
Approximate Distributed Monitoring under

Partial Synchrony: Balancing Speed & Accuracy
ω

Borzoo Bonakdarpour1, Anik Momtaz1, Dejan Ni!kovi"2, and N. Ege Saraç3

1 Michigan State University {borzoo,momtazan}@msu.edu
2 AIT Austrian Institute of Technology dejan.nickovic@ait.ac.at

3 Institute of Science and Technology Austria (ISTA) esarac@ista.ac.at

Abstract. In distributed systems with processes that do not share a
global clock, partial synchrony is achieved by clock synchronization that
guarantees bounded clock skew among all applications. Existing solu-
tions for distributed runtime verification under partial synchrony against
temporal logic specifications are exact but su!er from significant compu-
tational overhead. In this paper, we propose an approximate distributed
monitoring algorithm for Signal Temporal Logic (STL) that mitigates
this issue by abstracting away potential interleaving behaviors. This
conservative abstraction enables a significant speedup of the distributed
monitors, albeit with a tradeo! in accuracy. We address this tradeo!
with a methodology that combines our approximate monitor with its ex-
act counterpart, resulting in enhanced e"ciency without sacrificing pre-
cision. We evaluate our approach with multiple experiments, showcasing
its e"cacy in both real-world applications and synthetic examples.

Keywords: distributed systems · approximate monitoring · partial
synchrony.

1 Introduction

Distributed systems are networks of independent agents that work together to
achieve a common objective. They come in many di#erent forms. For example,
cloud computing uses distribution of resources and services over the internet to
o#er to their users a scalable infrastructure with transparent on-demand access to
computing power and storage. Swarms of drones is another family of distributed
systems where individual drones collaborate to accomplish tasks like search and
rescue or package delivery. While each drone operates independently, it also
communicates and coordinates with others to successfully achieve their common
objectives. The individual agents in a distributed system typically do not share a
global clock. To coordinate actions across multiple agents, clock synchronization
is often needed. While perfect clock synchronization is impractical due to network
latency and node failures, algorithms such as the Network Time Protocol (NTP)
allow agents to maintain a bounded skew between the synchronized clocks. We
then say that a distributed system has partial synchrony.
ω This work was supported in part by the ERC-2020-AdG 101020093. This work is

sponsored in part by the United States NSF CCF-2118356 award. This research was
partially funded by A-IQ Ready (Chips JU, grant agreement No. 101096658).

2 B. Bonakdarpour, A. Momtaz, D. Ni#kovi$, N. E. Saraç

Formal verification of distributed system is a notoriously hard problem, due
to the combinatorial explosion of all possible interleavings in the behaviors col-
lected from individual agents. Runtime verification (RV) provides a more prag-
matic approach in which a behavior of a distributed system is observed and its
correctness is checked against a formal specification. We consider the distributed
RV setting where this task is performed by a single central monitor observing the
independent agents (as opposed to decentralized RV where the monitoring task
itself is distributed). Remotely related to the problem of distributed RV under
partial synchrony are distributed RV in the fully synchronous [9,8,5] and asyn-
chronous [7,17,21,19,12,6] settings as well as benchmarking tools [2] for assessing
monitoring overhead. The problem of distributed RV under partial synchrony
assumption has been studied for Linear Temporal Logic (LTL) [11] and Sig-
nal Temporal Logic (STL) [18] specification languages. The proposed solutions
use Satisfiability-Modulo-Theory (SMT) solving to provide sound and complete
distributed monitoring procedures. Although distributed RV monitors consume
only a single distributed behavior at a time, this behavior can have an excessive
number of possible interleavings. Put another way, although RV deals only with
the verification of a single execution at run time, it is still prone to evaluat-
ing an explosion of combinations. Hence, the exact distributed monitors from
the literature can still su#er from significant computational overhead. This phe-
nomenon has been observed even under partial synchrony [11,10], and becomes
problematic even for o$ine monitoring of a large set of log files.

To mitigate this issue, we propose a new approach for approximate RV of STL
under partial synchrony. In essence, we conservatively abstract away potential in-
terleavings in distributed behaviors, resulting in their overapproximation. This
abstraction simplifies the representation of distributed behaviors into a set of
Boolean expressions, taking into account regions of uncertainty created by clock
skews. We define monitoring operations that evaluate temporal specifications
over such expressions, which result in monitoring verdicts on overapproximated
behaviors. This approximate solution yields an inevitable tradeo# between ac-
curacy and speedup. For applications where reduced accuracy is not acceptable,
we devise a methodology that combines approximate and exact monitors, with
the aim to benefit from the enhanced e%ciency without sacrificing precision. Ap-
proximate monitoring is also valuable in the sequential setting, with applications
including monitoring with state estimation [23,4], quantitative monitoring and
its resource-precision tradeo#s [15,13,14], and various other uses [3,1].

We implemented our approach in a prototype tool and performed thorough
evaluations on both synthetic and real-world case studies (mutual separation in
swarm of drones and a water distribution system). We first demonstrated that in
many experiments, our approximate monitors achieve speedups of up to 5 orders
of magnitude compared to the exact SMT-based solution. We empirically char-
acterized the classes of specifications and behaviors for which our approximate
monitors achieve good precision. We finally showed that combining exact and
approximate distributed RV yields significant e%ciency gains on average without
sacrificing precision, even with low-accuracy approximate monitors.

Approximate Distributed Monitoring under Partial Synchrony 3

2 Preliminaries

We denote by B = {→, ↑} the set of Booleans, R the set of reals, R→0 the set of
nonnegative reals, and R>0 the set of positive reals. An interval I ↓ R of reals
with the end points a < b has length |b ↔ a|.

Let ω be a finite alphabet. We denote by ω↑ the set of finite words over
ω and by ε the empty word. For u ↗ ω↑, we respectively write prefix(u) and
su!x(u) for the sets of prefixes and su%xes of u. We also let infix(u) = {v ↗
ω↑ | ↘x, y ↗ ω↑ : u = xvy}. For a nonempty word u ↗ ω↑ and 1 ≃ i ≃ |u|,
we denote by u[i] the ith letter of u. Given u ↗ ω↑ and ϑ ⇐ 1, we denote by
uω the word obtained by concatenating u by itself ϑ ↔ 1 times. Moreover, given
L ↓ ω↑, we define first(L) = {u[0] | u ↗ L}. For sets L1, L2 ↓ ω↑ of words, we
let L1 · L2 = {u · v | u ↗ L1, v ↗ L2}. For tuples (u1, . . . , um) and (v1, . . . , vm) of
words, we let (u1, . . . , um) · (v1, . . . , vm) = (u1v1, . . . , umvm).

We define the function destutter : ω↑ ⇒ ω↑ inductively. For all ϖ ↗ ω ⇑ {ε},
let destutter(ϖ) = ϖ. For all u ↗ ω↑ such that u = ϖ1ϖ2v for some ϖ1, ϖ2 ↗ ω
and v ↗ ω↑, we define it as follows:

destutter(u) =
{

destutter(ω2v) if ω1 = ω2

ω1 · destutter(ω2v) otherwise
For a set L ↓ ω↑ of finite words, we define destutter(L) = {destutter(u) | u ↗
L}. We extend destutter to tuples of words in a synchronized manner: for all
ϖ ↗ ω ⇑ {ε} let destutter(ϖ, . . . , ϖ) = (ϖ, . . . , ϖ). Given a tuple (u1, . . . , um) =
(ϖ1,1ϖ1,2v1, . . . , ϖm,1ϖm,2vm) of words of the same length, destutter(u1, . . . , um)
is defined as expected:

destutter(u1, . . . , um) =
{

destutter(ω1,2v1, . . . , ωm,2vm) if ωi,1 = ωi,2 for all 1 → i → m

(ω1,1, . . . , ωm,1) · destutter(ω1,2v1, . . . , ωm,2vm) otherwise

Moreover, given an integer k ⇐ 0, we define stutterk : ω↑ ⇒ ω↑ such
that stutterk(u) = {v ↗ ω↑ | |v| = k ⇓ destutter(v) = destutter(u)} if k ⇐
|destutter(u)|, and stutterk(u) = ⇔ otherwise.
Signal Temporal Logic (STL) [16]. Let A, B ↖ R. A function f : A ⇒ B
is right-continuous i# lima↓c+ f(a) = f(c) for all c ↗ A, and non-Zeno i# for
every bounded interval I ↓ A there are finitely many a ↗ I such that f is not
continuous at a. A signal is a right-continuous, non-Zeno, piecewise-constant
function x : [0, d) ⇒ R where d ↗ R>0 is the duration of x and [0, d) is its
temporal domain. Let x : [0, d) ⇒ R be a signal. An event of x is a pair (t, x(t))
where t ↗ [0, d). An edge of x is an event (t, x(t)) such that lims↓t→ x(s) ↙=
lims↓t+ x(s). In particular, an edge is rising if lims↓t→ x(s) < lims↓t+ x(s), and
it is falling otherwise. A signal x : [0, d) ⇒ R can be represented finitely by its
initial value and edges: if x has m edges, then x = (t0, v0)(t1, v1) . . . (tm, vm)
such that t0 = 0, ti↔1 < ti, and (ti, vi) is an edge of x for all 1 ≃ i ≃ m.

Let AP be a set of atomic propositions. The syntax of STL is given by the
grammar ϱ := p | ¬ϱ | ϱ ⇓ ϱ | ϱUIϱ where p ↗ AP and I ↓ R→0 is an interval.

A trace w = (x1, . . . , xn) is a finite vector of signals. We express atomic
propositions as functions of trace values at a time point t, i.e., a proposition

4 B. Bonakdarpour, A. Momtaz, D. Ni#kovi$, N. E. Saraç

p ↗ AP over a trace w = (x1, . . . , xn) is defined as fp(x1(t), . . . , xn(t)) > 0
where fp : Rn ⇒ R is a function. Given intervals I, J ↓ R→0, we define I ∝ J =
{i + j | i ↗ I, j ↗ J}, and we simply write t for the singleton set {t}.

We recall the finite-trace qualitative semantics of STL defined over B. Let
d ↗ R>0 and w = (x1, . . . , xn) with xi : [0, d) ⇒ R for all 1 ≃ i ≃ n. Let ϱ1, ϱ2
be STL formulas and let t ↗ [0, d).

(w, t) |= p ↑↓ fp(x1(t), . . . , xn(t)) > 0

(w, t) |= ¬ε1 ↑↓ (w, t) |= ε1

(w, t) |= ε1 ↔ ε2 ↑↓ (w, t) |= ε1 ↔ (w, t) |= ε2

(w, t) |= ε1 UIε2 ↑↓ ↗t→ ↘ (t ≃ I) ⇐ [0, d) :
(w, t→) |= ε2 ↔ ⇒t→→ ↘ (t, t→) : (w, t→→) |= ε1

We simply write w |= ϱ for (w, 0) |= ϱ. We additionally use the following
standard abbreviations: false = p ⇓ ¬p, true = ¬false, ϱ1 ′ ϱ2 = ¬(¬ϱ1 ⇓
¬ϱ2), I ϱ = trueUIϱ, and I ϱ = ¬ I ¬ϱ. Moreover, the untimed temporal
operators are defined through their timed counterparts on the interval [0, ∞).
Distributed Semantics of STL [18]. We consider an asynchronous and
loosely-coupled message-passing system of n ⇐ 2 reliable agents producing a
set of signals x1, . . . , xn, where for some d ↗ R>0 we have xi : [0, d) ⇒ R for all
1 ≃ i ≃ n. The agents do not share memory or a global clock. Only to formalize
statements, we speak of a hypothetical global clock and denote its value by T . For
local time values, we use the lowercase letters t and s. For a signal xi, we denote
by Vi the set of its events, and by Ei the set of its edges. We represent the local
clock of the ith agent as an increasing and divergent function ci : R→0 ⇒ R→0
that maps a global time T to a local time ci(T).

We assume that the system is partially synchronous: the agents use a clock
synchronization algorithm that guarantees a bounded clock skew with respect
to the global clock, i.e., |ci(T) ↔ cj(T)| < ς for all 1 ≃ i, j ≃ N and T ↗ R→0,
where ς ↗ R>0 is the maximum clock skew.

Definition 1. A distributed signal is a pair (S,↭), where S = (x1, . . . , xn) is
a vector of signals and ↭ is the happened-before relation between events defined
as follows: (1) For every agent, the events of its signals are totally ordered, i.e.,
for all 1 ≃ i ≃ n and all (t, xi(t)), (t↗, xi(t↗)) ↗ Vi, if t < t↗ then (t, xi(t)) ↭
(t↗, xi(t↗)). (2) Every pair of events whose timestamps are at least ς apart is
totally ordered, i.e., for all 1 ≃ i, j ≃ n and all (t, xi(t)) ↗ Vi and (t↗, xj(t↗)) ↗ Vj,
if t + ς ≃ t↗ then (t, xi(t)) ↭ (t↗, xj(t↗)).

The notion of consistent cut captures possible global states.

Definition 2. Let (S,↭) be a distributed signal of n signals, and V =
⋃n

i=1 Vi

be the set of its events. A set C ↓ V is a consistent cut i! for every event in
C, all events that happened before it also belong to C, i.e., for all e, e↗ ↗ V , if
e ↗ C and e↗ ↭ e, then e↗ ↗ C.

Approximate Distributed Monitoring under Partial Synchrony 5

We denote by C(T) the set of consistent cuts at global time T . Given a
consistent cut C, its frontier fr(C) ↓ C is the set consisting of the last events in C
of each signal, i.e., fr(C) =

⋃n
i=1{(t, xi(t)) ↗ Vi∈C | ∋t↗ > t : (t↗, xi(t↗)) /↗ Vi∈C}.

Definition 3. A consistent cut flow is a function ccf : R→0 ⇒ 2V that maps a
global clock value T to the frontier of a consistent cut at time T , i.e., ccf(T) ↗
{fr(C) | C ↗ C(T)}.

x1 x2

C1

C2

C3
C↗

0.5

1.6

2.9

0.6

1.2

2.5
2.8

Fig. 1: A distributed
signal in with consistent
cuts C1, C2, C3 consti-
tuting a consistent cut
flow. Note that C→ is
a non-example since
(2.5, x2(2.5)) ↘ fr(C→) and
(1.6, x1(1.6)) /↘ fr(C→), but
(1.6, x1(1.6)) happened
before (2.5, x2(2.5)).

For all T, T ↗ ↗ R→0 and 1 ≃ i ≃ n, if T < T ↗,
then for every pair of events (ci(T), xi(ci(T))) ↗
ccf(T) and (ci(T ↗), xi(ci(T ↗))) ↗ ccf(T ↗) we have
(ci(T), xi(ci(T))) ↭ (ci(T ↗), xi(ci(T ↗))). We denote
by CCF(S,↭) the set of all consistent cut flows of
the distributed signal (S,↭).

Observe that a consistent cut flow of a distributed
signal induces a vector of synchronous signals which
can be evaluated using the standard STL semantics
described above. Let (S,↭) be a distributed signal
of n signals x1, . . . , xn. A consistent cut flow ccf ↗
CCF(S,↭) yields a trace wccf = (x↗

1, . . . x↗
n) on the

temporal domain [0, d) such that (ci(T), xi(ci(T))) ↗
ccf(T) implies x↗

i(T) = xi(ci(T)) for all 1 ≃ i ≃ n
and T ↗ [0, d). The set of traces of (S,↭) is given by
Tr(S,↭) = {wccf | ccf ↗ CCF(S,↭)}.

We define the satisfaction of an STL formula ϱ by
a distributed signal (S,↭) over a three-valued do-
main {→, ↑, ?} Notice that we quantify universally
over traces for both satisfaction and violation.

[(S,↭) |= ε] =






⇑ if ⇒w ↘ Tr(S,↭) : w |= ε

⇓ if ⇒w ↘ Tr(S,↭) : w |= ¬ε

? otherwise

3 Overapproximation of the STL Distributed Semantics

To address the computational overhead in exact distributed monitoring, we de-
fine STL+, a variant of STL whose syntax is the same as STL but semantics
provide a sound approximation of the STL distributed semantics. In particular,
given a distributed signal (S,↭), STL+ considers an approximation Tr+(S,↭)
of the set Tr(S,↭) of synchronous traces where Tr(S,↭) ↓ Tr+(S,↭). A signal
(S,↭) satisfies (resp. violates) an STL+ formula ϱ i# all the traces in Tr+(S,↭)
belong to the language of ϱ (resp. ¬ϱ).

[(S,↭) |= ε]+ =






⇑ if ⇒w ↘ Tr+(S,↭) : w |= ε

⇓ if ⇒w ↘ Tr+(S,↭) : w |= ¬ε

? otherwise

Throughout the paper, we assume ϱ is copyless, i.e., each signal x ↗ S oc-
curs in ϱ at most once. Moreover, the signals are Boolean, non-Zeno, piecewise-

6 B. Bonakdarpour, A. Momtaz, D. Ni#kovi$, N. E. Saraç

constant, and have no edge at time 0. We assume Boolean signals only for con-
venience; all the concepts and results generalize to non-Boolean signals because
finite-length piecewise-constant signals use only a finite number of values. We
note that our approach is a sound overapproximation also for non-copyless for-
mulas, although potentially less precise. In Sections 4 and 5, we respectively
define Tr+ and present an algorithm to compute the semantics of STL+.

Theorem 1. For every STL formula ϱ and every distributed signal (S,↭), if
[(S,↭) |= ϱ]+ = → (resp. ↑) then [(S,↭) |= ϱ] = → (resp. ↑).

Notice that both the distributed semantics of STL and the semantics of STL+

quantify universally over the set of traces for the verdicts → and ↑. Therefore,
Theorem 1 holds for the verdicts → and ↑, but not for ?.

4 Overapproximation of Synchronous Traces

In this section, given a distributed signal (S,↭), we describe an overapproxima-
tion Tr+(S,↭) of its set Tr(S,↭) of synchronous traces. First, we present the
notion of canonical segmentation, a systematic way of partitioning the temporal
domain of a distributed signal to track partial synchrony. Second, we introduce
value expressions, sets of finite words representing signal behavior in a time
interval. Finally, we define Tr+ and show that it soundly approximates Tr.
Canonical Segmentation. Consider a Boolean signal x with a rising edge at
time t > ς. Due to clock skew, this edge occurs in the range (t ↔ ς, t + ς) from
the monitor’s perspective. This range is an uncertainty region because within it,
the monitor can only tell that x changes from 0 to 1. Formally, given an edge
(t, x(t)), we define φlo(x, t) = max(0, t ↔ ς) and φhi(x, t) = min(d, t + ς) as the
endpoints of the edge’s uncertainty region.

Given a temporal domain I = [0, d) ↖ R→0, a segmentation of I is a partition
of I into finitely many intervals I1, . . . , Ik, called segments, of the form Ij =
[tj , tj+1) such that tj < tj+1 for all 1 ≃ j ≃ k. By extension, a segmentation of
a collection of signals with the same temporal domain I is a segmentation of I.

Let (S,↭) be a distributed signal of n signals. The canonical segmentation
GS of (S,↭) the segmentation of S where the segment endpoints match the
temporal domain and uncertainty region endpoints. Formally, we define GS as
follows. For each signal xi, where 1 ≃ i ≃ n, let Fi be the set of uncertainty
region endpoints. Let F = {0, d}⇑

⋃n
i=1 Fi and let (sj)1↘j↘|F | be a nondecreasing

sequence of clock values corresponding to the elements of F . Then, the canonical
segmentation of (S,↭) is GS = {I1, . . . , I|F |↔1} where Ij = [sj , sj+1) for all
1 ≃ j < |F |. We show an example in Figure 2a.
Value Expressions. Consider a Boolean signal x with a rising edge within
an uncertainty region of (t1, t2). As mentioned, the monitor only knows that
x changes from 0 to 1 in this interval. This knowledge is represented as a fi-
nite word v = 01 over the alphabet ω = {0, 1}. This representation, called a
value expression, encodes the uncertain behavior of an observed signal relative
to the monitor. Formally, a value expression is an element of ω↑, where ω is
the finite alphabet of signal values. Given a signal x and an edge (t, x(t)), the
value expression corresponding to the uncertainty region (φlo(x, t), φhi(x, t)) is

Approximate Distributed Monitoring under Partial Synchrony 7

(a) t

x1(t)

t

x2(t)

[0, 1) [1, 3) [3, 4) [4, 5) [5, 7) [7, 8)

(b) 0 1 3 4 5 7 8t:

x1
01

10
0

x2 0
01

10

(c) 0 1 3 4 5 7 8t:

x1 {0,
01}

{0,
01,
1}

{01,
010,

1,
10}

{1,
10,
0}

{10,
0} {0}

x2 {0} {0,
01}

{0,
01,
1}

{01,
010,

1,
10}

{1,
10,
0}

{10,
0}

Fig. 2: (a) A distributed signal (S,↭) with x1 (top, red) and x2 (bottom, blue) whose
edges are marked with solid balls and their uncertainty regions are given as semi-
transparent boxes around the edges. The resulting canonical segmentation GS is shown
below the graphical representation of the signals. (b) The uncertainty regions of (S,↭)
and the corresponding value expressions. (c) The tabular representation of the function
ϑ for (S,↭), e.g., ϑ(x1, [3, 4)) = (su!x(01) · prefix(10)) \ {ϖ} = {01, 010, 1, 10}.

vx,t = v↔ · v+, where v↔ = lims↓t→ x(s) and v+ = lims↓t+ x(s). We omit the
concatenation symbol · when the letters are clear from context. This definition
is general because finite-length piecewise-constant real-valued signals will only
have a finite number of values, making ω finite.

Notice that (i) uncertainty regions may overlap, and (ii) the canonical seg-
mentation may split an uncertainty region into multiple segments. Consider a
signal x with a rising edge in (1, 5) and a falling edge in (4, 8). The corresponding
value expressions are respectively v1 = 01 and v2 = 10. Notice that the behav-
ior of x in the interval [1, 4) can be expressed as prefix(v1), encoding whether
the rising edge has happened yet. Similarly, the behavior in [4, 5) is given by
su!x(v1) · prefix(v2), which captures whether the edges occur in this interval
(thanks to prefixing and su%xing) and the fact that the rising edge happens
before the falling edge (thanks to concatenation).

Formally, given a distributed signal (S,↭), we define a function ↼ : S △
GS ⇒ 2ε↑ that maps each signal and segment of the canonical segmentation to
a set of value expressions, capturing the signal’s potential behaviors in the given
segment. Let x be a signal in S, and let R1, . . . , Rm be its uncertainty regions
where Ri = (ti, t↗

i) and the corresponding value expression is vi for all 1 ≃ i ≃ m.
Now, let I ↗ GS be a segment with I = [s, s↗) and for each 1 ≃ i ≃ m define
the set Vi of value expressions capturing how I relates with Ri in Equation (1).

Vi =






{vi} if ti = s ↔ s→ = t→
i

prefix(vi) if ti = s ↔ s→ < t→
i

su!x(vi) if ti > s ↔ s→ = t→
i

infix(vi) if ti > s ↔ s→ < t→
i

{ϖ} otherwise

(1)

The last case happens only when I ∈
Ri is empty. We define ↼ as follows:

↼(x, I) = destutter(V1 ·V2 ·. . .·Vm)\{ε}

Observe that ↼(x, I) contains all the
potential behaviors of x in segment
I by construction. However, it is po-

8 B. Bonakdarpour, A. Momtaz, D. Ni#kovi$, N. E. Saraç

tentially overapproximate because the
sets V1, . . . , Vm contain redundancy by definition, and the concatenation does not
ensure that an edge is considered exactly once – see Figure 2b and Figure 2c.
Overapproximation of Tr. Consider a distributed signal (S,↭) of n signals,
and let GS be its canonical segmentation. We describe how the function ↼ defines
a set Tr+(S,↭) of synchronous traces that overapproximates the set Tr(S,↭).
Consider x ↗ S, and let x↗ be a signal with the same temporal domain, and let
I = [s, s↗) be a segment in GS . Let (t1, x↗(t1)), . . . , (tω, x↗(tω)) be the edges of x↗

in segment I with ti < ti+1 for all 1 ≃ i < ϑ. The signal x↗ is I-consistent with
x i# the value expression x↗(s) · x↗(t1) · . . . · x↗(tω) belongs to ↼(x, I). Moreover,
x↗ is consistent with x i# it is I-consistent with x for all I ↗ GS . Now, let
S = (x1, . . . , xn) and define Tr+(S,↭) as follows:

Tr+(S,↭) = {(x↗
1, . . . , x↗

n) | x↗
i is consistent with xi for all 1 ≃ i ≃ n}

Example 1. Recall (S,↭) and its ↼ function from Figure 2. Consider the syn-
chronous trace w ↗ Tr(S,↭) where the rising edges of both signals occur at time
3 and the falling edges at time 5. Such a signal w would be included in Tr+(S,↭)
since for each i ↗ {1, 2}, the value expression 1 is contained in ↼(xi, [3, 4)) and
↼(xi, [4, 5)), while 0 is contained in the remaining sets ↼ maps xi to. Now, con-
sider a synchronous trace (x↗

1, x↗
2) where both signals are initially 0, have rising

edges at time 2 and 3.5, and falling edges at time 3 and 5. This trace does not
belong to Tr(S,↭) since x↗

1 and x↗
2 have more edges than x1 and x2. However,

it belongs to Tr+(S,↭) since x↗
1 and x↗

2 are consistent with x1 and x2. Specifi-
cally, for each i ↗ {1, 2}, the value expression 01 is contained in ↼(xi, [1, 3)) and
↼(xi, [3, 4)), the expression 1 is contained in ↼(xi, [4, 5)), and 0 is contained in
the remaining sets ↼ maps xi to.

Finally, we prove that Tr+ overapproximates Tr.

Lemma 1. For every distributed signal (S,↭), we have Tr(S,↭) ↓ Tr+(S,↭).

5 Monitoring Algorithm

In this section, for a distributed signal (S,↭), we describe an algorithm to
compute [(S,↭) |= ϱ]+ using the function ↼ from Section 4 without explicitly
computing Tr+(S,↭). We introduce the asynchronous product of value expres-
sions to capture interleavings within segments, then evaluate untimed and timed
operators. Finally, we combine these steps to compute the semantics of STL+.
We also discuss an e%cient implementation of the monitoring algorithm using
bit vectors, heuristics to enhance generalization for real-valued signals, and a
method to combine our approach with exact monitoring.
Asynchronous Products. Consider the value expressions u1 = 0 · 1 and u2 =
1 · 0 encoding the behaviors of two signals within a segment. Since behaviors
within a segment are asynchronous, to capture their potential interleavings, we
consider how the values in u1 and u2 can align. In particular, there are three
potential alignments: (i) the rising edge of u1 happens before the falling edge
of u2, (ii) the falling edge of u2 happens before the rising edge of u1, and (iii)

Approximate Distributed Monitoring under Partial Synchrony 9

they happen simultaneously. We respectively represent these with the tuples
(011, 110), (001, 100), and (01, 10) where the first component encodes u1 and
the second u2. Formally, given two value expressions u1 and u2 (resp. sets L1
and L2 of value expressions), we define their asynchronous product as follows:

u1 ⇔ u2 =
{

destutter(v1, v2) | vi ↘ stutterk(ui), k = |u1| + |u2| ↖ 1, i ↘ {1, 2}
}

L1 ⇔ L2 = {u1 ⇔ u2 | u1 ↘ L1, u2 ↘ L2}

Asynchronous products of value expressions allow us to lift value expressions
to satisfaction signals of formulas.

Example 2. Recall (S,↭) and its ↼ function given in Figure 2. To compute the
value expressions encoding the satisfaction of x1 ⇓ x2 in the segment [1, 3), we
first compute the asynchronous product ↼(x1, [3, 4)) ▽ ↼(x2, [3, 4)), and then the
bitwise conjunction of each pair in the set. For example, taking the expression
010 for x1 and 01 for x2, the product contains the pair (010, 011). Its bitwise
conjunction is 010, encoding a potential behavior for the satisfaction of x1 ⇓ x2.

Untimed Operations. As hinted in Example 2, to compute the semantics, we
apply bitwise operations on value expressions and their asynchronous products
to transform them into encodings of satisfaction signals of formulas. For example,
to determine [(S,↭) |= (x1 ⇓ x2)]+, we first compute for each segment in GS

the set of value expressions for the satisfaction of x1 ⇓ x2, and then from these
compute those of (x1 ⇓ x2). This compositional approach allows us to evaluate
arbitrary STL+ formulas.

First, we define bitwise operations on Boolean value expressions encoding
atomic propositions. Then, we use these to evaluate untimed STL formulas over
sets of value expressions. Let u and v be Boolean value expressions of length ϑ.
We denote by u & v the bitwise-and operation, by u | v the bitwise-or, and by
̸u the bitwise-negation. We also define the bitwise strong until operator:

uU0v =
(

max
i↘j↘ω

(
min

(
v[j], min

i↘k↘j
u[k]

)))

1↘i↘ω

As usual, we derive bitwise eventually as Eu = 1ωU0u, bitwise always as Au =
̸(E̸u), and bitwise weak until as uU1v = (uU0v)|(Au). The distinction between
U0 and U1 will be useful when we incrementally evaluate a formula. Finally, note
that the output of these operations is a value expression of length ϑ. For example,
if u = 010, we have Eu = 110 and Au = 000.

Let (S,↭) be a distributed signal. Consider an atomic proposition p ↗ AP
encoded as xp ↗ S and let ϱ1, ϱ2 be two STL formulas. We define the evaluation
of untimed formulas with respect to (S,↭) and a segment I ↗ GS inductively:

!(S, ↭), I |= p" = ϑ(xp, I)
!(S, ↭), I |= ¬ϖ1" = {≃u | u ⇐ !(S, ↭), I |= ϖ1"}

!(S, ↭), I |= ϖ1 ⇒ ϖ2" = destutter({u1 & u2 | (u1, u2) ⇐ !(S, ↭), I |= ϖ1" ⇑ !(S, ↭), I |= ϖ2"})
!(S, ↭), I |= ϖ1 Uϖ2" = destutter({u1Uau2 | (u1, u2) ⇐ !(S, ↭), I |= ϖ1" ⇑ !(S, ↭), I |= ϖ2",

a ⇐ first(!(S, ↭), I↓ |= ϖ1 Uϖ2")})

10 B. Bonakdarpour, A. Momtaz, D. Ni#kovi$, N. E. Saraç

where I ↗ is the segment that follows I in GS , if it exists. For completeness, for
every formula ϱ we define !(S,↭), I ↗ |= ϱ" = {0} when I ↗ /↗ GS . When I is the
first segment in GS , we simply write !(S,↭) |= ϱ". Similarly as above, we can
use the standard derived operators to compute the corresponding sets of value
expressions. For a given formula and a segment, the evaluation above produces a
set of value expressions encoding the formula’s satisfaction within the segment.
Example 3. Recall (S,↭) and ↼ from Figure 2. To compute !(S,↭), [5, 7) |=

(x1 ⇓ x2)", we first compute !(S,↭), [5, 7) |= x1 ⇓ x2" by taking the bitwise
conjunction over the asynchronous product ↼(x1, [5, 7))▽↼(x2, [5, 7)) and destut-
tering. For example, since 010 ↗ ↼(x1, [5, 7)) and 01 ↗ ↼(x2, [5, 7)), the pair
(0010, 0111) is in the product, whose conjunction gives us 010 after destut-
tering. Repeating this for the rest, we obtain !(S,↭), [5, 7) |= x1 ⇓ x2" =
{0, 01, 010, 1, 10}. Finally, we compute !(S,↭), [5, 7) |= (x1 ⇓ x2)" by apply-
ing each expression in !(S,↭), [5, 7) |= x1 ⇓ x2" the bitwise eventually operator
and destuttering. The resulting set {0, 1, 10} encodes the satisfaction signal of

(x1 ⇓ x2) in [5, 7). Note that we do not need to consider the evaluation of the
next segment for the eventually operator since !(S,↭), [7, 8) |= x1 ⇓ x2" = {0}.
Timed Operations. Handling timed operations requires a closer inspection as
value expressions are untimed by definition. We address this issue by considering
how a given evaluation interval relates with a given segmentation. For example,
take a segmentation GS = {[0, 4), [4, 6), [6, 10)} and an evaluation interval J =
[0, 5). Suppose we are interested in how a signal x ↗ S behaves with respect to
J over the first segment I = [0, 4). First, to see how J relates with GS with
respect to I = [0, 4), we “slide” the interval J over I ∝ J = [0, 9) and consider
the di#erent ways it intersects the segments in GS . Initially, J covers the entire
segment [0, 4) and the beginning of [4, 6), for which the potential behaviors of
x are captured by the set ↼(x, [0, 4)) · prefix(↼(x, [4, 6))). Now, if we slide the
window and take J ↗ = [3, 7), the window covers the ending of [0, 4), the entire
[4, 6), and the beginning of [6, 10), for which the potential behaviors are captured
by the set su!x(↼(x, [0, 4))) · ↼(x, [4, 6)) · prefix(↼(x, [6, 9)). We call these sets the
profiles of J and J ↗ with respect to (S,↭), x, and I.

We first present the definitions, and then demonstrate them in Examples 4
and 5 and Figure 3. Let (S,↭) be a distributed signal, I ↗ GS be a segment,
and ϱ be an STL formula. Let us introduce some notation. First, we abbreviate
the set !(S,↭), I |= ϱ" of value expressions as ↽ϖ,I . Second, given an interval
K, we respectively denote by lK and rK its left and right end points. Third,
recall that we denote by F the set of end points of GS (see Section 4). Given an
interval J , we define the profile of J with respect to (S,↭), ϱ, and I as follows:

profile((S, ↭), ϖ, I, J) =






prefix(ϱω,I) if lI = lJ ⇒ rI > rJ

infix(ϱω,I) if lI < lJ ⇒ rI > rJ

ϱω,I · ς(ϖ, I, J) if lI = lJ ⇒ rI ↘ rJ ⇒ rJ ⇐ F \ J

ϱω,I · ς(ϖ, I, J) · first(ϱω,I↓) if lI = lJ ⇒ rI ↘ rJ ⇒ rJ ⇐ F ⇓ J

ϱω,I · ς(ϖ, I, J) · prefix(ϱω,I↓) if lI = lJ ⇒ rI ↘ rJ ⇒ rJ /⇐ F

su!x(ϱω,I) · ς(ϖ, I, J) if lI < lJ < rI ↘ rJ ⇒ rJ ⇐ F \ J

su!x(ϱω,I) · ς(ϖ, I, J) · first(ϱω,I↓) if lI < lJ < rI ↘ rJ ⇒ rJ ⇐ F ⇓ J

su!x(ϱω,I) · ς(ϖ, I, J) · prefix(ϱω,I↓) if lI < lJ < rI ↘ rJ ⇒ rJ /⇐ F

{φ} otherwise

Approximate Distributed Monitoring under Partial Synchrony 11

where we assume J is trimmed to fit the temporal domain of S and I ↗ ↗ GS is
such that rJ ↗ I ↗. Moreover, ⇀(ϱ, I, J) is the concatenation ↽ϖ,I1 · . . . · ↽ϖ,Im such
that I, I1, . . . , Im, I ↗ are consecutive segments in GS . If I1, . . . , Im do not exist,
we let ⇀(ϱ, I, J) = {ε}. Note that the last case happens when I ∈ J is empty.
We now formalize the intuitive approach of “sliding” J over the segmentation to
obtain the various profiles it produces as follows:

pfs((S,↭), ε, I, J) = {destutter(profile((S,↭), ε, I, J →)) | J → ↙ I ≃ J, J → ∝ J}

where J ↗ ̸ J holds when |J ↗| = |J | and J ↗ contains an end point (left or
right) i# J does so. Note that although infinitely many intervals J ↗ satisfy the
conditions given above (due to denseness of time), the set defined by pfs is finite.
We demonstrate this and the computation of pfs in Example 4 and Figure 3.

Example 4. Recall (S,↭) and ↼ from Figure 2. We describe the computation
of pfs((S,↭), x1, [1, 3), [0, 1)). Sliding the interval [0, 1) over the window [1, 3) ∝
[0, 1) (see Figure 3) gives us the following sets: P1 = destutter(prefix(↼(x1, [1, 3)))),
P2 = destutter(infix(↼(x1, [1, 3)))), and P3 = destutter(su!x(↼(x1, [1, 3)))) where
all equal to {0, 01, 1}. Moreover, we have P4 = destutter(su!x(↼(x1, [1, 3))) ·
prefix(↼(x1, [3, 4)))) = {0, 01, 010, 0101, 01010, 1, 10, 101, 1010}. We obtain that
pfs((S,↭), x1, [1, 3), [0, 1)) = {P1, P2, P3, P4}. This set overapproximates the po-
tential behaviors of x1, for all t ↗ [1, 3), in the interval t ∝ [0, 1).

Let ϱ1 and ϱ2 be two STL formulas. Intuitively, once we have the profiles of
a given interval J with respect to ϱ1 and ϱ2, we can evaluate the correspond-
ing untimed formulas on the product of these profiles and concatenate them.
Formally, we handle the evaluation of timed formulas as follows:

!(S,↭), I |= ε1 UJ ε2" = destutter({u1U0u2 | (u1, u2) ↘ P1 ⇔ Q1} · . . .

. . . · {u1U0u2 | (u1, u2) ↘ Pk ⇔ Qk})

where pfs((S,↭), ϱ1, I, J) = {P1, . . . , Pk} and pfs((S,↭), ϱ2, I, J) = {Q1, . . . , Qk}
such that the intervals producing Pi and Qi respectively start before those pro-
ducing Pi+1 and Qi+1 for all 1 ≃ i < k.

Example 5. Let (S,↭) and ↼ be as in Figure 2. We demonstrate the evaluation
of the timed formula [0,1) x1 over the segment [1, 3). Recall from Example 4
the set pfs((S,↭), x1, [1, 3), [0, 1)) = {P1, P2, P3, P4} of profiles. First, we apply
the bitwise eventually operator to each value expression in each of these profiles
separately: {Eu | u ↗ P1} = {Eu | u ↗ P2} = {Eu | u ↗ P3} = {0, 1}, and
{Eu | u ↗ P4} = {0, 10, 1}. We then concatenate these and destutter to obtain
!(S,↭), [1, 3) |= [0,1) x1" = {0, 01, 010, 0101, 01010, 1, 10, 101, 1010}.

Computing the Semantics of STL
+

. Putting it all together, given a dis-
tributed signal (S,↭) and an STL+ formula ϱ, we can compute [(S,↭) |= ϱ]+
thanks to the following theorem.

Theorem 2. For every distributed signal (S,↭) and STL formula ϱ we have
[(S,↭) |= ϱ]+ = → (resp. ↑, ?) i! first(!(S,↭) |= ϱ") = {1} (resp. {0}, {0, 1}).

12 B. Bonakdarpour, A. Momtaz, D. Ni#kovi$, N. E. Saraç

0 1 3 4 5 7 8t:

x1
{0,
01}

{0,
01,
1}

{01,
010,

1,
10}

{1,
10,
0}

{10,
0} {0}

(1)
(2)

(3)
(4)

Fig. 3: The profiles of J = [0, 1) with respect
to x1 ↘ S of Figure 2. A representative in-
terval for each profile is shown with solid
black lines below the table.

Sets of Boolean Value Expres-

sions as Bit Vectors. Asyn-
chronous products are expensive to
compute. Our implementation re-
lies on the observation that sets of
boolean value expressions and their
operations can be e%ciently imple-
mented through bit vectors. Intu-
itively, to represent such a set, we en-
code each element using its first bit
and its length since value expressions
are boolean and always destuttered.
Moreover, to evaluate untimed opera-
tions on such sets, we only need to know the maximal lengths of the four possible
types of expressions (0 . . . 0, 0 . . . 1, 1 . . . 0, and 1 . . . 1) and whether the set con-
tains 0 or 1 (to handle some edge cases). This is because value expressions within
the same segments are completely asynchronous and the possible interleavings
obtained from shorter expressions can be also obtained from longer ones.
Generalization to Real-Valued Signals. Our approximate distributed mon-
itoring method, denoted Adm, can be extended to real-valued signals and nu-
merical predicates. The key is that finite-length piecewise-constant signals take
finitely many values. By defining ω as a finite alphabet of these values, we can
compute atomic propositions as above. For example, if the asynchronous prod-
uct of two signals x1 and x2 yields (2 · 2 · 3, 1 · 0 · 1), adding these letter-by-letter
results in 3 · 2 · 4, and comparing with > 2 gives 101.

We can avoid explicit computation of asynchronous products for some formu-
las and numerical predicates. Since signals are asynchronous within segments, we
can compute potential value sets instead of sequences. This approach is called
Fine, denoted by Adm-F. Assuming x1 + x2 is constant within this segment,
we can avoid explicit interleaving computations. Note that Adm-F overapprox-
imates traces when order matters. The approach Coarse, denoted Adm-C, ab-
stracts Fine by only considering extreme values, which is useful for monotonic
operations where the extreme values of outputs derive from inputs.

We assumed so far that the central monitor runs on a process independent
of the observed agents. Lastly, we also consider a setting where the monitor runs
on one of the observed agents. This approach reduces asynchrony by using the
agent’s local clock as a reference point for the monitor. We call this Relative,
denoted Adm-Fr or Adm-Cr depending on the approach it is paired with. We
evaluate these in Section 6.
Combining Exact and Approximate Monitoring. We propose a method
that combines approximate distributed monitors (Adm) with their exact coun-
terparts (Edm) with the aim to achieve better computational performance while
remaining precise. The approach works as follows: Given a distributed signal
(S,↭) and a formula ϱ, compute the approximate verdict v ← [(S,↭) |= ϱ]+.
If the verdict is inconclusive, i.e., v = ?, then compute and return the exact
verdict [(S,↭) |= ϱ], else return v. We evaluate this approach in Section 6.

Approximate Distributed Monitoring under Partial Synchrony 13

6 Experimental Evaluation

6.1 Research Questions

We seek answers to the following research questions (RQs):

RQ1. What is the tradeo! between the e"ciency and the accuracy of approximate
distributed monitors? The approximate distributed monitoring comes with a
price in terms of the loss of accuracy. We want to understand the tradeo# between
the potential speedups that an approximate distributed monitor can achieve
when compared to its exact counterpart and the consequent loss in accuracy
due to the approximations. We would also like to identify the classes of signals
and properties for which this tradeo# is e#ective.

RQ2. Can the combination of approximate and exact distributed monitors in-
crease e"ciency while preserving accuracy? We are interested in evaluating
whether a smart, combined use of approximate and exact distributed monitors
can still bring improvements in monitoring e%ciency while guaranteeing the ac-
curacy of the monitoring verdicts.

6.2 Experimental Setup

Distributed Monitors. In our study, we compare our approximate distributed
monitoring (Adm) approach and its variants to an exact distributed monitoring
approach (Edm).1 For Edm, we take a variant of the distributed monitoring
procedure from [18] that allows to evaluate STL specifications over distributed
traces using SMT-solving. Originally, that procedure assumes that input sig-
nals are polynomial continuous functions. We adapt the SMT-based approach
to consider input signals as piecewise-constant signals to make a consistent com-
parison with Adm. We note that the passage from the polynomial continuous to
piecewise-constant input signals reduces the e%ciency of the SMT-based mon-
itors. We also observe that the SMT-based monitors from [18] can split the
input trace into multiple segments and evaluate the specification incrementally,
segment-by-segment, allowing early termination of the monitor in some cases.
Since the focus of this paper is purely on the o$ine monitoring, we also use the
exact monitors without their incremental mode.
Experimental Subjects. To answer our research questions, we use (1) a ran-
dom generator (RG) of distributed traces, (2) a water tank (WT) case study,
and (3) a swarm of drones (SD) case study. The random generator (RG) uses
uniform distribution to generate distributed traces, in which the user can con-
trol the duration d of the trace, as well as the ς bound on the uncertainty at
which the events happen. Water tank (WT) model is a SimuLink model of a
hybrid high pressure water distribution system consisting of two water tanks.
Inlet pipes connect each water tank to an external source, and outlet pipes dis-
tribute high pressure water that is regulated by valves. Each valve is operated by
a controller that samples the outflow pressure at 20Hz using its local clock. Our
model is a simplified emulation of the Refueling Water Storage Tanks (RWST)
1 The code is available at https://github.com/egesarac/ApxDistMon.

https://github.com/egesarac/ApxDistMon

14 B. Bonakdarpour, A. Momtaz, D. Ni#kovi$, N. E. Saraç

Subject STL formula(s)
RG ε1 = (p ↔ q) ε2 = (p ↓ q) ε3 = (p ↓ [0,1) q)
WT εWT =

(∑n

i=1 xi > c
)

SD εSD =
∧

1↑i↓=j↑n

(
(xi ↖ xj)2 + (yi ↖ yj)2 + (zi ↖ zj)2 > c



Table 1: STL specifications used in the experiments.

module of an Emergency Core Cooling System (ECCS) of a Pressurized Wa-
ter Reactor Plant [24]. Swarm of drones (SD) model is generated using a path
planning software, Fly-by-Logic [22]. Here, a swarm of drones perform various
reach-avoid missions, while securing objectives such as reaching a goal within
a deadline, avoiding obstacles and collisions. The path planner finds the most
robust trajectory using a temporal logic robustness optimizer. These trajectories
are sampled at 20Hz. Note that the actual values of clock skew are less important
than the fact that when clock skew exceeds the sampling interval, we encounter
the problem of uncertainty.
Specifications. Table 1 shows the STL specifications that we use to evaluate
our experimental subjects. Specifications ϱ1, ϱ2 and ϱ3 are monitored against
the distributed traces created by the random generator and represent di#erent
classes and fragments of Boolean-valued temporal formulas. The first specifica-
tion ϱ1 is an LTL formula in which both the outer temporal operator () and
the inner Boolean operator (⇓) are conjunctive. The second formula ϱ2 is the
common LTL response formula which combines conjunctive () and disjunctive
(, ∀) operators. Finally, ϱ3 adds a bounded real-time response requirement to
the previous specification. The specification ϱW T associated to the water tank
case study is an STL formula in which a sum of signals originating from di#erent
agents is compared to a constant. Finally, the specification ϱSD defines a mu-
tual separation property over a swarm of drones, requiring more sophisticated
arithmetic operations on signals originating from di#erent agents.
Computing Platform. We used a laptop with Ubuntu 24.04, an AMD Ryzen
7 4800HS CPU at 2.90 GHz clock rate, and 16GB of RAM. Adm is implemented
in C++ and compiled using g++ version 13.2.0 with the optimization flag -O3

enabled, and Edm invokes the SMT-solver Z3 [20] and is based on [18].
6.3 Discussion

Random Generator. Figure 4 summarizes the results of evaluating specifica-
tions ϱ1 to ϱ3 against distributed traces from RG. The first column in the figure
depicts a heatmap where cells show the speedup of Adm compared to Edm when
evaluating the formula on the given distributed trace with duration d and un-
certainty bound ς. The second column shows a heatmap where every cell shows
the percentage of false positives (FP) introduced by Adm, where Adm evaluates
to inconclusive when the Edm (real) verdict is true or false. Finally, the third
column depicts a heatmap, where each cell estimates the achieved speedup when
combining Adm with Edm, compared to using only Edm.

We see that Adm consistently achieves speedups of several orders of magni-
tude compared to the Edm approach. The speedups range from several thousands
to almost 60 thousand times and are the highest for long signals with low uncer-
tainty bounds. The price paid in terms of accuracy highly depends on the type

Approximate Distributed Monitoring under Partial Synchrony 15

Fig. 4: Results on monitoring ε1 to ε3 on distributed traces created by the RG.

of specification and the uncertainty bounds. For example, Adm is very accurate
when monitoring the property ϱ1 in which both the temporal and the combi-
natorial operators are conjunctive. On the other hand, having a combination of
conjunctive and disjunctive operations (as in ϱ2 and ϱ3) increases the number
of FPs. Surprisingly, we see that in these cases the introduction of FPs is higher
for lower values of ς. This is because even Edm gives many inconclusive verdicts
for higher values of ς. We see that adding real-time modalities to the temporal
operators increases FPs. Finally, we can see (Figure 4 right column) that by
combining Edm and Adm, we consistently get better performance than by using
Edm only, even in cases where Adm introduces a high percentage of FPs.

Water Tank. Speedups increase with the number of signals n and decrease
with ς. The Adm-C method shows significant improvements over Edm, with
up to a 104000△ speedup in the best-case (when n = 4 and ς = 0.05) and an
8△ speedup in the worst-case (when n = 2 and ς = 0.4). Note that ς = 0.4
is near the realistic upper limit [18], indicating no scalability issues. The Adm-
Cr method adds up to a 1.63△ speedup over Adm-C. The Adm-Fr approach
significantly improves Adm-F, bringing it below the time-out limit with up to
a 476△ speedup in non-time-out instances. As expected, Adm does not perform
well. All methods produce the same verdict for the considered traces.

Swarm of Drones. Similar to the previous case scenario, speedups in the mu-
tual separation case increase with n and decrease with ς. The Adm-Fr method
achieves about a 78000△ speedup in the best-case scenario (when n = 4 and
ς = 0.05) and a 23△ speedup in the worst-case (when n = 2 and ς = 0.25). The
Adm-F method performs slower than SMT in two cases where n is small and

16 B. Bonakdarpour, A. Momtaz, D. Ni#kovi$, N. E. Saraç

Fig. 5: Running times for monitoring εWT in log scale. Time limit is 120s, and timed-
out instances are not shown.

Fig. 6: Running times for monitoring εSD in log scale. Time limit is 360s, and timed-out
instances are not shown.

ς is large. As in the previous case, Adm does not perform well. Additionally,
Adm-C and Adm-Cr are not applicable here because the arithmetic operations
are not monotonic. Again, all methods yield the same verdicts.
Summary. To answer RQ1, we find that Adm achieves a speedup of three to
five orders of magnitude over Edm. However, the e%ciency-accuracy tradeo#
depends on the type of specifications, input signal duration, and maximal clock
skew. Arithmetic and timed operators are particularly a#ected by Adm’s overap-
proximations, reducing accuracy. Untimed temporal properties, especially those
without mixed conjunctive and disjunctive operations, maintain high accuracy
and o#er an excellent tradeo#. Despite lower accuracy in some cases, combining
Adm and Edm still results in significant gains, positively answering RQ2.

7 Conclusion

We presented an approximate, modular procedure for distributed STL monitor-
ing that significantly improves e%ciency over exact SMT-based methods. In this
paper, the focus was on the o$ine evaluation of distributed traces. We plan to
extend our monitoring approach to the online setting. We will also exploit the
modular nature of our monitors to have a better control over their accuracy.
More specifically, for every operator, we can either generate the exact or the
approximate evaluation algorithm.

Approximate Distributed Monitoring under Partial Synchrony 17

References

1. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: The best
a monitor can do. In: Baier, C., Goubault-Larrecq, J. (eds.) 29th EACSL Annual
Conference on Computer Science Logic, CSL 2021, January 25-28, 2021, Ljubljana,
Slovenia (Virtual Conference). LIPIcs, vol. 183, pp. 7:1–7:23. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPICS.CSL.

2021.7, https://doi.org/10.4230/LIPIcs.CSL.2021.7

2. Aceto, L., Attard, D.P., Francalanza, A., Ingólfsdóttir, A.: On benchmarking for
concurrent runtime verification. In: Guerra, E., Stoelinga, M. (eds.) Fundamental
Approaches to Software Engineering. pp. 3–23. Springer International Publishing,
Cham (2021)

3. Alechina, N., Dastani, M., Logan, B.: Norm approximation for imperfect monitors.
In: Bazzan, A.L.C., Huhns, M.N., Lomuscio, A., Scerri, P. (eds.) International
conference on Autonomous Agents and Multi-Agent Systems, AAMAS ’14, Paris,
France, May 5-9, 2014. pp. 117–124. IFAAMAS/ACM (2014), http://dl.acm.

org/citation.cfm?id=2615753

4. Bartocci, E., Grosu, R.: Monitoring with uncertainty. In: Bortolussi, L., Bujori-
anu, M., Pola, G. (eds.) Proceedings Third International Workshop on Hybrid Au-
tonomous Systems, HAS 2013, Rome, Italy, 17th March 2013. EPTCS, vol. 124,
pp. 1–4 (2013). https://doi.org/10.4204/EPTCS.124.1, https://doi.org/10.

4204/EPTCS.124.1

5. Bauer, A., Falcone, Y.: Decentralised LTL monitoring. Formal Methods in System
Design 48(1-2), 46–93 (2016)

6. Bonakdarpour, B., Fraigniaud, P., Rajsbaum, S., Rosenblueth, D.A., Travers, C.:
Decentralized asynchronous crash-resilient runtime verification. Journal of the
ACM 69(5), 34:1–34:31 (2022)

7. Chauhan, H., Garg, V.K., Natarajan, A., Mittal, N.: A distributed abstraction
algorithm for online predicate detection. In: Proceedings of the 32nd IEEE Sym-
posium on Reliable Distributed Systems (SRDS). pp. 101–110 (2013)

8. Colombo, C., Falcone, Y.: Organising LTL monitors over distributed systems with
a global clock. Formal Methods in System Design 49(1-2), 109–158 (2016)

9. El-Hokayem, A., Falcone, Y.: On the monitoring of decentralized specifications:
Semantics, properties, analysis, and simulation. ACM Transactions on Software
Engineering Methodologies 29(1), 1:1–1:57 (2020)

10. Ganguly, R., Momtaz, A., Bonakdarpour, B.: Runtime verification of partially-
synchronous distributed system. Formal Methods in System Design (FMSD)
(2024), to appear

11. Ganguly, R., Momtaz, A., Bonakdarpour, B.: Distributed runtime verification un-
der partial synchrony. In: Bramas, Q., Oshman, R., Romano, P. (eds.) 24th In-
ternational Conference on Principles of Distributed Systems, OPODIS 2020, De-
cember 14-16, 2020, Strasbourg, France (Virtual Conference). LIPIcs, vol. 184,
pp. 20:1–20:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https:

//doi.org/10.4230/LIPIcs.OPODIS.2020.20

12. Garg, V.K.: Predicate detection to solve combinatorial optimization problems. In:
Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Ar-
chitectures (SPAA). pp. 235–245. ACM (2020)

13. Henzinger, T.A., Mazzocchi, N., Saraç, N.E.: Abstract monitors for quantitative
specifications. In: Dang, T., Stolz, V. (eds.) Runtime Verification - 22nd Interna-
tional Conference, RV 2022, Tbilisi, Georgia, September 28-30, 2022, Proceedings.
Lecture Notes in Computer Science, vol. 13498, pp. 200–220. Springer (2022).

https://doi.org/10.4230/LIPICS.CSL.2021.7
https://doi.org/10.4230/LIPICS.CSL.2021.7
https://doi.org/10.4230/LIPICS.CSL.2021.7
https://doi.org/10.4230/LIPICS.CSL.2021.7
https://doi.org/10.4230/LIPIcs.CSL.2021.7
http://dl.acm.org/citation.cfm?id=2615753
http://dl.acm.org/citation.cfm?id=2615753
https://doi.org/10.4204/EPTCS.124.1
https://doi.org/10.4204/EPTCS.124.1
https://doi.org/10.4204/EPTCS.124.1
https://doi.org/10.4204/EPTCS.124.1
https://doi.org/10.4230/LIPIcs.OPODIS.2020.20
https://doi.org/10.4230/LIPIcs.OPODIS.2020.20
https://doi.org/10.4230/LIPIcs.OPODIS.2020.20
https://doi.org/10.4230/LIPIcs.OPODIS.2020.20

18 B. Bonakdarpour, A. Momtaz, D. Ni#kovi$, N. E. Saraç

https://doi.org/10.1007/978-3-031-17196-3_11, https://doi.org/10.1007/

978-3-031-17196-3_11

14. Henzinger, T.A., Mazzocchi, N., Saraç, N.E.: Quantitative safety and liveness. In:
Kupferman, O., Sobocinski, P. (eds.) Foundations of Software Science and Com-
putation Structures - 26th International Conference, FoSSaCS 2023, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS
2023, Paris, France, April 22-27, 2023, Proceedings. Lecture Notes in Computer
Science, vol. 13992, pp. 349–370. Springer (2023). https://doi.org/10.1007/

978-3-031-30829-1_17, https://doi.org/10.1007/978-3-031-30829-1_17

15. Henzinger, T.A., Saraç, N.E.: Quantitative and approximate monitoring. In: 36th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome,
Italy, June 29 - July 2, 2021. pp. 1–14. IEEE (2021). https://doi.org/10.1109/

LICS52264.2021.9470547, https://doi.org/10.1109/LICS52264.2021.9470547

16. Maler, O., Nickovic, D.: Monitoring properties of analog and mixed-signal circuits.
Int. J. Softw. Tools Technol. Transf. 15(3), 247–268 (2013). https://doi.org/10.

1007/s10009-012-0247-9

17. Mittal, N., Garg, V.K.: Techniques and applications of computation slicing. Dis-
tributed Computing 17(3), 251–277 (2005)

18. Momtaz, A., Abbas, H., Bonakdarpour, B.: Monitoring signal temporal logic in
distributed cyber-physical systems. In: Mitra, S., Venkatasubramanian, N., Dubey,
A., Feng, L., Ghasemi, M., Sprinkle, J. (eds.) Proceedings of the ACM/IEEE 14th
International Conference on Cyber-Physical Systems, ICCPS 2023, (with CPS-IoT
Week 2023), San Antonio, TX, USA, May 9-12, 2023. pp. 154–165. ACM (2023).
https://doi.org/10.1145/3576841.3585937

19. Mostafa, M., Bonakdarpour, B.: Decentralized runtime verification of LTL spec-
ifications in distributed systems. In: Proceedings of the 29th IEEE International
Parallel and Distributed Processing Symposium (IPDPS). pp. 494–503 (2015)

20. de Moura, L.M., Bjørner, N.S.: Z3: an e"cient SMT solver. In: Ramakrishnan,
C.R., Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis
of Systems, 14th International Conference, TACAS 2008, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2008,
Budapest, Hungary, March 29-April 6, 2008. Proceedings. Lecture Notes in Com-
puter Science, vol. 4963, pp. 337–340. Springer (2008). https://doi.org/10.1007/

978-3-540-78800-3_24, https://doi.org/10.1007/978-3-540-78800-3_24

21. Ogale, V.A., Garg, V.K.: Detecting temporal logic predicates on distributed com-
putations. In: Proceedings of the 21st International Symposium on Distributed
Computing (DISC). pp. 420–434 (2007)

22. Pant, Y.V., Abbas, H., Mangharam, R.: Smooth operator: Control using the
smooth robustness of temporal logic. In: 2017 IEEE Conference on Control Tech-
nology and Applications (CCTA). pp. 1235–1240. IEEE (2017)

23. Stoller, S.D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K., Smolka, S.A.,
Zadok, E.: Runtime verification with state estimation. In: Khurshid, S., Sen,
K. (eds.) Runtime Verification - Second International Conference, RV 2011,
San Francisco, CA, USA, September 27-30, 2011, Revised Selected Papers.
Lecture Notes in Computer Science, vol. 7186, pp. 193–207. Springer (2011).
https://doi.org/10.1007/978-3-642-29860-8_15, https://doi.org/10.1007/

978-3-642-29860-8_15

24. USNRC: Pressurized water reactor systems (March 2021), https://www.nrc.gov/

reading-rm/basic-ref/students/for-educators/04.pdf

https://doi.org/10.1007/978-3-031-17196-3%5C_11
https://doi.org/10.1007/978-3-031-17196-3_11
https://doi.org/10.1007/978-3-031-17196-3_11
https://doi.org/10.1007/978-3-031-17196-3_11
https://doi.org/10.1007/978-3-031-30829-1%5C_17
https://doi.org/10.1007/978-3-031-30829-1_17
https://doi.org/10.1007/978-3-031-30829-1%5C_17
https://doi.org/10.1007/978-3-031-30829-1_17
https://doi.org/10.1007/978-3-031-30829-1_17
https://doi.org/10.1109/LICS52264.2021.9470547
https://doi.org/10.1109/LICS52264.2021.9470547
https://doi.org/10.1109/LICS52264.2021.9470547
https://doi.org/10.1109/LICS52264.2021.9470547
https://doi.org/10.1109/LICS52264.2021.9470547
https://doi.org/10.1007/s10009-012-0247-9
https://doi.org/10.1007/s10009-012-0247-9
https://doi.org/10.1007/s10009-012-0247-9
https://doi.org/10.1007/s10009-012-0247-9
https://doi.org/10.1145/3576841.3585937
https://doi.org/10.1145/3576841.3585937
https://doi.org/10.1007/978-3-540-78800-3%5C_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3%5C_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-29860-8%5C_15
https://doi.org/10.1007/978-3-642-29860-8_15
https://doi.org/10.1007/978-3-642-29860-8_15
https://doi.org/10.1007/978-3-642-29860-8_15
https://www.nrc.gov/reading-rm/basic-ref/students/for-educators/04.pdf
https://www.nrc.gov/reading-rm/basic-ref/students/for-educators/04.pdf

	Approximate Distributed Monitoring under Partial Synchrony: Balancing Speed & Accuracy

