the EC-GGM.

Theorem 1.5 (Informal). CDH-secure groups with nice admissible encodings 
exist in the elliptic curve generic group model.

Relationship Between EC-GGM and Sparse GGM. We next study the 
relationship between the EC-GGM and the sparse GGM in the f ramework of
indifferentiability. Following Zhang and Zhandry’s analysis [ZZ23], we explore 
the relationship against computationally bounded adve rsary and prove that:

Theorem 1.6 (Informal). In the framework of indifferentiability, EC-GGM is 
strictly stronger than sparse GGM.

Remark 1.2. In [JZW+24], Ji et al. also prove that, within the framework 
of indifferentiability, the dense GGM is strictly stronger than the sparse GGM. 
However, we stress that their analysis also highly depends on the assumption that 
both the dense GGM and the sparse GGM share the same se curity parameter,
which we believe is not fully justified. In contrast, our separation between the
dense GGM and the sparse GGM is unconditional.

Theorem 1.7 (Informal). CDH-secure dense groups e xist in the dense GGM.

1.2 Interpretation 

Shoup’s GGM serves as the foundation for the group-based cryptosystems. Our 
findings show that extreme caution must be taken when proving security or 
establishing black-box separations within Shoup’s GGM. We next elaborate it
from two perspectives.
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Instantiating the GGM with Elliptic Curve Groups. In the generic group 
model, algorithms are required to be generic. However, not all algorithms for 
group-based assumptions, such as the discrete logarithm problem, adhere to this
requirement—for example, the index calculus attack against Z∗

N [Adl79]. Fortu-
nately, in the case of elliptic curve groups, the only known attacks are generic 
in nature. As a result, the generic group model is typically instantiated using 
elliptic curve groups. H owever, to the best of our knowledge, in many practical
cryptographic constructions (e.g., the zk-SNARKs in [Gro16]), the generic group 
model is often treated as a sparse GGM, where adversaries are restricted from 
obtaining valid group elements without making explicit queries. Furthermore, as
shown in [Ica09], all elliptic curve groups fall into the category o f groups with
nice admissible encodings.

Our results establish a black-box separation between CDH-secure groups with 
admissible encodings and the sparse GGM, highlighting a potential and previ-
ously overlooked gap when instantiating the GGM with elliptic curve groups.

Black-Box Separations within the GGM. The generic group model is used 
to demonstrate the limitations o f certain group-based cryptosystems. Notably,
most known separations [Zha22,HMQS23] are established within sparse GGM. 
Our findings highlight important limitations of the black-box impossibility of 
sparse GGM, as it excludes both CDH-secure groups with nice admissible encod-
ings and CDH-secure dense groups. Consequently, the relativizing separation 
between these groups and identity-based encryption (IBE) r emains unresolved.
Since many practical groups used fall under the category of groups with nice
admissible encodings, our results motivate the further study of the complexity
of such groups.

Furthermore, our findings indicate that, when examined in a fine-grained 
manner, the relationship between the GGM and the GBM must be reinterpreted.
Specifically, Zhang and Zhandry [ZZ23] demonstrate that the GBM is strictly 
stronger than the GGM. In contrast, our results reveal that EC-GGM (or dense
GGM) and sparse GBM are, in fact, incomparable.

In conclusion, our results encourage further investigation into both the con-
struction of practical schemes and the establishment of black-box separations 
within the EC-GGM (or dense GGM). Additionally, our findings offer a deeper
understanding of the complexities in GGMs and GBMs.

1.3 Technical Ov erview

We now provide an overview of the core intuition and no velty behind our tech-
niques.

1.3.1 Impossibility of Groups with AE in Sparse GGM.
To demonstrate the impossibility of a cryptographic primitive P within an ide-
alized model O, we typically employ the black-box separation methodology. 
Specifically, for any instantiation ΠO of P, we construct a computationally
unbounded adversary A such that (1) A breaks the security of ΠO; and (2) A is
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query-efficient. The seminal result of Impagliazzo and Rudich [IR89], tells that 
the key agreement primitive cannot exist in the random oracle model (ROM). 
Specifically, for any protocol in this model, there exists an adversary capable of 
winning in a key recovery attack (KRA), which breaks the fundamental security 
requirement for key agreement. Returning to our context, it is important to note 
that CDH-secure groups with admissible enco dings inherently imply KRA-secure
key agreement (e.g., the Diffie-Hellman key exchange protocol). Therefore, if we
could establish that KRA-secure key agreement is impossible in sparse GGM,
the analysis would be complete.

For clarity of elaboration, we focus our analysis on a particular case of the key 
agreement primitive, i.e., the non-interactive key exchange (NIKE). We begin by 
briefly reviewing t he key concepts behind the impossibility of KRA-secure NIKE
in the random oracle model [IR89,BKSY11], and then proceed to integrate those 
insigh ts into our analysis.

KRA-Secure NIKE vs. ROM. Let ΠH := (KGenH, SHKH)  be  a  NIKE  
scheme in the random oracle model H, where (1) ΠH achieves perfect correct-
ness, and (2) both KGen and SHK make at most q queries. Consider Alice and 
Bob as two honest parties, each associated with public keys pk1 and pk2, respec-
tively. We then construct an adversary A that, given pk1 and pk2, o utputs the
valid shared key with a good probability. Specifically, the adversary A initializes
two empty sets Sque-res and Skey, and then proceeds through 4q + 1 iterations of
the following phases:

– Simulation. Simulate a proper view for Alice. Specifically, this view contains 
a set of query/response pairs S̃A along with a private k ey sk1 such that: (1)
S̃A is consistent with Sque-res

2; and (2) this view induces the correct public 
key for Alice: KGen S̃A∪Sque-res (sk1)  =  pk1. Next, compute the shared key based 
on the simulated view, i.e., shk = SHK ˜ SA∪Sque-res(sk1, pk2), and insert shk into
the set Skey.

– Update. Update all queries in S̃A \ Sque-res by accessing the random oracle H, 
and add the corresp onding query/response pairs into the set Sque-res.

Finally, A outputs the majority of the shared keys f rom the set Skey.
Next, we outline the key intuition behind why A is likely to win in the KRA-

secure game with a good probability. Let SBob denote the set of query/response 
pairs made by B ob during the real execution of the key exchange protocol. For
any iteration, there are two cases:

– Case 1 (Bad): ∃(queA, resA) ∈ S̃A, (queB , resB) ∈ SBob s.t. queA = queB but
resA = resB .

– Case 2 (Good): ∀(queA, resA) ∈ S̃A, (queB , resB) ∈ SBob, we have that if
queA = queB , then resA = resB .

2 Since Sque-res is only a subset of H, it is possible that S̃A may be inconsistent with
the random oracle H.
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Observe that case 1 can occur in at most 2q iterations, as |SBob|  ≤  2q. 
Once this case takes place, the update phase will absorb at least one pair 
(queB , resB) ∈ SBob into Sque-res. For case 2, we note that when it occurs, there 
exists an alternate oracle H̃ that remains consistent with both S̃A and SBob.  Due  
to p erfect correctness, the shared key computed during that iteration is guaran-
teed to be valid. Furthermore, since case 2 occurs in at least 2q + 1 iterations,
this ensures that the majority of keys in Skey are valid.

However, in the case of GGM, the attack fails immediately, as the GGM 
itself implies the KRA-secure N IKE. Next, we explain the reasoning behind the
failure of the attack.

Why the Attack Fails in GGM? In contrast to the ROM, the GGM features 
two types of queries: labeling queries (e.g., x, G(x)) and addition queries (e.g., 
G(x), G(y), G(x + y)). Hence, to guarantee the validity of the shared key, we 
should define SBob to include all group encodings p resent in the queries (both
labeling and addition) along with their corresponding discrete logarithms (which
Bob may not know). Consequently, for any iteration, there are three cases:

– Case 1 (Bad): ∃(queA, resA) ∈ S̃A, (queB , resB) ∈ SBob s.t. queA = queB but
resA = resB .

– Case 2 (Bad): ∃(queA, resA) ∈ S̃A, (queB , resB) ∈ SBob s.t. queA = queB but
resA = resB .

– Case 3 (Good): ∀(queA, resA) ∈ S̃A, (queB , resB) ∈ SBob,  we  have  that  if  
queA = queB then resA = resB , and vice versa.

Observe that case 1 and case 3 can be handled similarly as above. However, case 
2 may always occur, meaning it is impossible to find a GGM instance that is
consistent with both S̃A and SBob. This implies the aforementioned attack fails.

Upon further exploration, we observe that the occurrence of case 2 indicates 
that the adversary is able to generate a valid group element without knowing its 
discrete logarithm, i.e., without making labeling queries. Therefore, to advance 
the analysis, it is necessary to handle the NIKE and GGM with a more fine-
grained approach, ensuring that no query-efficient adversary can generate a valid 
group element without knowing its discrete logarithm. Specifically, the analysis 
aims to identify a hard problem related to the fine-grained NIKE and GGM,
and prove that if an adversary, given the public keys pk1 and pk2, succeeds in
outputting a valid group element without making queries, then the hard problem
does not hold anymore.

Solution in [JZW+24] and Its Limitations. Recently, Ji et.al. [JZW+24] 
demonstrated that CDH-secure cryptographic groups with shorter group descrip-
tions cannot exist in the generic group model with longer encodings. Specifically, 
they establish a somewhat black-box separation b etween KRA-secure NIKE
schemes associated with shorter public keys and the GGMs with longer group
encodings3. The key idea in their work is that, given the public keys pk1 and

3 The formal primitive can be trivially constructed via shorter CDH-secure groups.



Attention is still what you need 247

pk2, the extracted group element str can fall into one of two cases: (1) str is 
related to both pk1 and pk2; or (2) str is related to only one of the public keys 
but independent of the other. In the former case, Ji et.al. explain that str is 
typically a frequent query, which can be easily handled by repeatedly running 
the key generation algorithm on sufficiently many random inputs. In the latter 
case, where str is only relevant to only one public key (e.g., pk1), they observe 
that pk 1 is the sole carrier of information about str. However, since the length
of pk1 is significantly shorter than that of str, it lacks the necessary capacity
to encode all the information required for the recovery of str. Consequently, no
query-efficient algorithm can extract str with a non-negligible probability.

Furthermore, the hard problem identified in [JZW+24] can be interpreted as 
follows: given any public key (which is shorter), no query-efficient algorithm can 
extract a valid group element (which is longer) except with negligible probability.

However, the hard problem in [JZW+24] faces an inherent limitation. Specifi-
cally, it holds only if the length of pk1 is significantly shorter than that of str. This 
condition is guaranteed when both the KRA-secure NIKE and the GGM share 
the same security parameter. However, if NIKE and the GGM are associated 
with different security parameters, this condition may no longer hold. Explor-
ing deeper, we observe that the reason for this limitation lies in the fact that 
“shorter” and “longer” are relative terms with respect to the security parame-
ter. A public key considered “shorter” under a large security parameter may still
carry enough information to extract a “longer” GGM encoding when the secu-
rity parameter is small. Therefore, we argue that the hard problem in [JZW+24] 
is based on an unjustified assumption, and their analysis deviates from the con-
ventional black-box separation4. 

Our Techniques. To establish a black-box separation between groups with 
nice admissible encodings and sparse GGMs, it is essential to identify a new 
and unconditional hard problem. We leverage the sparseness property of the 
GGM and define the hard problem as follows: for any query-efficient algorithm 
with access to the sparse GGM, which only receives the security parameter as
input, it cannot output a new and valid group element except with negligible
probability5. By saying that a group element str is new, we mean that: (1) str 
has been used as an input in some addition queries made by t he algorithm,
and (2) str has not appeared as the output of any prior queries. As discussed
in [Zha22], the hardness of this problem holds unconditionally. Next we elaborate 
on the high-level strategy for int ergrating this hard problem into the black-box
separation.

Roughly speaking, we show that if the adversary A, given inputs pk1 and 
pk2, is able to generate a new group element with a good probability, then we

4 The conventional black-box separation framework establishes impossibility r esults
unconditionally, whereas [JZW+24] demonstrates impossibility only under certain
unjustified conditions.

5 The probability is taken over the sampling of the GGM instances and the internal
randomness of the algorithm.
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can construct an extractor E which, given only the security parameter as input, 
can also output a new group element with a good probability.

The first technical challenge of our analysis is determining how the extractor 
E generates the tw o public keys. A natural approach would be:

Step 1: E randomly selects two private keys (sk1 and sk2), computes the corre-
sponding public keys (pki = KGen G(ski)), and runs AG(pk1, pk2).

Step 2: Whenever A issues an addition query using a new group element 
(denoted as str) as input, E outputs str.

Unfortunately, this approach fails immediately. Given the fact that the GGM 
is sparse, any new group element str generated by A should be related to 
either pk1 or pk2. More precisely, str is likely to appear during the execution 
of KGenG(sk1)  or  KGenG(sk2) with high probability. As a result, if following the
aforementioned approach, then the extractor would fail to output a new group
element, even if A does so.

To overcome this challenge, we must adopt an alternative method for gen-
erating the public keys, leveraging admissible encodings as part of the solution. 
Specifically, we configure the NIKE as a KRA-secure NIKE with nice admissible 
encodings, meaning there exists an admissible encoding that maps from Zp to
the public keys, where p is sufficiently large. Clearly, CDH-secure groups with
nice admissible encodings implies such a NIKE. We then construct the extractor
E as follows:

Step 1: E randomly selects two seeds (seed1 and seed2), computes the corre-
sponding public keys via admissible encodings (pki = AEG(seedi)), and runs
AG(pk1, pk2).

Step 2: Whenever A issues an addition query using a new group element 
(denoted as str) as input, E outputs str.

At this point, the second technical challenge emerges. Specifically, let SAE 

denote the set of the query/response pairs that arise during the execution of 
pk1 = AEG(seed1)  and  pk2 = AEG(seed2). Note that if the new group element 
generated b y the adversary A consistently falls within the set SAE, the extractor
above will still fail to output a new group element.

To address this challenge, we refine the adversary’s strategy. Specifically, we 
introduce a prepro cessing phase for the adversary, define as follows:

– Preprocessing. Given the inputs pk1 and pk2, the adversary A runs the inverse 
of the admissible encodings, computing seedi = inv-AEG(pki). Subsequently, 
A recalculates pki = AEG( seedi) and collects all associated query/response
pairs into the set Sque-res.

The adversary then proceeds as follows: before entering the iteration phase,
it first executes the preprocessing phase.

Next, we explain why the preprocessing phase is effective. It is important 
to note that, following the preprocessing phase, the adversary A has already
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gathered all the query/response pairs contained in SAE. As a result, whenever A 
generates a new group element, it will also be new to E .

The above outline is not comprehensive; for detailed tec hnical explanations,
please refer to Sect. 3. 

The key idea of our analysis is that valid public keys can be generated through 
two distinct methods. In the context of NIKE with dense encodings, there are 
likewise two methods for generating public keys, one of which even does not 
require making any queries. Thus, our analysis can be naturally extended to 
establish a black-box separation between CDH-secure dense groups and sparse
GGM. Furthermore, the hard problem above remains valid within the sparse
generic bilinear group model (GBM), allowing all impossibility results to natu-
rally extend to the sparse GBM as well.

1.3.2 EC-GGM vs. Sparse GGM
To demonstrate that the elliptic curve generic group model (EC-GGM) is strictly 
stronger than the sparse generic group model (sparse GGM), we frame our goal 
within framework of indifferentiability. In particular, we establish t hat EC-GGM
(denoted as ec-G) statistically implies sparse GGM (denoted as G); while the
sparse GGM does not computationally imply EC-GGM.

EC-GGM Statistically Implies Sparse GGM. We begin by explaining how 
ec-G implies G against statistical adversaries. Let ec-G =  (ec-GL , ec-GA) denote an 
EC-GGM corresponding to an elliptic curve defined over Zp, where each group 
element is represented as (u, b) ∈ Zp ×  {0, 1}. According to the Hasse bound, 
the encoding of EC-GGM is inherently dense. To extend the encoding length 
to m bits for the sparse GGM, we in troduce an additional oracle, the random
permutation Perm over {0, 1}m, along with its inverse, PermInv. The labeling
function is then defined as follows:

Lec-G(x) := Perm ec-GL(x)||0 · · · 0 .

The addition algorithm is constructed by applying the inverse oracle PermInv . 
To demonstrate indifferentiability, we need to construct a simulator S that, with 
access to G, can accurately simulate both ec-G and (Perm,PermInv).

To simulate ec-G, the simulator maintains a tabel to record the corre-
spondence between the elliptic curve points P := (u, b)  and  str := G(x). An 
important property of the EC-GGM is that for any (u, b) ← ec-GL(x)  and  
(u ,  b  ) ← ec-GL(−x), it holds that u = u and b =  1  − b . Consequently, when-
ever the simulator records the tuple (P, str), where P := (u, b) and str := G(x),
it additionally records (−P,G(−x)) with −P := (u, 1 − b). Notably, G(−x) can
be obtained by making additional queries to G on str, even without knowledge
of x.

To simulate Perm, the simulator S first checks whether the query corresponds 
to an elliptic curve point and whether there exists a corresponding G(x). If both 
conditions are satisfied, S just responds with G. If not, S responds with G(x)
for a randomly sampled x ∈ ZN or with a randomly chosen invalid string str,
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depending on whether the query corresponds to a valid point. The simulation of 
PermInv follows a similar strategy.

Remark 1.3. Careful readers might argue that, within the elliptic curve generic 
group model, adversaries could perform certain non-generic operations, such as 
oblivious sampling. As a result, EC-GGM extends the adversaries’ capabilities,
necessitating a reinterpretation of the hardness of certain security assumptions
(e.g., DLOG or CDH).

Fortunately, due to statistical indifferentiability, the hardness of the CDH 
assumption remains intact. Specifically, we demonstrate that if a statistical yet 
query-efficient adversary exists that can break CDH in EC-GGM, we can con-
struct a differentiator capable of breaking indifferentiability. More precisely, the 
differentiator acts as the challenger in the CDH game, interacts with the adver-
sary, and distinguishes between the real and ideal worlds by observing whether
the adversary successfully wins the CDH game.

Next, we demonstrate that even in the context of computationally bounded 
adversaries, it is not possible to construct an indifferentiable EC-GGM within a
sparse GGM.

Sparse GGM Does Not Computationally Imply EC-GGM. Suppose we 
have a proposed construction of an elliptic curve generic group model derived 
from a sparse GGM, denoted as ΠG := (LG , AG). How can we demonstrate that 
a computationally bounded adversary is able to differentiate ΠG from ec-G? A
common approach is to identify a security game that remains secure in ec-G but
can be easily broken in any construction of ΠG .

Following the strategy outlined in [ZZ23], we define the security game as dis-
crete logarithm identification (DLI), a variant of the discrete logarithm problem. 
Intuitively, the DLI game involves the following: given str := L(x), construct a 
probabilistic, efficient, and query-free circuit C such that C(x) accepts with high
probability, while C(x ) overwhelmingly rejects for all x = x.

Next, we briefly recall the techniques from [ZZ23], where Zhang and 
Zhandry establish a separation between GGM and ROM against computation-
ally bounded adversaries. Clearly, DLI is secure in GGM. To establish the sep-
aration, Zhang and Zhandry show that DLI can be easily broken in any group 
constructed from the ROM. In a nutshell, the adversary constructs the circuit 
C as follo ws: C(·) functions identically to LH(·), but without access to H, and
accepts the input if the reconstructed result matches LH(x) (hardwired in C).
The key idea in [ZZ23]  is  to  anticipate the queries that C will make to the ran-
dom oracle model. This enables the adversary to make all sensitive queries in 
advance and hardcode the corresponding query/response pairs into C , thereby
creating an oracle-free circuit. Zhang and Zhandry demonstrate that, with high
probability, all sensitive queries can be collected as follows:

1. randomly sample r, r 1, . . . , rn
6, execute LH(r), LH(−r), LH(r1),  .  .  .  ,  LH(rn), 

and collect all the queries into Sque-res;

6 Here n is a sufficiently large integer.
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2. execute LH(x − r) ← AH(LH(x), LH(−r)) and AH(LH(x − r), LH(r)), and col-
lect all the queries into Sque-res.

Next, we outline our approach for the incorporating aforementioned tech-
nique into the analysis within sparse GGM. Specifically, given an input LG(x), 
the adversary A collects all the queries as described above, hardwires both the 
query/response pairs and LG(x) into the circuit C, which operates identically to 
LG(· ), and then outputs C(·). We then analyze the probability of A wins. Let Qx

be the set of all query/response pairs generated during the execution of LG(x)7, 
for each pair (que, res) ∈ Qx, there are four possible cases:

– Case 1: The label LG(x) does not depend on res at all;
– Case 2: The label LG(x) depends on res, but res does not appear in the 

response when computing AG(LG(x − r), LG(r));
– Case 3: The label LG(x) depends on res, which is obtained by making “label-

ing” query to G when computing AG(LG(x − r), LG(r));
– Case 4: The label LG(x) depends on res, which is obtained by making “addi-

tion” query to G when computing AG(LG(x − r), LG(r));

Next, we present the analysis for handling eac h of the four cases.
For (que, res) in case 1 (same as in [ZZ23]), referred to as a non-sensitive 

query, since LG(x) does not depend on res, we can replace the resp onse to que
with a uniformly sampled string without affecting the final outcome.

For (que, res) in case 2 (same as in [ZZ23]), referred to as a sensitive but 
frequent query, since the computation of AG(LG(x− r), LG(r)) does not obtain 
res by making queries, res must be extracted from the inputs, i.e., LG(x − r) 
and/or LG(r). This indicates that, with high probability, (que, res) ∈ Qx∩(Qx−r∪ 
Qr). Moreover, since x, x − r and r are pairwise indep endent, which means
that Qx ∩ Qx−r and Qx ∩ Qr only contains “frequent” queries. Therefore, this
query/response tuple can be collected by running LG(·) on sufficiently many
random inputs.

For (que, res) in case 3 (same as in [ZZ23]), referred to as a sensitive label-
ing query, we can collect all labeling queries made during the computation of 
AG(LG(x − r), LG(r)) directly.

For (que, res) in case 4 (different from [ZZ23]), referred to as a sensitive 
addition query, where que =  (str1, str2) consists of two valid group elements. 
Although res appears in this query, collecting this kind of query is not usually use-
ful for our purpose. Specifically, when executing LG(x), the algorithm may only 
issue labeling queries at points (x1,  .  .  .  ,  xq), whereas Sque-res might only contain 
query/response pairs in the form of addition, such as (G(yi), G(zi), G(yi + zi)),
without explicitly knowing yi or zi. Consequently, during the reconstruction
of LG(x), the algorithm may issue labeling queries at certain points, but C is
unable to identify which tuple corresponds to the correct response, resulting in
the reconstruction failure.

7 Without loss of generality, we assume that LG(·) only makes labeling queries.
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To overcome this technical challenge, we once again leverage the sparseness 
property of the GGM. Note that the occurrence of the query in case 4 indicates 
that the adversary is able to generate a new and valid group element without
knowing its discrete logarithm. Thus, by applying the same analysis as outlined
in Sect. 1.3.1, we can construct an extractor that, given only the security param-
eter as input, is able to produce a new and valid group element whenever the 
query in case 4 occurs. This demonstrates that the query in case 4 occurs with
negligible probability.

2 Preliminaries 

Notations. In this paper, let λ ∈ Z denote the security parameter. We use x||y 
to represent the concatenation of the strings x and y. For a finite set S, we denote 
a random sample s from S according to the uniform distribution as s $← S,  and  
the size of S as |S|. For a probabilistic algorithm Alg, we overload the notation 
and w rite y

$← Alg(I) to denote that the variable y is obtained by running Alg
on input I, where I may be a tuple I = (I1, ..., In). If Alg is deterministic, we

use the notation “←” instead of “ $←”.
A positive function negl(·) is said to be negligible if, for all positive polynomial 

poly(·), there exists a constant λ0 > 0 such that for all λ  >  λ0,  it  holds  that  
negl(λ) < 1/poly( λ). We say that a function ρ(·) is noticeable in λ if its inverse,
1/ρ(λ), is polynomial in λ.

2.1 Groups with Admissible E ncodings

In this work, we treat groups with admissible encodings as a cryptographic 
primitive. We first recall the formal definition of a primitive given by [RTV04]. 

Definition 2.1 (Cryptographic Primitive [RTV04]). A primitive P is a pair 
, ,  where  F is a set of functions f : {0, 1}∗ →  {0, 1}∗ specifying correctness 

property, and R is a relation on pairs f, , with f ∈ F and A an adversarial
machine, specifying security property.

– Efficient implementation. A  function  f is said to implement P or be 
an implementation of P if f ∈  F .  A  n efficient implementation of P is an
implementation of P that is computable in polynomial time.

– Secure implementation. An adversarial machine A is said to P-break 
f ∈  F  if f, .  A  secure implementation of P is an implementation of
P such that no ppt adversarial machine can P-break f .

We say that the primitive P exists if there is an efficient and secure imple-
mentation of P.

To ensure correctness, we consider cryptographic groups that support an 
efficiently computable encoding from Zp (for some integer p) into the group. 
Various formulations of such admissible encodings appear in the literature [BF03, 
BCI+10,LPS23]; in this work, we adopt the definition from [LPS23].
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Definition 2.2 (Admissible Encodings). A  function  AE : S T between 
two finite sets is an admissible encoding w ith respect to if it satisfies the fol-
lowing conditions:

Computable: The function AE is computable in polynomial time.
Sampleable: Given any element t in the image of AE, one can efficiently 

compute its full preimage inv-AE(t).
-regular: For any t ∈ T , the size of the preimage |inv-AE(t)| is at most ,
where is a samll constant.

Remark 2.1. The definition of admissible encodings in [BCI+10]  differs  
slightly from that in Definition 2.2. Specifically, it requires that for uniformly 
distributed inputs s ∈ S, the output distribution AE(s) is statistically close to uni-
form over T . However, most known admissible encodings—such as Icart’s encod-
ing [Ica09,FT10]—do not produce uniformly distributed outputs. In this w ork,
we adopt the definition from [LPS23], and note that the formulation in [BCI+10] 
can be seen as a special case of Definition 2.2 with =  1  .

When working with admissible encodings for cryptographic groups, the target 
set T is typically identified with the set of group elements. A key application of 
admissible encodings is oblivious sampling, which requires that the encoding’s 
image covers a noticeable fraction of the set T . This, in turn, requires the domain 
to b e sufficiently large. Specifically, we say an admissible encoding AE for a group
G is nice if: (1) AE maps from Zp to G, and (2) the ratio p

|G| is not small.
As  shown  in [Ica09], all elliptic curve groups admit nice admissible encod-

ings. We now formalize the notion of CDH-secure groups equipped with nice
admissible encodings.

Definition 2.3. (CDH-Secure Group with Nice Admissible Encod-
ings). The CDH-secure group with nice admissible encoding with respect to 
a constant and a polynomial polyAE, denoted ae-PCDH, is defined as a pair
ae-FCDH, ae-RCDH , satisfying the following conditions:

1. The set ae-FCDH consists of group-generation functions f that, on input a 
security parameter, f outputs the description of a finite cyclic group along 
with an additional function. Specifically, we write (G,  g,  N,  AE) ← f(1λ), 
where G is a cyclic group of λ-bit prime order N , g is a generator of G,
and AE : Zp G is a -regular admissible encoding, with p ≥ N/polyAE(λ).

2. The pair f, belongs to ae-RCDH for a function f ∈ ae-FCDH and a ppt 
adversarial machine A if there exists a polynomial polyA(·) such that 

Pr[A(G,  g,  N,  AE,  gx1 ,  gx2 )  =  gx1x2 ] > 1/polyA(λ) 

for infinitely many values of λ, where (G, g,N,AE) ← f(1λ) and x1, x2 are
chosen uniformly from ZN .

We say that a CDH-secure group with nice admissible encoding ae-PCDH exists 
if there is a function f ∈ ae-FCDH such that no ppt adversarial machine A
satisfies f, ae-RCDH.



254 T. Wang et al.

2.2 Dense Groups 

We also consider cryptographic groups with dense encodings and formalize this 
primitive following the definition style in [RTV04]. 

Definition 2.4. (CDH-Secure Dense Group). The CDH-secure dense 
group, denoted d-PCDH,  is  defined  as  a  pair  d-FCDH, d-RCDH , satisfying the
following conditions:

1. The set d-FCDH consists of group-generation functions f that, on input of 
a security parameter λ, output the description of a finite cyclic group with 
a dense encoding. Specifically, we write (G,  g,  N,  m) ← f(1λ),  where  G is a 
cyclic group of λ-bit prime order N , g is a generator of G,  and  m is the length
of the group encoding. Here, m satisfies m − log N ≤ Θ(log λ), meaning that
each group element in G can be represented as an m-bit string.

2. The pair f, belongs to d-RCDH for a function f ∈ d-FCDH and a ppt 
adversarial machine A if there exists a polynomial polyA(·) such that 

Pr[A(G,  g,  N,  m,  gx1 ,  gx2 )  =  gx1x2 ] > 1/polyA(λ) 

for infinitely many values of λ, where (G, g,N,m) ← f(1λ) and x1, x2 are
chosen uniformly from ZN .

We say that a CDH-secure dense group d-PCDH exists if there is a function 
f ∈ d-FCDH such that no ppt adversarial machine A satisfies f, d-RCDH.

2.3 Idealized Mo dels

In this subsection, we introduce the idealized models discussed in this pap er,
including the Generic Group Model (GGM) [Sho97], the Generic Bilinear Group 
Model (GBM) [BB04], and the Elliptic Curve Generic Group Model (EC-GGM)
[GS22]. In each model, all entities, including the adversary and the challenger, 
have access to the corresponding oracle. Below, we specify the behavior of the
oracle in each idealized model.

Definition 2.5. (Generic Group Model [Sho97]). For a given security 
parameter λ ∈ N,  let  IZN ,S denote the set of all injections from ZN to S,  where  
N is a λ-bit prime number and S = {0, 1}m. The generic group model GN,m is 
an idealized m odel that samples a random injection σ from IZN ,S and provides
two oracles, G label

N,m and Gadd
N,m. Concretely,

– The labeling oracle G label 
N,m takes as input x ∈ Z N and returns σ(x);

– The addition oracle Gadd 
N,m takes as input strings str, str ∈ S and behaves as 

follows: if there exist x, x ∈ ZN such that σ(x)  =  str and σ(x ) = str , the
oracle returns σ(x + x ); otherwise, it returns ⊥.
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In this work, we further say that the generic group model GN,m is dense if 
m − log N ≤ Θ(log λ). Otherwise, we refer to it as sparse.

Definition 2.6. (Generic Bilinear Group Model [BB04]). For  a  given  
security parameter λ ∈ N,  let  IZN ,Si denote the set of all injections from ZN 
to Si,  where  N is a λ-bit prime number and Si = {0, 1}mi for i ∈  {1, 2, T}. 
The generic bilinear group model B is an idealized model that samples random 
injections σ1, σ2,  and  σT from IZN ,Si

, respectively, and provides seven oracles:
B1-label, B1-add, B2-label, B2-add, BT-label, BT-add and Bmap. Concretely,

– The labeling oracle Bi-label,  for  i ∈  {1, 2, T}, takes as input x ∈ ZN and
returns σi(x);

– The addition oracle Bi-add,  for  i ∈  {1, 2, T}, takes as input strings str, str ∈ 
Si, and behaves as follows: if there exist x, x ∈ ZN such that σi(x)  =  str and
σi(x ) = str , the oracle returns σT(x + x ); otherwise, it returns ⊥.

– The bilinear map oracle Bmap takes as input strings str1 ∈ S1 and str2 ∈ S2, 
and behaves as follows: if there exist x1,  x2 ∈ ZN such that σ1(x1)  =  str1 and 
σ2( x2) = str2, the oracle returns σT(x1 · x2); otherwise, it returns ⊥.

In this work, we consider only symmetric generic bilinear group models, 
meaning that B1-label = B2-label and B1-add = B2-add . We make the functions
N , mS and mT explicit8, and refer to the model as 

BN,mS,mT 
=  (BS-label 

N,mS,mT 
, BS-add 

N,mS,mT 
, BT-label 

N,mS,mT 
, BT-add 

N,mS,mT 
, Bmap 

N,mS,mT 
). 

We say that the model BN,mS,mT 
is sparse if both mS − log N ≥ ω(log λ) and

mT − log N ≥ ω(log λ).

Definition 2.7. (Elliptic Curve Generic Group Model [GS22]). Let λ ∈ N 
be the security parameter. Let E be the set of all points on the elliptic curve 
y2 = F (u) over Zp, where |E| = N and N is a λ-bit prime number9. For any 
point P =  (u, b) ∈ Zp ×  {0, 1} in E, we denote by −P the point (u, 1 − b) ∈ E .
Let IZN ,E be the set of all injections σ from ZN to E such that:

1. σ(0) = O,  where  O is the point at infinity.
2. For all x ∈ ZN , it holds that σ(− x) = −σ(x).

The elliptic curve generic group model ec-GN is an idealized model that samples 
a random injection σ from IZN ,E and provides two oracles, ec-G label

N and ec-Gadd
N .

Concretely,

– The labeling oracle ec-G label 
N takes as input x ∈ ZN and returns σ(x);

– The addition oracle ec-Gadd 
N takes as input two points P, P ∈ E,  where  

σ(x)  =  P and σ(x ) = P , and returns σ(x + x ).

8 GBM is symmetric indicating that m1 = m2, and we redenote by m S the encoding
length of source group.

9 For any u ∈ Zp there are at most two points on the curve with u as their x-coordinate, 
namely, (u, ±y)  for  some  y. To simplify, point compression is applied, and we denote 
the point (u, y) by the pair (u, b), where b = 0 if y is even and b = 1 if y is odd.
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2.4 Indifferentiability 

The framework of indifferentiability is proposed by M aurer, Renner, and Holen-
stein [MRH04], which formalizes a set of necessary and sufficient conditions 
for securely replacing one cryptosystem with another in an arbitrary envi-
ronment. This framework is used to justify the structural soundness of vari-
ous cryptographic primitives, including hash functions [CDMP05,DRS09], block 
ciphers [ABD+13,CHK+16,DSSL16,GWL23], domain extenders [CDMS10], 
authenticated encryption with associated data [BF18], and public-key cryptosys-
tems [ZZ20]. It can also be used to study the relationship b etween idealized mod-
els [ZZ23]. In the following, we proceed to the definition of indifferentiability:

A cryptosystem Σ consists of a set of algorithms. Here, Σ is accessible via two 
interfaces Σ.hon and Σ.adv, where Σ.hon provides an honest interface through 
which the system can be a ccessed by all parties in a black-box manner, and
Σ.adv models the adversarial access to Σ.

Definition 2.8 (Indifferentiability [MRH04]). Let Σ1 and Σ2 be two cryp-
tosystems and S be a simulator. The indifferentiability advantage of a differen-
tiator D against (Σ1,  Σ2) with respect to S is 

Advindif 
Σ1,Σ2,S,D(1λ)  :=  Pr[RealΣ1,D] − Pr[IdealΣ 2,S,D],

where games RealΣ1,D and IdealΣ2,S,D are defined in Fig. 1.  We  say  Σ1 is indif-
ferentiable from Σ2, if there exists an efficient simulator S such that for any 
efficient differentiator D, the advantage above is negligible. Moreover, we say Σ1 

is statistically indifferentiable from Σ 2, if there exists an efficient simulator such
that, for any unbounded differentiator D, the advantage above is negligible.

Fig. 1. Indifferentiability of Σ1 and Σ2,  where  S is the sim ulator and D is the adversary.

Below, we also use the notations in [BF18] and consider the definition above 
to two systems with interfaces as: 

(Σ1.hon(X),  Σ1.adv(x)) := (ΠF1 (X), F1(x)), 
(Σ2.hon(X),  Σ2.adv(x)) := (F2(X), F2(x)), 

where F1 and F2 are two ideal objects sampled from their distributions and ΠF1

is a construction of F2 by calling F1. MRH prove the composition theorem for the
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framework of indifferentiability; for simplify, we give a game-based formalization
from [RSS11]. 

Theorem 2.1 (Composition Theorem [MRH04]). Let Σ1 := (ΠF1 , F1) and 
Σ2 := (F2, F2) be two systems that Σ1 is indifferentiable from Σ2 with respect 
to a simulator S, then Σ1 is as secure as Σ2 for any single-stage game. More 
concretely, let Game be a single-stage game, then for any adversary A, there is 
an adversary B and a differentiator D such that

Pr[GameΠF1 ,AF1 ] ≤ Pr[GameF2,BF2 ] + Advindif
Σ1,Σ2,S,D.

The proof of Thm. 2.1 is straightforward; due to space limit, we skip it 
here. Next, we give the formal definition of the separation between tw o idealized
models in the framework of indifferentiability against computational adversaries.

Definition 2.9 (Computational Indifferentiable Separation [MRH04]). 
Let Σ1,  Σ2 be two idealized models, we say Σ2 is computationally indifferentiably 
separated from Σ1 if for any efficient algorithm Π and any efficient simulator 
S, there exists an efficient differentiator DΠ,S and a noticeable function ρ such 
that 

Advindif 
ΠΣ1 ,Σ2,S ,DΠ,S (1λ) := Pr[RealΣ1,DΠ,S ] − Pr[IdealΣ2,S,DΠ,S ] ≥ ρ(λ).

Observe that, if an idealized model Σ2 is computationally indifferentiably 
separated from another idealized model Σ1, it means that, we cannot build a 
scheme ΠΣ 1 such that ΠΣ1 is indifferentiable from Σ2, even under arbitrarily
strong computational assumptions.

3 Impossibility of Groups with Admissible Encodings 

In this section, we elaborate the main constraint of the sparse GGM/GBM. 
We demonstrate that any the cryptographic group with nice admissible encod-
ings that is CDH-secure, denoted as ae-PCDH, cannot exist within the sparse 
GGM/GBM. Roughly speaking, to establish the black-box separation, the stan-
dard approach is t o build an adversary that, while computationally unbounded,
is query-efficient and capable of breaking the CDH game with respect to any
construction of ae-PCDH in the sparse GGM/GBM.

For easier readability, our strategy follows the one in [IR89]. We introduces 
an intermediary primitive, i.e. non-interactive key exchange (NIKE) with nice 
admissible encoding that is secure against key-recovery attack (KRA-secure),
denoted as ae-PNIKE, and prove that:

– ae-PCDH implies ae-PNIKE ;
– ae-PNIKE does not exist in the sparse GGM/GBM.
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3.1 Non-interactive Key Exchange with Nice AE

In this section, we present the formal definition of the KRA-secure non-
interactiv e key exchange with nice admissible encoding.

Definition 3.1 (NIKE with Nice AE). A KRA-secure non-interactive key 
exchange protocol with nice admissible encoding, denoted ae-PNIKE, is define d as
a pair ae-FNIKE, ae-RNIKE :

1. The set ae-FNIKE consists of functions f , each associated with a constant 
and a polynomial polyAE in λ. For a given input security parameter, f 

outputs the description of a non-interactive key exchange protocol along with 
an additional function. Specifically, w e write (KGen,SHK,AE) ← f(1λ), where
algorithms are associated with SK,PK, and K.
– SK, PK,  and  K are the private-key space, public-key space and shared-key 

space, respectively, satisfying that SK := ZN , where N is a λ-bit integer.
– The public-key generation function KGen : SK →  PK  is an injection, 

for generating a public key pk ∈ PK from a randomly chosen private key
sk ∈ SK.

– The shared-key generation function SHK : PK×SK →  K∪{⊥}  for gener-
ating a shared key shk ∈  K∪{  ⊥}, where ⊥ indicates a failed computation.

– The encoding function AE : Zp →  PK  is a -regular admissible encoding 
from Zp to the codomain o f KGen, with p ≥ N/polyAE(λ).

Concretely, for randomly chosen sk $←  SK  and sk $←  SK, compute pk ← 
KGen(sk) and pk ← KGen(sk ). We write shk ← SHK(pk , sk) and shk ← 
SHK(pk, sk ). The protocol is required t o achieve perfect correctness, meaning
that:

Pr shk = ⊥ ∨ shk = ⊥ ∨ shk = shk = 0.

2. For  a  function  f =  (KGen, SHK, AE) ∈ ae-FNIKE and a ppt (adversarial) 
machine A, we define f, ae-RNIKE if A can break the security property 
of f against key-recovery attack (KRA). Specifically, there exists a polynomial 
polyA(·) such that: 

Pr[A(pk, pk )  =  SHK(pk , sk)  =  SHK(pk, sk ) = ⊥] > 1/polyA (λ)

for infinitely many values of λ. Here, for randomly chosen sk
$← SK and

sk
$← SK, compute pk ← KGen(sk) and pk ← KGen(sk ), respectively.

We say ae-PNIKE exists if there is a function f ∈ ae-FNIKE such that no ppt 
adversarial machine A satisfies f, ae-RNIKE.

It is apparent that ae-PCDH implies ae-PNIKE by defining KGen(x)  :=  gx and 
SHK(pk, sk )  :=  pksk . Therefore, it is sufficient to prove that ae-PNIKE does not
exist in the sparse GGM.
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3.2 ae-PNIKE Does Not Exist in the Sparse GGM/GBM

In this section, we establish the black-box separation between ae-PNIKE and the 
sparse GGM. Specifically, we construct an adversary that, while computationally 
unbounded, is query-efficient and capable of breaking the KRA-secure game with 
a noticeable probability. The corresponding proof for the sparse GBM proceeds
analogously and is deferred to the full version of this paper.

Theorem 3.1. Let GN,m be a generic group model such that m − log N ≥ 
ω(log λ).  Let  ΠGN,m =  (KGenGN,m , SHKGN,m , AEGN,m ) be any non-interactive key 
exchange protocol with nice admissible encoding par ameterized by a constant
and a polynomial polyAE. Then there exists an adversary A and two polynomials
poly1 and poly2 such that:

– A makes poly1 queries to G N,m;
– A breaks the KRA-secure game with advantage 1 

poly2
.

Proof. To establish the proof, we present a formal description of the a dversary
A, as illustrated in Fig. 2. Here, we specify that any algorithm in ΠGN,m makes at 
most q queries, where q is a polynomial. We then clarify some undefined notions: 
By (que1, res1),  .  .  .  ,  (queq, resq) 

query ←− KGenGN,m (x), we mean that when running
KGenGN,m(x), the algorithm makes queries (que1, . . . , queq) to the oracle GN,m,
and obtains (res1, . . . , resq)10. 

Trivial to note that the adversary AGN,m is query-efficient. We next prove 
that the adversary AGN,m can successfully guess the valid shared key with a 
noticeable probability. Let SBob-L denote the set of all valid group encodings 
that appear when running the algorithms KGenGN,m (sk2)  and  SHKGN,m (pk1, sk2); 
these encodings are either the responses of labeling/addition queries or the valid 
inputs of the addition queries. Clearly, |SBob-L| ≤ 6q, since each algorithm makes
at most q queries to GN,m. We then define:

SBob := (x, str)|str ∈ SBob-L, G label
N,m(x) = str .

Note that in each iteration, if the encoding pairs in S̃A are consistent with 
SBob, the shared key computed in that iteration would be correct. Specifically, in 
such a context, there exists another instance of GGM that is consistent with both 
the simulation view of A and the real view of user Bob. The perfect correctness 
of ae-PNIKE guarantees that the shared key computed in this iteration must be
equal to the true key computed by Bob. However, without knowledge of sk2, S̃A
might be inconsistent with SBob with high probability. In fact, there are three
events:

– Event 1: There exist (x, str) ∈ S̃A and (x , str ) ∈ SBob such that x = x but
str = str .

10 As explained above, we assume that the algorithms KGenGN,m and AEG N,m only
make labeling queries.
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Fig. 2. The description of A that breaks the KRA-secure game of ae-PNIKE in GN,m.

– Event 2: There exist (x, str) ∈ S̃A and (x , str ) ∈ SBob suc h that x = x but
str = str .

– Event 3: For any (x, str) ∈ S̃A and (x , str ) ∈ SBob, we have that i f x = x
then str = str , and vice versa.

We immediately observe that Event 1 occurs at most 6q times, since the 
updating phase would eliminate at least one pair in SBob with each occurrence. 
Next we show that, with a noticeable probability, Event 3 would deduce the valid
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shared key. According to the adversary, decipted in Fig. 2, we note that the set 
S̃A ∪ Sque-res responds to the labeling queries properly. For the addition queries, 
say que = (str1, str2), there are two cases:

– Case 1: S̃A ∪ Sque-res covers (x1, str1), (x2, str2), and ( x1 + x2, str3);
– Case 2: either str1 or str2 is not collected in ˜ SA ∪ Sque-res.

For the former case, S̃A ∪ Sque-res responds to the addition query properly; for 
the latter case, S̃A ∪ Sque-res always responds with ⊥, which means that if both 
str1 and str2 are valid group elements then the response is invalid. Therefore, the 
only bad case that prevents Event 3 from guessing a valid shared key is that the 
adversary A generates valid group elements str without making labeling queries 
(i.e., without knowing the corresponding discrete logarithm). Besides, we observe 
that, when Event 2 occurs, the adversary also generates valid group elements
without making labeling queries. Hence, if the probability of such a bad case is
small, then the adversary AGN,m can break the KRA-secure game and output
the valid shared key with a good probability.

According to the description of the adversary AGN,m , we immediately observe 
that, AGN,m aborts if either pk1 or pk2 has no preimage with respect to AEGN,m . 
To analyze the probability of such a bad event , we define a tuple (GN,m, sk1, sk2)
is invertible if the following conditions are satisfied:

1. inv-AEGN,m (KGenGN,m (sk1)) = ∅;
2. inv-AEGN,m (KGenGN,m (sk2)) = ∅.

Due to the fact that AEGN,m is a -regular admissible encoding from Zp to 
the N valid public keys, there are at least p public keys with preimages under 
AEGN,m . Each such public key corresponds to a unique private key. Therefore, 
we have that 

Pr[(GN,m, sk1, sk2) is invertible] ≥ 1 
2 

· p

N

2

≥ 1
2

· 1
polyAE(λ)2

,

where the probability of over the sampling of the instance of the GGM and
private keys.

Moreover, we observe that once the randomness of the adversary is fixed, 
then the algorithm AGN,m(pk1, pk2) is deterministic. Let r be a nonce, we say 
the adversary performs good with respect to the tuple (GN,m, sk1, sk2,  r), if the 
adversary AGN,m(pk1, pk2), utilizing r as its source of randomness, is unable to
generate a valid group element without knowing the discrete logarithm. Here,
pki represents the public key generated from the private key ski.

Next, we introduce the concept of “good” for the tuple (GN,m, sk1, sk2). More 
formally, we say a tuple (GN,m, sk1, sk2) is good if 

Pr[A performs good with respect to (GN,m, sk1, sk2, r)] ≥ 1
2
,
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where pk1 ← KGenGN,m (sk1)  and  pk2 ← KGenGN,m (sk2), and the probability is 
over the internal randomness of A. Analogously, we say a tuple (GN,m, sk1, sk2) 
is bad if 

Pr[A performs good with respect to (GN,m, sk1, sk2, r)] <
1
2
.

For clarity, we denote these three events in which the tuple (GN,m, sk1, sk2) 
is invertible, good or bad as Invertible, Good and Bad, respectively. Due to the 
perfect correctness of ΠGN,m , it is apparent that the probability A wins the KRA-
secure game, conditioned on Good ∧ Invertible,  is  ≥ 1 2 . Thus, the probability of 
A wins can be bounded by 

Pr[A wins] ≥ Pr[AGN,m wins|Good ∧ Invertible] · Pr[Good ∧ Invertible]

≥ 1
2

· Pr[Good ∧ Invertible] =
1
2

· Pr[Invertible] · Pr[Good|Invertible]

≥ 1
2 2

· 1
polyAE(λ)2

· Pr[Good|Invertible].

Therefore, it suffices to prove that Pr[Good|Invertible] is noticeable. To finalize 
the proof, we utilize the sparsity property of the GGM. As discussed in [Zha22], 
given access to a sparse GGM, any algorithm that receives only the security 
parameter as input cannot output a valid group element without knowledge of
the corresponding discrete logarithm except with negligible probability11.  For  
ease of exposition, we refer to this event as the algorithm outputs a new group 
element. More precisely, we say an algorithm E outputs a new group element str, 
if (1) str has been used as an input to some addition queries made by E , and (2)
str has not appeared as the output of any previous queries (whether labeling or
addition) made by E .

We note that, if Pr[Good|Invertible] is small, then, conditioned on Invertible, 
the adversary A is likely to generate a new group element with a g ood probability.
Consequently, our proof strategy proceeds in two steps:

1. Construct an extractor E that takes only the s ecurity parameter as input;
2. Demonstrate that, if Pr[Good|Invertible] is small, then E outputs a new group 

element with a good probability.

We now present the formal description of the e xtractor E , as depicted in
Fig. 3. The extractor E takes only the security parameter as input, randomly 
selects two seeds (i.e., seed1 and seed2), and computes the corresponding public 
keys (i.e., pk1 and pk2) using admissible encodings. Following this, the extractor
proceeds in a manner closely resembling the adversary in the KRA-security game,
as shown in Fig. 2. Specifically, the extractor proceeds the preprocessing phase 
and the iteration phase. During the simulation process of each iteration phase, 
if a new and valid group element appears, either in S̃A or as an input of some
11 We establish the concrete upper bound for this event in the full version of this paper.
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Fig. 3. The description of E w.r.t. ae-PNIKE that outputs a new g roup element of GN,m.

addition queries, then E outputs this element (highlighted in red). Observe that 
the randomness of E is composed of three components: seed1, seed2,  and  r, 
where r represents the randomness used during the iteration phase. Furthermore,
once the GGM instance and the two seeds are fixed, the extractor E proceeds



264 T. Wang et al.

identically to the adversary A in the KRA-security game, continuing until E 
successfully outputs a new and valid group element.

Next, we analyze the probability of the extractor wins, which occurs when 
E outputs a new and valid group element. Let GN,m denote the GGM to which 
the extractor E has access. Let seed1 and seed2 denote the seeds sampled by 
the extractor. We define the seed pair, (seed1, seed2), to be bad with respect 
to GN,m, if the tuple (GN,m, sk1, sk2), deduced from (seed1, seed2), is a Bad and 
Invertible tuple. More precisely, when we say a tuple (GN,m, sk1, sk2) deduced 
from (seed1, seed2) with respect to GN,m, we mean that 

KGenGN,m (sk1)  =  AEGN,m (seed1)  and  KGenGN, m(sk2) = AEGN,m(seed2).

For clarity, we refer to this event as BadSeed in the following analysis. Accord-
ing to the definition of Bad, we note that if E fortunately samples a bad seed
pair, i.e., BadSeed occurs, then E wins with a good probability. Concretely,

Pr[EGN,m wins|BadSeed] ≥ 1
2
.

Next, we analyze the probability of BadSeed with respect to any specific GGM 
instance. To facility the analysis, we introduce several concepts relevant to the 
generic group model. For any instance of the GGM, denoted as GN,m, we define 
QGN,m as the set of all private keys such that for any private key sk ∈ QGN,m

, 
the corresponding public ke y (denoted pk = KGenGN,m(sk)) has valid preimages
under the admissible encodings. Moreover, due to that the admissible encodings
is -regular, it is apparent that

p ≤ |QGN,m
| ≤ N.

We then categorize all instances of the GGM into two types: good GGM 
instances and bad GGM instances. Specifically, let GN,m be a GGM instance, 
and QGN,m := {sk1, . . . , skt}. Let (i, j) be a pair where i, j ∈ [1, t]12. We classify 
GN,m as a bad instance if there are more than 1 

2 2 ·t2 pairs such that each induces 
a Bad and Invertible tuple. More precisely, when we say a pair such as (i∗,  j∗) 
induces a Bad and Invertible tuple, we mean that the tuple (GN,m, ski∗ , skj∗)  is  
bad and invertible. Analogously, we classify GN,m as a good instance if there are 
at most 1

2 2 ·t2 pairs, each of which induces a Bad and Invertible tuple. Therefore,
for any good GGM instance, there are at least (1 − 1

2 2 ) · t2 tuples that are both
Good and Invertible.

Furthermore, for any GGM instance GN,m, if a tuple (GN,m, sk1, sk2)  is  invert-
ible, then there are at least one seed pair, such as (seed1, seed2), from which 
(GN,m, sk1, sk2) can be deduced from. Consequently, for any fixed GGM instance,
we have that,

Num of bad and invertible tuples ≤ Num of bad seed pairs.
12 Here, i and j may be equal.
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We are now prepared to establish the lower bound on the probability of the 
extractor E wins when accessing GN,m, conditioned on GN,m being a bad GGM 
instance. Concretely, let t be the size of QGN,m

, we have that,

Pr[EGN,m wins|GN,m is bad] ≥ Pr[EGN,m wins|BadSeed] · Num of bad seed pairs 
Num of all seed pairs 

≥ 1 
2 

· Num of bad and invertible tuples 
Num of all seed pairs

≥ 1
2

·
1

2 2 · t2

p2

≥ 1
4 4

.

Next, we analyze the probability of E wins, where the probability is also 
considered o ver the uniform sampling of the GGM instance. Specifically,

Pr[E wins] ≥ Pr[EGN,m wins|GN,m is bad] · Num of bad GGM instances 
Num of all GGM instances 

≥ 1 
4 4

· Num of bad GGM instances
Num of all GGM instances

.

For clarity in exposition, we define TotalGGM as the set of all GGM instances, 
BadGGM as the subset of bad GGM instances, and GoodGGM as the subset of 
good GGM instances. Moreover, we define 

BadRatio :=
|BadGGM|
|TotalGGM| ;GoodRatio :=

|GoodGGM|
|TotalGGM| .

Thus, the probability of the extractor E wins is bounded by 

Pr[ E wins] ≥ 1
4 4

· BadRatio.

According to the sparsity property of the GGM, we know that the probability 
of E outputs a new group element is negligible, indicating that BadRatio is negli-
gible. T herefore, it suffices to prove that, if Pr[Good|Invertible] is not noticeable,
then BadRatio is not negligible.

Claim. If Pr[Good|Invertible] ≤ 1 
4 2 · 1 

polyAE(λ)
2 , then BadRatio ≥ 1

2 .

We proceed our analysis by contraposition. Specifically, we prove that if 
BadRatio < 1 

2 , then Pr[Good|Invertible] > 1 
4 2 · 1 

polyAE(λ)
2 . By definition, we 

have that 

Pr[Good|Invertible]  =  Pr[Good ∧ Invertible] 
Pr[Invertible] 

= 
ΣGN,m

Num of Good and Invertible tuples w.r.t. GN,m

ΣGN,m
Num of Invertible tuples w.r.t. GN,m

,
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where the summation ΣGN,m is taken over all GGM instances. Note that for any 
GGM instance GN,m, since the size of the private-key space is N , there are at 
most N 2 relevant tuples associated with G N,m. This implies that

ΣGN,m
Num of Invertible tuples w.r.t. GN,m ≤ |TotalGGM| · N2.

Furthermore, by the definition of good GGM instance, for any good GGM 
instance GN,m, there are at least (1 − 1 

2 2 ) · t2 tuples that are both Good and 
Invertible tuples associated with GN,m. Therefore, we know that 

ΣGN,m
Num of Good and Invertible tuples w.r.t. GN,m ≥  |GoodGGM|·(1− 1 

2 2 
)·t2 , 

where t = |QGN,m
|  ≥  p . Thus, we hav e that

Pr[Good|Invertible] ≥
|GoodGGM| · (1 − 1

2 2 ) · t2

|TotalGGM| · N2

≥ (1 − BadRatio) · 1
2 2

· 1
polyAE(λ)2

.

Therefore, we conclude that, if BadRatio < 1 2 , then 

Pr[Good|Invertible] ≥ 1 
4 2 

· 1
polyAE(λ)2

.

Combining together, we establish the entire proof.

4 Impossibility of Dense Groups 

In this section, we focus on cryptographic groups with dense group encodings, 
demonstrating that any such group that is CDH-secure, denoted as d -PCDH,
cannot exist within the sparse GGM/GBM. Following a similar strategy as in
Sect. 3, we introduce an intermediary primitive, i.e. non-interactive key exchange 
(NIKE) with dense public-key space, which is secure against key-recove ry attack
(KRA-secure), denoted as d-PNIKE, and prove that:

– d-PCDH implies d-PNIKE ;
– d-PNIKE does not exist in the sparse GGM/GBM.

Definition 4.1 (NIKE with Dense Public-Key Space) A KRA-secure 
non-interactive key exchange protocol with dense public-key space, denoted as 
d-PNIKE, c onsists of the pair d-FNIKE, d-RNIKE :

1. The set d-FNIKE consists of functions f that, on input of a security parameter, 
output the description of a non-interactive key exchange protocol. Specifically, 
we write (KGen, SHK) ← f(1λ), where algorithms are associated with SK,
PK, and K.
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– SK, PK,  and  K are the private-key space, public-key space and shared-key 
space, respectively, satisfying that SK := ZN ,  where  N is a λ-bit integer,
and log |PK| − log |SK| ≤ Θ(log λ);

– The public-key generation function KGen : SK →  PK  is an injection, 
for generating a public key pk ∈ PK from a randomly chosen private key
sk ∈ SK.

– The shared-key generation function SHK : PK×SK →  K∪{⊥}  for gener-
ating a shared key shk ∈  K∪{  ⊥}, where ⊥ indicates a failed computation.

Concretely, for randomly chosen sk $←  SK  and sk $←  SK  , compute pk ← 
KGen(sk) and pk ← KGen(sk ). We write shk ← SHK(pk , sk) and shk ← 
SHK(pk, sk ). The protocol is required t o achieve perfect correctness, meaning
that:

Pr shk = ⊥ ∨ shk = ⊥ ∨ shk = shk = 0.

2. For a function f =  (KGen, SHK) ∈ d-FNIKE and a ppt (adversarial) machine 
A, we define f, d-RNIKE if A can br eak the security property of f against
key-recovery attack (KRA).

We say d-PNIKE exists if there is a function f ∈ d-FNIKE such that no ppt 
adversarial machine A satisfies f, d-RNIKE.

It is apparent that d-PCDH implies d-PNIKE by defining KGen(x)  :=  gx and 
SHK(pk, sk )  :=  pksk . Therefore, it is sufficient to prove that d-PNIKE does not 
exist in the sparse GGM/GBM. Due to space limit, we leave the proof in the
full version of this paper.

5 Sparse GGM vs. EC-GGM 

In this section, we analyze the relationship between the Elliptic Curve Generic 
Group Model (EC-GGM) and t he sparse GGM within the framework of indif-
ferentiability.

5.1 EC-GGM Statistically Implies Sparse GGM

We describe how to build a sparse generic group from an EC-GGM equipped with 
an independent random permutation. Denote Orac as the tuple (ec-GN , Perm), 
where ec-GN =  (ec-G label 

N , ec-Gadd 
N ) is an elliptic curve generic group model over 

a point set E,  and  Perm is a random permutation over {0, 1}m. Define Δm :=
m − ( log p + 1), the construction ΠOrac = (LOrac,AOrac) is depicted in Fig. 4. 

Theorem 5.1. Let GN,m be a sparse generic group model. The scheme ΠOrac is 
indifferentiable from GN,m. More precisely, there exists a simulator S such that 
for all q-query differentiator D, we have 

Advindif 
ΠOrac,GN,m,S,D ≤ 36q2 

N
+

12q2 + q

2λ
+

q

2ω(log λ)
.

The simulator makes at most λq queries to GN,m.

Due to space limit, we leave the proof in the full version of this paper.
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Fig. 4. The construction ΠOrac in ec-GN and Pe rm.

5.2 Sparse GGM Does Not C omputationally Imply EC-GGM
Theorem 5.2. Let GN,m be a sparse generic group model, and let ec-GN be an 
elliptic curve generic group model over a point set E defined by the equation 
y2 = F (u) over Zp. Then, ec-GN is computationally indifferentiably separated
from GN,m.

Our strategy fundamentally builds on the analytical framework develop ed by
Zhandry and Zhang [ZZ23]. Due to space limit, we leave the proof in the full 
version of this paper. 
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