
GUC-Secure Commitments via Random
Oracles: New Impossibility and Feasibility

Zhelei Zhou1,2, Bingsheng Zhang1,2(B), Hong-Sheng Zhou3(B), and Kui Ren1,2

1 Zhejiang University, Hangzhou, China
2 ZJU-Hangzhou Global Scientific and Technological Innovation Center,

Hangzhou, China
{zl zhou,bingsheng,kuiren}@zju.edu.cn

3 Virginia Commonwealth University, Richmond, USA
hszhou@vcu.edu

Abstract. In the UC framework, protocols must be subroutine respect-
ing; therefore, shared trusted setup might cause security issues. To
address this drawback, Generalized UC (GUC) framework is introduced
by Canetti et al. (TCC 2007). In this work, we investigate the impossi-
bility and feasibility of GUC-secure commitments using global random
oracles (GRO) as the trusted setup. In particular, we show that it is
impossible to have a 2-round (1-round committing and 1-round opening)
GUC-secure commitment in the global observable RO model by Canetti
et al. (CCS 2014). We then give a new round-optimal GUC-secure com-
mitment that uses only Minicrypt assumptions (i.e. the existence of one-
way functions) in the global observable RO model. Furthermore, we also
examine the complete picture on round complexity of the GUC-secure
commitments in various global RO models.

1 Introduction

Secure multi-party computation (MPC) [26,39] is one of the most important
cornerstone of modern cryptography. It enables n mutually distrustful players,
P1, . . . , Pn to securely evaluate any efficiently computable function f of their
private inputs, x1, . . . , xn. Since its introduction in the early 1980s, MPC has
been extensively studied in the literature. Typically, the security properties of
an MPC protocol are formalized using the well-known “simulation-paradigm”
[26,27]. Roughly speaking, the idea is to require that any adversarial attacker A
in the real world execution of the protocol, can be emulated by a so-called “sim-
ulator” S in an ideal world execution, where the players provide their inputs to
a trusted third party who computes f for them and relays the result back to the
players.

Z. Zhou and B. Zhang—Work supported by the National Key R&D Program of China
(No. 2021YFB3101601), the National Natural Science Foundation of China (Grant No.
62072401), “Open Project Program of Key Laboratory of Blockchain and Cyberspace
Governance of Zhejiang Province”, and Input Output (iohk.io).
H.-S. Zhou—Work supported in part by NSF grant CNS-1801470, a Google Faculty
Research Award and a research gift from Ergo Platform.

c© International Association for Cryptologic Research 2022
S. Agrawal and D. Lin (Eds.): ASIACRYPT 2022, LNCS 13794, pp. 129–158, 2022.
https://doi.org/10.1007/978-3-031-22972-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22972-5_5&domain=pdf
https://doi.org/10.1007/978-3-031-22972-5_5

130 Z. Zhou et al.

From UC to GUC. To facilitate modular protocol design and analysis in
the complex network environments, Canetti proposed the Universal Composibil-
ity (UC) framework [10], where, the notion of indistinguishability between the
real and the ideal world is replaced by a notion of “interactive indistinguisha-
bility”. More specifically, an interactive environment, which may communicate
with both the honest players and the corrupted ones, should not be able to dis-
tinguish whether it is participating in the real execution or the ideal one. UC
security guarantees the security of the MPC protocols under concurrent execu-
tions, and even other arbitrary protocols running in the same network cannot be
adversarially affected—roughly speaking, the environment represents the collec-
tion of any other concurrent protocols. Additionally, this notion is closed under
composition, enabling modular analysis of protocols.

However, protocols in the UC framework must be subroutine respecting, and
shared setup cannot be directly modeled by the basic UC notion. To address this
drawback, Canetti, Dodis, Pass and Walfish proposed the Generalized Univer-
sal Composibility (GUC) framework in 2007 [11]. Since then, many interesting
and efficient protocols have been designed and analyzed under the GUC frame-
work [9,14,15,20,37].

Random Oracles as a Global Setup: GsRO, GoRO, GpRO, and GpoRO. It has
been shown [11,12] that, to achieve secure multi-party computation for any non-
trivial functionality in the UC and the GUC framework, certain trusted setups
(e.g., CRS, PKI, etc.) are required. Random Oracle (RO) is a classic idealized
setup that can be used to design UC-secure [28] and GUC-secure multi-party
computation protocols [9,14].

Random oracle model [4] is a popular idealized model that has been widely
used to justify the security of efficient cryptographic protocols. In spite of its
known inability to provide provable guarantees when RO is instantiated with
a real-world hash function [13], RO is still a promising setup without known
real-world attacks. In fact, RO draws increasing attention along with recent
advancement of the blockchain technology. It is generally viewed as a transparent
setup that can be easily deployed with no reliance on any trusted party in the
blockchain and other distributed system setting. Many RO-based non-interactive
ZK systems, e.g., zk-STARK [5] and Fractal [17], are developed and deployed
in real application scenarios. Note that, those RO-based protocols can achieve
post-quantum security.

A natural formulation of a global RO, denoted as GsRO, has been defined in
[11]: it is accessible to all parties both in the ideal world and the real world, but it
offers neither “observability” nor “programmability”. We emphasize that, it has
been proven that it is impossible to achieve GUC-secure commitment in the GsRO

model [11]. Later, Canetti, Jain, and Scafuro [14] proposed a strengthened ver-
sion of the global RO, denoted as GoRO, which allows the simulator to “observe”
the queries made by the malicious parties, and GUC-secure commitment can
be constructed in the GoRO model. Camenisch et al. [9] further strengthened the
GsRO from a different direction: they designed a mechanism that allows the simu-
lator to “program” the global RO without being detected by the adversary, and

GUC-Secure Commitments via Random Oracles 131

we denote this strengthened version of the global RO as GpRO. On top of both
GoRO and GpRO, Camensich et al. [9] then introduced an even stronger variant,
called GpoRO, and they constructed a round-optimal GUC-secure commitment in
the GpoRO model [9]. Figure 3 depicts the relation of these global RO models.

Problem Statement. We study the round complexity of GUC-secure commit-
ment in the global RO models. Clearly protocols relying on a less idealized setup
and weaker computational assumptions will allow us to gain better confidence
in the proved security statement. Note that, round-optimal GUC secure com-
mitments can be constructed based on the strong global RO setup GpoRO [9].
On the other hand, in [11], it has been proven that constructing a GUC-secure
commitment in the GsRO model is impossible. Between these two extremes, in
[14], Cannetti et al. have shown that it is feasible to construct a GUC-secure
commitment in the GoRO model; however, their construction relies on the dis-
crete logarithm assumption, which cannot achieve (post-) quantum security. We
are interested in GUC-secure commitment protocols using a global RO setup
and Minicrypt [29] assumptions; these protocols can additionally achieve post-
quantum security. This leads us to a natural research question:

What is the lower bounds of the round complexity1 of a GUC-secure commitment

in the GoRO model?

If there exists such a lower bound on the round complexity of a GUC-secure com-
mitment in the GoRO model, we would like to find a round-optimal construction.
We hereby ask:

If there exists such a lower bound, is that possible to construct round-optimal

GUC-secure commitment in the GoROmodel, using only Minicrypt assumption?

1.1 Our Results

We give affirmative answers to the above research questions. Our findings can
be summarized as follows.

A New Impossibility Result in the GoRO Model. In this work, we show that 2-
round (1-round for committing and 1-round for opening) GUC-secure commit-
ment does not exist in the GoRO model (cf. Sect. 3).

We prove this result by contradiction, and our main observation is as follows.
Suppose such a 2-round GUC-secure commitment exists. First, it is easy to see
that if the committing phase only takes one round, then there is only one message
sent from the committer to the receiver; that is, the receiver does not send any
message to the committer. Analogously, the receiver is also “silent” in the 1-
round opening phase. Therefore, the potentially corrupted receiver can delay all
its GoRO queries until it receives the opening message from the committer.

Let us consider the case where the receiver is corrupted. During the sim-
ulation, the simulated committer needs to generate the commitment message
1 Throughout this work, we do not consider the case of simultaneous rounds where

two parties can send their messages to each other at the same round [24,36].

132 Z. Zhou et al.

without the knowledge of the plaintext, and it later needs to generate the open-
ing message for any given input (a.k.a. the plaintext). As discussed before, the
corrupted receiver can choose not to query the GoRO until the simulator has
equivocated the commitment. Hence, the simulator cannot obtain any illegiti-
mate queries from GoRO for this corrupted receiver to facilitate this equivocation.
Now, observe that this simulator has no extra power over a normal party; in par-
ticular, any committer can invoke such a simulator (algorithm) to violate the
binding property of the commitment.

In the actual proof of our impossibility result, we let the corrupted committer
to internally run the simulator algorithm to generate the commitment message,
providing an empty list for the GoRO illegitimate queries. Obviously, given this
commitment message, the receiver/simulator cannot extract its plaintext; There-
fore, with very high probability, the simulation would fail.

A New Round-Optimal Commitment Using GoRO. With respect to our impossi-
bility result, a round-optimal commitment should takes at least 3 rounds. In this
work, we show how to construct a round-optimal (2-round for committing and 1-
round for opening) GUC-secure commitment only using Minicrypt assumptions
in the GoRO model (cf. Sect. 4).

A General Framework. A typical GUC-secure commitment requires both
extractability and equivocality. The GoRO model can directly provide the sim-
ulator with extractability; therefore, the challenge is to design an equivocation
mechanism with round efficiency. A natural approach is to utilize a (property-
based) perfect hiding non-interactive equivocal commitment: (i) in the 1st round,
the receiver picks the commitment key and sends it to the committer; and (ii) in
the 2nd round, the committer uses the equivocal commitment scheme to com-
mit the message. To deploy this approach, the following questions need to be
resolved:

– How to instantiate such a perfect-hiding non-interactive equivocal commitment?

– How can the simulator obtain the equivocation trapdoor?

In [14] and [37], the Pedersen commitment is used as a candidate of the
equivocal commitment. It is well-known, the security of Pedersen commitment
is based on the discrete logarithm assumption which is not (post-) quantum
secure. In this work, we show how to construct a candidate of the equivocal
commitment only using Minicrypt assumptions, i.e. the existence of one-way
functions, in the GoRO model.

To address the latter question, [14] introduced a 5-round mechanism that
enables the simulator to obtain the equivocation trapdoor in the GoRO model;
whereas, [37] proposed a more round-efficient (3-round) mechanism to do so.
More precisely, [37] let the receiver use a Non-Interactive Witness Indistinguish-
able (NIWI) argument to prove the knowledge of equivocation trapdoor w.r.t.
the commitment key. The proof is sent together with the commitment key in the
1st round. Note that straight-line extractability is needed for this approach.

Following the technique proposed in [37], our framework adopts the Non-
Interactive Witness Hiding (NIWH) argument with straight-line extractabil-

GUC-Secure Commitments via Random Oracles 133

ity [38] to prove the knowledge of equivocation trapdoor w.r.t. the commitment
key. The straight-line extractable NIWH argument can be constructed under
Minicrypt assumption in the GoRO model. Putting things together, we can obtain
a GUC-secure commitment using only Minicrypt assumptions. We present the
technique roadmap of our framework in Fig. 1.

GoRO-hybrid world

Equivocal
Commitment

GUC-secure
Commitment

Straight-line Extractable
NIWH Argument

(a) A general framework.

GoRO-hybrid world

Equivocal
Commitment

Straight-line Extractable
NIWH ArgumentOWF

MPC-in-the-head SHVZK
Protocol

(b) Instantiation of building blocks.

Fig. 1. Technique roadmap

Non-interactive Equivocal Commitment in Minicrypt. As shown in [18,35], it is
possible to build a non-interactive equivocal commitment from a 3-round public-
coin Special Honest Verifier Zero-Knowledge (SHVZK) protocol with 2-special
soundness. In the SHVZK protocol, the prover sends the message flow a in the
1st round, and the receiver sends a public-coin randomness e as the challenge in
the 2nd round. After receiving e, the prover computes and sends the response
z in the last round. The technique of constructing non-interactive equivocal
commitment can be summarized as follows. Let RL be an NP relation whose
associate language is L. The receiver randomly samples a pair (x,w) ∈ RL and
sends x to the committer. To commit a message m, the committer invokes the
SHVZK simulator for x ∈ L, using m as the challenge. The simulator then
outputs the simulated proof (a, z). The committer sends a to the receiver as its
commitment message. To open the commitment, the committer can simply send
m, z to the receiver, who will accept it if and only if (a,m, z) is an accepting
SHVZK proof transcript. The equivocation trapdoor is w, which can be extracted
from the straight-line extractor of NIWH as described above.

Since we aim to construct a commitment under Minicrypt assumptions, in our
construction, RL is instantiated with a one-way function relation, i.e., g(x) = y
where g is a one-way function. Next, how to construct a 2-special sound SHVZK
protocol underMinicrypt assumptions?One possible approach is to use the “MPC-
in-the-head” paradigm proposed by Ishai et al. [30]. Roughly speaking, the main
idea is for the prover to simulate the execution of an n-party computation proto-
col that checks if (x,w) ∈ RL, where x is the public input and w is the witness.
The prover then commits to all views of the parties and sends the commitments
to the verifier. After that, the verifier chooses a random subset of the parties and
asks the prover to open their corresponding views. The verifier accepts the proof
if the revealed views are consistent. Unfortunately, to the best of our knowledge,

134 Z. Zhou et al.

none of the followups [1,16,19,25,31] since the initial work of [30] can lead to a 2-
special sound SHVZK protocol merely under Minicrypt assumptions. To address
this issue, we propose a new technique that can construct a 2-special sound proto-
col in the GoRO model (cf. Sect. 4.2).

Towards a Complete Picture. In terms of the GoRO, our work gives a complete
answer to our questions: we show there exists no 2-round GUC-secure commitment
in the GoRO model (cf. Sect. 3), and present a 3-round (round-optimal) GUC-secure
commitment under only Minicrypt assumptions in the GoRO model (cf. Sect. 4).
Moreover, it is known that GUC-secure commitment does not exist in the GsRO

model [11], and round-optimal GUC-secure commitment can be constructed with-
out further assumptions in the GpoRO model [9]. What about the GpRO? In this work,
we also show some impossibility result: there exists no GUC-secure commitment
with 1-round committing in the GpRO model (see details in the full version of our
paper). However, the feasibility of round-optimal GUC-secure commitment under
Minicrypt assumptions in the GpRO model remains an open question.

Further Investigation and Future Directions. We mainly focus on the commit-
ment in this work. One may also wonder the lower bounds of the round complex-
ity of other cryptographic primitives such as ZK, OT, etc. In fact, it is already
known that there exists no NIZK in the observable RO model [38]. What about
the ZK proofs in the GpRO model? In this work, we show that our impossibility
result can be extended to ZK proofs in the GpRO model: there exists no non-
trivial GUC-secure NIZK protocols in the GpRO model (see details in the full
version of our paper).

1.2 Related Work

In terms of UC security with local setups, non-interactive commitments (1-
round for committing and 1-round for opening) can be constructed under various
setup assumptions. For instance, Canetti and Fischlin gave a candidate in the
CRS model [12]; Hofheinz and Müller-Quade suggested a candidate in the RO
model [28]. As for UC security with global setups, it is still unclear if it is possi-
ble to construct a non-interactive GUC-secure commitment, and very few work,
e.g., [20] is dedicated to this research area. In [11], Canetti et al. showed that
it is impossible to construct a GUC-secure commitment merely relying on local
CRS/RO functionalities; they further proposed a 7-round GUC-secure commit-
ment protocol in the Agumented CRS (ACRS) model. Later, Dodis et al. proved
that there exists no GUC-secure commitment with 1-round committing phase in
the ACRS model against adaptive adversaries [20]. Note that their impossibility
result can be extended to any other global setup whose output depends on the
program ID (pid) of the querying party, but not the session ID (sid), such as the
Key Registration of Knowledge (KRK) model [2]. To bypass this impossibility
result, GoRO,GpRO and GpoRO are proposed; note that the output of those setup
functionalities depends on the session ID (sid).

Focusing on commitments in the GoRO, Canetti et al. proposed a 5-round
GUC-secure commitment [14]. Later, Mohassel et al. gave a (1+2)-round GUC-

GUC-Secure Commitments via Random Oracles 135

secure commitment in the GoRO model, where the committer and the receiver
needs to have an additional 1-round setup phase followed by a 2-round commit-
ment [37]. Note that their construction also employed Pedersen commitment,
which cannot achieve (post-) quantum security. Byali et al. gave a 2-round
GUC-secure commitment construction in the CRS and GoRO hybrid model [8].
Following Byali et al. paradigm, GUC-secure ZK protocols [23,34] can also be
constructed in the CRS and GoRO hybrid model. With regard to post-quantum
security, [7] gave a 5-round lattice-based GUC-secure commitment and [6] gave
a 6-round code-based GUC-secure commitment in the GoRO model.

In respect of the GpRO and the GpoRO, Camenisch et al. proposed a 3-round
GUC-secure commitment from CDH assumption in the GpRO model and an
information-theoretical non-interactive GUC-secure commitment in the GpoRO

model [9]. Recently, Canetti et al. proposed a 2-round OT adaptive-secure OT
from DDH assumption in the GpRO model [15], but their protocol is only UC-
secure. Baum et al. constructed a GUC-secure commitment scheme that is addi-
tively homomorphic in the GpoRO model [3].

2 Preliminaries

2.1 Notations

Let λ ∈ N be the security parameter. We say that a function negl : N → N

is negligible if for every positive polynomial p(·) and all sufficiently large λ, it
holds that negl(λ) < 1

p(λ) . We write y := Alg(x; r) when the algorithm Alg on
input x and randomness r, outputs y. We write y ← Alg(x) for the process of
sampling the randomness r and setting y := Alg(x; r). We also write y ← S for
sampling y uniformly at random from the set S. We use the abbreviation PPT
to denote probabilistic polynomial-time. Let [n] denote the set {1, 2, . . . , n} for
some n ∈ N. For an NP relation R, we denote by L its associate language, i.e.
L = {x | ∃w s.t. (x,w) ∈ R}. We often write RL to denote the NP relation
whose associate language is L for short. We also use RL(x,w) = 1 to refer
to (x,w) ∈ RL. We say that two distribution ensembles X = {Xλ}λ∈N and
Y = {Yλ}λ∈N are identical (resp. computationally indistinguishable), denoted
by X ≡ Y (resp., X c≈ Y), if for any unbounded (resp., PPT) distinguisher D
there exists a negligible function negl(·) such that |Pr[D(Xλ) = 1]−Pr[D(Yλ) =
1]| = 0 (resp., negl(λ)). When we define a protocol/scheme in form of Π =
Π.{Alg-1, . . . ,Alg-n}, we use the notation Π.Alg-i to refer to the algorithm Alg-i
of Π where Alg-i ∈ {Alg-1, . . . ,Alg-n}.

2.2 Universal Composability

Canetti’s UC Framework. The UC framework proposed by Canetti [10] lays
down a solid foundation for designing and analyzing protocols secure against
attacks in an arbitrary network execution environment. Roughly speaking, in
the UC framework, a protocol Π is defined to be a computer program (or several

136 Z. Zhou et al.

programs) which is intended to be executed by multiple interconnected parties.
Every party is identified by the unique pair (pid, sid), where pid is the Program
ID (PID) and sid is the Session ID (SID). Let A be the adversary who can control
the network and corrupt the parties. When a party is corrupted, the adversary A
receives its private input and its internal state. We say a protocol is terminating if
it can terminate in polynomial time, and we only consider terminating protocols
in this work.

We call a protocol, the one for which we want to prove security, challenge
protocol. A challenge protocol Π is a UC-secure realization of a functionality
F , if it satisfies that for every PPT adversary A attacking an execution of Π,
there is another PPT adversary S—known as the simulator—attacking the ideal
process that interacts with F (by corrupting the same set of parties), such that
the executions of Π with A and that of F with S makes no difference to any
PPT network execution environment Z.

The Ideal World Execution. In the ideal world, the set of parties P =
{P1, . . . , Pn} only communicate with an ideal functionality F and the simu-
lator S. The corrupted parties are controlled by the simulator S. The output of
the environment Z in this execution is denoted by EXECF,S,Z .

The Real World Execution. In the real world, the set of parties P = {P1, . . . , Pn}
communicate with each other and the adversary A to run the protocol Π. The
corrupted parties are controlled by the adversary A. The output of the environ-
ment Z in this execution is denoted by EXECΠ,A,Z .

Definition 1. We say a protocol Π UC-realizes functionality F , if for any PPT
environment Z and any PPT adversary A there exists a PPT simulator S s.t.
EXECΠ,A,Z

c≈ EXECF,S,Z .

In order to conceptually modularize the design of the protocols, the notion
of “hybrid world” is introduced. A protocol Π is said to be realized “in the G
hybrid world” if Π invokes the ideal functionality G as a subroutine.

Definition 2. We say protocol Π UC-realizes functionality F in the G hybrid
world, if for any PPT environment Z and any PPT adversary A there exists a
PPT simulator S s.t. EXECG

Π,A,Z
c≈ EXECF,S,Z .

Furthermore, in the UC framework, the environment Z cannot have the direct
access to G, but it can do so through the adversary. Namely, in the real world,
the adversary A can access the ideal functionality G directly, and A queries G
for Z and forwards the answers; analogously, in the ideal world, Z can query G
through the simulator S. This implicitly means that G is local to the challenge
protocol instance. This allows the simulator S to simulate G in the ideal world
as long as it “looks” indistinguishable from G hybrid world.

Canetti et al’s GUC Framework. In Canetti’s UC framework, the environ-
ment Z is constrained: it cannot have the direct access to the setup. It means
that the setup is not global. This assumption might be impractical in real life

GUC-Secure Commitments via Random Oracles 137

applications where it is more plausible that there is a global setup published and
used by many protocols.

Motivated by solving problems caused by modeling setup as a local sub-
routine, Canetti et al. introduced Generalized UC (GUC) which can be used
for properly analyzing concurrent execution of protocols in the presence of
global setup [11]. In the GUC framework, the environment Z is unconstrained:
Z is allowed to access the setup directly without going through the simula-
tor/adversary and invoke arbitrary protocols alongside the challenge protocol.
Furthermore, the setup can be modeled as a shared functionality that can com-
municate with more than one protocol sessions. Let the output of the uncon-
strained PPT environment Z in the real world (resp. ideal world) execution be
denoted by GEXECΠ,A,Z (resp. GEXECF,S,Z).

Definition 3. We say a protocol Π GUC-realizes functionality F , if for any
unconstrained PPT environment Z and any PPT adversary A there exists a
PPT simulator S s.t. GEXECΠ,A,Z

c≈ GEXECF,S,Z .

Since the unconstrained environment Z is given a high-level of flexibility: Z
is allowed to invoke arbitrary protocols in parallel with the challenge protocol.
This makes it extremely hard to prove the GUC security. Therefore, a simplified
framework called Externalized UC (EUC) is introduced in [11]. In the EUC
framework, the environment Z has direct access to the shared functionality G
but does not initiate any new protocol sessions except the challenge protocol
session. We call such an environment is G-externalized constrained. We say a
protocol Π is G-subroutine respecting if it only shares state information via a
single shared functionality G. We take RO models as an example, and present
the comparison of basic UC, GUC and EUC in Fig. 2.

Definition 4. Let the protocol Π be G-subroutine respecting. We say a protocol
Π EUC-realizes functionality F with respect to shared functionality G, if for any
PPT G-externalized constrained environment Z and any PPT adversary A there
exists a PPT simulator S s.t. EXECG

Π,A,Z
c≈ EXECG

F,S,Z .

In [11], Canetti et al. showed that for any G-subroutine respecting protocol
Π, proving Π EUC-realizes F with respect to G is equivalent to proving Π GUC-
realizes F . Therefore, when we want to prove the GUC security of a protocol,
we always turn to EUC security for the sake of simplicity.

2.3 The Global Random Oracle Models

In this section, we review four well-known Global Random Oracle (GRO) mod-
els: (i) Global Strict Random Oracle (GSRO) model proposed by Canetti et al.
in [14], which does not give any extra power to anyone; (ii) Global Observable
Random Oracle (GORO) model2 proposed by Canetti et al. in [14], which grants

2 In [9], Camenisch et al. used the notations Restricted Observable Global Random
oracles (GroRO), Restricted Programmable Global Random Oracles (GrpRO) and

138 Z. Zhou et al.

Z

A

FRO

Π

Real
Z

A

FRO

Π

Ideal

F

S

(a) Basic UC: the simulator S simulates
the local FRO and has full control.

Z

A Π

Real

GRO

Z
A Π

Ideal

FS
GRO

(b) EUC: the global GRO is external to
the simulator, and the environment Z is
GRO-externalized constrained.

Z

A Π

Real

GRO

ρ1 ρ2 · · ·

Z
A Π

Ideal

FS
GRO

· · ·ρ1 ρ2

(c) GUC: the global GRO is external to the simulator, and the environment Z not only
has direct access to GRO, but also invokes arbitraty protocols ρ1, ρ2, · · · alongside the
challenge protocol Π.

Fig. 2. Comparison of basic UC, GUC and EUC.

the ideal world simulator access to the list of illegitimate queries (to be defined
later); (iii) Global Programmable Random Oracle (GPRO) model proposed by
Camenisch et al. in [9], which allows the simulator to program on unqueried
points without being detected; (iv) Global Programmable and Observable Ran-
dom Oracle (GPORO) model proposed by Camenisch et al. in [9], which provides
both programmability and observability. We present the relation of these mod-
els in Fig. 3, and the formal description of all the global random oracle models
mentioned above in Fig. 4.

The GSRO Model. The GSRO model GsRO is a natural extension of local RO
model FRO: as depicted in Fig. 4(a), upon receiving (Query, sid, x) from any
party, GsRO first checks if the query (sid, x) has been queried before. If not, GsRO

answers with a random value of pre-specified length, that is v ∈ {0, 1}�out(λ), and
records the tuple (sid, x, v); otherwise, the previously chosen value v is returned
again even if the earlier query was made by another party. The sad truth is that
Canetti et al. remarked that GsRO does not suffice to GUC-realizes commitment
functionality. Therefore, stronger variant global random oracle models are needed
to realize non-trivial functionalities.

The GORO Model. Compared to GsRO, the GORO model GoRO provides addition-
ally observability. More precisely, some of the queries can be marked as “illegit-

Restricted Observable and Programmable Global Random Oracles (GrpoRO). Here
we adopt the notations GORO, GPRO and GPORO which skips the “r” for the sake
of the simplicity as in [15].

GUC-Secure Commitments via Random Oracles 139

GpoRO

GsRO

GoROGpRO

obs
erv

abi
lity

obs
erv

abi
lity

programmability

programmability

observability
+

program
m

ability
Fig. 3. Relation of the global random oracle models

imate” and potentially disclosed to the simulator. As depicted in Fig. 4(b), the
GORO functionality GoRO interacts with a list of ideal functionality programs
F̄ = {F1, . . . ,Fn}, where F1, . . . ,Fn are the protocol functionalities (e.g., com-
mitment functionality, ZK functionality, etc.) that share the same global setup
GoRO. For any query (s, x) from any party P = (pid, sid) where s is the content of
the SID field, if s �= sid, then this query is considered “illegitimate”. After that,
GoRO adds the tuple (s, x, v) to the list of illegitimate queries for SID s, which
we denote as Qs. The illegitimate queries Qs may be disclosed to the instance
of ideal functionality whose SID is the one of the illegitimate queries. Then the
ideal functionality instance leaks the illegitimate queries to the simulator.

The GPRO Model. Compared to GsRO, the GPRO model GpRO additionally allows
simulator/adversary to program the global random oracle on unqueried points.
As depicted in Fig. 4(c), upon receiving (Program, sid, x, v) from the simula-
tor/adversary, GpRO first checks if (sid, x) has been queried before. If not, GpRO

stores (sid, x, v) in the query-answer lists. Any honest party can check whether a
point has been programmed or not by sending the (IsProgramed, sid, x) com-
mand to GpRO. Thus, in the real world, the programmed points can always be
detected. However, in the ideal world, the simulator S can successfully pro-
gram the random oracle without being detected since it can always return
(IsProgramed, sid, 0) when the adversary invokes (IsProgramed, sid, x) to
verify whether a point x has been programmed or not.

The GPORO Model. If we combine the GORO model and GPRO model together,
we obtain the GPORO model GpoRO which is depicted in Fig. 4(d). To the best of
our knowledge, the GPORO model is the most powerful GRO model that enables
efficient composable protocols in the GUC framework. For example, Camenisch
et al. gave an efficient non-interactive GUC-secure commitment protocol in the
GPORO model [9].

Remark 1. Camenisch et al. remarked that when one uses the (distinguishing)
environment in a cryptographic reduction, one can have full control over the

140 Z. Zhou et al.

The functionality interacts with a set of parties P = {P1, . . . , Pn} and an adversary S.
It is parameterized by the input/output length �in(λ) and �out(λ). It maintains an initially
empty list List.

– Query. Upon receiving (Query, s, x) from a party Pi ∈ P where Pi = (pid, sid), or the
adversary S:
• Find v such that (s, x, v) ∈ List. If there is no such v exists, select an uniformly

random v ∈ {0, 1}�out(λ) and record the tuple (s, x, v) in List.
• Return (QueryConfirm, s, v) to the requestor.

Shared Functionality GsRO

(a) The Global Strict Random Oracle Model GsRO

The functionality interacts with a set of parties P = {P1, . . . , Pn} and an adversary S. It
is parameterized by the input/output length �in(λ) and �out(λ), and a list of ideal function-
ality programs F̄ . It maintains an initially empty list List.

– Query. Same as GsRO depicted in Figure 4(a), except when sid �= s, add the tuple
(s, x, v) to the (initially empty) list of illegitimate queries for SID s, which we denote
by Qs.

– Observe. Upon receiving a request from an instance of an ideal functionality in the list
F̄ , with SID s, return to this instance the list of illegitimate queries Qs for SID s.

Shared Functionality GoRO

(b) The Global Observable Random Oracle Model GoRO

The functionality interacts with a set of parties P = {P1, . . . , Pn} and an adversary S. It
is parameterized by the input/output length �in(λ) and �out(λ). It maintains initially empty
lists List,Prog.

– Query. Same as GsRO depicted in Figure 4(a).
– Program. Upon receiving (Program, sid, x, v) with v ∈ {0, 1}�out(λ) from S:

• If ∃v′ ∈ {0, 1}�out(λ) such that (sid, x, v′) ∈ List and v �= v′, ignore this input.
• Set List := List ∪ {(sid, x, v)} and Prog := Prog ∪ {(sid, x)}.
• Return (ProgramConfirm, sid) to S.

– IsProgramed. Upon receiving (IsProgramed, sid′, x) from a party Pi or S:
• If the input was given by Pi = (pid, sid) and sid �= sid′, ignore this input.
• If (sid′, x) ∈ Prog, set b := 1; otherwise, set b := 0.
• Return (IsProgramed, sid′, b) to the requester.

Shared Functionality GpRO

(c) The Global Programmable Random Oracle Model GpRO

The functionality interacts with a set of parties P = {P1, . . . , Pn} and an adversary S. It
is parameterized by the input/output length �in(λ) and �out(λ), and a list of ideal function-
ality programs F̄ . It maintains initially empty lists List,Prog.

– Query/Observe. Same as GoRO depicted in Figure 4(b).
– Program/IsProgramed. Same as GpRO depicted in Figure 4(c).

Shared Functionality GpoRO

(d) The Global Programmable and Observable Random Oracle Model GpoRO

Fig. 4. The global random oracle models.

GUC-Secure Commitments via Random Oracles 141

shared functionality [9]. More precisely, as depicted in Fig. 5, the reduction algo-
rithm B simulates the complete view of the environment Z including the shared
functionality G, thus B has full control of G.

Z
A Π F
S

Simulated by B

Reduction B

G

Challenger C

Fig. 5. In order to play against the external challenger C, reduction algorithm B simu-
lates everything (marked as gray) including the shared functionality G, then starts the
protocol Π with the real world adversary A/environment Z by running A/Z internally
as black-box.

2.4 SHVZK Protocols

A 3-round public coin Special Honest Verifier Zero-Knowledge (SHVZK) pro-
tocol Π = Π.{Move1,Move2,Move3,Verify,Sim} allows a prover to convince a
verifier that a statement x is true with the aid of the witness w. In the first
round, the prover computes and sends the first flow message a := Move1(x,w; r)
using the statement-witness pair (x,w) and some random coin r. In the second
round, the verifier samples and sends a uniformly random public coin challenge
e ← Move2(1λ). In the last round, the prover computes the response to the chal-
lenge z := Move3(x,w, e; r) using the statement-witness pair (x,w), challenge e
and the random coin r. Finally the verifier accepts the statement x if and only
if Verify(x, a, e, z) = 1. We put the workflow of the SHVZK protocol in Fig. 6.
We often call (a, e, z) the transcript between the prover and the verifier.

Prover(x, w) Verifier(x)

a := Move1(x,w; r) a

e ← Move2(1λ)e

z := Move3(x, w, e; r) z

Output b := Verify(x, a, e, z)

Fig. 6. The workflow of the SHVZK protocol

142 Z. Zhou et al.

A SHVZK protocol should satisfy (i) perfect completeness, i.e. any honest
prover who holds the witness w such that (x,w) ∈ RL can always make the veri-
fier accept; (ii) k-special soundness, i.e. given any k distinct accepting transcripts,
we can always extract the witness w; (iii) Special Honest Verifier Zero-Knowledge
(SHVZK) property, i.e. given the challenge e ahead, there should be a PPT sim-
ulator algorithm Sim that takes the statement x, the challenge e and random
coin r as input, and outputs the simulated (a, z) which is indistinguishable from
the real one. The first property is easy to formalize. In order to formalize the
k-special soundness and SHVZK, we consider the following experiments:

Experiment exptk-SS
A,Π(λ):

1. A outputs a statement x along with k transcripts {(a, ei, zi)}i∈[k].
2. If ei �= ej where i �= j: extract the witness w′ from {(a, ei, zi)}i∈[k]

3. If (x,w′) ∈ RL, output 1; otherwise, output 0.
Denote by Advk-SS

A,Π(λ) := Pr[exptk-SS
A,Π(λ) = 1] the advantage of A.

Experiment exptSHVZK
A,Π (λ):

1. A outputs a statement-witness pair (x,w) along with a challenge e.
2. If (x,w) ∈ RL: select a random string r and a random bit b ∈ {0, 1},

and compute the following:
(a) If b = 0: a := Move1(x,w; r); z := Move3(x,w, e; r).
(b) If b = 1: (a, z) := Sim(x, e; r).

3. A is given (a, z) as input, and it outputs a guess bit b′ ∈ {0, 1}.
4. If b = b′, output 1; otherwise, output 0.

Denote by AdvSHVZK
A,Π (λ) :=

∣
∣Pr[exptSHVZK

A,Π (λ) = 1] − 1
2

∣
∣ the advantage of A.

Now we can formally define the SHVZK protocol.

Definition 5. We say a protocol Π = Π.{Move1,Move2,Move3,Verify,Sim} is
a SHVZK protocol if the following conditions hold:

1. (Perfect Completeness) For any (x,w) ∈ RL, we say it is perfect complete
if

Pr
[

a := Move1(x,w; r); e ← Move2(1λ);
z := Move3(x,w, e; r) : Verify(x, a, e, z) = 1

]

= 1

2. (k-Special Soundness) For any PPT adversary A, we say it has k-special
soundness where k ∈ N and k ≥ 2, if there exists a negligible function negl
such that Advk-SS

A,Π (λ) ≤ negl(λ).
3. (Special Honest Verifier Zero-Knowledge) We say it has SHVZK if

there exists a PPT simulator Sim such that for any PPT adversary A, there
exists a negligible function negl such that AdvSHVZK

A,Π (λ) ≤ negl(λ).

2.5 Straight-Line Extractable NIWH Argument in the RO Model

Witness Hiding (WH) interactive proofs were introduced by Feige and Shamir
in [21], and the Non-Interactive Witness-Hiding (NIWH) argument in the plain

GUC-Secure Commitments via Random Oracles 143

model can be found in [33]. We here discuss the NIWH argument in the ran-
dom oracle model. Note that, stronger security property such as (straight-line)
extractability can now be achieved in the random oracle model: an extraction
algorithm Ext could be constructed to extract the witness from a maliciously
generated and accepting proof. More concretely, in an NIWH argument in the
random oracle model Π = Π.{ProveO,VerifyO,Ext}, both the prover and the
verifier are allowed to query the random oracle O at any moment, during the
protocol execution. As in the plain model, the prover generates the proof π
using the statement-witness pair (x,w) and a random string r and sends π to
the verifier, and the verifier then verifies if the proof π is valid or not; the verifier
outputs a bit b indicating the acceptance or rejection. Formally, the Prove and
Verify algorithms in a NIWH argument in the RO model are described as follows:

– π := ProveO(x,w; r) takes input as a statement-witness pair (x,w) and a
random string r, and it is allowed to query the random oracle O. It outputs
a proof π. When r is not important, we use ProveO(x,w) for simplicity.

– b := VerifyO(x, π) takes input as a statement x and a proof π, and it is allowed
to query the random oracle O. It outputs a bit b indicating acceptance or
rejection.

The straight-line extractable NIWH argument should satisfy the perfect com-
pleteness, computational soundness, witness hiding and straight-line extractabil-
ity. The perfect completeness is trivial. The computational soundness means that
any PPT prover cannot convince the verifier that a false statement is true with
overwhelming probability. The last two properties are not to easy to formalize.
We first talk about the witness hiding property: given the proof π generated by
the prover, the verifier cannot compute any new witness that the verifier does
not know before the interaction. In order to formally define the witness hiding
property, we consider the following definition of hard instance ensembles [38].

Definition 6 (Hard Instance Ensembles). Let RL be an NP relation, and
L be its associate language, and X = {Xλ}λ∈N be a probability ensemble s.t. Xλ

ranges over L ∩ {0, 1}λ. We say that X is hard for NP relation RL if for any
PPT A and any x ∈ X , there exists a negligible function negl s.t. Pr[(x,A(x)) ∈
RL] = negl(λ).

Then we should consider the following experiment:

Experiment exptWH
A,Π(λ):

1. Select (x,w) ∈ RL, and compute π ← Prove(x,w).
2. A is given (x, π) as input, and it outputs w′.
3. If (x,w′) ∈ RL, output 1; otherwise, output 0.

Denote by AdvWH
A,Π(λ) := Pr[exptWH

A,Π(λ) = 1] the advantage of A.

We now describe how to define the straight-line extractability property; note
that our extractability definition is taken from that by Pass [38]. To enable the
extractability, typically, the extraction algorithm Ext can be developed by simu-
lating the random oracle for the prover and the verifier, and thus the algorithm

144 Z. Zhou et al.

Ext has full control of the random oracle. In this paper, we consider a much
more restricted random oracle, and the algorithm Ext is granted only with the
observability; that is, Ext is allowed to see the query-answer list of the random
oracle. For that reason, we write ExtO to indicate that, the extraction algorithm
Ext does not have the full control of the random oracle, and is only granted
to have the observability capability. With these notions above, we can formally
define the straight-line extractable NIWH arguments in the RO model.

Definition 7. Fix an NP relation RL whose associate language is L. Consider
a RO O. We say a protocol Π = Π.{Prove,Verify} is a NIWH argument for RL
in the RO model if the following condition holds:

1. (Perfect Completeness) For any (x,w) ∈ RL, we say it is perfect complete
if

Pr[π ← ProveO(x,w) : VerifyO(x, π) = 1] = 1

2. (Computational Soundness) For any x /∈ L, we say it is computational
sound if for any PPT adversary A, there exists a negligible function negl such
that

Pr[π∗ ← AO(x) : VerifyO(x, π∗) = 1] ≤ negl(λ)

3. (Witness Hiding) Let X = {Xλ}λ∈N be a hard instance ensemble RL. We
say it is witness hiding for RL under the instance ensemble X if for any
PPT adversary A and any (x,w) ∈ RL with x ∈ X , there exists a negligible
function negl s.t. AdvWH

A,Π(λ) ≤ negl(λ). We say it is witness hiding for RL
if it is witness hiding under all hard-instance ensembles X for RL.

4. (Straight-line Extractability) For any x ∈ L, we say it is straight-line
extractable if for any PPT adversary A,

Pr
[

π∗ ← AO(x); b := VerifyO(x, π∗);
w∗ ← ExtO(x, π∗)

: b = 1 ∧ (x,w∗) ∈ RL

]

≥ 1 − negl(λ)

2.6 Equivocal Commitment

Typically, an equivocal commitment scheme Π = Π.{KeyGen,KeyVer,Commit,
ComVer,EquCom,Equiv} allows the committer to generate the commitment c to
any value m using the commitment key ck and the randomness r. Later, the
committer can open c to m by sending the opening d to the receiver who verifies
it. Furthermore, if the committer obtains the trapdoor td with respect to the ck,
he can generate the equivocal commitment c̃, later open c̃ to any message m̃.
Formally, the equivocal commitment has the following algorithms:

– (ck, td) ← KeyGen(1λ) takes input as the security parameter λ, and outputs
a commitment key ck and the trapdoor td.

– b := KeyVer(ck, td) takes input as a commitment key ck and a trapdoor td. It
outputs a bit b indicating acceptance or rejection.

– (c, d) := Commit(ck,m; r) takes input as a commitment key ck, a message m
and a randomness r. It outputs the commitment c and the opening d. We
assume that there exists a deterministic algorithm that can extract m from
d. When r is not important, we use Commit(ck,m) for simplicity.

GUC-Secure Commitments via Random Oracles 145

– b := ComVer(ck, c, d) takes input as a commitment key ck, and a commitment-
opening pair (c, d). It outputs a bit b indicating acceptance or rejection.

– (c̃, st) := EquCom(ck, td; r) takes input as a commitment key ck, a trapdoor
td, and a randomness r. It outputs a commitment c̃ and a state st. When r
is not important, we use EquCom(ck, td) for simplicity.

– d̃ := Equiv(ck, td, c̃, st, m̃) takes input as a commitment key ck, a trapdoor td,
a commitment c̃, a state st, and an arbitrary message m̃ for which equivoca-
tion is required. It outputs an opening d̃.

The equivocal commitment requires the following properties: perfect correct-
ness, perfect hiding, computational binding and equivocation. Perfect correctness
means that the honest committer can always make the receiver accept. Perfect
hiding means that the commitment reveals nothing about the message.

Experiment expthiding
A,Π (λ):

1. Run (ck, td) ← KeyGen(1λ).
2. A is given ck as input, and it outputs two distinct messages m0,m1.
3. Select a random bit b ∈ {0, 1}, and compute c ← Commit(ck,mb).
4. A is given mb as input, and it outputs a bit b′.
5. If b′ = b, output 1; otherwise, output 0.

Denote by Advhiding
A,Π (λ) :=

∣
∣
∣Pr[expthiding

A,Π (λ) = 1] − 1
2

∣
∣
∣ the advantage of A.

Computational binding means that it is infeasible for the PPT committer to
output the commitment c that can be opened in two different ways.

Experiment exptbinding
A,Π (λ):

1. Run (ck, td) ← KeyGen(1λ).
2. A is given ck as input, and it outputs (c, d0, d1).
3. If d0 �= d1 and ComVer(ck, c, d0) = ComVer(ck, c, d1) = 1 holds,

output 1; otherwise, output 0.
Denote by Advbinding

A,Π (λ) := Pr[exptbinding
A,Π (λ) = 1] the advantage of A.

Equivocation means that given the trapdoor td, one can open a previously con-
structed commitment c of message m to other message m̃ �= m.

Experiment exptequivocal
A,Π (λ):

1. A is given 1λ as input, and it outputs (ck, td, m).
2. If KeyVer(ck, td) = 1: select a random string r and a random bit b ∈ {0, 1},

and compute the following:
(a) If b = 0: invoke (c, d) := Commit(ck, m; r).
(b) If b = 1: invoke (c, st) := EquCom(ck, td; r); d := Equiv(ck, td, c̃, st, m).

3. A is given (c, d) as input, and it outputs a bit b′.
4. If b = b′, output 1; otherwise, output 0.

Denote by Advequivocal
A,Π (λ) :=

∣
∣
∣Pr[exptequivocal

A,Π (λ) = 1] − 1
2

∣
∣
∣ the advantage of A.

Now we can formally define the equivocal commitment, and it should satisfy
the following definition:

146 Z. Zhou et al.

Definition 8. We say a scheme Π = Π.{KeyGen,KeyVer,Commit,ComVer,
EquCom,Equiv} is an equivocal commitment if the following conditions hold:

1. (Perfect Correctness) For any message m, we say it is perfect correct if

Pr[(ck, td) ← KeyGen(1λ); (c, d) ← Commit(ck,m) : ComVer(ck, c, d) = 1] = 1

2. (Perfect Hiding) We say it is perfect hiding if for any adversary A s.t.
Advhiding

A,Π (λ) = 0.
3. (Computational Binding) We say it is computational binding if for any

PPT adversary A, there exists a negligible function negl s.t. Advbinding
A,Π (λ) ≤

negl(λ).
4. (Equivocation) We say it is equivocal if for any PPT adversary A, there

exists a negligible function negl s.t. Advequivocal
A,Π (λ) ≤ negl(λ).

2.7 “MPC-in-the-Head” Paradigm

In [30], Ishai et al. proposed the famous “MPC-in-the-head” paradigm from
which we can construct a SHVZK protocol using the MPC protocol. Before
introducing the details of the paradigm, we have to define the MPC protocol.

Consider a function f : ({0, 1}λ)n+1 → {0, 1}λ. We let P1, . . . , Pn be n parties
modeled as PPT interactive machines. Assume that each party Pi holds a private
input wi ∈ {0, 1}λ and a public input x ∈ {0, 1}λ, and wants to compute y =
f(x,w), where w = (w1, . . . , wn). They communicate with each other using
point-to-point secure channels (e.g. encrypted channels or OT channels) in the
synchronous model. The parties jointly run a secure Multi-Party Computation
(MPC) protocol ΠMPC. The protocol ΠMPC is specified via the next-message
functions: there are multiple communication rounds, and in each round the party
Pi sends into the channel a message that is computed as a deterministic function
of the internal state of Pi (including private input wi and random tape ki) and the
messages that Pi has received in the previous rounds. We denote by viewi(x,wi)
the view of Pi, which is the concatenation of the inputs x,wi, the random tape ki

and all the messages received by Pi during the execution of ΠMPC. Each secure
channel defines a relation of consistency between views. For instance, in the
plain model, we say viewi(x,wi) and viewj(x,wj) are consistent if the outgoing
messages in viewi(x,wi) are identical to the incoming messages in viewj(x,wj)
and vice versa. Finally, all the views should yield the same output y, i.e. there
are n functions Πf,1, . . . , Πf,n such that y = Πf,i(viewi(x,wi)) for all i ∈ [n]. We
note that, for our purpose of use, we require that every party Pi in the honest
execution of ΠMPC has the same output y; while in the general case, the output
of Pi can be different from each other.

In this work, we only consider security of MPC protocols in the semi-honest
model. In the semi-honest model, the corrupted parties follow the instructions
of the protocol, but are curious about the private information of other parties.
Thus, the protocol needs to be designed in such a way that a corrupted Pi cannot
infer information about wj from its view viewi(x,wi), where j �= i.

GUC-Secure Commitments via Random Oracles 147

We denote by viewT (x,w1, . . . , wn) the joint view of players in set T ⊂ [n] for
the execution of ΠMPC on input (x,w1, . . . , wn). Consider a PPT simulator algo-
rithm Sim that given the set T ⊂ [n], the output of ΠMPC on input (x,w1, . . . , wn)
(i.e. f(x,w1, . . . , wn)), and the input of parties in T (i.e. (x, (wi)i∈T)), it can out-
put the simulated joint view of players in set T for the execution of ΠMPC on
input (x,w1, . . . , wn) which we denote by Sim(T, x, (wi)i∈T , f(x,w1, . . . , wn)).
With these notations, we have the following definition.

Definition 9. We say an n-party protocol ΠMPC realizes f in the semi-honest
model, if the following conditions hold:

1. (Perfect Correctness) For any inputs x,w = (w1, . . . , wn) and any random
tape, we say ΠMPC realizes f with perfect correctness if ∀i ∈ [n] : Pr[y =
Πf,i(viewi(x,wi))] = 1.

2. (t-Privacy) Let 1 ≤ t < n. We say ΠMPC realizes f with t-privacy if it
is perfect correct and for every set of corrupted parties T ⊂ [n] satisfying
|T | ≤ t, there exists a PPT simulator Sim such that

viewT (x,w1, . . . , wn) ≡ Sim(T, x, (wi)i∈T , f(x,w1, . . . , wn))

Now we can introduce the “MPC-in-the-head” paradigm. Let f be the fol-
lowing (n + 1)-argument function corresponding to an NP relation RL, that is,
f(x,w1, . . . , wn) = RL(x,w1 ⊕ · · · ⊕ wn). Here x is a public input known to all
parties, wi is the private input of party Pi, and the output is received by all
parties. In a high-level description, the main idea is for the prover to simulate
the execution of a t-private n-party MPC protocol that realizes f . Then the
prover employs a statically binding commitment to commit to all views of the
parties and sends them to the verifier. After that, the verifier chooses a random
subset of the parties, where the size of the subset equals t, and asks the prover
to open their corresponding views. Finally the verifier accepts the statement if
and only if (i) the commitments are correctly opened and (ii) the opened views
are consistent with each other. See more details in [30].

3 Impossibility in the GORO Model

In this section, we show that it is impossible to construct 2-round GUC-secure
commitment protocols (one round for the committing phase and one round the
for the opening phase) in the GoRO hybrid world against static adversaries. We
first provide the formal description of transferable commitment functionality
FtCOM from [14] in Fig. 7. The main difference with the traditional commitment
functionality is that in FtCOM, the simulator can request the list of the illegitimate
queries from FtCOM. If we use the traditional commitment functionality which
has no such power in the GoRO hybrid world, the simulator will have no advantage
over others at all. This is one of the reasons why transferable ideal functionalities
were designed in the presence of the GoRO model, and we refer interesting readers
to see more discussions in [14].

148 Z. Zhou et al.

The functionality interacts with two parties C, R and an adversary S.

– Upon receiving (Commit, sid, C, R, m) from C, do:
• Record the tuple (sid, C, R, m), and send (Receipt, sid, C, R) to R and S.
• Ignore any subsequent Commit command.

– Upon receiving (Decommit, sid, C, R) from C, do:
• If there is a tuple (sid, C, R, m) recorded, send (Decommit, sid, C, R, m) to R and S,

and halt.
• Otherwise, ignore the message.

– When asked by the adversary S, obtain from GoRO the list of illegitimate queries Qsid

that pertain to SID sid, and send Qsid to the adversary S.

Functionality FtCOM

Fig. 7. The transferable functionality FtCOM for commitment

We prove this impossibility by contradiction. Suppose that there exists such
a 2-round GUC-secure protocol. Let us first consider the case where the receiver
is corrupted, the simulator needs to produce an equivocal commitment without
knowing the plaintext in the committing phase, and later open it to any given
message (a.k.a. the plaintext) in the opening phase. We observe that the receiver
does not need to send any message during the 2-round protocol execution, thus
when the receiver is controlled by adversary, the corrupted receiver can delay all
its GoRO queries until it receives the opening message. In this case, the simulator
cannot obtain the illegitimate queries of the corrupted receiver before produc-
ing the equivocal commitments, and thus has no advantages over the real world
adversary. If the simulator still succeeds to produce the equivocal commitments
even if it has no illegitimate queries, then distinctions will be revealed when
the adversary performs the following attacks. The adversary corrupts the com-
mitter, and instructs the committer to run the simulator algorithm mentioned
above to generate the commitment message. In this case, where the committer is
corrupted, the receiver/simulator needs to extract the plaintext from this com-
mitment message. However, the entire computation of the commitment message
is totally independent of the plaintext, thus with high probability the simulation
would fail. Formally, we prove this impossibility through Theorem 1.

Theorem 1. There exists no terminating 2-round (one round for commitment
phase and one round for decommitment phase) protocol Π that GUC-realizes
FtCOM depicted in Fig. 7 with static security, using only the shared functionality
for global observable random oracle GoRO.

Proof. Suppose there exists such a protocol Π that GUC-realizes FtCOM in
the GoRO hybrid world. Then there must exist a PPT simulator S such that
EXECGoRO

FtCOM,S,Z
c≈ EXECGoRO

Π,A,Z for any PPT adversary A and any PPT GoRO-
externally constrained environment Z.

In particular, let us first consider the protocol session with SID sid1, and let
A be a dummy adversary that simply forwards protocol flows between corrupt
parties and the environment Z. Let Z corrupt the receiver R∗ at first. Then Z
chooses a random bit b ∈ {0, 1} and gives it as the input to the honest committer

GUC-Secure Commitments via Random Oracles 149

C. After that, Z waits for C to send the commitment ψ. Next, Z lets C reveal
the committed value b′. If b = b′, Z outputs 1; otherwise, Z outputs 0.

In order to make the GUC experiments above remain indistinguishable, the
simulator S needs to build an equivocal commitment ψ̃ without knowing b in
the committing phase, where ψ̃ is computational indistinguishable from the real
commitment ψ; later in the opening phase, S obtains b from FtCOM and needs
to open the previously sent commitment ψ̃ to b. For notation convenience, we
write S = (S1,S2) to split the simulator algorithm in two phases: (i) S1 works
in the committing phase, and it needs to output an equivocal commitment ψ̃
without knowing b; (ii) while S2 works in the opening phase, and upon receiving
the message b from FtCOM, it needs to output the opening message r such that
(b, r) correctly opens the previously sent commitment ψ̃.

We first describe the simulation strategy in the committing phase. Recall
that, the main advantage of the simulator over the others is that it can obtain
illegitimate queries of R∗. More precisely, S1 can request the illegitimate queries
Qsid1 from the commitment functionality FtCOM who forwards this request to
GoRO. The simulator S1 also can query GoRO just like normal parties. In order to
describe the process of querying to GoRO, we denote by G∗

oRO the simplified version
of the GoRO, that is, the GoRO with only the Query interface. We write SG∗

oRO
1

to denote the event that S1 has the query access to GoRO and can continuously
query to GoRO. With above notations, we will write SG∗

oRO
1 (sid1,Qsid1) to denote

the output (i.e., the equivocal commitment ψ̃ and the state st) produced by
S1 after querying to GoRO, when running on the illegitimate queries Qsid1 sent
by R∗. We note that, S1 should be able to handle any PPT environment Z.
Consider such a case where Z instructs R∗ to delay all its GoRO queries until it
receives the opening message. In this case, S1 finds nothing sent by R∗ in Qsid1 ,
but should still be able to produce the equivocal commitment ψ̃. In other words,
the algorithm (ψ̃, st) ← SG∗

oRO
1 (sid1,Qsid1) still works when Qsid1 = ∅, where ∅ is

an empty set; otherwise, the environment Z will find the distinction. We note
that, the algorithm SG∗

oRO
1 (sid1, ∅), i.e. we replace the Qsid1 with the empty set

∅, can be run by any party, since the algorithm only makes use of the Query
interface and anyone can query to GoRO. Now let us turn to the opening phase.
Analogously, we can write r ← SG∗

oRO
2 (sid1, ψ̃, st, b, ∅) to denote the event where

S2 can still open ψ̃ to the value b and the corresponding opening message r after
querying to GoRO, even if there is noting sent by R∗ in the list of the illegitimate
queries (i.e. Qsid1 = ∅). We note that, even if we switch to a session with a
different SID, both SG∗

oRO
1 (sid1, ∅) and SG∗

oRO
2 (sid1, ψ̃, st, b, ∅) still work as long as

the appropriate inputs are provided.
In the following, we show that the existence of the simulator S = (S1,S2)

above contradicts the security of Π against static corruptions, by creating a
particular environment Z ′ which succeeds in distinguishing EXECGoRO

FtCOM,S′,Z′ from
EXECGoRO

Π,A′,Z′ after a static corruption operation for any PPT simulator S ′. Let us
consider the session with SID sid2. Our Z ′ proceeds by corrupting the committer
C∗ at first, and then choosing a random bit b ∈ {0, 1} which it gives as the input

150 Z. Zhou et al.

to C∗. Next Z ′ instructs C∗ to run the algorithm (ψ̃, st) ← SG∗
oRO

1 (sid2, ∅) and
send ψ̃ to R. When R outputs (Receipt, sid2, C,R), Z ′ instructs C∗ to run the
algorithm r ← SG∗

oRO
2 (sid2, ψ̃, st, b, ∅) and send (b, r) to R. Finally Z ′ waits for R

to output b′. In the real world, R always outputs b′ = b. In the ideal world, S ′

should determine the committed value b′ from ψ̃ in the committing phase. This
means that in the ideal world, we must have that b′ = b with probability at most
1
2 , since the entire computation of ψ̃ is totally independent of b. Therefore, Z ′

can distinguish between the real world and the ideal world with probability at
least 1

2 , contradicting our assumption that Π is GUC-secure.

4 Feasibility in the GORO Model

In this section, we propose a 3-round (2 rounds for the committing phase
and 1 round for the opening phase) GUC-secure commitment protocol in the
GoRO hybrid world, assuming the straight-line extractable NIWH arguments and
perfect-hiding non-interactive equivocal commitment schemes exist. Then we
instantiate the building blocks using only Minicrypt assumptions in the GoRO

hybrid world. Therefore, our GUC-secure commitment protocol can be con-
structed via Minicrypt in the GoRO hybrid world. Since we prove that it is impos-
sible to construct 2-round GUC-secure commitments in the GoRO hybrid world
in Theorem 1, we stress that our construction is round-optimal.

4.1 Our GUC-Secure Commitment Construction

Recall that a GUC-secure commitment protocol requires two main properties: (i)
Equivocality: when the receiver is corrupted, the simulator should be able to pro-
duce equivocal commitments that can open to any value later; (ii) Extractability:
when the committer is corrupted, the simulator should be able to extract the
committed value from the commitment.

The GoRO directly provides the desired extractability. Then we have to design
a protocol that captures the equivocality. A natural approach is to employ the
perfect-hiding non-interactive equivocal commitments. More precisely, we let the
receiver generate the commitment key and send it to the committer in the first
round; and then let the committer commit to the message using the equivo-
cal commitment scheme. In order to provide extractability, we let the commit-
ter query the GoRO on the opening message of the commitment message above.
Then we require the committer to commit to the answer of the GoRO via another
instance of the equivocal commitment scheme. The committer sends all the com-
mitment messages in the second round. The opening phase just takes one round,
namely, the committer sends all the opening messages.

The only thing left is to provide the simulator with the advantage of getting
the equivocation trapdoor over the others. Our solution is to let the receiver
execute the straight-line extractable NIWH argument in the GoRO hybrid world
which proves the knowledge of the equivocation trapdoor with respect to the
commitment key. The receiver is required to send the proof along with the

GUC-Secure Commitments via Random Oracles 151

commitment key in the first round. Subsequently, the simulator can invoke the
straight-line extractor to obtain the equivocation trapdoor.

We denote committer algorithm as C and receiver algorithm as R. We denote
the event where queries GoRO on input x and gets the answer y as y := oRO(x).
We assume ideal private and authenticated channels for all communications.
Formally, we present our protocol ΠtCOM in Fig. 8 and prove the security through
Theorem 2.

Primitives: Straight-line extractable NIWH argument in the GoRO hybrid world ΠNIWH =
ΠNIWH.{ProveGoRO ,VerifyGoRO , ExtGoRO}, non-interactive equivocal commitment ΠECom =
ΠECom.{KeyGen,KeyVer,Commit,ComVer, EquCom, Equiv}.
Inputs: C has a private input m ∈ {0, 1}λ. R has no input.

Committing Phase: This phase consists of 2 rounds.

– Round 1: R works as follows:
• Generate the parameters of the commitment by invoking (ck, td) ← ΠECom.KeyGen(1λ).
• Compute the straight-line extractable NIWH proof by invoking

π ← ΠNIWH.ProveGoRO (ck, td) for proving the knowledge of td. Send (ck, π) to C.
– Round 2: C works as follows:

• Abort if ΠNIWH.VerifyGoRO (ck, π) = 0.
• Commit to the message m by invoking (c1, d1) ← ΠECom.Commit(ck, m).
• Compute h := oRO(sid, ‘C’||m||d1||r) where r ← {0, 1}λ.
• Commit to h by invoking (c2, d2) ← ΠECom.Commit(ck, h). Send (c1, c2) to R.

Opening Phase: This phase consists of 1 round.

– Round 3: C sends (m, d1, d2, r) to R.
– R computes h := oRO(sid, ‘C’||m||d1||r), and accepts m if and only if

ΠECom.ComVer(ck, c1, d1) = ΠECom.ComVer(ck, c2, d2) = 1 holds.

Protocol ΠtCOM

Fig. 8. Protocol ΠtCOM in the GoRO hybrid world

Theorem 2. Assume ΠNIWH is a straight-line extractable NIWH argument in
the GoRO hybrid world. Assume ΠECom is an equivocal commitment scheme. Then
the protocol ΠtCOM described in Fig. 8 GUC-realizes the functionality FtCOM

depicted in Fig. 7 in the GoRO hybrid world against static malicious corruption.

Proof. We leave the proof in the full version.

4.2 Instantiation of the Building Blocks

There are two building blocks, i.e. straight-line extractable NIWH arguments
and perfect-hiding non-interactive equivocal commitment schemes, in our con-
struction. In this section, we show how to instantiate them using only Minicrypt
assumptions in the GoRO hybrid world. We start by constructing a SHVZK pro-
tocol, since it is needed in both building blocks.

152 Z. Zhou et al.

SHVZK Protocols from “MPC-in-the-Head”. We here aim to construct
a SHVZK protocol using only Minicrypt assumptions in the GoRO hybrid world.
Our starting point is the “MPC-in-the-head” paradigm introduced in Sect. 2.7.

Note that our construction requires an SHVZK protocol with 2-special sound-
ness (, which we will explain the necessity later in Sect. 4.2); unfortunately, to
the best of our knowledge, none of the followups [1,16,19,25,31] since the orig-
inal work of [30], can lead to a 2-special sound protocol under only Minicrypt
assumptions. Therefore, we need to design a new technique approach that trans-
forms a MPC protocol into a SHVZK protocol with 2-special soundness.

Our Starting Point: [31]. We start with the 5-round SHVZK protocol proposed
by Katz et al. in [31] which is based on only Minicrypt assumptions. In the
high-level description, Katz et al. employed the (n − 1)-private n-player MPC
protocol in the preprocessing model and let the verifier provide its challenges
in two phases: one for checking the correctness of the opened preprocessing
executions, and the other for checking the consistency of the opened views.
Roughly speaking, the 5-round protocol of Katz et al. works as follows:

– Round 1: The prover simulates m independent executions of the preprocessing
phase, and commits to the states of the parties which can be obtained at the
end of the preprocessing phase.

– Round 2: The verifier samples an uniform random challenge c ∈ [m] and asks
the prover to open the views of all the executions of the preprocessing phase
except the c-th one.

– Round 3: The prover opens the states of all parties for each challenged execu-
tion of preprocessing phase. Beside that, the prover simulates the execution
of ΠMPC that checks RL(x,w) = 1 using the remaining unopened execution of
the preprocessing phase. The prover then commits to each view of the parties.

– Round 4: The verifier samples an uniform random challenge p ∈ [n] and asks
the prover to open all the views of the parties except the p-th one.

– Round 5: The prover reveals the states of each challenged party following
the preprocessing phase as well as its views in the execution of ΠMPC. The
verifier checks that the opened views are consistent with each other and with
an honest execution of ΠMPC (using the states from the preprocessing phase)
that yields the output 1.

In [31], Katz et al. compressed the above 5-round protocol into a 3-round one
by the following approach: (i) let the prover simulate the execution of ΠMPC for
every emulation of the preprocessing phase and commit to all the resulting views
as well as the states; (ii) let the verifier send its challenge (c, p), and asks the
prover to open all the states except the c-th one of the preprocessing phase as
well as all the views except the p-th one from the unopened preprocessing phase.
We recall the formal 3-round SHVZK protocol of Katz et al. in the full version of
our paper. We emphasize that the 3-round SHVZK protocol proposed by Katz
et al. cannot be 2-special sound, and we argue this through Proposition 1.

Proposition 1. Assume the n-party MPC protocol ΠMPC is (n − 1)-private in
the preprocessing model. Let m be the number of executions of preprocessing
phase, where m ≥ 2. The 3-round SHVZK protocol described in [31]:

GUC-Secure Commitments via Random Oracles 153

– cannot achieve k-special soundness, for k ≤ m.
– can achieve k-special soundness, for k ≥ m + 1.

Proof. We leave the proof in the full version.

Our Protocol Construction. Our key observation is that we can compress the
above 5-round protocol into a 3-round one by applying the Fiat-Shamir trans-
formation [22] to replace Round 2. Therefore, Round 1 and Round 3 can be
merged, and we obtain a 3-round protocol with 2-special soundness. We can
regard the first round of the resulting 3-round protocol as a “non-interactive
proof” that proves the correctness of the execution of the preprocessing phase,
but its soundness error is not negligible (i.e., 1

m , where m is the number of
the executions of preprocessing phase). This issue can be addressed by apply-
ing parallel repetition. Compared with the approach of [31], our approach needs
additional RO assumptions but it is an SHVZK protocol with 2-special sound.

Primitives: n-party MPC protocol ΠMPC which realizes f with (n − 1)-privacy in the pre-
processing model, where f(x, w1, . . . , wn) = RL(x, w1 ⊕ · · · ⊕ wn).
Random Oracles: oRO1 : {0, 1}�in(λ) → {0, 1}� and oRO2 : {0, 1}�in(λ) → (Z+

m+1)
λ

Inputs: P, V have a common input x. P has a private input w s.t. RL(x, w) = 1.

– Move1(x, w; r):
• For i ∈ [λ], j ∈ [m]:

∗ Derive λ-bit random seedi,j from randomness r and generate
{statei,j,k}k∈[n] ← Preprocess(seedi,j).

∗ For k ∈ [n]: select ri,j,k ← {0, 1}λ and commit to the states, i.e. compute
state-commitments comi,j,k := oRO1(sid, statei,j,k||ri,j,k).

• Compute (c1, . . . , cλ) := oRO2(sid, {comi,j,k}i∈[λ],j∈[m],k∈[n]), where ci ∈ [m].
• For i ∈ [λ]:

∗ Simulate the execution of ΠMPC using (x, w) and the states generated by the ci-th
preprocessing phase (i.e., {statei,ci,k}k∈[n]), and output the views of the parties
{viewi,k(x, wk)}k∈[n].

∗ For k ∈ [n]: select r̃i,k←{0, 1}λ and commit to the view of each party, i.e.
compute view-commitments c̃omi,k := oRO1(sid, viewi,k(x, wk)||r̃i,k).

• Send a := ({comi,j,k, c̃omi,k}i∈[λ],j∈[m],k∈[n], {statei,j,k, ri,j,k}i∈[λ],j∈[m]\{ci},k∈[n]).
– Move2(1λ): Send e := (p1, . . . , pλ), where pi ∈ [n] and pi is uniformly random.
– Move3(x, w, e; r): Send z := ({viewi,k(x, wk), r̃i,k, statei,ci,k, ri,ci,k}i∈[λ],k∈[n]\{pi}).
– Verify(x, a, e, z): Output 1 if and only if the following checks pass:

• Check the commitments are opened correctly:
∗ For i ∈ [λ], j ∈ [m] \ {ci}, k ∈ [n]: check comi,j,k = oRO1(sid, statei,j,k||ri,j,k) holds.
∗ For i ∈ [λ], k ∈ [n] \ {pi}: check comi,ci,k = oRO1(sid, statei,ci,k||ri,ci,k) and

c̃omi,k = oRO1(sid, viewi,k(x, wk)||r̃i,k) hold.
• Check the correctness of the executions of the preprocessing phase:

∗ Compute (c1, . . . , cλ) := oRO2(sid, {comi,j,k}i∈[λ],j∈[m],k∈[n]).
∗ For i ∈ [λ], j ∈ [m] \ {ci}: check {statei,j,k}k∈[n] are well-formed.

• Check the consistency between the opened views:
∗ For i ∈ [λ], k ∈ [n] \ {pi}: check viewi,k(x, wk) follows from the statei,ci,k correctly

and viewi,k(x, wk) yields output 1.
∗ For i ∈ [λ]: check {viewi,k(x, wk)}k∈[n]\{pi} are consistent with each other.

Protocol ΠSHVZK

Fig. 9. Protocol ΠSHVZK in the GoRO hybrid world

154 Z. Zhou et al.

Let ΠMPC be the n-party MPC protocol which realizes f with (n−1)-privacy
in the preprocessing model, where f(x,w1, · · · , wn) = RL(x,w1 ⊕ · · ·⊕wn). Let
Preprocess be the preprocessing algorithm that takes a λ-bit random string seed
as input, and outputs the states {state}i∈[n] which are used for the computation
later (cf. [31] for details). We use the GoRO to instantiate the statically binding
commitment (i.e., to commit msg with random string r, we use the answer of the
GoRO on input (msg, r) as the commitment and reveal (msg, r) as the opening).
We denote the event where queries GoROi

on input x and gets the answer y as
y := oROi(x) for i ∈ {1, 2} in the context, where oRO1 : {0, 1}�in(λ) → {0, 1}� and
oRO2 : {0, 1}�in(λ) → (Z+

m+1)
λ. We denote by m the number of the executions of

the preprocessing phase. Formally, we present our protocol ΠSHVZK in Fig. 9 and
prove the security through Theorem 3.

Theorem 3. Assume ΠMPC is a secure n-party protocol that realizes fR with
perfect (n − 1)-privacy, where f(x,w1, · · · , wn) = RL(x,w1 ⊕ · · · ⊕ wn). Then
the protocol ΠSHVZK depicted in Fig. 9 is a SHVZK protocol that satisfies perfect
completeness, 2-special soundness, perfect SHVZK.

Proof. We leave the proof in the full version.

PerfectHidingNon-interactive Equivocal Commitment. Given a SHVZK
protocol, we can obtain a perfect-hiding non-interactive equivocal commitment.
The intuition is as follows. Let RL be a hard NP relation. The receiver selects
(x,w) ∈ RL, and sets x as the commitment key and w as the equivocation trap-
door. The message m is used as the challenge on which to run the simulator for
the SHVZK protocol with respect to x, producing the prover’s first flow a and
the response z. The first flow a is used as the commitment. The message m and
response z are used as the opening. Equivocation is achieved by using the knowl-
edge of w to execute the honest prover algorithm instead of the simulator algo-
rithm. Similar ideas can be found in [18,35].

Let g be a one-way function; note that, due to the limit of space, we do
not give the formal definition of one-way function, and we refer readers to see
the definition in [32]. Formally, we present our non-interactive equivocal com-
mitment in Fig. 10 and prove the security through Theorem 4. The proof of
computational binding relies on the 2-special soundness, and this explains the
reason why 2-special soundness is necessary in Sect. 4.2. We instantiate the NP
relation with one-way function, i.e. R1 = {(y, seed) | y = g(seed)} where (y, seed)
is the statement-witness pair and g is a one-way function. If we use our SHVZK
protocol ΠSHVZK depicted in Fig. 9 as the building block, then we can obtain a
perfect hiding non-interactive equivocal commitment scheme via only Minicrypt
assumptions in the GoRO hybrid world.

Theorem 4. Assume ΠSHVZK is a 2-special sound SHVZK protocol. Assume g
is a one-way function. Then ΠECom depicted in Fig. 10 is an equivocal commit-
ment that satisfies perfect correctness, perfect hiding, computational binding and
perfect equivocation.

Proof. We leave the proof in the full version.

GUC-Secure Commitments via Random Oracles 155

Primitives: SHVZK protocol ΠSHVZK = ΠSHVZK.{Move1,Move2,Move3,Verify, Sim} and one-
way function g.

– KeyGen(1λ) : Select a random string seed ← {0, 1}λ, compute y := g(seed), and output
ck := y, td := seed.

– KeyVer(ck, td) : Check if ck = g(td) holds. If so, output 1; otherwise, output 0.
– Commit(ck, m) : Select a random string r ← {0, 1}λ, invoke (a, z) := ΠSHVZK.Sim(ck, m; r),

and output c := a, d := (m, z).
– ComVer(ck, c, d) : Check if ΠSHVZK.Verify(ck, c, m, z) = 1 holds. If so, output 1; otherwise,

output 0.
– EquCom(ck, td) : Select a random string s ← {0, 1}λ, invoke ã := ΠSHVZK.Move1(ck, td; s),

and output c̃ := ã, st := s.
– Equiv(ck, td, c̃, st, m̃) : Invoke z̃ := ΠSHVZK.Move3(ck, td, m̃; st), and output d̃ := z̃.

Scheme ΠECom

Fig. 10. Scheme ΠECom based on one-way function

Straight-Line Extractable NIWH Argument. We construct the straight-
line extractable NIWH argument in the GoRO hybrid world using the technique
described in [38]. We here describe the high-level description and the details can
be found in the full version of our paper. Given a SHVZK protocol with 2-special
soundness, we let the prover execute the honest prover algorithm to obtain the first
flow message. Fixing this first flow message, we let the prover pick two distinct ran-
dom challenges and compute the corresponding responses. Then the prover com-
mits to the response by querying GoRO and using the answer as the commitment.
Next the prover sends the first flow message along with all the challenges and the
commitments to the verifier. After that, the verifier asks the prover to open one
commitment. Finally the verifier receives the response, and checks if the corre-
sponding transcript is valid. The soundness error of the protocol described above
is 1

2 , and it can be reduced by parallel repetitions. We also apply Fiat-Shamir trans-
formation to remove the interaction [22]. The straight-line extractablity relies on
the observability provided by GoRO and 2-special soundness.

Theorem 5 ([38]). Assume there is a 2-special sound SHVZK protocol, then
there exists a straight-line extractable NIWH argument in the GoRO hybrid world.

5 Concluding Remarks: Towards a Complete Picture

In this work, we mainly focus on the lower bounds on round complexity for
GUC-secure commitment protocols in the global random oracle models. We also
wonder if such lower bounds exist, is it possible to construct round-optimal
GUC-secure commitment protocols under Minicrypt assumptions?

In terms of the GoRO, our work gives a complete answer: we show it is impos-
sible to construct 2-round GUC-secure commitment in the GoRO hybrid world
against static adversaries in Sect. 3, and construct a 3-round (round-optimal)
GUC-secure commitment protocol under Minicrypt assumptions in the GoRO

hybrid world in Sect. 4. In the remaining, let us turn our attention on other
global random oracle models.

156 Z. Zhou et al.

As for the GsRO, the results of [11] rules out the possibility of constructing
any GUC-secure commitment protocol in the GsRO hybrid world. More precisely,
they argued that no “public setup”, namely no setup that provides only public
information that is available to all parties, can suffice for realizing commitment
protocols in the GUC framework. It is easy to see that this impossibility result
holds in the GsRO hybrid world.

Regarding the GpoRO, non-interactive GUC-secure commitment protocol can
be achieved. In fact, Camenisch et al. proposed a non-interactive GUC-secure
commitment in the GpoRO hybrid world without any further assumptions [9].

Among all the global random oracle models depicted in Fig. 4, only the GpRO

has yet to be fully investigated. Actually, we already have some impossibility
result: we find that there exists no GUC-secure commitment protocols with one-
round committing phase in the GpRO hybrid world against static adversaries.
Intuitively, we observe that the receiver does not have the chance to send any
message in the committing phase in such commitment protocols. Note that, the
GpRO only allows the simulator to program on the unqueried points without
being detected, and the simulator benefits itself by letting the corrupted parties
to work on its programmed points. Now let us consider the case where the
committer is corrupted and the simulator acts as the receiver, the simulator
needs to extract the committed value before the opening phase. In a commitment
protocol where the committing phase only takes one round, the simulator (acting
as the receiver) does not need to send any message, thus it cannot enforce the
corrupted committer to produce its message on the programmed points. If the
simulator still succeeds in extracting the committed value from the commitment
message, then we can use such a simulator to break the hiding property of the
commitment scheme since anyone can run this simulator without relying on the
programmability of the GpRO. In conclusion, the committing phase requires at
least 2 rounds, plus (at least) 1 round of the opening phase, and the entire
commitment protocol requires at least 3 rounds. We refer interesting readers to
see the formal theorem and proof in the full version of our paper.

Given this lower bound in the GpRO, we find that the 3-round (2 rounds
for the committing phase, 1 round for the opening phase) GUC-secure commit-
ment protocol proposed in [9] is round-optimal. But their construction relies on
CDH assumption which lives in Cryptomania world. Unfortunately, we find it
extremely hard to construct a round-optimal GUC-secure commitment protocol
under only Minicrypt assumptions in the GpRO hybrid world, so we leave it as
an open question.

References

1. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sub-
linear arguments without a trusted setup. In: ACM CCS 2017, pp. 2087–2104.
ACM Press (2017)

2. Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols
with relaxed set-up assumptions. In: FOCS 2004, pp. 186–195. IEEE Computer
Society Press (2004)

GUC-Secure Commitments via Random Oracles 157

3. Baum, C., David, B., Dowsley, R.: Insured MPC: efficient secure computation
with financial penalties. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol.
12059, pp. 404–420. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
51280-4 22

4. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: ACM CCS 1993, pp. 62–73. ACM Press (1993)

5. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with
no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11694, pp. 701–732. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26954-8 23

6. Branco, P.: A post-quantum UC-commitment scheme in the global random oracle
model from code-based assumptions. Adv. Math. Commun. 15(1), 113 (2021)

7. Branco, P., Goulão, M., Mateus, P.: UC-commitment schemes with phase-adaptive
security from trapdoor functions. Cryptology ePrint Archive, Report 2019/529
(2019). https://eprint.iacr.org/2019/529

8. Byali, M., Patra, A., Ravi, D., Sarkar, P.: Fast and universally-composable obliv-
ious transfer and commitment scheme with adaptive security. Cryptology ePrint
Archive, Report 2017/1165 (2017). https://eprint.iacr.org/2017/1165

9. Camenisch, J., Drijvers, M., Gagliardoni, T., Lehmann, A., Neven, G.: The won-
derful world of global random oracles. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10820, pp. 280–312. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78381-9 11

10. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS 2001, pp. 136–145. IEEE Computer Society Press (2001)

11. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–
85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 4

12. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 2

13. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited
(preliminary version). In: ACM STOC 1998, pp. 209–218. ACM Press (1998)

14. Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a global random
oracle. In: ACM CCS 2014, pp. 597–608. ACM Press (2014)

15. Canetti, R., Sarkar, P., Wang, X.: Efficient and round-optimal oblivious trans-
fer and commitment with adaptive security. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020. LNCS, vol. 12493, pp. 277–308. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-64840-4 10

16. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-
key primitives. In: ACM CCS 2017, pp. 1825–1842. ACM Press (2017)

17. Chiesa, A., Ojha, D., Spooner, N.: Fractal: post-quantum and transparent recur-
sive proofs from holography. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12105, pp. 769–793. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45721-1 27

18. Damg̊ard, I.: On Σ-protocols. https://www.cs.au.dk/∼ivan/Sigma.pdf
19. de Saint Guilhem, C.D., Orsini, E., Tanguy, T.: Limbo: efficient zero-knowledge

MPCitH-based arguments. In: ACM CCS 2021, pp. 3022–3036. ACM Press (2021)
20. Dodis, Y., Shoup, V., Walfish, S.: Efficient constructions of composable commit-

ments and zero-knowledge proofs. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 515–535. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-85174-5 29

https://doi.org/10.1007/978-3-030-51280-4_22
https://doi.org/10.1007/978-3-030-51280-4_22
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-26954-8_23
https://eprint.iacr.org/2019/529
https://eprint.iacr.org/2017/1165
https://doi.org/10.1007/978-3-319-78381-9_11
https://doi.org/10.1007/978-3-319-78381-9_11
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/978-3-030-64840-4_10
https://doi.org/10.1007/978-3-030-64840-4_10
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/978-3-030-45721-1_27
https://www.cs.au.dk/~ivan/Sigma.pdf
https://doi.org/10.1007/978-3-540-85174-5_29
https://doi.org/10.1007/978-3-540-85174-5_29

158 Z. Zhou et al.

21. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
ACM STOC 1990, pp. 416–426. ACM Press (1990)

22. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

23. Ganesh, C., Kondi, Y., Patra, A., Sarkar, P.: Efficient adaptively secure zero-
knowledge from garbled circuits. In: Abdalla, M., Dahab, R. (eds.) PKC 2018.
LNCS, vol. 10770, pp. 499–529. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-76581-5 17

24. Garg, S., Ishai, Y., Srinivasan, A.: Two-round MPC: information-theoretic and
black-box. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239,
pp. 123–151. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6 5

25. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for Boolean
circuits. In: USENIX Security 2016, pp. 1069–1083. USENIX Association (2016)

26. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: ACM STOC 1987, pp.
218–229. ACM Press (1987)

27. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

28. Hofheinz, D., Müller-Quade, J.: Universally composable commitments using ran-
dom oracles. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 58–76. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1 4

29. Impagliazzo, R.: A personal view of average-case complexity. In: SCT 1995, pp.
134–147. IEEE (1995)

30. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: ACM STOC 2007, pp. 21–30. ACM Press (2007)

31. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with
applications to post-quantum signatures. In: ACM CCS 2018, pp. 525–537. ACM
Press (2018)

32. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC Press, Boca
Raton (2020)

33. Kuykendall, B., Zhandry, M.: Towards non-interactive witness hiding. In: Pass,
R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550, pp. 627–656. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64375-1 22

34. Lysyanskaya, A., Rosenbloom, L.N.: Universally composable sigma-protocols in the
global random-oracle model. Cryptology ePrint Archive, Paper 2022/290 (2022).
https://eprint.iacr.org/2022/290

35. MacKenzie, P., Yang, K.: On simulation-sound trapdoor commitments. In: Cachin,
C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 382–400.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 23

36. Masny, D., Rindal, P.: Endemic oblivious transfer. In: ACM CCS 2019, pp. 309–
326. ACM Press (2019)

37. Mohassel, P., Rosulek, M., Scafuro, A.: Sublinear zero-knowledge arguments for
RAM programs. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10210, pp. 501–531. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56620-7 18

38. Pass, R.: On deniability in the common reference string and random oracle model.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer, Hei-
delberg (2003). https://doi.org/10.1007/978-3-540-45146-4 19

39. Yao, A.C.C.: Protocols for secure computations (extended abstract). In: FOCS
1982, pp. 160–164. IEEE Computer Society Press (1982)

https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-319-76581-5_17
https://doi.org/10.1007/978-3-319-76581-5_17
https://doi.org/10.1007/978-3-030-03807-6_5
https://doi.org/10.1007/978-3-540-24638-1_4
https://doi.org/10.1007/978-3-030-64375-1_22
https://eprint.iacr.org/2022/290
https://doi.org/10.1007/978-3-540-24676-3_23
https://doi.org/10.1007/978-3-319-56620-7_18
https://doi.org/10.1007/978-3-319-56620-7_18
https://doi.org/10.1007/978-3-540-45146-4_19

	GUC-Secure Commitments via Random Oracles: New Impossibility and Feasibility
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	2.1 Notations
	2.2 Universal Composability
	2.3 The Global Random Oracle Models
	2.4 SHVZK Protocols
	2.5 Straight-Line Extractable NIWH Argument in the RO Model
	2.6 Equivocal Commitment
	2.7 ``MPC-in-the-Head'' Paradigm

	3 Impossibility in the GORO Model
	4 Feasibility in the GORO Model
	4.1 Our GUC-Secure Commitment Construction
	4.2 Instantiation of the Building Blocks

	5 Concluding Remarks: Towards a Complete Picture
	References

