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Abstract. In this work, we focus on Single-Input Functionality (SIF),
a specialized case of MPC where only one designated party, called the
dealer, holds a private input. SIF enables the dealer to perform compu-
tations with other parties without disclosing any additional information
about the private input. SIF has a wide range of applications, such as
multiple-verifier zero-knowledge and verifiable relation sharing.

We propose the first 1-round SIF protocol against a dishonest major-
ity in the preprocessing model and random oracle model, achieving high
efficiency. Previous works either require at least 2-round online commu-
nication (Yang and Wang, Asiacrypt 2022; Baum et al., CCS 2022; Zhou
et al., Euro S&P 2024) or are limited to feasibility results (Lepinski et al.,
TCC 2005; Applebaum et al., Crypto 2022). We also show the necessity
of using the broadcast channels, by formally proving that 1-round SIF is
impossible to achieve in the preprocessing model, if there are no broad-
cast channels available. Finally, we implement our protocol and present
extensive experimental results, demonstrating its practical efficiency.

1 Introduction

MPC vs. SIF. In secure multi-party computation (MPC) [31,55], multiple
mutually distrustful players, (Py,...,P,), are allowed to jointly compute any
efficiently computable function f of their private inputs (z1, ..., z,). Concretely,
let circuit C be the representation of the function f such that (yi,...,yn) <«
C(x1,...,xy,). After an execution of the MPC protocol for circuit C, each party
P; shall obtain its output y;. Since its introduction in the early 1980s, secure
MPC has been extensively studied and become one of the cornerstones of modern
cryptography.

Single-Input Functionality (SIF) is a special case of MPC. In SIF, only a
distinguished party, called dealer D, is allowed to have a private input w, while
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all other parties, called wverifiers Vy,...,V,, have no private inputs. After an
execution of the SIF protocol, the dealer D receives no output value while the -
th verifier obtains y; as its output value. That is, the circuit C is now specifically
defined as follows: (0, y1, ..., yn) — C(w,,...,0). For simplicity, we often ignore
the empty (input/output) values #’s and write it as (y1,...,yn) « C(w).

Applications of SIF. As an important cryptographic primitive, SIF was ini-
tially studied by Gennaro et al. [29]; this line of research has received lots of
attention [2,3,5,52,56] very recently. Below, we will give a high-level description
of the applications of SIF. More concretely, as already pointed out by Applebaum
et al. [3], from SIF, two immediate applications can be obtained: Multiple-Verifier
Zero-Knowledge (MVZK) and Verifiable Relation Sharing (VRS).

MVZK. In an MVZK protocol, a distinguished party called prover P, who holds
a statement-witness pair (z,w), wishes to convince n verifiers Vi, ...,V,, that
R(z,w) = 1 at once for an NP relation R. It is easy to see that SIF implies
MVZK directly: let C be the circuit that evaluates R(x,w), then the parties can
jointly invoke SIF to evaluate C.

MVZK can be used in normal ZK scenarios as long as the identities of the
verifiers are known ahead of time. It can also be used in some real life crypto-
graphic systems, e.g., private aggregation system [21]. More concretely, in the
private aggregation system like Prio [21], a set of servers collect and aggregate
the clients’ data; and each client needs to prove to servers that its data is valid
using Secret-shared Non-Interactive Proof (SNIP). Notice that, the SNIP in [21]
assumes the client (acting as the prover) not to collude with the servers (acting
as the verifiers) to ensure soundness; for zero-knowledge property, the SNIP can
tolerate all-but-one malicious servers. Hence, if there exists an efficient 1-round
MVZK protocol against a dishonest majority (which allows the malicious prover
to collude with verifiers), it could be a significantly better alternative technique
to SNIP in [21].

VRS. In [3], Applebaum et al. introduce a new primitive called VRS, which
generalizes MVZK. In a VRS protocol, we consider a distinguished party called
dealer D, who holds a secret input s, and n parties called verifiers Vy,...,V,,
who have no secret inputs. The dealer D wishes to share the secret s to the
verifiers first; for simplicity, we denote by x; the share received by the i-th verifier.
Then the dealer D wishes to prove that the shares satisfy an NP relation R to
the verifiers, i.e., D proves that R(x1,...,2,,s) = 1 in a zero-knowledge way.
Clearly, SIF also implies VRS: let (y1,...,yn) < C(z1,...,Zp,s) be a circuit
such that y; = z; for i € [n] if R(x1,...,2n,s) = 1; otherwise, y; = L where L
is a failure symbol. Then the parties can jointly invoke SIF to evaluate such a
circuit C to realize VRS.

VRS has various applications, including Verifiable Secret Sharing (VSS) [15,
18,19,25,37,42], Distributed Key Generation (DKG) [15,18,23,30,38] and so on.
In particularly, here we describe how to use VRS for the purpose of DKG. We
assume the public key of a DKG protocol is additive homomorphic, for instance,
pk = g%, where (pk,sk) is the public-secret key pair and g is a cyclic group
generator. We assume there are n parties Py, ..., P,, for each i € [n], we let P,
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sample a random sk(i)7 secret-share sk into {sky)}j#, and compute pk(i) =
gS‘k(i). Then we let P; be the dealer of a VRS: P; broadcasts pk(i), sends skg-i) to
P;, and proves that sk = Zj skgi) and pk(i) = gSk(i) by invoking a VRS. It is
easy to see that the final public key can be obtained by pk:=)", pk(i), and the
corresponding secret key sk := )" sk is distributed among Py,...,P,.

SIF with an Honest Majority. We now introduce a line of works [3,5,52] on
SIF in the honest majority setting. The work by Applebaum et al. [3] mainly
focuses on the theoretical side and gives a 2-round feasibility result for SIF in
the plain model. In particular, as claimed by Applebaum et al., the first round
of their protocol is input independent; thus, their work can also be interpreted
as a 1-round protocol in the preprocessing model.

On the other hand, both the work by Yang and Wang [52] and the work by
Baum et al. [5] focus on constructing practical 2-round SIF (in the context of
MVZK). In [5], Baum et al. design two types of MVZK protocols with different
corruption thresholds in the preprocessing model: the one with ¢ < % and another
one with ¢ < 5, where n denotes the total number of verifiers while ¢ denotes the
number of corrupted verifiers'. In [52], Yang and Wang design their protocols
in the Random Oracle (RO) model; they employ Shamir’s secret sharing [47]
to construct a protocol with ¢ < 5. Yang and Wang also show how to utilize
packed secret sharing [28] to improve the communication complexity at the cost
of degrading the corruption threshold from ¢t < 3 to t < (% — €)n, where € is a
positive constant.

SIF Against a Dishonest Majority. We also introduce some interesting
results in the dishonest majority setting. Lepinski et al. study how to strength
the security of MVZK by adding fairness among the verifiers [40], i.e., the mali-
cious verifiers who collude with the prover learn nothing except the validity of
the statement if the honest verifiers accept the proof. Note that, their work is
only a feasibility study and is not practical.

When it comes to practical efficiency, a recent work by Zhou et al. [56] con-
structs a practical 2-round SIF protocol against a dishonest majority in the
preprocessing model. More precisely, they utilize a similar preprocessing phase
as [8] and show how to check the multiplication gates in merely 2 rounds by
using Beaver’s triples technique [6].

Our Main Research Question. As mentioned above, it is known that, by
assuming the preprocessing model, 1-round SIF (and MVZK) can be con-
structed [3,40]; however, these works are primarily theoretical studies and pro-
vide no practical solutions. Current practical solutions [5,52,56], on the other
hand, all necessitate a minimum of 2-round online communication. This discrep-
ancy presents a gap in the field of SIF protocol design. It makes us wonder if it is
possible to bridge this gap by constructing a 1-round SIF protocol with practical
efficiency? If so, can we build such a protocol with optimal corruption threshold
(ie, t <m)?

! In this work, unless otherwise stated, we assume the adversary can corrupt the
dealer/prover and some of the verifiers.
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We note that constructing such a protocol with practical efficiency is a non-
trivial task. One may suggest using practical MPC protocols against a dishonest
majority to realize SIF, for example, the constant-round BMR-style protocols [7].
However, to the best of our knowledge, the BMR-style MPC protocols in the lit-
erature require at least 2-round online communication [34,41]. Therefore, naively
using MPC protocols to realize SIF is not a solution. Given these difficulties, we
ask the following research question:

Is it possible to construct a practical SIF protocol with 1-round online
communication and optimal corruption threshold (i.e., t <n)?

1.1 Owur Contributions

In this work, we will give an affirmative answer to our research question. Our
contributions can be summarized as follows.

The First Practical 1-Round SIF with Optimal Corruption Thresh-
old. We present the first 1-round practical protocol for SIF against a dishonest
majority in the preprocessing model and random oracle model, and our proto-
col can be proven secure in the Universal Composability (UC) framework [14].
Our protocol is optimal in two aspects: (i) for round complexity, our online pro-
tocol requires only 1-round communication (round-optimal); (ii) for corruption
threshold, our protocol does not assume an honest majority and can tolerate up
to 1 corrupted dealer and n — 1 corrupted verifiers, which is optimal. Table 1
depicts a comparison between our work and other recent and related works.

Table 1. Comparison of our work and the state-of-the-art relevant works.

Corruption Setup

Practical?
Threshold* Assumption®

Ref. Primitive #Round?

[40] MVZK 1 t<mn Prep. X
[52] MVZK 2 t<? RO v
[5] MVZK 2 t<2  Prep. + RO v
3] SIF 1 2 Prep. X
[56]  SIF 2 t<mn Prep. v
Ours  SIF 1 t<mn Prep. + RO v

t Refer to the number of rounds in the online phase.

¥ In [5,52], the authors proposed protocols with different cor-
ruption thresholds. Here, we report the maximum corruption
thresholds that [5,52] can achieve.

§ Prep.: preprocessing model; RO: random oracle model.

T Here, € is a small positive constant.

As shown in Table 1, our work is the only one that achieves 1-round online
communication as well as the practical efficiency in the dishonest majority set-
ting. The full descriptions of our protocol are put in Sect. 4.
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An Impossibility Result on 1-Round SIF Without Using Broadcast
Channels. The online phase of our 1-round SIF protocol requires broadcast
channels as well as secure point-to-point channels; we remark that broadcast
channels are also used in the online phase of the existing designs [3,5,40,52,56].
Given that broadcast channels are more expensive than secure point-to-point
channels, it is natural to ask the following question: Are broadcast channels a
must for constructing 1-round SIF protocols?

In Sect. 5, we formally prove that: in the UC framework [14], 1-round SIF is
impossible to achieve without using broadcast channels, even if a preprocessing
model is assumed. Our impossibility result holds no matter how many verifiers
the adversary can corrupt, as long as the adversary is allowed to corrupt the
dealer; hence, our impossibility result holds in both honest majority and dishon-
est majority settings.

A New Form of Correlation: mv-sVOLE. We extend the two-party subfield
Vector Oblivious Linear Evaluation (sVOLE) [11,12,50] into the multi-party
setting, which is an essential tool in our SIF construction. More precisely, we
propose a new primitive called multiple-verifier sVOLE (mv-sVOLE). In Sect. 3,
we formally define the mv-sVOLE through an ideal functionality; we also give
an efficient construction and prove the security in the UC framework.

We note that, there are several works in the literature that also try to
extend sVOLE into the multi-party setting (e.g., [44,45]). We make a comparison
between those works and our mv-sVOLE primitive in Sect. 3.1.

Implementation and Benchmark. We implement our protocol in C++ and
conduct comprehensive experiments. We present a brief concrete efficiency com-
parison between our work and other constant-round relevant works in Table 2.

Table 2. Concrete efficiency comparison of our work and other constant-round relevant
works. All numbers are obtained by ourselves for evaluating an AES-128 boolean circuit
with the same hardware configurations.

+ Running Time Per AND Gate (us)

Ref. Primitive (T, N)

LAN WAN?
5] MVZK (7,26) 165.6 238.3
[499] MPC  (7,8) 140.5 332.7
[56] SIF  (7,8) 123.0 201.8
Ours  SIF (7,8) 24.1 60.3

1 Here, T and N refer to the number of corrupted parties and
total parties, respectively.

1 LAN (1 Gbps with 6 ms delay); WAN (200 Mbps with 20
ms delay).
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In Table2, we compare our protocols with three types of related works: (i)
SIF against a dishonest majority [56]; (ii) SIF (in the context of MVZK) with an
honest majority [5]; and (iii) (constant-round) MPC against a dishonest major-
ity [49]. It turns out that, our improvement for running time ranges from 4.0x—
6.9x over different network configurations, when the number of corrupted par-
ties T is fixed to be 7. When T = 7 (including 1 corrupted prover/dealer and 6
corrupted verifiers), both our work and [49,56] can have 8 parties in total; in con-
trast, [5] requires at least 26 total parties, since its corruption threshold is ¢ < %,
where ¢,n are the number of corrupted verifiers and total verifiers?. Notice that,
this comparison approach (i.e., fixing the number of corrupted parties when make
comparisons among protocols with various corruption thresholds) is also taken
in the recent MPC work [26]. We also make comparisons when the total party
number is fixed; and we refer readers to see more discussions and comparisons
in Sect. 6.

1.2 Comparison with the Concurrent Work

Concurrently, in [27], Escudero et al. employed the Packed Secret Sharing (PSS)
technique to construct a quite efficient 3-round MVZK protocol against a dis-
honest majority; their corruption threshold is ¢t < (1 — €)n where € is a postive
constant. Due to the use of PSS technique, their communication complexity can
be O(|C|), which is independent of the number of verifiers n. Our communication
complexity is O(|nC|), so in practice, our performance is not be as good as [27]:
when n = 8 and ¢ = 0.25 and 1 Gbps network is used, [27] requires roughly
1.1 us/gate, and our protocol requires roughly 2.7 us/gate. However, in theory,
the online phase of our protocol is round-optimal and our protocol can achieve
optimal corruption theshold; whereas, [27] cannot. The comparison between our
protocol and [27] is put in Table 3.3

1.3 Our Techniques

Here we provide a technique overview of our protocols. We start by recapping the
previous works’ approaches, then we describe our intuitions and how we achieve
round-optimal SIF construction.

2 The authors of [5] open-sourced their codes in [20]. However, in [20], they imple-

mented their older version protocol with ¢ < % and it is less efficient than the
published version. In this work, when it comes to concrete efficiency, we refer [5] to
the protocol with ¢ < 7 since we measure the results of this protocol.

3 Some readers may notice that, the numbers of our protocol reported here are faster
than our running times reported in Table 2. The reason is that: we use two different
approaches to instantiate the preprocessing phase for circuits of varying scales. For
large-scale circuits (e.g., the numbers reported in Table 3), the amortized prepro-

cessing time is significantly more efficient than that for small-scale circuits.
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Table 3. Comparison with the concurrent work [27].

Corruption Setup Running Time?*

Protocol #Round'
Threshold Assumption  (us/gate)
[27] 3 t<(l—en  Prep. 1.1

This Work 1 t<n Prep. 2.7
1 Refer to the number of rounds in the online phase.
I The results are obtained under a 1 Gbps network for a large-
scale circuit (i.e., a circuit with 10° or 107 multiplication gates).
The parameter is set as follows: n = 8 (i.e., 8 verifiers); in [27], €
is set as 0.25.

Previous Approaches. We start by recapping a recent work by Zhou et al. [56],
which provides a practical SIF construction against a dishonest majority. More
precisely, Zhou et al. showed how to “transform” the BDOZ-style MPC [8],
whose number of online round depends on circuit depth, into a SIF with 2
online rounds. In a BDOZ-style MPC, the parties use additive shares to share
their private inputs and employ the Beaver’s triples technique [6] to check the
correctness of the multiplication gates, i.e., for each multiplication gate, the
parties have to prepare a random multiplication triple (a,b,c) such that ¢ =
a - b; to ensure the security, the multiplication triple (a,b, c) needs to be secret-
shared and authenticated among the parties. For a multiplication gate with
input values w,,wg, the parties need to open d; := w, —a and dp := wg — b
and then locally compute the share of the output value w, by the identity
W~y = dy-da+di-b+dy-a+c. Zhou et al. observed that in the SIF setting, the whole
multiplication triple (a, b, ¢) can be revealed to the dealer, since these triples are
used for protecting the private input which is already known by the dealer. In
this way, for each multiplication gate whose input values are denoted by wq, wgs,
the dealer can simply compute and broadcast d; and ds, then the verifiers can
open cil = w, — a and Jg := wg — b using their own shares to check if d; a8 d~1
and dy = dy. It is easy to see that all the multiplication gates can be executed
in parallel; thus, they are able to achieve 2-round online communication.

Besides BDOZ-style MPC protocol, other practical MPC protocols which are
not constant-round may also be “transformed” into constant-round SIF using the
ideas in [56]. For instance, as already discussed in [56], SPDZ-style MPC [22]
can be chosen, but the resulting SIF protocol will have an additional online
round. Our first attempt is to “transform” the recent MPC protocol [26], which
combines Beaver’s triples technique with packed secret sharing to obtain bet-
ter communication complexity, into a practical SIF; however, the resulting SIF
protocol requires at least 2-round online communication, and cannot achieve
optimal corruption threshold due to the use of packed secret sharing.

In addition to [56], we observe that other current practical solutions [5,52]
also follow the same (online) communication pattern: the dealer sends the com-
puted results and the corresponding “proofs” to the verifiers in the first round,
then the verifiers communicate with each other in the following round(s) to
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check whether the “proofs” are correct. It seems that the communication among
the verifiers are necessary. For better expression, let us take MVZK, a direct
application of SIF, as an example. In a MVZK, if verifiers have no chance to
communicate with each other, a malicious prover may cause honest verifiers to
output inconsistent results (e.g., some of the honest verifiers may output accep-
tance while others may output rejection). That is why the current practical
solutions [5,52,56] all require at least 2-round online communication.

Our Approach. To reduce the round complexity, we have to break the online
communication pattern in previous practical solutions [5,52,56]. Our key obser-
vation is that the communication among the verifiers could be pushed into the
preprocessing phase; in this way, we have the chance to obtain 1-round online
communication while ensuring the verifiers to have consistent outputs.

In the following, we first talk about our preprocessing phase; jumping ahead,
we propose a new primitive called multiple-verifier sVOLE (mv-sVOLE), which
is an essential building block for the preprocessing phase.

Preprocessing Phase: Using mv-sVOLE as Correlations. In our design, we make
extensive use of a particular form of correlation, called subfield Vector Oblivious
Linear Evaluation (sVOLE) [11,12,50]. In the two party setting, sSVOLE cor-
relations capture the well-known primitive, i.e., Information-Theoretic Message
Authentication Codes (IT-MACs) [8,43]. Let IF,,» be the extension field of a field
F,. In sVOLE, there are two parties involved, i.e., a dealer D and a verifier V,
and V holds a MAC key A € Fpr. In order to authenticate the vector x € F
held by D to V, we let D have the MAC tag m € ]Ff,r and let V have another
MAC key k € Fir st. m =k — A - x. For different x, V will use different k
and the same A. For this reason, we call k the “local” MAC key and A the
“global” MAC key. It is easy to see that a malicious D* who does not know the
MAC keys, cannot produce another valid m’ for @’ # @ except with negligible
probability when |F,-| is sufficiently large.

In the setting of SIF, we are dealing with n + 1 parties, i.e., a dealer D and
n verifiers V1,...,V,, so we have to extend the (two-party) sVOLE correlations
into the multi-party setting, which we call multiple-verifier sVOLE (mv-sVOLE).
More precisely, we let each verifier V; privately hold a global MAC key A®) € F,,...
For each vector « € IB‘I‘; held by the dealer D, for each i € [n], we let the dealer
D have the MAC tag m() ¢ ]Ff,r and let the verifier V; have the local MAC key
AONS F{. such that kW = m + A® . . For better expression, we use the
notation [z] to denote the authenticated vector . In this way, the vector held by
the dealer can be authenticated to each verifier. Then, how to generate these mv-
sVOLE correlations? One might suggest invoking n instances of sVOLE naively;
however, this naive solution is not secure at all: a malicious dealer might use
inconsistent values @’ # @ in different instances of sSVOLE procedure. To address
this security issue, we let the verifiers to pose some lightweight consistency checks
to detect the malicious behaviors of the dealer. This ensures the verifiers can
obtain the correct mv-sVOLE correlations; jumping ahead, it also guarantees
the honest verifiers can output the consistent results in the online phase. More
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concretely, we generalize the technique in [49] (which is originally designed for
binary field) to adapt to our setting. Informally speaking, we first let the dealer
to use the same x in different sVOLE instances with different verifiers. Then the
verifiers will jointly sample a random s and ask the dealer to reveal v :=s' - x
and the corresponding MAC tags. In this way, the verifiers can check whether
the dealer uses the same x. We defer the details of our mv-sVOLE constructions

and the security analysis to Sect. 3.2.

Online Phase: Checking all Multiplication Gates in 1-Round. Our online proto-
col is designed in the “commit-and-prove” paradigm. More concretely, we first
let the dealer D commit to his witness w € F)" using the random mv-sVOLE
correlations [u] generated in the preprocessing phase; that is, D broadcasts
0 :=w — p € F} to verifiers, and all parties compute [w] := [pu] + d. Then we
let D “prove” that all the gates of the circuits are processed properly.

It is easy to see that addition gates can be processed for free. For multipli-
cation gates, we avoid the use of Beaver’s triples technique; instead, we extend
the techniques in [24,51], which require sSVOLE correlations and are designed
for the two-party setting, into the multi-party setting. More concretely, for the
i-th multiplication gate with input wires «, 8 and output wire -y, we denote by
Wq,wg the input wire values and denote by w., the output wire values. We let
D broadcast d; := wq - wg —n; € F),, where n; is random and [n:] is generated in
the preprocessing phase, then all parties can compute [w,] := [n;] + d;. In this

way, D holds wa,m,(l) and V; holds A @) k ) such that k(j) m(]) + wy - AW
for a € {a, 8,7} and j € [n]. By the followmg identity:

B(J) k(J) k_(]) k(ﬁj) _A(j)
_ (mif) + w, -A(j))-( (4) +w5-A(j)) _ (mfyj) +w7-A(j))~A(j)

_ mg) g) _|_( (  We —|—m 7) -wg —m,(yj))~A(j) (1)
M—/
Denote by Aing Denote by AE?I)

+ (wa - wg —wy) - (AY)?,

we conclude that if D behaves honestly (ie., wy, = wq - ) then we have

BZ.(j) = A(j) —|—A(J) AU Tt is easy to see that B(j) (resp. AE O), AE 1) can be locally
computed by (resp V;); therefore, the correctness of the i-th multiplication

gate can be checked by letting D send AEJO) ,AEI) to V; and letting V; check

BY L AW 4 AY) . AU for each j € [n]. Notice that, the multiplication gates
can be checked together that is the reason why we can achieve 1-round online
communication. We defer the details of improving the efficiency of the above
checks to Sect. 4.2.

2 Preliminaries
2.1 Notations

We use A € N to denote the security parameter. We say a function negl : N — N
is negligible if for every positive polynomial poly(:) and every sufficiently large
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A, negl(A) < m holds. We say two distribution ensembles U = {Ux}ren

and W = {W)}en are statistically (resp. computationally) indistinguishable,
which we denote by U W (resp., X ~ V), if for any unbounded (resp., PPT)
distinguisher D there exists a negligible function negl s.t. |Pr[D(U)) = 1] —
Pr[D(W) = 1]| = negl(\). We use z — S to denote by the event that sampling
a uniformly random x from a finite set S. For n € N, we to [n] to denote by a
set {1,...,n}. For a,b € Z with a < b, we use [a, b] to denote by a set {a,...,b}.
We use bold lower-case letters, e.g. , to denote by the vectors, and we use z;
to denote by the i-th component of vector .

We consider both arithmetic circuit and boolean circuit. Basing on a finite
field F), with a prime order p, a circuit C : Fj* — F}} consists of a set of input
wires Z;, and a set of output wires Zout, where |Ziy| = m and |Zow| = n. In addi-
tion to that, the circuit C also contains a list of gates of the form (a, 8,7, T),
where «, 3 (resp. 7) are the indices of the input wires (resp. output wire), and
T € {Add, Mult} is the gate type. If p = 2, then C is a boolean circuit where
Add = @ and Mult = A. If p > 2, then C is an arithmetic circuit where Add/Mult
corresponds to addition/multiplication in IF,,. We use F,,- to denote by an exten-
sion field of a finite field F,,, where p > 2 is a prime and r > 1 is an integer. We
can write F,,r = F,[X]/f(X), where f(X) is a some monic, irreducible polyno-
mial with degree r. It is easy to see that, every w € F,» can be written uniquely
asw =Y. _,v;- X"~ with v; € F, for all i € [r]. Thus, the elements over F-
can be regarded as the vectors in (F),)" equivalently.

2.2 Security Model

We design our protocols and prove their security in the Universal Composability
(UQC) framework by Canetti [14]. We refer readers to see a high-level description
of UC framework in our full-version paper [57].

Adversarial Model. In this paper, we consider a malicious, static and rushing
adversary. We also assume that the adversary is allowed to corrupt the dealer
and up to t number of verifiers where ¢ < n.

Secure Communication Model. In this work, we consider simultaneous com-
munication. We also assume the parties are connected by pairwise secure chan-
nels and a broadcast channel. We remark that, these secure communication
channels are also required in the relevant works [3,5,52,56].

2.3 (Programmable) Subfield VOLE

We first introduce subfield Vector Oblivious Linear Evaluation (sVOLE) [11,12],
which works over an extension field IFj-. In sVOLE, the verifier V holds a global
MAC key A € Fpr which can be used for multiple times. For a vector « € Fﬁ
held by the dealer D, we let the dealer D have the MAC tag m € Ff;r and let the

verifier have the local MAC key k € Ffm such that m = k — A - z. In this way,
the vector x is authenticated to the verifier V. Notice that, D cannot lie about
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x, because the probability of D computing a valid MAC tag m’ for a chosen
x’ # x is at most p~", which would be negligible if p,r are chosen properly.
We note that, most of the recent and popular approaches for generating
subfield VOLE are based on Pseudorandom Correlation Generators (PCGs),
e.g., [10,11,50]. Informally speaking, a PCG allows two parties take a pair of
short and correlated seeds, then expand them to produce a much larger amount
of correlation randomness. However, typically, the sVOLE correlations generated
by PCGs are random, meaning that the dealer D cannot chose the authenticated
vector x. This is troublesome when the dealer D wants to use the same u to run
different instances of sSVOLE generation procedures with different verifiers. We
note that, given a random sVOLE correlation (', m’, A, k') such that m’' =
k' — A-x', the dealer D can easily convert it to a sSVOLE correlation with chosen
x by sending d := & — x’ to the verifier and setting m := m/’, the verifier V then
sets k := k' + 8 - A; in this way, m = k — A - = holds. However, this approach
requires O(¢) communication cost, where ¢ is the vector length; when a large
amount of sVOLE correlations are needed, this approach is not efficient enough.

,_(F‘unctionality F&COLE} \
The functionality interacts with a dealer D, a verifier V and an adversary S. It is

parameterized with a finite field F), and its extension field F,~, and a determinis-
tic expansion function Expand : S x Z — F},.

Initialization: Upon receiving (INIT, sid) from D and V, do:
— If V is honest, sample A < F,r; otherwise, receive A € Fpr from S.
— Store A and send (INIT, sid, A) to V. Ignore any subsequent INIT commands.

Authentication over subfield: Upon receiving (AUTHSUB, sid, ¢, sd) from D
and (AUTHSUB, sid, {) from V, where s € S, do:
— Compute z := Expand(sd, £) € F5.
— If both parties are honest, sample k < Ff,r, then compute
m::k'fAmcG]Ff,r.
— If both parties are malicious, halt.
— If D* is malicious and V is honest, receive m € ]Ff,r from S, then compute
k::m—i—A-mG]Ff,r.
— If D is honest and V* is malicious, receive k € ]Ff,r from S, then compute
m::k—A-me]Ff,r.
— Send (CONTINUE, sid) to S. For each honest party H € {D,V}, upon receiving
an input from S,
e If it is (CONTINUE, sid, H), send the respective output to H. More precisely, if
H is the dealer D, send (AUTHSUB, sid, m) to D; if H is the verifier V, send
(AUTHSUB,sid, k) to V.
e If it is (ABORT,sid, H), send (ABORT,sid) to H.

Fig. 1. The Functionality Fryo ¢

To address the above issue, Rachuri and Scholl propose the programmable
NS

sVOLE in [45]; we model this primitive through an ideal functionality ffsVOLE,
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which is adapted from [45] and is depicted in Fig. 1. The programmability means
that the dealer D can choose a seed sd and expand it to a vector of £ field elements
 := Expand(sd, ¢), where Expand : S x Z — F} is a deterministic expansion
function that takes a seed sd from a seed space S and the output length ¢ € Z as
inputs and outputs a ¢-length vector x € Ff,. This allows the dealer to use the
same authenticated vector @ (by choosing the same seed) in different instances
of FroLe- As noted in [45], in practice, the expansion function Expand may
correspond to some kind of secure Pseudo Random Generators (PRGs)*. Rachuri
and Scholl also provide a PCG-style protocol that can efficiently realize 3o g
and we refer interested readers to see that in [45].

The sVOLE correlation satisfies an appealing property, i.e., additive homo-

morphism. More precisely, given authenticated vectors x1,...,x, € ]Ff; (i.e., for
i € [n]: the dealer D holds x; and m,, and the verifier V holds A and k;, such
that mg, = kg, — A-x;) and the public coefficients ci,...,¢, € F, and ¢ € FY,

the dealer D can locally compute y := ¢ + Z?:l ¢; - x; and the corresponding
MAC tag my, := Y., ¢; - m,, while the verifier V can locally compute the cor-
responding local MAC key ky := > | ¢; kg, + A-c such that my =k, — A-y.

2.4 Single-Input Functionalities

Here we provide the functionality for Single-Input Functionalities (SIF) in Fig. 2,
which is taken from [56]. In Fig. 2, there are a dealer D and n verifiers V1,...,V,,.
The parties hold a circuit C : F' — F}} while the dealer D additionally holds a
private input w where |w| = m. The functionality Fs takes w from D, then
it computes y := C(w) and delivers y; to V; for i € [n], where y; is the i-th
component of y.

2.5 Coin-Tossing

Here we introduce the functionality for coin-tossing, and it allows all parties to
receive the same uniformly random string. Formally, we present the functionality
for coin-tossing in Fig. 3.

3 Multiple-Verifier Subfield VOLE
3.1 Security Definition

Here we extend the (two-party) sVOLE into the multi-party setting, and we call
this new form of correlated randomness multiple-verifier subfield VOLE (muv-
sVOLE). In mv-sVOLE, there are a dealer D and n verifiers Vy,...,V,, and
each verifier V; privately holds a global MAC key A®) ¢ F,-. For each vector
xT € IFfD held by the dealer D, for each i € [n], we let the dealer D have the MAC

* Typically, PRGs are referred as randomized algorithms that can generate pseudo-
random strings. However, when the seed (which contains the randomness) and the
output length are fixed, we can view a PRG as a deterministic algorithm.
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,—(F‘unctionality .7-'s||:) N
It interacts with a dealer D, n verifiers V1,...,V,, and an adversary S. It is pa-
rameterized by a circuit C where C : F" — F,. Let H denote the set of honest
parties.

Upon receiving (INPUT, sid, w) from D and (INPUT,sid) from V; for all i € [n]
where w € F*, do
— Compute y := C(w), and send (OUTPUT,sid, y;) to V; for each malicious
verifier V; ¢ H.
— Send (CONTINUE, sid) to the adversary S. For each honest verifier V; € H,
upon receiving an input from S,
e If it is (CONTINUE, sid, V;), send (OUTPUT,sid, y;) to V.
e If it is (ABORT,sid, V;), send (ABORT,sid) to V;.

Fig. 2. The Functionality Fsir

—{Functionality 725,y ) |

It interacts with a prover P, n verifier V1, ...,V,. It is parameterized with a fi-
nite field F,, and its extension field F,r. Let H be the set of the honest parties.

Upon receiving (Toss,sid, £) from P and Vi,...,V,, do:

— Sample s + Ff,r and send (Toss,sid, s) to all corrupted parties.

— Send (CONTINUE, sid) to the adversary S. For each honest party H € #H, upon
receiving an input from S,
e If it is (CONTINUE, sid, H), send (Toss,sid, s) to H.
e If it is (ABORT,sid, H), send (ABORT,sid) to H.

Fig. 3. Functionality for coin-tossing

tag m(® ¢ Ffﬂv and let the verifier V; have the local MAC key k() € Ff,,,. such

that k() = m® 4+ A .x. In this way, the vector held by D, can be authenticated
to each verifier. Formally, we present our mv-sVOLE functionality in Fig. 4.

Comparison with Other Works. Notice that, there are several works in the
literature that also try to extend sVOLE into the multi-party setting. In [44], Qiu
et al. also consider the setting with one dealer and multiple verifiers; however,
they do not consider the consistency of the authenticated values. In other words,
their malicious dealer can use inconsistent x for different verifiers. As a result,
their multi-verifier sVOLE can be implemented by running two-party sVOLE
n times directly, while our mv-sVOLE functionality cannot be realized through
this native approach. In [45], Rachuri and Scholl extend sVOLE into the multi-
party setting in a different way: they let each party play the role of the dealer in
turn, and each parties’ private values will be authenticated to all other parties.
Therefore, there is no distinguished party in their setting, and their multi-party
sVOLE primitive is much more complex than our mv-sVOLE. We conjecture that
our mv-sVOLE primitive might be used as a basic building block to realize the
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multi-party sVOLE in [45]. In some constant-round MPC protocols that tailored
for boolean circuits (e.g., [49,53]), they make use of a primitive called multi-party
authenticated bits. Our mv-sVOLE can be viewed as a generalization of multi-
party authenticated bits, since multi-party authenticated bits are specifically
designed for the case for binary field while our mv-sVOLE can cover both binary
field and large filed.

,—(Functionality nt:LTstLE} N

It interacts with a dealer D, n verifiers Vi,...,V, and an adversary S. It is pa-
rameterized with fields F, and F,r. Let H be the set of honest parties.

Initialization: Upon receiving (INIT,sid) from D and Vi,...,Vn:

— For each ¢ € [n], if V; is honest, sample AW F,r; otherwise, receive
A® ¢ Fpr from the adversary S.

— Store {A®},c(,) and send (INiT,sid, A®) to V;. Ignore any subsequent INIT.

Authentications over subfield: Upon receiving (AUTHSUB, sid, £) from D and

Vi,...,Vy, do:

— If all parties are honest, sample @ < Ff,. For each i € [n]: sample A Ff,r
and compute m® = k) — A . g ¢ Ff,r.

— If all parties are malicious, halt.

— If D* is malicious and some of the verifiers are honest, receive & € Fﬁ from the
adversary S. For each honest verifier V; € H: receive m® ¢ IFﬁ,T from the
adversary S, and compute k(" := m® + AD . g ¢ ]Ff,r.

— If D is honest and some of the verifiers are malicious, sample @ < ]Ff,. For each
malicious verifier Vi ¢ H: receive E® ¢ Ff]r from the adversary S; for each
honest verifier V; € H: sample k) + ]Ff,r. Then compute m® = k() —

AW g ¢ T, for each i € [n].

— Send (CONTINUE, sid) to the adversary S. For each honest party H € H, upon
receiving an input from S,

e If it is (CONTINUE, sid, H), send the respective output to H. More precisely, if
H is the dealer D, send (AUTHSUB, sid, 2, {m?} c(n)) to D; if H is i-th
verifier V;, send (AUTHSUB, sid, k) to V;.

e If it is (ABORT,sid, H), send (ABORT,sid) to H.

Fig. 4. The Functionality F2. \oLe

3.2 Efficiently Realizing Fh. \oLe

In this subsection, we first give a template construction that efficiently realizes
Fbr voLe- Then we will show that, by carefully choosing the parameters, our

construction remains secure for both p = 2 and large p > 2.

A Template Construction. We first give a high-level description of our pro-
tocol. Let p; and py be parameters. In order to authenticate the same ¢-length
vector to all verifiers respectively, we first let all parties set ¢/ := £ 4+ p; and
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let the dealer D pick a random seed sd from the seed space S. We denote by
@ := Expand(sd,?’) € Fg. We note that, the last p; components of the vector
x are used to prevent a potentially malicious verifier from learning the first ¢
components of . Then for each i € [n], we let D and V; invoke an instance
of fSVOLE, where D sends s to fSVOLE, and FPY, pVOLE Teturns , m® to D and

returns k(9 to V; such that k() = m® + . A(Z .

,—(Protocol H{;i_’f@om} N
Parameter: pi, p2.
Initialization: On 1nput (INIT, sid), for each ¢ € [n], D and V; send (INIT, sid) to
the i-th instance of Fryo ¢, which returns AW € Fpr to V.
Authentications over subfield: On input (AUTHSUB,sid, ¢), D and Vi,...,V,
do the followings:
1. All parties set £/ := £ + p1. Then D picks a random seed sd < S, where S is
the seed space of the expansion function Expand.
2. For each i € [n], D sends (AUTHSUB, sid, ¢’,sd) to the i-th instance of F {0 ¢
while V; sends (AUTHSUB, sid, £') to the same instance. Then JF[ 3 ¢ returns
x € IFf;, m® e Ff,"r‘ to D, where & := Expand(s, ¢'), and returns k@ to V; such
that & =m® + . AW,
3. For each i € [p2], all parties perform the following consistency check:
(a) D and Vi,...,V, send (Toss,sid,¢') to Fiyy, which returns s; € Ff,/ to all
parties.
(b) D broadcasts u; == 8; -x € F, to all verifiers. Then for each j € [n]: D sends

EJ) =s,] -mY € Fyr to V; privately.
(c) For eachj € [n]: V; computes v\ := s - k) € Fr. Then V; checks if
vlm z ng) +A@D - u;. If not, V; aborts.
4. D outputs the first £ components of x, {m(j>}je[n] and V; outputs the first ¢
components of k@ for each i € [n].

\. J

Fig. 5. Protocol for multiple-verifier subfield VOLE in the {fFZ’JOLB]:g(’)lIN}-hybrid
world

Next, we let the parties perform the following consistency checks for ps times
to ensure that, if a potentially malicious dealer D* uses inconsistent seeds in dif-
ferent instances of F 3o ¢ with different verifiers, D* will be caught with over-
whelming probability. We say the dealer uses inconsistent seeds, if it uses sd1, sds
s.t. Expand(sdy, ¢') # Expand(sds, ¢'). Notice that, if the dealer uses sdq,sds s.t.
sdy # sdy but Expand(sdy, £') = Expand(sds, £'), we still say that the dealer uses
consistent seeds. Our consistency checks work as follows: We let parties sample
§ — Iﬁ‘g and let the dealer D broadcast u := s' - & € F,. Then for each i € [n]:
the dealer D will send the corresponding MAC tag w(® := s T -m(?) e F,- for u to
V;, and V; will compute the corresponding local MAC key v® =T k:( ) e Fpr

and checks if v(9 = w® + A .y, Later, we will show that by carefully choosmg
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parameters, if D uses the inconsistent seeds, then D will be caught with over-
whelming probability. Finally, if all consistency checks pass, all parties output
the first ¢ objects. That is, D outputs the first £ components of x, {m(j)}je[n]
and V; outputs the first £ components of k() for each i € [n]. Formally, we
present our protocol construction II727% . - in Fig. 5.

Security Analysis. Here we provide the security analysis of IIZ 7% .

Case I: for p = 2. Here, we are dealing with the case where p = 2 and r = ),
where A is the security parameter; thus, this can support SIF over boolean
circuits, which we will describe in the later sections. In this case (p = 2 and
r = A), the parameters should be set as p; := 2p and py := p where p = O(N\).
Notice that, for these parameters, our protocol 1% o o directly yields the
multi-party authenticated bits protocol in [49, Figure5]°. Next, we explain why
the parameters are set in this way.

Let us first consider the case where D* is corrupted. We need to ensure that
if D* uses inconsistent seeds, for instance, sdi,sds such that Expand(sdy,?’) #
Expand(sds, ¢'), then D* would be caught with overwhelming probability. We
denote by @1 := Expand(sdy, ¢') and x5 := Expand(sds, £'). Since D* cannot forge
a MAC tag except for a negligible probability, the probability of D* passing
the consistency check is the probability that sT - @y = s' - x5, where s is
the random vector returned by fgblm- If we instantiate Expand with a secure
PRG and we denote by 7 the set of indices where 1 # x5, then it is easy
to see that Pr[s’ - @} = s - @] = Pr[@iczs; = 0] = 5 + €()\), where €()) is
the negligible distance between the pseudorandom random strings generated by
PRGs and the uniformly random strings. In other words, in each consistency
check, a cheating D* can pass the check with probability % +¢(A). Thus, we need
to let the parties perform p = O(\) times, so that a cheating D* can pass the
check with probability O(27%).

Then we consider the case where the dealer is honest and some verifiers
are corrupted. We need to ensure that the malicious verifiers cannot learn any
information about the dealer’s output, i.e., the first £ components of . In the
i-th consistency check, for each random s; € Fg/ returned by fgbllN, we denote
by a; the first £ components of s; and denote by b; the last p; components of
s;. We also denote by @ the first ¢ components of  and denote by y the last
p1 components of z. Then we have the equation u; = a; - & + b, - y. Notice
that, there are ps such equations since we need to perform ps consistency checks.
Therefore, we have to prove that {b;}c[,,] are linearly independent so that b;'— -y
can act as “one-time pad” to a;r - x; otherwise, the malicious verifiers may learn
the linear combination of . By [49, Lemma A.4], Wang et al. proved that the
probability of {b;}c[,,) being linearly dependent is at most 2=(p1=p2) In order
to make this probability negligible, we have to set p; := 2p since po is already

5 In [49, Figure 5], the authors actually set the parameters as p; = p2 := 2p. However,
according to their proof, we believe that it is their tiny typo error and the parameters
should be set as p1 := 2p and p2 := p.
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as set as py := p, where p = O()). Formally, we have the following theorem, and
we refer interested readers to see the proof in [49, Theorem A.3].

Theorem 1 (Adapted from [49]). Let X be the security parameter. Let Fox
be the extension field. Set p1 := 2p and pg := p where p = O(A). Let Expand
be a secure PRG. Then the protocol Hmv SVOLE depicted in Fig. 5 UC-realizes

FQV/\stLE depicted in Fig. / in the { VOLE, FCO'N} hybrid world, in the presence

m
of a static malicious adversary corrupting up to the dealer and n — 1 verifiers.

Case II: for large p > 2. It is easy to see that the efficiency of our protocol
amoo e would be improved, if the parameters pi,ps could be set smaller.
Jumping ahead, we find that, when p~! = negl()\) and r = 1, the parameters
can be set as minimum, i.e., p; = pg := 1.

Let us first focus on ps, which is the number of consistency checks. Recall
that, when p = 2, the probability of a malicious D* passing each consistency
check is 1 + €()), where €()) is a negligible error that caused by PRGs; there-
fore, p = O(\) repetitions are needed. We observe that, if we could lower the
probability of a malicious D* passing each consistency check, then the param-
eter py could be set smaller. By Theorem 3, we can prove that the probability
of a malicious D* passing each consistency check can be reduced to p=t + €(\).
Thus, if p is a large prime such that p~! = negl()\), we only need to perform the
consistency check once. In other words, the parameter p; can be set as py := 1.

Now let us focus on p;, which is the length of the random mask vector y.
For the random vector s € Ff; returned by Té’g,,\,, we denote by a the first ¢
components of s and denote by b the last p; components of s. We also denote by
x the first £ components of  and denote by y the last p; components of . Then
we have the equation u =a' - & + b' - y. Unlike the previous case where p = 2
and there are p such equations, here we only have one such equation. Thus, we
observe that p; = 1 is sufficient to mask @' - & with b -y, since the probability
of b -y being zero is negligible. That is why we can set the parameter p; as
p1 := 1. Formally, we prove the security through the following theorems, and
their proofs can be found in our full-version paper [57].

Theorem 2. Let Fy- be the extension field where p is a large prime and r =
1. Set p1 := 1 and ps := 1. Let Expand be a secure PRG. Then the protocol
Hiwl VOLE depzcted in Fig. 5 UC-realizes the functionality fmv woLe depicted in

Fig. 4 in the {]—' pSVOLE* F, OIN} -hybrid world, in the presence of a static malicious
adversary corruptmg up to the dealer and n — 1 verifiers.

Theorem 3. LetF, be the field with a prime order p. Let s be the column vector
over field IF’; whose elements are all non-zero, Let t be the column vector that is

uniformly sampled from IF’;, Then we have Pr[s' -t =0] = % .
Instantlatlng Fro beVOLE* Notice that, our protocol I o ¢ makes block box
use of FZ, pSVOLE" We describe two approaches to instantiate F2, SVOLE
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Approach I: PCG-style. Recently, many works (e.g., [10,11,50]) employ Pseu-
dorandom Correlation Generators (PCGs) to generate sVOLE correlations, i.e.,
they let two parties take a pair of short seeds, then expand them to a large
amount of sSVOLE correlations. One of the most appealing features of the PCG-
style approach is that: it only requires sublinear communication cost.

Basing on the PCG construction in [50], Rachuri and Scholl give a PCG-style
protocol that can efficiently realize Fryo ¢ in [45]; their protocol can cover both
p = 2 and p > 2. More precisely, the main building block in [50] is a primi-
tive called single-input sVOLE (spsVOLE), where only one component of the
authenticated vector x is non-zero while other components are zero. Rachuri and
Scholl modify the spsVOLE protocol in [50] to support programmable inputs,
i.e., the authenticated vector & can be expanded from a chosen seed; they also
show that the modified spsVOLE can be used to realize F} o, ¢ with essentially
the same steps as [50]. We refer interested readers to see that in [45].

Approach II: IKNP-style. For binary field, it is known that sVOLE is equivalent
to a primitive called Correlated Oblivious Transfer (COT) [4 ] At the end of a

COT protocol, the sender obtains £ pairs of messages {m0 ,ml }Ze[n] € F% such

that m( v &) m( V= A, where A € Fy is chosen by the sender and m(() ), mg ), A
can be albo viewed as elements i in the extension field Fyr; meanwhile, the receiver
obtains {b(*) Yieje € F2 and {ml(ﬁ)}ie[n] € F5. If we set w := (b),...,0")) € FY,

m = (ml()}l)w...,méfz)) € FS, and k := (mél), . (e)) € 5., it is easy to see
that the sender holds A, k and the receiver holds u, m such that k = mewu- A,
which is in the form of sVOLE correlations.

One approach for generating a large amount of COTs is to employ the Obliv-
ious Transfer Extension (OTE) techniques by Ishai, Kilian, Nissim and Petrank
(hereafter, IKNP) [36], i.e., given a small number of OTs, then extend them to a
large number of OT's using only symmetric-key operations. Compared to PCG-
style approach, IKNP-style approach is more computation-efficient, although
IKNP-style approach requires more communication cost. When only a middle
number of COTs (e.g., thousands of COTSs) are needed or a local area network
is employed, it turns out that IKNP-style approach may outperform PCG-style
approach with respect to total end-to-end time, since in both case the communi-
cation cost is no longer the performance bottleneck. For this reason, sometimes,
one may prefer to choose the IKNP-style approaches. We note that, the receiver’s
choice bits {b(*) bielg (ak.a, the authenticated vector w as explained previously)
are chosen all by itself; therefore, we can easily instantiate F2y, beVOLE with the mali-
ciously secure IKNP-style OTE protocols [39,46] by lettmg the receiver sample
a random seed sd and expand it to {6()};c(y through PRGs.

4 SIF Against a Dishonest Majority
4.1 Preprocessing Phase

Functionality for Preprocessing Phase. Here we describe the functionality

for preprocessing phase, which is denoted by fg;ep Our Tg;ep is very similar
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to FP" oL, €xcept that .7-"5’ additionally allows D to authenticate his secret
values over extension field to each verifier respectively. Note that, for authenti-
cations over extension field, D is allowed to use inconsistent values to generate
correlations. Formally, we present the functlonahtyfprep in Fig. 6.

Notation [-]. For a vector u over the subfield F’ or the extension field ]Ff)“ we
introduce the following notation [u] to denote the values held by parties:

[[u]] = {{ua {m(i)}ie[n}L {A(i)v k(i)}iE[n]} ’

where u, {m(i)}ie[n] (resp. A® k™) are the private information held by the
dealer D (resp. the i-th verifier V;). We use [u] as shorthand when there is need
to explicitly talk about the MAC tags and MAC keys. We also note that, [-] is
additively homomorphic. This property is inherited from the additive homomor-
phism of sVOLE, which is described in Sect. 2.3.

,_[Functionality .Fgr’erp} <

It interacts with a prover D, n verifiers Vi,...,V, and an adversary S. Let H be
the set of the honest parties.

Initialization/Authentications over subfield: The same as in Figure 4.

Authentications over extension field: Upon receiving (AUTHEXT, sid, d)

from D and Vi,...,V,, do:

1. If all parties are honest, sample u ™", ... u(™ « IFZT. For each ¢ € [n]: sample
E® IFgT and compute m® := k® — A .4, ¢ IE‘ZT,

2. If all parties are malicious, halt.

3. If D* is malicious and some of the verifiers are honest, for each honest verifier
V; € H: receive u?, m® e IFZd,r,- from the adversary S, and compute
D .= m® 4 AG 4O ¢ Fg,,,.

4. If D is honest and some of the verifiers are malicious, sample

u® ™ e ]Fgr. For each malicious verifier V; ¢ H: receive JAONS Fﬁy»
from the adversary S; for each honest verifier V; € H: sample k¥ «+ IFZT.
Then compute m := k@ — A . 4@ € F, for each i € [n].

5. Send (CONTINUE, sid) to the adversary S. For each honest party H € H, upon
receiving an input from S,
— If it is (CONTINUE, sid, H), send the respective output to H. More precisely, if
H is the dealer D, send (AUTHSUB,sid, {u<j>7 m(j)}je[n]) to D; if H is é-th
verifier V;, send (AUTHSUB, sid, k) to V;.
— If it is (ABORT,sid, H), send (ABORT,sid) to H.

Fig. 6. The Functionality g,

Efficiently Realizing }"Prep Here we show how to construct a protocol that
efficiently realizes fpre Since we have already described how to generate mv-
sVOLE correlations in Sect. 3.2, here we focus on the authentication for values



22 7. Zhou et al.

over extension field. By the characteristic of extension field F,r = F,[X]/f(X),
i.e., for every value over extension field u € Fp-, it can be written uniquely as
w=>_,v;- X""! where v; € F, for all i € [r]. Inspired by [51], we find that
we can pack some authenticated values over IF), into the desired authenticated
values over I More precisely, D and V; first invoke the programmable sVOLE
functionality .7-' psvoLE U0 generate r copies of random sVOLE correlatlons ie.,

D obtains v( 2 mgi) and V; obtains A( ),ky) such that k](») =m! + u(l A(i)
for each j € [r]. Then, the dealer D locally computes u(? := Z; S XL
MO = 22:1 my) -Xj_l and V; lopally §omputes K® .= Z k;( X1 It
is easy to see that K = M 4+ 4 . A®) holds.

Formally, we present our protocol Ilpe, for preprocessing phase in Fig. 7 and

prove the security through Theorem 4. The security proof can be found in our
full-version paper [57].

,—' Protocol Ilprep } N\

Initialization/Authentications over subfield: The same as in Figure 5.

Authentications over extension field: On input (AUTHEXT, sid, d), D and
Vi,...,V, do the followings:
1. For each i € [d] and h € [n], D and V}, do the followings:
(a) D picks a random seed s < S, where S is the seed space of the expansion
function Expand. Then D sends (AUTHSUB, sid, r, s) to the h-th instance of

Friore While Vi send (AUTHSUB sid, ) to the same instance. Finally,

FrioLe returns {v” ,m }JE[T to D, where (v (h)) = Expand(s, ),
and returns {kfJ Yiem to V}, such that kf};) = ml(-Z-) + ZU;) - A™ for each
j & [r]-
(b) For each h € [n] D computes u(h) =20 f};) X7t € Fpr,
M(h) =1 m(h) X7~ € F,r and each verifier V}, computes
KM =" lkf’? X771 € Fpr. Note that, K™ = M™ + 4 . AM holds.
2. D outputs {uij),Mi(J)}ig[d],jg[n] and V; outputs {Kf”}ie[d] for each j € [n].

Fig. 7. Protocol for preprocessing phase in the {FFyo g, FEo t-hybrid world

Theorem 4. Let F)- be the extension field. Let Expand be a secure PRG Then

the protocol Ilpyep depzcted in Fig. 7 UC-realizes the functionality F, Prep depicted

in Fig. 6 in the { pSVOLE,fCOW}—hybmd world, in the presence of a static mali-
cious adversary corrupting up to the dealer and n — 1 verifiers.

4.2 Main Protocol

Here we provide a main protocol for SIF. Since we have already described how
to realize preprocessing phase in Sect. 4.1, here we focus on the online phase.
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We first let the dealer D commit to his witness w € F}" using the random mv-
sVOLE correlations [u] generated by f,’;rep in the preprocessing phase; that is, D
broadcasts § := w — p € F}" to verifiers, and all parties compute [w] := [u] + 4.
It is easy to see that the addition gates of the circuit can be processed locally
for free, due to the additive homomorphism of [-]. For multiplication gates, we
extend the techniques in [24,51] which are designed for (s)VOLE correlations
to our mv-sVOLE correlations. More precisely, for the i-th multiplication gate
(a0, 8,7, Mult), given the random [r;] generated by }“grep in the preprocessing
phase, D broadcasts d; := wq - wg —1; € ), to verifiers, then all parties compute

[wy] := [m:] + di. As a result, D holds w,, mg and V; holds AW, kY such that
kD =m 4w, - AW for a € {a, 8,7} and j € [n]. By Eq. 1, we conclude that
if D behaves honestly (i.e., wy, = wq - wg), then we have BZ-(j) = AEJO) + Aijl) ~AG),
It is easy to see that Bf‘j) (resp. Ag'fo), A§71) ) can be locally computed by D (resp.
V;); therefore, the correctness of the i-th multiplication gate can be checked by

letting D send AY), AY) to V; and letting V; check if BY) = A% + AY) . AW
holds for each j € [n]. We can check ¢ multlphcatlon gates in a batch to reduce
the communication cost, using the random linear combination technique [51].

That is, we let the parties sample a uniformly random x <« -, then we let D
send AY) .= 320 A% -y and AY) = 321 AY) ¥ to V; and let V; check
if BU) = Aéj) + Aﬁj) - AU for j € [n], where BU) := Z§=1 ng) -x*. Notice
that, A((]j ), Agj ) may leak some information about the wire values; thus, we use
random u) v 209 such that 20 = 0@ 4 ) . AU to mask A(()j),Agj).

Formally, we present Il in Fig. 8 and prove the security through Theorem 5.
The security proof can be found in our full-version paper [57].

Theorem 5. LetFy,- be the extension field. Let C be the circuit with t multiplica-
tion gates. Then the protocol Ilsir depicted in Fig. 8 UC-realizes Fsp depicted in
Fig. 2 with statistical security in the {fé’;ep, FEon}-hybrid world, in the presence
of a static malicious adversary corrupting up to the dealer and n — 1 verifiers.

Towards One-Round Online Communication. During the online phase of
our protocol Ilgig, the only interaction between the parties is the coin-tossing
procedure. In order to achieve one-round online communication, we can replace
the coin-tossing with a Random Oracle (RO) to generate the random element
X. More precisely, given a hash function H : {0,1}* — F,» which is modeled as
a RO, we let D compute x := H({0; }ic[m], {di }icp)- Since {0 }icm), {di}icpy are
broadcasted by D, verifiers can locally compute x.

We note that, when RO is introduced, the statistic security of our protocol
Il will be degraded to the computational security, and the computational
security error will be O(Qu-t/p"), where Qy is the number of maximum queries to
RO and t is the number of multiplication gates. When p” is not large enough, we
can simply repeat our main protocol for p times to achieve negligible soundness
error, where p is selected such that O(Qn - (¢/p")”) = negl(A).
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/—| Protocol IlsF

Inputs: D and Vi,...,V, hold a circuit C over a field F;,. The circuit C has m
input wires and ¢ multiplication gates. D additionally holds a private w € F)".

Preprocessing Phase: The circuit and the private input are unknown.
1. D and Vi,...,V, send (INIT,sid) to fé’r;, which returns A® ¢ F,r to V; for
each i € [n].
2. D and Vi,...,V, send (AUTHSUB, sid, m +¢) to Fg,0, which returns [u] and
[n] to the parties.
3. Dand Vi,...,V, send (AUTHEXT, sid, 1) to Fg,0, which returns
{u?, v} ey to D and returns ) to each verifier V; such that
S0) = o) 4 ) . AW,
Online Phase: The circuit and the private input are known by the parties.
1. For each i € Zin: D broadcasts §; := w; — u; € Fp. All the parties locally
computes Jw;] := [u:i]] + ds.
2. For each gate (a, 8,7,T) in a pre-defined topology order:
(a) If T = Add, all the parties locally compute [w~] := [wa] + [wgs].
(b) If T = Mult and it is the i-th multiplication gate, D broadcasts
d; := wo - wg —n; € Fp. All parties compute [w, ]| = [n:] + d-
3. D and Vy,...,V, perform the followings to ensure the multiplication gates are
processed correctly:
(a) For i-th multiplication gate («, 3,7, Mult), the parties holds
[wa], [ws], [w~]; more precisely, for a € {a, B fy} and j € [n], D holds
wa, m$’ while V; holds k9, A such that k) = m<]> + wq - AY) . Then for
each j € [n]: D locally computes A(]) =m{ -m B ) € F,r and
A(j) = mg) Wo +mY - wg — 7 ) e F,r while V; locally computes
B(J) k.(]) k.(]) k,(,]) .A(j) c va“.
(b) D and V4,... ,V send (Toss,sid, 1) to F&yy, which returns x € Fpr to all
parties. _
(c) For each j € [n]: D computes and sends V@) := 3! AE?O) XD e Fyr,
U9 =3t Aijl) X' +ul% € Fpr to V; privately.
(d) For each j € [n]: V; computes ZV) := 37!, BY .\ + 29 € F,r and checks
it Z0) Zv@ 1yl . AW 1f not, V; aborts.
4. For each i € Zoe (without loss of generality, we assume this output wire
belongs to V;), D sends the output wire value y; and its corresponding MAC
tag my, to Vi who holds the local MAC key k,,. Then V; checks if

ky, = My, + Yi* A® I not, V; aborts.

Fig. 8. Main Protocol for SIF in the {F5"

Prep?

FEon -hybrid world

Towards Better Efficiency. In Step 3 of our online phase protocol, the parties
need to compute x* for i € [t]. When p is a large prime, the computation of x* for
i € [t] can be very expensive. To obtain better computational efficiency, it was
suggested in prior work [51] that we can replace x* with independent uniform
coefficients x; for ¢ € [t]. More concretely, instead of querying RO to obtain
and then computing x* for i € [t], we can query RO to directly obtain x1, ..., x¢
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and use Y; to replace x' for i € [t]. Notice that, this approach will slightly
increase the soundness error, but the resulting soundness error is still negligible.
We refer interested readers to see [51] for more details.

5 Impossibility on 1-Round SIF Without Broadcast
Channels

Our 1-round SIF protocol in Fig. 8 requires a broadcast channel. It is natural to
ask: if the broadcast channels are necessary for constructing 1-round SIF?

In this section, we prove that even if the preprocessing model is assumed,
1-round MVZK is impossible to achieve without the broadcast channels. Since
MVZK is captured by SIF and VRS, our impossibility can naturally be extended
for SIF and VRS. Therefore, we show that the broadcast channels are necessary
for constructing 1-round SIF/VRS/MVZK.

MVZK Functionality. We have described MVZK in the introduction, here we
provide the formal MVZK functionality Fmyzk in Fig. 9, which is taken from [52].
From Fig.9, we know that there is an important feature in MVZK: for those
honest verifiers who do not abort, they should reach a consensus (i.e., they
should output the same results). This feature is important for our impossibility
proof; please see the proof intuition below.

,—(Functionality ]:MVZK) A

The functionality interacts with a prover P, n verifiers Vi,...,V, and an adver-
sary S. It is parameterized by a circuit C where C : F' — {0,1}. Let H denote
the set of honest parties.

Upon receiving (INPUT, sid, w) from P and (INPUT,sid) from V; for all ¢ € [n]
where w € F;', do

— Compute b := C(w).

— Send (CONTINUE, sid, b) to the adversary S. For each honest verifier V; € H,
upon receiving an input from S,
e If it is (CONTINUE,sid, V;), send (OUTPUT,sid, b) to V;.
e If it is (ABORT,sid, V;), send (ABORT,sid) to V;.

Fig. 9. The Functionality Fuvzk

Proof Intuition. We use the method of proof by contradiction to prove our impos-
sibility result. First of all, we assume there exists a non-interactive MVZK using
only secure private channels (i.e., point-to-point channels); note that, “non-
interactive” means that: in the online phase of the non-interactive protocol,
the prover is allowed to send messages to the verifiers, and the verifiers are not
allowed to communicate with each other. Let us consider the case where only
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the prover is corrupted. Let w,w’ be two distinct witnesses such that C(w) = 1
and C(w’) = 0. Let msg, (resp. msg}) be the messages that an honest prover
should sent to the i-th verifier on input w (resp. w’); upon receiving msg, (resp.
msg}), the i-th honest verifier should output 1 (resp. 0), since the online phase
is restricted to be non-interactive. Then the corrupted prover can simply send
msg; to the first honest verifier and send msgj, ..., msg,, to the remaining hon-
est verifiers respectively. Then the first honest verifier will output 1 while the
remaining honest verifiers will output 0, which violate the consensus require-
ment of MVZK functionality. Notice that, the above proof intuition holds, (i) no
matter how many verifiers the adversary can corrupt, as long as the adversary is
allowed to corrupt the prover; (ii) a preprocessing model is assumed®. Formally,
we have the following theorem.

Theorem 6. Let the communication channels be secure point-to-point chan-
nels, and no broadcast channels are available. Let n be the number of verifiers
such that n > 2. Then there exists no non-interactive MVZK protocol II that
UC-realizes Fmvzk depicted in Fig. 9 in the preprocessing model, in the presence
of a static and malicious adversary who is allowed to corrupt the prover.

Proof. We use the method of proof by contradiction to prove this theorem. We
assume there exists such a non-interactive MVZK protocol IT that UC-realizes
Fmvzk in the preprocessing model. Then for any PPT adversary A and any PPT
environment Z, there should exist a PPT simulator S such that the real-world
execution is computationally indistinguishable from the ideal-world execution.

First of all, let us describe some notions that will be used in this proof. We use
Oprep to denote the preprocessing model; when a party makes a query to Opyep,
Oprep takes the session identifier (SID) and the party identifier (PID) pid of the
querying party as inputs, and it returns the corresponding preprocessing infor-
mation info,ig to the party. Notice that, Oprp may return different preprocessing
information to different parties, and each party can not learn other parties’ pre-
processing information by querying Opyep. In the same protocol session, Opyep
should return the same response to the same party, no matter the party is hon-
est or gets corrupted. Notice that, we make a restriction on Opep’s inputs, i.e.,
Oprep cannot use anything other than the SID and the PID as inputs; in this
way, we guarantee the preprocessing information returned by Opep, is “input-
independent”. Without loss of generality, we assume the prover P’s PID is 0,
and the é-th verifier V;’s PID is i for ¢ € [n]. we let PrfAlg be the (honest) prover
algorithm, which takes the preprocessing information infog and the witness w as
input and outputs the prover’s messages (pmsgy, ..., pmsg,, ), where pmsg, is the
message that should be sent to V;. Let DecAlg; be the (honest) decision algo-
rithm for V;, which takes the preprocessing information info; and the received
message pmsg; as inputs and outputs the decision bit b or a special symbol L
indicating abort.

Let A be a dummy adversary that simply forwards the protocol flow
between the corrupted parties and the environment Z. Let us consider the

5 The preprocessing model implies RO model and CRS model.
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case where Z only corrupts the prover. Let w(® w®) be two distinct wit-
nesses such that C(w(®) = 0 and C(w®) = 1. We consider the following
adversary’s strategy. The environment Z first instructs P* to query Oprep to

obtain infoy and honestly run (pmsggo), ce pmsg%o)) — PrfAlg(infog, w(®) and
(pmsgg),...,pmsgs)) — PrfAlg(infog, w™)). Notice that, both (pmsggo))ie[n]

and (pmsggl))ie[n] are honestly generated; hence, by completeness, for each hon-
est V;, we have DecAlg,(info;, pmsgz(-b)) = b for b € {0,1}. Next, for each honest
V;, Z samples a bit b; from {0, 1} and instructs P* to send pmsg(bi) to V;, and

K3
an honest V; should output the decision bit b;. In the real-world execution, since
Prlb; = by = --- = b,] = 2=(»=1) the probability of the honest verifiers reaching
a consensus (i.e., all honest verifiers output 0 or 1) is 2=(»=1. On the other
hand, in the ideal-world execution, the simulator S can extract the witnesses
w(® w® by simulating Oprep; however, S can only instruct the dummy P* in
ideal-world to send either w(® or w®) to Fuyzk, which results in a consensus
among the dummy honest verifiers in ideal-world. Therefore, Z can distinguish
the real-world from the ideal world with probability at least 1 — 2= (=1 > %,

contradicting our assumption that IT is UC-secure. a

Extending to the Simultaneous Communication Model. Here we discuss
how to extend our impossibility results depicted in Theorem 6 to the simulta-
neous communication model. Recall that, in the simultaneous communication
model, parties are allowed to send messages to each other in the same round;
however, their messages should be independent of each other. Hence, in the con-
text of 1-round MVZK, when the prover sends its messages to the verifiers, the
verifiers may also send their messages to each other at the same time. Then each
verifier outputs the result based on the prover’s messages and other verifiers’
messages. We note that, we do not consider the situation where the verifiers
send to the prover during the online phase, since the prover has no output and
its proof messages should not depend on the verifiers’ messages.

Now we show that even in the simultaneous communication model, 1-round
MVZK protocol is still impossible to achieve without the broadcast channels,
in the presence of a static, malicious and rushing adversary. Note that, a rush-
ing adversary is often considered in the simultaneous communication model.
A rushing adversary can delay sending messages on behalf of corrupted par-
ties in a given round, until the messages sent by all the uncorrupted parties in
that round have been received. We consider the case where the adversary cor-
rupts the prover. Let w,w’ be two distinct witnesses such that C(w) = 0 and
C(w’) = 1. The adversary first instructs the prover to wait until each honest
verifier has received other verifiers’ messages, and we denote by vmsgg»l) the mes-
sage that the i-th verifier send to the j-th verifier. Then the adversary instructs
the prover to honestly run the prover’s algorithm on input w (resp. w’) to pro-
duce {pmsg; }icpn) (resp. {pmsg; }ic[n]), where pmsg; (resp. pmsg;) is the message
that the prover should send to the i-th verifier. Notice that, upon receiving

pmsg,; (resp. pmsg;) and (vmsggj))j;é,;, the i-th verifier should output 0 (resp.
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1), since pmsg, (resp. pmsg;) and (vmsgz(] ))#i are honestly generated. Finally,
the adversary instructs the prover to send pmsg; to the first verifier and send
pmsg), ..., pmsg, to the remaining honest verifiers respectively. Then the first
honest verifier will output 1 while the remaining honest verifiers will output 0,
which violate the consensus requirement of MVZK functionality.

Formally, we have the following theorem. We omit the proof here, since the
proof is analogous to the proof of Theorem 6.

Theorem 7. Let the communication channels be secure point-to-point channels
which allows simultaneous communication, and no broadcast channels are avail-
able. Let n be the number of verifiers such that n > 2. Then there exists no
1-round MVZK protocol II that UC-realizes Fyvzk depicted in Fig. 9 in the pre-
processing model, in the presence of a static, malicious and rushing adversary
who is allowed to corrupt the prover.

Since SIF implies MVZK [3], we have the following corollary.

Corollary 1. Let the communication channels be secure point-to-point chan-
nels, and no broadcast channels are available. Let n be the number of verifiers
such that n > 2. Then there exists no 1-round SIF protocol II that UC-realizes
Fsie depicted in Fig. 2 in the preprocessing model, in the presence of a static,
malicious and rushing adversary who is allowed to corrupt the dealer.

6 Implementation and Evaluation

We implement a prototype of our protocols in C++ using EMP toolkip [48]. We
simulate the network configurations using Linux netem package. In this section,
we refer LAN (resp. WAN) to the 1 Gbps (resp. 200 Mbps) network with 6 ms
(resp. 20 ms) delay. All experiments are executed on a machine with Intel(R)
Core(TM) i7-12700 at 2.10 GHz and 512 GB Memory, running Ubuntu 22.04.3
LTS. Each experiment is run 20 times and the median is taken.

For arithmetic circuits, we use a 61-bit field (i.e., p = 261 —1 and r = 1); notice
that, in this case, we will repeat our protocol for p = 2 times to achieve negligible
soundness error, as discussed in Sect.4.2. For boolean circuits, we use a binary
field (i.e., p = 2 and r = 128). For large-scale circuits (e.g., a circuit with 107
gates), we instantiate psVOLE with recent PCG-style protocols [45,50,54]. For
widely used benchmark circuits (e.g. the AES-128 circuit), which are typically
small or median size boolean circuits, we instantiate the psVOLE with the IKNP-
style COT protocol [39].

6.1 Comparison with Related Works

Here we compare the efficiency of our protocols with other related works.

Comparison with SIF Against a Dishonest Majority. To the best of our
knowledge, the only work in the literature that constructs SIF against a dishonest
majority is [56], which we denote by ZZZR protocol. Both ZZZR protocol and
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our work can tolerate up to one malicious dealer and ¢ < n malicious verifiers.
We conduct experiments of our protocol and ZZZR protocol on an AES-128
circuit with different total party number N € {3, 8,16, 32} and different network
configurations, and plot the results in Fig. 10.
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Fig. 10. Comparison between our protocol and ZZZR protocol [56]. Results are evalu-
ated on an AES-128 circuit.

As shown in Fig. 10, our protocol outperforms ZZZR protocol in both run-
ning time and communication. Our improvement for preprocessing time (resp.
communication) over ZZZR protocol ranges from roughly 5.2x to 14.5x (resp.
11.6x to 17.2x). The reason is: ZZZR preprocessing protocol makes black-box
use of BDOZ-style preprocessing protocol [8], which is expensive; in contrast,
our preprocessing protocol makes use of psVOLE, which is much more efficient.
The cost of our online phase is also less; the reason is: our online phase is only
1-round, and removes the peer-to-peer communication among the verifiers.

Comparison with SIF with an Honest Majority. Among three recent and
related work with an honest majority [3,5,52], Feta [5] is the only one that
implements their protocols; hence, here we compare the efficiency of our protocol
with Feta. We report the comparison result in Table 4.

Table 4. Comparison between Feta [5] and ours. The results are evaluated on an
AES-128 circuit under a WAN network.

Fix the number of total parties N
Ref. (T, N) Prep. Time (ms) Online Time (ms)
Feta [5] (2,6) 108.9 64.4
This Work (5,6) 250.4 45.8
Fix the number of total corrupted parties T'
Ref. (T,N) Prep. Time (ms) Online Time (ms)
Feta [5]  (7,26) 872.3 653.0
This Work (7,8) 336.8 48.9
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In Table4, we compare Feta and our protocol in two setting: (i) when the
number of total parties N is fixed; (ii) when the number of total corrupted
parties T is fixed. In the first setting, our preprocessing time is slower than that
of Feta, but our online time is faster. Notice that, our work can tolerate all-but-
one corruptions among verifiers, but Feta assumes an honest majority among
verifiers. In the second setting, both our preprocessing time and online time are
faster than Feta. More precisely, our preprocessing time is 2.6x faster and our
online time is 13.4x faster.

Comparison with Generic MPC Against a Dishonest Majority. To fur-
ther demonstrate the efficiency of our protocols, we compare our protocol with
the state-of-the-art constant-round BMR-style MPC protocols in the dishonest
majority setting, i.e., the WRK protocol by Wang et al. [49] and the YWL proto-
col by Yang et al. [53]. Notice that, the numbers of WRK protocol are measured
by ourselves, while the numbers of YWL protocol are estimated according to
the improvements over WRK protocol that reported in [53]. We plot the results
in Fig. 11. As shown in Fig. 11, our protocol outperforms both WRK and YWL
protocols in both running time and communication. Our improvement for total
running time (resp. total communication) ranges from 2.3x to 15.1x (resp. 12.1x
to 15.7x).
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Fig. 11. Comparison among WRK [49], YWL [53] and our protocol. Results are evalu-
ated on a AES-128 circuit.

Comparison with Generic zk-SNARK. Here we compare with a recent
zk-SNARK scheme called HyperPlonk [16,17]. As reported in [16, Table 6], the
proving time of HyperPlonk is 9.2 us/gate. The running time of HyperPlonk is
obtained by running over a large-scale arithmetic circuit (e.g., a circuit with
220 gates). To make a fair comparison, we report the end-to-end performance
of our protocols over a large-scale arithmetic circuit. Table 5 illustrate the end-
to-end time of our protocol with respect to a randomly generated arithmetic
circuit with 107 multiplication gates. The number of end-to-end time consists
of both computation time and communication time. Some careful readers may
notice that, the numbers reported here are much faster than our running times
reported in Table2. The reason is that: our running times reported in Table 2
are obtained by evaluating a small circuit and using the IKNP-style approach
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to instantiate the preprocessing phase; in contrast, the numbers reported in
Table5 are obtained by instantiating the preprocessing phase with the PCG-
style approaches, which is much more efficient than IKNP-style approach when
a large amount of correlated randomness are needed.

Table 5. Our end-to-end performance. The results are evaluated on a random circuit
with 107 multiplication gates.

Running Time

Network #Part
# Y Per Gate (us)

3 0.9

LAN 8 2.4
16 4.9

1.6

WAN 8 3.6
16 7.1

As shown in Table 5, for three-party SIF running over an arithmetic circuit
and a LAN network, our end-to-end time is 0.9 us/gate. Our running time is at
least 10.2x faster than HyperPlonk. We admit that, when the number of total
parties scales to a large one, our performance may not be as good as generic
zk-SNARKS; however, this is a common drawback of current SIF (in the context
of MVZK) protocols [5,52,56].

7 Related Work

Here we provide a comprehensive literature overview on the related work in both
honest majority and dishonest majority settings.

In the Honest Majority Setting. The study of SIF was initialized by Gennaro
et al. [29]. More precisely, they proposed a 2-round SIF protocol in the plain
model with ¢t < &, where ,n are the numbers of corrupted verifiers and total
verifiers, and their protocol achieves perfect security. Applebaum et al. improved
the corruption threshold to ¢ < % while keep the same round complexity, at the
cost of degrading the perfect security to computational security [2]. Later, the
same authors further improved the corruption threshold to ¢ < ZLJFE, where € is
a small positive constant [3].

As mentioned before, MVZK is a direct application of SIF, and the notion
of MVZK can be traced back to the work by Burmester and Desmedt [13].
Abe et al. proposed a 2-round MVZK protocol for circuit satisfiability with
t < % [1]; the corruption threshold of their protocol can be improved to t < &
at the cost of increasing round complexity. The ZK protocols by Groth and

Ostrovsky [32,33] can be transformed into the 2-round MVZK protocols with
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t < 5. These works [1,32,33] require heavy public-key operations and are not
concretely efficient. Very recently, there are two papers [5,52] studying 2-round
MVZK protocols in the honest majority setting, and they avoided the use of
public-key operations. Yang and Wang [52] proposed 2-round MVZK protocols
in the RO model with ¢t < %. Baum et al. [5] employed a stronger assumption (i.e.,
the preprocessing model) to construct two types of the 2-round MVZK protocols:
the first protocol tolerates § malicious verifiers and the second protocol tolerates
7 malicious verifiers.

Distributed Zero-Knowledge (dZK) is a related cryptographic primitive, and
it was proposed by Boneh et al. [9]. In dZK, there is a distinguished prover
holding (x,w) € R and the statement x is shared among the verifiers; the prover
wishes to convince the verifiers that = is correct in zero-knowledge even if the
verifiers do not know the entire x. The main difference between dZK and MVZK
is that: in dZK, no verifier knows the entire statement z; in contrast, in MVZK,
each verifier knows the entire statement z. Boneh et al. [9] gave a 2-round dZK
construction in the RO model with ¢ < 5. Very recently, Hazay et al. strengthen
the formalization of [9] by adding strong completeness [35], which prevents the
malicious verifiers from framing the honest prover, i.e., causing the proof of a
correct claim to fail. They constructed their dZK with t < "7_2.

In the Dishonest Majority Setting. In [40], Lepinski et al. propose a notion
called fair ZK, which can be viewed as a strengthened version of MVZK. Fair
ZK ensures that the malicious verifiers can learn nothing beyond the validity
of the statement if the honest verifiers accept the proof. However, their work is
far from being practical. To the best of our knowledge, the only prior work that
focuses on constructing practical SIF protocols against a dishonest majority is
the work by Zhou et al. [56]. More precisely, they build highly efficient 2-round
SIF protocols in the preprocessing model.

In terms of dZK, Boneh et al. give a 2-round dZK construction in the RO
model [9]; however, they assume the adversary can corrupt the prover or up to
t < n verifiers. In other words, they do not allow the malicous prover to collude
with the malicious verifiers.
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