
Single-Input Functionality Against
a Dishonest Majority: Practical

and Round-Optimal

Zhelei Zhou1, Bingsheng Zhang1(B), Hong-Sheng Zhou2, and Kui Ren1

1 Zhejiang University, Hangzhou, China
{zl zhou,bingsheng,kuiren}@zju.edu.cn

2 Virginia Commonwealth University, Richmond, USA
hszhou@vcu.edu

Abstract. In this work, we focus on Single-Input Functionality (SIF),
a specialized case of MPC where only one designated party, called the
dealer, holds a private input. SIF enables the dealer to perform compu-
tations with other parties without disclosing any additional information
about the private input. SIF has a wide range of applications, such as
multiple-verifier zero-knowledge and verifiable relation sharing.

We propose the first 1-round SIF protocol against a dishonest major-
ity in the preprocessing model and random oracle model, achieving high
efficiency. Previous works either require at least 2-round online commu-
nication (Yang and Wang, Asiacrypt 2022; Baum et al., CCS 2022; Zhou
et al., Euro S&P 2024) or are limited to feasibility results (Lepinski et al.,
TCC 2005; Applebaum et al., Crypto 2022). We also show the necessity
of using the broadcast channels, by formally proving that 1-round SIF is
impossible to achieve in the preprocessing model, if there are no broad-
cast channels available. Finally, we implement our protocol and present
extensive experimental results, demonstrating its practical efficiency.

1 Introduction

MPC vs. SIF. In secure multi-party computation (MPC) [31,55], multiple
mutually distrustful players, (P1, . . . , Pn), are allowed to jointly compute any
efficiently computable function f of their private inputs (x1, . . . , xn). Concretely,
let circuit C be the representation of the function f such that (y1, . . . , yn) ←
C(x1, . . . , xn). After an execution of the MPC protocol for circuit C, each party
Pi shall obtain its output yi. Since its introduction in the early 1980s, secure
MPC has been extensively studied and become one of the cornerstones of modern
cryptography.

Single-Input Functionality (SIF) is a special case of MPC. In SIF, only a
distinguished party, called dealer D, is allowed to have a private input w, while

Z. Zhou, B. Zhang and K. Ren—The author is with the State Key Laboratory of
Blockchain and Data Security & Hangzhou High-Tech Zone (Binjiang) Institute of
Blockchain and Data Security, Hangzhou, China.
c© International Association for Cryptologic Research 2025
T. Jager and J. Pan (Eds.): PKC 2025, LNCS 15677, pp. 3–36, 2025.
https://doi.org/10.1007/978-3-031-91829-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-91829-2_1&domain=pdf
https://doi.org/10.1007/978-3-031-91829-2_1

4 Z. Zhou et al.

all other parties, called verifiers V1, . . . , Vn, have no private inputs. After an
execution of the SIF protocol, the dealer D receives no output value while the i-
th verifier obtains yi as its output value. That is, the circuit C is now specifically
defined as follows: (∅, y1, . . . , yn) ← C(w, ∅, . . . , ∅). For simplicity, we often ignore
the empty (input/output) values ∅’s and write it as (y1, . . . , yn) ← C(w).

Applications of SIF. As an important cryptographic primitive, SIF was ini-
tially studied by Gennaro et al. [29]; this line of research has received lots of
attention [2, 3, 5,52,56] very recently. Below, we will give a high-level description
of the applications of SIF. More concretely, as already pointed out by Applebaum
et al. [3], from SIF, two immediate applications can be obtained: Multiple-Verifier
Zero-Knowledge (MVZK) and Verifiable Relation Sharing (VRS).

MVZK. In an MVZK protocol, a distinguished party called prover P, who holds
a statement-witness pair (x, w), wishes to convince n verifiers V1, . . . , Vn that
R(x, w) = 1 at once for an NP relation R. It is easy to see that SIF implies
MVZK directly: let C be the circuit that evaluates R(x, w), then the parties can
jointly invoke SIF to evaluate C.

MVZK can be used in normal ZK scenarios as long as the identities of the
verifiers are known ahead of time. It can also be used in some real life crypto-
graphic systems, e.g., private aggregation system [21]. More concretely, in the
private aggregation system like Prio [21], a set of servers collect and aggregate
the clients’ data; and each client needs to prove to servers that its data is valid
using Secret-shared Non-Interactive Proof (SNIP). Notice that, the SNIP in [21]
assumes the client (acting as the prover) not to collude with the servers (acting
as the verifiers) to ensure soundness; for zero-knowledge property, the SNIP can
tolerate all-but-one malicious servers. Hence, if there exists an efficient 1-round
MVZK protocol against a dishonest majority (which allows the malicious prover
to collude with verifiers), it could be a significantly better alternative technique
to SNIP in [21].

VRS. In [3], Applebaum et al. introduce a new primitive called VRS, which
generalizes MVZK. In a VRS protocol, we consider a distinguished party called
dealer D, who holds a secret input s, and n parties called verifiers V1, . . . , Vn,
who have no secret inputs. The dealer D wishes to share the secret s to the
verifiers first; for simplicity, we denote by xi the share received by the i-th verifier.
Then the dealer D wishes to prove that the shares satisfy an NP relation R to
the verifiers, i.e., D proves that R(x1, . . . , xn, s) = 1 in a zero-knowledge way.
Clearly, SIF also implies VRS: let (y1, . . . , yn) ← C(x1, . . . , xn, s) be a circuit
such that yi = xi for i ∈ [n] if R(x1, . . . , xn, s) = 1; otherwise, yi = ⊥ where ⊥
is a failure symbol. Then the parties can jointly invoke SIF to evaluate such a
circuit C to realize VRS.

VRS has various applications, including Verifiable Secret Sharing (VSS) [15,
18,19,25,37,42], Distributed Key Generation (DKG) [15,18,23,30,38] and so on.
In particularly, here we describe how to use VRS for the purpose of DKG. We
assume the public key of a DKG protocol is additive homomorphic, for instance,
pk = gsk, where (pk, sk) is the public-secret key pair and g is a cyclic group
generator. We assume there are n parties P1, . . . , Pn, for each i ∈ [n], we let Pi

Single-Input Functionality Against a Dishonest Majority 5

sample a random sk(i) , secret-share sk(i) into {sk (i) j }j �=i, and compute pk(i) :=
gsk

(i)
. Then we let Pi be the dealer of a VRS: Pi broadcasts pk(i) , sends sk (i) j to

Pj , and proves that sk(i) =
∑

j sk
(i)
j and pk(i) = gsk(i)

by invoking a VRS. It is
easy to see that the final public key can be obtained by pk :=

∑
i pk

(i) , and the
corresponding secret key sk :=

∑
i sk

(i) is distributed among P1, . . . , Pn.
SIF with an Honest Majority. We now introduce a line of works [3, 5,52] on
SIF in the honest majority setting. The work by Applebaum et al. [3] mainly
focuses on the theoretical side and gives a 2-round feasibility result for SIF in
the plain model. In particular, as claimed by Applebaum et al., the first round
of their protocol is input independent; thus, their work can also be interpreted
as a 1-round protocol in the preprocessing model.

On the other hand, both the work by Yang and Wang [52] and the work by
Baum et al. [5] focus on constructing practical 2-round SIF (in the context of
MVZK). In [5], Baum et al. design two types of MVZK protocols with different
corruption thresholds in the preprocessing model: the one with t < n

4 and another
one with t < n

3 , where n denotes the total number of verifiers while t denotes the
number of corrupted verifiers 1. In [52], Yang and Wang design their protocols
in the Random Oracle (RO) model; they employ Shamir’s secret sharing [47]
to construct a protocol with t < n

2 . Yang and Wang also show how to utilize
packed secret sharing [28] to improve the communication complexity at the cost
of degrading the corruption threshold from t < n

2 to t < (1 2 − ε)n, where ε is a
positive constant.
SIF Against a Dishonest Majority. We also introduce some interesting
results in the dishonest majority setting. Lepinski et al. study how to strength
the security of MVZK by adding fairness among the verifiers [40], i.e., the mali-
cious verifiers who collude with the prover learn nothing except the validity of
the statement if the honest verifiers accept the proof. Note that, their work is
only a feasibility study and is not practical.

When it comes to practical efficiency, a recent work by Zhou et al. [56] con-
structs a practical 2-round SIF protocol against a dishonest majority in the
preprocessing model. More precisely, they utilize a similar preprocessing phase
as [8] and show how to check the multiplication gates in merely 2 rounds by
using Beaver’s triples technique [6].
Our Main Research Question. As mentioned above, it is known that, by
assuming the preprocessing model, 1-round SIF (and MVZK) can be con-
structed [3,40]; however, these works are primarily theoretical studies and pro-
vide no practical solutions. Current practical solutions [5,52,56], on the other
hand, all necessitate a minimum of 2-round online communication. This discrep-
ancy presents a gap in the field of SIF protocol design. It makes us wonder if it is
possible to bridge this gap by constructing a 1-round SIF protocol with practical
efficiency? If so, can we build such a protocol with optimal corruption threshold
(i.e., t < n)?
1 In this work, unless otherwise stated, we assume the adversary can corrupt the

dealer/prover and some of the verifiers.

6 Z. Zhou et al.

We note that constructing such a protocol with practical efficiency is a non-
trivial task. One may suggest using practical MPC protocols against a dishonest
majority to realize SIF, for example, the constant-round BMR-style protocols [7].
However, to the best of our knowledge, the BMR-style MPC protocols in the lit-
erature require at least 2-round online communication [34,41]. Therefore, naively
using MPC protocols to realize SIF is not a solution. Given these difficulties, we
ask the following research question:

Is it possible to construct a practical SIF protocol with 1-round online
communication and optimal corruption threshold (i.e., t < n)?

1.1 Our Contributions

In this work, we will give an affirmative answer to our research question. Our
contributions can be summarized as follows.
The First Practical 1-Round SIF with Optimal Corruption Thresh-
old. We present the first 1-round practical protocol for SIF against a dishonest
majority in the preprocessing model and random oracle model, and our proto-
col can be proven secure in the Universal Composability (UC) framework [14].
Our protocol is optimal in two aspects: (i) for round complexity, our online pro-
tocol requires only 1-round communication (round-optimal); (ii) for corruption
threshold, our protocol does not assume an honest majority and can tolerate up
to 1 corrupted dealer and n − 1 corrupted verifiers, which is optimal. Table 1
depicts a comparison between our work and other recent and related works.

Table 1. Comparison of our work and the state-of-the-art relevant works.

Ref. Primitive #Round† Corruption Setup
Practical?

Threshold‡ Assumption§

[40] MVZK 1 t < n Prep. �

[52] MVZK 2 t < n
2

RO �

[5] MVZK 2 t < n
3

Prep. + RO �

[3] SIF 1 t < n
2+ε

¶ Prep. �

[56] SIF 2 t < n Prep. �

Ours SIF 1 t < n Prep. + RO �
† Refer to the number of rounds in the online phase.
‡ In [5,52], the authors proposed protocols with different cor-
ruption thresholds. Here, we report the maximum corruption
thresholds that [5,52] can achieve.
§ Prep.: preprocessing model; RO: random oracle model.
¶ Here, ε is a small positive constant.

As shown in Table 1, our work is the only one that achieves 1-round online
communication as well as the practical efficiency in the dishonest majority set-
ting. The full descriptions of our protocol are put in Sect. 4.

Single-Input Functionality Against a Dishonest Majority 7

An Impossibility Result on 1-Round SIF Without Using Broadcast
Channels. The online phase of our 1-round SIF protocol requires broadcast
channels as well as secure point-to-point channels; we remark that broadcast
channels are also used in the online phase of the existing designs [3, 5,40,52,56].
Given that broadcast channels are more expensive than secure point-to-point
channels, it is natural to ask the following question: Are broadcast channels a
must for constructing 1-round SIF protocols?

In Sect. 5, we formally prove that: in the UC framework [14], 1-round SIF is
impossible to achieve without using broadcast channels, even if a preprocessing
model is assumed. Our impossibility result holds no matter how many verifiers
the adversary can corrupt, as long as the adversary is allowed to corrupt the
dealer; hence, our impossibility result holds in both honest majority and dishon-
est majority settings.

A New Form of Correlation: mv-sVOLE. We extend the two-party subfield
Vector Oblivious Linear Evaluation (sVOLE) [11,12,50] into the multi-party
setting, which is an essential tool in our SIF construction. More precisely, we
propose a new primitive called multiple-verifier sVOLE (mv-sVOLE). In Sect. 3,
we formally define the mv-sVOLE through an ideal functionality; we also give
an efficient construction and prove the security in the UC framework.

We note that, there are several works in the literature that also try to
extend sVOLE into the multi-party setting (e.g., [44,45]). We make a comparison
between those works and our mv-sVOLE primitive in Sect. 3.1.

Implementation and Benchmark. We implement our protocol in C++ and
conduct comprehensive experiments. We present a brief concrete efficiency com-
parison between our work and other constant-round relevant works in Table 2.

Table 2. Concrete efficiency comparison of our work and other constant-round relevant
works. All numbers are obtained by ourselves for evaluating an AES-128 boolean circuit
with the same hardware configurations.

Ref. Primitive (T, N)†
Running Time Per AND Gate (us)
LAN WAN‡

[5] MVZK (7, 26) 165.6 238.3
[49] MPC (7, 8) 140.5 332.7
[56] SIF (7, 8) 123.0 291.8
Ours SIF (7, 8) 24.1 60.3

† Here, T and N refer to the number of corrupted parties and
total parties, respectively.
‡ LAN (1 Gbps with 6 ms delay); WAN (200 Mbps with 20
ms delay).

8 Z. Zhou et al.

In Table 2, we compare our protocols with three types of related works: (i)
SIF against a dishonest majority [56]; (ii) SIF (in the context of MVZK) with an
honest majority [5]; and (iii) (constant-round) MPC against a dishonest major-
ity [49]. It turns out that, our improvement for running time ranges from 4.0×–
6.9× over different network configurations, when the number of corrupted par-
ties T is fixed to be 7. When T = 7 (including 1 corrupted prover/dealer and 6
corrupted verifiers), both our work and [49,56] can have 8 parties in total; in con-
trast, [5] requires at least 26 total parties, since its corruption threshold is t < n

4 ,
where t, n are the number of corrupted verifiers and total verifiers 2. Notice that,
this comparison approach (i.e., fixing the number of corrupted parties when make
comparisons among protocols with various corruption thresholds) is also taken
in the recent MPC work [26]. We also make comparisons when the total party
number is fixed; and we refer readers to see more discussions and comparisons
in Sect. 6.

1.2 Comparison with the Concurrent Work

Concurrently, in [27], Escudero et al. employed the Packed Secret Sharing (PSS)
technique to construct a quite efficient 3-round MVZK protocol against a dis-
honest majority; their corruption threshold is t < (1 − ε)n where ε is a postive
constant. Due to the use of PSS technique, their communication complexity can
be O(|C|), which is independent of the number of verifiers n. Our communication
complexity is O(|nC|), so in practice, our performance is not be as good as [27]:
when n = 8 and ε = 0.25 and 1 Gbps network is used, [27] requires roughly
1.1 us/gate, and our protocol requires roughly 2.7 us/gate. However, in theory,
the online phase of our protocol is round-optimal and our protocol can achieve
optimal corruption theshold ; whereas, [27] cannot. The comparison between our
protocol and [27] is put in Table 3. 3

1.3 Our Techniques

Here we provide a technique overview of our protocols. We start by recapping the
previous works’ approaches, then we describe our intuitions and how we achieve
round-optimal SIF construction.

2 The authors of [5] open-sourced their codes in [20]. However, in [20], they imple-
mented their older version protocol with t < n

3
and it is less efficient than the

published version. In this work, when it comes to concrete efficiency, we refer [5] to
the protocol with t < n

4
since we measure the results of this protocol.

3 Some readers may notice that, the numbers of our protocol reported here are faster
than our running times reported in Table 2. The reason is that: we use two different
approaches to instantiate the preprocessing phase for circuits of varying scales. For
large-scale circuits (e.g., the numbers reported in Table 3), the amortized prepro-
cessing time is significantly more efficient than that for small-scale circuits.

Single-Input Functionality Against a Dishonest Majority 9

Table 3. Comparison with the concurrent work [27].

Protocol #Round† Corruption Setup Running Time‡

Threshold Assumption (us/gate)
[27] 3 t < (1 − ε)n Prep. 1.1

This Work 1 t < n Prep. 2.7
† Refer to the number of rounds in the online phase.
‡ The results are obtained under a 1 Gbps network for a large-
scale circuit (i.e., a circuit with 106 or 107 multiplication gates).
The parameter is set as follows: n = 8 (i.e., 8 verifiers); in [27], ε
is set as 0.25.

Previous Approaches. We start by recapping a recent work by Zhou et al. [56],
which provides a practical SIF construction against a dishonest majority. More
precisely, Zhou et al. showed how to “transform” the BDOZ-style MPC [8],
whose number of online round depends on circuit depth, into a SIF with 2
online rounds. In a BDOZ-style MPC, the parties use additive shares to share
their private inputs and employ the Beaver’s triples technique [6] to check the
correctness of the multiplication gates, i.e., for each multiplication gate, the
parties have to prepare a random multiplication triple (a, b, c) such that c =
a · b; to ensure the security, the multiplication triple (a, b, c) needs to be secret-
shared and authenticated among the parties. For a multiplication gate with
input values wα, wβ , the parties need to open d1 := wα − a and d2 := wβ − b
and then locally compute the share of the output value wγ by the identity
wγ = d1·d2+d1·b+d2·a+c. Zhou et al. observed that in the SIF setting, the whole
multiplication triple (a, b, c) can be revealed to the dealer, since these triples are
used for protecting the private input which is already known by the dealer. In
this way, for each multiplication gate whose input values are denoted by wα, wβ ,
the dealer can simply compute and broadcast d1 and d2, then the verifiers can
open d̃1 := wα − a and d̃2 := wβ − b using their own shares to check if d1

? = d̃1
and d2

? = d̃2. It is easy to see that all the multiplication gates can be executed
in parallel; thus, they are able to achieve 2-round online communication.

Besides BDOZ-style MPC protocol, other practical MPC protocols which are
not constant-round may also be “transformed” into constant-round SIF using the
ideas in [56]. For instance, as already discussed in [56], SPDZ-style MPC [22]
can be chosen, but the resulting SIF protocol will have an additional online
round. Our first attempt is to “transform” the recent MPC protocol [26], which
combines Beaver’s triples technique with packed secret sharing to obtain bet-
ter communication complexity, into a practical SIF; however, the resulting SIF
protocol requires at least 2-round online communication, and cannot achieve
optimal corruption threshold due to the use of packed secret sharing.

In addition to [56], we observe that other current practical solutions [5,52]
also follow the same (online) communication pattern: the dealer sends the com-
puted results and the corresponding “proofs” to the verifiers in the first round,
then the verifiers communicate with each other in the following round(s) to

10 Z. Zhou et al.

check whether the “proofs” are correct. It seems that the communication among
the verifiers are necessary. For better expression, let us take MVZK, a direct
application of SIF, as an example. In a MVZK, if verifiers have no chance to
communicate with each other, a malicious prover may cause honest verifiers to
output inconsistent results (e.g., some of the honest verifiers may output accep-
tance while others may output rejection). That is why the current practical
solutions [5,52,56] all require at least 2-round online communication.

Our Approach. To reduce the round complexity, we have to break the online
communication pattern in previous practical solutions [5,52,56]. Our key obser-
vation is that the communication among the verifiers could be pushed into the
preprocessing phase; in this way, we have the chance to obtain 1-round online
communication while ensuring the verifiers to have consistent outputs.

In the following, we first talk about our preprocessing phase; jumping ahead,
we propose a new primitive called multiple-verifier sVOLE (mv-sVOLE), which
is an essential building block for the preprocessing phase.

Preprocessing Phase: Using mv-sVOLE as Correlations. In our design, we make
extensive use of a particular form of correlation, called subfield Vector Oblivious
Linear Evaluation (sVOLE) [11,12,50]. In the two party setting, sVOLE cor-
relations capture the well-known primitive, i.e., Information-Theoretic Message
Authentication Codes (IT-MACs) [8,43]. Let Fpr be the extension field of a field
Fp. In sVOLE, there are two parties involved, i.e., a dealer D and a verifier V,
and V holds a MAC key Δ ∈ Fpr . In order to authenticate the vector x ∈ F�

p
held by D to V, we let D have the MAC tag m ∈ F�

pr and let V have another
MAC key k ∈ F�

pr s.t. m = k − Δ · x. For different x, V will use different k
and the same Δ. For this reason, we call k the “local” MAC key and Δ the
“global” MAC key. It is easy to see that a malicious D∗ who does not know the
MAC keys, cannot produce another valid m′ for x′ �= x except with negligible
probability when |Fpr | is sufficiently large.

In the setting of SIF, we are dealing with n + 1 parties, i.e., a dealer D and
n verifiers V1, . . . , Vn, so we have to extend the (two-party) sVOLE correlations
into the multi-party setting, which we call multiple-verifier sVOLE (mv-sVOLE).
More precisely, we let each verifier Vi privately hold a global MAC key Δ(i) ∈ Fpr .
For each vector x ∈ F�

p held by the dealer D, for each i ∈ [n], we let the dealer
D have the MAC tag m(i) ∈ F�

pr and let the verifier Vi have the local MAC key
k(i) ∈ F�

pr such that k(i) = m(i) + Δ(i) · x. For better expression, we use the
notation �x� to denote the authenticated vector x. In this way, the vector held by
the dealer can be authenticated to each verifier. Then, how to generate these mv-
sVOLE correlations? One might suggest invoking n instances of sVOLE naively;
however, this naive solution is not secure at all: a malicious dealer might use
inconsistent values x′ �= x in different instances of sVOLE procedure. To address
this security issue, we let the verifiers to pose some lightweight consistency checks
to detect the malicious behaviors of the dealer. This ensures the verifiers can
obtain the correct mv-sVOLE correlations; jumping ahead, it also guarantees
the honest verifiers can output the consistent results in the online phase. More

Single-Input Functionality Against a Dishonest Majority 11

concretely, we generalize the technique in [49] (which is originally designed for
binary field) to adapt to our setting. Informally speaking, we first let the dealer
to use the same x in different sVOLE instances with different verifiers. Then the
verifiers will jointly sample a random s and ask the dealer to reveal u := s� · x
and the corresponding MAC tags. In this way, the verifiers can check whether
the dealer uses the same x. We defer the details of our mv-sVOLE constructions
and the security analysis to Sect. 3.2.

Online Phase: Checking all Multiplication Gates in 1-Round. Our online proto-
col is designed in the “commit-and-prove” paradigm. More concretely, we first
let the dealer D commit to his witness w ∈ Fm

p using the random mv-sVOLE
correlations �μ� generated in the preprocessing phase; that is, D broadcasts
δ := w − μ ∈ Fm

p to verifiers, and all parties compute �w� := �μ� + δ. Then we
let D “prove” that all the gates of the circuits are processed properly.

It is easy to see that addition gates can be processed for free. For multipli-
cation gates, we avoid the use of Beaver’s triples technique; instead, we extend
the techniques in [24,51], which require sVOLE correlations and are designed
for the two-party setting, into the multi-party setting. More concretely, for the
i-th multiplication gate with input wires α, β and output wire γ, we denote by
wα, wβ the input wire values and denote by wγ the output wire values. We let
D broadcast di := wα · wβ − ηi ∈ Fp, where ηi is random and �ηi� is generated in
the preprocessing phase, then all parties can compute �wγ� := �ηi� + di. In this
way, D holds wa,m (j) a and Vj holds Δ(j) , k (j) a such that k (j) a = m (j) a + wa · Δ(j)

for a ∈ {α, β, γ} and j ∈ [n]. By the following identity:

B (j) i := k(j)
α · k (j) β − k(j)

γ · Δ(j)

= (m(j)
α + wα · Δ(j)) · (m (j) β + wβ · Δ(j)) − (m(j)

γ + wγ · Δ(j)) · Δ(j)

= m(j)
α · m (j) β

︸ ︷︷ ︸

Denote by A
(j)
i,0

+ (m (j) β · wα + m(j)
α · wβ − m(j)

γ)
︸ ︷︷ ︸

Denote by A
(j)
i,1

·Δ(j)

+ (wα · wβ − wγ) · (Δ(j))2 ,

(1)

we conclude that if D behaves honestly (i.e., wγ = wα · wβ), then we have
B (j) i = A (j) i,0 +A (j) i,1 ·Δ(j). It is easy to see that B (j) i (resp. A (j) i,0 , A (j) i,1) can be locally
computed by D (resp. Vj); therefore, the correctness of the i-th multiplication
gate can be checked by letting D send A (j) i,0 , A (j) i,1 to Vj and letting Vj check
B (j) i

? = A (j) i,0 + A (j) i,1 · Δ(j) for each j ∈ [n]. Notice that, the multiplication gates
can be checked together; that is the reason why we can achieve 1-round online
communication. We defer the details of improving the efficiency of the above
checks to Sect. 4.2.

2 Preliminaries

2.1 Notations

We use λ ∈ N to denote the security parameter. We say a function negl : N → N
is negligible if for every positive polynomial poly(·) and every sufficiently large

12 Z. Zhou et al.

λ, negl(λ) < 1
poly(λ) holds. We say two distribution ensembles U = {Uλ}λ∈N

and W = {Wλ}λ∈N are statistically (resp. computationally) indistinguishable,
which we denote by U

s ≈ W (resp., X
c ≈ Y), if for any unbounded (resp., PPT)

distinguisher D there exists a negligible function negl s.t. | Pr[D(Uλ) = 1] −
Pr[D(Wλ) = 1]| = negl(λ). We use x ← S to denote by the event that sampling
a uniformly random x from a finite set S. For n ∈ N, we to [n] to denote by a
set {1, . . . , n}. For a, b ∈ Z with a ≤ b, we use [a, b] to denote by a set {a, . . . , b}.
We use bold lower-case letters, e.g. x, to denote by the vectors, and we use xi
to denote by the i-th component of vector x.

We consider both arithmetic circuit and boolean circuit. Basing on a finite
field Fp with a prime order p, a circuit C : Fm

p → Fn
p consists of a set of input

wires Iin and a set of output wires Iout, where |Iin| = m and |Iout| = n. In addi-
tion to that, the circuit C also contains a list of gates of the form (α, β, γ, T),
where α, β (resp. γ) are the indices of the input wires (resp. output wire), and
T ∈ {Add, Mult} is the gate type. If p = 2, then C is a boolean circuit where
Add = ⊕ and Mult = ∧. If p > 2, then C is an arithmetic circuit where Add/Mult
corresponds to addition/multiplication in Fp. We use Fpr to denote by an exten-
sion field of a finite field Fp, where p ≥ 2 is a prime and r ≥ 1 is an integer. We
can write Fpr ∼= Fp[X]/f(X), where f(X) is a some monic, irreducible polyno-
mial with degree r. It is easy to see that, every w ∈ Fpr can be written uniquely
as w =

∑r
i=1 vi · Xi−1 with vi ∈ Fp for all i ∈ [r]. Thus, the elements over Fpr

can be regarded as the vectors in (Fp)r equivalently.

2.2 Security Model

We design our protocols and prove their security in the Universal Composability
(UC) framework by Canetti [14]. We refer readers to see a high-level description
of UC framework in our full-version paper [57].

Adversarial Model. In this paper, we consider a malicious, static and rushing
adversary. We also assume that the adversary is allowed to corrupt the dealer
and up to t number of verifiers where t < n.

Secure Communication Model. In this work, we consider simultaneous com-
munication. We also assume the parties are connected by pairwise secure chan-
nels and a broadcast channel. We remark that, these secure communication
channels are also required in the relevant works [3, 5,52,56].

2.3 (Programmable) Subfield VOLE

We first introduce subfield Vector Oblivious Linear Evaluation (sVOLE) [11,12],
which works over an extension field Fpr . In sVOLE, the verifier V holds a global
MAC key Δ ∈ Fpr which can be used for multiple times. For a vector x ∈ F�

p
held by the dealer D, we let the dealer D have the MAC tag m ∈ F�

pr and let the
verifier have the local MAC key k ∈ F�

pr such that m = k − Δ · x. In this way,
the vector x is authenticated to the verifier V. Notice that, D cannot lie about

Single-Input Functionality Against a Dishonest Majority 13

x, because the probability of D computing a valid MAC tag m′ for a chosen
x′ �= x is at most p−r, which would be negligible if p, r are chosen properly.

We note that, most of the recent and popular approaches for generating
subfield VOLE are based on Pseudorandom Correlation Generators (PCGs),
e.g., [10,11,50]. Informally speaking, a PCG allows two parties take a pair of
short and correlated seeds, then expand them to produce a much larger amount
of correlation randomness. However, typically, the sVOLE correlations generated
by PCGs are random, meaning that the dealer D cannot chose the authenticated
vector x. This is troublesome when the dealer D wants to use the same u to run
different instances of sVOLE generation procedures with different verifiers. We
note that, given a random sVOLE correlation (x′, m′,Δ, k′) such that m′ =
k′ − Δ · x′, the dealer D can easily convert it to a sVOLE correlation with chosen
x by sending δ := x−x′ to the verifier and setting m := m′, the verifier V then
sets k := k′ + δ · Δ; in this way, m = k − Δ · x holds. However, this approach
requires O() communication cost, where 	 is the vector length; when a large
amount of sVOLE correlations are needed, this approach is not efficient enough.

Fig. 1. The Functionality Fp,r
psVOLE

To address the above issue, Rachuri and Scholl propose the programmable
sVOLE in [45]; we model this primitive through an ideal functionality Fp,r

psVOLE,

14 Z. Zhou et al.

which is adapted from [45] and is depicted in Fig. 1. The programmability means
that the dealer D can choose a seed sd and expand it to a vector of 	 field elements
x := Expand(sd,), where Expand : S × Z → F∗

p is a deterministic expansion
function that takes a seed sd from a seed space S and the output length 	 ∈ Z as
inputs and outputs a 	-length vector x ∈ F�

p. This allows the dealer to use the
same authenticated vector x (by choosing the same seed) in different instances
of Fp,r

psVOLE. As noted in [45], in practice, the expansion function Expand may
correspond to some kind of secure Pseudo Random Generators (PRGs) 4. Rachuri
and Scholl also provide a PCG-style protocol that can efficiently realize Fp,r

psVOLE,
and we refer interested readers to see that in [45].

The sVOLE correlation satisfies an appealing property, i.e., additive homo-
morphism. More precisely, given authenticated vectors x1, . . . , xn ∈ F�

p (i.e., for
i ∈ [n]: the dealer D holds xi and mxi and the verifier V holds Δ and kxi such
that mxi = kxi − Δ · xi) and the public coefficients c1, . . . , cn ∈ Fp and c ∈ F�

p,
the dealer D can locally compute y := c +

∑n
i=1 ci · xi and the corresponding

MAC tag my :=
∑n

i=1 ci · mxi while the verifier V can locally compute the cor-
responding local MAC key ky :=

∑n
i=1 ci · kxi + Δ · c such that my = ky −Δ · y.

2.4 Single-Input Functionalities

Here we provide the functionality for Single-Input Functionalities (SIF) in Fig. 2,
which is taken from [56]. In Fig. 2, there are a dealer D and n verifiers V1, . . . , Vn.
The parties hold a circuit C : Fm

p → Fn
p while the dealer D additionally holds a

private input w where |w| = m. The functionality FSIF takes w from D, then
it computes y := C(w) and delivers yi to Vi for i ∈ [n], where yi is the i-th
component of y.

2.5 Coin-Tossing

Here we introduce the functionality for coin-tossing, and it allows all parties to
receive the same uniformly random string. Formally, we present the functionality
for coin-tossing in Fig. 3.

3 Multiple-Verifier Subfield VOLE

3.1 Security Definition

Here we extend the (two-party) sVOLE into the multi-party setting, and we call
this new form of correlated randomness multiple-verifier subfield VOLE (mv-
sVOLE). In mv-sVOLE, there are a dealer D and n verifiers V1, . . . , Vn, and
each verifier Vi privately holds a global MAC key Δ(i) ∈ Fpr . For each vector
x ∈ F�

p held by the dealer D, for each i ∈ [n], we let the dealer D have the MAC

4 Typically, PRGs are referred as randomized algorithms that can generate pseudo-
random strings. However, when the seed (which contains the randomness) and the
output length are fixed, we can view a PRG as a deterministic algorithm.

Single-Input Functionality Against a Dishonest Majority 15

Fig. 2. The Functionality FSIF

Fig. 3. Functionality for coin-tossing

tag m(i) ∈ F�
pr and let the verifier Vi have the local MAC key k(i) ∈ F�

pr such
that k(i) = m(i)+Δ(i) ·x. In this way, the vector held by D, can be authenticated
to each verifier. Formally, we present our mv-sVOLE functionality in Fig. 4.

Comparison with Other Works. Notice that, there are several works in the
literature that also try to extend sVOLE into the multi-party setting. In [44], Qiu
et al. also consider the setting with one dealer and multiple verifiers; however,
they do not consider the consistency of the authenticated values. In other words,
their malicious dealer can use inconsistent x for different verifiers. As a result,
their multi-verifier sVOLE can be implemented by running two-party sVOLE
n times directly, while our mv-sVOLE functionality cannot be realized through
this native approach. In [45], Rachuri and Scholl extend sVOLE into the multi-
party setting in a different way: they let each party play the role of the dealer in
turn, and each parties’ private values will be authenticated to all other parties.
Therefore, there is no distinguished party in their setting, and their multi-party
sVOLE primitive is much more complex than our mv-sVOLE. We conjecture that
our mv-sVOLE primitive might be used as a basic building block to realize the

16 Z. Zhou et al.

multi-party sVOLE in [45]. In some constant-round MPC protocols that tailored
for boolean circuits (e.g., [49,53]), they make use of a primitive called multi-party
authenticated bits. Our mv-sVOLE can be viewed as a generalization of multi-
party authenticated bits, since multi-party authenticated bits are specifically
designed for the case for binary field while our mv-sVOLE can cover both binary
field and large filed.

Fig. 4. The Functionality Fp,r
mv-sVOLE

3.2 Efficiently Realizing Fp,r
mv-sVOLE

In this subsection, we first give a template construction that efficiently realizes
Fp,r

mv-sVOLE. Then we will show that, by carefully choosing the parameters, our
construction remains secure for both p = 2 and large p > 2.

A Template Construction. We first give a high-level description of our pro-
tocol. Let ρ1 and ρ2 be parameters. In order to authenticate the same 	-length
vector to all verifiers respectively, we first let all parties set 	′ := 	 + ρ1 and

Single-Input Functionality Against a Dishonest Majority 17

let the dealer D pick a random seed sd from the seed space S. We denote by
x := Expand(sd, 	′) ∈ F�′

p . We note that, the last ρ1 components of the vector
x are used to prevent a potentially malicious verifier from learning the first 	
components of x. Then for each i ∈ [n], we let D and Vi invoke an instance
of Fp,r

psVOLE, where D sends s to Fp,r
psVOLE, and Fp,r

psVOLE returns x, m(i) to D and
returns k(i) to Vi such that k(i) = m(i) + x · Δ(i).

Fig. 5. Protocol for multiple-verifier subfield VOLE in the {Fp,r
psVOLE, Fp,1

COIN}-hybrid
world

Next, we let the parties perform the following consistency checks for ρ2 times
to ensure that, if a potentially malicious dealer D∗ uses inconsistent seeds in dif-
ferent instances of Fp,r

psVOLE with different verifiers, D∗ will be caught with over-
whelming probability. We say the dealer uses inconsistent seeds, if it uses sd1, sd2
s.t. Expand(sd1, 	′) �= Expand(sd2, 	′). Notice that, if the dealer uses sd1, sd2 s.t.
sd1 �= sd2 but Expand(sd1, 	′) = Expand(sd2, 	′), we still say that the dealer uses
consistent seeds. Our consistency checks work as follows: We let parties sample
s ← F�′

p and let the dealer D broadcast u := s� · x ∈ Fp. Then for each i ∈ [n]:
the dealer D will send the corresponding MAC tag w(i) := s� ·m(i) ∈ Fpr for u to
Vi, and Vi will compute the corresponding local MAC key v(i) := s� · k(i) ∈ Fpr

and checks if v(i) ? = w(i) + Δ(i) · u. Later, we will show that by carefully choosing

18 Z. Zhou et al.

parameters, if D uses the inconsistent seeds, then D will be caught with over-
whelming probability. Finally, if all consistency checks pass, all parties output
the first 	 objects. That is, D outputs the first 	 components of x, {m(j)}j∈[n]

and Vi outputs the first 	 components of k(i) for each i ∈ [n]. Formally, we
present our protocol construction Πρ1,ρ2

mv-sVOLE in Fig. 5.

Security Analysis. Here we provide the security analysis of Πρ1,ρ2
mv-sVOLE.

Case I: for p = 2. Here, we are dealing with the case where p = 2 and r = λ,
where λ is the security parameter; thus, this can support SIF over boolean
circuits, which we will describe in the later sections. In this case (p = 2 and
r = λ), the parameters should be set as ρ1 := 2ρ and ρ2 := ρ where ρ = Θ(λ).
Notice that, for these parameters, our protocol Π2ρ,ρ

mv-sVOLE directly yields the
multi-party authenticated bits protocol in [49, Figure 5] 5. Next, we explain why
the parameters are set in this way.

Let us first consider the case where D∗ is corrupted. We need to ensure that
if D∗ uses inconsistent seeds, for instance, sd1, sd2 such that Expand(sd1, 	′) �=
Expand(sd2, 	′), then D∗ would be caught with overwhelming probability. We
denote by x1 := Expand(sd1, 	′) and x2 := Expand(sd2, 	′). Since D∗ cannot forge
a MAC tag except for a negligible probability, the probability of D∗ passing
the consistency check is the probability that s� · x1 = s� · x2, where s is
the random vector returned by F2,1

COIN. If we instantiate Expand with a secure
PRG and we denote by I the set of indices where x1 �= x2, then it is easy
to see that Pr[s� · x′

1 = s� · x′
2] = Pr[⊕i∈Isi = 0] = 1 2 + ε(λ), where ε(λ) is

the negligible distance between the pseudorandom random strings generated by
PRGs and the uniformly random strings. In other words, in each consistency
check, a cheating D∗ can pass the check with probability 1 2 +ε(λ). Thus, we need
to let the parties perform ρ = Θ(λ) times, so that a cheating D∗ can pass the
check with probability O(2−λ).

Then we consider the case where the dealer is honest and some verifiers
are corrupted. We need to ensure that the malicious verifiers cannot learn any
information about the dealer’s output, i.e., the first 	 components of x. In the
i-th consistency check, for each random si ∈ F�′

2 returned by F2,1
COIN, we denote

by ai the first 	 components of si and denote by bi the last ρ1 components of
si. We also denote by x̃ the first 	 components of x and denote by y the last
ρ1 components of x. Then we have the equation ui = a�

i · x̃ + b�
i · y. Notice

that, there are ρ2 such equations since we need to perform ρ2 consistency checks.
Therefore, we have to prove that {bi}i∈[ρ2] are linearly independent so that b�

i ·y
can act as “one-time pad” to a�

i · x̃; otherwise, the malicious verifiers may learn
the linear combination of x̃. By [49, Lemma A.4], Wang et al. proved that the
probability of {bi}i∈[ρ2] being linearly dependent is at most 2−(ρ1−ρ2). In order
to make this probability negligible, we have to set ρ1 := 2ρ since ρ2 is already

5 In [49, Figure 5], the authors actually set the parameters as ρ1 = ρ2 := 2ρ. However,
according to their proof, we believe that it is their tiny typo error and the parameters
should be set as ρ1 := 2ρ and ρ2 := ρ.

Single-Input Functionality Against a Dishonest Majority 19

as set as ρ2 := ρ, where ρ = Θ(λ). Formally, we have the following theorem, and
we refer interested readers to see the proof in [49, Theorem A.3].

Theorem 1 (Adapted from [49]). Let λ be the security parameter. Let F2λ

be the extension field. Set ρ1 := 2ρ and ρ2 := ρ where ρ = Θ(λ). Let Expand
be a secure PRG. Then the protocol Π2ρ,ρ

mv-sVOLE depicted in Fig. 5 UC-realizes
F2,λ

mv-sVOLE depicted in Fig. 4 in the {F2,λ
sVOLE, F2,1

COIN}-hybrid world, in the presence
of a static malicious adversary corrupting up to the dealer and n − 1 verifiers.

Case II: for large p > 2. It is easy to see that the efficiency of our protocol
Πρ1,ρ2

mv-sVOLE would be improved, if the parameters ρ1, ρ2 could be set smaller.
Jumping ahead, we find that, when p−1 = negl(λ) and r = 1, the parameters
can be set as minimum, i.e., ρ1 = ρ2 := 1.

Let us first focus on ρ2, which is the number of consistency checks. Recall
that, when p = 2, the probability of a malicious D∗ passing each consistency
check is 1 2 + ε(λ), where ε(λ) is a negligible error that caused by PRGs; there-
fore, ρ = Θ(λ) repetitions are needed. We observe that, if we could lower the
probability of a malicious D∗ passing each consistency check, then the param-
eter ρ2 could be set smaller. By Theorem 3, we can prove that the probability
of a malicious D∗ passing each consistency check can be reduced to p−1 + ε(λ).
Thus, if p is a large prime such that p−1 = negl(λ), we only need to perform the
consistency check once. In other words, the parameter ρ2 can be set as ρ2 := 1.

Now let us focus on ρ1, which is the length of the random mask vector y.
For the random vector s ∈ F�′

p returned by Fp,1
COIN, we denote by a the first 	

components of s and denote by b the last ρ1 components of s. We also denote by
x̃ the first 	 components of x and denote by y the last ρ1 components of x. Then
we have the equation u = a� · x̃ + b� · y. Unlike the previous case where p = 2
and there are ρ such equations, here we only have one such equation. Thus, we
observe that ρ1 = 1 is sufficient to mask a� · x̃ with b� · y, since the probability
of b� · y being zero is negligible. That is why we can set the parameter ρ1 as
ρ1 := 1. Formally, we prove the security through the following theorems, and
their proofs can be found in our full-version paper [57].

Theorem 2. Let Fpr be the extension field where p is a large prime and r =
1. Set ρ1 := 1 and ρ2 := 1. Let Expand be a secure PRG. Then the protocol
Π1,1

mv-sVOLE depicted in Fig. 5 UC-realizes the functionality Fp,1
mv-sVOLE depicted in

Fig. 4 in the {Fp,1
psVOLE, Fp,1

COIN}-hybrid world, in the presence of a static malicious
adversary corrupting up to the dealer and n − 1 verifiers.

Theorem 3. Let Fp be the field with a prime order p. Let s be the column vector
over field Fk

p whose elements are all non-zero, Let t be the column vector that is
uniformly sampled from Fk

p. Then we have Pr[s� · t = 0] = 1 p .

Instantiating Fp,r
psVOLE. Notice that, our protocol Πp,r

mv-sVOLE makes block box
use of Fp,r

psVOLE. We describe two approaches to instantiate Fp,r
psVOLE.

20 Z. Zhou et al.

Approach I: PCG-style. Recently, many works (e.g., [10,11,50]) employ Pseu-
dorandom Correlation Generators (PCGs) to generate sVOLE correlations, i.e.,
they let two parties take a pair of short seeds, then expand them to a large
amount of sVOLE correlations. One of the most appealing features of the PCG-
style approach is that: it only requires sublinear communication cost.

Basing on the PCG construction in [50], Rachuri and Scholl give a PCG-style
protocol that can efficiently realize Fp,r

psVOLE in [45]; their protocol can cover both
p = 2 and p > 2. More precisely, the main building block in [50] is a primi-
tive called single-input sVOLE (spsVOLE), where only one component of the
authenticated vector x is non-zero while other components are zero. Rachuri and
Scholl modify the spsVOLE protocol in [50] to support programmable inputs,
i.e., the authenticated vector x can be expanded from a chosen seed; they also
show that the modified spsVOLE can be used to realize Fp,r

psVOLE with essentially
the same steps as [50]. We refer interested readers to see that in [45].

Approach II: IKNP-style. For binary field, it is known that sVOLE is equivalent
to a primitive called Correlated Oblivious Transfer (COT) [4]. At the end of a
COT protocol, the sender obtains 	 pairs of messages {m (i) 0 , m (i) 1 }i∈[n] ∈ Fr

2 such
that m (i) 0 ⊕ m (i) 1 = Δ, where Δ ∈ Fr

2 is chosen by the sender and m (i) 0 , m (i) 1 ,Δ
can be also viewed as elements in the extension field F2r ; meanwhile, the receiver
obtains {b(i)}i∈[�] ∈ F2 and {m (i)

b(i)}i∈[n] ∈ Fr
2. If we set u := (b(1) , . . . , b(�)) ∈ F�

2,
m := (m (1)

b(1)
, . . . , m (�)

b(�)) ∈ F�
2r and k := (m (1) 0 , . . . , m (�) 0) ∈ F�

2r , it is easy to see
that the sender holds Δ, k and the receiver holds u, m such that k = m⊕u · Δ,
which is in the form of sVOLE correlations.

One approach for generating a large amount of COTs is to employ the Obliv-
ious Transfer Extension (OTE) techniques by Ishai, Kilian, Nissim and Petrank
(hereafter, IKNP) [36], i.e., given a small number of OTs, then extend them to a
large number of OTs using only symmetric-key operations. Compared to PCG-
style approach, IKNP-style approach is more computation-efficient, although
IKNP-style approach requires more communication cost. When only a middle
number of COTs (e.g., thousands of COTs) are needed or a local area network
is employed, it turns out that IKNP-style approach may outperform PCG-style
approach with respect to total end-to-end time, since in both case the communi-
cation cost is no longer the performance bottleneck. For this reason, sometimes,
one may prefer to choose the IKNP-style approaches. We note that, the receiver’s
choice bits {b(i)}i∈[�] (a.k.a, the authenticated vector u as explained previously)
are chosen all by itself; therefore, we can easily instantiate Fp,r

psVOLE with the mali-
ciously secure IKNP-style OTE protocols [39,46] by letting the receiver sample
a random seed sd and expand it to {b(i)}i∈[�] through PRGs.

4 SIF Against a Dishonest Majority

4.1 Preprocessing Phase

Functionality for Preprocessing Phase. Here we describe the functionality
for preprocessing phase, which is denoted by Fp,r

Prep. Our Fp,r
Prep is very similar

Single-Input Functionality Against a Dishonest Majority 21

to Fp,r
mv-sVOLE, except that Fp,r

Prep additionally allows D to authenticate his secret
values over extension field to each verifier respectively. Note that, for authenti-
cations over extension field, D is allowed to use inconsistent values to generate
correlations. Formally, we present the functionalityFp,r

Prep in Fig. 6.

Notation �·�. For a vector u over the subfield F�
p or the extension field F�

pr , we
introduce the following notation �u� to denote the values held by parties:

�u� := {{u, {m(i)}i∈[n]}, {Δ(i) , k(i)}i∈[n]} ,

where u, {m(i)}i∈[n] (resp. Δ(i) , k(i)) are the private information held by the
dealer D (resp. the i-th verifier Vi). We use �u� as shorthand when there is need
to explicitly talk about the MAC tags and MAC keys. We also note that, �·� is
additively homomorphic. This property is inherited from the additive homomor-
phism of sVOLE, which is described in Sect. 2.3.

Fig. 6. The Functionality Fp,r
Prep

Efficiently Realizing Fp,r
Prep. Here we show how to construct a protocol that

efficiently realizes Fp,r
Prep. Since we have already described how to generate mv-

sVOLE correlations in Sect. 3.2, here we focus on the authentication for values

22 Z. Zhou et al.

over extension field. By the characteristic of extension field Fpr ∼= Fp[X]/f (X),
i.e., for every value over extension field u ∈ Fpr , it can be written uniquely as
u =

∑r
i=1 vi · Xi−1 where vi ∈ Fp for all i ∈ [r]. Inspired by [51], we find that

we can pack some authenticated values over Fp into the desired authenticated
values over Fpr . More precisely, D and Vi first invoke the programmable sVOLE
functionality Fp,r

psVOLE to generate r copies of random sVOLE correlations, i.e.,
D obtains v (i) j ,m (i) j and Vi obtains Δ(i) , k (i) j such that k (i) j = m (i) j + u (i) j · Δ(i)

for each j ∈ [r]. Then, the dealer D locally computes u(i) :=
∑r

j=1 v (i) j · Xj−1,
M (i) :=

∑r
j=1 m (i) j · Xj−1 and Vi locally computes K(i) :=

∑r
j=1 k (i) j · Xj−1. It

is easy to see that K(i) = M (i) + u(i) · Δ(i) holds.
Formally, we present our protocol ΠPrep for preprocessing phase in Fig. 7 and

prove the security through Theorem 4. The security proof can be found in our
full-version paper [57].

Fig. 7. Protocol for preprocessing phase in the {Fp,r
psVOLE, Fp,1

COIN}-hybrid world

Theorem 4. Let Fpr be the extension field. Let Expand be a secure PRG. Then
the protocol ΠPrep depicted in Fig. 7 UC-realizes the functionality Fp,r

Prep depicted
in Fig. 6 in the {Fp,r

psVOLE, Fp,1
COIN}-hybrid world, in the presence of a static mali-

cious adversary corrupting up to the dealer and n − 1 verifiers.

4.2 Main Protocol

Here we provide a main protocol for SIF. Since we have already described how
to realize preprocessing phase in Sect. 4.1, here we focus on the online phase.

Single-Input Functionality Against a Dishonest Majority 23

We first let the dealer D commit to his witness w ∈ Fm
p using the random mv-

sVOLE correlations �μ� generated by Fp,r
Prep in the preprocessing phase; that is, D

broadcasts δ := w− μ ∈ Fm
p to verifiers, and all parties compute �w� := �μ�+ δ.

It is easy to see that the addition gates of the circuit can be processed locally
for free, due to the additive homomorphism of �·�. For multiplication gates, we
extend the techniques in [24,51] which are designed for (s)VOLE correlations
to our mv-sVOLE correlations. More precisely, for the i-th multiplication gate
(α, β, γ, Mult), given the random �ηi� generated by Fp,r

Prep in the preprocessing
phase, D broadcasts di := wα · wβ − ηi ∈ Fp to verifiers, then all parties compute
�wγ� := �ηi�+ di. As a result, D holds wa,m (j) a and Vj holds Δ(j) , k (j) a such that
k (j) a = m (j) a + wa · Δ(j) for a ∈ {α, β, γ} and j ∈ [n]. By Eq. 1, we conclude that
if D behaves honestly (i.e., wγ = wα ·wβ), then we have B (j) i = A (j) i,0 + A (j) i,1 · Δ(j).
It is easy to see that B (j) i (resp. A (j) i,0 , A (j) i,1) can be locally computed by D (resp.
Vj); therefore, the correctness of the i-th multiplication gate can be checked by
letting D send A (j) i,0 , A (j) i,1 to Vj and letting Vj check if B (j) i

? = A (j) i,0 + A (j) i,1 · Δ(j)

holds for each j ∈ [n]. We can check t multiplication gates in a batch to reduce
the communication cost, using the random linear combination technique [51].
That is, we let the parties sample a uniformly random χ ← Fpr , then we let D
send A (j) 0 :=

∑t
i=1 A (j) i,0 · χi and A (j) 1 :=

∑t
i=1 A (j) i,1 · χi to Vj and let Vj check

if B(j) ? = A (j) 0 + A (j) 1 · Δ(j) for j ∈ [n], where B(j) :=
∑t

i=1 B (j) i · χi. Notice
that, A (j) 0 , A (j) 1 may leak some information about the wire values; thus, we use
random u(j) , v(j) , z(j) such that z(j) = v(j) + u(j) · Δ(j) to mask A (j) 0 , A (j) 1 .

Formally, we present ΠSIF in Fig. 8 and prove the security through Theorem 5.
The security proof can be found in our full-version paper [57].

Theorem 5. Let Fpr be the extension field. Let C be the circuit with t multiplica-
tion gates. Then the protocol ΠSIF depicted in Fig. 8 UC-realizes FSIF depicted in
Fig. 2 with statistical security in the {Fp,r

Prep, Fp,r
COIN}-hybrid world, in the presence

of a static malicious adversary corrupting up to the dealer and n − 1 verifiers.

Towards One-Round Online Communication. During the online phase of
our protocol ΠSIF, the only interaction between the parties is the coin-tossing
procedure. In order to achieve one-round online communication, we can replace
the coin-tossing with a Random Oracle (RO) to generate the random element
χ. More precisely, given a hash function H : {0, 1}∗ → Fpr which is modeled as
a RO, we let D compute χ := H({δi}i∈[m], {di}i∈[t]). Since {δi}i∈[m], {di}i∈[t] are
broadcasted by D, verifiers can locally compute χ.

We note that, when RO is introduced, the statistic security of our protocol
ΠSIF will be degraded to the computational security, and the computational
security error will be O(QH·t/pr), where QH is the number of maximum queries to
RO and t is the number of multiplication gates. When pr is not large enough, we
can simply repeat our main protocol for ρ times to achieve negligible soundness
error, where ρ is selected such that O(QH · (t/pr)ρ) = negl(λ).

24 Z. Zhou et al.

Fig. 8. Main Protocol for SIF in the {Fp,r
Prep, Fp,r

COIN}-hybrid world

Towards Better Efficiency. In Step 3 of our online phase protocol, the parties
need to compute χi for i ∈ [t]. When p is a large prime, the computation of χi for
i ∈ [t] can be very expensive. To obtain better computational efficiency, it was
suggested in prior work [51] that we can replace χi with independent uniform
coefficients χi for i ∈ [t]. More concretely, instead of querying RO to obtain χ
and then computing χi for i ∈ [t], we can query RO to directly obtain χ1, . . . , χt

Single-Input Functionality Against a Dishonest Majority 25

and use χi to replace χi for i ∈ [t]. Notice that, this approach will slightly
increase the soundness error, but the resulting soundness error is still negligible.
We refer interested readers to see [51] for more details.

5 Impossibility on 1-Round SIF Without Broadcast
Channels

Our 1-round SIF protocol in Fig. 8 requires a broadcast channel. It is natural to
ask: if the broadcast channels are necessary for constructing 1-round SIF?

In this section, we prove that even if the preprocessing model is assumed,
1-round MVZK is impossible to achieve without the broadcast channels. Since
MVZK is captured by SIF and VRS, our impossibility can naturally be extended
for SIF and VRS. Therefore, we show that the broadcast channels are necessary
for constructing 1-round SIF/VRS/MVZK.

MVZK Functionality. We have described MVZK in the introduction, here we
provide the formal MVZK functionality FMVZK in Fig. 9, which is taken from [52].
From Fig. 9, we know that there is an important feature in MVZK: for those
honest verifiers who do not abort, they should reach a consensus (i.e., they
should output the same results). This feature is important for our impossibility
proof; please see the proof intuition below.

Fig. 9. The Functionality FMVZK

Proof Intuition. We use the method of proof by contradiction to prove our impos-
sibility result. First of all, we assume there exists a non-interactive MVZK using
only secure private channels (i.e., point-to-point channels); note that, “non-
interactive” means that: in the online phase of the non-interactive protocol,
the prover is allowed to send messages to the verifiers, and the verifiers are not
allowed to communicate with each other. Let us consider the case where only

26 Z. Zhou et al.

the prover is corrupted. Let w, w′ be two distinct witnesses such that C(w) = 1
and C(w′) = 0. Let msgi (resp. msg′

i) be the messages that an honest prover
should sent to the i-th verifier on input w (resp. w′); upon receiving msgi (resp.
msg′

i), the i-th honest verifier should output 1 (resp. 0), since the online phase
is restricted to be non-interactive. Then the corrupted prover can simply send
msg1 to the first honest verifier and send msg′

2, . . . , msg′
n to the remaining hon-

est verifiers respectively. Then the first honest verifier will output 1 while the
remaining honest verifiers will output 0, which violate the consensus require-
ment of MVZK functionality. Notice that, the above proof intuition holds, (i) no
matter how many verifiers the adversary can corrupt, as long as the adversary is
allowed to corrupt the prover; (ii) a preprocessing model is assumed 6. Formally,
we have the following theorem.

Theorem 6. Let the communication channels be secure point-to-point chan-
nels, and no broadcast channels are available. Let n be the number of verifiers
such that n ≥ 2. Then there exists no non-interactive MVZK protocol Π that
UC-realizes FMVZK depicted in Fig. 9 in the preprocessing model, in the presence
of a static and malicious adversary who is allowed to corrupt the prover.

Proof. We use the method of proof by contradiction to prove this theorem. We
assume there exists such a non-interactive MVZK protocol Π that UC-realizes
FMVZK in the preprocessing model. Then for any PPT adversary A and any PPT
environment Z, there should exist a PPT simulator S such that the real-world
execution is computationally indistinguishable from the ideal-world execution.

First of all, let us describe some notions that will be used in this proof. We use
OPrep to denote the preprocessing model; when a party makes a query to OPrep,
OPrep takes the session identifier (SID) and the party identifier (PID) pid of the
querying party as inputs, and it returns the corresponding preprocessing infor-
mation infopid to the party. Notice that, OPrep may return different preprocessing
information to different parties, and each party can not learn other parties’ pre-
processing information by querying OPrep. In the same protocol session, OPrep

should return the same response to the same party, no matter the party is hon-
est or gets corrupted. Notice that, we make a restriction on OPrep’s inputs, i.e.,
OPrep cannot use anything other than the SID and the PID as inputs; in this
way, we guarantee the preprocessing information returned by OPrep is “input-
independent”. Without loss of generality, we assume the prover P’s PID is 0,
and the i-th verifier Vi’s PID is i for i ∈ [n]. we let PrfAlg be the (honest) prover
algorithm, which takes the preprocessing information info0 and the witness w as
input and outputs the prover’s messages (pmsg1, . . . , pmsgn), where pmsgi is the
message that should be sent to Vi. Let DecAlgi be the (honest) decision algo-
rithm for Vi, which takes the preprocessing information infoi and the received
message pmsgi as inputs and outputs the decision bit b or a special symbol ⊥
indicating abort.

Let A be a dummy adversary that simply forwards the protocol flow
between the corrupted parties and the environment Z. Let us consider the
6 The preprocessing model implies RO model and CRS model.

Single-Input Functionality Against a Dishonest Majority 27

case where Z only corrupts the prover. Let w(0) , w(1) be two distinct wit-
nesses such that C(w(0)) = 0 and C(w(1)) = 1. We consider the following
adversary’s strategy. The environment Z first instructs P∗ to query OPrep to
obtain info0 and honestly run (pmsg

(0)
1 , . . . , pmsg

(0)
n) ← PrfAlg(info0, w(0)) and

(pmsg
(1)
1 , . . . , pmsg

(1)
n) ← PrfAlg(info0, w(1)). Notice that, both (pmsg

(0)
i)i∈[n]

and (pmsg
(1)
i)i∈[n] are honestly generated; hence, by completeness, for each hon-

est Vi, we have DecAlgi(infoi, pmsg
(b)
i) = b for b ∈ {0, 1}. Next, for each honest

Vi, Z samples a bit bi from {0, 1} and instructs P∗ to send pmsg
(bi)
i to Vi, and

an honest Vi should output the decision bit bi. In the real-world execution, since
Pr[b1 = b2 = · · · = bn] = 2−(n−1), the probability of the honest verifiers reaching
a consensus (i.e., all honest verifiers output 0 or 1) is 2−(n−1). On the other
hand, in the ideal-world execution, the simulator S can extract the witnesses
w(0) , w(1) by simulating OPrep; however, S can only instruct the dummy P̃∗ in
ideal-world to send either w(0) or w(1) to FMVZK, which results in a consensus
among the dummy honest verifiers in ideal-world. Therefore, Z can distinguish
the real-world from the ideal world with probability at least 1 − 2−(n−1) ≥ 1 2 ,
contradicting our assumption that Π is UC-secure. ��

Extending to the Simultaneous Communication Model. Here we discuss
how to extend our impossibility results depicted in Theorem 6 to the simulta-
neous communication model. Recall that, in the simultaneous communication
model, parties are allowed to send messages to each other in the same round;
however, their messages should be independent of each other. Hence, in the con-
text of 1-round MVZK, when the prover sends its messages to the verifiers, the
verifiers may also send their messages to each other at the same time. Then each
verifier outputs the result based on the prover’s messages and other verifiers’
messages. We note that, we do not consider the situation where the verifiers
send to the prover during the online phase, since the prover has no output and
its proof messages should not depend on the verifiers’ messages.

Now we show that even in the simultaneous communication model, 1-round
MVZK protocol is still impossible to achieve without the broadcast channels,
in the presence of a static, malicious and rushing adversary. Note that, a rush-
ing adversary is often considered in the simultaneous communication model.
A rushing adversary can delay sending messages on behalf of corrupted par-
ties in a given round, until the messages sent by all the uncorrupted parties in
that round have been received. We consider the case where the adversary cor-
rupts the prover. Let w, w′ be two distinct witnesses such that C(w) = 0 and
C(w′) = 1. The adversary first instructs the prover to wait until each honest
verifier has received other verifiers’ messages, and we denote by vmsg

(i)
j the mes-

sage that the i-th verifier send to the j-th verifier. Then the adversary instructs
the prover to honestly run the prover’s algorithm on input w (resp. w′) to pro-
duce {pmsgi}i∈[n] (resp. {pmsg′

i}i∈[n]), where pmsgi (resp. pmsg′
i) is the message

that the prover should send to the i-th verifier. Notice that, upon receiving
pmsgi (resp. pmsg′

i) and (vmsg
(j)
i)j �=i, the i-th verifier should output 0 (resp.

28 Z. Zhou et al.

1), since pmsgi (resp. pmsg′
i) and (vmsg

(j)
i)j �=i are honestly generated. Finally,

the adversary instructs the prover to send pmsg1 to the first verifier and send
pmsg′

2, . . . , pmsg′
n to the remaining honest verifiers respectively. Then the first

honest verifier will output 1 while the remaining honest verifiers will output 0,
which violate the consensus requirement of MVZK functionality.

Formally, we have the following theorem. We omit the proof here, since the
proof is analogous to the proof of Theorem 6.

Theorem 7. Let the communication channels be secure point-to-point channels
which allows simultaneous communication, and no broadcast channels are avail-
able. Let n be the number of verifiers such that n ≥ 2. Then there exists no
1-round MVZK protocol Π that UC-realizes FMVZK depicted in Fig. 9 in the pre-
processing model, in the presence of a static, malicious and rushing adversary
who is allowed to corrupt the prover.

Since SIF implies MVZK [3], we have the following corollary.

Corollary 1. Let the communication channels be secure point-to-point chan-
nels, and no broadcast channels are available. Let n be the number of verifiers
such that n ≥ 2. Then there exists no 1-round SIF protocol Π that UC-realizes
FSIF depicted in Fig. 2 in the preprocessing model, in the presence of a static,
malicious and rushing adversary who is allowed to corrupt the dealer.

6 Implementation and Evaluation

We implement a prototype of our protocols in C++ using EMP toolkip [48]. We
simulate the network configurations using Linux netem package. In this section,
we refer LAN (resp. WAN) to the 1 Gbps (resp. 200 Mbps) network with 6 ms
(resp. 20 ms) delay. All experiments are executed on a machine with Intel(R)
Core(TM) i7-12700 at 2.10 GHz and 512 GB Memory, running Ubuntu 22.04.3
LTS. Each experiment is run 20 times and the median is taken.

For arithmetic circuits, we use a 61-bit field (i.e., p = 261−1 and r = 1); notice
that, in this case, we will repeat our protocol for ρ = 2 times to achieve negligible
soundness error, as discussed in Sect. 4.2. For boolean circuits, we use a binary
field (i.e., p = 2 and r = 128). For large-scale circuits (e.g., a circuit with 107

gates), we instantiate psVOLE with recent PCG-style protocols [45,50,54]. For
widely used benchmark circuits (e.g. the AES-128 circuit), which are typically
small or median size boolean circuits, we instantiate the psVOLE with the IKNP-
style COT protocol [39].

6.1 Comparison with Related Works

Here we compare the efficiency of our protocols with other related works.

Comparison with SIF Against a Dishonest Majority. To the best of our
knowledge, the only work in the literature that constructs SIF against a dishonest
majority is [56], which we denote by ZZZR protocol. Both ZZZR protocol and

Single-Input Functionality Against a Dishonest Majority 29

our work can tolerate up to one malicious dealer and t < n malicious verifiers.
We conduct experiments of our protocol and ZZZR protocol on an AES-128
circuit with different total party number N ∈ {3, 8, 16, 32} and different network
configurations, and plot the results in Fig. 10.

Fig. 10. Comparison between our protocol and ZZZR protocol [56]. Results are evalu-
ated on an AES-128 circuit.

As shown in Fig. 10, our protocol outperforms ZZZR protocol in both run-
ning time and communication. Our improvement for preprocessing time (resp.
communication) over ZZZR protocol ranges from roughly 5.2× to 14.5× (resp.
11.6× to 17.2×). The reason is: ZZZR preprocessing protocol makes black-box
use of BDOZ-style preprocessing protocol [8], which is expensive; in contrast,
our preprocessing protocol makes use of psVOLE, which is much more efficient.
The cost of our online phase is also less; the reason is: our online phase is only
1-round, and removes the peer-to-peer communication among the verifiers.

Comparison with SIF with an Honest Majority. Among three recent and
related work with an honest majority [3, 5,52], Feta [5] is the only one that
implements their protocols; hence, here we compare the efficiency of our protocol
with Feta. We report the comparison result in Table 4.

Table 4. Comparison between Feta [5] and ours. The results are evaluated on an
AES-128 circuit under a WAN network.

Fix the number of total parties N
Ref. (T, N) Prep. Time (ms) Online Time (ms)

Feta [5] (2,6) 108.9 64.4
This Work (5,6) 250.4 45.8

Fix the number of total corrupted parties T
Ref. (T, N) Prep. Time (ms) Online Time (ms)

Feta [5] (7,26) 872.3 653.0
This Work (7,8) 336.8 48.9

30 Z. Zhou et al.

In Table 4, we compare Feta and our protocol in two setting: (i) when the
number of total parties N is fixed; (ii) when the number of total corrupted
parties T is fixed. In the first setting, our preprocessing time is slower than that
of Feta, but our online time is faster. Notice that, our work can tolerate all-but-
one corruptions among verifiers, but Feta assumes an honest majority among
verifiers. In the second setting, both our preprocessing time and online time are
faster than Feta. More precisely, our preprocessing time is 2.6× faster and our
online time is 13.4× faster.

Comparison with Generic MPC Against a Dishonest Majority. To fur-
ther demonstrate the efficiency of our protocols, we compare our protocol with
the state-of-the-art constant-round BMR-style MPC protocols in the dishonest
majority setting, i.e., the WRK protocol by Wang et al. [49] and the YWL proto-
col by Yang et al. [53]. Notice that, the numbers of WRK protocol are measured
by ourselves, while the numbers of YWL protocol are estimated according to
the improvements over WRK protocol that reported in [53]. We plot the results
in Fig. 11. As shown in Fig. 11, our protocol outperforms both WRK and YWL
protocols in both running time and communication. Our improvement for total
running time (resp. total communication) ranges from 2.3× to 15.1× (resp. 12.1×
to 15.7×).

Fig. 11. Comparison among WRK [49], YWL [53] and our protocol. Results are evalu-
ated on a AES-128 circuit.

Comparison with Generic zk-SNARK. Here we compare with a recent
zk-SNARK scheme called HyperPlonk [16,17]. As reported in [16, Table 6], the
proving time of HyperPlonk is 9.2 us/gate. The running time of HyperPlonk is
obtained by running over a large-scale arithmetic circuit (e.g., a circuit with
220 gates). To make a fair comparison, we report the end-to-end performance
of our protocols over a large-scale arithmetic circuit. Table 5 illustrate the end-
to-end time of our protocol with respect to a randomly generated arithmetic
circuit with 107 multiplication gates. The number of end-to-end time consists
of both computation time and communication time. Some careful readers may
notice that, the numbers reported here are much faster than our running times
reported in Table 2. The reason is that: our running times reported in Table 2
are obtained by evaluating a small circuit and using the IKNP-style approach

Single-Input Functionality Against a Dishonest Majority 31

to instantiate the preprocessing phase; in contrast, the numbers reported in
Table 5 are obtained by instantiating the preprocessing phase with the PCG-
style approaches, which is much more efficient than IKNP-style approach when
a large amount of correlated randomness are needed.

Table 5. Our end-to-end performance. The results are evaluated on a random circuit
with 107 multiplication gates.

Network #Party
Running Time
Per Gate (us)

LAN
3 0.9
8 2.4
16 4.9

WAN
3 1.6
8 3.6
16 7.1

As shown in Table 5, for three-party SIF running over an arithmetic circuit
and a LAN network, our end-to-end time is 0.9 us/gate. Our running time is at
least 10.2× faster than HyperPlonk. We admit that, when the number of total
parties scales to a large one, our performance may not be as good as generic
zk-SNARKs; however, this is a common drawback of current SIF (in the context
of MVZK) protocols [5,52,56].

7 Related Work

Here we provide a comprehensive literature overview on the related work in both
honest majority and dishonest majority settings.

In the Honest Majority Setting. The study of SIF was initialized by Gennaro
et al. [29]. More precisely, they proposed a 2-round SIF protocol in the plain
model with t < n

6 , where t, n are the numbers of corrupted verifiers and total
verifiers, and their protocol achieves perfect security. Applebaum et al. improved
the corruption threshold to t < n

3 while keep the same round complexity, at the
cost of degrading the perfect security to computational security [2]. Later, the
same authors further improved the corruption threshold to t < n

2+ε , where ε is
a small positive constant [3].

As mentioned before, MVZK is a direct application of SIF, and the notion
of MVZK can be traced back to the work by Burmester and Desmedt [13].
Abe et al. proposed a 2-round MVZK protocol for circuit satisfiability with
t < n

3 [1]; the corruption threshold of their protocol can be improved to t < n
2

at the cost of increasing round complexity. The ZK protocols by Groth and
Ostrovsky [32,33] can be transformed into the 2-round MVZK protocols with

32 Z. Zhou et al.

t < n
2 . These works [1,32,33] require heavy public-key operations and are not

concretely efficient. Very recently, there are two papers [5,52] studying 2-round
MVZK protocols in the honest majority setting, and they avoided the use of
public-key operations. Yang and Wang [52] proposed 2-round MVZK protocols
in the RO model with t < n

2 . Baum et al. [5] employed a stronger assumption (i.e.,
the preprocessing model) to construct two types of the 2-round MVZK protocols:
the first protocol tolerates n

3 malicious verifiers and the second protocol tolerates
n
4 malicious verifiers.

Distributed Zero-Knowledge (dZK) is a related cryptographic primitive, and
it was proposed by Boneh et al. [9]. In dZK, there is a distinguished prover
holding (x, w) ∈ R and the statement x is shared among the verifiers; the prover
wishes to convince the verifiers that x is correct in zero-knowledge even if the
verifiers do not know the entire x. The main difference between dZK and MVZK
is that: in dZK, no verifier knows the entire statement x; in contrast, in MVZK,
each verifier knows the entire statement x. Boneh et al. [9] gave a 2-round dZK
construction in the RO model with t < n

2 . Very recently, Hazay et al. strengthen
the formalization of [9] by adding strong completeness [35], which prevents the
malicious verifiers from framing the honest prover, i.e., causing the proof of a
correct claim to fail. They constructed their dZK with t < n−2

6 .

In the Dishonest Majority Setting. In [40], Lepinski et al. propose a notion
called fair ZK, which can be viewed as a strengthened version of MVZK. Fair
ZK ensures that the malicious verifiers can learn nothing beyond the validity
of the statement if the honest verifiers accept the proof. However, their work is
far from being practical. To the best of our knowledge, the only prior work that
focuses on constructing practical SIF protocols against a dishonest majority is
the work by Zhou et al. [56]. More precisely, they build highly efficient 2-round
SIF protocols in the preprocessing model.

In terms of dZK, Boneh et al. give a 2-round dZK construction in the RO
model [9]; however, they assume the adversary can corrupt the prover or up to
t < n verifiers. In other words, they do not allow the malicous prover to collude
with the malicious verifiers.

Acknowledgement. Bingsheng Zhang is supported by the National Natural Science
Foundation of China (Grant No. 62232002) and Input Output (iohk.io). Hong-Sheng
Zhou was supported in part by NSF grant CNS-1801470 and a VCU Research Quest
grant.

References

1. Abe, M., Cramer, R., Fehr, S.: Non-interactive distributed-verifier proofs and prov-
ing relations among commitments. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS,
vol. 2501, pp. 206–224. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-36178-2 13

https://doi.org/10.1007/3-540-36178-2_13
https://doi.org/10.1007/3-540-36178-2_13
https://doi.org/10.1007/3-540-36178-2_13
https://doi.org/10.1007/3-540-36178-2_13
https://doi.org/10.1007/3-540-36178-2_13
https://doi.org/10.1007/3-540-36178-2_13
https://doi.org/10.1007/3-540-36178-2_13
https://doi.org/10.1007/3-540-36178-2_13
https://doi.org/10.1007/3-540-36178-2_13

Single-Input Functionality Against a Dishonest Majority 33

2. Applebaum, B., Kachlon, E., Patra, A.: The resiliency of MPC with low interaction:
the benefit of making errors (extended abstract). In: Pass, R., Pietrzak, K. (eds.)
TCC 2020, Part II. LNCS, vol. 12551, pp. 562–594. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-64378-2 20

3. Applebaum, B., Kachlon, E., Patra, A.: Verifiable relation sharing and multi-
verifier zero-knowledge in two rounds: trading NIZKs with honest majority -
(extended abstract). In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part IV.
LNCS, vol. 13510, pp. 33–56. Springer, Heidelberg (2022). https://doi.org/10.1007/
978-3-031-15985-5 2

4. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer
and extensions for faster secure computation. In: Sadeghi, A.R., Gligor, V.D., Yung,
M. (eds.) ACM CCS 2013, pp. 535–548. ACM Press (2013). https://doi.org/10.
1145/2508859.2516738

5. Baum, C., Jadoul, R., Orsini, E., Scholl, P., Smart, N.P.: Feta: efficient threshold
designated-verifier zero-knowledge proofs. In: Yin, H., Stavrou, A., Cremers, C.,
Shi, E. (eds.) ACM CCS 2022, pp. 293–306. ACM Press (2022). https://doi.org/
10.1145/3548606.3559354

6. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

7. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press (1990).
https://doi.org/10.1145/100216.100287

8. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20465-4 11

9. Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Zero-knowledge
proofs on secret-shared data via fully linear PCPs. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 67–97. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26954-8 3

10. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: Lie,
D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 896–912. ACM
Press (2018). https://doi.org/10.1145/3243734.3243868

11. Boyle, E., et al.: Efficient two-round OT extension and silent non-interactive secure
computation. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS
2019, pp. 291–308. ACM Press (2019). https://doi.org/10.1145/3319535.3354255

12. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseu-
dorandom correlation generators: silent OT extension and more. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 489–518.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 16

13. Burmester, M., Desmedt, Y.: Broadcast interactive proofs. In: Davies, D.W. (ed.)
EUROCRYPT 1991. LNCS, vol. 547, pp. 81–95. Springer, Heidelberg (1991).
https://doi.org/10.1007/3-540-46416-6 7

14. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press (2001).
https://doi.org/10.1109/SFCS.2001.959888

15. Cascudo, I., David, B.: Publicly verifiable secret sharing over class groups and
applications to DKG and YOSO. In: EUROCRYPT 2024 (2024)

https://doi.org/10.1007/978-3-030-64378-2_20
https://doi.org/10.1007/978-3-030-64378-2_20
https://doi.org/10.1007/978-3-030-64378-2_20
https://doi.org/10.1007/978-3-030-64378-2_20
https://doi.org/10.1007/978-3-030-64378-2_20
https://doi.org/10.1007/978-3-030-64378-2_20
https://doi.org/10.1007/978-3-030-64378-2_20
https://doi.org/10.1007/978-3-030-64378-2_20
https://doi.org/10.1007/978-3-030-64378-2_20
https://doi.org/10.1007/978-3-030-64378-2_20
https://doi.org/10.1007/978-3-031-15985-5_2
https://doi.org/10.1007/978-3-031-15985-5_2
https://doi.org/10.1007/978-3-031-15985-5_2
https://doi.org/10.1007/978-3-031-15985-5_2
https://doi.org/10.1007/978-3-031-15985-5_2
https://doi.org/10.1007/978-3-031-15985-5_2
https://doi.org/10.1007/978-3-031-15985-5_2
https://doi.org/10.1007/978-3-031-15985-5_2
https://doi.org/10.1007/978-3-031-15985-5_2
https://doi.org/10.1007/978-3-031-15985-5_2
https://doi.org/10.1145/2508859.2516738
https://doi.org/10.1145/2508859.2516738
https://doi.org/10.1145/2508859.2516738
https://doi.org/10.1145/2508859.2516738
https://doi.org/10.1145/2508859.2516738
https://doi.org/10.1145/2508859.2516738
https://doi.org/10.1145/2508859.2516738
https://doi.org/10.1145/3548606.3559354
https://doi.org/10.1145/3548606.3559354
https://doi.org/10.1145/3548606.3559354
https://doi.org/10.1145/3548606.3559354
https://doi.org/10.1145/3548606.3559354
https://doi.org/10.1145/3548606.3559354
https://doi.org/10.1145/3548606.3559354
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1145/100216.100287
https://doi.org/10.1145/100216.100287
https://doi.org/10.1145/100216.100287
https://doi.org/10.1145/100216.100287
https://doi.org/10.1145/100216.100287
https://doi.org/10.1145/100216.100287
https://doi.org/10.1145/100216.100287
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1145/3319535.3354255
https://doi.org/10.1145/3319535.3354255
https://doi.org/10.1145/3319535.3354255
https://doi.org/10.1145/3319535.3354255
https://doi.org/10.1145/3319535.3354255
https://doi.org/10.1145/3319535.3354255
https://doi.org/10.1145/3319535.3354255
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/3-540-46416-6_7
https://doi.org/10.1007/3-540-46416-6_7
https://doi.org/10.1007/3-540-46416-6_7
https://doi.org/10.1007/3-540-46416-6_7
https://doi.org/10.1007/3-540-46416-6_7
https://doi.org/10.1007/3-540-46416-6_7
https://doi.org/10.1007/3-540-46416-6_7
https://doi.org/10.1007/3-540-46416-6_7
https://doi.org/10.1007/3-540-46416-6_7
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888

34 Z. Zhou et al.

16. Chen, B., Bünz, B., Boneh, D., Zhang, Z.: HyperPlonk: plonk with linear-
time prover and high-degree custom gates. Cryptology ePrint Archive, Report
2022/1355 (2022). https://eprint.iacr.org/2022/1355

17. Chen, B., Bünz, B., Boneh, D., Zhang, Z.: HyperPlonk: plonk with linear-time
prover and high-degree custom gates. In: Hazay, C., Stam, M. (eds.) EURO-
CRYPT 2023, Part II. LNCS, vol. 14005, pp. 499–530. Springer, Heidelberg (2023).
https://doi.org/10.1007/978-3-031-30617-4 17

18. Chen, Y.H., Lindell, Y.: Feldman’s verifiable secret sharing for a dishonest majority.
Cryptology ePrint Archive, Paper 2024/031 (2024). https://eprint.iacr.org/2024/
031

19. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and
achieving simultaneity in the presence of faults (extended abstract). In: 26th FOCS,
pp. 383–395. IEEE Computer Society Press (1985). https://doi.org/10.1109/SFCS.
1985.64

20. Feta implementation (2022). https://github.com/KULeuven-COSIC/Feta
21. Corrigan-Gibbs, H., Boneh, D.: Prio: private, robust, and scalable computation of

aggregate statistics. In: 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 2017), pp. 259–282 (2017)

22. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

23. Das, S., Yurek, T., Xiang, Z., Miller, A.K., Kokoris-Kogias, L., Ren, L.: Practical
asynchronous distributed key generation. In: 2022 IEEE Symposium on Security
and Privacy, pp. 2518–2534. IEEE Computer Society Press (2022). https://doi.
org/10.1109/SP46214.2022.9833584

24. Dittmer, S., Ishai, Y., Ostrovsky, R.: Line-point zero knowledge and its applica-
tions. In: ITC 2021 (2021)

25. Dowsley, R., Muller-Quade, J., Otsuka, A., Hanaoka, G., Imai, H., Nascimento,
A.C.: Universally composable and statistically secure verifiable secret sharing
scheme based on pre-distributed data. IEICE Trans. Fundam. Electron. Commun.
Comput. Sci. 94(2), 725–734 (2011)

26. Escudero, D., Goyal, V., Polychroniadou, A., Song, Y., Weng, C.: SuperPack: dis-
honest majority MPC with constant online communication. In: Hazay, C., Stam,
M. (eds.) EUROCRYPT 2023, Part II. LNCS, vol. 14005, pp. 220–250. Springer,
Heidelberg (2023). https://doi.org/10.1007/978-3-031-30617-4 8

27. Escudero, D., Polychroniadou, A., Song, Y., Weng, C.: Dishonest majority multi-
verifier zero-knowledge proofs for any constant fraction of corrupted verifiers. In:
ACM CCS 2024 (2024). https://eprint.iacr.org/2024/997

28. Franklin, M.K., Yung, M.: Communication complexity of secure computation
(extended abstract). In: 24th ACM STOC, pp. 699–710. ACM Press (1992).
https://doi.org/10.1145/129712.129780

29. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: On 2-round secure multiparty
computation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 178–193.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 12

30. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key genera-
tion for discrete-log based cryptosystems. J. Cryptol. 20(1), 51–83 (2007). https://
doi.org/10.1007/s00145-006-0347-3

31. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM
STOC, pp. 218–229. ACM Press (1987). https://doi.org/10.1145/28395.28420

https://eprint.iacr.org/2022/1355
https://eprint.iacr.org/2022/1355
https://eprint.iacr.org/2022/1355
https://eprint.iacr.org/2022/1355
https://eprint.iacr.org/2022/1355
https://eprint.iacr.org/2022/1355
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1007/978-3-031-30617-4_17
https://eprint.iacr.org/2024/031
https://eprint.iacr.org/2024/031
https://eprint.iacr.org/2024/031
https://eprint.iacr.org/2024/031
https://eprint.iacr.org/2024/031
https://eprint.iacr.org/2024/031
https://doi.org/10.1109/SFCS.1985.64
https://doi.org/10.1109/SFCS.1985.64
https://doi.org/10.1109/SFCS.1985.64
https://doi.org/10.1109/SFCS.1985.64
https://doi.org/10.1109/SFCS.1985.64
https://doi.org/10.1109/SFCS.1985.64
https://doi.org/10.1109/SFCS.1985.64
https://doi.org/10.1109/SFCS.1985.64
https://github.com/KULeuven-COSIC/Feta
https://github.com/KULeuven-COSIC/Feta
https://github.com/KULeuven-COSIC/Feta
https://github.com/KULeuven-COSIC/Feta
https://github.com/KULeuven-COSIC/Feta
https://github.com/KULeuven-COSIC/Feta
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1109/SP46214.2022.9833584
https://doi.org/10.1109/SP46214.2022.9833584
https://doi.org/10.1109/SP46214.2022.9833584
https://doi.org/10.1109/SP46214.2022.9833584
https://doi.org/10.1109/SP46214.2022.9833584
https://doi.org/10.1109/SP46214.2022.9833584
https://doi.org/10.1109/SP46214.2022.9833584
https://doi.org/10.1109/SP46214.2022.9833584
https://doi.org/10.1007/978-3-031-30617-4_8
https://doi.org/10.1007/978-3-031-30617-4_8
https://doi.org/10.1007/978-3-031-30617-4_8
https://doi.org/10.1007/978-3-031-30617-4_8
https://doi.org/10.1007/978-3-031-30617-4_8
https://doi.org/10.1007/978-3-031-30617-4_8
https://doi.org/10.1007/978-3-031-30617-4_8
https://doi.org/10.1007/978-3-031-30617-4_8
https://doi.org/10.1007/978-3-031-30617-4_8
https://doi.org/10.1007/978-3-031-30617-4_8
https://eprint.iacr.org/2024/997
https://eprint.iacr.org/2024/997
https://eprint.iacr.org/2024/997
https://eprint.iacr.org/2024/997
https://eprint.iacr.org/2024/997
https://eprint.iacr.org/2024/997
https://doi.org/10.1145/129712.129780
https://doi.org/10.1145/129712.129780
https://doi.org/10.1145/129712.129780
https://doi.org/10.1145/129712.129780
https://doi.org/10.1145/129712.129780
https://doi.org/10.1145/129712.129780
https://doi.org/10.1145/129712.129780
https://doi.org/10.1007/3-540-45708-9_12
https://doi.org/10.1007/3-540-45708-9_12
https://doi.org/10.1007/3-540-45708-9_12
https://doi.org/10.1007/3-540-45708-9_12
https://doi.org/10.1007/3-540-45708-9_12
https://doi.org/10.1007/3-540-45708-9_12
https://doi.org/10.1007/3-540-45708-9_12
https://doi.org/10.1007/3-540-45708-9_12
https://doi.org/10.1007/3-540-45708-9_12
https://doi.org/10.1007/s00145-006-0347-3
https://doi.org/10.1007/s00145-006-0347-3
https://doi.org/10.1007/s00145-006-0347-3
https://doi.org/10.1007/s00145-006-0347-3
https://doi.org/10.1007/s00145-006-0347-3
https://doi.org/10.1007/s00145-006-0347-3
https://doi.org/10.1007/s00145-006-0347-3
https://doi.org/10.1007/s00145-006-0347-3
https://doi.org/10.1007/s00145-006-0347-3
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420

Single-Input Functionality Against a Dishonest Majority 35

32. Groth, J., Ostrovsky, R.: Cryptography in the multi-string model. In: Menezes, A.
(ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 323–341. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74143-5 18

33. Groth, J., Ostrovsky, R.: Cryptography in the multi-string model. J. Cryptol.
27(3), 506–543 (2014). https://doi.org/10.1007/s00145-013-9152-y

34. Hazay, C., Scholl, P., Soria-Vazquez, E.: Low cost constant round MPC combining
BMR and oblivious transfer. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017.
LNCS, vol. 10624, pp. 598–628. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70694-8 21

35. Hazay, C., Venkitasubramaniam, M., Weiss, M.: Your reputation’s safe with me:
framing-free distributed zero-knowledge proofs. In: Rothblum, G.N., Wee, H. (eds.)
Theory of Cryptography - TCC 2023, Part I. LNCS, vol. 14369, pp. 34–64. Springer,
Cham (2023). https://eprint.iacr.org/2022/1523

36. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 9

37. Kate, A., Mangipudi, E.V., Mukherjee, P., Saleem, H., Thyagarajan, S.A.K.: Non-
interactive VSS using class groups and application to DKG. Cryptology ePrint
Archive, Paper 2023/451 (2023). https://eprint.iacr.org/2023/451

38. Katz, J.: Round optimal fully secure distributed key generation. In: CRYPTO 2024
(2024)

39. Keller, M., Orsini, E., Scholl, P.: Actively secure OT extension with optimal over-
head. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol.
9215, pp. 724–741. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-47989-6 35

40. Lepinski, M., Micali, S., Shelat, A.: Fair-zero knowledge. In: Kilian, J. (ed.) TCC
2005. LNCS, vol. 3378, pp. 245–263. Springer, Heidelberg (2005). https://doi.org/
10.1007/978-3-540-30576-7 14

41. Lindell, Y., Smart, N.P., Soria-Vazquez, E.: More efficient constant-round multi-
party computation from BMR and SHE. In: Hirt, M., Smith, A. (eds.) TCC 2016,
Part I. LNCS, vol. 9985, pp. 554–581. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53641-4 21

42. Nascimento, A., Mueller-Quade, J., Otsuka, A., Hanaoka, G., Imai, H.: Uncondi-
tionally non-interactive verifiable secret sharing secure against faulty majorities in
the commodity based model. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS
2004. LNCS, vol. 3089, pp. 355–368. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24852-1 26

43. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practi-
cal active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 40

44. Qiu, Z., Yang, K., Yu, Y., Zhou, L.: Maliciously secure multi-party PSI with lower
bandwidth and faster computation. In: Alcaraz, C., Chen, L., Li, S., Samarati, P.
(eds.) ICICS 22. LNCS, vol. 13407, pp. 69–88. Springer, Heidelberg (2022). https://
doi.org/10.1007/978-3-031-15777-6 5

45. Rachuri, R., Scholl, P.: Le mans: dynamic and fluid MPC for dishonest majority.
In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part I. LNCS, vol. 13507, pp.
719–749. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-15802-
5 25

https://doi.org/10.1007/978-3-540-74143-5_18
https://doi.org/10.1007/978-3-540-74143-5_18
https://doi.org/10.1007/978-3-540-74143-5_18
https://doi.org/10.1007/978-3-540-74143-5_18
https://doi.org/10.1007/978-3-540-74143-5_18
https://doi.org/10.1007/978-3-540-74143-5_18
https://doi.org/10.1007/978-3-540-74143-5_18
https://doi.org/10.1007/978-3-540-74143-5_18
https://doi.org/10.1007/978-3-540-74143-5_18
https://doi.org/10.1007/978-3-540-74143-5_18
https://doi.org/10.1007/s00145-013-9152-y
https://doi.org/10.1007/s00145-013-9152-y
https://doi.org/10.1007/s00145-013-9152-y
https://doi.org/10.1007/s00145-013-9152-y
https://doi.org/10.1007/s00145-013-9152-y
https://doi.org/10.1007/s00145-013-9152-y
https://doi.org/10.1007/s00145-013-9152-y
https://doi.org/10.1007/s00145-013-9152-y
https://doi.org/10.1007/s00145-013-9152-y
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-319-70694-8_21
https://eprint.iacr.org/2022/1523
https://eprint.iacr.org/2022/1523
https://eprint.iacr.org/2022/1523
https://eprint.iacr.org/2022/1523
https://eprint.iacr.org/2022/1523
https://eprint.iacr.org/2022/1523
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-45146-4_9
https://eprint.iacr.org/2023/451
https://eprint.iacr.org/2023/451
https://eprint.iacr.org/2023/451
https://eprint.iacr.org/2023/451
https://eprint.iacr.org/2023/451
https://eprint.iacr.org/2023/451
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-540-30576-7_14
https://doi.org/10.1007/978-3-540-30576-7_14
https://doi.org/10.1007/978-3-540-30576-7_14
https://doi.org/10.1007/978-3-540-30576-7_14
https://doi.org/10.1007/978-3-540-30576-7_14
https://doi.org/10.1007/978-3-540-30576-7_14
https://doi.org/10.1007/978-3-540-30576-7_14
https://doi.org/10.1007/978-3-540-30576-7_14
https://doi.org/10.1007/978-3-540-30576-7_14
https://doi.org/10.1007/978-3-540-30576-7_14
https://doi.org/10.1007/978-3-662-53641-4_21
https://doi.org/10.1007/978-3-662-53641-4_21
https://doi.org/10.1007/978-3-662-53641-4_21
https://doi.org/10.1007/978-3-662-53641-4_21
https://doi.org/10.1007/978-3-662-53641-4_21
https://doi.org/10.1007/978-3-662-53641-4_21
https://doi.org/10.1007/978-3-662-53641-4_21
https://doi.org/10.1007/978-3-662-53641-4_21
https://doi.org/10.1007/978-3-662-53641-4_21
https://doi.org/10.1007/978-3-662-53641-4_21
https://doi.org/10.1007/978-3-540-24852-1_26
https://doi.org/10.1007/978-3-540-24852-1_26
https://doi.org/10.1007/978-3-540-24852-1_26
https://doi.org/10.1007/978-3-540-24852-1_26
https://doi.org/10.1007/978-3-540-24852-1_26
https://doi.org/10.1007/978-3-540-24852-1_26
https://doi.org/10.1007/978-3-540-24852-1_26
https://doi.org/10.1007/978-3-540-24852-1_26
https://doi.org/10.1007/978-3-540-24852-1_26
https://doi.org/10.1007/978-3-540-24852-1_26
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/978-3-031-15777-6_5
https://doi.org/10.1007/978-3-031-15777-6_5
https://doi.org/10.1007/978-3-031-15777-6_5
https://doi.org/10.1007/978-3-031-15777-6_5
https://doi.org/10.1007/978-3-031-15777-6_5
https://doi.org/10.1007/978-3-031-15777-6_5
https://doi.org/10.1007/978-3-031-15777-6_5
https://doi.org/10.1007/978-3-031-15777-6_5
https://doi.org/10.1007/978-3-031-15777-6_5
https://doi.org/10.1007/978-3-031-15777-6_5
https://doi.org/10.1007/978-3-031-15802-5_25
https://doi.org/10.1007/978-3-031-15802-5_25
https://doi.org/10.1007/978-3-031-15802-5_25
https://doi.org/10.1007/978-3-031-15802-5_25
https://doi.org/10.1007/978-3-031-15802-5_25
https://doi.org/10.1007/978-3-031-15802-5_25
https://doi.org/10.1007/978-3-031-15802-5_25
https://doi.org/10.1007/978-3-031-15802-5_25
https://doi.org/10.1007/978-3-031-15802-5_25
https://doi.org/10.1007/978-3-031-15802-5_25

36 Z. Zhou et al.

46. Roy, L.: SoftSpokenOT: quieter OT extension from small-field silent VOLE in the
minicrypt model. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part I. LNCS,
vol. 13507, pp. 657–687. Springer, Heidelberg (2022). https://doi.org/10.1007/978-
3-031-15802-5 23

47. Shamir, A.: How to share a secret. Commun. Assoc. Comput. Mach. 22(11), 612–
613 (1979). https://doi.org/10.1145/359168.359176

48. Wang, X., Malozemoff, A.J., Katz, J.: EMP-toolkit: efficient MultiParty computa-
tion toolkit (2016). https://github.com/emp-toolkit

49. Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty computation. In:
Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp.
39–56. ACM Press (2017). https://doi.org/10.1145/3133956.3133979

50. Weng, C., Yang, K., Katz, J., Wang, X.: Wolverine: fast, scalable, and
communication-efficient zero-knowledge proofs for boolean and arithmetic circuits.
In: 2021 IEEE Symposium on Security and Privacy, pp. 1074–1091. IEEE Com-
puter Society Press (2021). https://doi.org/10.1109/SP40001.2021.00056

51. Yang, K., Sarkar, P., Weng, C., Wang, X.: QuickSilver: efficient and affordable
zero-knowledge proofs for circuits and polynomials over any field. In: Vigna, G.,
Shi, E. (eds.) ACM CCS 2021, pp. 2986–3001. ACM Press (2021). https://doi.org/
10.1145/3460120.3484556

52. Yang, K., Wang, X.: Non-interactive zero-knowledge proofs to multiple verifiers.
In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part III. LNCS, vol. 13793, pp.
517–546. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-22969-
5 18

53. Yang, K., Wang, X., Zhang, J.: More efficient MPC from improved triple generation
and authenticated garbling. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM
CCS 2020, pp. 1627–1646. ACM Press (2020). https://doi.org/10.1145/3372297.
3417285

54. Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: fast extension for cor-
related OT with small communication. In: Ligatti, J., Ou, X., Katz, J., Vigna,
G. (eds.) ACM CCS 2020, pp. 1607–1626. ACM Press (2020). https://doi.org/10.
1145/3372297.3417276

55. Yao, A.C.C.: Theory and applications of trapdoor functions (extended abstract).
In: 23rd FOCS, pp. 80–91. IEEE Computer Society Press (1982). https://doi.org/
10.1109/SFCS.1982.45

56. Zhou, Z., Zhang, B., Zhou, H.S., Ren, K.: Practical constructions for single input
functionality against a dishonest majority. IEEE EURO S&P (2024)

57. Zhou, Z., Zhang, B., Zhou, H.S., Ren, K.: Single-input functionality against a
dishonest majority: practical and round-optimal. Cryptology ePrint Archive, Paper
2024/305 (2024). https://eprint.iacr.org/2024/305

https://doi.org/10.1007/978-3-031-15802-5_23
https://doi.org/10.1007/978-3-031-15802-5_23
https://doi.org/10.1007/978-3-031-15802-5_23
https://doi.org/10.1007/978-3-031-15802-5_23
https://doi.org/10.1007/978-3-031-15802-5_23
https://doi.org/10.1007/978-3-031-15802-5_23
https://doi.org/10.1007/978-3-031-15802-5_23
https://doi.org/10.1007/978-3-031-15802-5_23
https://doi.org/10.1007/978-3-031-15802-5_23
https://doi.org/10.1007/978-3-031-15802-5_23
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://github.com/emp-toolkit
https://github.com/emp-toolkit
https://github.com/emp-toolkit
https://github.com/emp-toolkit
https://github.com/emp-toolkit
https://doi.org/10.1145/3133956.3133979
https://doi.org/10.1145/3133956.3133979
https://doi.org/10.1145/3133956.3133979
https://doi.org/10.1145/3133956.3133979
https://doi.org/10.1145/3133956.3133979
https://doi.org/10.1145/3133956.3133979
https://doi.org/10.1145/3133956.3133979
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1145/3460120.3484556
https://doi.org/10.1145/3460120.3484556
https://doi.org/10.1145/3460120.3484556
https://doi.org/10.1145/3460120.3484556
https://doi.org/10.1145/3460120.3484556
https://doi.org/10.1145/3460120.3484556
https://doi.org/10.1145/3460120.3484556
https://doi.org/10.1007/978-3-031-22969-5_18
https://doi.org/10.1007/978-3-031-22969-5_18
https://doi.org/10.1007/978-3-031-22969-5_18
https://doi.org/10.1007/978-3-031-22969-5_18
https://doi.org/10.1007/978-3-031-22969-5_18
https://doi.org/10.1007/978-3-031-22969-5_18
https://doi.org/10.1007/978-3-031-22969-5_18
https://doi.org/10.1007/978-3-031-22969-5_18
https://doi.org/10.1007/978-3-031-22969-5_18
https://doi.org/10.1007/978-3-031-22969-5_18
https://doi.org/10.1145/3372297.3417285
https://doi.org/10.1145/3372297.3417285
https://doi.org/10.1145/3372297.3417285
https://doi.org/10.1145/3372297.3417285
https://doi.org/10.1145/3372297.3417285
https://doi.org/10.1145/3372297.3417285
https://doi.org/10.1145/3372297.3417285
https://doi.org/10.1145/3372297.3417276
https://doi.org/10.1145/3372297.3417276
https://doi.org/10.1145/3372297.3417276
https://doi.org/10.1145/3372297.3417276
https://doi.org/10.1145/3372297.3417276
https://doi.org/10.1145/3372297.3417276
https://doi.org/10.1145/3372297.3417276
https://doi.org/10.1109/SFCS.1982.45
https://doi.org/10.1109/SFCS.1982.45
https://doi.org/10.1109/SFCS.1982.45
https://doi.org/10.1109/SFCS.1982.45
https://doi.org/10.1109/SFCS.1982.45
https://doi.org/10.1109/SFCS.1982.45
https://doi.org/10.1109/SFCS.1982.45
https://doi.org/10.1109/SFCS.1982.45
https://eprint.iacr.org/2024/305
https://eprint.iacr.org/2024/305
https://eprint.iacr.org/2024/305
https://eprint.iacr.org/2024/305
https://eprint.iacr.org/2024/305
https://eprint.iacr.org/2024/305

	Single-Input Functionality Against a Dishonest Majority: Practical and Round-Optimal
	1 Introduction
	1.1 Our Contributions
	1.2 Comparison with the Concurrent Work
	1.3 Our Techniques

	2 Preliminaries
	2.1 Notations
	2.2 Security Model
	2.3 (Programmable) Subfield VOLE
	2.4 Single-Input Functionalities
	2.5 Coin-Tossing

	3 Multiple-Verifier Subfield VOLE
	3.1 Security Definition
	3.2 Efficiently Realizing Fmv-sVOLEp,r

	4 SIF Against a Dishonest Majority
	4.1 Preprocessing Phase
	4.2 Main Protocol

	5 Impossibility on 1-Round SIF Without Broadcast Channels
	6 Implementation and Evaluation
	6.1 Comparison with Related Works

	7 Related Work
	References

