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Abstract

Recent theoretical analyses of the convergence of
gradient descent (GD) to a global minimum for
over-parametrized neural networks make strong
assumptions on the step size (infinitesimal), the
hidden-layer width (infinite), or the initialization
(spectral, balanced). In this work, we relax these
assumptions and derive a linear convergence rate
for two-layer linear networks trained using GD
on the squared loss in the case of finite step
size, finite width and general initialization. De-
spite the generality of our analysis, our rate esti-
mates are significantly tighter than those of prior
work. Moreover, we provide a time-varying step
size rule that monotonically improves the conver-
gence rate as the loss function decreases to zero.
Numerical experiments validate our findings.

1 INTRODUCTION

The empirical success of neural networks on a wide va-
riety of applications, such as natural language process-
ing [Vaswani et al. [2017} 2018, computer vision |He et al.
[2015]]; Minaee et al. [2021] and decision making [Silver
et al.| [2016]; Vo et al.|[2019], has motivated significant re-
search on understanding theoretically why neural networks
work so well in practice. One interesting and puzzling phe-
nomenon is that over-parametrized neural networks trained
with gradient descent (GD) enjoy fast convergence even
if their loss landscape is non-convex. Much of the recent
work in this area has focused on deriving convergence rates
for over-parametrized networks. However, existing results
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Table 1: Summary of prior work and our contributions.

step size |width |initialization
Jacot et al| [2018];
Du et al. [2018b]; [Lee ver sufficient]
et al. [2019]; [Liu_et all|finite | =Y | Y
[2022); |Oymak  and arge &
Soltanolkotabi [2020]
IMei et al.| [2018]; [Chizat]|
and Bach| [2018]]; [Ding infinite- | fini I
et al. [2022]; |Sirignano simal infinite | genera
and Spiliopoulos| [[2020]
Saxe et al.| [2013]]; |Gidel|| . fini
et al. [2019]; [Tarmoun | mte- | g nite spectral
et al. [2021]] simal
|Tarmoun et al.| [2021]]; |infinite- finite eneral
Min et al.[2022] simal g
Arora_et al.| [2018]; [Du large margin
et al.| [2018a]; [Nguegnang | finite finite |and small
et al.|[2021]] imbalance
| This work finite finite | general

require stringent assumptions on the step size (infinitesi-
mally small), the hidden-layer width (infinitely large), or
the initialization (spectral, balanced).

Prior work. One line of work Jacot et al.| [2018]]; Du
et al. [2018b]; [ILee et al. [2019]; [Liu et al.| [2022] studies
the convergence of GD when the scale of the initialization
and the network width are sufficiently large. Under these
assumptions, the network weights remain close to their ini-
tialization during training, and one can show that GD con-
verges linearly to a global minimum. However, Chizat et al.
[2019]; |Chen et al. [2022] show that this “lazy training”
regime is unrealistic in practice as it limits feature learning.
A convergence analysis beyond the so-called lazy regime
can be undertaken in the (mean-field) limit of infinitely
wide networks Mei et al.| [2018]]; Rotskoff and Vanden-
Eijnden| [2018bla]; |Chizat and Bach [2018]; [Sirignano and
Spiliopoulos [2020]; |Ding et al. [2022], where suitable as-
sumptions on the initialization and step size make GD be-
come a Wasserstein flow; a partial differential equation
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commonly appearing in optimal transport theory. How-
ever, while such analysis can guarantee convergence to the
global optimum for a wider range of initializations, it still
imposes strong assumptions on the network width (infinite)
and step size (infinitesimal).

Another line of work studies the convergence of gradient-
based algorithms for over-parametrized networks with fi-
nite width. In this finite-width setting, the vast majority
of existing results considers linear networks trained using
gradient flow (GF). GF can be seen as GD with infinitesi-
mal step size, but its dynamics in this setting are generally
easier to analyze. For example, Saxe et al.[[2013]]; |Gidel
et al.| [2019]; Tarmoun et al.| [2021]] show that under spec-
tral initialization the dynamics of GF decouple into sev-
eral scalar dynamics, which allows them to derive a linear
convergence rate. For non-spectral initialization, [Tarmoun
et al.| [2021]]; Min et al. [2022] show that a large imbal-
ance or large margin of the initialization can lead to faster
convergence of GF, significantly extending the range of ini-
tializations from which linear convergence of GF is guaran-
teed. However, such results require infinitesimal step size.
For finite step size, |Arora et al. [2018]; |Du et al. [2018a];
Nguegnang et al. [2021]] prove linear convergence of GD
when there is sufficient margin at initialization and the im-
balance is small. However, such assumptions rarely hold in
practice since commonly used random initializations have
a large imbalance.

Paper contributions. In this work, we derive a linear
convergence rate for GD in the case of over-parametrized,
finite-width, two-layer linear networks with general initial-
ization. Our analysis can be seen as a natural extension of
recent results for GF, which cover finite width and imbal-
anced initializations. However, a key challenge in the case
of GD is that quantities such as imbalance, which are pre-
served by GF, are no longer preserved by GD. To address
this challenge, we derive quantities that effectively bound
the deviation of the discrete dynamics from the continuous
dynamics as a function of the step size, thus ensuring suf-
ficient control (via upper and lower bounds) of the level of
imbalance throughout training. This leads to a convergence
rate that naturally depends on the step size, as well as other
quantities, such as the current loss value. Moreover, the de-
pendency of the rate on the step size is a low-degree poly-
nomial, which allows us to easily compute an optimal step
size at each iteration of training. Furthermore, we prove
that the resulting time-varying step size is lower-bounded
by the optimal rate of GD for the non-overparametrized
problem. Finally, our numerical results show that, de-
spite the generality of our analysis, the step size we de-
rive leads to faster convergence and our Theorem in §3]ad-
mits a wider range of step sizes than in Du et al. [2018a];
Arora et al.[[2018]]. We provide the code to reproduce the
simulations at https://github.com/simonxu97/
aistats2023_overparametrization,

Notation. We use lower case letters a to denote a scalar,
and capital letters A and AT to denote a matrix and
its transpose. We use Apax(A) and Apin(A) to denote
the largest and smallest eigenvalues of A, opax(A) and
Omin(A) to denote its largest and smallest singular values,
||A]| F and || A||2 to denote its Frobenius and spectral norms,
and A[i, j] to denote its (7, j)-th element. Given two matri-
ces A € R"*™ and B € R¥*! it will be convenient to use

either (f}) or (A, B) to represent an element in the prod-

uct space R™"*™ x R*¥*! jrrespectively of the dimensions.
For a function f(Z), we use Vf(Z) := 8% (Z) to denote
its gradient, and whenever Z depends on an independent
variable ¢, we use f(t) := f(Z(t)) and Z(t) = 47(t),
dropping the dependence on ¢ when it is implicit from the
context, e.g., Z = %Z. Finally, we use N (11, 02) to denote

a normal distribution with mean . and variance o2.

2 CONVERGENCE OF GRADIENT
FLOW FOR TWO-LAYER LINEAR
NETWORKS

In this section, we first consider a linear regression prob-
lem and its over-parametrized version, which is equivalent
to training a two-layer linear neural network. We then sum-
marize the convergence results for GF in Min et al.|[2022],
which constitute the starting point of our work. Throughout
this section, we thus consider a continuous time ¢ € R.

Given N training samples (z;, yi)i]il’ where z; € R", y; €
R™, we consider the following linear regression problem

. 1 ,
min (W) = L[V — XW]3. m
where W € R™™ X = [21,---,zy]" € RV*" and

Y = [y, 7yN]T € RVX™  We are interested in solv-
ing the optimization problem in equation |l| by solving the

following over-parametrized problem

. 1
min LWy, Wa) = 5\\5/ - XWiWall7, ()

Wi,

where W, € R™*", W, € R"*™_ This over-parametrized
problem corresponds to training a two-layer linear neural
network with n inputs, h hidden neurons, m outputs, and
weight matrices W7 and Ws.

To simplify the exposition, we consider the above problems
in the under-determined case, i.e., N < n. We assume that
the input data matrix X is full rank, i.e., rank(X) = N ﬂ
We also assume that » > min{n,m}. These assump-
tions imply that the minimum of both problems is zero, i.e.,
miny (W) = 0 and L* := minw, w, L(W1, W) = 0.

"When X is rank deficient, one can reformulate the problem
into one with full-rank input data matrix (see Appendix |A|for de-
tails).
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We note, however, that our results generalize the case
N > n, by properly accounting for a non-zero L*.

Convergence under GF. Let us consider solving equa-
tion 2] via GF

(1) vy - (FORE). o

where V/(W) = X T(Y — XW). Notice that there exists
a linear operator y(-; Wy, Wy) : R?Xm — Rnxh o Rhxm

“

Y(VEW); Wy, Wa) = (Vé(W)WJ) ;

W V(W)
which depends on Wj, W5, that maps the gradient of

the loss V(W) € R™ ™ to the gradient of the over-
parametrized loss VL(Wy, W) € R"*h x Rhxm,

Then, one can show that the evolution of L under GF is

LWy, Ws)

= <88WL/1(W1’W2)»W1> + <38ML/2(W17W2%W2>(5)
— (Y(VUW); Wi, Wa), (VLW ); Wi, Wy))

= — (VLW ), v oy (VLW ); W1, Wa)),

where v*(-; W1, Wa) is the adjoint of ~(-; Wy, W3). There-
fore, the dynamics of L are defined by the following posi-
tive semi-definite Hermitian linear operator on V/(WW):

T(VE(W); Wy, Wa):=~" o y(VLW); Wy, Wa) 6)
=VUW) Wy Wa + Wi W, VW),

Then, from equation [5] and the min-max principle of Her-
mitian operators, we have

L(t) = —(V(t), (V) < =Amin(1) V)T, (D)

where for simplicity we use £(t), L(t) and 7(V£(t)),
resp., as a shorthand for ¢(W (t)), L(W1(t), Wa(t)) and
T(VEW (t)); Wi(t), Wa(t)). Similarly, we use Amin(7¢)
and Apax(7%) as a shorthand for Apin (7(-; W1 (t), Wa(?)))
and Apax (7( -3 W1 (t), Wa(t))), respectively.

The core contribution of Min et al.| [2022] is to provide a
lower bound on A, (7¢) using two quantities: imbalance

D(t) = W, ()W (t) — Wa(t)Wa(t) ", 3

and product W (t) = W1 (t)Wa(t). Specifically, they show
there exists an non-negative function «(D, opmin(W)) that
depends on imbalance and product, such that for all ¢ > 0,

Amin (Tt) Z Oé(D(t), Omin(W(t)))~ (9)

To find a uniform lower bound on «(D(t), omin (W (¢)))
forall t > 0, they exploit the fact that the imbalance matrix

remains constant along the trajectories of GF |Arora et al.
[2018]; Du et al. [2018a], i.e., D = 0 so that D(t) = D(0).
As for the product, Min et al.|[2022] show (from the fact
that the loss L(t) is non-increasing) that

Omin(W(t)) = p1(:= margin), (10)

where p; is defined in Table 2}

Therefore, we can replace the imbalance D(t) in equation@]
by its initial value D(0). Moreover, it can be shown that
a(D, o) is a non-decreasing function of the second argu-
ment o, allowing us to use equations [9] and [I0]to show that

Amin(7¢) > a(D(t),p1) = a(D(0),p1):=ag, (11)

where the expression for oy is shown in Table 2| Observe
that equationyields a uniform lower bound on Ay, (7¢)-
Combining equation |11| with the fact that ¢(¢) satisfies the
PL condition || V(t)[|% > pl(t) with p = o2, (X) > 0,

we show that equation [7]can be further upper-bounded by:

L(t) < =Amin () [VE@) 5 < —aol VD) |17

< (12)
< —2pua0l(t) = —2uaoL(t),

where the third inequality follows from the PL condition.
Moreover, if oy > 0, it follows from Gronwall’s inequal-
ity that L(t) < exp(—2uaot)L(0), showing that GF con-
verges exponentially with a rate 2p.ay.

As discussed in the introduction, the imbalance matrix
D(t) measures the difference of the weights in the two
layers, while the margin p; depends on the initial error
Y — XW;(0)W2(0)||r (the smaller the error, the larger
the margin). |Min et al.| [2022] show that cg > 0 when
there is either 1) sufficient imbalance A > 0 or 2) sufficient
margin p; > 0, where A is defined in Table @ Moreover,
a larger imbalance (as measured by A) or a larger margin
p1 improves the rate of convergence o. In summary, the
convergence of GF is completely determined by the ini-
tialization W1 (0), W5(0), and convergence is guaranteed
when the initialization satisfies g > 0, which is achieved
by either being imbalanced or having sufficient margin.

3 CONVERGENCE OF GRADIENT
DESCENT FOR TWO-LAYER LINEAR
NETWORKS

In this section, we analyze the convergence of GD for over-
parametrized two-layer linear networks. We start in §3.1]by
highlighting the challenges of analyzing over-parametrized
GD when compared to (1) the standard GD algorithm
applied to /(W) and (2) the GF algorithm applied to
L(W1, W3) described in the previous section. Alongside,
we provide a high-level overview of the overall strategy we
use to overcome these challenges. Based on these strategy,
we derive in a rigorous convergence rate that depends
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on not only the imbalance and margin at the initialization
but also the step size and condition number of the data. Fi-
nally, in §3.3]we propose an adaptive step size scheme that
accelerates convergence. Due to the discrete nature of our
updates, we thus consider ¢ to be discrete, i.e., t € N.

3.1 Challenges in the Analysis of Over-parametrized
Gradient Descent

Standard GD. We start by deriving the convergence rate
of the non-overparametrized regime described in equa-
tion [I} Notice that £(¢) is K-smooth and satisfies the p-
PL condition, where K = o2, (X) and pp = 02, (X).

Then, the following smoothness inequality holds for any
W (), W(t+1):
Lt+1) < L)+ (VL(t), W(t+1) =W (t))
2

K (13)

+ S W (t+1) = W(t)|5

After substituting the GD update with fixed step size
W(t+1) = W(t) — nVe(t) 14)

into the smoothness inequality in equation[I3]we obtain
K
(t+1) <L) =l VDT + Fn*IVER)IIE
— 0(t) — _ K 2
= 0(t) = (1= KJ) Ve

Then, if the step size satisfies 1 < %, then the loss is
non-increasing. Moreover, if we apply the PL condition
Ve = pl(t) to equation we obtain

(t+1) < (1= 2np + Kpn?)(t), (16)

which suffices to show the linear convergence of GD, for
properly chosen 7.

Over-parametrized GD. In the over-parametrized case,
we use the chain rule to write the gradient of L with respect
to Wiy, Ws in terms of V/(W), Wy, Ws. The update of
weights in GD is

Wi(t+1)\ _ (Wi(t))
<W2(t+1)) = <W2(t) me(VEE)- 1D

Thus, the update of the product is
W(t+1)=Wi(t+1)Wa(t+1)

= (W(t) = VL&) Wa(t) ") (Walt) — nWa(t) " V(1))

=W(t) —nre(VEE)) + P> VLW () TVL(E).  (18)
In other words, the update of the product is a polynomial
of degree two on the step size 7, unlike the update in equa-
tion which is a polynomial of degree one. Substitut-

ing equation [I8]into the smoothness inequality [I3] and us-
ing the PL condition, we can connect the loss at iteration

t + 1 with the loss at iteration ¢. The following lemma
characterizes this property.

Lemma 3.1. If at the t-th iteration of GD applied to the
over-parametrized loss L, the step size 1) satisfies

Amin (1) = N[ VE@) || Fomax (W (2))

K 19)
= 557 Panax(72) + 1l VED | pomax(W (£))] 2 0,
then the following inequality holds
L(t+1) < p(n, t)L(1), (20)

where

p(1,t) = 1 = 20ptAmnin (7e) + K p® N2y o (72)
+ 20 O max (W (1)) | V() | 7
+20° WK Amax (T¢) O max (W () VL) | 7
0 Ko (W () [ V)| 1)

The proof of the above lemma can be found in Appendix [B]

Comparison with non-overparametrized GD. The dif-
ference between the inequality we derive in Lemma (3.1
and the one in equation [16|is twofold. Firstly, p(n,t) in
equation [21]includes a quadratic polynomial of 7:

1= 20pAmin (70) + Kpm* A2 (72) (22)

that resembles the one in equation[I6] The only difference
is that the second coefficient is now scaled by A\pnin(7¢)
and the third coefficient by A2 __(7;). Equation [22] comes
from the term 77 (V£(t)) in the product update in equa-
tion which corresponds to moving the weight W ()
along the “skewed gradient direction” 74(V£(t)) instead
of V£(t). Secondly, equation [21| has extra second- and
higher-order terms in 77 which come from the other term
?VL(#)W T (t)VL(t) in equation Overall, compared
to equation the over-parametrized GD introduces a
more complicated update on the product W (t), leading to
the inequality in equation that not only is a polyno-
mial of degree four in 7, but also depends on the weights
Wi (t), Wa(t) at the current iteration. These differences
pose additional challenges in deriving a linear convergence
rate for over-parametrized GD.

Towards linear convergence. Lemma [3.1] provides an
upper bound on L(t + 1), p(n,t)L(t), which implicitly
depends on Wy (t) and Wa(t) via Amin(7t), Tmax (W (1)),
£(t) and A\pax(7¢). However, it is unclear whether one can
find some step size 7 that can simultaneously satisfy equa-
tion [19] and uniformly bound p(n,t) < p < 1, for all ¢.
Only under such conditions Lemma[3.T)would lead to

L(t+1) < pL(t) < (p)'™1L(0). (23)

We approach this challenge in a similar spirit as it was done
in GF Min et al.|[2022].
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Step 1. Spectral bounds for 7, and W (t): First, we seek to
find bounds for Apin (7¢) and Amax(7¢) based on the imbal-
ance D(t) and the singular values of the product, i.e.,

O‘(D(t)vgmin(w(t))) < Amin(Tt)
)\max(Tt) < 6(D(t)7 Umax(W(t)))7

where both functions «(D, ¢) and (D, o) are increasing
on the second argument, o. As a result, if one is able to
control D(t) and the singular values of W (¢), one can at-

tempt to upper-bound p(, t) in equation

For the case of opmin(W(t)) and omax (W (t)), a similar
monotonicity argument as in GF can be done to obtain

P1 S Umin(W(t)) § Umax(W(t)) S P2, (25)
where p, is defined in Table 2]

(24)

The additional, non-trivial challenge present in GD is
the fact that the imbalance D(¢) is no longer preserved,
ie., D(t) # D(0), which makes it still difficult control
Amin (7¢), Amax (7¢) by equation Nevertheless, we show
in Theorem [3.1] that if 7 is sufficiently small, but not in-
finitesimal, it is possible to control how much the imbal-
ance changes by bounding || D(t) — D(0)|| for all ¢, which
leads to a uniform bound of the form

QpC1 S )\min(Tt) S )\max(Tt) é ﬁ0627 (26)

where 3y := 5(D(0), p1), and the parameters 0 < ¢; < 1,
c2 > 1 represent an additional level of conservativeness
in the bound that is necessary to accommodate the time
varying nature of D(¢) in GD; see discussion after Theorem
B.IIfor more details.

Stage 2. Uniform upper-bound on rate p(n,t): Once
bounds for the spectrum of W(¢) and 7; have been es-
tablished, one can then proceed to bound p(n,t) in equa-
tion 21] In particular, we will show that p(n,t) < f(n,t),
where

fnt) =1 —an+ax(t)n® + as(t)n’ + as(t)n*, 27)
and the dependency on time is only through L(t), i.e
ay = 2(01040) mm(X)v

ag(t) = 24/ 26 L(£)08 5, (X )p2 + Ko (X)(c20)?,
az(t) =2 QHBL( oo (X)e2Bop2,

aq(t) = 26700, (X )p3L(1). (28)

m1n (

The above bound for p(7, t) in equation whose deriva-
tion is provided in Theorem can be then leveraged in
multiple ways.

¢ Uniform linear rate. Under mild conditions on the step
size, here exists 77 independent of ¢ such that f(n,t) <
f(n,0) (also in Theorem 3.2), leading to

L(t) < IMj—of (1, k) L(0) < (f(n,0))'L(0).  (29)

* Time-varying step size. A natural consequence of equa-
tions[27]and [29]is the possibility to adaptively choose 7;,
using only knowledge of the current loss L(t), so as to
improve the convergence rate. This is explored in §3.3}
see Algorithm

3.2 General bound on linear convergence rate

In this subsection, we derive conditions under which
Lemma is a descent lemma. Based on this result, we
can prove that GD converges linearly to a global minimum
of equation[2] We refer the reader to Table 2] for the defini-
tion of various quantities appearing in this section.

Before stating our main result, we note that prior
work |Arora et al.| [2018]]; [Du et al. [2018a] studied opti-
mizing equation 2] via GD, but their results require the ini-
tial imbalance to have small Frobenius norm and the initial
margin to be sufficiently large. The NTK initialization |Du
and Hu [2019] does not require small imbalance, but it does
require a large hidden-layer width &, and the weights needs
to be randomly initialized. To the best of our knowledge,
Theorem [3.2]is the first convergence result for GD which
provides an explicit convergence rate without making the
assumption that the initial imbalance is small or that the
width of the network is large.

Table 2: Table of Notation

SYMBOL DEFINITION
(1) LW (2))
L(t) L(W4(t), Wz( )
(VL)  T(VEW(t )) (), Wa(t))
Amin (7¢) Amin (7 (5 W1(2), Wa(1)))
Amax (Tt) /\max(T( () 2(1)))
D(t) Wi ()W () — Wa(t)Wa(t)
W(t) W (t)Wa(t)
E(t) Y — XW1(t)W2(t)
o2 (X)
K o2 (X))
n fax ] m.,;(ma)x&)< Il .0}
P2 w
Ay max(Amax (D(0)),0) — max(\,(D(0)),0)
A_ max(Amax(—D(0),0)) — max(A, (—D(0)),0)
A max (A, (D(0)),0) + max(Am (—D(0)),0)
At max(Amax(D(0)), 0)
A max(Amax (—D(0)), 0)
o —A++\/(A++A)2+4p1 —A_+4/(A_+A)244p?

ﬁ Ap+y/A2 +4p2 /\,+1//\2_+4p§
0 2

Theorem 3.1 (Uniform bounds on eigenvalues of 7, and
singular values of W (¢)). Assume oy > 0, and choose 0 <
c1 < 1, and cag > 1. Let n1"** and n3'** be, respectively,
the unique positive roots of the following two polynomials
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inmn
2
a0 +as O+ (ap 0+ 22 D e KD
o2
04(0)773 +‘13(0)772+ (a2 (0)+ SCQBE)lLioil)mO:((X) ),)7 = a.
(30)

Then, for any 0 < 1 < Npax = min{n"®*, n**}, the
following holds for allt = 0,1, ...

C1(x S )\min(Tt) S Amax(Tt) S C2/80

P1 S Umin(W(t)> S Umax(W(t)) S D2. (31)

The above theorem says that when the step size is small,
we can bound the eigenvalues of 7, and the singular val-
ues of W (t) using the initial imbalance and margin. When
ag > 0, we have a; > 0, and the LHS of equationis a
monotonically increasing function of 7, when n > 0, and
is equal to zero, when 7 = 0. Therefore, each polynomial
has a unique positive root. The condition 1 < 1y ax 1S used
to control | D(t) — D(0)|| . We use Amin(7¢) as an exam-
ple to illustrate why we need to control || D(¢t) — D(0)|| p.
In GD, equation E] still holds. However, since the imbal-
ance is no longer constant, i.e. since D(t) # D(0), we
no longer have o(D(t),p1) = «a(D(0),p;1). Nonetheless,
after careful analysis, we observe that the change of imbal-
ance at each iteration is of order n2. Moreover, as long as
the loss decreases linearly and 7 is small (see equation [30),
we can prove that || D(¢) — D(0)||z < O(n). Thus, we first
introduce c; to control the change of the eigenvalues of the
imbalance matrix. Then, if the step size is bounded, i.e.
7 < Nmax, We can show that a(D(t), p1) > c1a(D(0), p1).
A similar analysis yields the upper bound for Ayax(7%)-
When c1, ¢y are chosen to be close to one, the change in
eigenvalues of imbalance is guaranteed to be small, but it
requires a smaller step as 7x 1S small.

Then, based on Theorem [3.1} we can prove the linear con-
vergence of GD.

Theorem 3.2 (Convergence rate of gradient descent on
two-layer linear networks). Under the assumptions in The-
orem|3.1] for any 0 < n < Nmax := min{nP*, ni**}, the
loss function under GD satisfies

L(t+1) < f(n,t)L(t), (32)
for f(n,t) as defined in equation 27} and with
0< f(n,t) < f(n,0) <1, Vt=0. (33)
Thus, the loss converges linearly, i.e.,

L(t) < M_of(n, k) L(0) < f(n,0)'L(0).  (34)

with rate given by f(n,0).

In f(n,t), —ain is an important term that facilitates con-
vergence because it is the only term that is associated with
a negative coefficient. Notice that a; depends on p;, D(0)
via o, and when g > 0, i.e., there is either sufficient mar-
gin or imbalance, we have a; > 0. The proof Theorem 3.1
and Theorem [3.2]is presented in Appendix

Detailed comparison with SOTA. We compare our re-
sults with other works studying the same problem Du et al.
[2018a]; |Arora et al.| [2018]]. In both works, the authors
make assumptions that the initial imbalance is small. In
our work, Theorem [3.2] holds if there is either a sufficient
imbalance or sufficient margin at initialization, which is
a more general setting. In Du et al. [2018a], they prove
the loss decreases, and the imbalance remains small during
training, but the paper does not provide an explicit con-
vergence rate. More importantly, a decay in step size is
needed to control the difference between D(t) and D(0).
In our work, we provide an explicit convergence rate with-
out the need to decrease step size. In|Arora et al. [2018]],
the authors provide an explicit convergence rate. However,
their result depends on the property that when step size is
small, | D(t)||r < 2||D(0)||r. We think the two used in
their proof is an artifact and improve it by introducing c;
and co and characterize the dependence between step size
and ¢y, co, which is a more general case.

Comparison with non-overparametrized regime. In
the GF regime, Min et al.| [2022]; Tarmoun et al.| [2021]
show that if oy is sufficiently large, the over-parametrized
model can have a faster convergence rate than the non-
overparametrized model. However, as shown in the next
proposition, such a result does not extend to the GD regime.

Proposition 3.1. If ag > 0, for all 0 < 1 < Nmax and for

allt =0,1,---, the following inequality holds
1
) =1, (35)
where k = £ is the condition number of the non-

overparametrized Problem

In Proposition 1 - é is the theoretical optimal con-
vergence rate of solving Problem I| via GD (see §3.1]for a
derivation of it). As a result, Proposition @ states that the
convergence rate derived in Theorem ie., f(n,t), for
solving the over-parametrized Problem2]via GD, is always
larger. Nevertheless, we point out that Theorem only
provides an upper bound on the rate, and further study is
needed to characterize its tightness.

3.3 Adaptive Step Size Scheme

Motivation. In Theorem|3.2] we used the bound in equa-
tion [32]to show that a fixed step size ) < 7max guarantees
a linear rate of convergence for the loss L(t). It is thus nat-
ural to ask whether we can improve upon this rate by using
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a tighter bound and an adaptive step size 7,. Specifically, if
we can show that there exists a function h(n,t) > 0 such
that for all ¢, h(n,t) < f(n,t), L(t+1) < h(n,t)L(¢)
and min, h(n,t) < 1, then we can pick a step size 7, that
minimizes h(n, 1), i.e.,

e = argminh(n, ). (36)

Such a choice for the step size would theoretically achieve
the most decrease in the loss function L(t). As a result,
we would obtain the following theoretical upper bound on
L(t)

L(t) < [ hm B)L0) 37)
k=0

Choices of h(n,t). We already know from equation
and equation that h(n,t) = p(n,t) and h(n,t) =
f(n,t), respectively, are valid choices for 4. Based on our

analysis in and in the following proposition we
present additional choices for h(7), t) and the conditions un-
der which min, h(n,t) < 1 holds for every ¢.

Proposition 3.2. Let h(n,t) be one of the following func-
tions p(n,t), p(n,t) or f(n,t), where

p(n,t) =1 = 2nuay + Kpn? 87 + 20° ppar/2K L(t)
+ 203 WK Bypa/2K L(t) + 2n* nK?p2L(t). (38)

Then, under the assumptions of Theorem whenever,
7 < Nmax the following holds for all choices of h(n,t)
and everyt =0,1,2,...

L(t+1) < h(n,t)L(t), (39)
with0 < p(n,t) < p(n,t) < f(n,t) < 1.

Proposition [3.2 shows that choosing 0 < 7 < 7max guar-
antees min, h(n,t) < 1 holds for every t. Moreover, since
one can view f(n,0) as a special choice of h(n,t) where
the h(n,t) = f(n,0) for every ¢, we can broaden the choice
of h(n,t), to compactly describe all rate bounds of our pa-
per, i.e.,

h(n,t) € {p(n,t), p(n,t), f(n, 1), f(n,0)}.  (40)

Algorithm description. As suggested by Proposi-
tion given a choice of h(n,t), one can compute the
adaptive step size by solving the following optimization
problem

N = arg min h(n,t). 41
N<Tmax

Since all choices for h(n,t) are fourth-order polynomials,
solving equation only requires finding the roots of a
third-order polynomial. More specifically, we have:

Claim 3.1. Suppose oy > 0. Let n; be the unique positive
root of the following equation
dh(n,t)

Then the solution to Problemis Ny = min(”n}, Nmax )-

The proof is in Appendix [E. This suggests that one can find
n, very efficiently at each iteration. The resulting GD algo-
rithm with adaptive step size is summarized in Algorithm([T}

Algorithm 1: GD with Adaptive Step Size
Data: X, Y, and initial W7 (0), W5(0)
Result: W, W5 that minimize ||Y — X W, W||%..
fort =0,1,2--- do

/* adaptive step size %/
e 4= arg miny<y,,,, h(n,t)
/+ GD update with m */

(%Eiﬁi) = (%8) — (VL))

end

Convergence rate under adaptive step size. Notice that
h(n,t) depends on the iteration ¢ via the loss function L(¢).
As the training proceeds, the adaptive step size scheme en-
sures h(n,t) < 1 such that the loss L(t) converges to zero.
This, in turn, affects the asymptotic expression for h(, t).
Specifically, when ¢ is sufficiently large (so that L(t) ~ 0),
we have

f(777 t) ~1 72(Cla0)gr2nin(X)n+HU?nin (X) (6260)27723
[3(77’ t) ~1 _2at0?nin(X)77+KU;4nin (X) 162772v

p(n,t)=1 _2)‘min(Tt)grznin(X)n"'KUﬁlin (X)AmaX(Tt)Qn%
Under a proper choice of ¢, co such that

C1Q

max = 555 ov = : 43
S G BRR T, () @
the adaptive step size schedulers yield a rate
* Al % * (01a0)2 1
) < Pl t) < flmft) =1 — ~L
p(nt ) P(77t ) f(nt ) (62/80)2 K

For adaptive step size scheme in equation[36|under any one
of the choices of h(n,t) in Proposition the asymptotic
convergence rate of GD with is upper bounded by a con-
stant depending on both a—g and % In AppendixlE, we show
that there always exists a choice for c;, co such that equa-
tion 43| holds. Our numerical simulations show that GD
with all three adaptive step size strategies listed in Propo-
sition |3.2|achieve faster convergence than GD with a fixed
step size in Theorem Please refer to Section for
details.
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Figure 1: Evolution of the loss and of the step size for dif-
ferent choices of the step size schedule in the large margin
and balanced spectral initialization regime. We select the
two schedules in |Arora et al. [2018]]; [Du et al. [2018a] as
well as four other schedules according to Algorithm 1| with
h(n,t) chosen from equation We run the simulations
fifty times. On the top plot, the solid line is the log, of the
mean reconstruction error L(t), and the vertical line is the
mean plus and minus one standard deviation.

4 SIMULATIONS

In this section, we first compare the convergence rate of
GD using the step sizes presented in §3.3|with those using
step size proposed in previous work Arora et al. [2018]];
Du et al. [2018a], and our step sizes achieve considerably
faster convergence rate. We then present experiments under
much more general initializations than in prior work. Our
experiments show that that the bounds in equation [37| pro-
vide a good characterization of the actual convergence rate.
Throughout the experiments, we fix c; = 0.5 and co = 1.5
in our choice of step sizes and the width of the two-layer

linear networks is 1,000. The details of the simulations are
presented in Appendix

4.1 Comparison between different learning rates
presented in previous work

In this section, we compare the step sizes proposed in The-
orem 2 of |Arora et al. [2018]] and Theorem 3.1 of Du et al.
[2018a] with the step sizes proposed in We note
that the analyses in |Arora et al.| [2018]]; [Du et al.|[2018a]
assume that the initialization is approximately balanced
(J|D(0)|| 7 is small). In addition, |Arora et al. [2018] re-
quires the initialization to have sufficient margin (||Y —
XW1(0)W5(0)||F is small). Therefore, we compare our
results with|Arora et al. [2018]];|Du et al.[[2018a] using the
following simulation setup that initializes the weight matri-
ces via (balanced) spectral initialization. Specifically,

X =1Iy,Y = XW(0) +0.04¢ ,

W(0) € R2>Y W (0)[i, 5] ~ N(0,1/4),
e € R¥* c[i, ] ~ N(0,1),

Wi(0) = USV T, Wy(0) = Y2V T,

(45)

where W (0) = UXV T is the SVD of W (0). Such data
generation setup ensures that ||Y — XW(0)|| is small so
that there is a sufficiently large margin. The balanced spec-
tral initialization guarantees the initial imbalance is zero.
Recall that these conditions of zero balance and large mar-
gin are needed by |Arora et al.|[2018]]; Du et al.|[2018a] to
obtain their convergence results, but they are not needed for
our approach. Therefore, we work in this restrictive setting
only to facilitate comparison with prior work.

Figure [I] shows that the step size choices proposed in our
paper achieve the fastest convergence compared with other
SOTA methods |Arora et al. [2018]; Du et al. [2018a] (top
plot). The bottom plot also shows that the step sizes
proposed in this work are larger than the ones proposed
in |Arora et al. [2018]; Du et al. [2018a]. Moreover,
the adaptive step size schemes minimizing 5(n,t), p(n, t)
have similar rates and are faster than the one minimiz-
ing f(n,t), f(n,0). This is because p(n,t), p(n,t) use
W1 (t), Wa(t) to bound the eigenvalue of 7; at each iter-
ation, which gives tighter bounds on the loss. On the other
hand, the coefficients of f(n,t) simply use ¢, cafo
which is conservative.

4.2 Evaluation of the tightness of the theoretical
bound on the convergence rate

In this section, we train a two-layer linear network using
GD on the squared loss in equation 2] We generate the
data matrix as follows: X € R20%20 XTi j] ~ N(0,1),
and Y = XO where © € R?°*20 Q[i j] ~ N(0,1).
The initial weight matrices are generated as W;(0) =
olUp, W2(0) = 1V, where Uy € R2%1000 74 ¢
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Figure 2: Tightness of the theoretical upper bound in equation |37|with the choice of h(n, t) specified in equationversus
reconstruction error L(t), shown in different colors. We run the simulations for three different initialization. For each
initialization and each choice of step size, we repeat the simulation fifty times. The triangle lines represent the theoretical
upper bound on the training loss in equation The circle lines represent the log,, of the mean reconstruction error L(t).
The horizontal line is the mean plus and minus one standard deviation.

R1000%20 and have entry-wise i.i.d. samples drawn from
a standard Gaussian A (0,1). We choose different values
of ¢ to test our convergence rate in different regimes.

Figure[2]compares the convergence rate predicted by equa-
tion with the actual convergence rate of L(t), for differ-
ent values of ¢ and approximately similar values of O‘—g In
all scenarios, our theoretical bounds in equation [37|follow
the empirical results relatively well. Moreover, we see the
convergence rate of all methods vary with o. This is be-
cause the rate depends on % shown in equation Thus,
the larger %, the faster the convergence. Finally, in this
experiment, the initial margin is 0, and there is a large ini-
tial imbalance. Those initial conditions violate the assump-
tions in|Arora et al. [2018]];Du et al. [2018a], but still enjoy
linear convergence. Thus, our theory applies beyond the
regime of |Arora et al. [2018]]; Du et al. [2018a].

S CONCLUSIONS

This paper studied the convergence of GD for optimizing
two-layer linear networks. In particular, we derived a con-
vergence rate for networks of finite width that are initial-
ized in a non-NTK regime. Our results build upon recent
work for GF, which derived convergence rates that depend
on the imbalance and margin of the initialization. However,
a key challenge in the GD regime is that the imbalance of
the weights changes with the iterations of GD. In this pa-
per, we show that when the step size is small, the imbalance
at iteration ¢ is close to its value at initialization. More-
over, we show that under this constraint on the step size,
the loss is decreasing. In addition, we derive an explicit
convergence rate that depends on the margin, imbalance,
and condition number of the data matrix. Finally, based on
the convergence rate, we propose three adaptive step size
schemes that accelerate convergence compared with a con-

stant step size. Empirically, we show the convergence rate
derived in our work is tighter than in previous work.

Acknowledgements

The authors acknowledge the support of the Office of Naval
Research (grant 503405-78051), the National Science
Foundation (grants 203198, 1934979, 1752362, 2136324),
and the Simons Foundation (grant 814201).

References

Arora, S., Cohen, N., Golowich, N., and Hu, W. (2018).
A convergence analysis of gradient descent for deep linear
neural networks. arXiv preprint arXiv:1810.02281.

Chen, Z., Vanden-Eijnden, E., and Bruna, J. (2022). On
feature learning in neural networks with global conver-
gence guarantees. arXiv preprint arXiv:2204.10782.

Chizat, L. and Bach, F. (2018). On the global conver-
gence of gradient descent for over-parameterized models
using optimal transport. Advances in neural information
processing systems, 31.

Chizat, L., Oyallon, E., and Bach, F. (2019). On lazy
training in differentiable programming. Advances in Neu-
ral Information Processing Systems, 32.

Ding, Z., Chen, S., Li, Q., and Wright, S. J. (2022). Over-
parameterization of deep resnet: Zero loss and mean-field
analysis. J. Mach. Learn. Res., 23:48-1.

Du, S. and Hu, W. (2019). Width provably matters in opti-
mization for deep linear neural networks. In International
Conference on Machine Learning, pages 1655-1664.

Du, S. S., Hu, W, and Lee, J. D. (2018a). Algorith-
mic regularization in learning deep homogeneous models:



Linear Convergence of GD for Finite Width Over-parametrized Linear Networks with General Initialization

Layers are automatically balanced. Advances in Neural
Information Processing Systems, 31.

Du, S. S., Zhai, X., Poczos, B., and Singh, A. (2018b).
Gradient descent provably optimizes over-parameterized
neural networks. arXiv preprint arXiv:1810.02054.

Gidel, G., Bach, F., and Lacoste-Julien, S. (2019). Im-
plicit regularization of discrete gradient dynamics in lin-
ear neural networks. Advances in Neural Information Pro-
cessing Systems, 32.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep
residual learning for image recognition.

Jacot, A., Gabriel, F., and Hongler, C. (2018). Neural
tangent kernel: Convergence and generalization in neu-
ral networks. Advances in neural information processing
systems, 31.

Lee, J., Xiao, L., Schoenholz, S., Bahri, Y., Novak, R.,
Sohl-Dickstein, J., and Pennington, J. (2019). Wide neu-
ral networks of any depth evolve as linear models under
gradient descent. Advances in neural information process-
ing systems, 32.

Liu, C., Zhu, L., and Belkin, M. (2022). Loss landscapes
and optimization in over-parameterized non-linear sys-
tems and neural networks. Applied and Computational
Harmonic Analysis, 59:85-116.

Mei, S., Montanari, A., and Nguyen, P-M. (2018). A
mean field view of the landscape of two-layer neural net-
works. Proceedings of the National Academy of Sciences,
115(33):E7665-E7671.

Min, H., Tarmoun, S., Vidal, R., and Mallada, E.
(2022). Convergence and implicit bias of gradient flow
on overparametrized linear networks. arXiv preprint
arXiv:2105.06351.

Minaee, S., Boykov, Y. Y., Porikli, F.,, Plaza, A. J., Kehtar-
navaz, N., and Terzopoulos, D. (2021). Image segmenta-
tion using deep learning: A survey. IEEE transactions on
pattern analysis and machine intelligence.

Nguegnang, G. M., Rauhut, H., and Terstiege, U. (2021).
Convergence of gradient descent for learning linear neural
networks. arXiv preprint arXiv:2108.02040.

Oymak, S. and Soltanolkotabi, M. (2020). Toward moder-
ate overparameterization: Global convergence guarantees
for training shallow neural networks. IEEE Journal on
Selected Areas in Information Theory, 1(1):84-105.

Rotskoff, G. and Vanden-Eijnden, E. (2018a). Parame-
ters as interacting particles: long time convergence and
asymptotic error scaling of neural networks. Advances in
neural information processing systems, 31.

Rotskoff, G. M. and Vanden-Eijnden, E. (2018b).
Trainability and accuracy of neural networks: An in-
teracting particle system approach.  arXiv preprint
arXiv:1805.00915.

Saxe, A. M., McClelland, J. L., and Ganguli, S. (2013).
Exact solutions to the nonlinear dynamics of learn-
ing in deep linear neural networks. arXiv preprint
arXiv:1312.6120.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre,
L., van den Driessche, G., Schrittwieser, J., Antonoglou,
1., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe,
D., Nham, J., Kalchbrenner, N., Sutskever, 1., Lillicrap, T.,
Leach, M., Kavukcuoglu, K., Graepel, T., and Hassabis,
D. (2016). Mastering the game of go with deep neural
networks and tree search. Nature, 529:484-503.

Sirignano, J. and Spiliopoulos, K. (2020). Mean field
analysis of neural networks: A law of large numbers.
SIAM Journal on Applied Mathematics, 80(2):725-752.

Tarmoun, S., Franca, G., Haeffele, B. D., and Vidal, R.
(2021). Understanding the dynamics of gradient flow
in overparameterized linear models. In International
Conference on Machine Learning, pages 10153-10161.
PMLR.

Vaswani, A., Bengio, S., Brevdo, E., Chollet, F., Gomez,
A. N., Gouws, S., Jones, L., Kaiser, L., Kalchbrenner, N.,
Parmar, N., et al. (2018). Tensor2tensor for neural ma-
chine translation. arXiv preprint arXiv:1803.07416.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, 1. (2017).
Attention is all you need.

Vo, N. N., He, X., Liu, S., and Xu, G. (2019). Deep learn-
ing for decision making and the optimization of socially
responsible investments and portfolio. Decision Support
Systems, 124:113097.



Ziqing Xu, Hancheng Min, Salma Tarmoun, Enrique Mallada, René Vidal

A CASE WHEN DATA MATRIX IS RANK DEFICIENT
Here, we show for any data matrix X of arbitrary dimensions and rank, the over-parametrized problem

. 1 2
ynin L(Wy, W) = o[y — XWilWa|[p,

can be reparametrized into the following problem
. SR Lo om 5
min L(Wy, Ws) = S[|Y — XWiWal[f,
Wi, Wa 2
where X is a square matrix of full rank.

Let singular value decomposition of X be

hM o] [v;"
el ()

where X x contains all non-zero singular values of X . Then, we have X = U1 X x VIT. The GD update of W7, Ws is

Wi(t+1) = Wi(t) +nX TE@QW, (1) = Wa(t) + nViSx U E(W; (1),
Wa(t+1) = Wa(t) + nW ()X T E(t) = Wa(t) + nW, ()ViZxU) B(t).
We project W7 onto the space spanned by V7, V5,
Wiy =V, Wi,
Wie =V, W1.
Furthermore, we define £(t) = U, E(t). Based on above, one has
Wit (t+1) = Wia(t) + nEx E(t)Wa(t),
Wia(t+1) = Wia(t),
Wa(t+1) = Wa(t) + Wi () Sx E(t).

The update of W7y, Wy is the same to the following problem

. 1ot 2
WIEI,%L(Wunz) = §||U1 Y = Xx Wi Wallz,

(46)

(47)

(48)

(49)

(50)

(5D

(52)

where ¥ x is a sqaure matrix of full rank. The above problem takes the same form as equation Where Y =U Y, X =

Xx, Wi =Wy, Wo = Ws.

B PROOF OF LEMMA 3.1

In this section, we present detailed proof of Lemma@
Lemma 3.1} If at the t-th iteration of GD applied to the over-parametrized loss L, the step size 1 satisfies
Amin(7¢) — 7]||V€(t) ||FUmaX(W(t))
Kn 2
Ty [)‘maX(Tt) +nlIVE() HFUmaX(W(t))] >0,
then the following inequality holds
L(t+1) < p(n )L (),

where

p(n,t) = 1 = 2npdmin (70) + Kpn? A2, (70)
+ 202 p0max (W (1) [ V() || 2
+20° (K A (74) T masxd (W (1)) [ V() | 7
+ 0 Ko (W () [ VL) |7

(33)

(54)

(55)
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Proof. Applying smoothness equation[I3fo the update of the product in equation[I8] we get
L(t+1) < L(t) = n{VE(t), (VL) — nV &)W (1) V(D))
+ S I (UD)  aV W ()T V)
= L(t) = n{Ve@), (VL))
+1” (VL) VEOW () TVU>)) + 5 17 (VE) 1)
— P K (r,(VL(t)), VL)W () T VE(t))

(56)

T gn‘lnve(t)W(t)TW(t)llzp

Then, we upper bound each term in the above inequality separately. First, since 7; is a positive semi-definite operator, we
have

(VL) (V) = Amin (70) VL) |17
17 (VEO)F < Max () IVED) | 67

Then, using the sub-multiplicative property of Frobenius norm and Cauchy Schwartz inequality, we can bound the rest
terms in equation [56]

[(VE(t), VEOW (1) TVED)| < VL) EIVEOW ()T VD) |r < VD] Fomax (W (1)
(e (VE(D), VAW () T V(L)) < VU] Fomax (W () (VD) 7e(VE())) < Amax(Te)Tanax (W () V() 5
VL)W ()T VL[5 < Tonax (W ()IVED) |55 (58)
Based on above results, we can further upper bound equation [56]
L(t+1) < L(t) — n{VL(t), . (VE(1))) (59)
+a? ((VE(), VIO W (1) TVE) + 5 m (V) |1 F) (60)
— P K (i (VE(1)), VU)W (1) T V(L)) (61)
+ o IVEOW TV (62
S L(t) - n)‘mln(Tt)Hv‘at)H%‘ (63)
0 O W)V + 5 N IV ) (64
+ 773K)‘maX(Tt)0maX(W(t))va(t)”% (65)
R W)V (66)
= L(t) — nll VL) lI7g() (67)

where

901) = Min (1) = 1 (W) VW) [+ 5 Ve (7))
(68)

K
= 1 K e (1) Oma (W (D)) [ VL) | 7 = 1P 00 (W) [ V)1
When ¢(n) > 0, which is assumed in equation we apply PL condition 1||V£(¢)[|% > pf(t) to the above equation to get
L(t+1) < L(t) x {1 — 20U min (T¢)
2 K5
+ 207 1(Tmax (W (O) VA |7 + 5 M (72)
20 K A (72) 0 (W (£) [ VE(D) ©
V)V

= p(n,t)L(t).
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C PROOF OF THEOREM 3.1 AND THEOREM

Here we prove a new Theorem which implies Theorem [3.1]and Theorem 3.2]

Theorem C.1. Under the assumptions in Theorem Jor any 0 < n < Nmax = min{n"®*, 2}, the following four
properties hold forallt =0,1,2,---.

© Ay(t): L(t) < f(n, t)L(t—1), where f(n,t) = 1 — ain + az(t)n* + az(t)n® + asa(t)n* < 1.

° A2(t) 1 S Umin(W(t)) S Umax(W(t)) S D2.

o As(t) 1 |D(t) = D(0)[|p < 2200%0sCOLO \yhop 1y < gy,

© Au(t) : cra0 < 07, (Wi(1)) + 0y (Wa(t) < Amin(76) < Amax(72) < 0 (Wi () + 0ax (Wa(t) < c2f0.

Notice Theorem [3.1]is Property As(t), A4(t), and Theorem 3.2]is implied by Property A (¢) because when L(k) < L(0)
hold forall k = 0,1, - - , ¢, we have as(k) < a2(0),a3(k) < a3(0), as(k) < aq(0). Thus, f(n,k) < f(n,0). As aresult,
the following inequality holds

t—1

L(t) < f(n, ) L(t = 1) < LO) [ f(, k) < f(,0)"L(0). (70)

k=0
Before proving Theorem|C.1, we first present several preliminary lemmas.

Lemma C.1. For matrix A, B, we have

Tin (A Bl < [AB|[% < opax (A1 B]IE

min max

ooin(B) A% < [|AB|% < ora(B)IIA]7. (71)

min max

Proof.
|AB|% = tr (ABBTAT)
=tr (ATABBT) use cyclic property of trace
< Amax (ATA) | B||% use trace inequality
= Omax (A)[| Bl - (72)
For the other way
|AB|% = tr (ABBTAT)
=tr (ATABB")
< Amax (BBT) [|A[[%
= Tnax(B) | A7 (73)

The lower bound is similar. U

Lemma C.2. Let X € RNX" Y € RVNX™ Assume N < n and rank(X) = N. For arbitrary W € R"*™, the following
holds for (W) = Z||Y — XW||%.

202, (X)E(W) < [ VAW < 202, (X)E(W). (74)

min max

Proof. The first inequality is PL inequality. We then prove the second

V)% = |IXT(Y — XW)|% gradient calculation
<o (XY —XW|%  use LemmalC.T

max

=207, (X)E(W). (75)
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Lemma C.3. The difference of the imbalance between iteration t + 1 and t can be upper bounded by
ID(t+1) = D) < 20% 0500 (X) (0max (Wi (})) + 0 (W (2))) L(2). (76)

Proof. Notice the definition of imbalance is D(t) := W," ()W (t) — Wa(t)W,| (t) and the update of GD is given in equa-
tion El Thus, using both results, one has

D(t+1) = (Wi (t) — nVL(t) Wy (t)T)T (Wi (t) —nVe(t)Wa(t)")  plugin GD update

— (Wa(t) — nWi(6) V() (Walt) — nWi (8)TVE(E) T
= D(t) +n* (Wa(t) VL) T VL)W (t) T — Wi(t) T V) V()T Wi(t)). 7

Then, we can upper bound || D(t+1) — D(t)||p using Lemma[C.1 and Lemma|[C.2

ID(t+1) = D(t)|[F = n*[Wa(t) VL) TV W(t) T — Wa(t) T VL) VL) T Wi(t)]lr

< ?(I[Wa() VL) VW () | e + Wi () TV V) T WA ()] r)
2<||W2<t>w<t> I3+ W6 TV 3) by LemmalCT
7 (max (W1(1)) +0maX(Wz(t) )IVE)E by Lemma[C2
< 27’ max(X (Ur2nax ) + Umax(W2( )))L(t) (78)
O
Lemma C.4. Suppose h > min{r,m}. Given any A € R™*" B € R"*™ that satisfy ATA — BBT = D, we have
A+ A+ A2 +402 (AB
where X = max{\;(D),0} and A = max{\,,(—D),0}.
Lemmag is cited from Min et al.|[2022]] and the proof can be found in Min et al. [2022] Lemma 8.
Lemma C.5. Suppose h > min{r,m}. Given any A € R™" B € R"*™ that satisfy AT A — BB = D, we have
_ _ 2
Nuns(BTB) < max(Amax(—D),0) + \/max(z)\max( D),0)2 + 402, .(AB) 80)
Proof. We first choose z € R™ with ||z]|a = 1 s.t.
2" B"Bz = Anax(B' B). (81)
Then, we have
N (B'"B)—2"B"ATAB2=:"B"BB"Bz—2"BTATABz
=2"(B"BB"B—-BTATAB)z
=2"B"(BB" — ATA)Bz
=2"B"(~D)Bz. (82)
Notice
Arznax(BTB) TBTATABZ > Arznax(BTB) - Jmax(AB)
2" BT (=D)Bz < max(Amax(—D), 0)[| B2||3 < max(Amax(—D),0)Amax(B " B). (83)
Thus, we have
Amax(B ' B)? — 02, (AB) < max(Amax(—D),0)Amax(B ' B). (84)

The solution to the above inequality gives us the results. O



Ziqing Xu, Hancheng Min, Salma Tarmoun, Enrique Mallada, René Vidal

Then, we begin the proof of Theorem[C.1]

Proof. Assume Aq(k), As(k), As(k), A4(k) hold at iteration k = 1,2, - - - | ¢, then we prove they all hold at iteration ¢+1.
First, we prove A (t+1) hold. According to Lemma|3.1} we have

L(t+1) < L(t) x {1 — 200\ min(T¢)

20 WOV + 5 N(70)
+ 27]3MK>\1nax (Tt)anlax(W(t)) || Vg(t) ||F

B (V)T 55)
Since Ay (t), A4(t) hold, we can further upper bound the above inequality

L(t+1) < L(t) x {1 — 2nuciag + 2772u(p2||V€(t)||F + g(clﬂof)

T 2P K e fop IV + 1 KRV () ||%} (86)
Apply Lemma[C.2
2 OIZH’LX(X) 2
Lit+1) < L0 % {1 = 2npcs0 + 272(pa/ 272 LD + 22250 (0, )2)

+ 2P (X BT VDD + 2100 (X)93LL0)
4
= 10 % {1~ 2008 (0er00 + 277 (o2 200y, (010 + "8 )

T 2Peafopey /268010 (X)L(E) + 2n4p§n20?m<x>L<t>}
= L(t) x [l —an + az(t)n* + az(t)n® + as(t)n*]

Finally, we show when 0 < 7 < fmax, f(7,t) < 1. Notice f(n,t) is a decreasing functions in ¢, it suffices to show
f(n,0) <1

f(1,0) <1 < ag(0)n® + az(0)n* + a2 (0)n < a;. (88)

Compare the above inequality with equation[30] one has

462L(0)Jr211ax(X)
Cy — 1
862ﬂ0L(0)0’2

as(On° + as(O)n” + a2(0)n < as ()7’ +as (O’ + (ax(0) + == e

as(0)1° + as(0)1* + az(0)n < as(0)1° +a3(0)n° + (a2(0) +

)n

(X)

)7 (89)

Thus, when 0 < 1 < Mpax, We have

462L(0)Ur211ax(X)
Cy — 1
802ﬂ0L(0)0'2

as(0)n” + az(0)n* + az(0)n < as(0)n*+az(0)n* + (a2(0)+ = o
01)a0

as(0)n® + az(0)n? + a2 (0)n < ag(0)n>+a3(0)n*+ (a2(0)+ )77 <ap

(X)

)n < ay. (90)

which is equivalent to f(n,0) < 1. Thus, Ay (t+1) is proved.
Then, we prove As(t+1) hold. Since loss is decreasing, i.e. L(t+1) < L(t) < L(0), we have

1Y = XW(t+1)[r < [|EQ)] - O
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equation [91]is equivalent to
IYlr = I1EQ)r < [XW(E+Dlr < IV + [EO)] 92)

In|Min et al.|[2022], Theorem 3, the lower bound is proved. For the upper bound,

Tmax(W (t+1))omin (X) < [[W(EH1) [ pomin(X) < [XW(t+1)||p < Y F + [ E0)]F, (93)
Thus,
1Yl + I1EO)r _.
Urnax(W(t+1)) S O'min(X) =:p2- (94)

Then, we prove A3(t+1) hold.

t
|ID(t+1) — D(0)||F < ZHD(K—H) — D(k)||F use LemmalC3
k=0

<3 20202 (X) (02 (Wi (k) + 02 (Walk)) LK) use Au(k)

k=0
t
< 20%07, (X)e2Bo > L(k)  use Ay (k)
k=0
t
< 27200 man (X) (1 — arn + az(k)n” + as(k)n® + aa(k)n*)* L(0) 95)
k=0

t

< 20%c2B00max(X) D (1 = arn + az(0)7” + a3(0)n* + a4 (0)n*)*L(0)
k=0
L(0

212800 70 (X)
o 1 - f(na O)

where we upper bound «a; (k) by a;(0) in equationfor 1=1,2,3,4.

). (96)

Finally, we prove A4(t+1) hold. A\pin(7) < Amax(7) is obvious. We begin with the second inequality

Amin(7) = min (W, WW2T Wy + W1 W1T W) definition of operator norm

IWilr=1
> min (W, WW, Wy) + min (W, W, W, W)

IWilr=1 IWilr=1
= 0in(W1) + 0 (Wa). 97)

The fourth inequality can be proved similarly

Amax(7) = max (W, WW,] Wy + W, W,” W)

IWlr=1
< max (W, WW, Wy) + max (W, W, W, W)

IWllr=1 (W] F=1
= Omax(W1) + 030 (W2) (98)

Then, we prove the first inequality and last inequality holds. According to Lemmal[C.4, we have

(1) + A (1) + \/(X(t+1) AL (t41)? + 402 (W(t+1))
. .
Ay (EH1) + A (t+1) + \/(5\+(t+1) FA(t+1)° + 402, (W(t+1))
5 .

Tonin (W1 (t+1)) >

rin(Wa(t+1)) >

Omin

99)
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where
A+ (t) = max (M (D(1)), 0)
A_(t) = max (A, (—D(t)),0)
A-(t) = max (M (~D(1)),0) oo
AL (t) = max (A, (D(1)),0)
We define
—)\,(0)+A1+)\+(0)+A2+\/(5\ (0) + 24 (0) + Ay + Ag)” +4p]
(A1, An) 5
A1 (0) + A+ 2 (0)+ A +1/(A +A_(0)+ A +A)" +4
ha(Asz, Ay) = 0% A O+ 2 \/(2 v OF 8+ Ae) it (101)
where
A=A (t+1) - X(o)
. . 102
Ao = Au(t+1) 14 (0 (102
Ag=\_(t+1)— A _(0).
Then, we use opmin (W (t+1)) > p; to lower bound equation 99|
A1) + A, (141 A(E+1) + A, (t41)) + 402 (W(t+1
s (D) + A, (t4+1) + 1/ (A +2>++<+>> +403 (W(t+1))
—A(t+1) + A (t41) +\/X t+1)+A+(t+1))2+4p%
> 5 :
= h1(A1, D). (103)
Similarly, we have
o2 (Wa(t+1)) > ha(As, Ay). (104)

Notice h1(0,0) + h2(0,0) = o which is independent of ¢. Our goal is to lower bound hq (A1, Ag) + ho(As, Ay) using
h1(0,0) + h2(0,0). A natural solution is that if we can quantify how large |Ag|, k = 1,2,3,4 s, i.e.]Ag| < Ay, and if we
can show hq(+, ), ha(+,-) are both Lj,-Lipschitz continuous. Using these two ingredients, one can show

71 (A1, Ag) = i (0,0)|< Ly /A% + A3

= hi(A1, Ag) > hy(0,0) — Ly /A2 + A2 > hy(0,0) — V2L, Ay (105)
Similarly, we have
ha(Asz, Ag) > ha(0,0) — V2L, Ay, (106)

Based on above two equations, one has
hl(Al, Ag) + hQ(A37 A4) > h1(0, 0) + h2(07 0) - 2\/§LhAh. (107)
Next, we show the above two assumptions hold

1. h1(-,-), ha(:,-) are both Ly-Lipschitz continuous.

2. |Ag| < Aphold forall k = 1,2, 3, 4.
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For the first one, using Weyl’s inequality and Property As(t+1), we can upper bound |Ay]|
|A1] = [max(A1(=D(t+1)),0) — max(A(—D(0)), 0)|

< [Ai(=D(t+1)) = A\ (=D(0)),0)| use Weyl’s inequality
< ||D(t+1) — D(0)||r use LemmalC3
2 2
Similarly, we have
2n2¢0Bo02. (X)L(0
s, 1Ag], [Ad] < ID(t+1) = D) < 2200 Tmex X)L(O) (109)
1- f(7770)
What’s more,
’dhl(x,y)‘_‘_1+ z+y+A-(0) +2,(0)
dx 2 2\/(Z\,()+/\ (0) + 2 +y)° + 4p?
’ z+y+A_(0)+ A, (0)
< 110
2\/ L0+ +y) +4p? (110)
<1+1
-2 2
<1.

Similarly, we have |dh1(m :9) E |dh2 2 y)| |dh2(m :Y) |< 1. Combine with equation , we have hy(-,-), ha(,-) are v/2-
Lipschitz continuous. Thus we have
mln(Wl( )) + U?nin(WQ(t)) > hl(Ah AQ) + h2(A37 A4)
> ag — 2LpV2||D(t+1) — D(O)|[r  Ln = V2
2 2 X)L
817 CQB()O—maX( ) (0) (111)
1- f(nv 0)

Although the above lower bound is smaller than ay, it is close to oy when 7 is small. This motivates us to introduce
0 < c1 < 1 so that when 7 is small, the above inequality is lower bounded by c; . To derive the upper bound on 7, it is
equivalent to ensure

> ag —

2 2
oy B chﬁw??;fg() )LO) S e
2 o2
— (1—c1)ag> il CZfO_ I}I?;(f)())L(O)
81200 max (X) L(0)
= (1—c1)og > a; — az(0)n — az(0)n2 — as(0)n3
— (O + as(O) + (a2(0) + 8626?1” il)r“;;‘(X))n < .

which is ensured when 0 < 77 < Mpax-

The proof for the fourth inequality o2, (W1(t+1)) + 02, (Wa(t+1)) < cafBo in A4(t+1) is similar. According to
Lemma|C.5, we have

Tmax(Wi(t+1)) + 070 (Wa(t+1))
< max(Amax(D(0)), 0) + Az + /402, (W (t+1)) + [max(Amax(D(0)), 0) + Ag]?
- 2
+ max(Amax(—D(0)), 0) + Ag + /402, (W (t+1) + [max(Amax(—D(0)), 0) + Ay]?
2




Ziqing Xu, Hancheng Min, Salma Tarmoun, Enrique Mallada, René Vidal

~ maxX(Amax(D(0)), 0) + As + /4p3 + max(Amax(D(0)), 0) + As]?

- 2
N max(Amax(—D(0)),0) + Ay + \/4]7% + [max(Amax(—D(0)),0) + Ay)?
2
= h3(As, Ag), (113)
where
A5 = max(Amax(D(t+1)),0) — max(Amax(D(0)),0)
Ag = max(Apax(—D(t+1)),0) — max(Amax(—D(0)), 0). (114)
Since
‘dhg x,y) = ‘7 x4+ max(Amax (D(t+1)),0) <1 (115)

24/4p% + [max(Amax(D(t+1)),0) + As]?
Similarly, |%§’y)| < 1. What’s more, Weyl’s inequality gives us
|A5] = [max(Amax(D(t+1)),0) — max(Amax(D(0)), 0)|

< [Amax (D(E+1)) = Amax (D(0))]
<|[ID(t+1) = D) (116)

Similarly, we have |Ag| < ||[D(t+1) — D(0)||r. Thus, we have
max(Wl(t+1)) + Jgnax(WQ(t+1)) = h3(A57 AG)

< h3(0,0) + V21 /A2 + A2

< g+ AT (OLO) 4
- 1- f(77» 0)
< Boc2
where the last inequality holds if and only if
4coL(0)o X
asn® + asn? + (a2+%)n < ai. (118)
y —
O
D PROOF OF PROPOSITION
Proposition 3.1} If vy > 0, for all 0 < 1 < Nax and forall t = 0,1, - - -, the following inequality holds
1
f(ﬁvt)zlfg (119)

where k = % is the condition number of the non-overparametrized Problem

Proof. The theoretical optimal convergence rate for non-overparametrized regime is 1 — % Then

1 1
fln,t) — (1= =) == — a1+ aa(t)n® + as(t)n® + as(t)n* drop last two terms which are non-negative
K K

1
> — = 2010000, (X)n + (2 %M)mAme%f£%M2

1
— = 2010002 (X)) + ko (X)c3Ban use 3 > ap to lower bound last term
K

Y

v

1
- - 2CIO‘()O-rznin(‘X—)n + Ho—fnin(X)Cgagnz
K

1
= (ﬁ — VO i (X)c200m)?
> 0. (120

Thus, the results are proved. O
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E PROOF OF CLAIM3.1]

Claim Suppose oy > 0. Let 1, be the unique positive root of the following equation

ann,t) _ . (121)
dn
Then the solution to Problemis ne = min(7n}, Nmax )-
Proof. We first observe h(n, t) takes the following general form
h(n,t) = 1= ha(t)n + ha(t)y® + ha()n* + ha(t)y’ (122)

where hq(t), ha(t), hg(t), ha(t) > 0. Then, dh((i:’] Y = _hy + 2hon + 3hsn? + 4hyn?. Notice the derivative of h(1, t) with

respect to 1 is monotonically i 1ncreasmg when 7 > 0 and M > 0. Thus, if 7} < Nmax, the minimizer of Probleml
(m

iS Nmax- If 7} > Mmax, since is negative when 0 < 7 < Mmax < M}, h(n,t) is decreasing in the same range. Thus,
the minimizer iS Nmax- Comblng the above two cases, the minimizer of Problem@ is

7 = Min(7;, NMmax)- (123)
O
Claim E.1. Given some 0 < ¢; < % pzck any
M+ 12Oy 4 Sacs0)
cy > max C1OéoammEX)’ aoa?nin(‘(;() , 25, (124)
where M = 2a3§§:(0) + QWPNS + \/szao
Such choice of c1, ca ensures Nmax > Ny forallt =0,1,2,
What’s more, we have ,
Pl 0) < 90076 < Flo70) = 1 - DL (125)

Remark E.1. Claimimpliesforproper choice of ¢y, ca, one has Nmax > 0} forallt =0,1,2,---. In the limiting case
when t — oo, one has

lim p(’l’],t) < lim ﬁ(nat) < lim f(777 ) =1- 2(01040) mm(X)T/ + ’%O-?nin(‘)()(0260)2772 (126)
t—o00 t—o0 t—o0
With the choice of c1, ca specified, we have 0%, < Nmax. Thus, the asymptotic convergence rate is

(c10)?
(c250)?

The asymptotic convergence rate is determined by < o be and condition number k. The smaller k is, the faster convergence

* N/ * 1
p(N5500) < p(n5e,00) < f(ni,,00) =1~ p (127)

)\nnn(Tt) c1QQ
(Tr) = c2fB0’
7. The more lll—condltloned Tt is, i.e. 2%3 is small, the slower the convergence rate is.

rate is. What’s more, since we can view C;gg as a lower bound on the condition number of the operator

Proof. Notice as(t), as(t),as(t) depends on L(t) and L(t) decreases as ¢ increases, so as(t),as(t), as(t) decrease as ¢
increase. From equation[122] we can see 7); increases as ¢ increases. Thus, to prove 17; < Nyax, it suffices to show

€1
lim n;

= o < e
too0 T BBRan, (X) T

(128)



Ziqing Xu, Hancheng Min, Salma Tarmoun, Enrique Mallada, René Vidal

which is equivalent to the following inequalities

3 2
as O 5290 Gay(0) g0 ) (ag(0) 4 22O (X)) o0 g
C%ﬁgﬁafnin(){) C%ﬁg“@%ﬂin(X) e —1 C%ﬁg""?nin(x) -

3 2
a4(0)(cla°(X)) +a3(0)<clao(X)) +{ag(0) 2e2P0L (©)e ‘“ax(X)) A% <4 (130)

C%ﬂg’{"ﬁnn C%B(%’mr?nin (1—c1)ag C%ﬂg’wfmn(){)

For equation[I29]to hold, we study its LHS

2i0dpd0) | 2y/PL(0)02,(0)
LHS Of equation @ = Cl a0p2 m1n pQCl O50

50"@ VEGBE

derag L(0 2L(0 X
caonll) | 2P0, mern |0

(c2 = T)eaffy c3B3VE

23a3p2L(0)  Pclap  4ciogL(0)  Pey ,
Cgﬁg,‘{ 05’/30 (02 — 1)0258 C% + Claogrnln( )
where
2L X

P = (0) mm( )pZOZO. 13

VB

Since ¢ > 2,50 co — 1 > 2. Then, we upper bound the above equality by substituting hlgher order terms of cf k> 2
with ¢ in the numerator by one except for the last term and replace higher order terms of c5, k > 3 with c2,

2c3a3p3L(0)  Pciag  deranL(0) Pec

LHS of equation = “Lie o2 (X
q 29 ASBSk c3Bo (c2 — 1)cof32 3 ! (X)
2c3adp2L(0)  Pc? 8ciapL(0) P
< Clagpé © ?Oéo Clo;() 2( ) Pa + cropo? (X)) use co — 1 > 2 in the first term
C250 350 3By 02 2
2 2L P 8 L(0 P
< c1ps L(0) 21040 610;0 2( ) a +C1040012nm(X)
C250 350 3By 02
use ¢; > c’f, k > 2 in the numerator and cg < clg, k > 3 in denominator
c1 [2a3p3L(0)  Pag  8apL(0) 9
== + + + P|+ci1o005;, (X
3l e TR TR (%)
8agL(0
= % (M + QOT()) + crapo?,, (X) use second condition in equation [T24]
=5 0
S ClOZ()O'IQnin(X) -+ claoafnin(X) = aj. (132)

For equation [T30]to hold, we study its LHS

~ 2¢3ap3L(0) | Pciag 8L(0)cy Pcy
380k 3o (I—ci)eafo 3

Since 0 < ¢ < ?,), we have 1 — ¢; > 4. Then, we upper bound the above equality by substituting ¢; with 1 in the
numerator by one except for the last term and replace higher order terms of c§, k > 2 with ¢y,

LHS of equation[130| = — 1ol (X). (133)

2c3a3p3L(0)  Pciag 8L(0)cy Pcy

LHS of equation[I130|= — + 1005, (X)

$B8k bo  (1—ci)e2fo 3
5L(0)  Pci 16L(0) P
>~ 1a0p2 ( ) glao ( ) Cl + Claoo-m]n(X) use 1 — ! z C—l
3Bk B0 c2o c 2

203p3L(0)  Pag  16L(0) P 5
+ — + crapopin (X
cafigk 2o 2o C2 1o &)

use ¢; < 1 in the numerator and ¢y > 012“, k > 1 in the numerator

20¢p3L(0)  Pag ~ 16L(0)
= — + + + P|4cia002;,
C2 Bk Bo Bo e
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1 16L(0
=—[M+ ﬁ( )] + 1902, use first condition in equation [124]
C2 0
< 109020 (X) + crapol (X)) = a;. (134)
Then, we prove
(17,6) < (7, 0) < flaf 1) ~ 1 — (a2 L (135)
PN, 1) = PN, ) = T, 1) = (C2B0)2 K-
This is true because
Py €10 2 2 €10 2
(12, ) ) gy + (X (ama )
B 1 ( 2¢1000 oo c%a%ﬁgo) (136)
KA Bion(X) i
Since ao > 1, Boo < 200, the above can be further upper bounded
o x 1, 2ciap0s c%oz%ﬁQ
p(NSe,0) =1 —— - > (137)
Ui o0) =1~ 2 (GRo2,. 00~ aa )
1 2 2 2 2
<1- L(Zacac _ gepleb) (138)
K3 B30 (X) 1By
C10 2 1
=1- —. (139)
(0250) K
Similarly, we can prove
* C1000\ 2 1
,00) < 1-— —. (140)
(1565 00) (c2 Bo) -
O

F SIMULATIONS

In Section[4.T| we compare the step sizes proposed in|Arora et al.|[2018]]; Du et al.|[2018a], Theorem [3.2]and Algorithm T}
InDu et al. [2018a], they choose an adaptive step size

_ v Velr (141)

= -,
100(t+1)| Y 2

Tt

where 0 < € < ||Y||F is the final precision we want to achieve, r is the rank of Y. When comparing, we set ¢ = ||Y||r to
select the largest step size possible in their work.

In|Arora et al. [2018]], they choose constant step size which satisfies
3
n < P >
6144 x 23 x [|Y||%

(142)

When comparing, we select the largest step size possible, i.e. n = m.
F

In|Arora et al. [2018]]; IDu et al. [2018a], the authors make assumptions that there is sufficient margin and zero imbalance at
initialization. What’s more, they both choose the setting of matrix factorization and claim it’s equivalent to linear networks.
To make fair comparison, we generate X using identity matrix. For initialization of the network, we follow Proposition[F.T
in|/Arora et al. [2018] to create a balanced initialization. The magnitude 0.04 of noise added to Y is a hyperparameter which
ensures there is sufficient margin at initialization. The procedure to ensure there is zero imbalance at initialization is given
below

Proposition F.1 (Spectral Balanced Initialization). Given dg,d;,...,dy € N such that min{dy,...,dy_1} >
min{do, dn} and a distribution D over dn x dy matrices, a balanced initialization of W, € R%*dj-1 5=1 ... N,
assigns these weights as follows:
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. Sample A € RN > gecording to D.

. Take singular value decomposition A = UXVT, where U € Riv>min{do,dn} |/ ¢ Rdoxmin{do.dn} paye orthonor-
mal columns, and ¥ € R {do.dn}xmin{do.dn} jg digeonal and holds the singular values of A.

. Set Wy ~USYN Wyn_y ~SYN . Wy =~ SYN Wy ~ SYNVT where the symbol “~” stands for equality up
to zero-valued padding.



