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Abstract
In many applications like experimental design,
group testing, and medical diagnosis, the state of
a random variable Y is revealed by successively
observing the outcomes of binary tests about Y .
New tests are selected adaptively based on the his-
tory of outcomes observed so far. If the number of
states of Y is finite, the process ends when Y can
be predicted with a desired level of confidence
or all available tests have been used. Finding the
strategy that minimizes the expected number of
tests needed to predict Y is virtually impossible in
most real applications. Therefore, the commonly
used strategy is the greedy heuristic of Informa-
tion Maximization (InfoMax) that selects tests
sequentially in order of information gain. Despite
its widespread use, existing guarantees on its per-
formance are often vacuous when compared to
its empirical efficiency. In this paper, for the first
time to the best of our knowledge, we establish
tight non-vacuous bounds on InfoMax’s perfor-
mance. Our analysis is based on the assumption
that at any iteration of the greedy strategy, there is
always a binary test available whose conditional
probability of being ‘true’, given the history, is
within ω units of one-half. This assumption is mo-
tivated by practical applications where the avail-
able set of tests often satisfies this property for
modest values of ω, say, 0.1 → ω → 0.4. Specif-
ically, we analyze two distinct scenarios: (i) all
tests are functions of Y , and (ii) test outcomes
are corrupted by a binary symmetric channel. For
both cases, our bounds guarantee the near-optimal
performance of InfoMax for modest ω values. It
requires only a small multiplicative factor of the
entropy of Y , in terms of the average number of
tests needed to make accurate predictions.
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1. Introduction
Many applications of machine learning in science and en-
gineering can be posed as an active testing problem of se-
quentially carrying out tests to predict a target variable Y

such that the expected number of tests needed is minimized.
Perhaps the simplest example is the classical parlour game
“twenty questions”, where the objective might be to identify
a famous person one player thinks of (the Y in this case)
by asking the minimum number of questions about Y on
average, where each of these questions can be viewed as a
test about Y .1 Other examples include Bayesian optimal
experimental design (Lindley, 1956), sensor fault detection
(Zheng et al., 2012) and medical diagnosis (Peng et al.,
2018). Since computing the optimal sequence of tests for
such scenarios is NP-complete in general (Hyafil & Rivest,
1976), the “greedy” heuristic of choosing tests in each iter-
ation that reduce the uncertainty about Y the most, given
the outcomes observed so far, is commonly employed in
practice. More precisely, this is mathematically equivalent
to choosing the test whose outcome has maximum mutual
information with Y given the sequence of test outcomes
observed so far and is popularly known as the Information
Maximization (InfoMax) algorithm. InfoMax has found
numerous uses in recent applications (Sznitman & Jedy-
nak, 2010; Branson et al., 2014; Geman et al., 2015; Ma
et al., 2018; Foster et al., 2019; Cuturi et al., 2020; He et al.,
2022; Chattopadhyay et al., 2022; 2023; Covert et al., 2023).
Given the natural intuition behind InfoMax, one might ask
how efficient this greedy heuristic is in practice. However,
despite its popularity, theoretical guarantees about the per-
formance of the InfoMax algorithm are scarce (Chen et al.,
2015).

In this paper, we analyze the InfoMax algorithm for binary
tests and derive bounds on its performance. Throughout this
paper, by performance, we mean the expected number of
tests needed to make accurate predictions. If one has access
to all possible binary functions of Y as tests, then it is
known that the performance of the greedy strategy is upper
bounded by H(Y ) + 1 (Garey & Graham, 1974), where
H(Y ) denotes the entropy of Y . This is nearly optimal since
H(Y ) is a lower bound on the best possible performance

1For example, one possible question could be “Is Y still alive?”
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Figure 1. Distribution of the values of |P(Tk = 1 | History)→ 1
2 |

sampled over all iterations for all examples in the dataset, where
Tk indicates the test selected at iteration k.

(Shannon, 1948). Unfortunately, for scenarios when one has
access to only a restricted set of functions of Y , Loveland
(1985) illustrated that it is possible to construct problems for
which given a set of tests, T , the greedy strategy requires at
least |Y|

16 ↑ opt(T , Y ) number of tests to identify Y , where
|Y| is the number of values Y can take and opt(T , Y ) is the
performance of the optimal (not necessarily greedy) strategy
for identifying Y given T . Thus, as |Y| gets large, the
greedy strategy can obtain dismal results when compared
with the optimal strategy. How is it then that the greedy
strategy is one of the most popular heuristics for sequential
test selection?

In this paper, we argue that the often-observed competi-
tive performance of the greedy strategy can be attributed
to a property of the set of available tests T that we call ω-
unpredictability. A set of tests is ω-unpredictable, if in every
iteration of the greedy strategy either (i) the posterior over Y
given the history of outcomes observed so far is sufficiently
peaked, upon which Infomax terminates, or (ii) the selected
test has a conditional probability of being ‘true’, given his-
tory, within 1

2±ω. For most real-world settings, the available
T will be ω-unpredictable for ω ↓ 0 since there will almost
never exist exact or close-to-exact bisecting tests. However,
it would often be the case that for ω ↔

1
2 , T would contain

a test that satisfies condition (ii) for ω-unpredictability. This
is primarily due to the availability of tests at different res-
olutions, with some tests being coarser (for example, tests
of the form “Is Y ↗ {y1, y2, y3}?”, where yi are different
values Y can take) while others are finer (for example, tests
of the form “Is Y = y1?”). We support this claim with re-
sults from two real-world machine learning datasets, namely
CUB-200-2011 (Wah et al., 2011) and AwA2 (Xian et al.,
2018), depicted in Figure 1. In both datasets, in each iter-
ation, there exists a test whose conditional probability of
being ‘true’ is within 1

2 ± ω for ω = 0.22 for CUB-200-
2011 and ω = 0.17 for AwA2 respectively. More details in
§4.2. In another example, Geman et al. (2015) employed
ω-unpredictable T for visual scene annotation (in terms of
objects in the scene, their attributes and relationships) and
showed ω ↘ 0.15 works for their curated dataset of street
scene images.

Inspired by these observations, we study the performance
of the greedy strategy when T is ω-unpredictable for some
ω ↗ [0, 1

2 ]. If ω = 0, we have bisecting tests at each iteration.
If we further assume the tests are functions of Y , then the
set of possible values Y can take with positive probability
at step k, referred to as the active set at step k, is effectively
halved at each iteration depending on the test outcome. This
is akin to binary search, which is known to converge in
H(Y ) iterations (Flores & Madpis, 1971). Our contribution
is to study what happens at values of ω between zero and
one-half. We first study the case of oracle tests, that is, when
all tests in T are functions of Y and bound the performance
of the greedy strategy to be at most H(Y )

h( 1
2+ω)

, which immedi-
ately improves upon bounds previously reported in literature
(Garey & Graham, 1974; Loveland, 1985; Kosaraju et al.,
1999; Dasgupta, 2004). Moreover, we show that this bound
is tight by explicitly constructing an example for which
the greedy strategy exactly achieves this bound. Building
on this, we extend our analysis to incorporate noise in the
test outcomes. In particular, we assume the test outcomes
are corrupted by a Binary Symmetric Channel (BSC) and
bound the performance of the greedy strategy to be at most

H(Y )
h( 1

2+ω)→h(ε)
, where ε is the noise level in the BSC. In

summary, our main contributions are the following.

• We first study the oracle case where tests are functions of
Y . Assuming the given set of tests, T , is ω-unpredictable
for some ω ↗ [0, 1

2 ], we prove that the greedy strategy
needs at most H(Y )

h( 1
2+ω)

number of tests on average to iden-
tify (predict) Y . To the best of our knowledge, this is the
first bound on the performance of the greedy strategy that
explicitly depends on the entropy of Y . This is desirable
since a lower bound on the average number of tests needed
for any given T is given H(Y ). Moreover, we show that
our bound is tight and cannot be improved upon.

• We then extend our analysis to the noisy case where we
assume that test outcomes are corrupted via a BSC with
crossover probability ε (we refer to this as the noise level
of the BSC in this paper). We bound the performance of
the greedy strategy to be at most H(Y )

h( 1
2+ω)→h(ε)

. Thus, as
the noise level increases, more tests would be needed to
predict Y . To the best of our knowledge, this is the first
such result for the greedy strategy given noisy tests.

2. Related Work
Information Maximization (InfoMax) is a popular heuristic
for sequentially selecting tests to make accurate predictions,
which has been widely adopted across various fields under
different names. One of the first proposals of this algo-
rithm was in the context of optimal experimental design by
(Lindley, 1956) where tests correspond to experiments one
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can carry out to gather information about Y . Subsequently,
this algorithm has been proposed under various names such
as Probabilistic Bisection Method, (Horstein, 1963), Split-
ting Algorithm (Garey & Graham, 1974), Entropy Testing
(Geman & Jedynak, 1996), Information Gain (for decision
tree induction) (Breiman et al., 1984), Generalized Binary
Search (Dasgupta, 2004), and Information Pursuit (Jahangiri
et al., 2017). Inspired by its empirical success, there is a fifty
year lineage of scattered work on the performance of this
“greedy” strategy. We begin by reviewing works studying
the oracle case, where tests are functions of Y , and conclude
by mentioning recent efforts towards analyzing the more
general case where test outcomes are corrupted by noise.

Oracle tests. This refers to the situation where the tests T
are determined by Y , that is, the entropy H(T | Y ) = 0.
Shannon (1948) showed that when T (the set of available
tests) is complete (that is, we have a test for every func-
tion of Y ), the greedy strategy requires at most one test
more than the optimal strategy on average. This result was
extended by (Sandelius, 1961) who showed that greedy is
in fact optimal when Y is uniformly distributed. Usually,
for practical applications, T will almost always be incom-
plete. For example, in the popular “twenty question” parlor
game involving famous people, we cannot test if Y is in ev-
ery possible subset of famous people using questions about
presence or absence of single human attributes like “writer”,
“female”, “living”, “French”, etc. Subsequently Kosaraju
et al. (1999) and Dasgupta (2004) proved that in the case of
incomplete tests, the greedy strategy would require at most
O

(
ln( 1

miny→Y P(Y=y) )↑ opt(T , Y )
)

number of queries on
average. Here opt(T , Y ) is, as defined in the Introduction,
the performance of the optimal strategy for identifying Y .
This generic bound is often vacuous (too loose) in practice
as we also show empirically in §4.2. The idea of assuming
the existence of ω-unpredictable tests in each iteration of
the greedy strategy was considered in earlier work (Garey
& Graham, 1974; Loveland, 1985). However, their analysis
technique is significantly different from ours and results in
an upper bound of log2 |Y|

|( 1
2→ω) log2(

1
2→ω)| +

1+2ω
1→2ω , which is larger

(i.e., looser) than ours. See §4.2 for an extended discussion
comparing these bounds with our proposed bound.

Noisy tests. This refers to the situation where the tests T are
not determined by Y , that is, the entropy H(T | Y ) is posi-
tive. Unlike the oracle case, the performance of the greedy
strategy in this case is sparsely explored. It is known that
InfoMax is optimal in the restricted case where Y ↗ R and
T is a set of noisy indicator functions for all possible finite
unions of intervals along the real line (Jedynak et al., 2012).
Subsequent works (Tsiligkaridis et al., 2014; Chung et al.,
2017) focus on designing the set of noisy tests such that In-
fomax (and related adaptive/non-adaptive testing strategies)
is optimal . However, often in practice the set of available

tests are fixed a priori and come from domain knowledge.
For example, in medical diagnosis, the set of questions is
typically about the symptoms of the patient. In such situa-
tions, it will be very unlikely that one will have access to
the “optimal” test in each iteration. More general results are
obtained by reducing the noisy case to the oracle case. For
instance, (Nowak, 2008) assumed that the tests are “repeat-
able”, that is, any given test can be independently replicated
any number of times to obtain the true outcome (de-noise)
with high probability. Thus, by repeating the same test mul-
tiple times, its outcome can be made deterministic given
Y (with high confidence) and the results discussed for the
oracle case apply with an additional cost for repeating the
test. However, this is not very realistic since in practice
we rarely have access to “repeatable” tests. Golovin et al.
(2010) analyzed greedy active learning algorithms in the
presence of noise by considering the tests to be functions
of Y and some noise variable ϑ with known joint distribu-
tion P(Y, ϑ), and thereafter applied the bounds known from
the oracle case. Finally, (Chen et al., 2015) explored the
near-optimality of information maximization for the more
practical scenario where noise is persistent, that is, tests are
not “repeatable”. Compared to our work, (Chen et al., 2015)
studies the setting “What is the maximum amount of mutual
information one can obtain about Y by carrying out k tests
following the greedy strategy?”, whereas we are interested
in bounding the mean number of tests required to make an
accurate prediction about Y .

3. Problem Setting and Preliminaries
As is common convention, we will use capital letters for
random variables and lowercase letters for their realizations.
We will use the symbol P(E) to denote the probability of
event E . Moreover, we will often refer to the Information
Maximization (InfoMax) algorithm simply as the greedy

strategy.

Information maximization. InfoMax is a greedy strategy
for selecting tests sequentially in order of information gain.
More formally, let Y be a discrete random variable taking
values in Y and let T be a given finite set of available
tests, whose outcomes are informative about the value of Y .
All random variables (T and Y ) are defined on a common
sample space !. Given this setup, for any collection of
tests (binary, noisy or otherwise), the InfoMax algorithm
proceeds iteratively as follows:

T1=argmax
T↑T

I(T ;Y ); Tk+1=argmax
T↑T

I(T ;Y |A(t1:k)).

(1)

Here Tk+1 ↗ T refers to the new test selected by InfoMax
at step k+1, based on the history of outcomes to previously
asked tests (denoted as t1:k), and tk+1 ↗ {0, 1} indicates
the corresponding outcome of the test asked in iteration
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k + 1. The conditioning event A(t1:k) is defined as the
event {ϖ ↗ ! : Ti(ϖ) = ti : i ↗ {1, 2, . . . , k}}, where ti is
the observed outcome for carrying out test Ti. We refer to
these events as active sets. We will use the concept of active
sets in our analysis of InfoMax. The algorithm terminates af-
ter L iterations if either maxy↑Y P(Y = y | A(t1:L)) > ϱ

(a hyper-parameter that can be interpreted as desired accu-
racy level) or after all tests have been carried out. Refer to
Figure 4 in the appendix for a flowchart diagram illustrating
the InfoMax algorithm. Having described the InfoMax algo-
rithm, we next define (ω, ϱ)-unpredictable set of tests which
encapsulates our assumption of existence of approximately
bisecting sets as discussed in the Introduction.

Unpredictable set of tests. As motivated in the Introduc-
tion, there exists scenarios when the greedy strategy can
perform poorly compared to the optimal strategy. This calls
for some assumptions on T to ensure the good performance
of the greedy strategy that is often observed. In this work,
we assume that at each iteration of the greedy algorithm
there exists a test that ω-approximately bisects the current
active set. Formally,

Definition 3.1. [(ω,ε)-unpredictable set of tests] A set of
tests T is said to be (ω, ϱ)-unpredictable2 if it is non-empty
and at any iteration k+1 of InfoMax (assuming there remain
tests in T that have not yet been carried out), either

• The probability of posterior mode is greater than or
equal to ϱ, i.e., maxy↑Y P(Y = y | A(t1:k)) ≃ ϱ,
upon which the algorithm terminates; or

• There exists a test Tk+1 ↗ T such that,

∣∣∣P (Tk+1 = 1 | A(t1:k))⇐
1

2

∣∣∣ → ω, (2)

where t1:k denotes the history of test outcomes after k
iterations.

The ϱ parameter controls the termination criterion for the
greedy strategy. In the extreme case where we require Y

to be identifiable, ϱ = 1. For simplicity, in such scenarios,
we will drop ϱ from the notation and refer to such sets as
ω-unpredictable set of tests, implicitly meaning that the algo-
rithm terminates only when Y is identified or all tests in T

have been carried out. We will further discuss the motivation
for this definition and its implication on the performance of
the greedy strategy in the subsequent sections.

2The word unpredictable comes from the fact that if a test
T → ↑ T at iteration k exactly bisects the current active set, then,
one cannot predict the outcome of T → based on the history of test
outcomes observed up to the first k → 1 iterations better than a
random (unbiased) coin flip.

4. Performance Bounds For Oracle Tests
In this section, we analyze the performance of InfoMax
when all tests in T are functions of Y , hence the name
oracle tests. Throughout this section, we will denote the
outcome of test T as T (Y ) to explicitly remind the reader
that T is a function of Y . Effectively the sample space !
(as defined in §3) can be taken to be Y . Since the tests are
not noisy, it is reasonable to expect that they collectively
determine Y , that is, the value of Y is uniquely determined
if we observe {T (Y ), ⇒T ↗ T }). As a result we will
drop ϱ from the notation and only refer to T as being a
ω-unpredictable set of tests.

4.1. A new bound on the performance of the greedy
information maximization algorithm

Relationship with entropy maximization. In the oracle
case, where Y determines the test outcomes (i.e., the out-
come of any test is a function of Y , t = T (Y ), ⇒T ↗ T ),
the InfoMax algorithm as described in equation 1 is equiv-
alent to sequentially finding the test T that achieves the
maximum conditional entropy given history. Equivalently,

T1 = argmax
T↑T

H(T ); Tk+1 = argmax
T↑T

H(T | A(t1:k)).

(3)

The equivalence of equation 3 and equation 1 can be seen
by noticing that H(T | Y,A(t1:k)) = 0 when all tests are
functions of Y (Cover, 1999). Note that the active set in this
case is now simply a subset of Y , that is, A(t1:k) = {y ↗

Y : Ti(y) = ti : i ↗ {1, 2, ..., k}}.

Motivation for assuming T is ω-unpredictable. The mo-
tivation for assuming a given T is ω-unpredictable is as
follows. The entropy of a binary random variable is max-
imized when its success probability is p = 1

2 . Equation 3
can be reinterpreted as sequentially selecting tests from T

that have success probability closest to 1
2 given the history

of test outcomes observed so far. Specifically,

T1 = argmin
T↑T

∣∣P(T (Y ) = 1)⇐
1

2

∣∣; and

Tk+1 = argmin
T↑T

∣∣P(T (Y ) = 1 | A(t1:k)⇐
1

2

∣∣;
(4)

While it will generally not be possible to find a perfectly
bisecting test, it is reasonable to assume that there exists
some ω, such that at any iteration, a test can be found in T

whose success probability, conditioned on the history of test
outcomes observed so far, is within 1

2 ± ω (motivated in §1).
Note, the condition in equation 4 is equivalent to choosing
the binary test whose conditional entropy is closest to 1, that
is,

Tk+1 = argmin
T↑T

∣∣H(T | A(t1:k))⇐ 1
∣∣.
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Bounding the performance of the greedy strategy. If T
is ω-unpredictable for very small ω we can intuitively expect
the number of queries needed on average to identify Y to
be roughly of the order of H(Y ) (since we have almost
bisecting tests). On the other hand, for large ω (close to 1

2 ),
any given set of tests would be ω-unpredictable (according to
definition 3.1) and we would expect the number of queries
needed on average to blow up. The following theorem
captures this intuition and provides a bound on the expected
number of tests needed by the greedy strategy as a function
of both ω and the entropy of Y .

Theorem 4.1. Fix any ω ↗ [0, 1
2 ]. Let h be the binary

entropy function. Given a ω-unpredictable T that collec-

tively determine Y , the average number of tests needed by

the information maximization algorithm to identify Y is at

most
3

BOracle :=
H(Y )

h( 12 + ω)
. (5)

Proof. (Sketch only; see Appendix §A.1.1 for a complete
proof.) Our result is based on the insight that given a se-
quence of k test outcomes, if an additional test Tk+1 is
carried out using the greedy strategy then the following two
scenarios are possible: (i) The additional test will have a con-
ditional entropy H(Tk+1 | A(t1:k)) ≃ h( 12 + ω); or (ii) the
current active set, A(t1:k→1), is a singleton since Y has al-
ready been determined and thus, H(Tk+1 | A(t1:k→1)) = 0.
Combining these two scenarios and taking expectation over
the k tests and their corresponding outcomes and then sum-
ming k from 0 to |T |⇐ 1 gives the desired result.

To highlight the importance of this result, recall from cod-
ing theory that given any set of tests, the optimal strategy
cannot be better than H(Y ), which thus serves as a lower
bound for the greedy strategy given any T . To the best of
our knowledge, our result is the first one to upper bound
the performance of the greedy strategy to be at most a mul-
tiplicative factor of the entropy of Y . This multiplicative
factor degrades “modestly” with ω and so even for a large
value of ω ↘ 0.4 (recall ω ↗ [0, 1

2 ]), which is far from a bi-
secting split, our result guarantees that the average number
of tests under the greedy strategy is at most roughly twice
the entropy of Y . In many practical applications, the set of
tests available to the user is easily ω-unpredictable for such a
large value of 0.4 which strongly reinforces the experience
that greedy works well in practice. We illustrate a few such
examples on real-world datasets in §4.2.

3We thank an anonymous reviewer for suggesting this bound
as an improvement over the bound we had in an earlier version of
the paper, which was H(Y )

↑ log2(
1
2+ω)

.

4.2. Comparison with previous bounds

Having described our bound, we compare it with bounds
previously reported in literature. The assumption of a ω-
unpredictable T was previously considered by Garey & Gra-
ham (1974) for the case where Y is uniformly distributed,
and subsequently by Loveland (1985) for any distribution on
Y . Both papers get the same bound and so we compare with
the bound in (Loveland, 1985), which we will refer to as
the BLov. Their analysis technique is significantly different
from ours and as a result they obtain a very different upper
bound on the average number of queries needed to identify
Y ,

BLov :=
log2 |Y|

⇐( 12 ⇐ ω) log2(
1
2 ⇐ ω)

+
1 + 2ω

1⇐ 2ω
, (6)

where |Y| is the number of discrete values Y can take. Our
bound in equation 5 is uniformly a tighter bound than equa-
tion 6 for all values of ω. We discuss this in detail below.

It can be easily seen (from the definition of binary entropy
function) that for any value of ω ↗ [0, 1

2 ], the denominator
in the first term of BLov is smaller than the denominator in
BOracle;

⇐(
1

2
⇐ ω) log2(

1

2
⇐ ω) → h(

1

2
⇐ ω) = h(

1

2
+ ω).

The second term 1+2ω
1→2ω is always non-negative. Finally, the

numerator log2 |Y| is always lower bounded by the entropy
of Y (which is the numerator in BOracle). Hence, our bound
is always tighter than (as an upper bound on the performance
of the greedy algorithm) BLov.

Next, we demonstrate on two machine learning datasets
(CUB-200-2011 (Wah et al., 2011) and AwA2 (Xian et al.,
2018)) that the given set of tests T is ω-unpredictable for
modest values of ω (0.22 and 0.17 respectively) and sub-
sequently show that our bound is closer to the true mean
number of tests the greedy strategy requires on these datasets
to identify Y than previously known bounds.

Experimental setup. Our examples are inspired from the
classical “twenty questions” (20Q) game where one player
thinks of an entity, and the goal of the other player is to
guess the object correctly by asking the minimum number
of questions about the object.4 We now describe the two
datasets employed in detail.

• 20Q with birds. In our first example, we play 20Q with
birds. One player thinks of a bird species Y and the other
player asks questions about different visual attributes
about the chosen bird in order to identify Y . For this
purpose we use the CUB-200-2011 dataset. The dataset

4The tests in this context are the questions and their respective
outcomes are the answers to the question.
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Figure 2. Example runs of the greedy strategy on the two tasks
considered here; (a) 20Q with birds; (b) 20Q with animals. The
test outcomes are obtained from ground truth annotations.

consists of images of 200 different bird species, each an-
notated with answers to 312 binary questions about visual
attributes like wing colour, body shape, beak shape etc.
See Appendix §B.1 for a complete list of all the binary
questions used. It is reasonable to assume that given all
312 attributes, Y is determined and that every visual at-
tribute question is a function of Y . However, the image
annotations are noisy. To remedy this, in accordance with
prior work (Koh et al., 2020), we modify the annotations
in the following manner; if more than half the images for
a particular class have value x for a certain attribute, we
set the annotation for that attribute of all images from that
class to x.

• 20Q with animals. For our second example, we play 20Q
with animals. For this purpose, we use the AwA2 dataset
(Xian et al., 2018). The datasets consists of images of 50
different animal classes each annotated with answers to 85
binary attributes such as number of legs, skin color, eating
habits, habitat etc. Appendix §B.2 for a complete list
of all the binary questions used. Every attribute answer
is a deterministic outcome of the label Y and together
they determine Y , that is, knowing the answers to all 85
attribute questions allows for identifying Y .

Given a dataset, we construct a T by including a test for
every binary attribute in the dataset in the form of a question
about the presence or absence of that attribute. The outcome
of any given test is its corresponding answer evaluated on the
given sample point (obtained from the dataset annotations).
We carry out information maximization to sequentially carry
out tests until the class, Y , has been determined. We use
the empirical probabilities in the dataset to compute all the
entropic quantities required for running the greedy strategy
(algorithm in equation 3). Figure 2a shows an example run
of the greedy strategy for the CUB-200 dataset and Figure
2b shows an example from the AwA2 dataset.

Empirical computation of ω for a given dataset. For every
class y ↗ Y , for every iteration k and selected test Tk,y , we
record the quantity ωk,y :=

∣∣P (Tk,y = 1 | t1:k→1) ⇐
1
2

∣∣.
Tk,y is the test selected by the greedy strategy in iteration k

Figure 3. Comparison of the relative ratio of different bounds to
the actual average number of tests needed by InfoMax, Bound

InfoMax , for
different simulated prior distributions over Y .
for when the class label of the input sample point is Y = y.
Figure 1 shows the distribution for ωk,y over all iterations
and labels y ↗ Y for the two datasets. Y is considered to be
uniform in both datasets since they are balanced. It is clear
from the figure that the given set of tests for these examples
is ω-unpredictable for ω = 0.22 and ω = 0.17 respectively,
since for this value all tests selected by the greedy strategy
(in any iteration for any data-point) will satisfy equation 2.

Empirical comparison of bounds for uniform Y . We first
compare the mean number of queries needed by the greedy
strategy for this task with various upper bounds to evaluate
their tightness in Table 1 when Y is taken to be uniform
(as is in the given datasets). In addition to BLov, we also
compare with with the bounds derived by Dasgupta (2004)
and Kosaraju et al. (1999), which make no assumption on
T (and differ by only a constant factor). Dasgupta’s bound
is given by:

BDas := 4 ln

(
1

minY p(Y )

)
↑ opt(T , Y ), (7)

where opt(T , Y ) is as defined in the Introduction. Since
computing opt(T , Y ) is intractable, in our comparisons we
use H(Y ) as a proxy (recall H(Y ) → opt(T , Y )).

Table 1. Comparison of different bounds with the empirical perfor-
mance of the greedy strategy (InfoMax in column 4)

Task ω H(Y ) InfoMax BOracle BLov BDas
20Q with birds 0.22 7.64 7.70 8.93 17.44 161.86
20Q with animals 0.17 5.64 5.73 6.17 12.69 88.31

Notice that for both datasets, our bound is much tighter than
existing bounds with BDas being extremely loose (under-
standably) since it makes no assumptions about T .

Empirical comparison of bounds for non-uniform Y .
We expect our bounds to be much tighter than previous
bounds as the entropy of Y decreases. To test this, we took
the same two datasets as before and simulated different
prior distributions over Y . We did so by carrying out the
following steps:

1. Sample a prior distribution over Y , denoted as P(Y ),

6
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by sampling from the symmetric Dirichlet distribution
(the concentration parameter of the Dirichlet was sam-
pled uniformly between [0, 1]).

2. Construct an augmented dataset by repeating every
label Y = y (in the original dataset) ⇑1000P(y)⇓ times,
where ⇑.⇓ is the floor function to ensure an integer
value and 1000 is a chosen hyper-parameter to ensure
we have enough samples to accurately estimate the
sampled prior P(Y ) (obtained in the previous step).

The above two steps result in one simulation of a non-
uniform prior distribution. For both datasets (CUB-200
and AwA2) we carried out 200 simulations, and present the
ratio between the evaluated bound5 and the performance
of the InfoMax algorithm for each simulation as a scatter
plot in Figure 3. Our results indicate that the ratio of our
bound, across all simulated priors, is about an order of mag-
nitude smaller than both BLov and BDas. Moreover, this gap
increases as the entropy of Y decreases.

4.3. Is our bound tight?

In the previous subsection, we show that our proposed bound
improves upon previous known bounds on the performance
of the greedy strategy. Nevertheless, is it possible to get a
better bound? Stated precisely, given a value ω, is it possible
to obtain a tighter bound than BOracle that holds for all T that
is ω-unpredictable? The answer is negative since given a ω,
we can always construct a discrete random variable Y and
a set of tests T that is ω-unpredictable such that the greedy
strategy takes exactly H(Y )

h( 1
2+ω)

number of tests to identify
Y . Since Theorem 4.1 must hold for any set of tests that
is ω-unpredictable this immediately implies that our bound
is tight. We will now describe the construction of such an
example in detail.

Given some ω ↗ [0, 1
2 ]. Take any integer n ↗ N and let Y be

a random variable taking n different values with the follow-
ing probability mass function for any k ↗ {1, 2, ..., n⇐ 1}

P(Y = k) = (
1

2
⇐ ω)(

1

2
+ ω)k→1

.

The remaining mass of ( 12 + ω)n→1 is placed on the last
element n, that is, P(Y = n) = ( 12 + ω)n→1. The entropy
of this distribution is (see Lemma A.1 in the Appendix for a
proof.)

H(Y ) = h(
1

2
+ ω)

n→2∑

i=0

(
1

2
+ ω)i,

Given this setup, take the set of tests, T , to be the set of
all singleton tests of the form “Is Y = y?” for all y ↗

5ω was computed empirically for each simulated prior distribu-
tion using the same procedure described before.

{1, 2, ..., n}. This T is ω-unpredictable. This is because,
in every iteration k, the most informative test (that is, the
test with the highest entropy conditioned on history) will be
the test “Is Y = k?” and this test will have a conditional
probability of being ‘true’ ω units away from one-half thus
satisfying equation 2. We formally show this in the proof of
Lemma A.2 in the Appendix.

The greedy strategy with this T will take H(Y )
h( 1

2+ω)
tests on

average to identify Y (refer Lemma A.2) which coincides
with our bound in Theorem 4.1.

5. Performance Bounds For Noisy Tests
Here, we analyze the performance of the greedy strategy
when all tests in T are noisy, that is ⇒T ↗ T , the condi-
tional entropy H(T | Y ) > 0. As discussed in §2, the
performance of the greedy strategy under noise is poorly
understood. Unlike prior work (Nowak, 2008), our analysis
does not assume that tests can be repeated any number of
times to average the noise out. This is because in many
applications the same test cannot be repeated again or will
give the same outcome (Chen et al., 2015).6 Instead we
consider an explicit noise model for the tests and analyze
the performance of the greedy strategy for that model.

Binary Symmetric Channel (BSC) Noise Model. We first
study the case where test outcomes are corrupted by a BSC,
which is perhaps the most well-studied and simplest model
for understanding the effects of noise in communication
channels. We make the following assumptions.

• For every T ↗ T there exists random variables DT (Y ),
which is a function of Y , and NT such that T = DT (Y )⇔
NT . The symbol ⇔ denotes the Exclusive OR (XOR)
operation. DT (Y ) can be understood as the true outcome
for test T if there was no noise. NT is the noise variable
that corrupts the test outcome.

• For every T ↗ T , we assume NT is independent of Y
with prior probability P(NT = 1) = ε for some ε ↗

[0, 1
2 ]. Moreover, we assume all the noise variables, {NT :

T ↗ T }, are independent and hence the noise variables
are i.i.d..

We now describe our analysis of how the greedy strategy
performs under this noise model.

6Note, while we do not assume the same test can be repeated,
there can be multiple tests in T that are (conditionally) statistically
identical. For example, in the famous 20Q game let y1 = “Queen
Victoria” and y2 = “Charles Darwin” be the only two states with
non-trivial mass. Then, both tests “Is Y female?” and “Is Y a
queen?” have statistically identical outcomes but are different
tests.
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5.1. A bound of the performance of the greedy strategy
for noisy tests

In general, when noise is present in the test outcomes, Info-
Max (equation 1) is not equivalent to entropy maximization
(equation 3). As a result we cannot interpret the greedy
strategy as selecting the test at each iteration whose success
probability given the history of test outcomes observed so
far is close to 1

2 . However, as we show in Lemma 5.1, under
our noise model, we can interpret the greedy strategy as
choosing the test T̂ in each iteration whose true outcome
(D

T̂
) has success probability (given history) closest to a half.

We now state our lemma which is inspired from (Jedynak
et al., 2012) where a similar result was derived for the case
where Y = R and the tests are unions of intervals along R.

Lemma 5.1. Under the BSC noise model, at any iteration

k + 1, the InfoMax algorithm will pick test

Tk+1 = argmin
T↑T

∣∣P(DT = 1 | A(t1:k))⇐
1

2

∣∣,

where A(t1:k) is the active set after k iterations.

The lemma is proved using standard information-theoretic
identities coupled with the properties of our noise model.
Refer Append §A.2.1 for a detailed proof. This result is
in line with intuition since the noisy component of every
test (NT ) is independent of Y and hence uninformative
for prediction. Thus, the selection of the most informative
next test is governed solely by how well it’s true outcome
approximately bisects the current active set A(t1:k).

A natural question to ask next is, If a given set of tests T is

(ω, ϱ)-unpredictable then what can we conclude about the

probability, P(DTk+1 = 1 | A(t1:k)), of the the chosen test?
The following lemma answers this.

Lemma 5.2. Under the BSC model with noise parameter

ε ↗ [0, 1
2 ], if T is (ω, ϱ)-unpredictable according to defini-

tion 3.1, then in any iteration k+1, the greedy strategy will

either choose a test Tk+1 ↗ T such that

∣∣∣P
(
DTk+1 = 1 | A(t1:k)

)
⇐

1

2

∣∣∣ →
ω

1⇐ 2ε
, (8)

or terminate according to ϱ stopping criterion. More-

over, given ε and Y , it is not possible to have a (ω, ϱ)-
unpredictable T for ω >

1
2 ⇐ ε with ϱ > maxy↑Y P(Y =

y), which is the probability of the mode of the prior distri-

bution over Y .

Refer to Appendix §A.3 for a proof. The above result has
two consequences.

1. It shows that for a fixed ω, as the noise level ε increases
from 0 to 1

2 (it’s maximum possible value) the ability
of the true outcome DT = DT (Y ) for any given test

T ↗ T to approximately bisect the current active set de-
teriorates by a factor of 1

1→2ε compared to the observed
test outcome T = t. Based on this, one can conjecture
that as the noise level increases, more and more tests
would be needed to identify Y , because the ability of the
true outcomes to approximately bisect the current active
set degrades.

2. It shows that the maximum possible value of ω is bounded
by the noise level ε. In particular, by inverting the re-
sult in equation 8 (see Appendix §A.3) we see that if∣∣∣P

(
DTk+1 = 1 | A(t1:k)

)
⇐

1
2

∣∣∣ → ω
↓ for some constant

ω
↓
↗ [0, 1

2 ], then this implies ω = ω
↓(1⇐2ε) ↗ [0, 1

2 ⇐ε].
Thus, unlike the oracle case, it is not possible to have a set
of noisy tests which is (ω, ϱ)-unpredictable for ω >

1
2⇐ε

with ϱ greater than the probability of the mode of the
prior distribution over Y . The condition on ϱ is needed
to ensure that InfoMax would require at least one test to
gather information about Y , otherwise the prior distribu-
tion would suffice to make a prediction. In hindsight, this
result makes sense since according to our noise model,
every test outcome is corrupted independently of all other
tests and hence, there will always be some uncertainty
in a certain test’s outcome regardless of how many tests
have been carried out so far.

Having stated all the ingredients we will now present our
main result for the greedy strategy under the BSC noise
model.

Theorem 5.3. Fix noise level ε ↗ [0, 1
2 ] for the BSC model.

Fix ω ↗ [0, 1
2 ⇐ ε]. Given a (ω, ϱ)-unpredictable T , the

average number of tests needed by the InfoMax algorithm

to predict Y with confidence at least ϱ under the BSC model

is at most

BNoisy :=
H(Y )

h( 12 + ω)⇐ h(ε)
. (9)

A complete proof can be found in Appendix §A.4. The
main idea behind the proof of this theorem is similar to the
proof sketch for Theorem 4.1 with the additional nuance
that carrying out tests after the posterior has peaked will still
incur a non-zero conditional entropy due to the presence of
noise. This nuance results in the additional h(ε) term in the
denominator of the bound (compared to equation 5). Notice
that our bound does not explicitly depend on ϱ, we defer a
discussion on this for later.

To the best of our knowledge, this is a first such result for

the InfoMax algorithm for noisy tests. Observe that in the
absence of noise, that is, when ε = 0, we recover our bound
for the oracle case (Theorem 4.1). In the extreme case,
when ε = 1

2 , none of the tests are informative about Y . As
a result, InfoMax would require an infinite amount of tests
to make progress since the distribution over Y will remain

8
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unchanged no matter how many tests are carried out (in
other words, the posterior over Y would stay same as the
prior). This is reflected in our bound where the denominator
converges to zero as ε ↖

1
2 ( recall ω →

1
2 ⇐ε from Lemma

5.2). Refer Figure 5 in the Appendix for a plot of the ratio
BNoisy
BOurs

for different (ω,ε) values.

Information-theoretic interpretation of our bound. Re-
call that since we assume T is (ω, ϱ)-unpredictable, in each
iteration k (until termination), InfoMax will select a test Tk

whose entropy H(Tk | A(t1:k→1)) ≃ h( 12 + ω). Thus, the
denominator in equation 9 can be upper bounded as follows,

h(
1

2
+ ω)⇐ h(ε) → H(Tk | A(t1:k→1))⇐H(Tk | Y )

= I(Tk;Y | A(t1:k→1).
(10)

In the first inequality we substituted h(ε) = H(Tk | Y )
(which comes directly from the definition of our BSC
model). Thus, in each iteration, InfoMax will pick a test
that contains at least h( 12 + ω)⇐ h(ε) units of conditional
mutual information about Y . Since, the total information
contained in Y is characterized by its entropy, H(Y ), it
makes intuitive sense to expect that H(Y )

h( 1
2+ω)→h(ε)

number
of tests would be needed at most by InfoMax to obtain all
the information about Y that is present in T . This gives an
information-theoretic justification of our bound in Theorem
5.3 that seems to indicate that our bound for the performance
of InfoMax under BSC noise is tight.

Relation between ϱ, ω and ε. Although BNoisy does not
explicitly depend on the confidence level (for prediction) ϱ,
there is an implicit dependence since the noise level ε and
the unpredictability level ω put a constrain on the maximum
achievable value of ϱ using InfoMax. Thus, BNoisy should
be interpreted as an upper bound on Infomax’s performance
with the maximum achievable ϱ for a given (ω,ε) pair. This
is because, if a given T is (ω, ϱ0)-unpredictable, then it is
also (ω, ϱ)-unpredictable for any ϱ → ϱ0.

We now present our result on the maximum possible ϱ,
given a (ω,ε) pair.

Lemma 5.4. Fix a noise level ε ↗ [0, 1
2 ] for

the BSC model. For a given ω ↗ [0, 1
2 ⇐ ε],

there does not exist a (ω, ϱ)-unpredictable T for any

ϱ > 1⇐

(
1
2→

ω
1↑2ε

)
ε

(
1
2+

ω
1↑2ε

)
(1→ε)+

(
1
2→

ω
1↑2ε

)
ε

.

Figure 6 in the Appendix shows the maximum achievable
ϱ for different values of (ω,ε). Notice, when ε=0, there
is no noise in the test outcomes and hence it is possible
to identify Y with a suitably chosen T . However, as ε

increases, the confidence (ϱ) with which we can make a
prediction decreases due to uncertainty induced by the noise.

We conclude by a brief discussion on the limitations of this
work in the next section.

Limitations
The following are the limitations of this work.

• Our analysis assumes tests are ω-unpredictable for
some fixed value of ω, however a priori it is not known
how to find ω such that the given set of tests would be
ω-unpredictable.

• Moreover, the BSC noise model assumes i.i.d. noise;
however, in practice noise is often dependent on Y , and
test outcomes are often not conditionally independent
of each other.

• Finally, our bound BNoisy does not explicitly depend on
ϱ but there is an implicit dependence since the noise
level ε and the unpredictability level ω put a constraint
on the maximum achievable value for ϱ using InfoMax
(see Lemma 5.4).

We hope future work addresses these limitations by studying
more complex noise models, designing testable conditions
to verify if a given T is ω-unpredictable for a given value of
ω or not, and incorporating a more explicit dependence on ϱ

in the performance bounds for InfoMax.
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A. Appendix

Figure 4. Illustration of the greedy Information Maximization algorithm. A flow chart depicting one iteration (k = 4) of the algorithm.
As an example we consider the task of disease diagnosis where Y denotes the disease a patient is suffering from (for example, tuberculosis,
common cold etc.) and the set of tests T here corresponds to questions about different symptoms the patient may be experiencing. The
corresponding binary answer (Yes/No) to every test indicates the outcome of that test.

Figure 5. Comparing our bound for the performance of InfoMax under noisy tests vs. oracle tests. We plot the ratio ε :=
BNoisy
BOracle

for
different values of ω and ϑ. Best viewed in colour.

A.1. Proofs

For ease of reading, we rewrite all the theorems, lemmas and corollaries from the main paper in this section (unnnumbered)
before presenting their respective proofs.

A.1.1. PROOF OF THEOREM 4.1

Theorem. Fix any ω ↗ [0, 1
2 ]. Let h be the binary entropy function. Given a ω-unpredictable T that collectively determine Y ,

the average number of tests needed by the information maximization algorithm to identify Y is at most H(Y )
h( 1

2+ω)
.

12



Performance Bounds for Information Maximization

Figure 6. Maximum achievable ϖ for a given (ω,ϑ) pair. We plot the bound in Lemma 5.4 for different values of ω and ϑ. Best viewed
in colour. The white area represents the region where ω > 1

2 → ϑ which is not possible according to Lemma 5.2.

Proof. Assume the InfoMax algorithm has run for k iterations. There are two cases,

Case 1. Y has not been identified. Then, since T is ω-unpredictable we know for the test Tk+1 selected in iteration k + 1

H(Tk+1 | T1 = t1, . . . , Tk = tk) ≃ h(
1

2
+ ω) (11)

The inequality is obtained using the concavity of the binary entropy function since the chosen test satisfies |P(Tk+1 = 1 |

T1 = t1, . . . , Tk = tk)⇐
1
2 | → ω (from definition 3.1).

Case 2. Y has been identified, at which point the algorithm would terminate and all further tests would have 0 conditional
entropy since their outcome will be determined by the value of Y that has been identified, that is,

H(Tk+1 | T1 = t1, . . . , Tk = tk) = 0 (12)

Define ς to be the random variable indicating the stopping time for a single run of the InfoMax algorithm. Equation 11 and
equation 12 can be combined into

H(Tk+1 | T1 = t1, . . . , Tk = tk) ≃ h(
1

2
+ ω)1(ς > k), (13)

where 1 is the indicator random variable.

Taking expectation on both sides,

H(Tk+1 | T1, T2, ..., Tk) ≃ h(
1

2
+ ω)P(ς > k), (14)
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Summing k from 0 to |T |⇐ 1 we obtain

h(
1

2
+ ω)

|T |→1∑

k=0

P(ς > k) → H(T1, T2, ..., T|T |)

→ H(Y )

=↙ E[ς ] → H(Y )

h( 12 + ω)
,

(15)

which is the desired bound. The second inequality is obtained since all the test outcomes are functions of Y .

A.2. More details about the example showing tightness of our bound in Theorem 4.1

For ease of readers, we rewrite the example before proceeding to the lemmas.

Given some ω ↗ [0, 1
2 ]. Take any integer n ↗ N and let Y be a random variable taking n different values with the following

probability mass function for any k ↗ {1, 2, ..., n⇐ 1}

P(Y = k) = (
1

2
⇐ ω)(

1

2
+ ω)k→1

. (16)

The remaining mass of ( 12 + ω)n→1 is placed on the last element n, that is, P(Y = n) = ( 12 + ω)n→1.

Lemma A.1. The entropy of the above described distribution is

H(Y ) = h(
1

2
+ ω)

n→2∑

i=0

(
1

2
+ ω)i,

where h is the binary entropy function.

Proof. We will proceed by induction.
Base case: n = 2. In this case the distribution over Y is as follows,

P(Y = 1) =
1

2
⇐ ω;P(Y = 1) =

1

2
+ ω.

The entropy for this distribution is h( 12 + ω).

Induction step: n = j. Assume if Ŷ can take j values, with the distribution as specified above in our example (equation 16),
then

H(Ŷ ) = h(
1

2
+ ω)

j→2∑

i=0

(
1

2
+ ω)i.

Now, let Y be a random variable that takes j + 1 values. Y can be constructed from Ŷ as follows,

P(Y = k + 1) = P(Ŷ = k)(
1

2
+ ω) ⇒k ↗ {1, 2, ..., j}. (17)

Set P(Y = 1) = 1
2 ⇐ ω.

Now, divide the values Y can take into two groups g1 = 1 and g2 = {2, 3, ..., j + 1}. Let G be a random variable taking
values g1 and g2. Then

P(G = g1) = P(Y = 1) =
1

2
⇐ ω and P(G = g2) = 1⇐ P(Y = 1) =

1

2
+ ω.

14



Performance Bounds for Information Maximization

The entropy of Y can then be computed as follows.

H(Y ) = H(G) +H(Y | G)

= h(
1

2
+ ω) + P(G = g1)H(Y | G = g1) + P(G = g2)H(Y | G = g2)

= h(
1

2
+ ω) + (

1

2
+ ω)H(Ŷ )

= h(
1

2
+ ω)

j→1∑

i=0

(
1

2
+ ω)i.

(18)

The first equality is a property of entropy under grouping of elements a random variable (Cover, 1999). In the second
equality, we used the fact that H(Y | G = g1) = 0 since g1 is a singleton set. Moreover, H(Y | G = g2) = H(Ŷ ), since
for all k ↗ {2, 3, ..., j + 1} P (Y = k | G = g2) =

P (Y=k)
P (G=g2)

= P (Y=k)
1
2+ω

= P (Ŷ = k ⇐ 1) (equation 17). Thus, proving the
desired lemma.

Lemma A.2. Let Y take n values with distribution as described in equation 16. If T is the set of all singleton tests of the

form “Is Y = y?” for all y ↗ {1, 2, ...n}, then the InfoMax algorithm will take exactly
H(Y )

h( 1
2+ω)

tests on average to identify Y .

Proof. We will first show by induction that at step k, if the algorithm has not identified Y and terminated already, then
InfoMax will pick the test “Is Y = k?”. Thus, InfoMax will sequentially eliminate the possible values Y can take starting
from 1 in iteration 1, 2 in iteration 2 and so on.

Base case: step = 1. The test closest to one-half is T1 =“Is Y = 1?” with P (T1 = 1) = 1
2 ⇐ ω. All the remaining singleton

tests in T will have probability of being true less than 1
2 ⇐ ω. Thus, the hypothesis Y = 1 will be eliminated from the active

set in the first iteration.

Induction step: step = k. Assume the induction hypothesis holds that the first k ⇐ 1 values of Y have been eliminated so
far, of the remaining values,

P
(
Y = k | A(t1:k→1)

)
=

P(Y = k)

P
(
A(t1:k→1)

) =
( 12 ⇐ ω)( 12 + ω)k→1

( 12 + ω)k→1
=

1

2
⇐ ω.

Now, if 1 < k < n⇐ 1, then it can be easily checked that all the remaining hypothesis in the active set A(t1:k→1) will have
their probability mass strictly less than 1

2 ⇐ ω. Thus, at iteration k, hypothesis Y = k will be eliminated from the active set.

Alternatively, if k = n⇐ 1, then the only two remaining values of Y in the active set are n⇐ 1 and n. Observe that both
tests, “Is Y = n ⇐ 1?” or “Is Y = n?”, will lead to termination as Y would have been identified. Moreover, both tests
are complements of each other (around one-half) and have exactly the same conditional entropy (given the first n ⇐ 2
observed outcomes). Thus, we can assume without loss of generality that at step k = n⇐ 1, InfoMax will pick the test “Is
Y = n⇐ 1?”.

Based on this, we conclude that the average number of tests needed by InfoMax to identify Y is,

Avg # tests =
n→1∑

i=1

P(Y = i)i+ P(Y = n)(n⇐ 1) =
n→1∑

i=1

(
1

2
⇐ ω)(

1

2
+ ω)i→1

i+ (
1

2
+ ω)n→1(n⇐ 1). (19)

Let S :=
∑

n→1
i=1 (

1
2 + ω)i→1

i. Rewriting Avg # tests in terms of S we get,

Avg # tests = S(
1

2
⇐ ω) + (

1

2
+ ω)n→1(n⇐ 1)

= S ⇐ (
1

2
+ ω)S + (

1

2
+ ω)n→1(n⇐ 1)

=
n→2∑

i=0

(
1

2
+ ω)i

(20)

Thus, proving the desired lemma since from Lemma A.1 we know that
∑

n→2
i=0 (

1
2 + ω)i = H(Y )

h( 1
2+ω)

.
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A.2.1. PROOF OF LEMMA 5.1

Lemma. Under the BSC noise model, at any iteration k+1, the information maximization algorithm will pick the test Tk+1,
such that

Tk+1 = argmin
T↑T

∣∣P(DT = 1 | A(t1:k))⇐
1

2

∣∣,

where A(t1:k) is the active set after k iterations.

Proof. Let h be the binary entropy function. At any iteration k + 1, the mutual information for any T ↗ T can be written as
follows,

I(T, Y | A(t1:k)))

= H(T | A(t1:k)))⇐H(T | Y,A(t1:k)))

= h

(
∑

y↑Y
P
(
y | A(t1:k)

)
P(T = 1 | y)

)
⇐

∑

y↑Y
P(y | A(t1:k))h

(
P(T = 1 | y)

) (21)

Define ωT :=
∑

{y↑Y:DT (y)=1} P(y | A(t1:k)), that is, ωT is the total posterior mass on Y (given the current active set)
subject to the constraint that DT (Y ) = 1. We can rewrite equation 21 as,

I(T, Y | A(t1:k))) = h

(
ωT (1⇐ ε) + (1⇐ ωT )ε

)
⇐ ωTh(1⇐ ε)⇐ (1⇐ ωT )h(ε)

= h

(
ωT (1⇐ ε) + (1⇐ ωT )ε

)
⇐ h(ε).

(22)

Equation 22 shows that the mutual information between T and Y given the current active set is just the mutual information
of a noisy binary symmetric channel, for which we know the maximal value is attained at ωT = 1

2 . Moreover, the binary
entropy function is concave thus proving the desired lemma.

A.3. Proof of Lemma 5.2

Lemma. Under the BSC model with noise parameter ε ↗ [0, 1
2 ], if T is (ω, ϱ)-unpredictable according to definition 3.1,

then in any iteration k + 1, the greedy strategy will either choose a test Tk+1 ↗ T such that
∣∣∣P

(
DTk+1 = 1 | A(t1:k)

)
⇐

1

2

∣∣∣ →
ω

1⇐ 2ε
, (23)

or terminate according to ϱ stopping criterion. Moreover, given ε, it is not possible to have a (ω, ϱ)-unpredictable T for
ω >

1
2 ⇐ ε.

Proof. We know from the BSC noise model that

P(Tk+1 = 1 | A(t1:k)) = P
(
Tk+1 = 1 | DTk+1 = 1

)
P
(
DTk+1 = 1 | A(t1:k)

)

+ P
(
Tk+1 = 1 | DTk+1 = 0

)
P
(
DTk+1 = 0 | A(t1:k)

)
.

(24)

Let x := P
(
DTk+1 = 1 | A(t1:k)

)
. The above equation can be rewritten as

P
(
Tk+1 = 1 | A(t1:k)

)
= P

(
Tk+1 = 1 | DTk+1 = 1

)
x+ P

(
Tk+1 = 1 | DTk+1 = 0

)
(1⇐ x). (25)

From our noise model we know P
(
Tk+1 = 1 | DTk+1 = 1

)
= 1⇐ ε and P

(
Tk+1 = 1 | DTk+1 = 0

)
= ε. Substituting this

in equation 25 we get,
P
(
Tk+1 = 1 | A(t1:k)

)
= (1⇐ ε)x+ (1⇐ x)ε

=↙ x =
P
(
Tk+1 = 1 | A(t1:k)

)
⇐ ε

1⇐ 2ε

(26)
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Since T is (ω, ϱ)-unpredictable, the chosen test Tk+1 at iteration k + 1 satisfies

1

2
⇐ ω → P (Tk+1 = 1 | A(t1:k)) →

1

2
+ ω (27)

Combining equation 26 and equation 27 we obtain,

1
2 ⇐ ε

1⇐ 2ε
⇐

ω

1⇐ 2ε
→ x →

1
2 ⇐ ε

1⇐ 2ε
+

ω

1⇐ 2ε

=↙ ⇐
ω

1⇐ 2ε
→ x⇐

1

2
→

ω

1⇐ 2ε
,

(28)

proving the lemma.

Moreover, notice that equation 28 can be inverted. In particular if we assume x := P
(
DTk+1 = 1 | A(t1:k)

)
is between

1
2 ± ω

↓ for some ω
↓
↗ [0, 1

2 ], we can conclude from equation 26 that
∣∣∣P
(
T = 1 | A(t1:k)

)
⇐

1

2

∣∣∣ → ω
↓(1⇐ 2ε). (29)

It is immediate from equation 29 that P
(
T = 1 | A(t1:k)

)
cannot be more than 1

2 ⇐ ε units away from one-half (obtained
by setting ω

↓ = 1
2 in the above inequality).

The result in equation 29 will be used to re-parameterize ω for a given (ω, ϱ)-unpredictable set of tests in terms of ω↓ to get
rid of the constraint on ω in terms of the noise level ε.

A.4. Proof of Theorem 5.3

Theorem. Fix noise level ε ↗ [0, 1
2 ] for the BSC model. Fix ω ↗ [0, 1

2 ⇐ ε]. Let h be the binary entropy function. Given a
(ω, ϱ)-unpredictable T , the average number of tests needed by the InfoMax algorithm to predict Y with confidence at least ϱ
under the BSC model is at most

BNoisy :=
H(Y )

h( 12 + ω)⇐ h(ε)
. (30)

Proof. Assume the InfoMax algorithm has run for k iterations. There are two cases,

Case 1. Y has not been predicted with confidence ϱ, that is, maxy↑Y |P(Y = y | T1 = t1, . . . , Tk = tl)| < ϱ ⇒l → k.
Then, since T is (ω, ϱ)-unpredictable we know for the test Tk+1 selected in iteration k + 1

H(Tk+1 | T1 = t1, . . . , Tk = tk) ≃ h(
1

2
+ ω) (31)

The inequality is obtained using the concavity of the binary entropy function since the chosen test satisfies |P(Tk+1 = 1 |

T1 = t1, . . . , Tk = tk)⇐
1
2 | → ω (from definition 3.1, lemma 5.1 and the fact that |P(DTk+1 = 1 | T1 = t1, . . . , Tk = tk)⇐

1
2 |

is directly proportional to |P(Tk+1 = 1 | T1 = t1, . . . , Tk = tk)⇐
1
2 | [equation 29]).

Case 2. The algorithm already encountered a posterior mass of maxy↑Y P
(
Y = y | T1 = t1, . . . , Tk = tl

)
≃ ϱ for some

l < k number of iterations. At this point, the algorithm should have terminated according to definition 3.1. If further tests
are carried out, we are not guaranteed (from the assumption of (ω, ϱ)-unpredictability of T ) that there ∝Tk+1 ↗ T such that
|P(Tk+1 = 1 | T1 = t1, . . . , Tk = tk)⇐

1
2 | → ω. However, under the BSC model we are guaranteed that every test outcome

is flipped with ε probability independent of the history. Using this insight, we obtain

H(Tk+1 | T1 = t1, . . . , Tk = tk) ≃ H(Tk+1 | DTk+1 , T1 = t1, . . . , Tk = tk)

= H(Tk+1 | DTk+1)

= h(ε)

(32)

The first inequality is obtained using the fact that conditioning on random variables can only reduce the entropy. The
second equality follows from the fact that conditioned on the true test DTk+1 , Tk+1 is independent of the history of
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outcomes observed so far. The last equality is obtained by observing that P(Tk+1 = 1 | DTk+1 = 1) = 1 ⇐ ε and
P(Tk+1 = 1 | DTk+1 = 0) = ε (from definition of BSC model) and the fact that the binary entropy function is symmetric
around one-half (that is, h(ε) = h(1⇐ ε)).

Define ς to be the random variable indicating the stopping time for a single run of the InfoMax algorithm. equation 31 and
equation 32 can be combined into

H(Tk+1 | T1 = t1, . . . , Tk = tk) ≃ h(
1

2
+ ω)1(ς > k) + h(ε)1(ς → k), (33)

where 1 is the indicator random variable.

Taking expectation on both sides,

H(Tk+1 | T1, T2, ..., Tk) ≃ h(
1

2
+ ω)P(ς > k) + h(ε)P(ς → k), (34)

Summing k from 0 to |T |⇐ 1 we obtain

h(
1

2
+ ω)

|T |→1∑

k=0

P(ς > k) + h(ε)

|T |→1∑

k=0

(
1⇐ P(ς > k)

)
→ H(T1, T2, ..., T|T |)

→ H(Y, T1, T2, ..., T|T |)

= H(Y ) + |T |h(ε)

=↙ h(
1

2
+ ω)E[ς ] + h(ε)(|T |⇐ E[ς ]) → H(Y ) + |T |h(ε)

=↙ E[ς ] → H(Y )

h( 12 + ω)⇐ h(ε)
,

(35)

which is the desired bound. The second inequality is obtained by using the fact that the joint entropy is always more than
or equal to the marginal entropy of just the tests. The first equality is obtained by our noise model since given Y , the test
outcomes are independent of each other and the only remaining uncertainty is the noise.

A.5. Proof of Lemma 5.4

Lemma. Fix a noise level ε ↗ [0, 1
2 ] for the BSC model. For a given ω ↗ [0, 1

2⇐ε], there does not exist a (ω, ϱ)-unpredictable

T for any ϱ > 1⇐

(
1
2→

ω
1↑2ε

)
ε

(
1
2+

ω
1↑2ε

)
(1→ε)+

(
1
2→

ω
1↑2ε

)
ε

.

Proof. Let k be the last iteration of InfoMax for some given sample point. Let y0 ↗ Y be the mode of the posterior
P(Y | A(t1:k)). Let Tk be the test selection at iteration k, and assume without loss of generality the outcome observed was
tk = 1. We can then express the posterior for Y = y0 as,

P
(
Y = y0 | A(t1:k)

)

=
P
(
Y = y0 | A(t1:k→1)

)
P
(
Tk = 1 | Y = y0

)

P
(
Y = y0 | A(t1:k→1)

)
P
(
Tk = 1 | Y = y0

)
+
∑

y↑Y\{y0} P
(
Y = y | A(t1:k→1)

)
P
(
Tk = 1 | Y = y

)

=
P
(
Y = y0 | A(t1:k→1)

)
P
(
Tk = 1 | Y = y0

)

P
(
Tk = 1 | A(t1:k→1)

)

(36)

From equation 36 it is clear than P
(
Y = y0 | A(t1:k)

)
would be maximized when the relative contribution of y0,

P
(
Y = y0 | A(t1:k→1)

)
P
(
Tk = 1 | Y = y0

)
to P

(
Tk = 1 | A(t1:k→1)

)
is maximized. Thus, the best case scenario is
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when Tk is the singleton test “Is Y = y0?”, which has almost the entirety of its probability mass of being 1 (Yes) due to y0,
that is,

P
(

“Is Y = y0?” = 1 | A(t1:k→1)
)

= P
(
Y = y0 | A(t1:k→1)

)
(1⇐ ε) +

(
1⇐ P

(
Y = y0 | A(t1:k→1)

))
ε. (37)

The above equality is obtained by using the fact that for Y = y0, the true outcome DTk for Tk is 1, but for every other
y ↗ Y \ {y0}, the true outcome is 0.

Denote x := P
(
Y = y0 | A(t1:k→1)

)
. Then, with the above choice for Tk, we have

P
(
Y = y0 | A(t1:k)

)
=

x(1⇐ ε)

x(1⇐ ε) + (1⇐ x)ε
, (38)

which is monotonically increasing in x for x ↗ [0, 1
2 ].

Now let T be an arbitrary (ω, ϱ)-unpredictable set and let T ↓ = T ′ “Is Y = y0?”. Since T is (ω, ϱ)-unpredictable then T
↓

is (ω, ϱ)-unpredictable as well. Let us first analyze T
↓.

Since T
↓ is (ω, ϱ)-unpredictable,

P
(
Y = y0 | A(t1:k)

)
→

(
1
2 + ω

1→2ε

)
(1⇐ ε)

(
1
2 + ω

1→2ε

)
(1⇐ ε) +

(
1⇐

(
1
2 + ω

1→2ε

))
ε

= 1⇐

(
1
2 ⇐

ω

1→2ε

)
ε

(
1
2 + ω

1→2ε

)
(1⇐ ε) +

(
1
2 ⇐

ω

1→2ε

)
ε

,

(39)

which is attained by setting x =
(

1
2 + ω

1→2ε

)
. Equation 39 is obtained by considering the following facts. First,

x = P(DTk = 1 | A(t1:k→1)), where recall DTk is the true (de-noised) outcome for the test Tk := “Is Y = y0?”. Second,
from equation 26 it is clear that if T ↓ is (ω, ϱ)-unpredictable then there cannot exist a singleton test whose corresponding true
outcome has probability, P(DTk = 1 | A(t1:k→1)) >

1
2 + ω

1→2ε . Combining these two facts along with the monotonicity of
the posterior in x gives the first inequality in equation 39.

Finally, since we argued that the singleton test “Is Y = y0?” maximizes the posterior in equation 36, the upper bound in
equation 39 will hold for our given arbitrary (ω, ϱ)-unpredictable T (which may not contain this single test). This proves the
lemma.

B. Query set details
B.1. CUB-200

Following are the 312 binary questions used in the dataset.

1. Has bill shape::curved (up or down)?
2. Has bill shape::dagger?
3. Has bill shape::hooked?
4. Has bill shape::needle?
5. Has bill shape::hooked seabird?
6. Has bill shape::spatulate?
7. Has bill shape::all-purpose?
8. Has bill shape::cone?
9. Has bill shape::specialized?

10. Has wing color::blue?
11. Has wing color::brown?
12. Has wing color::iridescent?
13. Has wing color::purple?
14. Has wing color::rufous?
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15. Has wing color::grey?
16. Has wing color::yellow?
17. Has wing color::olive?
18. Has wing color::green?
19. Has wing color::pink?
20. Has wing color::orange?
21. Has wing color::black?
22. Has wing color::white?
23. Has wing color::red?
24. Has wing color::buff?
25. Has upperparts color::blue?
26. Has upperparts color::brown?
27. Has upperparts color::iridescent?
28. Has upperparts color::purple?
29. Has upperparts color::rufous?
30. Has upperparts color::grey?
31. Has upperparts color::yellow?
32. Has upperparts color::olive?
33. Has upperparts color::green?
34. Has upperparts color::pink?
35. Has upperparts color::orange?
36. Has upperparts color::black?
37. Has upperparts color::white?
38. Has upperparts color::red?
39. Has upperparts color::buff?
40. Has underparts color::blue?
41. Has underparts color::brown?
42. Has underparts color::iridescent?
43. Has underparts color::purple?
44. Has underparts color::rufous?
45. Has underparts color::grey?
46. Has underparts color::yellow?
47. Has underparts color::olive?
48. Has underparts color::green?
49. Has underparts color::pink?
50. Has underparts color::orange?
51. Has underparts color::black?
52. Has underparts color::white?
53. Has underparts color::red?
54. Has underparts color::buff?
55. Has breast pattern::solid?
56. Has breast pattern::spotted?
57. Has breast pattern::striped?
58. Has breast pattern::multi-colored?
59. Has back color::blue?
60. Has back color::brown?
61. Has back color::iridescent?
62. Has back color::purple?
63. Has back color::rufous?
64. Has back color::grey?
65. Has back color::yellow?
66. Has back color::olive?
67. Has back color::green?
68. Has back color::pink?
69. Has back color::orange?
70. Has back color::black?
71. Has back color::white?
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72. Has back color::red?
73. Has back color::buff?
74. Has tail shape::forked tail?
75. Has tail shape::rounded tail?
76. Has tail shape::notched tail?
77. Has tail shape::fan-shaped tail?
78. Has tail shape::pointed tail?
79. Has tail shape::squared tail?
80. Has upper tail color::blue?
81. Has upper tail color::brown?
82. Has upper tail color::iridescent?
83. Has upper tail color::purple?
84. Has upper tail color::rufous?
85. Has upper tail color::grey?
86. Has upper tail color::yellow?
87. Has upper tail color::olive?
88. Has upper tail color::green?
89. Has upper tail color::pink?
90. Has upper tail color::orange?
91. Has upper tail color::black?
92. Has upper tail color::white?
93. Has upper tail color::red?
94. Has upper tail color::buff?
95. Has head pattern::spotted?
96. Has head pattern::malar?
97. Has head pattern::crested?
98. Has head pattern::masked?
99. Has head pattern::unique pattern?

100. Has head pattern::eyebrow?
101. Has head pattern::eyering?
102. Has head pattern::plain?
103. Has head pattern::eyeline?
104. Has head pattern::striped?
105. Has head pattern::capped?
106. Has breast color::blue?
107. Has breast color::brown?
108. Has breast color::iridescent?
109. Has breast color::purple?
110. Has breast color::rufous?
111. Has breast color::grey?
112. Has breast color::yellow?
113. Has breast color::olive?
114. Has breast color::green?
115. Has breast color::pink?
116. Has breast color::orange?
117. Has breast color::black?
118. Has breast color::white?
119. Has breast color::red?
120. Has breast color::buff?
121. Has throat color::blue?
122. Has throat color::brown?
123. Has throat color::iridescent?
124. Has throat color::purple?
125. Has throat color::rufous?
126. Has throat color::grey?
127. Has throat color::yellow?
128. Has throat color::olive?
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129. Has throat color::green?
130. Has throat color::pink?
131. Has throat color::orange?
132. Has throat color::black?
133. Has throat color::white?
134. Has throat color::red?
135. Has throat color::buff?
136. Has eye color::blue?
137. Has eye color::brown?
138. Has eye color::purple?
139. Has eye color::rufous?
140. Has eye color::grey?
141. Has eye color::yellow?
142. Has eye color::olive?
143. Has eye color::green?
144. Has eye color::pink?
145. Has eye color::orange?
146. Has eye color::black?
147. Has eye color::white?
148. Has eye color::red?
149. Has eye color::buff?
150. Has bill length::about the same as head?
151. Has bill length::longer than head?
152. Has bill length::shorter than head?
153. Has forehead color::blue?
154. Has forehead color::brown?
155. Has forehead color::iridescent?
156. Has forehead color::purple?
157. Has forehead color::rufous?
158. Has forehead color::grey?
159. Has forehead color::yellow?
160. Has forehead color::olive?
161. Has forehead color::green?
162. Has forehead color::pink?
163. Has forehead color::orange?
164. Has forehead color::black?
165. Has forehead color::white?
166. Has forehead color::red?
167. Has forehead color::buff?
168. Has under tail color::blue?
169. Has under tail color::brown?
170. Has under tail color::iridescent?
171. Has under tail color::purple?
172. Has under tail color::rufous?
173. Has under tail color::grey?
174. Has under tail color::yellow?
175. Has under tail color::olive?
176. Has under tail color::green?
177. Has under tail color::pink?
178. Has under tail color::orange?
179. Has under tail color::black?
180. Has under tail color::white?
181. Has under tail color::red?
182. Has under tail color::buff?
183. Has nape color::blue?
184. Has nape color::brown?
185. Has nape color::iridescent?
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186. Has nape color::purple?
187. Has nape color::rufous?
188. Has nape color::grey?
189. Has nape color::yellow?
190. Has nape color::olive?
191. Has nape color::green?
192. Has nape color::pink?
193. Has nape color::orange?
194. Has nape color::black?
195. Has nape color::white?
196. Has nape color::red?
197. Has nape color::buff?
198. Has belly color::blue?
199. Has belly color::brown?
200. Has belly color::iridescent?
201. Has belly color::purple?
202. Has belly color::rufous?
203. Has belly color::grey?
204. Has belly color::yellow?
205. Has belly color::olive?
206. Has belly color::green?
207. Has belly color::pink?
208. Has belly color::orange?
209. Has belly color::black?
210. Has belly color::white?
211. Has belly color::red?
212. Has belly color::buff?
213. Has wing shape::rounded-wings?
214. Has wing shape::pointed-wings?
215. Has wing shape::broad-wings?
216. Has wing shape::tapered-wings?
217. Has wing shape::long-wings?
218. Has size::large (16 - 32 in)?
219. Has size::small (5 - 9 in)?
220. Has size::very large (32 - 72 in)?
221. Has size::medium (9 - 16 in)?
222. Has size::very small (3 - 5 in)?
223. Has shape::upright-perching water-like?
224. Has shape::chicken-like-marsh?
225. Has shape::long-legged-like?
226. Has shape::duck-like?
227. Has shape::owl-like?
228. Has shape::gull-like?
229. Has shape::hummingbird-like?
230. Has shape::pigeon-like?
231. Has shape::tree-clinging-like?
232. Has shape::hawk-like?
233. Has shape::sandpiper-like?
234. Has shape::upland-ground-like?
235. Has shape::swallow-like?
236. Has shape::perching-like?
237. Has back pattern::solid?
238. Has back pattern::spotted?
239. Has back pattern::striped?
240. Has back pattern::multi-colored?
241. Has tail pattern::solid?
242. Has tail pattern::spotted?
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243. Has tail pattern::striped?
244. Has tail pattern::multi-colored?
245. Has belly pattern::solid?
246. Has belly pattern::spotted?
247. Has belly pattern::striped?
248. Has belly pattern::multi-colored?
249. Has primary color::blue?
250. Has primary color::brown?
251. Has primary color::iridescent?
252. Has primary color::purple?
253. Has primary color::rufous?
254. Has primary color::grey?
255. Has primary color::yellow?
256. Has primary color::olive?
257. Has primary color::green?
258. Has primary color::pink?
259. Has primary color::orange?
260. Has primary color::black?
261. Has primary color::white?
262. Has primary color::red?
263. Has primary color::buff?
264. Has leg color::blue?
265. Has leg color::brown?
266. Has leg color::iridescent?
267. Has leg color::purple?
268. Has leg color::rufous?
269. Has leg color::grey?
270. Has leg color::yellow?
271. Has leg color::olive?
272. Has leg color::green?
273. Has leg color::pink?
274. Has leg color::orange?
275. Has leg color::black?
276. Has leg color::white?
277. Has leg color::red?
278. Has leg color::buff?
279. Has bill color::blue?
280. Has bill color::brown?
281. Has bill color::iridescent?
282. Has bill color::purple?
283. Has bill color::rufous?
284. Has bill color::grey?
285. Has bill color::yellow?
286. Has bill color::olive?
287. Has bill color::green?
288. Has bill color::pink?
289. Has bill color::orange?
290. Has bill color::black?
291. Has bill color::white?
292. Has bill color::red?
293. Has bill color::buff?
294. Has crown color::blue?
295. Has crown color::brown?
296. Has crown color::iridescent?
297. Has crown color::purple?
298. Has crown color::rufous?
299. Has crown color::grey?
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300. Has crown color::yellow?
301. Has crown color::olive?
302. Has crown color::green?
303. Has crown color::pink?
304. Has crown color::orange?
305. Has crown color::black?
306. Has crown color::white?
307. Has crown color::red?
308. Has crown color::buff?
309. Has wing pattern::solid?
310. Has wing pattern::spotted?
311. Has wing pattern::striped?
312. Has wing pattern::multi-colored?

B.2. Awa2

Following are the 50 binary questions used in the dataset.

1. Is it black?
2. Is it white?
3. Is it blue?
4. Is it brown?
5. Is it gray?
6. Is it orange?
7. Is it red?
8. Is it yellow?
9. Does it have patches?

10. Does it have spots?
11. Does it have stripes?
12. Is it furry?
13. Is it hairless?
14. Does it have a tough skin?
15. Is it big?
16. Is it small?
17. Is it bulbous?
18. Is it lean?
19. Does it have flippers?
20. Does it have hands?
21. Does it have hooves?
22. Does it have pads?
23. Does it have paws?
24. Does it have long legs?
25. Does it have a long neck?
26. Does it have a tail?
27. Does it have chewteeth?
28. Does it have meatteeth?
29. Does it have buckteeth?
30. Does it have strainteeth?
31. Does it have horns?
32. Does it have claws?
33. Does it have tusks?
34. Is it smelly?
35. Does it fly?
36. Does it hop?
37. Does it swim?
38. Does it burrow tunnels?
39. Does it walks?
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40. Is it fast?
41. Is it slow?
42. Is it strong?
43. Is it weak?
44. Is it muscular?
45. Is it bipedal?
46. Is it quadrapedal?
47. Is it active?
48. Is it inactive?
49. Is it nocturnal?
50. Does it hibernate?
51. Is it agile?
52. Does it eat fish?
53. Does it eat meat?
54. Does it eat plankton?
55. Does it eat vegetation?
56. Does it eat insects?
57. Is it a forager?
58. Is it a grazer?
59. Is it a hunter?
60. Is it a scavenger?
61. Is it a skimmer?
62. Is it a stalker?
63. Is it a newworld animal?
64. Is it an oldworld animal?
65. Does it live in the arctic?
66. Is it a coastal animal?
67. Does it live in desert?
68. Does it live in bush?
69. Does it live in plains?
70. Does it live in forest?
71. Does it live in fields?
72. Does it live in jungle?
73. Does it live in mountains?
74. Does it live in ocean?
75. Does it live underground?
76. Does it live in water?
77. Does it live in a tree?
78. Does it live in a cave?
79. Is it fierce?
80. Is it timid?
81. Is it smart?
82. Does it live in a group?
83. Is it solitary?
84. Does it make nests?
85. Is it domestic?
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