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Abstract. In this work, we focus on Single-Input Functionality (SIF), 
a specialized case of MPC where only one designated party, called the 
dealer, holds a private input. SIF enables the dealer to perform compu-
tations with other parties without disclosing any additional information 
about the private input. SIF has a wide range of applications, such as 
multiple-verifier zero-knowledge and verifiable relation sharing. 

We propose the first 1-round SIF protocol against a dishonest major-
ity in the preprocessing model and random oracle model, achieving high 
efficiency. Previous works either require at least 2-round online commu-
nication (Yang and Wang, Asiacrypt 2022; Baum et al., CCS 2022; Zhou 
et al., Euro S&P 2024) or are limited to feasibility results (Lepinski et al., 
TCC 2005; Applebaum et al., Crypto 2022). We also show the necessity 
of using the broadcast channels, by formally proving that 1-round SIF is 
impossible to achieve in the preprocessing model, if there are no broad-
cast channels available. Finally, we implement our protocol and present 
extensive experimental results, demonstrating its practical efficiency. 

1 Introduction 

MPC vs. SIF. In secure multi-party computation (MPC) [ 31,55], multiple 
mutually distrustful players, (P1, . . . ,  Pn), are allowed to jointly compute any 
efficiently computable function f of their private inputs (x1, . . . , xn). Concretely, 
let circuit C be the representation of the function f such that (y1, . . . , yn) ← 
C(x1, . . . , xn). After an execution of the MPC protocol for circuit C, each party 
Pi shall obtain its output yi. Since its introduction in the early 1980s, secure 
MPC has been extensively studied and become one of the cornerstones of modern 
cryptography. 

Single-Input Functionality (SIF) is a special case of MPC. In SIF, only a 
distinguished party, called dealer D, is allowed to have a private input w, while 
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all other parties, called verifiers V1, . . . ,  Vn, have no private inputs. After an 
execution of the SIF protocol, the dealer D receives no output value while the i-
th verifier obtains yi as its output value. That is, the circuit C is now specifically 
defined as follows: (∅, y1, . . . , yn) ← C(w, ∅, . . . ,  ∅). For simplicity, we often ignore 
the empty (input/output) values ∅’s and write it as (y1, . . . , yn) ← C(w). 

Applications of SIF. As an important cryptographic primitive, SIF was ini-
tially studied by Gennaro et al. [ 29]; this line of research has received lots of 
attention [ 2, 3, 5,52,56] very recently. Below, we will give a high-level description 
of the applications of SIF. More concretely, as already pointed out by Applebaum 
et al. [ 3], from SIF, two immediate applications can be obtained: Multiple-Verifier 
Zero-Knowledge (MVZK) and Verifiable Relation Sharing (VRS). 

MVZK. In an MVZK protocol, a distinguished party called prover P, who holds 
a statement-witness pair (x, w), wishes to convince n verifiers V1, . . . ,  Vn that 
R(x, w) = 1 at once for an NP relation R. It is easy to see that SIF implies 
MVZK directly: let C be the circuit that evaluates R(x, w), then the parties can 
jointly invoke SIF to evaluate C. 

MVZK can be used in normal ZK scenarios as long as the identities of the 
verifiers are known ahead of time. It can also be used in some real life crypto-
graphic systems, e.g., private aggregation system [ 21]. More concretely, in the 
private aggregation system like Prio [ 21], a set of servers collect and aggregate 
the clients’ data; and each client needs to prove to servers that its data is valid 
using Secret-shared Non-Interactive Proof (SNIP). Notice that, the SNIP in [ 21] 
assumes the client (acting as the prover) not to collude with the servers (acting 
as the verifiers) to ensure soundness; for zero-knowledge property, the SNIP can 
tolerate all-but-one malicious servers. Hence, if there exists an efficient 1-round 
MVZK protocol against a dishonest majority (which allows the malicious prover 
to collude with verifiers), it could be a significantly better alternative technique 
to SNIP in [ 21]. 

VRS. In [ 3], Applebaum et al. introduce a new primitive called VRS, which 
generalizes MVZK. In a VRS protocol, we consider a distinguished party called 
dealer D, who holds a secret input s, and  n parties called verifiers V1, . . . ,  Vn, 
who have no secret inputs. The dealer D wishes to share the secret s to the 
verifiers first; for simplicity, we denote by xi the share received by the i-th verifier. 
Then the dealer D wishes to prove that the shares satisfy an NP relation R to 
the verifiers, i.e., D proves that R(x1, . . . , xn, s) = 1 in a zero-knowledge way. 
Clearly, SIF also implies VRS: let (y1, . . . , yn) ← C(x1, . . . , xn, s) be a circuit 
such that yi = xi for i ∈ [n] if  R(x1, . . . , xn, s) = 1; otherwise, yi = ⊥ where ⊥ 
is a failure symbol. Then the parties can jointly invoke SIF to evaluate such a 
circuit C to realize VRS. 

VRS has various applications, including Verifiable Secret Sharing (VSS) [ 15, 
18,19,25,37,42], Distributed Key Generation (DKG) [ 15,18,23,30,38] and so on. 
In particularly, here we describe how to use VRS for the purpose of DKG. We 
assume the public key of a DKG protocol is additive homomorphic, for instance, 
pk = gsk, where (pk, sk) is the public-secret key pair and g is a cyclic group 
generator. We assume there are n parties P1, . . . ,  Pn, for  each  i ∈ [n], we let Pi
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sample a random sk(i) , secret-share sk(i) into {sk (i) j }j �=i, and compute pk(i) := 
gsk

(i) 
. Then we let Pi be the dealer of a VRS: Pi broadcasts pk(i) , sends sk (i) j to 

Pj , and proves that sk(i) =
∑

j sk 
(i) 
j and pk(i) = gsk(i) 

by  invoking  a VRS. It is  
easy to see that the final public key can be obtained by pk :=

∑
i pk

(i) , and the 
corresponding secret key sk :=

∑
i sk

(i) is distributed among P1, . . . ,  Pn. 
SIF with an Honest Majority. We now introduce a line of works [ 3, 5,52] on  
SIF in the honest majority setting. The work by Applebaum et al. [ 3] mainly 
focuses on the theoretical side and gives a 2-round feasibility result for SIF in 
the plain model. In particular, as claimed by Applebaum et al., the first round 
of their protocol is input independent; thus, their work can also be interpreted 
as a 1-round protocol in the preprocessing model. 

On the other hand, both the work by Yang and Wang [ 52] and the work by 
Baum et al. [ 5] focus on constructing practical 2-round SIF (in the context of 
MVZK). In [ 5], Baum et al. design two types of MVZK protocols with different 
corruption thresholds in the preprocessing model: the one with t <  n 

4 and another 
one with t <  n 

3 , where n denotes the total number of verifiers while t denotes the 
number of corrupted verifiers 1. In [  52], Yang and Wang design their protocols 
in the Random Oracle (RO) model; they employ Shamir’s secret sharing [ 47] 
to construct a protocol with t <  n 

2 . Yang and Wang also show how to utilize 
packed secret sharing [ 28] to improve the communication complexity at the cost 
of degrading the corruption threshold from t <  n 

2 to t <  ( 1 2 − ε)n, where ε is a 
positive constant. 
SIF Against a Dishonest Majority. We also introduce some interesting 
results in the dishonest majority setting. Lepinski et al. study how to strength 
the security of MVZK by adding fairness among the verifiers [ 40], i.e., the mali-
cious verifiers who collude with the prover learn nothing except the validity of 
the statement if the honest verifiers accept the proof. Note that, their work is 
only a feasibility study and is not practical. 

When it comes to practical efficiency, a recent work by Zhou et al. [ 56] con-
structs a practical 2-round SIF protocol against a dishonest majority in the 
preprocessing model. More precisely, they utilize a similar preprocessing phase 
as [ 8] and show how to check the multiplication gates in merely 2 rounds by 
using Beaver’s triples technique [ 6]. 
Our Main Research Question. As mentioned above, it is known that, by 
assuming the preprocessing model, 1-round SIF (and MVZK) can be con-
structed [ 3,40]; however, these works are primarily theoretical studies and pro-
vide no practical solutions. Current practical solutions [ 5,52,56], on the other 
hand, all necessitate a minimum of 2-round online communication. This discrep-
ancy presents a gap in the field of SIF protocol design. It makes us wonder if it is 
possible to bridge this gap by constructing a 1-round SIF protocol with practical 
efficiency? If so, can we build such a protocol with optimal corruption threshold 
(i.e., t < n)?
1 In this work, unless otherwise stated, we assume the adversary can corrupt the 

dealer/prover and some of the verifiers. 
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We note that constructing such a protocol with practical efficiency is a non-
trivial task. One may suggest using practical MPC protocols against a dishonest 
majority to realize SIF, for example, the constant-round BMR-style protocols [ 7]. 
However, to the best of our knowledge, the BMR-style MPC protocols in the lit-
erature require at least 2-round online communication [ 34,41]. Therefore, naively 
using MPC protocols to realize SIF is not a solution. Given these difficulties, we 
ask the following research question: 

Is it possible to construct a practical SIF protocol with 1-round online 
communication and optimal corruption threshold (i.e., t < n)? 

1.1 Our Contributions 

In this work, we will give an affirmative answer to our research question. Our 
contributions can be summarized as follows. 
The First Practical 1-Round SIF with Optimal Corruption Thresh-
old. We present the first 1-round practical protocol for SIF against a dishonest 
majority in the preprocessing model and random oracle model, and our proto-
col can be proven secure in the Universal Composability (UC) framework [ 14]. 
Our protocol is optimal in two aspects: (i) for round complexity, our online pro-
tocol requires only 1-round communication (round-optimal); (ii) for corruption 
threshold, our protocol does not assume an honest majority and can tolerate up 
to 1 corrupted dealer and n − 1 corrupted verifiers, which is optimal. Table 1 
depicts a comparison between our work and other recent and related works. 

Table 1. Comparison of our work and the state-of-the-art relevant works. 

Ref. Primitive #Round† Corruption Setup 
Practical? 

Threshold‡ Assumption§ 

[40] MVZK 1 t < n Prep. �

[52] MVZK 2 t <  n 
2 

RO �

[ 5] MVZK 2 t <  n 
3 

Prep. + RO �

[ 3] SIF 1 t <  n 
2+ε

¶ Prep. �

[56] SIF 2 t < n Prep. �

Ours SIF 1 t < n Prep. + RO �
† Refer to the number of rounds in the online phase.
‡ In [ 5,52], the authors proposed protocols with different cor-
ruption thresholds. Here, we report the maximum corruption 
thresholds that [ 5,52] can achieve.
§ Prep.: preprocessing model; RO: random oracle model.
¶ Here, ε is a small positive constant. 

As  shown in Table  1, our work is the only one that achieves 1-round online 
communication as well as the practical efficiency in the dishonest majority set-
ting. The full descriptions of our protocol are put in Sect. 4.
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An Impossibility Result on 1-Round SIF Without Using Broadcast 
Channels. The online phase of our 1-round SIF protocol requires broadcast 
channels as well as secure point-to-point channels; we remark that broadcast 
channels are also used in the online phase of the existing designs [ 3, 5,40,52,56]. 
Given that broadcast channels are more expensive than secure point-to-point 
channels, it is natural to ask the following question: Are broadcast channels a 
must for constructing 1-round SIF protocols? 

In Sect. 5, we formally prove that: in the UC framework [ 14], 1-round SIF is 
impossible to achieve without using broadcast channels, even if a preprocessing 
model is assumed. Our impossibility result holds no matter how many verifiers 
the adversary can corrupt, as long as the adversary is allowed to corrupt the 
dealer; hence, our impossibility result holds in both honest majority and dishon-
est majority settings. 

A New Form of Correlation: mv-sVOLE. We extend the two-party subfield 
Vector Oblivious Linear Evaluation (sVOLE) [ 11,12,50] into the multi-party 
setting, which is an essential tool in our SIF construction. More precisely, we 
propose a new primitive called multiple-verifier sVOLE (mv-sVOLE). In Sect. 3, 
we formally define the mv-sVOLE through an ideal functionality; we also give 
an efficient construction and prove the security in the UC framework. 

We note that, there are several works in the literature that also try to 
extend sVOLE into the multi-party setting (e.g., [ 44,45]). We make a comparison 
between those works and our mv-sVOLE primitive in Sect. 3.1. 

Implementation and Benchmark. We implement our protocol in C++ and 
conduct comprehensive experiments. We present a brief concrete efficiency com-
parison between our work and other constant-round relevant works in Table 2. 

Table 2. Concrete efficiency comparison of our work and other constant-round relevant 
works. All numbers are obtained by ourselves for evaluating an AES-128 boolean circuit 
with the same hardware configurations. 

Ref. Primitive (T,  N  )† 
Running Time Per AND Gate (us) 
LAN WAN‡ 

[ 5] MVZK (7, 26) 165.6 238.3 
[49] MPC (7, 8) 140.5 332.7 
[56] SIF (7, 8) 123.0 291.8 
Ours SIF (7, 8) 24.1 60.3 

† Here, T and N refer to the number of corrupted parties and 
total parties, respectively. 
‡ LAN (1 Gbps with 6 ms delay); WAN (200 Mbps with 20 
ms delay).
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In Table 2, we compare our protocols with three types of related works: (i) 
SIF against a dishonest majority [ 56]; (ii) SIF (in the context of MVZK) with an 
honest majority [ 5]; and (iii) (constant-round) MPC against a dishonest major-
ity [ 49]. It turns out that, our improvement for running time ranges from 4.0×– 
6.9× over different network configurations, when the number of corrupted par-
ties T is fixed to be 7. When T = 7 (including 1 corrupted prover/dealer and 6 
corrupted verifiers), both our work and [ 49,56] can have 8 parties in total; in con-
trast, [ 5] requires at least 26 total parties, since its corruption threshold is t <  n 

4 , 
where t, n are the number of corrupted verifiers and total verifiers 2. Notice that, 
this comparison approach (i.e., fixing the number of corrupted parties when make 
comparisons among protocols with various corruption thresholds) is also taken 
in the recent MPC work [ 26]. We also make comparisons when the total party 
number is fixed; and we refer readers to see more discussions and comparisons 
in Sect. 6. 

1.2 Comparison with the Concurrent Work 

Concurrently, in [ 27], Escudero et al. employed the Packed Secret Sharing (PSS) 
technique to construct a quite efficient 3-round MVZK protocol against a dis-
honest majority; their corruption threshold is t <  (1 − ε)n where ε is a postive 
constant. Due to the use of PSS technique, their communication complexity can 
be O(|C|), which is independent of the number of verifiers n. Our communication 
complexity is O(|nC|), so in practice, our performance is not be as good as [ 27]: 
when n = 8  and ε = 0.25 and 1 Gbps network is used, [ 27] requires roughly 
1.1 us/gate, and our protocol requires roughly 2.7 us/gate. However, in theory, 
the online phase of our protocol is round-optimal and our protocol can achieve 
optimal corruption theshold ; whereas, [ 27] cannot. The comparison between our 
protocol and [ 27] is put in Table 3. 3

1.3 Our Techniques 

Here we provide a technique overview of our protocols. We start by recapping the 
previous works’ approaches, then we describe our intuitions and how we achieve 
round-optimal SIF construction.

2 The authors of [ 5] open-sourced their codes in [20]. However, in [20], they imple-
mented their older version protocol with t <  n 

3 
and it is less efficient than the 

published version. In this work, when it comes to concrete efficiency, we refer [ 5] to  
the protocol with t <  n 

4 
since we measure the results of this protocol. 

3 Some readers may notice that, the numbers of our protocol reported here are faster 
than our running times reported in Table 2. The reason is that: we use two different 
approaches to instantiate the preprocessing phase for circuits of varying scales. For 
large-scale circuits (e.g., the numbers reported in Table 3), the amortized prepro-
cessing time is significantly more efficient than that for small-scale circuits. 
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Table 3. Comparison with the concurrent work [27]. 

Protocol #Round† Corruption Setup Running Time‡ 

Threshold Assumption (us/gate) 
[27] 3 t <  (1 − ε)n Prep. 1.1 

This Work 1 t < n Prep. 2.7 
† Refer to the number of rounds in the online phase. 
‡ The results are obtained under a 1 Gbps network for a large-
scale circuit (i.e., a circuit with 106 or 107 multiplication gates). 
The parameter is set as follows: n = 8 (i.e., 8 verifiers); in [27], ε
is set as 0.25. 

Previous Approaches. We start by recapping a recent work by Zhou et al. [ 56], 
which provides a practical SIF construction against a dishonest majority. More 
precisely, Zhou et al. showed how to “transform” the BDOZ-style MPC [ 8], 
whose number of online round depends on circuit depth, into a SIF with 2 
online rounds. In a BDOZ-style MPC, the parties use additive shares to share 
their private inputs and employ the Beaver’s triples technique [ 6] to check the 
correctness of the multiplication gates, i.e., for each multiplication gate, the 
parties have to prepare a random multiplication triple (a, b, c) such that c = 
a · b; to ensure the security, the multiplication triple (a, b, c) needs to be secret-
shared and authenticated among the parties. For a multiplication gate with 
input values wα, wβ , the parties need to open d1 := wα − a and d2 := wβ − b 
and then locally compute the share of the output value wγ by the identity 
wγ = d1·d2+d1·b+d2·a+c. Zhou et al. observed that in the SIF setting, the whole 
multiplication triple (a, b, c) can be revealed to the dealer, since these triples are 
used for protecting the private input which is already known by the dealer. In 
this way, for each multiplication gate whose input values are denoted by wα, wβ , 
the dealer can simply compute and broadcast d1 and d2, then the verifiers can 
open d̃1 := wα − a and d̃2 := wβ − b using their own shares to check if d1 

? = d̃1 
and d2 

? = d̃2. It is easy to see that all the multiplication gates can be executed 
in parallel; thus, they are able to achieve 2-round online communication. 

Besides BDOZ-style MPC protocol, other practical MPC protocols which are 
not constant-round may also be “transformed” into constant-round SIF using the 
ideas in [ 56]. For instance, as already discussed in [ 56], SPDZ-style MPC [ 22] 
can be chosen, but the resulting SIF protocol will have an additional online 
round. Our first attempt is to “transform” the recent MPC protocol [ 26], which 
combines Beaver’s triples technique with packed secret sharing to obtain bet-
ter communication complexity, into a practical SIF; however, the resulting SIF 
protocol requires at least 2-round online communication, and cannot achieve 
optimal corruption threshold due to the use of packed secret sharing. 

In addition to [ 56], we observe that other current practical solutions [ 5,52] 
also follow the same (online) communication pattern: the dealer sends the com-
puted results and the corresponding “proofs” to the verifiers in the first round, 
then the verifiers communicate with each other in the following round(s) to



10 Z. Zhou et al.

check whether the “proofs” are correct. It seems that the communication among 
the verifiers are necessary. For better expression, let us take MVZK, a direct 
application of SIF, as an example. In a MVZK, if verifiers have no chance to 
communicate with each other, a malicious prover may cause honest verifiers to 
output inconsistent results (e.g., some of the honest verifiers may output accep-
tance while others may output rejection). That is why the current practical 
solutions [ 5,52,56] all require at least 2-round online communication. 

Our Approach. To reduce the round complexity, we have to break the online 
communication pattern in previous practical solutions [ 5,52,56]. Our key obser-
vation is that the communication among the verifiers could be pushed into the 
preprocessing phase; in this way, we have the chance to obtain 1-round online 
communication while ensuring the verifiers to have consistent outputs. 

In the following, we first talk about our preprocessing phase; jumping ahead, 
we propose a new primitive called multiple-verifier sVOLE (mv-sVOLE), which 
is an essential building block for the preprocessing phase. 

Preprocessing Phase: Using mv-sVOLE as Correlations. In our design, we make 
extensive use of a particular form of correlation, called subfield Vector Oblivious 
Linear Evaluation (sVOLE) [ 11,12,50]. In the two party setting, sVOLE cor-
relations capture the well-known primitive, i.e., Information-Theoretic Message 
Authentication Codes (IT-MACs) [ 8,43]. Let Fpr be the extension field of a field 
Fp. In sVOLE, there are two parties involved, i.e., a dealer D and a verifier V, 
and V holds a MAC key Δ ∈ Fpr . In order to authenticate the vector x ∈ F�

p 
held by D to V, we let  D have the MAC tag m ∈ F�

pr and let V have another 
MAC key k ∈ F�

pr s.t. m = k − Δ · x. For  different  x, V will use different k 
and the same Δ. For this reason, we call k the “local” MAC key and Δ the 
“global” MAC key. It is easy to see that a malicious D∗ who does not know the 
MAC keys, cannot produce another valid m′ for x′ �= x except with negligible 
probability when |Fpr | is sufficiently large. 

In the setting of SIF, we are dealing with n + 1 parties, i.e., a dealer D and 
n verifiers V1, . . . ,  Vn, so we have to extend the (two-party) sVOLE correlations 
into the multi-party setting, which we call multiple-verifier sVOLE (mv-sVOLE). 
More precisely, we let each verifier Vi privately hold a global MAC key Δ(i) ∈ Fpr . 
For each vector x ∈ F�

p held by the dealer D, for  each  i ∈ [n], we let the dealer 
D have the MAC tag m(i) ∈ F�

pr and let the verifier Vi have the local MAC key 
k(i) ∈ F�

pr such that k(i) = m(i) + Δ(i) · x. For better expression, we use the 
notation �x� to denote the authenticated vector x. In this way, the vector held by 
the dealer can be authenticated to each verifier. Then, how to generate these mv-
sVOLE correlations? One might suggest invoking n instances of sVOLE naively; 
however, this naive solution is not secure at all: a malicious dealer might use 
inconsistent values x′ �= x in different instances of sVOLE procedure. To address 
this security issue, we let the verifiers to pose some lightweight consistency checks 
to detect the malicious behaviors of the dealer. This ensures the verifiers can 
obtain the correct mv-sVOLE correlations; jumping ahead, it also guarantees 
the honest verifiers can output the consistent results in the online phase. More
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concretely, we generalize the technique in [ 49] (which is originally designed for 
binary field) to adapt to our setting. Informally speaking, we first let the dealer 
to use the same x in different sVOLE instances with different verifiers. Then the 
verifiers will jointly sample a random s and ask the dealer to reveal u := s� · x 
and the corresponding MAC tags. In this way, the verifiers can check whether 
the dealer uses the same x. We defer the details of our mv-sVOLE constructions 
and the security analysis to Sect. 3.2. 

Online Phase: Checking all Multiplication Gates in 1-Round. Our online proto-
col is designed in the “commit-and-prove” paradigm. More concretely, we first 
let the dealer D commit to his witness w ∈ Fm 

p using the random mv-sVOLE 
correlations �μ� generated in the preprocessing phase; that is, D broadcasts 
δ := w − μ ∈ Fm 

p to verifiers, and all parties compute �w� := �μ� + δ. Then we 
let D “prove” that all the gates of the circuits are processed properly. 

It is easy to see that addition gates can be processed for free. For multipli-
cation gates, we avoid the use of Beaver’s triples technique; instead, we extend 
the techniques in [ 24,51], which require sVOLE correlations and are designed 
for the two-party setting, into the multi-party setting. More concretely, for the 
i-th multiplication gate with input wires α, β and output wire γ, we denote by 
wα, wβ the input wire values and denote by wγ the output wire values. We let 
D broadcast di := wα · wβ − ηi ∈ Fp, where ηi is random and �ηi� is generated in 
the preprocessing phase, then all parties can compute �wγ� := �ηi� + di. In this 
way, D holds wa,m  (j) a and Vj holds Δ(j) , k  (j) a such that k (j) a = m (j) a + wa · Δ(j) 

for a ∈ {α, β, γ} and j ∈ [n]. By the following identity: 

B (j) i := k(j) 
α · k (j) β − k(j) 

γ · Δ(j) 

= (m(j) 
α + wα · Δ(j) ) · (m (j) β + wβ · Δ(j) ) − (m(j) 

γ + wγ · Δ(j) ) · Δ(j) 

= m(j) 
α · m (j) β

︸ ︷︷ ︸

Denote by A
(j) 
i,0 

+ (m (j) β · wα + m(j) 
α · wβ − m(j) 

γ )
︸ ︷︷ ︸

Denote by A
(j) 
i,1 

·Δ(j) 

+ (wα · wβ − wγ) · (Δ(j) )2 , 

(1) 

we conclude that if D behaves honestly (i.e., wγ = wα · wβ), then we have 
B (j) i = A (j) i,0 +A (j) i,1 ·Δ(j). It is easy to see that B (j) i (resp. A (j) i,0 , A  (j) i,1 ) can be locally 
computed by D (resp. Vj); therefore, the correctness of the i-th multiplication 
gate can be checked by letting D send A (j) i,0 , A  (j) i,1 to Vj and letting Vj check 
B (j) i 

? = A (j) i,0 + A (j) i,1 · Δ(j) for each j ∈ [n]. Notice that, the multiplication gates 
can be checked together; that is the reason why we can achieve 1-round online 
communication. We defer the details of improving the efficiency of the above 
checks to Sect. 4.2. 

2 Preliminaries 

2.1 Notations 

We use λ ∈ N to denote the security parameter. We say a function negl : N → N 
is negligible if for every positive polynomial poly(·) and every sufficiently large
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λ, negl(λ) < 1 
poly(λ) holds. We say two distribution ensembles U = {Uλ}λ∈N 

and W = {Wλ}λ∈N are statistically (resp. computationally) indistinguishable, 
which we denote by U 

s ≈ W  (resp., X 
c ≈ Y), if for any unbounded (resp., PPT) 

distinguisher D there exists a negligible function negl s.t. | Pr[D(Uλ) = 1]  − 
Pr[D(Wλ) = 1]| = negl(λ). We use x ← S to denote by the event that sampling 
a uniformly random x from a finite set S. For  n ∈ N, we to [n] to denote by a 
set {1, . . . , n}. For  a, b ∈ Z with a ≤ b, we use  [a, b] to denote by a set {a, . . . , b}. 
We use bold lower-case letters, e.g. x, to denote by the vectors, and we use xi 
to denote by the i-th component of vector x. 

We consider both arithmetic circuit and boolean circuit. Basing on a finite 
field Fp with a prime order p, a circuit C : Fm 

p → Fn 
p consists of a set of input 

wires Iin and a set of output wires Iout, where |Iin| = m and |Iout| = n. In addi-
tion to that, the circuit C also contains a list of gates of the form (α, β, γ, T ), 
where α, β (resp. γ) are the indices of the input wires (resp. output wire), and 
T ∈ {Add, Mult} is the gate type. If p = 2, then C is a boolean circuit where 
Add = ⊕ and Mult = ∧. If  p >  2, then C is an arithmetic circuit where Add/Mult 
corresponds to addition/multiplication in Fp. We use  Fpr to denote by an exten-
sion field of a finite field Fp, where p ≥ 2 is a prime and r ≥ 1 is an integer. We 
can write Fpr ∼= Fp[X]/f(X), where f(X) is a some monic, irreducible polyno-
mial with degree r. It is easy to see that, every w ∈ Fpr can be written uniquely 
as w =

∑r 
i=1 vi · Xi−1 with vi ∈ Fp for all i ∈ [r]. Thus, the elements over Fpr 

can be regarded as the vectors in (Fp)r equivalently. 

2.2 Security Model 

We design our protocols and prove their security in the Universal Composability 
(UC) framework by Canetti [ 14]. We refer readers to see a high-level description 
of UC framework in our full-version paper [ 57]. 

Adversarial Model. In this paper, we consider a malicious, static and rushing 
adversary. We also assume that the adversary is allowed to corrupt the dealer 
and up to  t number of verifiers where t < n. 

Secure Communication Model. In this work, we consider simultaneous com-
munication. We also assume the parties are connected by pairwise secure chan-
nels and a broadcast channel. We remark that, these secure communication 
channels are also required in the relevant works [ 3, 5,52,56]. 

2.3 (Programmable) Subfield VOLE 

We first introduce subfield Vector Oblivious Linear Evaluation (sVOLE) [ 11,12], 
which works over an extension field Fpr . In sVOLE, the verifier V holds a global 
MAC key Δ ∈ Fpr which can be used for multiple times. For a vector x ∈ F�

p 
held by the dealer D, we let the dealer D have the MAC tag m ∈ F�

pr and let the 
verifier have the local MAC key k ∈ F�

pr such that m = k − Δ · x. In this way, 
the vector x is authenticated to the verifier V. Notice that, D cannot lie about
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x, because the probability of D computing a valid MAC tag m′ for a chosen 
x′ �= x is at most p−r, which would be negligible if p, r are chosen properly.  

We note that, most of the recent and popular approaches for generating 
subfield VOLE are based on Pseudorandom Correlation Generators (PCGs), 
e.g., [ 10,11,50]. Informally speaking, a PCG allows two parties take a pair of 
short and correlated seeds, then expand them to produce a much larger amount 
of correlation randomness. However, typically, the sVOLE correlations generated 
by PCGs are random, meaning that the dealer D cannot chose the authenticated 
vector x. This is troublesome when the dealer D wants to use the same u to run 
different instances of sVOLE generation procedures with different verifiers. We 
note that, given a random sVOLE correlation (x′, m′,Δ,  k′) such that m′ = 
k′ − Δ · x′, the dealer D can easily convert it to a sVOLE correlation with chosen 
x by sending δ := x−x′ to the verifier and setting m := m′, the verifier V then 
sets k := k′ + δ · Δ; in this way, m = k − Δ · x holds. However, this approach 
requires O(	) communication cost, where 	 is the vector length; when a large 
amount of sVOLE correlations are needed, this approach is not efficient enough. 

Fig. 1. The Functionality Fp,r 
psVOLE 

To address the above issue, Rachuri and Scholl propose the programmable 
sVOLE in [ 45]; we model this primitive through an ideal functionality Fp,r 

psVOLE,
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which is adapted from [ 45] and is depicted in Fig. 1. The programmability means 
that the dealer D can choose a seed sd and expand it to a vector of 	 field elements 
x := Expand(sd, 	), where Expand : S × Z → F∗ 

p is a deterministic expansion 
function that takes a seed sd from a seed space S and the output length 	 ∈ Z as 
inputs and outputs a 	-length vector x ∈ F�

p. This allows the dealer to use the 
same authenticated vector x (by choosing the same seed) in different instances 
of Fp,r 

psVOLE. As noted in [ 45], in practice, the expansion function Expand may 
correspond to some kind of secure Pseudo Random Generators (PRGs) 4. Rachuri 
and Scholl also provide a PCG-style protocol that can efficiently realize Fp,r 

psVOLE, 
and we refer interested readers to see that in [ 45]. 

The sVOLE correlation satisfies an appealing property, i.e., additive homo-
morphism. More precisely, given authenticated vectors x1, . . . ,  xn ∈ F�

p (i.e., for 
i ∈ [n]: the dealer D holds xi and mxi and the verifier V holds Δ and kxi such 
that mxi = kxi − Δ · xi) and the public coefficients c1, . . . , cn ∈ Fp and c ∈ F�

p, 
the dealer D can locally compute y := c +

∑n 
i=1 ci · xi and the corresponding 

MAC tag my :=
∑n 

i=1 ci · mxi while the verifier V can locally compute the cor-
responding local MAC key ky :=

∑n 
i=1 ci · kxi + Δ · c such that my = ky −Δ · y. 

2.4 Single-Input Functionalities 

Here we provide the functionality for Single-Input Functionalities (SIF) in Fig. 2, 
which is taken from [ 56]. In Fig. 2, there are a dealer D and n verifiers V1, . . . ,  Vn. 
The parties hold a circuit C : Fm 

p → Fn 
p while the dealer D additionally holds a 

private input w where |w| = m. The functionality FSIF takes w from D, then 
it computes y := C(w) and delivers yi to Vi for i ∈ [n], where yi is the i-th 
component of y. 

2.5 Coin-Tossing 

Here we introduce the functionality for coin-tossing, and it allows all parties to 
receive the same uniformly random string. Formally, we present the functionality 
for coin-tossing in Fig. 3. 

3 Multiple-Verifier Subfield VOLE 

3.1 Security Definition 

Here we extend the (two-party) sVOLE into the multi-party setting, and we call 
this new form of correlated randomness multiple-verifier subfield VOLE (mv-
sVOLE). In mv-sVOLE, there are a dealer D and n verifiers V1, . . . ,  Vn, and  
each verifier Vi privately holds a global MAC key Δ(i) ∈ Fpr . For each vector 
x ∈ F�

p held by the dealer D, for each  i ∈ [n], we let the dealer D have the MAC

4 Typically, PRGs are referred as randomized algorithms that can generate pseudo-
random strings. However, when the seed (which contains the randomness) and the 
output length are fixed, we can view a PRG as a deterministic algorithm. 
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Fig. 2. The Functionality FSIF 

Fig. 3. Functionality for coin-tossing 

tag m(i) ∈ F�
pr and let the verifier Vi have the local MAC key k(i) ∈ F�

pr such 
that k(i) = m(i)+Δ(i) ·x. In this way, the vector held by D, can be authenticated 
to each verifier. Formally, we present our mv-sVOLE functionality in Fig. 4. 

Comparison with Other Works. Notice that, there are several works in the 
literature that also try to extend sVOLE into the multi-party setting. In [ 44], Qiu 
et al. also consider the setting with one dealer and multiple verifiers; however, 
they do not consider the consistency of the authenticated values. In other words, 
their malicious dealer can use inconsistent x for different verifiers. As a result, 
their multi-verifier sVOLE can be implemented by running two-party sVOLE 
n times directly, while our mv-sVOLE functionality cannot be realized through 
this native approach. In [ 45], Rachuri and Scholl extend sVOLE into the multi-
party setting in a different way: they let each party play the role of the dealer in 
turn, and each parties’ private values will be authenticated to all other parties. 
Therefore, there is no distinguished party in their setting, and their multi-party 
sVOLE primitive is much more complex than our mv-sVOLE. We conjecture that 
our mv-sVOLE primitive might be used as a basic building block to realize the
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multi-party sVOLE in [ 45]. In some constant-round MPC protocols that tailored 
for boolean circuits (e.g., [ 49,53]), they make use of a primitive called multi-party 
authenticated bits. Our mv-sVOLE can be viewed as a generalization of multi-
party authenticated bits, since multi-party authenticated bits are specifically 
designed for the case for binary field while our mv-sVOLE can cover both binary 
field and large filed. 

Fig. 4. The Functionality Fp,r 
mv-sVOLE 

3.2 Efficiently Realizing Fp,r  
mv-sVOLE 

In this subsection, we first give a template construction that efficiently realizes 
Fp,r 

mv-sVOLE. Then we will show that, by carefully choosing the parameters, our 
construction remains secure for both p = 2 and large p >  2. 

A Template Construction. We first give a high-level description of our pro-
tocol. Let ρ1 and ρ2 be parameters. In order to authenticate the same 	-length 
vector to all verifiers respectively, we first let all parties set 	′ := 	 + ρ1 and
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let the dealer D pick a random seed sd from the seed space S. We denote by 
x := Expand(sd, 	′) ∈ F�′

p . We note that, the last ρ1 components of the vector 
x are used to prevent a potentially malicious verifier from learning the first 	
components of x. Then for each i ∈ [n], we let D and Vi invoke an instance 
of Fp,r 

psVOLE, where D sends s to Fp,r 
psVOLE, and  Fp,r 

psVOLE returns x, m(i) to D and 
returns k(i) to Vi such that k(i) = m(i) + x · Δ(i). 

Fig. 5. Protocol for multiple-verifier subfield VOLE in the {Fp,r 
psVOLE, Fp,1 

COIN}-hybrid 
world 

Next, we let the parties perform the following consistency checks for ρ2 times 
to ensure that, if a potentially malicious dealer D∗ uses inconsistent seeds in dif-
ferent instances of Fp,r 

psVOLE with different verifiers, D∗ will be caught with over-
whelming probability. We say the dealer uses inconsistent seeds, if it uses sd1, sd2 
s.t. Expand(sd1, 	′) �= Expand(sd2, 	′). Notice that, if the dealer uses sd1, sd2 s.t. 
sd1 �= sd2 but Expand(sd1, 	′) =  Expand(sd2, 	′), we still say that the dealer uses 
consistent seeds. Our consistency checks work as follows: We let parties sample 
s ← F�′

p and let the dealer D broadcast u := s� · x ∈ Fp. Then for each i ∈ [n]: 
the dealer D will send the corresponding MAC tag w(i) := s� ·m(i) ∈ Fpr for u to 
Vi, and  Vi will compute the corresponding local MAC key v(i) := s� · k(i) ∈ Fpr 

and checks if v(i) ? = w(i) + Δ(i) · u. Later, we will show that by carefully choosing
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parameters, if D uses the inconsistent seeds, then D will be caught with over-
whelming probability. Finally, if all consistency checks pass, all parties output 
the first 	 objects. That is, D outputs the first 	 components of x, {m(j)}j∈[n] 

and Vi outputs the first 	 components of k(i) for each i ∈ [n]. Formally, we 
present our protocol construction Πρ1,ρ2 

mv-sVOLE in Fig. 5. 

Security Analysis. Here we provide the security analysis of Πρ1,ρ2 
mv-sVOLE. 

Case I: for p = 2. Here, we are dealing with the case where p = 2 and  r = λ, 
where λ is the security parameter; thus, this can support SIF over boolean 
circuits, which we will describe in the later sections. In this case (p = 2  and  
r = λ), the parameters should be set as ρ1 := 2ρ and ρ2 := ρ where ρ = Θ(λ). 
Notice that, for these parameters, our protocol Π2ρ,ρ 

mv-sVOLE directly yields the 
multi-party authenticated bits protocol in [ 49, Figure 5] 5. Next, we explain why 
the parameters are set in this way. 

Let us first consider the case where D∗ is corrupted. We need to ensure that 
if D∗ uses inconsistent seeds, for instance, sd1, sd2 such that Expand(sd1, 	′) �= 
Expand(sd2, 	′), then D∗ would be caught with overwhelming probability. We 
denote by x1 := Expand(sd1, 	′) and  x2 := Expand(sd2, 	′). Since D∗ cannot forge 
a MAC tag except for a negligible probability, the probability of D∗ passing 
the consistency check is the probability that s� · x1 = s� · x2, where s is 
the random vector returned by F2,1 

COIN. If we instantiate Expand with a secure 
PRG and we denote by I the set of indices where x1 �= x2, then it is easy 
to see that Pr[s� · x′

1 = s� · x′
2] = Pr[⊕i∈Isi = 0] =  1 2 + ε(λ), where ε(λ) is  

the negligible distance between the pseudorandom random strings generated by 
PRGs and the uniformly random strings. In other words, in each consistency 
check, a cheating D∗ can pass the check with probability 1 2 +ε(λ). Thus, we need 
to let the parties perform ρ = Θ(λ) times, so that a cheating D∗ can pass the 
check with probability O(2−λ). 

Then we consider the case where the dealer is honest and some verifiers 
are corrupted. We need to ensure that the malicious verifiers cannot learn any 
information about the dealer’s output, i.e., the first 	 components of x. In the  
i-th consistency check, for each random si ∈ F�′

2 returned by F2,1 
COIN, we denote 

by ai the first 	 components of si and denote by bi the last ρ1 components of 
si. We also denote by x̃ the first 	 components of x and denote by y the last 
ρ1 components of x. Then we have the equation ui = a�

i · x̃ + b�
i · y. Notice 

that, there are ρ2 such equations since we need to perform ρ2 consistency checks. 
Therefore, we have to prove that {bi}i∈[ρ2] are linearly independent so that b�

i ·y 
can act as “one-time pad” to a�

i · x̃; otherwise, the malicious verifiers may learn 
the linear combination of x̃. By [  49, Lemma A.4], Wang et al. proved that the 
probability of {bi}i∈[ρ2] being linearly dependent is at most 2−(ρ1−ρ2). In order 
to make this probability negligible, we have to set ρ1 := 2ρ since ρ2 is already

5 In [49, Figure 5], the authors actually set the parameters as ρ1 = ρ2 := 2ρ. However, 
according to their proof, we believe that it is their tiny typo error and the parameters 
should be set as ρ1 := 2ρ and ρ2 := ρ. 
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as set as ρ2 := ρ, where ρ = Θ(λ). Formally, we have the following theorem, and 
we refer interested readers to see the proof in [ 49, Theorem A.3]. 

Theorem 1 (Adapted from [ 49]). Let λ be the security parameter. Let F2λ 

be the extension field. Set ρ1 := 2ρ and ρ2 := ρ where ρ = Θ(λ). Let  Expand 
be a secure PRG. Then the protocol Π2ρ,ρ 

mv-sVOLE depicted in Fig. 5 UC-realizes 
F2,λ 

mv-sVOLE depicted in Fig. 4 in the {F2,λ 
sVOLE, F2,1 

COIN}-hybrid world, in the presence 
of a static malicious adversary corrupting up to the dealer and n − 1 verifiers. 

Case II: for large p >  2. It is easy to see that the efficiency of our protocol 
Πρ1,ρ2 

mv-sVOLE would be improved, if the parameters ρ1, ρ2 could be set smaller. 
Jumping ahead, we find that, when p−1 = negl(λ) and  r = 1, the parameters 
can be set as minimum, i.e., ρ1 = ρ2 := 1. 

Let us first focus  on  ρ2, which is the number of consistency checks. Recall 
that, when p = 2, the probability of a malicious D∗ passing each consistency 
check is 1 2 + ε(λ), where ε(λ) is a negligible error that caused by PRGs; there-
fore, ρ = Θ(λ) repetitions are needed. We observe that, if we could lower the 
probability of a malicious D∗ passing each consistency check, then the param-
eter ρ2 could be set smaller. By Theorem 3, we can prove that the probability 
of a malicious D∗ passing each consistency check can be reduced to p−1 + ε(λ). 
Thus, if p is a large prime such that p−1 = negl(λ), we only need to perform the 
consistency check once. In other words, the parameter ρ2 can be set as ρ2 := 1. 

Now let us focus on ρ1, which is the length of the random mask vector y. 
For the random vector s ∈ F�′

p returned by Fp,1 
COIN, we denote by a the first 	

components of s and denote by b the last ρ1 components of s. We also denote by 
x̃ the first 	 components of x and denote by y the last ρ1 components of x. Then 
we have the equation u = a� · x̃ + b� · y. Unlike the previous case where p = 2  
and there are  ρ such equations, here we only have one such equation. Thus, we 
observe that ρ1 = 1 is sufficient to mask a� · x̃ with b� · y, since the probability 
of b� · y being zero is negligible. That is why we can set the parameter ρ1 as 
ρ1 := 1. Formally, we prove the security through the following theorems, and 
their proofs can be found in our full-version paper [ 57]. 

Theorem 2. Let Fpr be the extension field where p is a large prime and r = 
1. Set  ρ1 := 1 and ρ2 := 1. Let  Expand be a secure PRG. Then the protocol 
Π1,1 

mv-sVOLE depicted in Fig. 5 UC-realizes the functionality Fp,1 
mv-sVOLE depicted in 

Fig. 4 in the {Fp,1 
psVOLE, Fp,1 

COIN}-hybrid world, in the presence of a static malicious 
adversary corrupting up to the dealer and n − 1 verifiers. 

Theorem 3. Let Fp be the field with a prime order p. Let  s be the column vector 
over field Fk 

p whose elements are all non-zero, Let t be the column vector that is 
uniformly sampled from Fk 

p. Then we have Pr[s� · t = 0] =  1 p . 

Instantiating Fp,r 
psVOLE. Notice that, our protocol Πp,r 

mv-sVOLE makes block box 
use of Fp,r 

psVOLE. We describe two approaches to instantiate Fp,r 
psVOLE.
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Approach I: PCG-style. Recently, many works (e.g., [ 10,11,50]) employ Pseu-
dorandom Correlation Generators (PCGs) to generate sVOLE correlations, i.e., 
they let two parties take a pair of short seeds, then expand them to a large 
amount of sVOLE correlations. One of the most appealing features of the PCG-
style approach is that: it only requires sublinear communication cost. 

Basing on the PCG construction in [ 50], Rachuri and Scholl give a PCG-style 
protocol that can efficiently realize Fp,r 

psVOLE in [ 45]; their protocol can cover both 
p = 2  and  p >  2. More precisely, the main building block in [ 50] is a primi-
tive called single-input sVOLE (spsVOLE), where only one component of the 
authenticated vector x is non-zero while other components are zero. Rachuri and 
Scholl modify the spsVOLE protocol in [ 50] to support programmable inputs, 
i.e., the authenticated vector x can be expanded from a chosen seed; they also 
show that the modified spsVOLE can be used to realize Fp,r 

psVOLE with essentially 
the same steps as [ 50]. We refer interested readers to see that in [ 45]. 

Approach II: IKNP-style. For binary field, it is known that sVOLE is equivalent 
to a primitive called Correlated Oblivious Transfer (COT) [ 4]. At the end of a 
COT protocol, the sender obtains 	 pairs of messages {m (i) 0 , m (i) 1 }i∈[n] ∈ Fr 

2 such 
that m (i) 0 ⊕ m (i) 1 = Δ, where Δ ∈ Fr 

2 is chosen by the sender and m (i) 0 , m (i) 1 ,Δ  
can be also viewed as elements in the extension field F2r ; meanwhile, the receiver 
obtains {b(i)}i∈[�] ∈ F2 and {m (i) 

b(i)}i∈[n] ∈ Fr 
2. If we set  u := (b(1) , . . . , b(�)) ∈ F�

2, 
m := (m (1) 

b(1)
, . . . ,  m (�) 

b(�)) ∈ F�
2r and k := (m (1) 0 , . . . ,  m (�) 0 ) ∈ F�

2r , it is easy to see  
that the sender holds Δ, k and the receiver holds u, m such that k = m⊕u · Δ, 
which is in the form of sVOLE correlations. 

One approach for generating a large amount of COTs is to employ the Obliv-
ious Transfer Extension (OTE) techniques by Ishai, Kilian, Nissim and Petrank 
(hereafter, IKNP) [ 36], i.e., given a small number of OTs, then extend them to a 
large number of OTs using only symmetric-key operations. Compared to PCG-
style approach, IKNP-style approach is more computation-efficient, although 
IKNP-style approach requires more communication cost. When only a middle 
number of COTs (e.g., thousands of COTs) are needed or a local area network 
is employed, it turns out that IKNP-style approach may outperform PCG-style 
approach with respect to total end-to-end time, since in both case the communi-
cation cost is no longer the performance bottleneck. For this reason, sometimes, 
one may prefer to choose the IKNP-style approaches. We note that, the receiver’s 
choice bits {b(i)}i∈[�] (a.k.a, the authenticated vector u as explained previously) 
are chosen all by itself; therefore, we can easily instantiate Fp,r 

psVOLE with the mali-
ciously secure IKNP-style OTE protocols [ 39,46] by letting the receiver sample 
a random seed sd and expand it to {b(i)}i∈[�] through PRGs. 

4 SIF Against a Dishonest Majority 

4.1 Preprocessing Phase 

Functionality for Preprocessing Phase. Here we describe the functionality 
for preprocessing phase, which is denoted by Fp,r 

Prep. Our Fp,r 
Prep is very similar
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to Fp,r 
mv-sVOLE, except that Fp,r 

Prep additionally allows D to authenticate his secret 
values over extension field to each verifier respectively. Note that, for authenti-
cations over extension field, D is allowed to use inconsistent values to generate 
correlations. Formally, we present the functionalityFp,r 

Prep in Fig. 6. 

Notation �·�. For a vector  u over the subfield F�
p or the extension field F�

pr , we  
introduce the following notation �u� to denote the values held by parties:

�u� := {{u, {m(i)}i∈[n]}, {Δ(i) , k(i)}i∈[n]} , 

where u, {m(i)}i∈[n] (resp. Δ(i) , k(i)) are the private information held by the 
dealer D (resp. the i-th verifier Vi). We use �u� as shorthand when there is need 
to explicitly talk about the MAC tags and MAC keys. We also note that, �·� is 
additively homomorphic. This property is inherited from the additive homomor-
phism of sVOLE, which is described in Sect. 2.3. 

Fig. 6. The Functionality Fp,r 
Prep 

Efficiently Realizing Fp,r 
Prep. Here we show how to construct a protocol that 

efficiently realizes Fp,r 
Prep. Since we have already described how to generate mv-

sVOLE correlations in Sect. 3.2, here we focus on the authentication for values
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over extension field. By the characteristic of extension field Fpr ∼= Fp[X]/f (X), 
i.e., for every value over extension field u ∈ Fpr , it can be written uniquely as 
u =

∑r 
i=1 vi · Xi−1 where vi ∈ Fp for all i ∈ [r]. Inspired by [ 51], we find that 

we can pack some authenticated values over Fp into the desired authenticated 
values over Fpr . More precisely, D and Vi first invoke the programmable sVOLE 
functionality Fp,r 

psVOLE to generate r copies of random sVOLE correlations, i.e., 
D obtains v (i) j ,m  (i) j and Vi obtains Δ(i) , k  (i) j such that k (i) j = m (i) j + u (i) j · Δ(i) 

for each j ∈ [r]. Then, the dealer D locally computes u(i) :=
∑r 

j=1 v (i) j · Xj−1, 
M (i) :=

∑r 
j=1 m (i) j · Xj−1 and Vi locally computes K(i) :=

∑r 
j=1 k (i) j · Xj−1. It  

is easy to see that K(i) = M (i) + u(i) · Δ(i) holds. 
Formally, we present our protocol ΠPrep for preprocessing phase in Fig. 7 and 

prove the security through Theorem 4. The security proof can be found in our 
full-version paper [ 57]. 

Fig. 7. Protocol for preprocessing phase in the {Fp,r 
psVOLE, Fp,1 

COIN}-hybrid world 

Theorem 4. Let Fpr be the extension field. Let Expand be a secure PRG. Then 
the protocol ΠPrep depicted in Fig. 7 UC-realizes the functionality Fp,r 

Prep depicted 
in Fig. 6 in the {Fp,r 

psVOLE, Fp,1 
COIN}-hybrid world, in the presence of a static mali-

cious adversary corrupting up to the dealer and n − 1 verifiers. 

4.2 Main Protocol 

Here we provide a main protocol for SIF. Since we have already described how 
to realize preprocessing phase in Sect. 4.1, here we focus on the online phase.
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We first let the dealer D commit to his witness w ∈ Fm 
p using the random mv-

sVOLE correlations �μ� generated by Fp,r 
Prep in the preprocessing phase; that is, D 

broadcasts δ := w− μ ∈ Fm 
p to verifiers, and all parties compute �w� := �μ�+ δ. 

It is easy to see that the addition gates of the circuit can be processed locally 
for free, due to the additive homomorphism of �·�. For multiplication gates, we 
extend the techniques in [ 24,51] which are designed for (s)VOLE correlations 
to our mv-sVOLE correlations. More precisely, for the i-th multiplication gate 
(α, β, γ, Mult), given the random �ηi� generated by Fp,r 

Prep in the preprocessing 
phase, D broadcasts di := wα · wβ − ηi ∈ Fp to verifiers, then all parties compute
�wγ� := �ηi�+ di. As a result, D holds wa,m  (j) a and Vj holds Δ(j) , k  (j) a such that 
k (j) a = m (j) a + wa · Δ(j) for a ∈ {α, β, γ} and j ∈ [n]. By Eq. 1, we conclude that 
if D behaves honestly (i.e., wγ = wα ·wβ), then we have B (j) i = A (j) i,0 + A (j) i,1 · Δ(j). 
It is easy to see that B (j) i (resp. A (j) i,0 , A  (j) i,1 ) can be locally computed by D (resp. 
Vj); therefore, the correctness of the i-th multiplication gate can be checked by 
letting D send A (j) i,0 , A  (j) i,1 to Vj and letting Vj check if B (j) i 

? = A (j) i,0 + A (j) i,1 · Δ(j) 

holds for each j ∈ [n]. We can check t multiplication gates in a batch to reduce 
the communication cost, using the random linear combination technique [ 51]. 
That is, we let the parties sample a uniformly random χ ← Fpr , then we let D 
send A (j) 0 :=

∑t 
i=1 A (j) i,0 · χi and A (j) 1 :=

∑t 
i=1 A (j) i,1 · χi to Vj and let Vj check 

if B(j) ? = A (j) 0 + A (j) 1 · Δ(j) for j ∈ [n], where B(j) :=
∑t 

i=1 B (j) i · χi. Notice 
that, A (j) 0 , A  (j) 1 may leak some information about the wire values; thus, we use 
random u(j) , v(j) , z(j) such that z(j) = v(j) + u(j) · Δ(j) to mask A (j) 0 , A  (j) 1 . 

Formally, we present ΠSIF in Fig. 8 and prove the security through Theorem 5. 
The security proof can be found in our full-version paper [ 57]. 

Theorem 5. Let Fpr be the extension field. Let C be the circuit with t multiplica-
tion gates. Then the protocol ΠSIF depicted in Fig. 8 UC-realizes FSIF depicted in 
Fig. 2 with statistical security in the {Fp,r 

Prep, Fp,r 
COIN}-hybrid world, in the presence 

of a static malicious adversary corrupting up to the dealer and n − 1 verifiers. 

Towards One-Round Online Communication. During the online phase of 
our protocol ΠSIF, the only interaction between the parties is the coin-tossing 
procedure. In order to achieve one-round online communication, we can replace 
the coin-tossing with a Random Oracle (RO) to generate the random element 
χ. More precisely, given a hash function H : {0, 1}∗ → Fpr which is modeled as 
a RO, we let D compute χ := H({δi}i∈[m], {di}i∈[t]). Since {δi}i∈[m], {di}i∈[t] are 
broadcasted by D, verifiers can locally compute χ. 

We note that, when RO is introduced, the statistic security of our protocol 
ΠSIF will be degraded to the computational security, and the computational 
security error will be O(QH·t/pr), where QH is the number of maximum queries to 
RO and t is the number of multiplication gates. When pr is not large enough, we 
can simply repeat our main protocol for ρ times to achieve negligible soundness 
error, where ρ is selected such that O(QH · (t/pr)ρ) =  negl(λ).
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Fig. 8. Main Protocol for SIF in the {Fp,r 
Prep, Fp,r 

COIN}-hybrid world 

Towards Better Efficiency. In Step 3 of our online phase protocol, the parties 
need to compute χi for i ∈ [t]. When p is a large prime, the computation of χi for 
i ∈ [t] can be very expensive. To obtain better computational efficiency, it was 
suggested in prior work [ 51] that we can replace χi with independent uniform 
coefficients χi for i ∈ [t]. More concretely, instead of querying RO to obtain χ 
and then computing χi for i ∈ [t], we can query RO to directly obtain χ1, . . . , χt



Single-Input Functionality Against a Dishonest Majority 25

and use χi to replace χi for i ∈ [t]. Notice that, this approach will slightly 
increase the soundness error, but the resulting soundness error is still negligible. 
We refer interested readers to see [ 51] for more details. 

5 Impossibility on 1-Round SIF Without Broadcast 
Channels 

Our 1-round SIF protocol in Fig. 8 requires a broadcast channel. It is natural to 
ask: if the broadcast channels are necessary for constructing 1-round SIF? 

In this section, we prove that even if the preprocessing model is assumed, 
1-round MVZK is impossible to achieve without the broadcast channels. Since 
MVZK is captured by SIF and VRS, our impossibility can naturally be extended 
for SIF and VRS. Therefore, we show that the broadcast channels are necessary 
for constructing 1-round SIF/VRS/MVZK. 

MVZK Functionality. We have described MVZK in the introduction, here we 
provide the formal MVZK functionality FMVZK in Fig. 9, which is taken from [ 52]. 
From Fig. 9, we know that there is an important feature in MVZK: for those 
honest verifiers who do not abort, they should reach a consensus (i.e., they 
should output the same results). This feature is important for our impossibility 
proof; please see the proof intuition below. 

Fig. 9. The Functionality FMVZK 

Proof Intuition. We use the method of proof by contradiction to prove our impos-
sibility result. First of all, we assume there exists a non-interactive MVZK using 
only secure private channels (i.e., point-to-point channels); note that, “non-
interactive” means that: in the online phase of the non-interactive protocol, 
the prover is allowed to send messages to the verifiers, and the verifiers are not 
allowed to communicate with each other. Let us consider the case where only
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the prover is corrupted. Let w, w′ be two distinct witnesses such that C(w) = 1  
and C(w′) = 0.  Let  msgi (resp. msg′

i) be the messages that an honest prover 
should sent to the i-th verifier on input w (resp. w′); upon receiving msgi (resp. 
msg′

i), the i-th honest verifier should output 1 (resp. 0), since the online phase 
is restricted to be non-interactive. Then the corrupted prover can simply send 
msg1 to the first honest verifier and send msg′

2, . . . ,  msg′
n to the remaining hon-

est verifiers respectively. Then the first honest verifier will output 1 while the 
remaining honest verifiers will output 0, which violate the consensus require-
ment of MVZK functionality. Notice that, the above proof intuition holds, (i) no 
matter how many verifiers the adversary can corrupt, as long as the adversary is 
allowed to corrupt the prover; (ii) a preprocessing model is assumed 6. Formally, 
we have the following theorem. 

Theorem 6. Let the communication channels be secure point-to-point chan-
nels, and no broadcast channels are available. Let n be the number of verifiers 
such that n ≥ 2. Then there exists no non-interactive MVZK protocol Π that 
UC-realizes FMVZK depicted in Fig. 9 in the preprocessing model, in the presence 
of a static and malicious adversary who is allowed to corrupt the prover. 

Proof. We use the method of proof by contradiction to prove this theorem. We 
assume there exists such a non-interactive MVZK protocol Π that UC-realizes 
FMVZK in the preprocessing model. Then for any PPT adversary A and any PPT 
environment Z, there should exist a PPT simulator S such that the real-world 
execution is computationally indistinguishable from the ideal-world execution. 

First of all, let us describe some notions that will be used in this proof. We use 
OPrep to denote the preprocessing model; when a party makes a query to OPrep, 
OPrep takes the session identifier (SID) and the party identifier (PID) pid of the 
querying party as inputs, and it returns the corresponding preprocessing infor-
mation infopid to the party. Notice that, OPrep may return different preprocessing 
information to different parties, and each party can not learn other parties’ pre-
processing information by querying OPrep. In the same protocol session, OPrep 

should return the same response to the same party, no matter the party is hon-
est or gets corrupted. Notice that, we make a restriction on OPrep’s inputs, i.e., 
OPrep cannot use anything other than the SID and the PID as inputs; in this 
way, we guarantee the preprocessing information returned by OPrep is “input-
independent”. Without loss of generality, we assume the prover P’s PID is 0, 
and the i-th verifier Vi’s PID is i for i ∈ [n]. we let PrfAlg be the (honest) prover 
algorithm, which takes the preprocessing information info0 and the witness w as 
input and outputs the prover’s messages (pmsg1, . . . ,  pmsgn), where pmsgi is the 
message that should be sent to Vi. Let  DecAlgi be the (honest) decision algo-
rithm for Vi, which takes the preprocessing information infoi and the received 
message pmsgi as inputs and outputs the decision bit b or a special symbol ⊥ 
indicating abort. 

Let A be a dummy adversary that simply forwards the protocol flow 
between the corrupted parties and the environment Z. Let us consider the
6 The preprocessing model implies RO model and CRS model. 
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case where Z only corrupts the prover. Let w(0) , w(1) be two distinct wit-
nesses such that C(w(0)) = 0  and  C(w(1)) = 1. We consider the following 
adversary’s strategy. The environment Z first instructs P∗ to query OPrep to 
obtain info0 and honestly run (pmsg 

(0) 
1 , . . . ,  pmsg 

(0) 
n ) ← PrfAlg(info0, w(0)) and  

(pmsg 
(1) 
1 , . . . ,  pmsg 

(1) 
n ) ← PrfAlg(info0, w(1)). Notice that, both (pmsg 

(0) 
i )i∈[n] 

and (pmsg 
(1) 
i )i∈[n] are honestly generated; hence, by completeness, for each hon-

est Vi, we have  DecAlgi(infoi, pmsg 
(b) 
i ) =  b for b ∈ {0, 1}. Next, for each honest 

Vi, Z samples a bit bi from {0, 1} and instructs P∗ to send pmsg 
(bi) 
i to Vi, and  

an honest Vi should output the decision bit bi. In the real-world execution, since 
Pr[b1 = b2 = · · ·  = bn] = 2−(n−1), the probability of the honest verifiers reaching 
a consensus (i.e., all honest verifiers output 0 or 1) is 2−(n−1). On the other 
hand, in the ideal-world execution, the simulator S can extract the witnesses 
w(0) , w(1) by simulating OPrep; however, S can only instruct the dummy P̃∗ in 
ideal-world to send either w(0) or w(1) to FMVZK, which results in a consensus 
among the dummy honest verifiers in ideal-world. Therefore, Z can distinguish 
the real-world from the ideal world with probability at least 1 − 2−(n−1) ≥ 1 2 , 
contradicting our assumption that Π is UC-secure. ��

Extending to the Simultaneous Communication Model. Here we discuss 
how to extend our impossibility results depicted in Theorem 6 to the simulta-
neous communication model. Recall that, in the simultaneous communication 
model, parties are allowed to send messages to each other in the same round; 
however, their messages should be independent of each other. Hence, in the con-
text of 1-round MVZK, when the prover sends its messages to the verifiers, the 
verifiers may also send their messages to each other at the same time. Then each 
verifier outputs the result based on the prover’s messages and other verifiers’ 
messages. We note that, we do not consider the situation where the verifiers 
send to the prover during the online phase, since the prover has no output and 
its proof messages should not depend on the verifiers’ messages. 

Now we show that even in the simultaneous communication model, 1-round 
MVZK protocol is still impossible to achieve without the broadcast channels, 
in the presence of a static, malicious and rushing adversary. Note that, a rush-
ing adversary is often considered in the simultaneous communication model. 
A rushing adversary can delay sending messages on behalf of corrupted par-
ties in a given round, until the messages sent by all the uncorrupted parties in 
that round have been received. We consider the case where the adversary cor-
rupts the prover. Let w, w′ be two distinct witnesses such that C(w) = 0  and  
C(w′) = 1. The adversary first instructs the prover to wait until each honest 
verifier has received other verifiers’ messages, and we denote by vmsg 

(i) 
j the mes-

sage that the i-th verifier send to the j-th verifier. Then the adversary instructs 
the prover to honestly run the prover’s algorithm on input w (resp. w′) to pro-
duce {pmsgi}i∈[n] (resp. {pmsg′

i}i∈[n]), where pmsgi (resp. pmsg′
i) is the message 

that the prover should send to the i-th verifier. Notice that, upon receiving 
pmsgi (resp. pmsg′

i) and (vmsg 
(j) 
i )j �=i, the  i-th verifier should output 0 (resp.
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1), since pmsgi (resp. pmsg′
i) and (vmsg 

(j) 
i )j �=i are honestly generated. Finally, 

the adversary instructs the prover to send pmsg1 to the first verifier and send 
pmsg′

2, . . . ,  pmsg′
n to the remaining honest verifiers respectively. Then the first 

honest verifier will output 1 while the remaining honest verifiers will output 0, 
which violate the consensus requirement of MVZK functionality. 

Formally, we have the following theorem. We omit the proof here, since the 
proof is analogous to the proof of Theorem 6. 

Theorem 7. Let the communication channels be secure point-to-point channels 
which allows simultaneous communication, and no broadcast channels are avail-
able. Let n be the number of verifiers such that n ≥ 2. Then there exists no 
1-round MVZK protocol Π that UC-realizes FMVZK depicted in Fig. 9 in the pre-
processing model, in the presence of a static, malicious and rushing adversary 
who is allowed to corrupt the prover. 

Since SIF implies MVZK [ 3], we have the following corollary. 

Corollary 1. Let the communication channels be secure point-to-point chan-
nels, and no broadcast channels are available. Let n be the number of verifiers 
such that n ≥ 2. Then there exists no 1-round SIF protocol Π that UC-realizes 
FSIF depicted in Fig. 2 in the preprocessing model, in the presence of a static, 
malicious and rushing adversary who is allowed to corrupt the dealer. 

6 Implementation and Evaluation 

We implement a prototype of our protocols in C++ using EMP toolkip [ 48]. We 
simulate the network configurations using Linux netem package. In this section, 
we refer LAN (resp. WAN) to the 1 Gbps (resp. 200 Mbps) network with 6 ms 
(resp. 20 ms) delay. All experiments are executed on a machine with Intel(R) 
Core(TM) i7-12700 at 2.10 GHz and 512 GB Memory, running Ubuntu 22.04.3 
LTS. Each experiment is run 20 times and the median is taken. 

For arithmetic circuits, we use a 61-bit field (i.e., p = 261−1 and  r = 1); notice 
that, in this case, we will repeat our protocol for ρ = 2 times to achieve negligible 
soundness error, as discussed in Sect. 4.2. For boolean circuits, we use a binary 
field (i.e., p = 2  and  r = 128). For large-scale circuits (e.g., a circuit with 107 

gates), we instantiate psVOLE with recent PCG-style protocols [ 45,50,54]. For 
widely used benchmark circuits (e.g. the AES-128 circuit), which are typically 
small or median size boolean circuits, we instantiate the psVOLE with the IKNP-
style COT protocol [ 39]. 

6.1 Comparison with Related Works 

Here we compare the efficiency of our protocols with other related works. 

Comparison with SIF Against a Dishonest Majority. To the best of our 
knowledge, the only work in the literature that constructs SIF against a dishonest 
majority is [ 56], which we denote by ZZZR protocol. Both ZZZR protocol and
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our work can tolerate up to one malicious dealer and t < n  malicious verifiers. 
We conduct experiments of our protocol and ZZZR protocol on an AES-128 
circuit with different total party number N ∈ {3, 8, 16, 32} and different network 
configurations, and plot the results in Fig. 10. 

Fig. 10. Comparison between our protocol and ZZZR protocol [56]. Results are evalu-
ated on an AES-128 circuit. 

As shown in Fig. 10, our protocol outperforms ZZZR protocol in both run-
ning time and communication. Our improvement for preprocessing time (resp. 
communication) over ZZZR protocol ranges from roughly 5.2× to 14.5× (resp. 
11.6× to 17.2×). The reason is: ZZZR preprocessing protocol makes black-box 
use of BDOZ-style preprocessing protocol [ 8], which is expensive; in contrast, 
our preprocessing protocol makes use of psVOLE, which is much more efficient. 
The cost of our online phase is also less; the reason is: our online phase is only 
1-round, and removes the peer-to-peer communication among the verifiers. 

Comparison with SIF with an Honest Majority. Among three recent and 
related work with an honest majority [ 3, 5,52], Feta [ 5] is the only one that 
implements their protocols; hence, here we compare the efficiency of our protocol 
with Feta. We report the comparison result in Table 4. 

Table 4. Comparison between Feta [ 5] and ours. The results are evaluated on an 
AES-128 circuit under a WAN network. 

Fix the number of total parties N 
Ref. (T,  N  ) Prep. Time (ms) Online Time (ms) 

Feta [ 5] (2,6) 108.9 64.4 
This Work (5,6) 250.4 45.8 

Fix the number of total corrupted parties T 
Ref. (T,  N  ) Prep. Time (ms) Online Time (ms) 

Feta [ 5] (7,26) 872.3 653.0 
This Work (7,8) 336.8 48.9



30 Z. Zhou et al.

In Table 4, we compare Feta and our protocol in two setting: (i) when the 
number of total parties N is fixed; (ii) when the number of total corrupted 
parties T is fixed. In the first setting, our preprocessing time is slower than that 
of Feta, but our online time is faster. Notice that, our work can tolerate all-but-
one corruptions among verifiers, but Feta assumes an honest majority among 
verifiers. In the second setting, both our preprocessing time and online time are 
faster than Feta. More precisely, our preprocessing time is 2.6× faster and our 
online time is 13.4× faster. 

Comparison with Generic MPC Against a Dishonest Majority. To fur-
ther demonstrate the efficiency of our protocols, we compare our protocol with 
the state-of-the-art constant-round BMR-style MPC protocols in the dishonest 
majority setting, i.e., the WRK protocol by Wang et al. [ 49] and the YWL proto-
col by Yang et al. [ 53]. Notice that, the numbers of WRK protocol are measured 
by ourselves, while the numbers of YWL protocol are estimated according to 
the improvements over WRK protocol that reported in [ 53]. We plot the results 
in Fig. 11. As shown in Fig. 11, our protocol outperforms both WRK and YWL 
protocols in both running time and communication. Our improvement for total 
running time (resp. total communication) ranges from 2.3× to 15.1× (resp. 12.1× 
to 15.7×). 

Fig. 11. Comparison among WRK [49], YWL [53] and  our protocol.  Results  are evalu-
ated on a AES-128 circuit. 

Comparison with Generic zk-SNARK. Here we compare with a recent 
zk-SNARK scheme called HyperPlonk [ 16,17]. As reported in [ 16, Table 6], the 
proving time of HyperPlonk is 9.2 us/gate. The running time of HyperPlonk is 
obtained by running over a large-scale arithmetic circuit (e.g., a circuit with 
220 gates). To make a fair comparison, we report the end-to-end performance 
of our protocols over a large-scale arithmetic circuit. Table 5 illustrate the end-
to-end time of our protocol with respect to a randomly generated arithmetic 
circuit with 107 multiplication gates. The number of end-to-end time consists 
of both computation time and communication time. Some careful readers may 
notice that, the numbers reported here are much faster than our running times 
reported in Table 2. The reason is that: our running times reported in Table 2 
are obtained by evaluating a small circuit and using the IKNP-style approach
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to instantiate the preprocessing phase; in contrast, the numbers reported in 
Table 5 are obtained by instantiating the preprocessing phase with the PCG-
style approaches, which is much more efficient than IKNP-style approach when 
a large amount of correlated randomness are needed. 

Table 5. Our end-to-end performance. The results are evaluated on a random circuit 
with 107 multiplication gates. 

Network #Party 
Running Time 
Per Gate (us)  

LAN 
3 0.9 
8 2.4 
16 4.9 

WAN 
3 1.6 
8 3.6 
16 7.1 

As shown in Table 5, for three-party SIF running over an arithmetic circuit 
and a LAN network, our end-to-end time is 0.9 us/gate. Our running time is at 
least 10.2× faster than HyperPlonk. We admit that, when the number of total 
parties scales to a large one, our performance may not be as good as generic 
zk-SNARKs; however, this is a common drawback of current SIF (in the context 
of MVZK) protocols [ 5,52,56]. 

7 Related Work 

Here we provide a comprehensive literature overview on the related work in both 
honest majority and dishonest majority settings. 

In the Honest Majority Setting. The study of SIF was initialized by Gennaro 
et al. [ 29]. More precisely, they proposed a 2-round SIF protocol in the plain 
model with t <  n 

6 , where t, n are the numbers of corrupted verifiers and total 
verifiers, and their protocol achieves perfect security. Applebaum et al. improved 
the corruption threshold to t <  n 

3 while keep the same round complexity, at the 
cost of degrading the perfect security to computational security [ 2]. Later, the 
same authors further improved the corruption threshold to t <  n 

2+ε , where ε is 
a small positive constant [ 3]. 

As mentioned before, MVZK is a direct application of SIF, and the notion 
of MVZK can be traced back to the work by Burmester and Desmedt [ 13]. 
Abe et al. proposed a 2-round MVZK protocol for circuit satisfiability with 
t <  n 

3 [ 1]; the corruption threshold of their protocol can be improved to t <  n 
2 

at the cost of increasing round complexity. The ZK protocols by Groth and 
Ostrovsky [ 32,33] can be transformed into the 2-round MVZK protocols with
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t <  n 
2 . These works [ 1,32,33] require heavy public-key operations and are not 

concretely efficient. Very recently, there are two papers [ 5,52] studying 2-round 
MVZK protocols in the honest majority setting, and they avoided the use of 
public-key operations. Yang and Wang [ 52] proposed 2-round MVZK protocols 
in the RO model with t <  n 

2 . Baum  et al. [ 5] employed a stronger assumption (i.e., 
the preprocessing model) to construct two types of the 2-round MVZK protocols: 
the first protocol tolerates n 

3 malicious verifiers and the second protocol tolerates 
n 
4 malicious verifiers. 

Distributed Zero-Knowledge (dZK) is a related cryptographic primitive, and 
it was proposed by Boneh et al. [ 9]. In dZK, there is a distinguished prover 
holding (x, w) ∈ R  and the statement x is shared among the verifiers; the prover 
wishes to convince the verifiers that x is correct in zero-knowledge even if the 
verifiers do not know the entire x. The main difference between dZK and MVZK 
is that: in dZK, no verifier knows the entire statement x; in contrast, in MVZK, 
each verifier knows the entire statement x. Boneh et al. [ 9] gave a 2-round dZK 
construction in the RO model with t <  n 

2 . Very recently, Hazay et al. strengthen 
the formalization of [ 9] by adding strong completeness [ 35], which prevents the 
malicious verifiers from framing the honest prover, i.e., causing the proof of a 
correct claim to fail. They constructed their dZK with t <  n−2 

6 . 

In the Dishonest Majority Setting. In [ 40], Lepinski et al. propose a notion 
called fair ZK, which can be viewed as a strengthened version of MVZK. Fair 
ZK ensures that the malicious verifiers can learn nothing beyond the validity 
of the statement if the honest verifiers accept the proof. However, their work is 
far from being practical. To the best of our knowledge, the only prior work that 
focuses on constructing practical SIF protocols against a dishonest majority is 
the work by Zhou et al. [ 56]. More precisely, they build highly efficient 2-round 
SIF protocols in the preprocessing model. 

In terms of dZK, Boneh et al. give a 2-round dZK construction in the RO 
model [ 9]; however, they assume the adversary can corrupt the prover or up to 
t < n  verifiers. In other words, they do not allow the malicous prover to collude 
with the malicious verifiers. 
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