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Abstract

Bilevel optimization, a hierarchical optimization paradigm, has gained significant
attention in a wide range of practical applications, notably in the fine-tuning of
generative models. However, due to the nested problem structure, most existing
algorithms require either the Hessian vector calculation or the nested loop updates,
which are computationally inefficient in large language model (LLM) fine-tuning.
In this paper, building upon the fully first-order penalty-based approach, we pro-
pose an efficient value function-free (PBGD-Free) algorithm that eliminates the
loop of solving the lower-level problem and admits fully single-loop updates. In-
spired by the landscape analysis of representation learning-based LLM fine-tuning
problem, we propose a relaxed flatness condition for the upper-level function and
prove the convergence of the proposed value-function-free algorithm. We test the
performance of the proposed algorithm in various applications and demonstrate its
superior computational efficiency over the state-of-the-art bilevel methods.

1 Introduction

Bi-level optimization (BLO) has gained significant attention for its powerful modeling capabilities
in hierarchical learning across a wide range of real-world applications, such as distributed learning
[69, 28], meta learning [27, 12, 27], model pruning [111, 96], reinforcement learning [108, 84, 79, 85],
continual learning [8, 33], fine-tuning large language models (LLMs) [76, 68, 64, 56, 107] and
diffusion models [93, 17, 61]. In this paper, we consider the BLO problem with f : R% x R% — R
and g : R% x R% — R being the upper-level (UL) and lower-level (LL) objectives that are
continuously differentiable but not necessarily convex. Since the LL problem may contain multiple
solutions in S} (), we consider the optimistic BLO formulation which selects the one y that minimizes
the UL objective, given by

min f(z,y) sty e Sy(z):= argm?}ng(ay)- (1
In large-scale machine learning problems, efficiency is given a higher priority [110] and it is critical to
use gradient-based approaches to solve the above problem. One can perform a direct gradient descent
(GD) on the hyper-objective ¢(x) := min,,¢ sz f (z,y). A popular GD-based method is the implicit
gradient descent (IGD) method with second-order Hessian evaluation [29, 34, 39, 15, 42, 47, 82].
However, evaluating Hessian or its inverse in IGD is costly. To reduce the computational burden,
especially in large-scale problems, first-order gradient-based methods, including the penalty-based
BLO methods [105, 50, 77, 44, 45, 40, 57], have been developed. For example, penalizing the LL
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objective optimality gap into the UL via a large penalty constant -y has been proposed [105, 78, 45, 58],
yielding the following objective

min F (v) = min £ (2,y) := f(z,y) +7(9(x,y) - ming(z, 2)). k)

Under a proper curvature assumption for the LL problem, the penalty reformulation proves to be
differentiable and smooth [78, 45, 40, 11], which enables the design of penalty-based gradient descent
algorithms (PBGD) [78, 44, 45, 10]. Furthermore, the function value gap |F, (z) — ¢(z)] = O(y 1)
ensures the solution to the reformulated problem is an approximate solution to the original problem.
The reformulation in (2) provides two choices of algorithm update: jointly updating x and y to

minimize F,y (z,y) [105, 78], or alternatively optimizing y then updating x to minimize the hyper
objective F,(z) [45, 11]. Each has its pros and cons. For example, joint update eliminates the

inner loop of y so that it has low per-iteration cost, but high smoothness constant of Fv(x, y), which
increases with v, making the convergence rate suboptimal [78, 105]. In contrast, the smoothness
constant of F,(x) remains O(1) since the value function gap v(g(x,y) — min, g(z, z)) remains in

O(1) when y minimizes F'(z,y), but estimating V F, (z) often requires running inner loops to obtain
yy(x) € S (v) and y (v) € S (x) := argmin,, I, (x,y) [11]. Then a natural question is:

(Q1) Can we develop an efficient algorithm that combines the best of both worlds?

The idea is to update x by V. f(z, y7(x)) and skip the inner loop estimation for y; (x), which we

term as PBGD Free of value function evaluation (PBGD-Free). To be more specific, we illustrate
the updates for standard PBGD, its variants, and PBGD-Free in Figure 1.

Positive empirical observations

on Q1: PBGD-Free largely re- V-PBGD Xp,Ye Yo™¥0a—- Wk ~%G0  Xer1Yer1
duces computation and memory R Voo Y= . —> Y = Y3 (20)

cost while preserving the accu- FSA X Homeyli—> o = Ve = Ver1 ~ %) Xivd B
racy in LLM parameter efficient

fine-tuning (PEFT) [72, 2]. See PBGD-Free X; »e=Yep1=p@d  ¥e+1 Xt+2

Figure 2 and experiments in Sec-
tion 4. We prioritize supervised
fine-tuning (SFT) loss at the LL.
to ensure a capable base LLM
model, while we keep direct
preference optimization (DPO)
loss [70] in the UL to keep align-
ment with human preferences:

3

s.t.y € arg myingSFT(-T7y§DSFT)7

lel foro(2, y; Doro)

where x is a pretrained LLM
model, and y is an easy-to-fine-
tune head. This design is aligned
with both theoretical and practi-
cal needs in LLM deployment, as
detailed in Section 4.

Negative theoretical observa-
tions on Q1: There are some
counterexamples where PBGD-
Free does not converge. cl)
When the UL objective solely
depends on the LL wvariable

f(x,y) = f(y), as in data hyper-

Figure 1: Update schemes for V-PBGD, F?SA and PBGD-Free.
V-PBGD [78] (top) and F2SA [45] (middle) refine the LL variable
over multiple steps before updating x; via V,F, (x¢, y;) for V-
PBGD or V,F,(z¢,y;) for F’SA while PBGD-Free (bottom)
applies a 1-step inner update to find a more efficient yet potentially
less accurate Vg f (¢, yi4+1) = VFy (x¢).
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Figure 2: An Illustration to show PBGD-Free does not work
in Example 1, but works well in PEFT. The left plot shows
the f(x,y) and f(x,y;(z)) in Example 1, with red and blue dots
as the converged points using PBGD-Free and F2SA method.
The middle plot shows the trajectory of updates in PEFT. The

, cyan, and contours are the landscapes of fppo(, y),
gser(x,y), and F, (z,y), respectively. The right plot presents the
convergence vs. time in PEFT, showing faster convergence of
PBGD-Free. (See Appendix C.1 for details.)

cleaning [75, 34, 76] and meta-learning [27, 12, 27], the LL penalty gradient term contains all the
gradient information about the UL variable x, so it cannot be omitted; and, ¢2) When f(x, y) jointly
depends on both variables, omission of the penalty gradient term can lead to a different update
direction; see more details in Example 1 and Proposition 2.



Property PBGD-Free | V-PBGD BOME F’SA-MA F?SA BVEFSM
f(z,-) Flat Lip Lip & B Lip Lip Diff
g(z,-) PL PL PL&B PL PL Diff

flx,y) +v9(z,y) PL / / PL PL /
Single-loop v X X v b 4 X
Memory cost dz +dy dz +2d, | 3ds +4dy | dz +5dy | do+2dy | do+ 2dy
Complexity O(e™) O(e™+?) O(e™%) O(e™ %) O(e™) Asym

Table 1: Comparison of the proposed method (PBGD-Free) with the existing first-order approaches
for BLO with nonconvex LL problem (PBGD [78], BOME [105], F2SA-MA [45] (with momentum
assistance), F?SA [11] and BVFSM [51]) in deterministic setting. The notation O hides dependency
on log(e_l) terms. ‘Flat’, ‘Lip’, ‘B’, ‘Diff’, and ‘Asym’ stand for ‘flatness condition’ in Def. 1,
‘Lipschitz continuous’, ‘bounded’, ‘differentiable’, and ‘asymptotic convergence’.

Example 1. For the BLO problem in (1) with f(x,y) = 2? + 10y and g(z,y) = (y — x + 1), the
gradients (VI (z), V. f(z,y%(r))) < 0 exhibit opposite directions for x € (=5,0). As a result,
VE,(x) = 2z + 10 converges to x = —5 while V. f (z,y5(x)) = 2x converges to x = 0.

These findings leave it unclear when PBGD-Free can be applied without sacrificing accuracy. In
this paper, we focus on the case with UL joint dependency, where the objective f(x,y) depends
intrinsically on both = and y (i.e., cannot be simplified to f(y)). We explore the following question:

(Q2) Can we identify sufficient conditions under which the PBGD-Free algorithm is guaranteed to
converge to the stationary solution of the original problem?

We give an affirmative answer to the above question. Specifically, our key contributions are
summarized as follows, and the broader impact is discussed in Appendix D.

C1) We propose PBGD-Free, a computationally efficient fully-single-loop, value-function-free,
first-order algorithm. See a detailed comparison with other algorithms in Table 1. Specifi-
cally, compared to V-PBGD, it reduces the memory cost from O(d, + 2d,) to O(d, + dy),
and the per-iteration computational complexity cost from O(K) to O(1), where K is the
number of inner iterations. Furthermore, we show that empirically, it works in large-scale
problems such as PEFT (3). But theoretically, under a Lipschitz condition on the UL
objective, PBGD-Free only converges to an ©(1)-neighborhood of a stationary point.

C2) We then introduce a Holder-alike condition to describe the flatness of f(x,-) (see Defini-
tion 1), which relaxes the standard ¢ o-Lipschitz continuity assumption when [¢ ¢ is small.
This condition allows us to establish an improved complexity of the PBGD-Free algorithm
in O(e~!) (Theorem 3) to a necessary stationary condition of the original problem.

C3) We validate our methods through applications to LLM with PEFT and bilevel low-rank
adaptation. Across all experiments, PBGD-Free demonstrates much better efficiency and
comparable or better accuracy than the state-of-the-art baselines. See Section 4.

1.1 Prior art

Second-order BLO methods. The convergence for IGD-based BLO approaches was firstly es-
tablished for the unconstrained strongly-convex LL problem [29], with later literature focused on
improving finite time convergence rate [29, 34, 38, 14, 15,42, 47, 82, 16, 97, 39]. Another branch of
methods is based on iterative differentiation (ITD) methods [60, 26, 63, 75, 7], but they generally lack
finite-time guarantee under stochastic setting [32, 37]. However, convergence analysis for both ITD
and IGD methods mentioned above is limited to the setting where the LL problem is strongly convex
over y. This assumption does not align with large-scale machine learning applications, where the LL
objective represents the loss of a neural network and is inherently nonconvex [86, 41]. Recent studies
have generalized the IGD and ITD methods to address BLO with convex [81, 52] or even nonconvex
LL problem [92, 3, 49, 50, 66, 98]. Nevertheless, both ITD and IGD require the computation of
second-order information, making them inefficient for large-scale machine learning problems.

First-order BLO methods. Fully first-order bilevel methods based on equilibrium backpropagation
[74, 74, 113] and penalty reformulation [78, 44, 45, 105, 11, 103] have become increasingly popular
due to their computational efficiency and the ability to handle nonconvex LL problems. Later, penalty



approaches have been generalized to address BLO with constrained LL problem [100, 40] and
distributed learning settings [99, 87]. However, the iteration complexity of fully first-order approaches
remains suboptimal, exhibiting a logarithmic dependency due to the inner-loop overhead. To reduce
the cost in inner loops for both y7 () and 3 (), PBGD [78] eliminated the inner loop for y* (z) by
jointly optimizing  and ¥, in (2), F?SA [45] managed to be fully single-loop using momentum and
warm-start techniques. However, both methods incur a suboptimal iteration complexity of O(e~15).
[11] further improved iteration complexity of double-loop version of F2SA by exploiting the fact that
F, () is O(1)-Lipschitz smooth, but its inner loop leads to a high per-iteration computational cost
and suboptimal convergence rate as O(e ™! log(efl) ).

Landscape-aware optimization. Landscape-aware optimization leverages structural properties of
objective functions into algorithm design to accelerate the convergence or improve the generalization.
Newton-type methods, which use second-order curvature information to rescale gradients, have been
utilized in BLO [23, 71, 21] for efficient Hessian-vector calculation in IGD-based BLO methods.
Sharpness-aware minimization [25], which seeks solutions robust to local perturbations and promotes
convergence to flat minima, has also been incorporated into BLO [1] for improved generalization.
Other landscape conditions in single-level optimization, such as relaxed smoothness [109, 46] and
Hessian spectrum [112, 30], are key to explaining the theoretical benefits of empirically effective
algorithms like gradient clipping and Adam [43]. However, most existing works focus on second-order
BLO algorithms, and none have explored BLO tailored landscape conditions.

2 Value Function Free Algorithm for BLO Problems

In this section, we introduce the value function free algorithm for bilevel problems and show that it
does not always converge under the traditional Lipschitz condition.

2.1 Preliminary: the Lipschitzness condition and the penalty-based reformulation

We begin by introducing the standard Lipschitz condition on the UL objective f(z,y), which is
common in BLO analysis.

Assumption 1. Assume that for all x, the UL objective f(x,-) is Iy o-Lipschitz in y at y; (x) with
some lyo >0, ie., * *
10 [f @,y (2)) = f(@,9)] < Lpolly — yg ()]l ©)

For differentiable f, Assumption 1 implies ||V, f(z,y; (x))|| < l7,0. This assumption is crucial for
the key results in BLO literature; e.g., [78, 45, 11, 15, 39, 34, 38, 105]. Together with the following
standard assumption, it enables a good approximation of F',(x) to the original problem.

Assumption 2. Suppose that i) f and g are respectively s and 1, 1-smooth; ii) V2 f and Vg
are respectively ly o and l g o-Lipschitz continuous; and, iii) there exists a finite v* > 0 such that
cf(x,y) + g(x,y) is pu-Polyak-Lojasiewicz (PL) in y for all ¢ € [0,1/~*] for some 1 > 0.

We provide the definition of smoothness and PL in Appendix A. Here, the smoothness condition is
standard [29, 34, 44, 38, 15, 40]. The Hessian Lipschitzness helps establish the smoothness of F.Y(bL)
with constant nonincreasing with v and is also conventional [45, 11, 19]. PL condition is weaker
than the strong convexity assumption [15, 34, 29, 38, 19] and is conventional in the first-order BLO
literature [45, 78, 11]. Under these, the penalty objective is differentiable [78, 45, 11, 63] and

VE, () = Vo f(z,95(x)) + 7 (Vag(@,y5(2) — Vag(z,y;(2))) )
with Vy»(z) € S;(z) and Vy3 (z) € S () := argmin, F, (z,y). Moreover, the following proposi-
tion shows that F’,(z) is a good approximation of the original objective ¢(z).

Proposition 1 (Approximation error [78, 45]). Under Assumptions 1-2, for any x, we have

17 () = p(a)|| <O(Fop~'y™"), and (6)
IVo(x) = VE, (@) =0(llyg () — v3(@)]) < Ollon~"v7H).
for some y; (), y3(x) defined in (5). Moreover, the bound for ||y; (x) — y2(x)|| is tight.
Therefore, the PBGD type of algorithms [11, 44, 45, 105] proceed by approximating y; ~ y (z¢)
and yi =~y (x4) via gradient descent and updating x via

Ty =x¢ —nge where gy = Vi f(x,y)) +v (Vag(z,yl) — Vag(z,yf)) . @)



Algorithm 1 PBGD Free from value function (PBGD-Free) algorithm
1: Inputs: initial point =g, yo; step sizes 1, n”; counters T, K > K = 1is a common choice
2: fort=0,1,...,7T —1do
3: fork=0,1,..., K —1do

4 Y 1 =Y — 1" (v 'V f (e, Y/ 1) + Vyg(a, y:k)) >setyy =y 4
5: end for

6: Tyy1 = Ty — gy, where gy = Vo f(21,5;) >sety, = yZK
7: end for

8: Outputs: (z7,y7)

2.2 Negative theoretical results of the PBGD-Free under Lipschitz condition

Although PBGD-type algorithms can achieve the state-of-the-art complexity O (e~ ! log (6*1 ) )in[11],
their reliance on two inner loops can become computationally expensive for large-scale problems.
While the overhead is manageable in small-scale settings, it may pose practical challenges as the
model size grows. Nevertheless, empirical evidence in Figure 2 and real-world applications in Section
4 illustrate that it sometimes gives satisfactory results even if it directly updates x4 and yg . by

T = e = Vo f(2e,y)) and gyl =yl 0 (7 IV f(enyly) + Vgl yly) ®)
which we name as PBGD-Free algorithm and is summarized in Algorithm 1.

Although PBGD-Free is computationally efficient by eliminating the inner loop estimates of y (x),
the removal of the value function part b(z;) := v(V.g(x, y3(z)) — Vag(z,y; (x))) in PBGD-Free
introduces a non-negligible bias shown in Example 1. To see this, by Taylor’s expansion, the omitted
value function part b(z;) is in the order of

(@)l = Y Vayg(z, y5 () (45 (@) = yg (@) | + O(vlly; (@) — y5(@)|). ©

Here, the second term O(v||y; (x) — % (2)[|> = O(I7 yy~") can be small enough with enlarging ~
following Proposition 1. For general settings where V., g(w, y; (7)) # 0, due to the first term and
according to Proposition 1, the bias in (9) is tight as ©(1). Therefore, in the general case where
Vayg(w,y;(z)) # 0, the PBGD-Free algorithm only drives the iterates to a neighborhood of the
stationary point, which we will formally quantify as follows.

Proposition 2 (Lower bound on asymptotic error). Under Assumptions I and 2, there exists a BLO
problem where the iterates generated by PBGD-Free (Algorithm 1) converge to a neighborhood of a
stationary point with a non-vanishing residual even when choosing step sizes appropriately, i.e.,

T-1 T—1
.1 . 1 .
Jim — ST IVE, (@) = lim © (T > |vyf<wt,yg<xt>>||2> =0 (l,). (0

t=0 t=0

The proof of Proposition 2 is available at Appendix A.1. Proposition 2 illustrates that PBGD-Free
converges to the ¢ stationary point only when the bound for ||V, f (z, y; (x:))|| (a.k.a £f ) is small.
However, this is difficult to guarantee even in scenarios where PBGD-Free is effective, such as in
representation learning based PEFT (3). This motivates us to explore a weaker condition than the
small Lipschitz assumption on f(z, -), one that is more likely to hold in practice.

3 Theoretical Analysis under the (J, a)-Flatness Condition

In this section, we will introduce a new relaxed condition to replace the widely used Lipschitz
condition of the UL objective, discuss its use cases, and establish the convergence rate of the
PBGD-Free algorithm under this condition.

3.1 A relaxed condition: UL (4, «)-flatness and its validation on PEFT problem (3)

We first introduce a relaxed condition that is less restrictive, and therefore more general, than the
conventional uniform Lipschitz assumption on f(z, ).
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Figure 3: Visualization of f(x,y) in Example 2 with de- ()| and ||y} () —y (z)| versus the-
tails deferred to Appendix B.2. Colored curves represent oretical upper bounds n PTF)POSIUOH 1
f(z,-) for different z; dots show (y; (), f(x, v (). and Lemma 1 for the illustration of repre-

The upper plot shows f(z,-) on a larger scale, and the sentation learning PEFT (3). The lower
lower one illustrates the fluctuation around y; (). plot shows a smaller scale.

Definition 1 ((d, «)-flatness). Function f(x,-) : Y — Ris called (6, o)-flat with modulus ¢ > 0 at
y(x) € Sy(x) withd > 0,a > 1if | f(x,y;(x)) — f(x,y)| < clly;(x) — yl|* + J holds for all y.

When ¢ = 0 and y; (z) is replaced by an arbitrary y’, Definition 1 reduces to the standard Holder
condition. Under Assumption 1, the function f(z, -) satisfies (0, 1)-flatness with modulus ¢ = I .
However, setting § = 0 naturally imposes the constraint o < 1 whenever V,, f(z, y; (x)) # 0. Unless
otherwise specified, we assume > 0 and o > 1 when referring to flatness in the following.

We then discuss the relations of Lipschitz condition in Assumption 1 and the new flatness condition
in Definition 1 through several observations.

Observation 1. Under the 1y 1-smoothness condition of f(z,-), if |V f(x,y;(z))| = 5=, then
f(z,-) is (0, a)-flat with some modulus 0 < ¢ < O(ls1).

The proof of Observation 1 is provided in Appendix B.1. It demonstrates that assuming small
[Vyf(x,y;(x))| is stronger than assuming flatness since £ = 5= > & when o > 1. Below, we
will show that the flatness condition automatically holds near the LL optimal solution y; ().

Observation 2. Under the smoothness condition of f, the (6, «)-flatness condition holds automati-
cally forall y € {y : |f(x,y) — f(z,y5(x))| < é}.

Since f is continuous and smooth, this observation implies that the flatness condition permits abrupt,
unstable changes in the O(§)-neighborhood of ¥ (). This demonstrates that the flatness condition is
relatively mild and further confirms that it is strictly weaker than the small Lipschitz condition, which
explicitly requires ||V, f (x, y;;())]| to be small. Figure 3 visualize an example that is (32, 1.1)-flat
with modulus ¢ = 5 at y (z), but it exhibits a sharp change leading to a large Lipschitz continuity
constant V, f(x, y; (x)) = 1000. The details of Figure 3 are deferred to Appendix B.2.

Owing to the Holder-alike condition, the following observation shows that outside of the O(J)
neighborhood, the curvature of the flatness condition is also milder than the Lipschitz condition.

Observation 3. Under (6, o)-flamess, the growth rate of f(x,-) outside the O(0) neighborhood is
|f(,y) — fla,yy (@) _ {0(1), if O(0) < [ly — yz ()l < O(1),
ly — i ()]l O (ly —yr@l*t), iflly — yi ()| > O().

This is obtained by dividing both sides of the flatness inequality by ||y (z)—y||. For small ||y (z) -y,
the second term dominates and leads to a O(1) bound, which is the same as the Lipschitz condition.
However, for large ||y () — yl|, since o > 1, the bound O([|y;(x) — y[|*~") can be larger than
O(1). This observation further demonstrates that the flatness condition relaxes the Lipschitzness of
f(z,-) in Assumption 1. Specifically, while Lipschitz continuity would require a uniform bound
on the gradient, flatness allows for a higher growth rate of O([ly — y(z)||*~"). For UL objective

f(x, ) with fixed z, given a pre-determined « and modulus c, the § constant for flatness condition in
Definition 1 can be calculated via

6(x) := max{0, [f(z, y, (z)) — f (2, 45 (2))| = cllyg(x) — v ()"} (12)

(11)



When [|y3(z) — y;(z)|| > O(1), the last term in (12) dominates and d(z) can effectively be 0.
Therefore, together with Observation 2, the flatness condition with small ¢ not only encompasses
a broader function class than small Lipschitz continuous functions, but is easier to hold in practice.
For example, modern loss functions used in deep learning, such as cross-entropy, squared error,
or exponential losses, are nonlinear and locally curved. Around y;(m), we can write f(x,y’) =
[z, y; () + clly’ — y;(x)[|* for some o > 1 and constant ¢ > 0. In such cases, the additive
term in (12) vanishes and 0 (z) is effectively zero. This implies that the flatness condition can hold
even when no Lipschitz bound on f(z, -) is available, particularly for locally curved objectives. We
next illustrate this behavior concretely through a parameter-efficient fine-tuning (PEFT) problem in
representation learning.

3.2 The flatness of the representation learning PEFT problem.

In our PEFT framework in (3), the model, which can be any structure (e.g. CNN), is parameterized
with (z,y) by 7,4 (r|2) := softmax(model, ,(z)),. It gives the model’s predicted probability for
response 7 given input question z. The DPO loss [70] over preference data Dppp, compares outputs
Te,y against a reference mer via

1
fDPO(I7y) =N Z log (J (qﬁ(“’v?y;zarwarf)))? (13)

D
| DPO‘ (2,7w,7¢) €DppoO

where qa(x, y; 2,7, ) = Blog Tzt — glog Tealrld)

et (T |2) met(relz) 702072 19, fx, 5 ()| s
T and 7y are the preferred and rejected responses to input 2. o1s5] 0 00 1
The SFT loss operates on supervised dataset Dggy through

1 \QSSG
gser(T,y) = —m Z log (74, (rser|2)) . (14)  N— o,
(
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®
.
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Figure 5: Comparisons of §(z) and
Vy f(z,y;(x)) during PBGD-Free
Vforo = —(1 —0(gp))Vgs, Vgser = —Vn/m. (15) updates. The Lipschitz constant
fro = max, |V, f(z.y; ()] is
While the Lipschitz constant for this problem is large, it satisfies  Jarge but §(x) is small.
the flatness condition with small §. To illustrate, we revisit the
example in Figure 2; see the detailed setting in Appendix C.1. As in Figure 5, the flatness constant
d(x) < 0.0003 in the blue line is small throughout optimization for ¢ = 0.5 and « = 1.5, despite a
large Lipschitz constant in red. This confirms that the loss landscape analysis under the Lipschitz
condition is not tight, as [ ¢ o remains non-negligible even in local neighborhoods, whereas the flatness
condition allows for a tighter analysis. The small §(z) values along the PBGD-Free trajectory validate
that the PEFT problem (3) satisfies the flatness condition, which inspired us to establish the enhanced
analysis of the PBGD-Free algorithm under the flatness condition. In real-world PEFT problems, e.g.
ones in Section 4, §(x) in (12) is typically small because the distance between y; (x) and y3 () are
non-negligible, whereas their impact on fppo is marginal.

Both objectives are differentiable with the following gradients

3.3 Convergence analysis for the PBGD-Free algorithm

As shown in (9), the first term is the major bottleneck of the divergence issue of the PBGD-Free
algorithm under the Lipschitz condition in Proposition 2. The key to establishing the convergence
guarantee for the PBGD-Free algorithm is the tighter bound of ||y (z) — yZ ()| and [|¢(z) — F, ()|
under the flatness condition, compared to the results in Lemma 1. We highlight the results as follows.
Lemma 1 (Tighter analysis on function value gap). Suppose Assumption 2.(iii) holds. For fixed x,
suppose f(x,-) is (0, a)-flat at any y; (x) € S;(x) with o € (1, 1.5]. Then, there exists v* > 0 such
that for v > ~*, we have
__a_ __1 1 1

[p(x) — Fy(2)| =O0(y 7% +6), and dgs(2)(yg), ds: (2)(yy) = O(7" 77 +62797%), (16)

for any y, € S;(x) and y, € S3(z).

The proof of Lemma 1 is available at Appendix B.3. When ¢ is smaller than target accuracy e,
achieving [|¢(z) — Fy ()|, lys(x) — yi(z)||*> = O(e) only requires v = 0(672_711), which is



strictly smaller than the choice of v = (’)(e_%) in previous literature [78, 10, 45, 44]. This also
aligns with common practice, where the penalty constant v does not need to be excessively large.
For instance, the UL objective in Example 2 is (1073, 1.1)-flat and therefore choosing v = 15 gives
desired accuracy, supporting the rule of thumb: ~ = 15 is a reasonable choice. In Figure 4, we
also show that our bound under the flatness condition in Lemma 1 is tighter than the one under the
Lipschitz condition in Proposition 1 for the representation learning PEFT (3).

Since Lemma 1 provides a per-iterate bound with fixed z, the next step is to analyze the Lipschitz
continuity of the flatness constant §(z) with respect to x, enabling a uniform bound across iterations.

Lemma 2 (Lipschitz continuity of flatness constant §(z)). Suppose Assumption 2 holds. Then
fixing some ¢ > 0 and o € (1,2), there exists some trajectory of y; (), y3(x) such that the flatness

constant of f(x,-), §(x) defined in (12), is O(cy~@~V))-Lipschitz-continuous in .

The proof of the Lemma 2 is available in Appendix B.4. However, Lemma 1 and Lemma 2 only
enable the convergence of PBGD-Free to the stationary point of the penalized objective F, (). We
next establish the approximate equivalence of the stationary points to the original BLO problem (1).
Lemma 3 (Approximate equivalence of stationary points). Suppose Assumption 2 holds. Let x*
be an ¢ stationary point of F. (x*) and suppose f(z*,) is (0, a)-flat at any y; (x*) € S; (x*) with
a € (1,1.5] and § < O(€%). Then there exists v* = O(e~"=") and Yy € Sy(z*) such that for
v > %, (x*,yy) is the O(e€) stationary point of the original BLO problem (1).

The proof of the Lemma 3 is available in Appendix B.5, which generalizes the definition of stationary
condition for (1) [91, 105] and its relations to that of the penalty problem [78, 45, 105] under flatness
condition instead of Lipschitz continuity in Assumption 1. In this way, building upon Lemma 1 and
Lemma 2, the convergence result for PBGD-Free in Algorithm 1 is stated as follows.

Theorem 3 (Convergence of PBGD-Free). Suppose Assumption 2 holds, and for all x; on the
trajectory, f(xt,-) is (0(w¢), )flat at all yg(xt) € S () with the same o € (1,1.5] and modulus
¢ = O(1). For iterations generated by Algorithm 1 with K = 1 and step size n < l;}l, where lp 1
is the smoothness constant of F.,(x), and suppose for target accuracy ¢, there exists § such that
T 3:01 §(x4) < 6, then by choosing v = O(6~2%),
=
7 2 VB @)? <OT" +6
t=0

2(a—1)

). (17)

The proof of Theorem 3 is provided in Appendix B.6. Here, the smoothness constant [ is not
scalable with « [11], therefore leading to a constant step size choice. Theorem 3 establishes the
convergence rate of the fully-single-loop version of PBGD-Free in Algorithm 1. The result shows that
the algorithm converges to the neighborhood of a stationary point for F, (), where the stationary gap
is controlled by the flatness parameter (J, «). Specifically, for a (, a)-flat function with o € (1, 1.5),

the convergence error scales as O(¢ et ), ensuring that the suboptimality gap remains small. For
instance, for the PEFT problem in (3), 6(x) is often negligible, as per the discussion in Section 3.2.
Moreover, the method follows a single-loop update scheme, which is computationally more efficient
than other fully first-order methods [44, 45, 105, 78, 10], as elaborated in the Appendix B.7. A
comparison of the proposed algorithm with state-of-the-art fully first-order BLO methods is provided
in Table 1.

4 Numerical Experiments

In this section, we empirically validate our theoretical results through experiments on real-world tasks.
In the main paper, we will focus on the LLM PEFT problem (3). Additional experiments, including
fair representation learning problem on the NLSY-7k dataset [73, 80], and BIDORA fine-tuning [68],
are provided in Appendix C.

4.1 Representation learning based LLM PEFT and its flatness

SFT enhances pre-trained LLMs for downstream task adaptation, whereas DPO aligns them with
human preferences. A straightforward way to achieve both goals is to sequentially optimize the
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Figure 6: Ablation study on penalty v and in solving (3) (or bi-objective learning for ALRIGHT)
LoRA configuration [35] for PYTHIA-1b [6]. on LLAMA-3-3B [31].

Methods | figo (e, yr) | gsir(er, yr) | fipo(er, 9) | g5 (er, )
V-PBGD [45] 0.818 1.0309 0.8423 0.9533
BOME [105] 0.8332 1.1552 0.8402 0.9842

ALRIGHT [24] 0.8055 0.8656 0.8201 0.7855
PBGD-Free 0.7837 0.8516 0.8088 0.6688

Table 2: Comparison of different algorithms for PEFT LLAMA-3-3B [31]. Results show the DPO
Loss |}, SFT Loss | for both the outcome (z7, yr) trained on solving (3) for different methods or
and the outcome (z7, §) from post-SFT-tuning on another dataset with fixed-backbone, using the
same dataset fixed time of training for each.

two objectives. However, this often leads to catastrophic forgetting [24], where applying DPO after
SFT overwrites task-specific knowledge. To address this, we adopt the bilevel framework (3), which
prioritizes SFT at the LL to create a more reliable base model and applies DPO at the UL to guide the
human preference alignment. This hierarchical formulation effectively optimizes DPO conditioned
on a near-optimal SFT, thereby preserving downstream task performance. Moreover, this design is
natural, as user preferences are generally consistent across tasks due to underlying psychological
regularities. Additionally, the proposed BLO framework aligns with the post-SFT paradigm, where
DPO is fine-tuned from a pre-trained model and SFT is applied to downstream tasks. In practical
settings, it is common to fine-tune only a lightweight head while keeping the backbone fixed or lightly
updated [67, 106, 72].

In this paper, we adopt a decomposition of LLM into a backbone model z (e.g., attention weights)
and an output head y to formulate a BLO PEFT framework (3). Our method conforms to the PEFT
practice by allowing the head to specialize in SFT tasks while training the backbone through DPO
to capture generalizable preference representations. In our experiments, we adopt the low rank
adaptation (LoRA) [35] to the backbone = for PEFT on LLAMA-3-3B [31] and PYTHIA-1B [6],
using the Dahoas/rm-hh-r1hf dataset for DPO and the OpenOrca dataset [55] for SFT. Our code is
adapted from the bilevel LLM post-training library https://github. com/Post-LLM/BIPOST and
experiment details are referred to Appendix C.3. As preliminarily demonstrated in Figure 5, this BLO
PEFT problem in (3) features flatness (small ¢), which is further corroborated by the observation
in experiment that the LL solution y; (=) and y*(z) have /- distance greater than 1, suggesting a
negligible flatness constant &(x) by (12).

4.2 Ablation study and main experimental results for the PEFT problem (3)

In this experiment, we consider evaluating methods on both S1) BLO PEFT learning phase via (3)
to obtain a preference backbone x, and S2) post-SFT tuning on a new dataset with the obtained
preference backbone model z, to verify the representation quality and transferability of the backbone.

We ﬁI'St conduct an ablatloq StUdy on q,_) 0.38 Corpus and Sentense BLEU for BLO PEFT output

the PYTHIA-1D to test the lmpact of 8 0.36 1 @M Corpus and Sentense BLEU for 00st-SFT-tuning output
the penalty constant v and LoRA con-
figuration on the PBGD-Free method.
We report the DPO and SFT loss un-
der different settings for both (z1, yr)
learned from S1) and (x 7, §) from S2)
in Figure 6.

BLEU S

BOME F2SA ALRIGHT PBGD-Free

Figure 8: BLEU-4 Corpus and BLEU-4 Sentence Score (1)
for different algorithms for PEFT on LLAMA-3-3B [31].
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Trade-off between DPO and SFT under different v. According to Figure 6, increasing
degrades DPO performance while improving SFT for S1), indicating that a larger  provides better
LL optimality. Notably, the SFT improvement beyond v = 10 is marginal for S1), while the DPO
performance significantly deteriorates, suggesting that v ~ 10 offers the best balance as our theory
predicts.

Faster convergence over BLO baselines and stable training over bi-objective. Since second-order
BLO algorithms are inefficient in large-scale LLM training, we consider first-order methods F?SA
[45] and BOME [105] as BLO baselines. As shown in Figure 7, PBGD-Free converges faster than the
BLO baselines. We additionally compare with ALRIGHT [24], an effective bi-objective algorithm,
to validate the representation capability of BLO PEFT (3) formulation. ALRIGHT [24] exhibits less
stability during training (Figure 7), likely due to alternating between DPO and SFT objectives.

Transferability of preference backbone and strong SFT performance. Compared with S1), PBGD-
Free in Figure 6 shows enhanced SFT with comparable DPO performance on S2), suggesting it learns
a transferable preference backbone x through BLO (3). Table 2 further quantifies these findings
for other baselines, demonstrating that PBGD-Free achieves superior DPO and SFT performance.
Notably, the backbone model = obtained by PBGD-Free attains the lowest SFT and DPO loss on
S2), verifying the transferability of PBGD-Free. To further evaluate the quality of generated output,
Figure 8 corroborates the SFT performance using the evaluation metrics BLEU score [65], where our
method outperforms all baselines, further justifying its superiority in learning a good representation.
More experimental results, including semantic analysis (Table 6) are provided in Appendix C.3.

5 Concluding remarks

In this paper, we propose PBGD-Free, a penalty-based method for efficiently solving the nonconvex
BLO problem without solving the value-function subproblem of y; (x). We first show that, under
a general Lipschitz condition, the convergence of PBGD-Free has a constant lower bound by the
Lipschitz constant, which does not vanish unless the Lipschitz constant is sufficiently small. Motivated
by empirical findings in representation learning, we then introduce a Holder-like condition and
prove that, when its constant is sufficiently small, the fully single-loop PBGD-Free algorithm
achieves an iteration complexity of O(e~'). We further demonstrate that this Holder-like condition
with a small constant is strictly weaker than the small Lipschitz condition, and we verify this
condition in representation-learning-based LLM PEFT, fair representation learning, and BIDORA
fine-tuning. Numerical experiments in the above problems demonstrate that the PBGD-Free algorithm
is computationally efficient and can outperform the existing baselines across all three applications.
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A Preliminaries

Notations. We define v(z) = min, g(z, 2) and v, (z) = min, v~ f(z,y) + g(z,y). We denote
S;(x) = argmin, g(x, 2), S5 (2) = argminy v~ f(z,y) + 9(z,y), ds(y) := min.es [ly — z||.
Definition 2 (Lipschitz Continuity and Smoothness). We say a function f(x,y) is ly o-Lipschitz if
1f (@1, m1) = fl2,92)ll < Uralllzy] = [22s2]ll, V(@1 m1), (22, 92) (18)
If f is differentiable, we say f is Ly 1-smooth on if V f is Ly 1-Lipschitz, i.e.  ¥(z1,91), (22,y2):
I[Vaf(@1,y1) = Vo f (@2, 92): Vi f(21,51) — Vi f (@2, 92)][| < Upalllesyn] = [z2592]]. (19)
Definition 3 (PL condition). We say g(x,y) satisfies j-Polyak-Eojasiewicz (PL) condition in y if
IVyg(@,y)ll = 2u(g(z,y) — v(2)). (20)

Lemma 4 ([41, Theorem 2]). If g(x,y) is £4 1-Lipschitz smooth and PL in y with 4, then it satisfies
the error bound (EB) condition with ji4, i.e.

IVyg(@,y)ll = pgds: () (y)- 21
Moreover, it also satisfies the quadratic growth (QG) condition with fig, i.e.
gla,y) —v(@) = Hlds; ) ()% 22)

Conversely, if g(z,y) is L4 1-Lipschitz smooth and satisfies EB with pg, then it is PL in y with j14/¢g 1.

Proposition 4 (Complete version to Proposition 1 [78, 45]). Under Assumption 1-2, for any x, there
is

1F(2) = ¢(@)l| SOUVyf(z,y5(@)|Pu~"y7") = O(F ou~'v7Y). (23)
Additionally, for any y; (x) € S (z), y5(z) € S5(),

ds: (2) (Y (), ds: () (5 () QU f @,y (@) lp™ ) = Qlgop™ 7). 24

Moreover, for y;(x) = arg min; e g= () f(x, z), there is

IVé(x) = VE, @) =0 (ds; (@) ) = Ollpon™"77").
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A.1 Proof of Proposition 2
First of all, Algorithm 1 can be viewed as a biased PBGD algorithm with bias being
[bell =IVEy () = Va f (22, 37
UV f (@) + AV ag (0,47 (20)) = Vagloe,y3 (@) = Vel (21, 7)
(%)vaf(xtvyj;(x)) = Vaf(@ey)ll + IVag(@e, v (@) = Vag(e, yg ()|
iyl ) — 71+ 2o I3 1) — e

()
Sl r @ yd) — vy (ae) + OV (.5 (@)

<lpa \/(1 =R (@ yl) = vy (@) + O([Vy f (2, yg (w)))

where (a) is by plugging in VF, (;) in (5), this holds for arbitrary y7 (), y,(z) as solutions to
problems in (5); (b) follows triangle-inequality; (c) uses the smoothness of f and g; the first term
in (d) is obtained by the QG property as ensured by PL condition and smoothness as per Lemma
4, via choosing ¥/} (z¢) = arg minyes: (z,) ||y — y; ||, and the second term follows Proposition 4 by

choosing y; (z) = argmines: (z,) [[45 (z¢) — z||; and (e) follows the linear convergence result of

PL function [41] as y/ is the results from K -step inner update starting at y; ;. In this way, when
taking K sufficiently large, there is [|b;|| < O([|V, f (=, y; (z¢))|| = O(ly.0)-

Moreover, according to [11], F,(x) is O(1)-smooth. Therefore,
= T-1
7 2 IVE )P <o@) + 3 |Ib®
t=0 t=0

T
<O )+ O(5 IV f @y @))I?) = O ™) +O(Fy). 25)
t=0

In this way, for sufficiently large T, & 3/ ' [|[VE, ()] < O(13,,).

Next, we will prove the lower bound of Algorithm 1 by constructing a counterexample, and show that
the upper bound is tight. Consider f(x,y) = 2% + {0y and g(x,y) = (y — = + 1) In this problem,
VF,(z) = 2z + lyo while V. f(z,y5(z)) = 2z. Using fixed stepsize n, 7111 = ¥4 — Ny =
(1 = n)a¢, implying ||V f(ze+1, y5 (@) = [122e01]] = 21 = n)flze]l = 2(1 — 0)*H{|zol|.
Therefore, for arbitrary small € > 0, there exists some Ty = O(In(e™')) such that Algorithm 1
converges to ||z, || < € for all t > Ty, whereas VF, (z;) = s o. In this way, we have

T

S IVE (@)]? = O(e) + 13 (26)

t=To

1
T-T,

This indicates Q(17 ) is a tight bound.

B Improved Analysis under Flatness

B.1 Proof of Observation 1

For [ly — y; ()| > 1,by the [y = &= -Lipschitzness of f(z,y) in y, there is

1 (2, y) = Fa g5 @) < Lpolly — vy (@)l < 6% [ly — vy ()] 27)
For small ||y — y;(z)| < 1, Taylor’s expansion gives
f(@,y) = f@,y5(2) = (Vy f (2,55 (2)),y — vy (2) + R(z,y). (28)
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Here, R(x,y) is a remainder. By Holder-Continuous Gradient Condition [5], [62, Section 2],
which is implied by the smoothness, there exists some 0 < ¢ < ly1/2, 1 < a < 2 such that
[R(z,y)| < clly — y;(x)||*. By Cauchy-Schwartz’s inequality, there is

(Vy f(z,y5 (), y =y ()| <IVyf (2, y; @) ly — v, (@)]]
<% ||y — (@)
<O+ ly =y, ()| (29)

where the last inequality holds as for a,b € (0,1) and o € (1,2), there is ab < max{a,b}? <
max{a,b}* < a® + b and here a = 6"/ and b = ||y — Yy, ()|. The observation therefore, holds.

B.2 Detailed example for Observation 2

The following example visualizes Observation 2.
Example 2. We consider the LL objective g(x,y) = (y — x)? and the UL objective

(v —2)° ) sin (100(y — z)) .

fx,y) = (sin(y — ) +2) [y — z|* + 10exp ( 2(0.005)2

The LL problem g(x,y) is strongly convex in y, with y;;(z) = x. Therefore, V, f (x,y;(x)) = 1000 is
extremely large, which leads to a loose upper bound for ||y, (x) =y ()| or ||¢(z) — F, () || following
Lemma 1. However, this problem is (3¢=2,1.1)flat with ¢ = 5 at y}(x) = x for z € [-10,10].
As shown in Figure 3, f(x,-) exhibits fluctuations around y;(x) while remaining relatively stable
elsewhere. This shows that flatness is weaker than requiring small |V, f (z, y)||.

B.3 Proof of Lemma 1

Proof. For any y;(z) € S;(x), y3(v) € S3(x), there is

Y (@5 (2)) + g(2, 95 () <y 1f(x yo()) + g(z,y;(x))
= (@ yl(@) + gl yi() — o(@) <y yp () + 9@,y (2) — o)
= (@l (@) + gla, () — o(z) <y (@, y(2)
= flz,y5(2) <f(z,y,(2)). (30)

In this way, according to the definition of ¢(z) and F’,(z), we have
J6(2) = Fy(@)] = min f(.2) = (F(e.050) + (0043 (0) — v(x))
(a)
< fz,y,(2) = (f (@, 95 (2)) +v(9(, v5 (2)) — v(x)))

(b)

<@y @) = (F @) + 7 @) - v @)1

f .y @) = Flay @) =2 @) = v @)

(d) * * «@ 1% * *
<cllyy(@) = g3 @)% + 0 =75 llys (@) — y3 (@)

(2) 1 5
mges” =95

Loz’ (20)77 (1 - a/2)(u7) 77 +6=0(7 7 +3) (D)

Here, (a) holds for arbitrary y; (z) € S;(x),y5(z) € SZ(x) by (30); (b) is from the 11, quadratic
growth condition of g(x, -) which is implied by 114-PL according to Lemma 4, via choosing y; (z) =
arg min,esx(x) [[2 — y3(2)||; (c) again uses (30); (d) follows the flatness of f(z,y) aty; (), (e) is

by formulating the problem as a maximization problem over z = ||y;(z) — yZ(=)||; and (f) is the
solution to this polynomial problem. Therefore, the first part is proved.
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For the second part, as %f(a:, ) + g(z,-) being u-PL for v > ~*, it is also u-QG by Lemma 4. In
this way, fixed any v > ~*, for any y7(z) € S3(x) and any y; (x) € S;(z), there is

1 1
3 (R + wg@)) = (i) + oo @) ) ) = 25 o o500
(32)
Moreover, following steps (a)-(d) as in (31), there is

left of (32) = (f(x, y; () + vg(z,y; (x)) — () — (fl, yi () + vg(z, v2(2) — yv(z))
=f(z,y;(x)) — flz,y2(2) —v(g(z, yi(x)) — v(z))

* * «a 1u‘ *
<cllyg(z) —y3(@)|1* +6 - ngé;@)(yy(x)) (33)
Combining (32) and the above, there is
* * K * K *
cllyy (x) — vy (@) | + 0 — v§d2;(x> (y5(x)) = 7§d25;(x> (yy(2)) (34)

for any y;(z) € S;(x) and y3(z) € SZ(x). In this way, for any y7(x) € S;(z), choose y(x) =
arg minyes: (z) |y — 5 ()|, there is

o * M *
Cds;(m)(yg (x))+9 27§d25;(z) (yg(2)) (35)
Similarly, for any y7 (x) € 57 (), choose y;(x) = argmin.es:(z) |2 — y; (@) |, there is
* 1 *
e () (U3(2)) + 0 2753 (o) (45 (@) (36)
For simplicity, denote & = ds: () (y5(2)) (or @ = dg: (1) (y;(2))), there is
2?7 <2ep Tty 4 20y e 37)
Asa € (1,1.5), forz > \/g
5\ 2
227 ep Iyt 4207yt (7) . (38)

Since |a + b|P < 2P~ 1(|a|P 4 |b|P) for all p > 1 (as | - |P is convex), there is

1
(22 725 < [ 2¢u~ 1y~ 495~y L é o
z=(x""")7 < | 2ep” T + 260y 5

1 1 1

<g7s ! ((2cu’1)ﬁv_ﬁ + (%’Wﬁﬁv’i) =Oc(y™7= +0377%)  (39)

In this way, we can conclude the following to include the scenario that x < \/g .

x=0(y T4 +5§3773). (40)

B.4 Proof of Lemma 2

Define
O (x) =[f (2, yy () — fla, v ()| = ellyy (2) — 5 ()]
=f(z,y,(z)) — f(z,y5(2)) — clly,(z) — y3(z)[*. (41)

where the equality is from f(z,y; (x)) > f(z,yZ(x)) as per (30). We firstly show that f(z, y; (x)) —
f(z,y3(x)) and c|ly; (x) — y3(z)||“ are both Lipschitz continuous.
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For f(z,y;(z)) — f(x,y}(z)), according to [11, Lemma F.3], there is

|2 1)~ s )]
=[|Va f(,y; (@) = Vaf (,95(2)) + Vy f (@, 5, (@) Vyyg(@, 45 (2)) 'V yag (@, y; (2))
= V@, y5(@) [ Vo (45 @) + Vg (e, ()]
X [V Vg f (2,95 () + Vyag(a, vi(2)] ||
<[ Bl + V3 f (@, 55 (2)) Vyyg (@, 55 (2)) 'V yag (2, 55 (1)
— [V (2. y; (@) + B2 [Vyyg(a, vy (2) + Es] [V g (@, y; (2)) + Ed| (42)
where the inequality is by the triangle inequality and by denoting
Er= Vaf(z,y5(x) = Vaf(z, y5())
Ey = Vyf(z,y5(@)) — Vyf(2,y5(x)) 43)

Bz = 7'V f(z,y5(@)) + Vyyg(z, y5(2)) — Vyyg(e,y; (z))
Ey= '7_1vyzf(xay:($)) + Vyzg(fay:(f)) - vyzg(xvy;(x))

By the smoothness of f, the Lipschitzness of V2g and by Proposition 1, we know that

Bl |2, (| Esll, | Eall = O(y ). (44)
Additionally, according to [89], we know
. . 1+ \f _

In this way, by the smoothness of f and g, we know H'y*IVQf—i—VQgH < 47 t1+41,1 and therefore,

Ha% [/ (@, y5(@) = fla, v (@ ]H < @) <O0( Y. 46)

This shows that f(z,y;(z)) — f(z,y;(z)) is Lipschitz-continuous.

Fix any z, denote arbitrary y; (z) € Sj (), y3(x) € S3(x), then for any 2" € X, there exists some
yy(2') € Sy(2'), y3(z') € SZ (") such that

lcllyg (x) — g5 (@)™ = cllyg (2) — 3 (=")]1°]

(@)

<c max 227yt (2) =y (

= el (@) -y @)L lvg (@) —yz (@) s @) = 9@ = llys (@) 2l

b

<O(ey N |[(y; (z) — v (@) — (v (@) — ¥ ()|

(C) —(a— * * * *

<Oy @) (lyi () — v (@) + 192 (@) — v (@)])

Do(ey=@=V) o — | @7)

where (a) follows the mean value theorem, as | - [* is continuous; (b) is from [y} (z) — yZ(z)|| =

O(~~1), and the 1-Lipschitzness of the norm function; (c) uses triangle-inequality; and (d) is achieved
by knowing that y; () and y> () are, respectively, Ly, L--Lipschitz for some constant L, L~ [78].

In this way, we can conclude that &' (z) is O(cy~(@~1) Lipschitz continuous. As §(z) is a ReLu
function works on &' (x), it is also O(cy~(®~1) Lipschitz continuous.

B.5 Stationary relations under flatness condition
Similar to [91], we first derive the stationary conditions for the original BLO problem (1), under the

flatness condition in Definition 1 instead of the Lipschitz continuity. Then we prove the stationary
equivalence of the penalty problem with the original BLO problem (1).
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B.5.1 Stationary conditions for original BLO problem (1)

First, the original BLO problem can be equivalently written as its gradient based constrained form
under LL PL condition as follows [105, 91].

We aim to show that the Karush—Kuhn-Tucker conditions (KKT) conditions of (48) are necessary for
the global optimality of the original BLO problem (1), thereby serving as its stationary conditions.
Prior works [104, 102] have discussed that under the calmness condition, the KKT condition is
a necessary optimality condition. Similar to [104, 102, 91, 13], we will prove that the calmness
condition holds for (48) for our problem, even under our relaxed assumptions, so that KKT conditions,
which our proposed algorithm converges to, are necessary for the optimality in the original BLO
problem (1). Notably, the key difference is that the prior works require a global [91] or local [13]
Lipschitz condition of the upper-level objective, while we prove this under a more relaxed flatness
condition of the upper-level objective. This makes the result applicable to a much wider set of
problems. We first review the definition of the calmness condition below.

Definition 4 (Calmness, [18, Definition 6.4.1]). Ler (z*,y*) be the global minimizer of the con-
strained problem

min f(z,y) s.t. fo(z,y)=0. (49)

z,y
where f.: Ré&=td — R? and d > 1. If there exist positive € and M such that for any q € R with
llg|l < eand any ||(2',y") — (z*,y*)|| < € which satisfies f.(x',y') + g = 0, one has

f@y) = f@"y") + Mgl = 0 (50)
then the problem (49) is said to be calm with M and e.
We will prove a general version for establishing that the KKT conditions of problem (48) serve

as the stationary conditions of the BLO problem (1), which only requires the UL objective to be
continuously differentiable.

Lemma 5. Suppose that g(z, -) satisfies the PL condition and is smooth, and f(x,-) is continuously
differentiable. For the global minimizer (x*,y*) of BLO problem in (1) (a.k.a (48)), then (48) is
calm at its global minimizer (x*,y*), and therefore, the KKT conditions of (48) are the necessary
conditions of the global optimality in (1).

Proof. First, for any z, since f(x, ) is continuously differentiable, then f(z, -) is locally Lipschitz
continuous around any y’, i.e. there exists a neighborhood of B.(y/) := {y : |ly — ¢/|| < €} and
constant L := max,ep,_(y) |V, f(7,y)|| < oo such that f(z,-) is Lipschitz continuous with constant
L overy € B.(y).

Then consider Vg with ||¢|| < ¢, and V2’ € B.(z*) and ¢/, s.t. V,g(2’,y") + ¢ = 0, then letting
Yq € Projg.(,+)(y') and according to Lemma 4, one has

e = llgll = IVyg (=", v )l = pglly” = val
Since (z*, y*) solves (48) and (', y,) is also feasible to (48), one has f(z*,y*) < f(z',y,q). Thus,

(@)
f@y) = @ y") = £ y) = f@ye) = =Ly = yoll = —Lllqll 5D
where (a) is due to the local Lipschitz continuity of f(x,-) with L := max,cg_y) [|Vyf(2,9)|.

(51) justifies the calmness definition in (50) with M := #% and e. O]

Therefore, under Assumption 2, the smoothness of f(x,-) implies that f(z,-) is continuously
differentiable so that Lemma 5 holds. Note that Lemma 5 also generalizes the results in [91, 13] by
relaxing the global/local Lipschitz continuity assumption on f(x, -) via continuously differentiable
(ensuring local Lipschitz continuity).

We then aim to prove in Lemma 3 that the stationary point of the penalty reformulation (2) is
approximately the stationary point of the original BLO problem in (1) (i.e., the KKT point of (48)).
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B.5.2 Proof of Lemma 3

Proof. Let x* be the stationary point of the penalty problem (2), then we have |[VF, (z*)| < e.
Then according to (5), for Vy,, € S;(2*) and Vy, € S (x*), we have

IVaf (2% y7) +Y(Vag(z*,y7) = Vag(a®,yg))|I” < € (52a)
IVyf(z*,y,) +7(Vyg(@*,yy) = Vyg(a*,y,))|1* < e (52b)
We aim to prove that (z*,y,) is approximately the KKT point of (48), i.e. 3 finite w € R%, s.t.
IV f (2", ys) + Vayg (@™, gy )wl* < O(e) (53a)
IV f(@*,yy) + Viyg(a®, gy )wll* < Oe) (53b)
IVyg(a®,5,)II* < Oe). (53¢)

The approximate LL optimality in (53c) is earned by Lemma 1, which gives
ds; ) (9) = O(7" 7% +3%773) = O("® 4+ 5% 1)
when v = O(e_Q_T”). Therefore, when § < €%, it holds that
V902", 312 < O(d (4 (35)) = Ole+ 6 27) < O(e) (54)

where the first inequality is earned by the smoothness condition. Moreover, by Taylor expansion of
(52) and letting y, = argmin, ¢ g- ;) [y — Yyl|, it holds that
g

IV f (2" 47) +VVayg (@ 55) (Y — o) 1> < €+ Oy, — yl*) < OCe),
IV f (", yy) + Vg 5y) 4y — 51> < e+ Ollyy — ygl1*) < O(e).
where the last two inequalities are due to (54). Together with (54) and defining w = y(y, — y4) with

—«

finite norm ||[w| = O(e~ "2 €) = O(e?) < 1, the point (z*, y,, w) satisfies the approximate KKT
conditions in (53). O

B.6 Proof of Theorem 3

In the following, we start with a more general setting where x is bounded in a domain X and the
update of = is conducted via projected gradient descent.

Denote the gradient approximate g; = V., f(z,y/, ;). According to smoothness, we have

lpa
2

Fy(zi41) — Fy() S(VE (@) — gt + g Beg1 — @) + —2= |41 — 24

1 1

< - Eme — x| + %‘Ixm —i|? + (IVE, (@e11) = gell[ w1 — ]
1 1

== %llxm — | + mxm = z¢|* + 0|V, (2e11) — g
1

- 47;||96t+1 —ai|? + | VE, (241) — gl 43

where the second inequality uses n < ll_,’ll, (gt, 41 — 1) < f% |11 — 24| by [9, Lemma 3.1]
and Cauchy-Schwartz inequality; the third applies Young’s inequality

For simplicity, denote h(z,y) = v 'f(z,y) + g(z,y), v"(z) = mingey h(z,y), y)"" =
arg minyey h(z,y) and y{"* € argminyey g(z¢, y), and the update bias b(x;) = VF,(z¢) — gq.
In this way,

1b(@)||* = Vaf (@ yl™) + Y (Vag(@e, 477) = Vag(@e, y?™)) — Vo f (20, 47,11
(a) * * *
<2V f (@, 47"") — Vo (@6, vl )l + 297 Vag(@e, y]7) = Vag(ae, yd )|

(©] 9 Y2 _ 2(a—1)
<25 Iy — ¥/ 1P+ O(v 7w +467)
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(e) 4

_2(a=l)
< /T*l?m(h(mty Y1) — vh(:z:t)) + (’)(fy o | 57)
Y
(d)i 2 y 7y h _2(a-1)
= s lf’l(l —-n lu’)(h<xtayt ) -V (xt» + O(’y 2—a §’y) (56)
:

where (a) applies the Young’s inequality; (b) follows the smoothness of f and Lemma 1; (c) employs
the property of strong convexity; and (d) is by the descent theory for applying projected gradient
descent on problems satisfying PL condition, see e.g. [41, Theorem 5].

Plugging (56) in (55), there is
n 2 4 5 v v h
Fy(zi41) — Fy(m) < — ZHVF’y(It)H + Uuilm(l = ) (h(we, ) — v (@)
¥
+n0(v = +67) 57)

Moreover, as h(x,y) is ln1 = 7 'ls1 + lg1-smooth and P (x) is Lyny = lpa(1+ L;)—smooth,
there is

W1, 97 10) — " (@e4a)
(a) 772 In1+ 1l T -
s s) = 0" 0) + (Fahlis ) = Vo o) — ) o L) 2 0
772(lh,1 + lvh,l) Tt4+1 — Tt 2
g Tt b)) ||
n n

(b) sy Tt+1 — Tt
<h(ze,yly1) — 0" (@) + nlnallyl o — vl [

(©)

3k

? +

h Z
Sh(xuylﬂ) — v () + nlh,1§||y3+1 -y %% B) n

Nlp1z Ny Py 4 lon 1) Ty — @
20 T 1, 7) — o ) (Tt o Tt )y e

I 12 l 21 + Lyn Tir1 — T
L0+ 920 ) () — o)) (et T )y T T
(58)

Here, (a) follows the smoothness of h(x,y) + v"(x) in x; (b) applies Cauchy-Schwartz inequality
and the smoothness of % in y; (c) uses Young’s inequality for any z > 0; (d) is from the PL condition
of h(x,y) in y; (e) is similarly by the descent theory for applying projected gradient descent on
h(x, ) satisfying PL condition [41, Theorem 5].

In this way, adding c(h(x441, yzﬂ) —v"(x411)) to both side of (56), there is

Fy (@) + e((@41,9741) — 0" (@041))

l 2(1 Lyn -
<F,(x) + (77 +c<77 ni 1 (na+ ’,1))) ||96t+1 SﬂtHQ

4 2z 2 n
lh,lz 2 4 v ~ h _ 2(a=1)
+e((t+n(P + B )= ) (R ) = (2)) +nO(7~ 5=+ 5).
Y
In this way, choose the following hyper-parameter,
Cc = /.L_%
z=8clp1
<) (59)

. vy 1—nY )
< 1 np/(A=n"p
1= mm { Seliaton )"tz 1B

2 ne

ie.c=0(1),n = O(1), there is

Fy(@eg1) = Fy (@) + c(h(@e1,y140) — 0" (@041))
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Algorithm 2 Fully-single-loop F2SA [45] without momentum

1: inputs: initial points zq; step size 1, n9, n”; counters 7.
fort=0,1,...,7 —1do
update 57y = i — nIVyg(we, y1)
update y7y = yf — 17 (Vyy ™' e, y)) + Vyg(an y)))
update z¢11 = ¢ — 1g; Where g; = Vo f (2, 4]) + ¥(Vag(z,y/) — Vag(z, y))).
end for
outputs: (zr,y;)

AR A

<= LIVE @)I? + elh(ae, ) =" () +10(y~ 5= + 7).

Denote Dy = F,(z9) — Fy(27), Da = (h(0,yg) —v"(20)) — (h(z7, y7-) — v (27)). Rearranging
and telescoping gives

*ZHVF (z)||? < M""O(’f%—ﬂh)

2(a—1)

=0T ' +6 ) (60)

where the last equality is achieved as ¢ = O(1) and n = O(1) and by setting v = 0(6 ==). This
confirms that the trajectory x; stabilizes on average. Moreover, the hyper-parameter ch01ces in (59)
reformulate (58), which can be plugged in (56) to obtain

T—1 T—1

1§:WMF<44?(1—UM) S (bl 7) — v (20)) + O (6™

t=0 t=0

2(a 1)

) <O(T~ 572(6151))

S| =

(61)

where the last inequality follows by applying Abel’s summation formula on series Zf: | aby, where
ak = O((l — 777”/2)]6) and K1 ZkK:O by, = O(T i 62(a 1))

In this way, there is

— —nVE 2
IVE (e =] 2= =T
:‘ xy — (¢ — nge — nbe) ’2
U
<= g (©2)

where inequality is by Young’s inequality. Therefore,

1 T2 1 T2 Tt — Typ1 |2 1 T2
=S IVE @I <22 S [ BEE T2 S

2(a—1)

<O(T'+6 ) (63)
where the last inequality is obtained by plugging in (60) and (61). a < 1.5 and rearranging.

B.7 Additional discussion on fully-single-loop version of F2SA [45]

Since momentum updates in F2SA [45] introduce additional memory cost, in this section, we look
into the fully-single-loop version of F2SA [45] without momentum, i.e. at each iteration ¢, it updates:

Y1 =v{ —n*Vyg(we,y:), and (64)
Ui =y =7 (Vyr  f (e, u)) + Vgl y7)) (65)

where 9 <1 and ' < (lg1+7~ -1 1, 1)~ ! are the step sizes. We summarize the algorithm in
Algorithm 2 present the convergence results in the following theorem.
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Proposition 5. Suppose all assumptions in Proposition 2 hold. For iterations using the fully-single-
loop version of Algorithm 2 withn = O(y~1) gives
T—1

1

7 2 IVE@)|* = 0T ™). (66)
t=0

Proof. Denote the gradient approximate g; = Vo f(x, v 1) + YVag(x,yl 1) — YVag(@, yii ).
According to smoothness, we have

lp
Fy(ziy1) — Fy(w) K(VEY (1) — ¢ + Gty Tep1r — o) + 7’1 @1 — ]|
1 2 1 2
< - 5\\$t+1 — x| + %Hﬂftﬂ —¢||” + (IVEy (we1) — gellllzess — 24|

1 1
< - %H%H —x? + %Hwt+l — x| + 9l VEy (z41) — ge1?
n
== JIVE, @I + 0l VE, (2141) = gl (67)
where the second inequality uses n < l;’ll, (gt, 41 — 1) < —%thﬂ — x4]|? by [9, Lemma 3.1]

and Cauchy-Schwartz inequality; the third applies Young’s inequality

Moreover, denote h(z,y) = +'f(z,y) + g(z,y), v"(z) = mingeyh(z,y), ¥/~ =
arg mingey h(zy,y) and y{™ € argmingey g4, y), by triangle inequality and Young’s inequality,
there is

IVE, (2e) = e
<29 Vah(@e, yi 1) = VO (@)|® + 292 Vag (e, yfy ) — Vola) |

=29%0 1 llyn = w1+ 2920yl — w7

2 2
§272Zf2l,1fﬂh7(h(l“tv Yr1) — " (w4)) + 2970 %7(9(%, Yer1) — (1))
212 2 Yy h 212 2 Yy
<2y Zh,lf/ih (X =0 pn)y(h(xe, ye) — 0" (24)) + 2 lg,l%(l —nYu)v(g(xs, 2t) — v(w))

2 2
§272li,1%(1 — 0¥ un)y(h(@e, ye) — v (1)) + 272l§,1%(1 — Y )v(g(Te, 2¢) — v(21))

1 1
<N a2z (U= ) V(e yo) P + 2% 55 (= ') [ Vg 2l (68)
h

The second to last inequality follows PL condition and the last inequality is by the descent theory for
applying projected gradient descent on problems satisfying PL condition, see e.g. [41, Theorem 5].

Plugging (68) in (67), there is

4 _
Ey (1) = Fy(24) < = ZIIVFw(xt)II2 + 77#772@ g+l ) (=) (e, y) ) — o ()
Y

4
127 0g2) (L =1 (e, ) = v (@0)): (69)
Moreover, as h(z,y) is lny = v~ 'ly1 + lg,1-smooth and v"(2) is I,n ; = Ip,1(1 + L))-smooth,
there is

M1, 7)) — v (2eg)
(@) 02 (I + Ly 1)

<h(ze,yl1) — v"(2e) + (Voh(2e, y700) — VO™ (20), 21 — 24) + 5 IVE, (z)|?

®) . 2 (Iny 4 Ly 1)

<h(ze, 47 1) — 0" (@) + byl — v IV Ey ()] + f’l\vﬂ(mlﬁ

© z * 77lh 1 772(ll 1 + lvh,l)
<h(z,y7q) — 0" () + Ulh,1§||yz+1 -y 1P+ TZ’||VF7($t)||2 + LfHVFv(xt)HQ
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(d) 1z
<(1+ T”T’l)(h(xt, yi1) — 0" (@) + (

2+ ME) (1, ) — o) +

nlh,l + 772(lh,1 + lvh,l)

2
- )9, (@)

Nlh1 N 7 (lh1 + Lyn 1)

2z 2 )HVF'y(xt)Hza Vz > 0.

(70)

Here, (a) follows the smoothness of h(z, y) + v"(x) in x; (b) applies Cauchy-Schwartz inequality
and the smoothness of % in y; (c) uses Young’s inequality for any z > 0; (d) is from the PL condition
of h(z,y) in y; (e) is similarly by the descent theory for applying projected gradient descent on
h(z, ) satisfying PL condition [41, Theorem 5].

Following similar analysis, as g(, y) is [y 1-smooth and v(z) is [,.1 = lg1(1 + Lg)-smooth, there is
9(Tey1, nyrl) —v(Tt41)

<0+ 92 (0 gl uf) — () +

77lg,1 + 772(lg,1 + lv,l)

o T IVE @)y

In this way, adding c(h(z¢41, ;1) — v"(@441)) and ¢ (9(@¢41, ¥, 1) — v(2441)) to both side of
(69), there is
Fy(wes1) = Fy(@e) + ez, y7) — 0" (@) + (9@, 9740) — v(@e41))

2 2
n (nlh,l 0 (Ip,1 + lvh,1)> /(Ulg,l n*(lg1 ‘Hv,l)) 2
< (" F
< 4+C % + 5 +c 94/ + 5 HV ,Y(xt)H

({10 40 (= )bl 57) = o' (1))

+c’((1+ (—lg’lz'+ 22 ) (1 = g (g, ¢ — vl )))
n 9 Y g71uc/ 7Kg )NG\Lt, Yt t :

In this way, choose the following hyper-parameter,

1
c=yp 2
;1
C =7 2
z = 16¢clp 1
2 =16c1g1
P (72)
n? < l‘q’%
- 7
n Slh,l
; 1 1 n'p/(I=n"p) n9pg/(1=npg)
7 < min 16c(n 1 tlyn 1) 166 (g 11 1)” lh’lz+4721ﬁ)1 PN
2 e 2 Hgc

ie.c,d =0(y),n=0(y71), there is
Fy(2e1) = Fy () + e(M@er1,970) = 0" (@040)) + ¢ (9(@e41,9741) — v(@41))

+
<- g”VF'y(xt)HQ +e(h(ae,y)) = v" (@) + <l 1 (g(@e, yf — v(xe)).

Denote Dy = F,(xg) — Fy(zr), D2 = (h(z0,59) — v"(20)) — (h(z7,y7) — v"(27)), and
D3 = (g(z0,y§) — v(x0)) — (9(z7, y%) — v(zr)). Rearranging and telescoping gives

T—1
1 8(D1+c¢Dy+ D _
2 IVE @ < SPEDR DY) gy (73)
t=0 K
where the last equality is because ¢, ¢’ = O(7y), and = O(y~1). O

The convergence of the fully-single-loop F2SA without momentum is hindered by a larger -, which
regulates the UL violation rate. While the general case requires ¥ = O(¢~%°) as per Lemma 1. This
shows that the fully-single-loop version of F2SA, though computationally efficient, suffers from
higher international cost.
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C Additional Experimental Details

C.1 Additional details for toy example in Figure 2

In this section, we provide details for the toy example of PEFT BLO problem in Figure 2. We
consider a binary classification setting where the model parameters § = (x,y) consist of the UL
variable x and LL variable y, with 6 € R2. The model implements a 1D convolutional network with
softmax activation:

class SoftmaxNN(nn.Module) :
def __init__(self):
super().__init__()
self.hidden = nn.Convld(in_channels=1, out_channels=1,
kernel_size=2, stride=2, bias=False)
self.activation = nn.Softmax(dim=1)
self._init_weight ()

We specify the SFT datasets Dspr = {(X1,y)}, and the DPO dataset Dppo = {(X2, Yw, ye)} in
Table 3. The BLO problem is specified in (3), where fppo consists of a DPO loss with 5 = 1 [70]
plus an /5 regularization term (weight 0.01) and gsgr consists of a negative log-likelihood loss and
the same regulariztion. The reference model is obtained via learning on gsgr(x, y) (parameterized
with (x = —5.34,y = —9.94)).

We apply our PBGD-Free algorithm in Algorithm 1 in comparison with F?SA [45] with v = 15,
K = 10 inner loop to solve (5), and T' = 5000 outer loop for both algorithms.

Table 3: Dataset specification for toy illustration
Input | Output Feature
X, | y=0 [[1.0,1.0,0.5,0.5]"
X, | y¥=11] [10,05,0,0.5"
Xo | yw=1][1.0,0.5,0.5,0.5]"
Xy ye=0 | [0.5,1.0,1.0,1.0] "

C.2 Representation learning problem on NLSY dataset [73]

BLO has proven effective in representation learning for obtaining a joint backbone model x that
captures unified task features and generalizes well to downstream tasks by only tuning the head
y [4, 95, 83, 36, 80]. We test our algorithm on a representation learning problem on the National
Longitudinal Survey of Youth (NLSY) dataset [73], following the experimental setup in [80]. This
problem aims to learn representations to predict normalized income via min, , fumse (z,y; D7) s.t.
y € argmin, fuse(x,y; D2), where D1, D are datasets partitioned by gender. The representation
model, parameterized x, consists of two fully connected layers (hidden size 200, ReL.U activation),
and the predictor, parameterized v, is a linear classification head.

We compare our fully-single-loop PBGD-Free (with inner iteration K = 1) against F>SA [45] (with
K = 2) and the ITD algorithm from [80], following the experimental setup in [80]. As shown in
Table 4, the performance gap is particularly notable in efficiency, where PBGD-Free is over twice
as fast as F2SA [45] and more than 30 times faster than the ITD-based approach [80], primarily
because it omits the value-function part and the inner loop of y (). Moreover, PBGD-Free achieves
lower MSE than PBGD [44]. This improvement stems from PBGD-Free’s ability to avoid the
bias y-propagation inherent in PBGD’s design. When both algorithms are single-loop (or nearly
single-loop for small K = 2), PBGD’s reliance on a fixed penalty parameter +y amplifies initial inner
update biases throughout training, slowing convergence, detailed in Appendix B.7 while PBGD-Free
eliminates these y-dependent value function terms.

C.3 LLM PEFT problem (3)

General Setup. We evaluate our PEFT framework (3) using the Dahoas/rm-hh-r1hf dataset
for DPO loss and the OpenOrca dataset for SFT loss. For training, we test one PYTHIA-1b [6]

27



Methods || MSE | Time (s)

F?SA [45] 1.9331 +£0.0794 12.33 £0.34
Implicit [80] 2.1530 £ 0.0455 | 169.69 £ 0.36
PBGD-Free || 1.8916 +0.1245 | 5.15 4+ 0.06

Table 4: Performance results for different training methods on representation learning problem on
NLSY-7k Dataset [73]. The mean + standard deviation is reported for both the mean MSE and the
mean time over 5 random experiments on the test dataset.

Method | Avg Memory Used (MB) | Peak Memory Used (MB)
BOME 18834.53 21535.96
F?SA 16213.78 17622.43
ALRIGHT 16031.86 16107.45
PBGD-Free 16016.94 16180.89

Table 5: Empirical GPU memory usage for each method over 3 epoches of training.

model with 1800 samples for each dataset (batch size 16) and the LLAMA-3-3B [22] model with
4800 samples (batch size 32). Both models are adapted with LoORA (ALPHA 16, RANK 16) and
we treat LORA PEFT weights on the attention layers as x, the last layer linear head as y. The
learning rate is set to 1 x 1075, using Adam [43] as the optimizer. All experiments were conducted
on a cluster of NVIDIA A6000 GPUs, each with 40 GB of memory. Training was performed
using PyTorch with the DeepSpeed library https://github. com/deepspeedai/DeepSpeed to
optimize memory usage and distributed training efficiency. We consider a time-limited experiment
under a consistent computational budget, reflecting real-world constraints where training time is often
a critical factor.

Algorithm hyperparameter. We use a penalty constant of v = 10 for our proposed PBGD-Free
algorithm (Algorithm 1) with a single inner loop (K = 1). For the baseline F?SA algorithm [11, 45],
we set v = 10 with K = 3 inner updates for training LLAMA-3-3B [31], and K = 5 for PYTHIA-
1b [6]. For the BOME algorithm, we similarly use K = 3 and K = 5 inner loops, adopting its
hyperparameter n = 0.5 for calculating the penalty constant, as suggested in [105]. For the ALRIGHT
algorithm [24], we use its default setting of A = 0.5 as suggested in literature [24]. Since the
ALRIGHT algorithm in [24] is a bi-objective learning algorithm that does not have the representation
learning capability, we examine it on an alternative formulation ming y [ fppo(z,y), gsrr(¥)]-

Faster training than BLO baselines and more stable over bi-objective. As presented in Figure 9,
when training PYTHIA-1b [6] on the PEFT problem (3), our PBGD-Free algorithm demonstrates the
fastest convergence compared to the baseline BLO methods F2SA [11, 45] and BOME [105], both of
which fail to converge within the given time budget. Additionally, PBGD-Free shows greater stability
compared to its bi-objective counterpart ALRIGHT [24]. Table 5 reports the average and peak GPU
memory consumption over 3 epochs for all compared methods, illustrating that PBGD-Free maintains
a memory footprint comparable to the baselines.

Better transferability to new task. Figure 10 further illustrates the performance of the outputs from
BLO PEFT learning (3) in the subsequent post-SFT-tuning phase S2). The BLO baselines (F>SA
[11, 45] and BOME [105]), which did not achieve convergence in the initial PEFT phase due to their
higher time complexity, tend to sacrifice DPO performance when improving SFT performance during
post-SFT tuning S2). In contrast, PBGD-Free algorithm and its bi-objective counterpart ALRIGHT
[24] demonstrate the ability to preserve strong preference alignment (DPO) while conducting SFT
training in S2). This shows that the preference backbone z learned by both of them can be adapted
to new task by fine-tuning only the linear head to achieve strong SFT performance. Notably, the
BLO PEFT outputs trained by PBGD-Free achieves better SFT performance with substantially lower
SFT loss, highlighting the advantage of the prioritization of SFT in our BLO formulation (3). This
structure allows for a more powerful SFT tuning head, whereas bi-objective training methods tend to
oscillate between potentially conflicting objectives, thereby limiting their post-SFT performance.
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Example of SFT Evaluation Performance

Human: Generate an approximately fifteen-word sentence that describes all this data: Midsum-
mer House eatType restaurant; Midsummer House food Chinese; Midsummer House priceRange
moderate; Midsummer House customer rating 3 out of 5; Midsummer House near All Bar One

PYTHIA-1b [6]: BLO-PEFT (F2SA [45]): BLO-PEFT (PBGD-Free):
Midsummer House staff a Midsummer House is a restau- Midsummer House is a
restaurant priced restaurant rant priced restaurant restau-

restaurant. a good-5 star rat- rant with a with a

ing. and in All Bar One. . located All Bar One. . located All Bar One.

Human: You will be given a definition of a task first, then some input of the task. This
task is about using the specified sentence and converting the sentence to Resource Description
Framework (RDF) triplets of the form (subject, predicate, object). The RDF triplets generated
must be such that the triplets accurately capture the structure and semantics of the input sentence.
The input is a sentence and the output is a list of triplets of the form [subject, predicate, object]
that capture the relationships present in the sentence. When a sentence has more than 1 RDF
triplet possible, the output must contain all of them. AFC Ajax (amateurs)’s ground is Sportpark
De Toekomst where Ajax Youth Academy also play.

LLAMA-3-3B [31]: BLO-PEFT (F2SA [45]): BLO-PEFT (PBGD-Free):
[[’AjaxFC Ajax (amateurs)”, [[’AjaxFC Ajax (amateurs)”, [[” 7,
“playsGround”, ”Sportpark , ’Sportpark , ”Sportpark De
De Toekomst”], [’Ajax De Toekomst’], [’Ajax Youth Toekomst”], [’Ajax Youth
Youth Academy”, , Academy”, , ’Sport- Academy”, , "Sport-
”Sportpark De Toekomst™]] park De Toekomst™]] park De Toekomst™]]

Table 6: Examples of SFT evaluation performance for PYTHIA-1b [6], LLAMA-3-3B [31] and their
corresponding BLO-PEFT (3) results via our PBGD-Free Algorithm 1 and basline F2SA [45]. Text
marked in red indicates incorrect outputs, indicates partially correct outputs that follow some
of the instructions, and indicates fully correct outputs that match the expected instructions.

Better SFT performance while maintaining preference learning. As illustrated in Table 6, the
outputs generated by PBGD-Free demonstrate more precise and semantically accurate extraction,
highlighting its superior SFT performance. In Figure 12, we present the loss metrics performance
throughout post-SFT-tuning phase for LLAMA-3-3B [31] in addition to the results presented in
Section 4. We observe that our backbone x trained on BLO PEFT (3) via PBGD-Free retains
its lowest DPO rates throughout post-SFT-tuning. Figure 11 shows the quantitative results of the
preference alignment using average reward gap and win rate. Together with Figure 8, they indicate
that the backbone preference model x by the PBGD-Free maintains the first-tier DPO performance
for preference alignment while enhancing the SFT performance by only fine-tuning the linear head.
The slight DPO drop in Figure 11 of PBGD-Free compared with ALRIGHT is because it prioritizes
better SFT performance, which restricts the feasible search space of representation model optimizing
at the UL. However, since the representation evaluation criterion prioritizes strong SFT performance
achieved by fine-tuning only the linear head, and treats preference alignment as a secondary goal,
PBGD-Free remains the top-performing method. Moreover, according to Figure 7, PBGD-Free is
more stable during the training compared with ALRIGHT. Additionally, Table 6 provides the SFT
output comparison given by PBGD-Free and F2SA on PYTHIA-1b [6], LLAMA-3-3B [31], from
which we can see that both methods improve the response quality over the pre-trained model through
BLO PEFT (3), while PBGD-Free generates better responses and follows the human instructions
well.

Higher-rank LoRA enables finding better preference backbone via PBGD-Free. The last 2
columns in Figure 6 show that a higher-rank LoRA better preserves DPO with comparable SFT
performance. It is likely because a higher-rank LoRA provides more over-parameterization, which
ensures a more benign optimization landscape for the representation parameter = [101, 88, 54] and
thus enables globally finding a better representation model = [90].
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C.4 BiDoRa fine-tuning problem

One of the recent applications of bilevel optimization lies in the field of Large Language Finetuning.
[68] proposed BiDoRa, which considers fine-tuning using DoRa [53] by training on a BLO problem

mniln IL(m,v*(m)) st v*(m) =15 (m,v*(m) + pR(v) (74)

where m is the magnitude and v is the direction matrix for the low-rank incremental direction,
IL.(m,v) and I!,(m, v) are respectively loss functions for fine-tuning training dataset splitting into
large and small on proportion 0.66 to 0.67, and R(v) is the Gram regularization loss [94] with
constant p taken as le 3.

We conduct experiments on Microsoft Research Paraphrase Corpus (MRPC) dataset [20], and Internet
Movie Database (IMDb) in Hugging Face by fine-tuning Bert model [59]. We apply fully-single-loop
versions of PBGD and PBGD-Free in Algorithm 1 to solve the problem in Section 74 and compare it
with training using DARTS [48], the algorithm used in the original BiDoRa algorithm [68], and the
naive results trained on min,,, ,, It (m, v) where l;, is the combined loss for training dataset including
the ones used for both I}, and [{, for DoRa [53]. The experiment is conducted on a single NVIDIA
RTX A5000 GPU (24GB) using CUDA 12.2 and NVIDIA driver version 535.113.01.

As illustrated in Table 7, training BiDoRa using PBGD-Free in Algorithm 1 achieves the best
performance in terms of test accuracy. It is more efficient than training using PBGD as it cuts the
inner loop. Notably, it performs even better than the fully-single-loop of F>SA [11]. This is consistent
with the convergence results in Proposition 5 and Theorem 3.

Methods [ MRPC | IMDb
BiDoRa-PBGD-Free || 0.839 £ 0.006 | 0.873 £ 0.007
BiDoRa-F?SA 0.820 £ 0.014 | 0.866 £ 0.016
BiDoRa-DARTS / 7
DoRa 0.832£0.010 | 0.872£0.010

Table 7: Test accuracy (%) on training the finetuning parameters using BiDoRa-PBGD in comparison
with DARTS [48], the algorithm used in [68], and with directly training DoRa [53]. It represents the
accuracy mean =+ standard deviation on 20 random training experiments. The /" represents didn’t
converge in 10 times the time used in training DoRa.
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D Broader Impact

This paper mainly focuses on developing an efficient BLO algorithm with a theoretical guarantee.
By applying the proposed method to representation learning based PEFT and BiDORA, our work
contributes to the broader development of parameter efficient LLM fine-tuning. Potential societal
impacts include applications in creative content generation, data augmentation, and machine learning-
based simulations. While we acknowledge the possibility of unintended uses, we do not identify any
specific societal risks that need to be highlighted in this context.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the main contributions, including the
development of PBGD-Free, a fully first-order, single-loop bilevel optimization algorithm
that eliminates value function evaluations. The claims are supported by theoretical analysis
and experiments, demonstrating improved convergence and scalability for LLM fine-tuning,
aligning well with the paper’s core contributions.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper discusses limitations related to the reliance on flatness conditions,
which are critical for the efficiency of the proposed PBGD-Free algorithm. It also ac-
knowledges the assumption of joint (x,y) dependency in the upper-level objective (i.e.,

f(x,y) # fy).

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate ”Limitations” section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper provides a complete set of assumptions and detailed proofs for each
theoretical result, including clear numbering and cross-referencing in both the main text and
supplementary material. The assumptions are explicitly stated alongside theorems, ensuring
that the analysis is rigorous and well-supported. Additionally, the main paper includes
observations that guide intuition, with full formal derivations available in the appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides sufficient details for reproducing the main experimental
results, including hyperparameter settings, model architectures, and dataset descriptions. It
clearly outlines the training procedures, evaluation metrics, and computational resources
used, ensuring that the main claims and conclusions can be independently verified. Ad-
ditionally, the supplementary material includes further implementation details, enhancing
reproducibility.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code and data required to reproduce the main experimental results of this
paper are included in the supplementary material.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides a comprehensive description of the training and test settings
for all experiments. We provide key hyper-parameters as described in the main paper or in
the Appendix, and we provide the detailed implementation in supplementary material.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]
Justification: See Section 4 and Appendix C

Guidelines: This paper provides experiment results with multiple rounds of experiments,
justifying the statistical significance of the experiments.

* The answer NA means that the paper does not include experiments.

* The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for

example, train/test split, initialization, random drawing of some parameter, or overall

run with given experimental conditions).

The method for calculating the error bars should be explained (closed form formula,

call to a library function, bootstrap, etc.)

The assumptions made should be given (e.g., Normally distributed errors).

It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Section C. For fair representation learning, we report the total runtime in
Table 4. We report the computation resources for representation learning based PEFT in
Appendix C.3 and C.4 for BiDoRA fine-tuning.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The authors obey the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
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10. Broader impacts

11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See Appendix D.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release new models and dataset, but utilize the existing ones. We
focus on new problem formulation via BLO and proposing efficient algorithms using existing
LLM models and dataset.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all the code based and datasets we are using in Section 4.
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13.

14.

15.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release the code through anonymized zip file and provide all the details of
training parameters in in Section 4 and Section C.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method we developed is original and completely without LLM.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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