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Abstract

As the economic and environmental costs of training and deploying large vision
or language models increase dramatically, analog in-memory computing (AIMC)
emerges as a promising energy-efficient solution. However, the training perspective,
especially its training dynamics, is underexplored. In AIMC hardware, the trainable
weights are represented by the conductance of resistive elements and updated using
consecutive electrical pulses. While the conductance changes by a constant in
response to each pulse, in reality, the change is scaled by asymmetric and non-linear
response functions, leading to a non-ideal training dynamics. This paper provides a
theoretical foundation for gradient-based training on AIMC hardware with non-
ideal response functions. We demonstrate that asymmetric response functions
negatively impact Analog SGD by imposing an implicit penalty on the objective. To
overcome the issue, we propose residual learning algorithm, which provably
converges exactly to a critical point by solving a bilevel optimization problem. We
demonstrate that the proposed method can be extended to address other hardware
imperfections, such as limited response granularity. As we know, it is the first
paper to investigate the impact of a class of generic non-ideal response functions.
The conclusion is supported by simulations validating our theoretical insights.

1 Introduction

The remarkable success of large vision and language models is underpinned by advances in modern
hardware accelerators, such as GPU, TPU [1], NPU [2], and NorthPole chip [3]. However, the
computational demands of training these models are staggering. For instance, training LLaMA
[4] cost $2.4 million, while training GPT-3 [5] required $4.6 million, highlighting the urgent need
for more efficient computing hardware. Current mainstream hardware relies on the Von Neumann
architecture, in which the physical separation of memory and processing units creates a bottleneck
due to frequent, costly data movement between them.

In this context, the industry has turned its attention to analog in-memory computing (AIMC) accelera-
tors based on resistive crossbar arrays [6–10], which excel at accelerating ubiquitous, computationally
intensive matrix-vector multiplications (MVMs) operations. In AIMC hardware, the weights (ma-
trices) are represented by the conductance states of the resistive elements in analog crossbar arrays
[11, 12], while the input and output of MVM are analog signals like voltage and current. Leveraging
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Figure 1: The weight’s response curve. Positive and negative pulses are fired continuously on the
left and right halves, respectively. One pulse is fired per cycle. Given w, the weight becomes w+

or w− after one positive and negative pulse, respectively. The response factors q+(w) and q−(w)
are approximately the slope of the curve at w, and ∆wmin is the response granularity. (Left) Ideal
response functions q+(w) ≡ q−(w) ≡ 1. Every point is a symmetric point. (Right) Asymmetric
response functions q+(w) ̸= q−(w) almost everywhere expect for the symmetric point w⋄.

Kirchhoff’s and Ohm’s laws, AIMC hardware achieves 10×-10,000× energy efficiency than GPU
[13–15] in model inference.

Despite its high efficiency, analog training is considerably more challenging than inference since
it involves frequent weight updates. Unlike digital hardware, where the weight increment can be
applied to the original weight in the memory cell, the weights in AIMC hardware are changed by the
so-called pulse update.

Pulse update. When receiving electrical pulses from its peripheral circuits, the resistive elements
change their conductance in response to the pulse polarity [16]. Receiving a pulse at each pulse cycle,
the conductance is updated by ∆wmin · q+(w) or ∆wmin · q−(w), depending on the pulse polarity,
where ∆wmin is response granularity, and q+(w) and q−(w) are response functions. Geometrically,
q+(w) and q−(w) are the slopes of response curves; see Figure 1. All ∆wmin, q+(w), and q−(w) are
element-specific parameters or functions that are set before training and hence remain fixed during
training. Typically, ∆wmin is known while q+(w) and q−(w) are not.

Gradient-based training implemented by analog update. Supported by pulse update, the gradient-
based training algorithms are used to optimize the weights. Consider a standard training problem
with objective f( · ) : RD → R and a model parameterized by W ∈ RD

W ∗ := argmin
W∈RD

f(W ) := Eξ[f(W ; ξ)] (1)

where ξ is a random data sample. Similar to stochastic gradient descent (SGD) in digital training
(Digital SGD), the gradient-based training algorithm on AIMC hardware, Analog SGD, updates
the weights by stochastic gradients ∇f(Wk; ξk). Digital SGD updates the weight by Wk+1 =
Wk − α∇f(Wk; ξk) with learning rate α. Given a desired update ∆W = −α∇f(Wk; ξk), AIMC
hardware implements Analog SGD by sending |[∆W ]d|/∆wmin pulses to the d-th element. Ideally,
q+(w) = q−(w) = 1 for every conductance states. If so, with each pulse updating [Wk]d by ∆wmin,
[Wk]d is ultimately updated by about [∆W ]d.

Challenges of analog training. Despite its ultra-efficiency, gradient-based training on AIMC
hardware is challenging. First, the generic response functions are asymmetric (i.e. q+(w) ̸≡
q−(w)), and non-linear [17–19]. Due to the variation of response functions and conductance states,
gradients are scaled by different magnitudes across different coordinates, leading to biased gradients.
Furthermore, the response granularity ∆wmin is a constant. When the gradients or the learning rate
decay below ∆wmin, pulse update no longer provides sufficient precision to perform gradient descent
[20]. Other imperfections include, but are not limited to, noisy input/output (IO) of MVM operations
and analog-digital conversion error [18]. This paper aims to investigate the impact of non-ideal
response functions and develop a method to mitigate their negative effects. We also discuss extending
the proposed method to deal with other hardware imperfections.

1.1 Main results

Complementing existing empirical studies in analog in-memory computing, this paper aims to build a
rigorous theoretical foundation of analog training. By introducing bias to the gradient, the asymmetric
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response function plays a central role in differentiating digital and analog training. In contrast,
the other non-idealities hinder the training process by causing precision-related issues. Therefore,
we approach the problem progressively, beginning with a simplified case that involves only the
asymmetric response functions, and extending the proposed methods to more general scenarios.

As a warm-up, building upon the pulse update mechanism, we propose the following discrete-time
mathematical model to characterize the trajectory of Analog SGD

Analog SGD Wk+1 = Wk − α∇f(Wk; ξk)⊙ F (Wk)− α|∇f(Wk; ξk)| ⊙G(Wk) (2)

where α > 0 is the learning rate and ξk is the data sample of iteration k; | · | and ⊙ represent the
element-wise absolute value and multiplication, respectively; and F ( · ) and G( · ) are hardware-
specific matrix which are defined by q+( · ) and q−( · ). In Section 2, we will explain the underlying
rationale of (2). Compared with the standard Digital SGD, the gradients in (2) are scaled by F ( · )
and an extra bias term is introduced. Typically, hardware imperfections lead to non-ideal response
functions, i.e., F ( · ) ̸≡ 1 and G( · ) ̸≡ 0. Thus, we ask a natural question that

Q1) What is the impact of non-ideal response functions and how to alleviate it?

Recently, [21] partially answers the question by showing that Analog SGD suffers from a convergence
issue due to the asymmetric update, and a heuristic algorithm, Tiki-Taka [22–24], converges exactly
by reducing the weight drift. However, their work is limited to a special case of linear response
functions, which are in the form of q+(w) = 1 − w/τ, q−(w) = 1 + w/τ with hardware-specific
parameter τ > 0. Given more general q+(w) and q−(w), the convergence of Tiki-Taka does not
trivially hold, even though the response functions are still linear.
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Figure 2: Comparison of Analog SGD and
Tiki-Taka under different parameter cLin. The
error plateau in the order 10−5 comes from the
limited response granularity ∆wmin = 10−4.

Gap between theory for special linear and
generic response functions. Consider a more
generic linear response q+(w) = (1+cLin)(1−
w/τ), q−(w) = (1 − cLin)(1 + w/τ) with a
parameter cLin, which reduces to the setting in
[21] when cLin = 0. Figure 2 shows the damage
from a non-zero cLin to Tiki-Taka. Consistent
with the conclusion in [21], Tiki-Taka signifi-
cantly outperforms Analog SGD when cLin = 0.
However, when cLin is perturbed from 0.1 to 0.3,
Tiki-Taka degrades dramatically and even be-
comes worse than Analog SGD does. The mod-
ification is slight, but the convergence guarantee
in [21] fails, and the convergence of Tiki-Taka
is harmed significantly. This counter-example indicates a gap between the theory for special linear
and generic response functions, and necessitates the study of the analog training with generic response
functions and the exploration of exact convergence conditions.

Ignoring other imperfections temporarily, this paper first analyzes the impact of response functions.
We show that Analog SGD suffers from asymptotic error due to the mismatch between the algorithmic
stationary point and physical symmetric point. Inspired by that, we propose a novel algorithm
framework that aligns two points, overcoming the asymmetric issues. Building on that, we endeavor
to extend the proposed algorithm to more practical scenarios that involve other imperfections like
limited granularity and noisy readings, prompting a second critical question:

Q2) How to extend the framework to address the limited response granularity and noisy IO issues?

To answer this question, we propose two mechanisms to further overcome these two issues.

Our contributions. This paper makes the following contributions:

C1) Building on the pulse update equation, we propose an approximate discrete-time dynamics
for analog update. Enabled by this, we study the impact of response functions directly,
without being limited to specific element candidates.

C2) Based on that, we show that instead of optimizing f( · ), Analog SGD optimizes another
penalized objective implicitly. An implicit penalty is introduced by the asymmetric response
functions, which attract the weights towards symmetric points. Consequently, Analog SGD
can only converge to the optimal point inexactly.
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C3) We propose a novel Residual Learning theoretical framework to alleviate the asymmet-
ric update and implicit penalty issues. Residual Learning explicitly introduces another
residual array, which has a stationary point 0. This framework leads to Tiki-Taka heuristi-
cally proposed in [22] while it offers an understanding of how Tiki-Taka deals with the
challenge from generic response functions. By properly zero-shifting so that the stationary
and symmetric points overlap, Residual Learning provably converges to a critical point.

C4) Building on C3), we propose a variant, Residual Learning v2, tailored for more practical
training scenarios. We propose introducing a digital buffer to filter out reading errors caused
by IO noise. Furthermore, we propose a threshold-based transfer rule to alleviate instability
caused by limited granularity.

1.2 Prior art

AIMC training. Analog training has shown promising early successes with tremendous energy
advantage [25, 26]. Among them, on-chip training, which performs forward, backward, and update
directly on analog chips [22–24, 27, 28] is considered to be the most efficient paradigm, but it
is more sensitive to hardware imperfections. Sacrificing energy efficiency for robustness, hybrid
digital-analog off-chip training is proposed [29–32], which offloads some computation burden to
digital components. This paper focuses on the more challenging on-chip training setting.

Energy-based model and equilibrium propagation. AIMC training leverages back-propagation
to compute the gradient signals. Recently, a class of energy-based models has been studied, which
performs equilibrium propagation to compute gradient signals [33–37]. Focusing on the training
dynamics instead of concrete gradient computing, our work is orthogonal to them and is expected to
provide insight for algorithm designs of energy-based model training.

2 Analog Training with Generic Response Functions
This section examines the discrete-time dynamics of analog training and introduces the challenges
posed by generic response functions. After that, we introduce a family of response functions that
reflect crucial physical properties that interest us.

Compact formulations of analog update. We first investigate the dynamics of one element w
in W ∈ RD. This paper adopts w to represent the element of the weight Wk without specifying
its index. As we discuss in Section 1, the response granularity ∆wmin is scaled by the response
functions q+(w) or q−(w). Since a desired update ∆w requires a series of pulses with each scaled
by approximately q+(w) or q−(w), it is sensible that the ∆w is approximately scaled by q+(w) or
q−(w) as well. Accordingly, we propose that an approximate dynamics of analog update is given by
w′ ≈ Uq(w,∆w), where Uq(w,∆w) is defined by

Uq(w,∆w) :=

{
w +∆w · q+(w), ∆w ≥ 0,

w +∆w · q−(w), ∆w < 0.
(3)

The update (3) holds at each resistive element. At the k-th iteration, We stack all the weights
wk and expected increment ∆wk together into vectors Wk,∆Wk ∈ RD. Similarly, the response
functions q+( · ) and q−( · ) are stacked into Q+( · ) and Q−( · ), respectively. Let the notation
UQ(Wk,∆W ) on matrices Wk and ∆W denote the element-wise operation on Wk and ∆W , i.e.
[UQ(Wk,∆W )]d := U[Q]d([Wk]d, [∆w]d), ∀d ∈ [D] with [D] := {1, 2, · · · , D} denoting the index
set. The element-wise update (3) can be expressed as Wk+1 = UQ(Wk,∆Wk). Leveraging the
symmetric decomposition [21, 22], we decompose Q−(W ) and Q+(W ) into symmetric component
F ( · ) and asymmetric component G( · )

F (W ) := (Q−(W ) +Q+(W ))/2, and G(W ) := (Q−(W )−Q+(W ))/2, (4)

which leads to a compact form of the Analog Update

Analog Update Wk+1 = Wk +∆Wk ⊙ F (Wk)− |∆Wk| ⊙G(Wk). (5)

Gradient-based training algorithms on AIMC hardware. In (5), the desired update ∆Wk varies
based on different algorithms. Replacing ∆Wk with the stochastic gradient ∇f(Wk; ξk), we obtain
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Figure 3: Examples of response functions from Definition 1; w⋄ is the symmetric point.

the dynamics of Analog SGD shown in (2). This update is reduced to the mathematical form for
linear response functions in [21] as a special case; see Appendix B for details.

Response function class. Before proceeding to the study of response functions, we first define the
response function class that interests us. Since the behavior of resistive elements is always governed
by physical laws, the function class should reflect certain crucial physical properties.

We first introduce a commonly observed saturation property across a wide range of resistive elements.
Resistive elements get saturated when they keep receiving the same pulses to avoid reaching arbitrarily
high or low conductance states. Constrained by that, the conductance of the resistive element with
q+( · ) and q−( · ) is bounded inside a dynamic range [τmin, τmax] where τmin and τmax are the
saturation points with zero responses, i.e. q+(τmax) = q−(τ

min) = 0. Near the saturation points, the
asymmetric issue is significant, so the update in one direction is suppressed, significantly impacting
convergence. On the contrary, if a point w⋄ satisfies q−(w⋄) = q+(w

⋄), the analog update behaves
like a digital update. We refer to w⋄ as symmetric point. Symmetric points are typically located in
the interior of the dynamic range and are far from saturation.

Stacking all w⋄ into a vector W ⋄ ∈ RD. Observe that the function G(W ) is large near the saturation
points while almost zero around W ⋄, implying it can reflect the saturation degree. At the same time,
F (W ) is the average of the response functions in two directions. As we will see in Sections 3.2 and
4, the ratio G(W )√

F (W )
plays a critical role in the convergence behaviors.

Besides saturation, the function class should also enjoy other properties. First, the conductance
increases when receiving a positive pulse and vice versa, leading to positive response functions. On
top of that, we also assume the response functions are differentiable (and hence continuous) for
mathematical tractability. Taking all into account, we define the following response function class.

Definition 1 (Response function class). q+( · ) and q−( · ) with dynamic range [τmin, τmax] satisfy

• (Positive-definiteness) q+(w) > 0, ∀w < τmax and q−(w) > 0, ∀w > τmin;

• (Differentiable) q+( · ) and q−( · ) are differentiable;

• (Saturation) q+(τmax) = q−(τ
min) = 0.

Definition 1 covers a wide range of response functions, including but not limited to PCM, ReRAM,
ECRAM, and others mentioned in Appendix A. Figure 3 showcases three examples from the response
functions class, including linear, non-linear but monotonic, and even non-monotonic functions.

3 Implicit Penalty and Inexact Convergence of Analog SGD

This section introduces a critical impact of the response functions, implicit penalized objective.
Affected by this, Analog SGD can only converge inexactly with a non-diminishing asymptotic error.

3.1 Implicit penalty

We first give an intuition through a situation where Wk is already a critical point, i.e.,
Eξ[∇f(Wk; ξ)] = 0. Recall that stochastic gradient descent on digital hardware (Digital SGD) is
stable in expectation, i.e. Eξk [Wk+1] = Wk − Eξk [α∇f(Wk; ξk)] = Wk. However, this does not
work for Analog SGD

Eξk [Wk+1] = Wk − Eξk [α∇f(Wk; ξk)⊙ F (Wk)− α|∇f(Wk; ξk)| ⊙G(Wk)] (6)
= Wk − αEξk [|∇f(Wk; ξk)| ⊙G(Wk)] ̸= Wk.
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Consider a simplified version that the weight is a scalar (D = 1) and the function G(W ) is strictly
monotonically decreasing2 to help us gain intuition on the impact of the drift in (6). Recall G(W ⋄) =
0 at the symmetric point W ⋄. G(W ) > 0 when W > W ⋄ and G(W ) < 0 otherwise. Consequently,
(6) indicates that Eξk [Wk+1] < Wk when Wk > W ⋄ and Eξk [Wk+1] > Wk otherwise. It implies
that Wk suffers from a drift tendency towards W ⋄. In addition, the penalty coefficient proportional
to the noise level since the drift is proportional to Eξk [|∇f(Wk; ξk)|], which is the first moment of
noise Eξk [|∇f(Wk; ξk)− Eξ[∇f(Wk; ξ)]|] in essence.

The following theorem formalizes the implicit penalty effect. Before that, we define an accumulated
asymmetric function Rc( · ) : RD → RD, whose derivative is R(W ) := G(W )

F (W ) , i.e. d[Rc(W )]d
d[W ]d

=

[R(W )]d = [G(W )]d
[F (W )]d

. If R(W ) is strictly monotonic, Rc(W ) reaches its minimum at the symmetric
point W ⋄ where R(W ⋄) = 0, so that it penalizes the weight away from the symmetric point.
Theorem 1 (Implicit penalty, short version). Assume Eξk [|∇f(Wk; ξk) − Eξ[∇f(Wk; ξ)]|] is a
constant Σ and suppose that D = 1. Analog SGD implicitly optimizes the following penalized
objective

min
W

fΣ(W ) := f(W ) + ⟨Σ, Rc(W )⟩ . (7)

The full version of Theorem 1 and its proof are deferred to Appendix G. In Theorem 1, Rc(W )
plays the role of a penalty to force the weight towards a symmetric point. As shown in Appendix
G, Rc(W ) has a simple expression on linear response functions when cLin = 0, leading (7) to
minW fΣ(W ) := f(W ) + Σ

2τ ∥W∥2 which is an ℓ2 regularized objective. In addition, the implicit
penalty has a coefficient proportional to the noise level Σ and inversely proportional to the dynamic
range τ . It implies that the implicit penalty becomes active only when gradients are noisy, and the
noise amplifies the effect.

With noisy gradients, an implicit penalty attracts Analog SGD towards symmetric points.

3.2 Inexact Convergence of Analog SGD under generic devices

Due to the implicit penalty, Analog SGD only converges to a critical point inexactly. Before showing
that, We introduce a series of assumptions on the objective, as well as noise.
Assumption 1 (Objective). The objective f(W ) is L-smooth and is lower bounded by f∗.
Assumption 2 (Unbiasness and bounded variance). The stochastic gradient is unbiased and has
bounded variance σ2.

Assumption 1–2 are standard in non-convex optimization [38, 21]. Additionally, similar to the setting
in [21], we also assume that the saturation degree is bounded, i.e., all response functions are positive.
Assumption 3 (Bounded saturation). There exists a constant Rmin > 0 such that min{Q+(W )⊙
Q−(W )}>Rmin.

Assumption 3 requires that Wk remains far from saturation points, which is a mild assumption in actual
training. This paper considers the average squared norm of the gradient as the convergence metric,
given by EASGD

K := 1
K

∑K−1
k=0 ∥∇f(Wk)∥2. Now, we establish the convergence of Analog SGD.

Theorem 2 (Inexact convergence of Analog SGD). Under Assumption 1–3, if the learning rate is set
as α = O(1/

√
K), it holds that

EASGD
K ≤ O

(√
σ2/K + σ2SASGD

K

)
(8)

where SASGD
K denotes the amplification factor given by SASGD

K := 1
K

∑K−1
k=0

∥∥∥∥ G(Wk)√
F (Wk)

∥∥∥∥2
∞

.

The proof of Theorem 2 is deferred to Appendix H. Theorem 2 suggests that the convergence
metric EASGD

K is upper bounded by two terms: the first term vanishes at a rate of O(
√
σ2/K), which

matches the Digital SGD’s convergence rate [38] up to a constant; the second term contributes to
the asymptotic error of Analog SGD, which does not vanish with the number of iterations K.

2It happens when both q+( · ) and q−( · ) are strictly monotonic.
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Impact of saturation/asymmetric update. The exact expression of SASGD
K depends on the specific

noise distribution and thus is difficult to reach. However, SASGD
K reflects the saturation degree near the

critical point W ∗ when Wk converges to a neighborhood of W ∗. If W ∗ is far from the symmetric
point W ⋄, SASGD

K becomes large, leading to a large EASGD
K and a large asymptotic error. In contrast, if

W ∗ remains close to the symmetric point W ⋄, the asymptotic error is small.

4 Mitigating Implicit Penalty by Residual Learning

The asymptotic error in Analog SGD is a fundamental issue that arises from the mismatch between the
symmetric point and the critical point. An idealistic remedy for the inexact convergence is carefully
shifting the weights to ensure the stationary point is close to a symmetric point. However, determining
the appropriate shifting is challenging, as the critical point is unknown before training. Therefore, an
ideal solution to address this issue is to jointly construct a sequence with a proper stationary point
and a proper shift of the symmetric point.

Residual learning. Our solution overlaps the algorithmic stationary point and physical symmetric
point on the special point 0. Besides the main analog array, Wk, we maintain another array, Pk,
whose stationary point should be 0. A natural choice is the residual of the weight, P ∗(W ), defined
by the P that minimizes the objective f(W + γP ) with a non-zero γ. Notice that P ∗(Wk) → 0 as
Wk → W ∗. Additionally, the goal of the main array is to minimize the residual so that the model
Wk approaches optimality. This process can be formulated as the following bilevel problem, whose
optimal points can be proved to be those of f(W )

Residual Learning min
W∈RD

∥P ∗(W )∥2, s.t. P ∗(W ) ∈ argmin
P∈RD

f(W + γP ). (9)

Now we propose a gradient-based method to solve (9). The stochastic gradient of f(W + γP ) with
respect to P , given by ∇P f(W + γP ; ξ) = γ∇f(W + γP ; ξ), is accessible with fair expense,
enabling us to introduce a sequence Pk to track the residual of Wk by optimizing f(Wk + γP )

Pk+1 = Pk − α∇f(W̄k; ξk)⊙ F (Pk)− α|∇f(W̄k; ξk)| ⊙G(Pk). (10)

where W̄k := Wk + γPk is the mixed weight. We then derive the hyper-gradient of the upper-level
objective. Notice ∇∥P ∗(W )∥2 = 2∇P ∗(W )P ∗(W ). Assuming W ∗ is the unique minimum of
f( · ), we know P ∗(W ) satisfies γP ∗(W )+W = W ∗. Taking gradient with respective to W on both
sides, we have ∇P ∗(W ) = − 1

γ I and hence ∇∥P ∗(W )∥2 = − 2
γP

∗(W ). Approximating P ∗(W )

by Pk and absorbing 2
γ into the learning rate β, we reach the update of the main array

Wk+1 = Wk + βPk+1 ⊙ F (Wk)− β|Pk+1| ⊙G(Wk). (11)

Featuring moving the residual Pk to Wk, (11) is referred to as transfer process. The updates (10) and
(11) are performed alternatively until convergence. Tiki-Taka mentioned in [21] is the special case
with linear response functions and γ = 0.

On the response functions side, it is naturally required to let zero be a symmetric point, i.e., G(0) = 0,
which can be implemented by the zero-shifting technique [39] by subtracting a reference array.

Convergence properties of Residual Learning. We begin by analyzing the convergence of
Residual Learningwithout considering the zero-shift first, which enables us to understand how
zero-shifted response functions affect convergence.

If the optimal point W ∗ exists and is unique, the solution of the lower-level objective has a closed
form P ∗(W ) := W∗−W

γ . At that time, the upper-level objective equals ∥W ∗ −W∥2. However, the
solutions of f( · ) are generally non-unique, especially for non-convex objectives with multiple local
minima. To ensure the existence and uniqueness of W ∗, we assume the objective is strongly convex.
Assumption 4 (µ-strong convexity). The objective f(W ) is µ-strongly convex.

Under the strongly convex assumption, the optimal point W ∗ is unique and hence the optimal solution
of the lower-level problem in (9) is unique. Since the requirement of strong convexity is non-essential
in the development of bilevel optimization [40–43], we believe the proof can be extended to more
general cases and will extend it for future work.
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Figure 4: Test accuracy of training on MNIST dataset under different τ ; (Left) FCN. (Right) CNN.

Involving two sequences Wk and Pk, Residual Learning converges in different senses, including:
(a) the residual array Pk converges to the optimal point P ∗(Wk); (b) Wk converges to the critical
point of f( · ) or the optimal point W ∗; (c) the sum W̄k = Wk + γPk converges to a critical point
where ∇f(W̄k) = 0. Taking all these into account, we define the convergence metric as

ERL
K :=

1

K

K−1∑
k=0

E
[
∥∇f(W̄k)∥2 +O(∥Pk − P ∗(Wk)∥2) +O(∥Wk −W ∗∥2)

]
. (12)

For simplicity, the constants in front of some terms in ERL
K are hidden. Now, we provide the

convergence of Residual Learning with generic responses.
Theorem 3 (Convergence of Residual Learning). Under Assumptions 1–3 and 4, with the learning
rate α = O

(√
1/σ2K

)
, β = O(αγ3/2), it holds for Residual Learning that

ERL
K ≤ O

(√
σ2/K + σ2SRL

K

)
(13)

where SRL
K denotes the amplification factor of Pk given by SRL

K := 1
K

∑K
k=0

∥∥∥∥ G(Pk)√
F (Pk)

∥∥∥∥2
∞

.

The proof of Theorem 3 is deferred to Appendix I. Theorem 3 claims that Residual Learning
converges at the rate O

(√
σ2/K

)
to a neighbor of critical point with radius O(σ2SRL

K ), which
share almost the same expression with the convergence of Analog SGD. The difference lies in the
amplification factor SRL

K and SASGD
K , where the former depends on Pk while the latter depends on Wk.

Impact of response functions. Response function affects the Analog SGD and Residual
Learning similarly. However, attributed to the residual array, constructing response functions to
enable exact convergence of Residual Learning is viable.

As we have discussed, Pk tends to P ∗(Wk) which tends to 0 given Wk tends to W ∗. Therefore,
response functions with G(P ) = 0 when P = 0 are required for the exact convergence.
Assumption 5. (Zero-shifted symmetric point) P = 0 is a symmetric point, i.e. G(0) = 0.

Under it and the Lipschitz continuity of the response functions, it holds directly that
∥∥∥∥ G(Pk)√

F (Pk)

∥∥∥∥
∞

≤

LS∥Pk∥∞ for a constant LS ≥ 0. Consequently, when Pk → P ∗(Wk) → 0 as Wk → W ∗, the
asymptotic error disappears. Formally, the following corollary holds true.
Corollary 1 (Exact convergence of Residual Learning). Under Assumption 5 and the conditions
in Theorem 3, if γ ≥ Ω(R

−1/5
min ), it holds that ERL

K ≤ O
(√

σ2L/K
)

.

The proof of Corollary 1 is deferred to Appendix I.5. Corollary 1 demonstrates the failure of
Tiki-Taka in Figure 2. The symmetric point is w⋄ = cLinτ in this example, which violates
Assumption 5 when cLin ̸= 0 and hence introduces asymptotic error into Residual Learning.

5 Extension of Residual Learning: limited granularity and noisy IO

This section extends Residual Learning to practical scenarios with additional hardware imperfec-
tions. To be specific, we consider the noisy IO and limited granularity as examples. We highlight that
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CIFAR10
DSGD ASGD TT/RL TTv2 RLv2

ResNet18 95.43±0.13 84.47±3.40 94.81±0.09 95.31±0.05 95.12±0.14
ResNet34 96.48±0.02 95.43±0.12 96.29±0.12 96.60±0.05 96.42±0.13
ResNet50 96.57±0.10 94.36±1.16 96.34±0.04 96.63±0.09 96.56±0.08

CIFAR100
DSGD ASGD TT/RL TTv2 RLv2

ResNet18 81.12±0.25 68.98±1.01 76.17±0.23 78.56±0.29 79.83±0.13
ResNet34 83.86±0.12 78.98±0.55 80.58±0.11 81.81±0.15 82.85±0.19
ResNet50 83.98±0.11 79.88±1.26 80.80±0.22 82.82±0.33 83.90±0.20

Table 1: Fine-tuning ResNet models with the power response on CIFAR10/100. Test accuracy is
reported. DSGD, ASGD, TT/RL, TTv2, and RLv2 represent Digital SGD, Analog SGD, Residual
Learning/Tiki-Taka, and Residual Learning v2, respectively.

we are not trying to diminish the importance of imperfection, but rather focus on two of the primary
ones known to be crucial.

IO of resistive crossbar arrays introduces noise during the reading of Pk+1 in the transfer process (11),
given by Wk+1 = Wk+β(Pk+1+εk)⊙F (Wk)−β|Pk+1+εk|⊙G(Wk) with a noise εk. It incurs the
implicit penalty issues again, leading to a penalized upper-level objective ∥P ∗(W )∥2+ ⟨Σε, Rc(W )⟩,
as claimed by Theorem 1, where Σε = E[|εk|] is assumed to be a constant. To filter out the noise, we
propose to use a digital buffer Hk to take a moving average of noisy Pk+1 signals by

Hk+1 = (1− β)Hk + β(Pk+1 + εk+1). (14)

Intuitively, with a fixed Pk+1, Hk will converge to a neighborhood of Pk+1 with radius O(β).
Therefore, a sufficiently small β renders Hk a fair approximation of noiseless Pk, enabling optimizing
the upper-level objective with clearer signals. After that, Hk+1 is transferred to Wk as follows

Wk+1 = Wk + βHk+1 ⊙ F (Wk)− β|Hk+1| ⊙G(Wk). (15)

Furthermore, the transfer process suffers from a constant error of O(∆wmin) due to the discrete
pulse firing, each of which changes the weight by O(∆wmin). To overcome these issues, we propose
introducing a threshold mechanism that does not transfer the entire Hk+1 to Wk at each iteration,
as in (15). Instead, we compute an intermediate value by Hk+ 1

2
= (1 − β)Hk + β(Pk+1 + εk+1)

first. At each coordinate d, if the value |[Hk+ 1
2
]d| ≥ ∆wmin, one pulse will be fired to [Wk]d and

update the digital buffer by [Hk+1]d = [Hk+ 1
2
]d −∆wmin or [Hk+1]d = [Hk+ 1

2
]d +∆wmin, where

the sign of increment is determined by the sign of [Hk+ 1
2
]d. Otherwise, no transfer is triggered if the

intermediate value falls below the threshold, i.e., [Hk+1]d = [Hk+ 1
2
]d. The proposed algorithms are

referred to as Residual Learning v2.

6 Numerical Simulations

In this section, we verify the main theoretical results by simulations on both synthetic datasets and real
datasets. We use the open source toolkit IBM Analog Hardware Acceleration Kit (AIHWKIT) [44] to
simulate the behaviors of Analog SGD, Residual Learning (which reduces to Tiki-Taka). Each
simulation is repeated three times, and the mean and standard deviation are reported. We consider
two types of response functions in our simulations: power and exponential response functions with
dynamic ranges [−τ, τ ] and the symmetric point being 0, as required by Corollary 1. More details,
simulations, and ablation studies can be found in Appendix K. The code of our simulations is available
at github.com/Zhaoxian-Wu/analog-training.

FCN/CNN @ MNIST. We train a fully-connected network (FCN) and a convolutional neural
network (CNN) on the MNIST dataset and compare the performance of Analog SGD and Tiki-Taka
under various dynamic range τ on power responses; see the results in Figure 4. By tracking
residual, Residual Learning outperforms Analog SGD and reaches comparable accuracy with
Digital SGD. For both architectures, the accuracy of Residual Learning drops by < 1%. In
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Figure 5: The test accuracy of ResNet family models after 100 epochs trained by Residual
Learning under different γ in (10); (Left) CIFAR10. (Right) CIFAR100.

contrast, Analog SGD takes a few epochs to achieve a noticeable increase in accuracy in FCN training,
rendering a slower convergence rate than Residual Learning. In CNN training, Analog SGD’s
accuracy increases more slowly than Residual Learning, eventually settling at about 80%. It is
consistent with the theoretical claims.

ResNet @ CIFAR10/CIFAR100. We fine-tune three ResNet models with different scales on
CIFAR10/CIFAR100 datasets. The power response functions are used, whose results are shown in
Table 1. The results show that the Tiki-Taka outperforms Analog SGD by about 1.0% in most of the
cases in ResNet34/50, and the gap even reaches about 7.0% for ResNet18 training on the CIFAR100
dataset. On top of that, we also compare the proposed Residual Learning v2 and Tiki-Taka v2.
Both of them outperform Residual Learning since they introduce a digital buffer to filter out the
reading noise. However, Residual Learning v2 outperforms Tiki-Taka v2 on the CIFAR100
dataset, demonstrating the benefit from the bilevel formulation.

Ablation study on γ. We conduct simulations to study the impact of mixing coefficient γ in (10) on
the CIFAR10 or CIFAR100 dataset in the ResNet training tasks. The results are presented in Figure
5, which shows that Residual Learning achieves a great accuracy gain from increasing γ from 0
to 0.1, while the gain saturates from 0.1 to 0.4. Therefore, we conclude that Residual Learning
benefits from a non-zero γ, and the performance is robust to the γ selection.

7 Conclusions and Limitations

This paper studies the impact of a generic class of asymmetric and non-linear response functions on
gradient-based training in analog in-memory computing hardware. We first formulate the dynamics
of Analog Update based on the pulse update rule. Based on it, we show that Analog SGD implicitly
optimizes a penalized objective and hence can only converge inexactly. To overcome this issue, we
propose a Residual Learning framework which solves a bilevel optimization problem. Explicitly
aligning the algorithmic stationary point and physical symmetric point, Residual Learning prov-
ably converges to the optimal point exactly. Furthermore, we demonstrate how to extend Residual
Learning to overcome the noisy reading and limited update granularity issues. The efficiency of
the proposed method is verified through simulations. One limitation of this work is that the current
analysis considers only the three hardware imperfections. While they are known to be crucial for
analog training, it is also important to extend our convergence analysis and methods to more practical
scenarios involving more imperfections in future work.
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A Literature Review

This section briefly reviews literature that is related to this paper, as complementary to Section 1.

Training on AIMC hardware. Analog training has shown promising early successes in tasks such
as face classification [25] and digit classification [26], achieving 1, 000× lower energy consumption
than digital implementations. Researchers are also exploring approaches to mitigate the impact
of hardware non-idealities. For example, [27, 28] proposes leveraging the momentum technique
to stabilize training by reducing noise. To address other potential non-idealities, a hybrid training
paradigm is also being explored. [29] leverages the chip-in-the-loop technique to train models
layer-by-layer, while [30] proposes to train the backbone in the digital domain and train the last
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layer in the analog domain. In general, these works have provided valuable insights into analog
training, shedding light on many critical technical challenges. However, their focus has largely been
on experimental and simulation aspects, with limited systematic and theoretical analysis of how
specific imperfections affect the training process. In our paper, we present an alternative viewpoint
and novel tools to explore the effects of non-idealities.

Resistive element. A series of works seeks various resistive elements that have near-constant or at
least symmetric responses. The leading candidates currently include PCM [45, 46], ReRAM [47–49],
CBRAM [50, 51], ECRAM [52, 53], MRAM [54, 55], FTJ [56] or flash memory [57–59].

However, a resistive element with symmetric updates may not be the best option for manufacturing.
For example, although ECRAM provides almost symmetric updates, it remains less competitive than
ReRAM, which offers faster response speed and lower pulse voltage [49]. The suitability of the
resistive elements is evaluated using metrics across multiple dimensions, including the number of
conductance states, retention, material endurance, switching energy, response speed, manufacturing
cost, and cell size. Among them, this paper is only interested in the impact of response functions in
the training.

Imperfection of AIMC hardware. Besides the response functions, analog training suffers from all
kinds of hardware imperfection, especially when the task’s scale increases, like asymmetric update
[17, 19], reading/writing noise [18, 60, 61], device/cycle variations [62], non-linear current response
due to IR drop [18, 6, 63]. This paper mainly focuses on asymmetric response functions. However,
this paper is not trying to diminish the importance of other hardware imperfections but rather focuses
on one of the primary ones known to be very important [19, 16].

Hardware-aware training. For inference on AIMC hardware purposes, models pretrained on digital
hardware will be programmed on analog hardware. Due to hardware imperfections, the pretrained
models suffer performance drops. Hardware-aware training (HWA) is a technique designed to bridge
the gap between ideal pretrained models and non-ideal programmed models. In contrast to standard
training methods, hardware-aware training explicitly incorporates device-specific imperfections, such
as weight drift [20], device fail [64], bounded dynamic range [65], quantization error from ADC
[66–68], device variation [69], and non-linear current output [70], into the training loop. By modeling
these constraints during training, the learned parameters become inherently more robust to real-world
deployment conditions. It is worth highlighting that HWA is still performed on digital hardware, and
the trained model will be programmed onto AIMC hardware. On the contrary, this paper considers a
different, more challenging setting in which training is performed directly on analog hardware.

Gradient-based training on AIMC hardware. A series of works focuses on implementing back-
propagation (BP) and gradient-based training on AIMC hardware. The seminal work [16, 71]
leverages the rank-one structure of the gradient and implements Analog SGD by a stochastic pulse
update scheme, rank-update. Rank-update significantly accelerates the gradient descent step by
avoiding the O(N2)-element computation of gradients and instead using two vectors with O(N)
elements for the update, where N is the number of matrix rows and columns. To alleviate the
asymmetric update issue, researchers also design various of Analog SGD variants, Tiki-Taka
algorithm family [22–24]. The key components of Tiki-Taka are the introduction of a residual
array to stabilize training. Apart from the rank-update, a hybrid scheme that performs forward
and backward passes in the analog domain but computes gradients in the digital domain has been
proposed in [31, 32]. Their solution, referred to as mixed-precision update, provides a more accurate
gradient signal but requires 5×-10× higher overhead compared to the rank-update scheme [24].

Attributed to these efforts, analog training has empirically shown great promise, achieving accuracy
comparable to that of digital training on chip prototypes while reducing energy consumption and
training time [72, 73]. Simultaneously, the parallel acceleration solution with AIMC hardware is
under exploration [74]. Despite its good performance, it remains mysterious when and why the
analog training works.

Theoretical foundation of gradient-based training. The closely related result comes from the
convergence study of Tiki-Taka [21]. Similar to our work, they attempt to model the dynamics
and provide the convergence properties of Analog SGD and Tiki-Taka. However, their work is
limited to a special linear response function. Furthermore, their paper considers a simplified version
of Tiki-Taka, with a hyper-parameter γ = 0 (see Section 4). As we will show empirically and
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theoretically, Tiki-Taka benefits from a non-zero γ. Consequently, We compare the results briefly
in Table 2 and comprehensively in Appendix B.

γ Generic response Linear response

Tiki-Taka [21] = 0 % O
(√

1
K

1
1−33P 2

max/τ
2

)
Tiki-Taka [Corollary 1] ̸= 0 O

(√
1
K

1
RRL

min

)
O
(√

1
K

1
1−P 2

max/τ
2

)
Table 2: Comparison between our paper and [21]. Mixing-coefficient γ is a hyper-parameter of
Tiki-Taka. “Generic response” and “Linear response” columns are the convergence rates in the
corresponding settings. K represents the number of iterations. RRL

min and P 2
max/τ

2 < 1 measure the
saturation while the former one reduces to the latter on linear response functions.

Energy-based models and equilibrium propagation. Apart from achieving explicit gradient signals
by the BP, there are also attempts to train models based on equilibrium propagation (EP, [33]),
which provides a biologically plausible alternative to traditional BP. EP is applicable to a series
of energy-based models, where the forward pass is performed by minimizing an energy function
[34, 35]. The update signal in EP is computed by measuring the output difference between a free
phase and an active phase. EP eliminates the need for BP non-local weight transport mechanism,
making it more compatible with neuromorphic and energy-efficient hardware [36, 37]. We highlight
here that the approach to attain update signals (BP or EP) is orthogonal to the update mechanism
(pulse update). Their difference lies in the objective f(Wk), which is hidden in this paper. Therefore,
building upon the pulse update, our work is applicable to both BP and EP.

Physical neural network. The model executing on AIMC hardware, which leverages resistive
crossbar array to accelerate MVM operation, is a concrete implementation of physical neural networks
(PNNs, [75, 76]). PNN is a generic concept of implementing neural networks via a physical system
in which a set of tunable parameters, such as holographic grating [77], wave-based systems [78], and
photonic networks [79]. Our work particularly focuses on training with AIMC hardware, but the
methodology developed in this paper can be transferred to the study of other PNNs.

B Relation with the result in [21]

Similar to this paper, [21] also attempts to model the dynamics of analog training. They show that
Analog SGD converges to a critical point of problem (1) inexactly with an asymptotic error, and
Tiki-Taka converges to a critical point exactly. In this section, we compare our results with our
results and theirs.

As discussed in Section 1, [21] studies the analog training on special linear response functions

q+(w) = 1− w

τ
, q−(w) = 1 +

w

τ
. (16)

It can be checked that the symmetric point is 0 while the dynamic range of it is [−τ, τ ]. The symmetric
and asymmetric components are defined by F (W ) = 1 and G(W ) = W

τ , respectively. It indicates
Fmax = 1. Furthermore, they assume the bounded weight saturation by assuming bounded weights,
i.e., ∥Wk∥∞ ≤ Wmax, ∀k ∈ [K] with a constant Wmax < τ . Under this assumption, the lower
bounds of response functions are given by

min{R(Wk)} = min{Q+(Wk)⊙Q−(Wk)} = 1−
(
∥Wk∥∞

τ

)2

(17)

RASGD
min = min{R(Wk)} = 1−

(
Wmax

τ

)2

. (18)

Challenge of analyzing the convergence of Tiki-Taka with generic response functions. For
linear response functions (16), the recursion of residual array Pk has a special structure, where the
first and the biased term can be combined

Pk+1 = Pk − α∇f(W̄k; ξk)−
α

τ
|∇f(W̄k; ξk)| ⊙ Pk (19)
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=
(
1− α

τ
|∇f(W̄k; ξk)|

)
⊙ Pk − α∇f(W̄k; ξk)

which is a weighted average of Pk and ∇f(W̄k; ξk). Consequently, Pk can be interpreted as an
approximation of the average gradient. From this perspective, the transfer operation can be interpreted
as biased gradient descent. However, given a generic G( · ), the combination is no longer viable,
bringing difficulties to the analysis.

Convergence of Analog SGD. As we will show in Remark 1 at the end of Appendix H, inequality (8)
can be improved when the saturation never happens

1

K

K−1∑
k=0

E[∥∇f(Wk)∥2] (20)

≤ 4F 2
max

RRL
min

√
(f(W0)− f∗)σ2L

K
+ 2Fmaxσ

2 × 1

K

K−1∑
k=0

∥∥∥∥∥ G(Wk)√
F (Wk)

∥∥∥∥∥
2

∞

/
min{R(Wk)}

≤ O

(√
(f(W0)− f∗)σ2L

K

1

1−W 2
max/τ

2

)
+ 2σ2 × 1

K

K∑
k=0

∥Wk∥2∞/τ2

1− ∥Wk∥2∞/τ2

which is exactly the result in [21].

Convergence of Tiki-Taka. It is shown empirically that a non-zero γ in (10) improves the training
accuracy [22]. However, [21] only considers γ = 0 while this paper considers a non-zero γ.

With the linear response, if we also assume the bounded saturation of Pk by letting ∥Pk∥∞ ≤ Pmax,
the minimal average response function is given by RRL

min = 1 −
(
Pmax

τ

)2
. The upper bound in

Corollary 1 becomes

1

K

K−1∑
k=0

∥∇f(W̄k)∥2 ≤ O

(
1

1− P 2
max/τ

2

√
(f(W0)− f∗)σ2L

K

)
. (21)

As a comparison, without a non-zero γ, [21] shows that convergence rate of Tiki-Taka is only

1

K

K−1∑
k=0

∥∇f(Wk)∥2 ≤ O

(
1

1− 33P 2
max/τ

2

√
(f(W0)− f∗)σ2L

K

)
. (22)

Even though it is not a completely fair comparison, since the two papers rely on different assump-
tions, it is still worth comparing their analyses. [21] assumes the noise should be non-zero, i.e.
[Eξ[|∇f(W ; ξ)|]]d ≥ cnoiseσ, ∀d ∈ [D] holds for a non-zero constant cnoise. Instead, this paper does
not make this assumption but assumes that the objective is strongly convex. As mentioned in Section
4, the strong convexity is introduced only to ensure the existence of P ∗(Wk). Therefore, we believe
it can be relaxed and that the convergence rate can remain unchanged, which is left for future work.
Taking that into account, we believe the comparison can provide insight into how the non-zero γ
improves the convergence rate of Tiki-Taka.

Why does non-zero γ improve the convergence rate of Tiki-Taka? As discussed in Section 4,
Pk is interpreted as a residual array that optimizes f(Wk + γP ). In the ideal setting that F (W ) = 1
and G(W ) = 0, it can be shown that Pk converges to P ∗(Wk) if Wk is fixed and Pk is kept updated,
even though the Wk ̸= W ∗ (hence ∇f(Wk) ̸= 0).

Instead, without a non-zero γ, [21] interprets Pk as an approximation of clear gradient by showing
Eξk [∥Pk+1 − C∇f(Wk)∥2] (23)

≤
(
1− β

C

)
∥Pk − C∇f(Wk)∥2 +O(βC ′)∥∇f(Wk)∥2 + remainder

where C,C ′ are constants depending on the resistive element and model dimension, and the “remain-
der” is the non-essential terms. Consider the case that Wk is fixed and (10) is kept iterating, in which
case the increment on Pk is constant since γ = 0. Telescoping (23), we find that the upper bound
above only guarantees that

lim sup
k→∞

E[∥Pk+1 − C∇f(Wk)∥2] ≤ O(CC ′∥∇f(Wk)∥2) (24)

which means that Pk tracks the gradient accurately only when ∇f(Wk) reaches zero asymptotically.
The less accurate approximation results in a slower rate than the one reported in this paper.
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C Dynamics of Non-ideal Analog Update

This section presents details on how to obtain the dynamics of the analog update (3) appearing in
Section 2, along with its error analysis. The primary distinction between digital and analog training is
the method of updating the weight. As discussed in Section 1, the weight update in AIMC hardware
is implemented by Analog Update, which sends a series of pulses to the resistive elements.

Pulse update. Consider the response of one resistive element in one cycle, which involves only
one pulse. Given the initial weight w, the updated weight increases or decreases by about ∆wmin

depending on the pulse polarity, where ∆wmin > 0 is the response granularity determined by
elements. The granularity is further scaled by a factor, which varies by the update direction due to
the asymmetric update property of resistive elements. The notations q+( · ) and q−( · ) are used to
denote the response functions on positive or negative sides, respectively, to describe the dominating
part of the factor. In practice, the analog noise also causes a deviation of the effective factor from
the response functions, referred to as cycle variation. It is represented by the magnitude σc times
a random variable ξc with expectation 0 and variance 1. Taking all of them into account, with
s ∈ {+,−} being the update direction, the updated weight after receiving one pulse is Ũq(w, s)

where Ũq(·, ·) : R × {+,−} → R is the element-dependent update that implements the resistive
element, which can be expressed as

Ũq(w, s) := w +∆wmin · (qs(w) + σcξ) (25)

=

{
w +∆wmin · (q+(w) + σcξc), s = +,

w −∆wmin · (q−(w) + σcξc), s = −.

The typical signal and noise ratio σc/qs(w) is roughly 5%-100% [80, 49], varied by the type of
resistive elements. Furthermore, the response functions also vary by elements due to the imperfection
in fabrication, called element variation (also referred to as device variation in literature [16]).

Equation (25) is a resistive element level equation. Existing work exploring the candidates of resistive
elements usually reports the response curves similar to Figure 1, [73, 52, 49]. Taking the difference
between weights in two consecutive pulse cycles and adopting statistical approaches [80], all the
element-dependent quantities, including ∆wmin, q+( · ), q−( · ) and σc, can be estimated from the
response curves of the resistive elements.

Analog update implemented by pulse updates. Even though the update scheme has evolved over
the years [16, 71], we discuss a simplified version, called Analog Update, to retain the essential
properties. To update the weight w by ∆w, a series of pulses are sent, whose bit length (BL) is
computed by BL :=

⌈
|∆w|
∆wmin

⌉
. After received BL pulses, the updated weight w′ can be expressed as

the function composition of (25) by BL times

w′ = Ũq ◦ Ũq ◦ · · · ◦ Ũq︸ ︷︷ ︸
×BL

(w, s) =: ŨBL
q (w, s). (26)

Roughly speaking, given an ideal response q+(w) = q−(w) = 1 and σc = 0, BL pulses, with ∆wmin

increment for each individual pulse, incur the weight update ∆w. Since the response granularity
∆wmin is scaled by the response function qs(w), the expected increment is approximately scaled by
qs(w) as well. Accordingly, we propose an approximate dynamics of Analog Update is given by
w′ ≈ Uq(w,∆w), where Uq(w,∆w) is defined in (3). The following theorem provides an estimation
of the approximation error. It has been shown empirically that the response granularity can be made
sufficiently small for updating [81, 82], implying ∆wmin ≪ ∆w. Therefore, we establish the error
estimate for the approximation under a small-response-granularity condition.
Theorem 4 (Error from discrete pulse update). Suppose the response granularity is sufficiently small
such that ∆wmin ≤ o(∆w). With the update direction s = sign(∆w), the error between the true
update ŨBL

q (w, s) and the approximated Uq(w,∆w) is bounded by

lim
∆w→0

|ŨBL
q (w, s)− Uq(w,∆w)|

|ŨBL
q (w, s)− w|

= 0. (27)

In Theorem 4, |ŨBL
q (w, s) − Uq(w,∆w)| is the error between the true update and the proposed

dynamics, while |ŨBL
q (w, s) − w| is the difference between original weight and the updated one.

21



Theorem 4 shows that the proposed dynamics dominate the update, and the approximation error is
negligible when ∆w is small, which holds as ∆w always includes a small learning rate in gradient-
based training.

Takeaway. Theorem 4 enables us to discuss the impact of response functions directly without
dealing with element-specific details like response granularity ∆wmin and cycle variation σc.
Response functions are the bridge between the resistive element level equation (pulse update
(25)) and the algorithm level equation (dynamics of Analog Update (3)).

Proof of Theorem 4. Recall the definition of the bit length is

BL :=

⌈
|∆w|
∆wmin

⌉
= Θ

(
|∆w|
∆wmin

)
(28)

leading to

|BL∆wmin − |∆w|| ≤ ∆wmin or |sBL∆wmin −∆w| ≤ ∆wmin. (29)

Notice that the update responding to each pulse is a Θ(∆wmin) term. Directly manipulating
UBL
p (w, s) and expanding it in Taylor series to the first-order term yields

UBL
p (w, s) = w + s ·∆wmin

BL−1∑
t=0

qs(w +Θ(t∆wmin)) + ∆wmin

BL−1∑
t=0

σcξt (30)

= w + s ·∆wmin

BL−1∑
t=0

qs(w) +
BL−1∑
t=0

Θ(t(∆wmin)
2) + ∆wmin

BL−1∑
t=0

σcξt

= w + s ·∆wmin · BL · qs(w) + Θ(BL2(∆wmin)
2) + ∆wmin ·

√
BL · σcξ

= w +∆w · qs(w) + (sBL∆wmin −∆w) + Θ((∆w)2) +
√
∆wmin ·

√
∆w · σcξ

= Uq(w,∆w) + Θ(∆wmin) + Θ((∆w)2) + Θ(
√

∆wmin ·
√
∆w · σc)

where ξ := 1√
BL

∑BL−1
t=0 ξt is the accumulated noise with variance 1. The proof is completed.

D Comparison of Residual Learning v2 and Tiki-Taka v2

Introducing a digital buffer, the proposed Residual Learning v2 has a similar form of Tiki-Taka
v2 [23]. However, there are slight differences. Tiki-Taka v2 updates the digital buffer by

Hk+ 1
2
= Hk + β(Pk+1 + εk) (31)

which do not include a decay coefficient in front of Hk. Furthermore, Tiki-Taka v2 uses the
gradient ∇f(Wk; ξk) that are solely computed on the main array Wk. Instead, Residual Learning
v2 computes gradient on a mixed weight W̄k = Wk + γPk. As suggested by the ablation simulations
in 6, the training benefits from a non-zero γ.

E Estimation of time consumption

Residual Learning introduces an extra resistive element array, which increases overhead. How-
ever, the extra overhead is affordable in practice. Compared to Analog SGD, the analog memory
requirement doubles, but the latency remains almost unchanged since Residual Learning does not
explicitly compute the mixed weights during the forward and backward passes. As [83] suggests, Wk

and Pk can share the same analog-digital convertor (ADC), which implements the weight mixing
without introducing extra latency. On the other hand, as suggested by [22], the forward, backward,
and update steps for Wk and Pk are performed in parallel, thereby avoiding a significant increase in
latency. Consequently, introducing an extra residual array does not incur substantial extra latency.

Following the evaluation in Table 1 in [24], we compared the latency of Analog SGD and Residual
Learning in Table 3. We consider that each gradient update step requires 32 pulse cycles, each
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consuming 5 nanoseconds (ns). Following the estimation in [24], preprocessing the input vectors
for each MVM operator takes 5.9ns. Compared with Analog SGD, Residual Learning adds an
extra MVM step to read from Pk. The results suggest that the overhead is only about 2× that of
Analog SGD. As the update is typically not the bottleneck of the whole training process, the extra
overhead is affordable.

Analog SGD Residual Learning

Forward/backward [84] 40.0 40.0

Update 165.9 371.8

Table 3: Comparison of time (nanosecond) consumption in each layer

F Useful Lemmas and Proofs

F.1 Lemma 1: Properties of weighted norm

Lemma 1. ∥W∥S has the following properties: (a) ∥W∥S = ∥W ⊙
√
S∥; (b) ∥W∥S ≤

∥W∥
√
∥S∥∞; (c) ∥W∥S ≥ ∥W∥

√
min{S}.

Proof of Lemma 1. The lemma can be proven easily by definition.

F.2 Lemma 2: Properties of weighted norm

A direct property from Definition 1 is that all q+( · ), q−( · ), and F ( · ) are bounded, as guaranteed by
the following lemma.

Lemma 2. The following statements are valid for all W ∈ R. (a) F ( · ) is element-wise upper
bounded by a constant Fmax > 0, i.e., ∥F (W )∥∞ ≤ Fmax; (b) Q+( · ) and ∇Q−( · ) are element-
wise bounded by LQ, i.e., ∥∇Q+(W )∥∞ ≤ LQ, ∥∇Q−(W )∥∞ ≤ LQ.

F.3 Lemma 3: Lipschitz continuity of analog update

Lemma 3. The increment defined in (5) is Lipschitz continuous with respect to ∆W under any
weighted norm ∥ · ∥S , i.e., for any W,∆W,∆W ′ ∈ RD and S ∈ RD

+ , it holds

∥∆W ⊙ F (W )− |∆W | ⊙G(W )− (∆W ′ ⊙ F (W )− |∆W ′| ⊙G(W ))∥S (32)

≤ Fmax∥∆W −∆W ′∥S .

Proof of Lemma 3. We prove for the case where D = 1 and S = 1, and the general case can be
proven similarly. Notice that the absolute value | · | and vector norm ∥ · ∥, scalar multiplication ×
and element-wise multiplication ⊙, are equivalent at that situation. We adopt both notations just for
readability.

∥∆W ⊙ F (W )− |∆W | ⊙G(W )− (∆W ′ ⊙ F (W )− |∆W ′| ⊙G(W ))∥ (33)

= ∥(∆W −∆W ′)⊙ F (W )− (|∆W | − |∆W ′|)⊙G(W )∥.

Since ∥∆W −∆W ′∥ ≥ ∥|∆W | − |∆W ′|∥ and |G(W )| ≤ |F (W )|, we have

|(∆W −∆W ′)⊙ F (W )− (|∆W | − |∆W ′|)⊙G(W )| (34)

≤ |(∆W −∆W ′)⊙ (F (W )− |G(W )|)|
≤ |∆W −∆W ′| |F (W )− |G(W )||
≤ Fmax|∆W −∆W ′|

which completes the proof.
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F.4 Lemma 4: Element-wise product error

Lemma 4. Let U, V,Q ∈ RD be vectors indexed by [D]. Then the following inequality holds

⟨U, V ⊙Q⟩ ≥ C+ ⟨U, V ⟩ − C− ⟨|U |, |V |⟩ (35)

where the constant C+ and C− are defined by

C+ :=
1

2
(max{Q}+min{Q}) , C− :=

1

2
(max{Q} −min{Q}) . (36)

Proof of Lemma 4. For any vectors U, V,Q ∈ RD, it is always valid that

⟨U, V ⊙Q⟩ =
∑
d∈[D]

[U ]d[V ]d[Q]d (37)

=
∑

d∈[D],[U ]d[V ]d≥0

[U ]d[V ]d[Q]d +
∑

d∈[D],[U ]d[V ]d<0

[U ]d[V ]d[Q]d

≥ min{Q} ×

 ∑
d∈[D],[U ]d[V ]d≥0

[U ]d[V ]d

+max{Q} ×

 ∑
d∈[D],[U ]d[V ]d<0

[U ]d[V ]d


(a)
= C+

 ∑
d∈[D],[U ]d[V ]d≥0

[U ]d[V ]d

− C−

 ∑
d∈[D],[U ]d[V ]d≥0

|[U ]d[V ]d|


+ C+

 ∑
d∈[D],[U ]d[V ]d<0

[U ]d[V ]d

− C−

 ∑
d∈[D],[U ]d[V ]d<0

|[U ]d[V ]d|


= C+

∑
d∈[D]

[U ]d[V ]d − C−
∑
d∈[D]

|[U ]d[V ]d|

= C+ ⟨U, V ⟩ − C− ⟨|U |, |V |⟩
where (a) uses the following equality

min{Q}[U ]d[V ]d = C+[U ]d[V ]d − C−|[U ]d[V ]d|, if [U ]d[V ]d ≥ 0, (38)
max{Q}[U ]d[V ]d = C+[U ]d[V ]d − C−|[U ]d[V ]d|, if [U ]d[V ]d < 0. (39)

This completes the proof.

G Proof of Theorem 1: Implicit Bias of Analog Training

In this section, we provide a full version of Theorem 1. Before that, we formally define the
accumulated asymmetric function Rc(W ) : RD → RD element-wise. Let R(W ) := G(W )

F (W ) be the
asymmetric ratio and Rc(W ) is defined by

[Rc(W )]d :=

∫ [W ]d

τmin
i

[R(W )]d d[W ]d (40)

which satisfies ∇⟨Σ, Rc(W )⟩ = Σ ⊙ R(W ) for any Σ ∈ RD. Since we do not further assume
stronger properties for response functions, like monotonicity, it is hard to provide strong claims on
the shape of R(W ) or Rc(W ). Here we provide the expression of Rc(W ) for the linear response
functions Q+(W ) = 1− W

τ , Q−(W ) = 1+ W
τ . In this case, F (W ) = 1 and G(W ) = W

τ based on
definition (4); and hence R(W ) = G(W )

F (W ) = W
τ . Accordingly, the accumulated asymmetric function

is given by

[Rc(W )]d =

∫ [W ]d

τmin
i

[R(W )]d d[W ]d =

∫ [W ]d

τmin
i

[W ]d
τ

d[W ]d (41)

=
1

2τ
([W ]d)

2 − 1

2τ
(τmin

i )2.
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Therefore, the last term in the objective (7) becomes

⟨Σ, Rc(W )⟩ =
D∑
i=1

[Σ]d[Rc(W )]d =
D∑
i=1

[Σ]d

(
1

2τ
([W ]d)

2 − 1

2τ
(τmin

i )2
)

(42)

=
1

2τ
∥W∥2Σ + const.

which is a weighted ℓ2 norm regularization term. In the scalar case, it reduces to

min
W

fΣ(W ) := f(W ) +
Σ

2τ
∥W∥2. (43)

If the ratio R(W ) is monotonic at each coordinate, Rc(W ) reaches its minimum at W ⋄. Therefore,
Rc(W ) has no impact on the convergence only when the optimal point of f(W ) is W ⋄.
Theorem 5 (Implicit Penalty, full version of Theorem 1). Let T (w) denote the effective update of
Analog SGD.

T (W ) :=

∣∣∣∣Eξ [Uq(W,−αf ′(W ; ξ))]−W

α

∣∣∣∣ = |Eξ[f
′(w; ξ)]⊙ F (W )− Eξ[|f ′(W ; ξ)|]⊙G(W )| .

(44)

Analog SGD implicitly optimizes the following penalized objective

min
W

fΣ(W ) := f(W ) + ⟨Σ, Rc(W )⟩ (45)

in the sense that there exists a point WS given by

WS := (∇2f(W ∗)−∇R(W ⋄)Σ)−1(∇2f(W ∗) W ∗ −∇R(W ⋄)Σ W ⋄) (46)

such that ∥∇fΣ(W
S)∥ ≤ O((W ⋄ −W ∗)2) and T (WS) ≤ O((W ⋄ −W ∗)2). Both T (WS) and

∥∇fΣ(W
S)∥ are significantly smaller than T (W ⋄) = O(|W ⋄−W ∗|) and T (W ∗) = O(|W ⋄−W ∗|)

when W ⋄ is close to W ∗.

If W is a scalar, i.e. D = 1, (46) reduces to (43)

min
W

fΣ(W ) := f(W ) +
Σ

2τ
∥W∥2 (47)

with its solution

WS :=
f ′′(W ∗) W ∗ −R′(W ⋄)Σ W ⋄

f ′′(W ∗)−R′(W ⋄)Σ
. (48)

Proof of Theorem 1 and 5. We separately show that ∥∇fΣ(W )∥ ≤ O((W ⋄−W ∗)2) and T (WS) ≤
O((W ⋄ −W ∗)2).

Proof of ∥∇fΣ(W )∥ ≤ O((W ⋄ −W ∗)2). The gradient of the penalized objective fΣ(W ) is given
by

∇fΣ(W ) = ∇f(W ) + Σ⊙R(W ). (49)

Leveraging the fact that ∇f(W ∗) = 0, G(W⋄)
F (W⋄) = 0, as well as Taylor expansion given by

∇f(WS) = ∇f(W ∗) +∇2f(W ∗)(WS −W ∗) +O((WS −W ∗)2), (50)

G(WS)

F (WS)
=

G(W ⋄)

F (W ⋄)
+∇R(W ⋄)(WS −W ⋄) +O((WS −W ⋄)2), (51)

we bound the gradient of the penalized objective as follows

∥∇fΣ(W )∥ =

∥∥∥∥∇f(WS)− Σ⊙ G(WS)

F (WS)

∥∥∥∥ (52)

=
∥∥∇2f(W ∗)(WS −W ∗) +O((WS −W ∗)2)− Σ⊙ (∇R(W ⋄)(WS −W ⋄)) +O((WS −W ⋄)2)

∥∥
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= O((WS −W ∗)2) +O((WS −W ⋄)2)

= O((W ∗ −W ⋄)2)

where the last inequality holds by the definition of WS .

Proof of T (wS) ≤ O((w⋄ − w∗)2). By the definition of effective update T (WS), we have∥∥∥∥∥Eξ

[
Uq(W

S ,−α∇f(WS ; ξ))
]
−WS

α

∥∥∥∥∥ (53)

=
∥∥Eξ[∇f(WS ; ξ)]⊙ F (WS)− Eξ[|∇f(WS ; ξ)|]⊙G(WS)

∥∥
≤
∥∥∥∥(∇f(WS)− Eξ[|∇f(WS ; ξ)|]⊙ G(WS)

F (WS)

)∥∥∥∥Fmax

≤
∥∥∥∥∇f(WS)− Eξ[|∇f(WS ; ξ)−∇f(WS)|]⊙ G(WS)

F (WS)

∥∥∥∥Fmax

+

∥∥∥∥(Eξ[|∇f(WS ; ξ)|]− Eξ[|∇f(WS ; ξ)−∇f(WS)|])⊙ G(WS)

F (WS)

∥∥∥∥Fmax

≤ ∥∇fΣ(W )∥Fmax +

∥∥∥∥(Eξ[|∇f(WS ; ξ)|]− Eξ[|∇f(WS ; ξ)−∇f(WS)|])⊙ G(WS)

F (WS)

∥∥∥∥Fmax

The first term in the right-hand side (RHS) of (53) is already bounded by (52). By inequality
||x| − |y|| ≤ |x− y| for any x, y ∈ R, the second term in the RHS of (53) is bounded by∥∥∥∥(Eξ[|∇f(WS ; ξ)|]− Eξ[|∇f(WS ; ξ)−∇f(WS)|])⊙ G(WS)

F (WS)

∥∥∥∥ (54)

≤
∥∥∥∥|∇f(WS)| ⊙ G(WS)

F (WS)

∥∥∥∥
=

∥∥∥∥|∇f(WS)−∇f(W ∗)| ⊙
(
G(WS)

F (WS)
− G(W ⋄)

F (W ⋄)

)∥∥∥∥
≤ O(|WS −W ∗|) ·O(|WS −W ⋄|)
= O((W ∗ −W ⋄)2)

Plugging back (52) and (54) into (53) shows T (wS) ≤ O((w⋄ − w∗)2). It is trivial to prove
T (W ⋄) = O(|W ⋄ −W ∗|) and T (W ∗) = O(|W ⋄ −W ∗|) by the definition of WS and (50).

H Proof of Theorem 2: Convergence of Analog SGD

Theorem 2 (Inexact convergence of Analog SGD). Under Assumption 1–3, if the learning rate is set
as α = O(1/

√
K), it holds that

EASGD
K ≤ O

(√
σ2/K + σ2SASGD

K

)
(8)

where SASGD
K denotes the amplification factor given by SASGD

K := 1
K

∑K−1
k=0

∥∥∥∥ G(Wk)√
F (Wk)

∥∥∥∥2
∞

.

Proof of Theorem 2. The L-smooth assumption (Assumption 1) implies that

Eξk [f(Wk+1)] ≤ f(Wk) + Eξk [⟨∇f(Wk),Wk+1 −Wk⟩]︸ ︷︷ ︸
(a)

+
L

2
Eξk [∥Wk+1 −Wk∥2]︸ ︷︷ ︸

(b)

. (55)

Next, we will handle the second and the third terms in the RHS of (55) separately.

Bound of the second term (a). To bound term (a) in the RHS of (55), we leverage the assumption
that noise has expectation 0 (Assumption 2)

Eξk [⟨∇f(Wk),Wk+1 −Wk⟩] (56)
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= αEξk

[〈
∇f(Wk)⊙

√
F (Wk),

Wk+1 −Wk

α
√
F (Wk)

+ (∇f(Wk; ξk)−∇f(Wk))⊙
√
F (Wk)

〉]
= − α

2
∥∇f(Wk)⊙

√
F (Wk)∥2

− 1

2α
Eξk

∥∥∥∥∥Wk+1 −Wk√
F (Wk)

+ α(∇f(Wk; ξk)−∇f(Wk))⊙
√
F (Wk)

∥∥∥∥∥
2


+
1

2α
Eξk

∥∥∥∥∥Wk+1 −Wk√
F (Wk)

+ α∇f(Wk; ξk)⊙
√

F (Wk)

∥∥∥∥∥
2
 .

The second term of the RHS of (56) is bounded by

1

2α
Eξk

∥∥∥∥∥Wk+1 −Wk√
F (Wk)

+ α(∇f(Wk; ξk)−∇f(Wk))⊙
√
F (Wk)

∥∥∥∥∥
2
 (57)

=
1

2α
Eξk

∥∥∥∥∥Wk+1 −Wk + α(∇f(Wk; ξk)−∇f(Wk))⊙ F (Wk)√
F (Wk)

∥∥∥∥∥
2


≥ 1

2αFmax
Eξk

[
∥Wk+1 −Wk + α(∇f(Wk; ξk)−∇f(Wk))⊙ F (Wk)∥2

]
.

The third term in the RHS of (56) can be bounded by variance decomposition and bounded variance
assumption (Assumption 2)

1

2α
Eξk

∥∥∥∥∥Wk+1 −Wk√
F (Wk)

+ α∇f(Wk; ξk)⊙
√
F (Wk)

∥∥∥∥∥
2
 (58)

=
α

2
Eξk

∥∥∥∥∥|∇f(Wk; ξk)| ⊙
G(Wk)√
F (Wk)

∥∥∥∥∥
2


≤ α

2

∥∥∥∥∥|∇f(Wk)| ⊙
G(Wk)√
F (Wk)

∥∥∥∥∥
2

+
ασ2

2

∥∥∥∥∥ G(Wk)√
F (Wk)

∥∥∥∥∥
2

∞

.

Define the saturation vector R(Wk) ∈ RD by

R(Wk) := F (Wk)
⊙2 −G(Wk)

⊙2 = (F (Wk) +G(Wk))⊙ (F (Wk)−G(Wk)) (59)
= Q+(Wk)⊙Q−(Wk).

Note that the first term in the RHS of (56) and the second term in the RHS of (58) can be bounded by

− α

2
∥∇f(Wk)⊙

√
F (Wk)∥2 +

α

2

∥∥∥∥∥|∇f(Wk)| ⊙
G(Wk)√
F (Wk)

∥∥∥∥∥
2

(60)

= − α

2

∑
d∈[D]

(
[∇f(Wk)]

2
d

(
[F (Wk)]d −

[G(Wk)]
2
d

[F (Wk)]d

))

= − α

2

∑
d∈[D]

(
[∇f(Wk)]

2
d

(
[F (Wk)]

2
d − [G(Wk)]

2
d

[F (Wk)]d

))
≤ − α

2Fmax

∑
d∈[D]

(
[∇f(Wk)]

2
d

(
[F (Wk)]

2
d − [G(Wk)]

2
d

))
= − α

2Fmax
∥∇f(Wk)∥2R(Wk)

≤ 0.

Plugging (57) to (60) into (56), we bound the term (a) by

Eξk [⟨∇f(Wk),Wk+1 −Wk⟩] (61)
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= − α

2Fmax
∥∇f(Wk)∥2R(Wk)

+
ασ2

2

∥∥∥∥∥ G(Wk)√
F (Wk)

∥∥∥∥∥
2

∞

− 1

2αFmax
Eξk

[
∥Wk+1 −Wk + α(∇f(Wk; ξk)−∇f(Wk))⊙ F (Wk)∥2

]
.

Bound of the third term (b). The third term (b) in the RHS of (55) is bounded by

L

2
Eξk [∥Wk+1 −Wk∥2] (62)

≤ LEξk [∥Wk+1 −Wk + α(∇f(Wk; ξk)−∇f(Wk))⊙ F (Wk)∥2]
+ α2LEξk [∥(∇f(Wk; ξk)−∇f(Wk))⊙ F (Wk)∥2]

≤ LEξk [∥Wk+1 −Wk + α(∇f(Wk; ξk)−∇f(Wk))⊙ F (Wk)∥2] + α2LF 2
maxσ

2

where the last inequality leverages the bounded variance of noise (Assumption 2) and the fact that
F (Wk) is bounded by Fmax element-wise.

Substituting (61) and (62) back into (55), we have

Eξk [f(Wk+1)] (63)

≤ f(Wk)−
α

2Fmax
∥∇f(Wk)∥2R(Wk)

+ α2LF 2
maxσ

2 +
ασ2

2

∥∥∥∥∥ G(Wk)√
F (Wk)

∥∥∥∥∥
2

∞

− 1

Fmax

(
1

2α
− LFmax

)
Eξk [∥Wk+1 −Wk + α(∇f(Wk; ξk)−∇f(Wk))⊙ F (Wk)∥2].

The third term in the RHS of (63) can be bounded by

Eξk [∥Wk+1 −Wk + α(∇f(Wk; ξk)−∇f(Wk))⊙ F (Wk)∥2] (64)

= α2Eξk [∥∇f(Wk)⊙ F (Wk) + |∇f(Wk; ξk)| ⊙G(Wk)∥2]

≥ 1

2
α2Eξk [∥∇f(Wk)⊙ F (Wk) + |∇f(Wk)| ⊙G(Wk)∥2]

− α2Eξk [∥(|∇f(Wk)| − |∇f(Wk; ξk)|)⊙G(Wk)∥2]

≥ 1

2
α2Eξk [∥∇f(Wk)⊙ F (Wk) + |∇f(Wk)| ⊙G(Wk)∥2]

− α2Eξk [∥(∇f(Wk)−∇f(Wk; ξk))⊙G(Wk)∥2]

≥ 1

2
α2Eξk [∥∇f(Wk)⊙ F (Wk) + |∇f(Wk)| ⊙G(Wk)∥2]− α2Fmaxσ

2

∥∥∥∥∥ G(Wk)√
F (Wk)

∥∥∥∥∥
2

∞

where the first inequality holds because ∥x∥2 ≥ 1
2∥x− y∥2 − ∥y∥2 for any x, y ∈ RD, the second

inequality comes from ||x| − |y|| ≤ |x− y| for any x, y ∈ R, and the last inequality holds because

Eξk [∥(∇f(Wk)−∇f(Wk; ξk))⊙G(Wk)∥2] (65)

= Eξk

∥∥∥∥∥(∇f(Wk)−∇f(Wk; ξk))⊙
G(Wk)√
F (Wk)

⊙
√
F (Wk)

∥∥∥∥∥
2


≤ FmaxEξk

∥∥∥∥∥(∇f(Wk)−∇f(Wk; ξk))⊙
G(Wk)√
F (Wk)

∥∥∥∥∥
2


≤ FmaxEξk

[
∥∇f(Wk)−∇f(Wk; ξk)∥2

] ∥∥∥∥∥ G(Wk)√
F (Wk)

∥∥∥∥∥
2

∞

≤ Fmaxσ
2

∥∥∥∥∥ G(Wk)√
F (Wk)

∥∥∥∥∥
2

∞

.
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The learning rate α ≤ 1
4LFmax

implies that 1
2α − LFmax ≤ 1

4α in (63), which leads (55) to

Eξk [f(Wk+1)] ≤ f(Wk)−
α

2Fmax
∥∇f(Wk)∥2R(Wk)

+ α2LF 2
maxσ

2 + ασ2

∥∥∥∥∥ G(Wk)√
F (Wk)

∥∥∥∥∥
2

∞

(66)

− α

8Fmax
∥∇f(Wk)⊙ F (Wk) + |∇f(Wk)| ⊙G(Wk)∥2.

Reorganizing (66), taking expectation over all ξK , ξK−1, · · · , ξ0, and averaging them for k from 0 to
K − 1 deduce that

EASGD
K =

1

K

K∑
k=0

E[∥∇f(Wk)⊙ F (Wk) + |∇f(Wk)| ⊙G(Wk)∥2 + 4∥∇f(Wk)∥2R(Wk)
] (67)

≤ 8Fmax(f(W0)− E[f(Wk+1)])

αK
+ 8αLF 3

maxσ
2 + 8Fmaxσ

2 × 1

K

K−1∑
k=0

∥∥∥∥∥ G(Wk)√
F (Wk)

∥∥∥∥∥
2

∞

≤ 8Fmax(f(W0)− f∗)

αK
+ 8αLF 3

maxσ
2 + 8Fmaxσ

2 × 1

K

K−1∑
k=0

∥∥∥∥∥ G(Wk)√
F (Wk)

∥∥∥∥∥
2

∞

= 16F 2
max

√
(f(W0)− f∗)σ2L

K
+ 8Fmaxσ

2SASGD
K

where the last equality chooses the learning rate as α = 1
Fmax

√
f(W0)−f∗

σ2LK . The proof is completed.

Remark 1 (Tighter bound without saturation). Assuming the saturation never happens during the
training, i.e. R(Wk) ≥ RRL

min > 0 for all k ∈ [K], we get a tighter bound in (66) by leveraging
∥∇f(Wk)∥2R(Wk)

≥ min{R(Wk)} ∥∇f(Wk)∥2 ≥ RRL
min ∥∇f(Wk)∥2

Eξk [f(Wk+1)] ≤ f(Wk)−
α

2Fmax
∥∇f(Wk)∥2R(Wk)

+ α2LF 2
maxσ

2 + ασ2

∥∥∥∥∥ G(Wk)√
F (Wk)

∥∥∥∥∥
2

∞

(68)

which leads to

1

K

K∑
k=0

[∥∇f(Wk)∥2] (69)

=
4F 2

max

RRL
min

√
(f(W0)− f∗)σ2L

K
+ 2Fmaxσ

2 × 1

K

K−1∑
k=0

∥∥∥∥∥ G(Wk)√
F (Wk)

∥∥∥∥∥
2

∞

/
min{R(Wk)}.

It exactly reduces to the result for the convergence of Analog SGD in [21] on special linear repsonse
functions, as discussed in Appendix B.

I Proof of Theorem 3: Convergence of Residual Learning

This section provides the convergence guarantee of the Tiki-Taka under the strongly convex
assumption.

Theorem 3 (Convergence of Residual Learning). Under Assumptions 1–3 and 4, with the learning
rate α = O

(√
1/σ2K

)
, β = O(αγ3/2), it holds for Residual Learning that

ERL
K ≤ O

(√
σ2/K + σ2SRL

K

)
(13)

where SRL
K denotes the amplification factor of Pk given by SRL

K := 1
K

∑K
k=0

∥∥∥∥ G(Pk)√
F (Pk)

∥∥∥∥2
∞

.
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I.1 Main proof

Proof of Theorem 3. The proof of the Tiki-Taka convergence relies on the following two lemmas,
which provide the sufficient descent of Wk and W̄k, respectively.

Lemma 5 (Descent Lemma of W̄k). Suppose Assumptions 1–2 hold. It holds for Tiki-Taka that

Eξk [f(W̄k+1)] ≤ f(W̄k)−
α

4Fmax
∥∇f(W̄k)∥2R(Pk)

+ 2ασ2

∥∥∥∥∥ G(Pk)√
F (Pk)

∥∥∥∥∥
2

∞

+ 2α2LF 2
maxσ

2

(70)

− αγ

8Fmax
∥∇f(W̄k)⊙ F (Pk) + |∇f(W̄k)| ⊙G(Pk)∥2

+
Fmax

α
Eξk

[
∥Wk+1 −Wk∥2R(Pk)†

]
+ Eξk [∥Wk+1 −Wk∥2].

Lemma 6 (Descent Lemma of Wk). It holds for Tiki-Taka that

∥Wk+1 −W ∗∥2 ≤ ∥Wk −W ∗∥2 − β

2γFmax
∥Wk −W ∗∥2R(Wk)

(71)

− βγ

2Fmax
∥P ∗(Wk)⊙ F (Wk)− |P ∗(Wk)| ⊙G(Wk)∥2

+
2βF 3

max

γ
∥Pk+1 − P ∗(Wk)∥2R(Wk)†

+ 2β2∥Pk+1 − P ∗(Wk)∥2.

The proof of Lemma 5 and 6 are deferred to Section I.2 and I.3, respectively.

For a sufficiently large γ, P ∗(Wk) is ensured to be located in the dynamic range of the analog array
Pk. Therefore, we may assume both q+(Pk) and q−(Pk) are non-zero, equivalently, there exists a
non-zero constant RRL

min such that min{R(Pk)} ≥ RRL
min for all k. Under this condition, we have the

following inequalities

α

4Fmax
∥∇f(W̄k)∥2R(Pk)

≥ αRRL
min

4Fmax
∥∇f(W̄k)∥2, (72)

Fmax

αγ
∥Wk+1 −Wk∥2R(Pk)†

≤ Fmax

αγRRL
min

∥Wk+1 −Wk∥2. (73)

Similarly, we bound the term ∥Pk+1 − P ∗(Wk)∥2R(Wk)†
in (70) by

2βF 3
max

γ
∥Pk+1 − P ∗(Wk)∥2R(Wk)†

≤ 2βF 3
max

γmin{R(Wk)}
∥Pk+1 − P ∗(Wk)∥2 . (74)

Notice it is only required to have min{R(Wk)} > 0 for the inequality to hold.

By inequality (73), the last two terms in the RHS of (70) is bounded by

Fmax

α
Eξk

[
∥Wk+1 −Wk∥2R(Pk)†

]
+ Eξk [∥Wk+1 −Wk∥2] (75)

=
Fmax

αRRL
min

Eξk

[
∥Wk+1 −Wk∥2

]
+ Eξk [∥Wk+1 −Wk∥2]

(a)

≤ 2Fmax

αRRL
min

Eξk

[
∥Wk+1 −Wk∥2

]
=

2β2Fmax

αRRL
min

∥Pk+1 ⊙ F (Wk)− |Pk+1| ⊙G(Wk)∥2

≤ 4β2Fmax

αRRL
min

∥P ∗(Wk)⊙ F (Wk)− |P ∗(Wk)| ⊙G(Wk)∥2

+
4β2Fmax

αRRL
min

∥Pk+1 ⊙ F (Wk)− |Pk+1| ⊙G(Wk)− (P ∗(Wk)⊙ F (Wk)− |P ∗(Wk)| ⊙G(Wk))∥2

(b)

≤ 4β2Fmax

αRRL
min

∥P ∗(Wk)⊙ F (Wk)− |P ∗(Wk)| ⊙G(Wk)∥2 +
4β2Fmax

αRRL
min

∥Pk+1 − P ∗(Wk)∥2.
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where (a) holds if learning rate α is sufficiently small such that Fmax

αγRRL
min

≥ 1; (b) comes from the
Lipschitz continuity of the analog update (c.f. Lemma 3).

With all the inequalities and lemmas above, we are ready to prove the main conclusion in Theorem 3
now. Define a Lyapunov function by

Vk := f(W̄k)− f∗ + C∥Wk −W ∗∥2. (76)

By Lemmas 5 and 6, we show that Vk has sufficient descent in expectation

Eξk [Vk+1] (77)

= Eξk

[
f(W̄k+1)− f∗ + C∥Wk+1 −W ∗∥2

]
≤ f(W̄k)− f∗ − α

4Fmax
∥∇f(W̄k)∥2R(Pk)

+ 2ασ2

∥∥∥∥∥ G(Pk)√
F (Pk)

∥∥∥∥∥
2

∞

+ 2α2LF 2
maxσ

2

− α

8Fmax
∥∇f(W̄k)⊙ F (Pk) + |∇f(W̄k)| ⊙G(Pk)∥2

+
4β2Fmax

αRRL
min

∥P ∗(Wk)⊙ F (Wk)− |P ∗(Wk)| ⊙G(Wk)∥2 +
4β2Fmax

αRRL
min

Eξk [∥Pk+1 − P ∗(Wk)∥2]

+ C

(
∥Wk −W ∗∥2 − β

2γFmax
∥Wk −W ∗∥2R(Wk)

+
3βF 3

max

γmin{R(Wk)}
Eξk [∥Pk+1 − P ∗(Wk)∥2]

− βγ

2Fmax
∥P ∗(Wk)⊙ F (Wk)− |P ∗(Wk)| ⊙G(Wk)∥2

)

≤ Vk − αRRL
min

4Fmax
∥∇f(W̄k)∥2 + 2ασ2

∥∥∥∥∥ G(Pk)√
F (Pk)

∥∥∥∥∥
2

∞

+ 2α2LF 2
maxσ

2

− α

8Fmax
∥∇f(W̄k)⊙ F (Pk) + |∇f(W̄k)| ⊙G(Pk)∥2

−
(

βγ

2Fmax
C − 4β2Fmax

αRRL
min

)
∥P ∗(Wk)⊙ F (Wk)− |P ∗(Wk)| ⊙G(Wk)∥2

+

(
3βF 3

max

γmin{R(Wk)}
C +

4β2Fmax

αRRL
min

)
Eξk [∥Pk+1 − P ∗(Wk)∥2]−

β

2γFmax
C∥Wk −W ∗∥2R(Wk)

.

Let C =
10βF 2

max

αRRL
minγ

, which leads to the positive coefficient in front of ∥Pk+1 − P ∗(Wk)∥2, i.e.,

Eξk [Vk+1] (78)

≤ Vk − αRRL
min

4Fmax
∥∇f(W̄k)∥2 + 2ασ2

∥∥∥∥∥ G(Pk)√
F (Pk)

∥∥∥∥∥
2

∞

+ 2α2LF 2
maxσ

2

− α

8Fmax
∥∇f(W̄k)⊙ F (Pk) + |∇f(W̄k)| ⊙G(Pk)∥2

− β2Fmax

αRRL
min

∥P ∗(Wk)⊙ F (Wk)− |P ∗(Wk)| ⊙G(Wk)∥2

+

(
30β2F 5

max

αγmin{R(Wk)}RRL
min

+
4β2Fmax

αRRL
min

)
Eξk [∥Pk+1 − P ∗(Wk)∥2]−

5β2Fmax

αRRL
min

∥Wk −W ∗∥2R(Wk)
.

Notice that the ∥Pk+1 − P ∗(Wk)∥2 appears in the RHS above, we also need the following lemma to
bound it in terms of ∥Pk − P ∗(Wk)∥2.

Lemma 7 (Descent Lemma of Pk). Suppose Assumptions 1-2 and 4 hold. It holds for Tiki-Taka that

Eξk [∥Pk+1 − P ∗(Wk)∥2] (79)

≤
(
1− αγµL

4(µ+ L)

)
∥Pk − P ∗(Wk)∥2 +

2α(µ+ L)Fmaxσ
2

γµL

∥∥∥∥∥ G(Pk)√
F (Pk)

∥∥∥∥∥
2

∞

+ α2F 2
maxσ

2.
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The proof of Lemma 7 is deferred to Section I.4. By Lemma 7, we bound the ∥Pk+1 − P ∗(Wk)∥2 in
terms of ∥Pk − P ∗(Wk)∥2 as(

30β2F 5
max

αγmin{R(Wk)}RRL
min

+
4β2Fmax

αRRL
min

)
Eξk [∥Pk+1 − P ∗(Wk)∥2] (80)

(a)

≤ 32β2F 5
max

αγmin{R(Wk)}RRL
min

Eξk [∥Pk+1 − P ∗(Wk)∥2]

≤ 32β2F 5
max

αγmin{R(Wk)}RRL
min

(
1− α

4

µL

γ(µ+ L)

)
∥Pk − P ∗(Wk)∥2

+
32β2F 5

max

αγmin{R(Wk)}RRL
min

2α(µ+ L)Fmaxσ
2

γµL

∥∥∥∥∥ G(Pk)√
F (Pk)

∥∥∥∥∥
2

∞

+ α2F 2
maxσ

2


≤ 32β2F 5

max

αγmin{R(Wk)}RRL
min

∥Pk − P ∗(Wk)∥2 +O

β2σ2

∥∥∥∥∥ G(Pk)√
F (Pk)

∥∥∥∥∥
2

∞

+ αβ2F 2
maxσ

2


(b)

≤ 32β2F 5
max

αγmin{R(Wk)}RRL
min

∥Pk − P ∗(Wk)∥2 + ασ2

∥∥∥∥∥ G(Pk)√
F (Pk)

∥∥∥∥∥
2

∞

+ α2LF 2
maxσ

2

where (a) assumes 4β2Fmax

αRRL
min

≤ 2β2F 5
max

αγ min{R(Wk)}RRL
min

with lost of generality to keep the formulations
simple since γmin{R(Wk)} is typically small; (b) holds given α and β is sufficiently small. In
addition, the strong convexity of the objective (c.f. Assumption 4) implies that

αRRL
min

8Fmax

∥∥∇f(W̄k)
∥∥2 ≥ αµ2RRL

min

8Fmax

∥∥W̄k −W ∗∥∥2 =
αµ2RRL

min

8Fmax
∥Wk + γPk −W ∗∥2 (81)

=
αµ2γ2RRL

min

8Fmax

∥∥∥∥Pk − W ∗ −Wk

γ

∥∥∥∥2 =
αµ2γ2RRL

min

8Fmax
∥Pk − P ∗(Wk)∥2 .

Substituting (80) and (81) back into (78) yields

Eξk [Vk+1] (82)

≤ Vk − αRRL
min

8Fmax
∥∇f(W̄k)∥2 + 3ασ2

∥∥∥∥∥ G(Pk)√
F (Pk)

∥∥∥∥∥
2

∞

+ 3α2LF 2
maxσ

2

− α

8Fmax
∥∇f(W̄k)⊙ F (Pk) + |∇f(W̄k)| ⊙G(Pk)∥2

− β2Fmax

αRRL
min

∥P ∗(Wk)⊙ F (Wk)− |P ∗(Wk)| ⊙G(Wk)∥2

−
(
αµ2γ2RRL

min

8Fmax
− 32β2F 5

max

αγmin{R(Wk)}RRL
min

)
∥Pk − P ∗(Wk)∥2 −

5β2Fmax

αRRL
min

∥Wk −W ∗∥2R(Wk)

= Vk − αRRL
min

8Fmax
∥∇f(W̄k)∥2 + 3ασ2

∥∥∥∥∥ G(Pk)√
F (Pk)

∥∥∥∥∥
2

∞

+ 3α2LF 2
maxσ

2

− α

8Fmax
∥∇f(W̄k)⊙ F (Pk) + |∇f(W̄k)| ⊙G(Pk)∥2

− αµ2γ3 min{R(Wk)}
512F 5

maxR
RL
min

∥P ∗(Wk)⊙ F (Wk)− |P ∗(Wk)| ⊙G(Wk)∥2

− αµ2γ2RRL
min

16Fmax
∥Pk − P ∗(Wk)∥2 −

5αµ2γ3

512F 5
maxR

RL
min

∥Wk −W ∗∥2R(Wk)

where the last step chooses the transfer learning rate by

β =
αµγ

3
2

√
min{R(Wk)}RRL

min

16
√
2F 3

max

. (83)
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Rearranging inequality (77) above, we have
α

8Fmax
∥∇f(W̄k)⊙ F (Pk) + |∇f(W̄k)| ⊙G(Pk)∥2 +

α

8FmaxRRL
min

∥∇f(W̄k)∥2 (84)

+
αµ2γ3 min{R(Wk)}

512F 5
maxR

RL
min

∥P ∗(Wk)⊙ F (Wk)− |P ∗(Wk)| ⊙G(Wk)∥2

+
5αµ2γ3 min{R(Wk)}

512F 5
maxR

RL
min

∥Wk −W ∗∥2R(Wk)
+

αµ2γ2RRL
min

16Fmax
∥Pk − P ∗(Wk)∥2

≤ Vk − Eξk [Vk+1] + 3α2LF 2
maxσ

2 + 3ασ2

∥∥∥∥∥ G(Pk)√
F (Pk)

∥∥∥∥∥
2

∞

.

Define the convergence metric ERL
K as

ERL
K :=

1

K

K−1∑
k=0

E
[
∥∇f(W̄k)⊙ F (Pk) + |∇f(W̄k)| ⊙G(Pk)∥2 +

1

RRL
min

∥∇f(W̄k)∥2 (85)

+
µ2γ3 min{R(Wk)}

64F 4
maxR

RL
min

∥P ∗(Wk)⊙ F (Wk)− |P ∗(Wk)| ⊙G(Wk)∥2

+
5µ2γ3

64F 4
maxR

RL
min

∥Wk −W ∗∥2R(Wk)
+

µ2γ2RRL
min

2
∥Pk − P ∗(Wk)∥2

]
.

Taking expectation over all ξK , ξK−1, · · · , ξ0, averaging (84) over k from 0 to K − 1, and choosing

the parameter α as α = O

(
1

Fmax

√
V0

σ2LK

)
deduce that

ERL
K ≤ 8Fmax

(
V0 − E[Vk+1]

αK
+ 3αLF 2

maxσ
2

)
+ 24Fmaxσ

2 × 1

K

K−1∑
k=0

∥∥∥∥∥ G(Pk)√
F (Pk)

∥∥∥∥∥
2

∞

(86)

≤ 8Fmax

(
V0

αK
+ 3αLF 2

maxσ
2

)
+ 24Fmaxσ

2 × 1

K

K−1∑
k=0

∥∥∥∥∥ G(Pk)√
F (Pk)

∥∥∥∥∥
2

∞

= O

(
F 2
max

√
V0σ2L

K

)
+ 24Fmaxσ

2SRL
K .

The strong convexity of the objective (Assumption 4) implies that

V0 = f(W̄0)− f∗ + C∥W0 −W ∗∥2 ≤
(
1 +

2C

µ

)
(f(W0)− f∗). (87)

Plugging it back to the above inequality, we have

ERL
K = O

(
F 2
max

√
(f(W0)− f∗)σ2L

K

)
+ 24Fmaxσ

2SRL
K . (88)

The proof is completed.

I.2 Proof of Lemma 5: Descent of sequence W̄k

Lemma 5 (Descent Lemma of W̄k). Suppose Assumptions 1–2 hold. It holds for Tiki-Taka that

Eξk [f(W̄k+1)] ≤ f(W̄k)−
α

4Fmax
∥∇f(W̄k)∥2R(Pk)

+ 2ασ2

∥∥∥∥∥ G(Pk)√
F (Pk)

∥∥∥∥∥
2

∞

+ 2α2LF 2
maxσ

2

(70)

− αγ

8Fmax
∥∇f(W̄k)⊙ F (Pk) + |∇f(W̄k)| ⊙G(Pk)∥2

+
Fmax

α
Eξk

[
∥Wk+1 −Wk∥2R(Pk)†

]
+ Eξk [∥Wk+1 −Wk∥2].
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Proof of Lemma 5. The L-smooth assumption (Assumption 1) implies that

Eξk [f(W̄k+1)] ≤ f(W̄k) + Eξk [
〈
∇f(W̄k), W̄k+1 − W̄k

〉
] +

L

2
Eξk [∥W̄k+1 − W̄k∥2] (89)

= f(W̄k) + γ Eξk [
〈
∇f(W̄k), Pk+1 − Pk

〉
]︸ ︷︷ ︸

(a)

+Eξk [
〈
∇f(W̄k),Wk+1 −Wk

〉
]︸ ︷︷ ︸

(b)

+
L

2
Eξk [∥W̄k+1 − W̄k∥2]︸ ︷︷ ︸

(c)

.

Next, we will handle the each term in the RHS of (89) separately.

Bound of the second term (a). To bound term (a) in the RHS of (89), we leverage the assumption
that noise has expectation 0 (Assumption 2)

Eξk [
〈
∇f(W̄k), Pk+1 − Pk

〉
] (90)

= αEξk

[〈
∇f(W̄k)⊙

√
F (Pk),

Pk+1 − Pk

α
√
F (Pk)

+ (∇f(W̄k; ξk)−∇f(W̄k))⊙
√
F (Pk)

〉]
= − α

2
∥∇f(W̄k)⊙

√
F (Pk)∥2

− 1

2α
Eξk

∥∥∥∥∥Pk+1 − Pk√
F (Pk)

+ α(∇f(W̄k; ξk)−∇f(W̄k))⊙
√
F (Pk)

∥∥∥∥∥
2


+
1

2α
Eξk

∥∥∥∥∥Pk+1 − Pk√
F (Pk)

+ α∇f(W̄k; ξk)⊙
√

F (Pk)

∥∥∥∥∥
2
 .

The second term in the RHS of (90) can be bounded by

1

2α
Eξk

∥∥∥∥∥Pk+1 − Pk√
F (Pk)

+ α(∇f(W̄k; ξk)−∇f(W̄k))⊙
√
F (Pk)

∥∥∥∥∥
2
 (91)

=
1

2α
Eξk

∥∥∥∥∥Pk+1 − Pk + α(∇f(W̄k; ξk)−∇f(W̄k))⊙ F (Pk)√
F (Pk)

∥∥∥∥∥
2


≥ 1

2αFmax
Eξk

[
∥Pk+1 − Pk + α(∇f(W̄k; ξk)−∇f(W̄k))⊙ F (Pk)∥2

]
.

The third term in the RHS of (90) can be bounded by variance decomposition and bounded variance
assumption (Assumption 2)

1

2α
Eξk

∥∥∥∥∥Pk+1 − Pk√
F (Pk)

+ α∇f(W̄k; ξk)⊙
√
F (Pk)

∥∥∥∥∥
2
 (92)

≤ α

2
Eξk

∥∥∥∥∥|∇f(W̄k; ξk)| ⊙
G(Pk)√
F (Pk)

∥∥∥∥∥
2


≤ α

2

∥∥∥∥∥|∇f(W̄k)| ⊙
G(Pk)√
F (Pk)

∥∥∥∥∥
2

+
ασ2

2

∥∥∥∥∥ G(Pk)√
F (Pk)

∥∥∥∥∥
2

∞

.

Notice that the first term in the RHS of (90) and the second term in the RHS of (92) can be bounded
together

− α

2
∥∇f(W̄k)⊙

√
F (Pk)∥2 +

α

2

∥∥∥∥∥|∇f(W̄k)| ⊙
G(Pk)√
F (Pk)

∥∥∥∥∥
2

(93)

= − α

2

∑
d∈[D]

(
[∇f(W̄k)]

2
d

(
[F (Pk)]d −

[G(Pk)]
2
d

[F (Pk)]d

))
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= − α

2

∑
d∈[D]

(
[∇f(W̄k)]

2
d

(
[F (Pk)]

2
d − [G(Pk)]

2
d

[F (Pk)]d

))
≤ − α

2Fmax

∑
d∈[D]

(
[∇f(W̄k)]

2
d

(
[F (Pk)]

2
d − [G(Pk)]

2
d

))
= − α

2Fmax
∥∇f(W̄k)∥2R(Pk)

≤ 0.

Plugging (91) to (93) into (90), we bound the term (a) by

Eξk [
〈
∇f(W̄k), Pk+1 − Pk

〉
] (94)

≤ − α

2Fmax
∥∇f(W̄k)∥2R(Pk)

+
ασ2

2

∥∥∥∥∥ G(Pk)√
F (Pk)

∥∥∥∥∥
2

∞

− 1

2αFmax
Eξk

[∥∥Pk+1 − Pk + α(∇f(W̄k; ξk)−∇f(W̄k))⊙ F (Pk)
∥∥2] .

Bound of the third term (b). By Young’s inequality, we have

Eξk [
〈
∇f(W̄k),Wk+1 −Wk

〉
] ≤ α

4Fmax
∥∇f(W̄k)∥2R(Pk)

+
Fmax

α
Eξk [∥Wk+1 −Wk∥2R(Pk)†

].

(95)

Bound of the third term (c). Repeatedly applying inequality ∥U + V ∥2 ≤ 2∥U∥2 + 2∥V ∥2 for any
U, V ∈ RD, we have

L

2
Eξk [∥W̄k+1 − W̄k∥2] (96)

≤ LEξk [∥Wk+1 −Wk∥2] + LEξk [∥Pk+1 − Pk∥2]

≤ LEξk [∥Wk+1 −Wk∥2] + 2LEξk

[∥∥Pk+1 − Pk + α(∇f(W̄k; ξk)−∇f(W̄k))⊙ F (Pk)
∥∥2]

+ 2α2LEξk

[∥∥(∇f(W̄k; ξk)−∇f(W̄k))⊙ F (Pk)
∥∥2]

≤ Eξk [∥Wk+1 −Wk∥2] + 2LEξk

[∥∥Pk+1 − Pk + α(∇f(W̄k; ξk)−∇f(W̄k))⊙ F (Pk)
∥∥2]

+ 2α2LF 2
maxσ

2

where the last inequality comes from the bounded variance assumption (Assumption 2)

2α2LEξk

[∥∥(∇f(W̄k; ξk)−∇f(W̄k))⊙ F (Pk)
∥∥2] (97)

≤ 2α2LF 2
maxEξk

[∥∥∇f(W̄k; ξk)−∇f(W̄k)
∥∥2]

≤ 2α2LF 2
maxσ

2.

Combination of the upper bound (a), (b), and (c). Plugging (94), (95), (96) into (89), we derive

Eξk [f(W̄k+1)] ≤ f(W̄k)−
α

4Fmax
∥∇f(W̄k)∥2R(Pk)

+
ασ2

2

∥∥∥∥∥ G(Pk)√
F (Pk)

∥∥∥∥∥
2

∞

(98)

−
(

1

2αFmax
− 2L

)
Eξk

[∥∥Pk+1 − Pk + α(∇f(W̄k; ξk)−∇f(W̄k))⊙ F (Pk)
∥∥2]

+
Fmax

α
Eξk

[
∥Wk+1 −Wk∥2R(Pk)†

]
+ Eξk [∥Wk+1 −Wk∥2] + 2α2LF 2

maxσ
2.

We bound the fourth term in the RHS of (98) using the similar technique as in (64)

Eξk

[∥∥Pk+1 − Pk + α(∇f(W̄k; ξk)−∇f(W̄k))⊙ F (Pk)
∥∥2] (99)
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≥ α2

2
∥∇f(W̄k)⊙ F (Pk) + |∇f(W̄k)| ⊙G(Pk)∥2 − α2Fmaxσ

2

∥∥∥∥∥ G(Pk)√
F (Pk)

∥∥∥∥∥
2

∞

.

Inequality (99) as well as the learning rate rule α ≤ 1
4LFmax

leads to the conclusion

Eξk [f(W̄k+1)] ≤ f(W̄k)−
α

4Fmax
∥∇f(W̄k)∥2R(Pk)

+ 2ασ2

∥∥∥∥∥ G(Pk)√
F (Pk)

∥∥∥∥∥
2

∞

+ 2α2LF 2
maxσ

2

(100)

− αγ

8Fmax
∥∇f(W̄k)⊙ F (Pk) + |∇f(W̄k)| ⊙G(Pk)∥2

+
Fmax

α
Eξk

[
∥Wk+1 −Wk∥2R(Pk)†

]
+ Eξk [∥Wk+1 −Wk∥2].

The proof is completed.

I.3 Proof of Lemma 6: Descent of sequence Wk

Lemma 6 (Descent Lemma of Wk). It holds for Tiki-Taka that

∥Wk+1 −W ∗∥2 ≤ ∥Wk −W ∗∥2 − β

2γFmax
∥Wk −W ∗∥2R(Wk)

(71)

− βγ

2Fmax
∥P ∗(Wk)⊙ F (Wk)− |P ∗(Wk)| ⊙G(Wk)∥2

+
2βF 3

max

γ
∥Pk+1 − P ∗(Wk)∥2R(Wk)†

+ 2β2∥Pk+1 − P ∗(Wk)∥2.

Proof of Lemma 6. The proof begins from manipulating the norm ∥Wk+1 −W ∗∥2

∥Wk+1 −W ∗∥2 = ∥Wk −W ∗∥2 + 2 ⟨Wk −W ∗,Wk+1 −Wk⟩+ ∥Wk+1 −Wk∥2. (101)

Revisit that we interpret Pk as the residual of Wk, namely P ∗(W ) := W∗−W
γ . Therefore, we bound

the second term in the RHS of (101) by

2 ⟨Wk −W ∗,Wk+1 −Wk⟩ (102)
= 2 ⟨Wk −W ∗, βPk+1 ⊙ F (Wk)− β|Pk+1| ⊙G(Wk)⟩
= 2β ⟨Wk −W ∗, P ∗(Wk)⊙ F (Wk)− |P ∗(Wk)| ⊙G(Wk)⟩

+ 2β ⟨Wk −W ∗, Pk+1 ⊙ F (Wk)− |Pk+1| ⊙G(Wk)− (P ∗(Wk)⊙ F (Wk)− |P ∗(Wk)| ⊙G(Wk))⟩ .

The first term in the RHS of (102) is bounded by

2β ⟨Wk −W ∗, P ∗(Wk)⊙ F (Wk)− |P ∗(Wk)| ⊙G(Wk)⟩ (103)

= 2β

〈
(Wk −W ∗)⊙

√
F (Wk),

P ∗(Wk)⊙ F (Wk)− |P ∗(Wk)| ⊙G(Wk)√
F (Wk)

〉

= − 2β

γ

〈
(Wk −W ∗)⊙

√
F (Wk), (Wk −W ∗)⊙

√
F (Wk)

〉
+

2β

γ

〈
(Wk −W ∗)⊙

√
F (Wk), |Wk −W ∗| ⊙ G(Wk)√

F (Wk)

〉
(a)
= − β

γ
∥(Wk −W ∗)⊙

√
F (Wk)∥2 +

β

γ

∥∥∥∥∥|Wk −W ∗| ⊙ G(Wk)√
F (Wk)

∥∥∥∥∥
2

− β

γ

∥∥∥∥∥(Wk −W ∗)⊙
√
F (Wk) + |Wk −W ∗| ⊙ G(Wk)√

F (Wk)

∥∥∥∥∥
2
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(b)

≤ − β

γFmax
∥Wk −W ∗∥2R(Wk)

− β

γ

∥∥∥∥∥(Wk −W ∗)⊙
√

F (Wk) + |Wk −W ∗| ⊙ G(Wk)√
F (Wk)

∥∥∥∥∥
2

(c)

≤ − β

γFmax
∥Wk −W ∗∥2R(Wk)

− βγ

Fmax
∥P ∗(Wk)⊙ F (Wk)− |P ∗(Wk)| ⊙G(Wk)∥2

where (a) leverages the equality 2 ⟨U, V ⟩ = ∥U∥2 − ∥V ∥2 − ∥U − V ∥2 for any U, V ∈ RD, (b) is
achieved by similar technique (60), and (c) comes from

− β

γ

∥∥∥∥∥(Wk −W ∗)⊙
√
F (Wk) + |Wk −W ∗| ⊙ G(Wk)√

F (Wk)

∥∥∥∥∥
2

(104)

= − βγ

∥∥∥∥∥ 1√
F (Wk)

⊙
(
Wk −W ∗

γ
⊙ F (Wk) +

∣∣∣∣Wk −W ∗

γ

∣∣∣∣⊙G(Wk)

)∥∥∥∥∥
2

≤ − βγ

Fmax
∥P ∗(Wk)⊙ F (Wk)− |P ∗(Wk)| ⊙G(Wk)∥2 .

The second term in the RHS of (102) is bounded by the Lipschitz continuity of analog update (c.f.
Lemma 3)

2β

γ
⟨Wk −W ∗, Pk+1 ⊙ F (Wk)− |Pk+1| ⊙G(Wk)− (P ∗(Wk)⊙ F (Wk)− |P ∗(Wk)| ⊙G(Wk))⟩

≤ β

2γFmax
∥Wk −W ∗∥2R(Wk)

+
2βFmax

γ
(105)

× ∥Pk+1 ⊙ F (Wk)− |Pk+1| ⊙G(Wk)− (P ∗(Wk)⊙ F (Wk)− |P ∗(Wk)| ⊙G(Wk))∥2R(Wk)†

≤ β

2γFmax
∥Wk −W ∗∥2R(Wk)

+
2βF 3

max

γ
∥Pk+1 − P ∗(Wk)∥2R(Wk)†

.

Substituting (103) and (105) into (102), we bound the second term in the RHS of (101) by

2 ⟨Wk −W ∗,Wk+1 −Wk⟩ (106)

≤ − β

γFmax
∥Wk −W ∗∥2R(Wk)

− βγ

Fmax
∥P ∗(Wk)⊙ F (Wk)− |P ∗(Wk)| ⊙G(Wk)∥2

+
2βF 3

max

γ
∥Pk+1 − P ∗(Wk)∥2R(Wk)†

.

The third term in the RHS of (101) is bounded by the Lipschitz continuity of analog update (c.f.
Lemma 3)

∥Wk+1 −Wk∥2 = β2∥Pk+1 ⊙ F (Wk)− |Pk+1| ⊙G(Wk)∥2 (107)

≤ 2β2∥P ∗(Wk)⊙ F (Wk)− |P ∗(Wk)| ⊙G(Wk)∥2

+ 2β2∥Pk+1 ⊙ F (Wk)− |Pk+1| ⊙G(Wk)− (P ∗(Wk)⊙ F (Wk)− |P ∗(Wk)| ⊙G(Wk))∥2

≤ 2β2∥P ∗(Wk)⊙ F (Wk)− |P ∗(Wk)| ⊙G(Wk)∥2 + 2β2∥Pk+1 − P ∗(Wk)∥2.

Plugging (106) and (107) into (101) yields

∥Wk+1 −W ∗∥2 ≤ ∥Wk −W ∗∥2 − β

2γFmax
∥Wk −W ∗∥2R(Wk)

(108)

−
(

βγ

Fmax
− 2β2

)
∥P ∗(Wk)⊙ F (Wk)− |P ∗(Wk)| ⊙G(Wk)∥2

+
2βF 3

max

γ
∥Pk+1 − P ∗(Wk)∥2R(Wk)†

+ 2β2∥Pk+1 − P ∗(Wk)∥2.

Notice the learning rate β is chosen as β ≤ γ
2Fmax

, we have

∥Wk+1 −W ∗∥2 ≤ ∥Wk −W ∗∥2 − β

2γFmax
∥Wk −W ∗∥2R(Wk)

(109)
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− βγ

2Fmax
∥P ∗(Wk)⊙ F (Wk)− |P ∗(Wk)| ⊙G(Wk)∥2

+
2βF 3

max

γ
∥Pk+1 − P ∗(Wk)∥2R(Wk)†

+ 2β2∥Pk+1 − P ∗(Wk)∥2

which completes the proof.

I.4 Proof of Lemma 7: Descent of sequence Pk

Lemma 7 (Descent Lemma of Pk). Suppose Assumptions 1-2 and 4 hold. It holds for Tiki-Taka that

Eξk [∥Pk+1 − P ∗(Wk)∥2] (79)

≤
(
1− αγµL

4(µ+ L)

)
∥Pk − P ∗(Wk)∥2 +

2α(µ+ L)Fmaxσ
2

γµL

∥∥∥∥∥ G(Pk)√
F (Pk)

∥∥∥∥∥
2

∞

+ α2F 2
maxσ

2.

Proof of Lemma 7. The proof begins from manipulating the norm ∥Pk+1 − P ∗(Wk)∥2

∥Pk+1 − P ∗(Wk)∥2 = ∥Pk − P ∗(Wk)∥2 + 2 ⟨Pk − P ∗(Wk), Pk+1 − Pk⟩+ ∥Pk+1 − Pk∥2.
(110)

To bound the second term, we need the following equality.

2Eξk [⟨Pk − P ∗(Wk), Pk+1 − Pk⟩] (111)

= − 2αEξk [
〈
Pk − P ∗(Wk),∇f(W̄k; ξk)⊙ F (Pk)− |∇f(W̄k; ξk)| ⊙G(Pk)

〉
]

= − 2αEξk [
〈
Pk − P ∗(Wk),∇f(W̄k; ξk)⊙ F (Pk)

〉
]

+ 2αEξk [
〈
Pk − P ∗(Wk), |∇f(W̄k; ξk)| ⊙G(Pk)

〉
]

= − 2α
〈
Pk − P ∗(Wk),∇f(W̄k)⊙ F (Pk)

〉
+ 2α

〈
Pk − P ∗(Wk), |∇f(W̄k)| ⊙G(Pk)

〉
+ 2αEξk [

〈
Pk − P ∗(Wk), (|∇f(W̄k)| − |∇f(W̄k; ξk)|)⊙G(Pk)

〉
]

= − 2α
〈
Pk − P ∗(Wk),∇f(W̄k)⊙ F (Pk)− |∇f(W̄k)| ⊙G(Pk)

〉︸ ︷︷ ︸
(T1)

+ 2αEξk [
〈
Pk − P ∗(Wk), (|∇f(W̄k)| − |∇f(W̄k; ξk)|)⊙G(Pk)

〉
]︸ ︷︷ ︸

(T2)

Upper bound of the first term (T1). With Lemma 4, the second term in the RHS of (110) can be
bounded by

− 2α
〈
Pk − P ∗(Wk),∇f(W̄k)⊙ F (Pk)− |∇f(W̄k)| ⊙G(Pk)

〉
(112)

= − 2α
〈
Pk − P ∗(Wk),∇f(W̄k)⊙ qs(Pk)

〉
≤ − 2αCk,+

〈
Pk − P ∗(Wk),∇f(W̄k)

〉
+ 2αCk,−

〈
|Pk − P ∗(Wk)|, |∇f(W̄k)|

〉
where Ck,+ and Ck,− are defined by

Ck,+ :=
1

2

(
max
d∈[D]

{qs([Pk]d)}+ min
d∈[D]

{qs([Pk]d)}
)
, (113)

Ck,− :=
1

2

(
max
d∈[D]

{qs([Pk]d)} − min
d∈[D]

{qs([Pk]d)}
)
. (114)

In the inequality above, the first term can be bounded by the strong convexity of f . Let φ(P ) :=
f(W +γP ) which is γ2L-smooth and γ2µ-strongly convex. It can be verified that φ(P ) has gradient
∇φ(Pk) = ∇Pk

f(Wk + γPk) = γ∇f(W̄k) and optimal point P ∗(W ). Leveraging Theorem 2.1.9
in [85], we have 〈

∇f(W̄k), Pk − P ∗(Wk)
〉
=

1

γ
⟨∇φ(Pk), Pk − P ∗(Wk)⟩ (115)
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≥ 1

γ

(
γ2µ · γ2L

γ2µ+ γ2L
∥Pk − P ∗(Wk)∥2 +

1

γ2µ+ γ2L
∥∇φ(Pk)∥2

)
=

γµL

µ+ L
∥Pk − P ∗(Wk)∥2 +

1

γ(µ+ L)
∥∇f(W̄k)∥2.

The second term in the RHS of (112) can be bounded by Young’s inequality 2 ⟨x, y⟩ ≤ u∥x∥2+ 1
u∥y∥

2

with any u > 0 and x, y ∈ RD

2αCk,−
〈
|Pk − P ∗(Wk)|, |∇f(W̄k)|

〉
(116)

≤
αC2

k,−γ(µ+ L)

Ck,+
∥Pk − P ∗(Wk)∥2 +

αCk,+

γ(µ+ L)
∥∇f(W̄k)∥2

where u is chosen to align the coefficient in front of ∥∇f(W̄k)∥2. Therefore, (T1) in (112) becomes

− 2α
〈
Pk − P ∗(Wk),∇f(W̄k)⊙ F (Pk)− |∇f(W̄k)| ⊙G(Pk)

〉
(117)

≤ −

(
2αγµLCk,+

µ+ L
−

αC2
k,−γ(µ+ L)

Ck,+

)
∥Pk − P ∗(Wk)∥2 −

αCk,+

γ(µ+ L)
∥∇f(W̄k)∥2.

Upper bound of the second term (T2). Leveraging the Young’s inequality 2 ⟨x, y⟩ ≤ u∥x∥2 +
1
u∥y∥

2 with any u > 0 and x, y ∈ RD, we have

2αEξk [
〈
Pk − P ∗(Wk), (|∇f(W̄k)| − |∇f(W̄k; ξk)|)⊙G(Pk)

〉
] (118)

= 2αEξk

[〈
(Pk − P ∗(Wk))⊙

√
F (Pk), (|∇f(W̄k)| − |∇f(W̄k; ξk)|)⊙

G(Pk)√
F (Pk)

〉]
(a)

≤ αγµLCk,+

(µ+ L)Fmax
∥(Pk − P ∗(Wk))⊙

√
F (Pk)∥2

+
α(µ+ L)Fmax

γµLCk,+
Eξk

∥∥∥∥∥(|∇f(W̄k)| − |∇f(W̄k; ξk)|)⊙
G(Pk)√
F (Pk)

∥∥∥∥∥
2


(b)

≤ αγµLCk,+

(µ+ L)Fmax
∥(Pk − P ∗(Wk))⊙

√
F (Pk)∥2

+
α(µ+ L)Fmax

γµLCk,+
Eξk

∥∥∥∥∥(|∇f(W̄k)−∇f(W̄k; ξk)|)⊙
G(Pk)√
F (Pk)

∥∥∥∥∥
2


(c)
=

αγµLCk,+

(µ+ L)Fmax
∥(Pk − P ∗(Wk))⊙

√
F (Pk)∥2 +

α(µ+ L)Fmaxσ
2

γµLCk,+

∥∥∥∥∥ G(Pk)√
F (Pk)

∥∥∥∥∥
2

∞

(d)

≤ αγµLCk,+

µ+ L
∥Pk − P ∗(Wk)∥2 +

α(µ+ L)Fmaxσ
2

γµLCk,+

∥∥∥∥∥ G(Pk)√
F (Pk)

∥∥∥∥∥
2

∞

where (a) choose u > 0 to align the coefficient in front of ∥Pk − P ∗(Wk)∥2 in the RHS of (117),
(b) applies ||x| − |y|| ≤ |x − y| for any x, y ∈ R, (c) uses the bounded variance assumption (c.f.
Assumption 2), and (d) leverages the fact that F (Pk) is bounded by Fmax element-wise.

Combining the upper bound of (T1) and (T2), we bound (111) by

2Eξk [⟨Pk − P ∗(Wk), Pk+1 − Pk⟩] (119)

≤ −

(
αγµLCk,+

µ+ L
−

αC2
k,−γ(µ+ L)

Ck,+

)
∥Pk − P ∗(Wk)∥2

− αCk,+

γ(µ+ L)
∥∇f(W̄k)∥2 +

α(µ+ L)Fmaxσ
2

γµLCk,+

∥∥∥∥∥ G(Pk)√
F (Pk)

∥∥∥∥∥
2

∞
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≤ − αγµLCk,+

2(µ+ L)
∥Pk − P ∗(Wk)∥2 −

αCk,+

γ(µ+ L)
∥∇f(W̄k)∥2 +

α(µ+ L)Fmaxσ
2

γµLCk,+

∥∥∥∥∥ G(Pk)√
F (Pk)

∥∥∥∥∥
2

∞

where the last inequality holds when γ is sufficiently large, Pk as well as Ck,− are sufficiently closed
to 0, and the following inequality holds

(µ+ L)
C2

k,−

C2
k,+

≤ µL

2(µ+ L)
. (120)

Furthermore, the last term in the RHS of (110) can be bounded by the Lipschitz continuity of analog
update (c.f. Lemma 3) and the bounded variance assumption (c.f. Assumption 2)

Eξk [∥Pk+1 − Pk∥2] = Eξk [∥α∇f(W̄k; ξk)⊙ F (Pk)− α|∇f(W̄k; ξk)| ⊙G(Pk)∥2] (121)

≤ α2F 2
maxEξk [∥∇f(W̄k; ξk)∥2]

= α2F 2
max∥∇f(W̄k)∥2 + α2F 2

maxσ
2

≤ αCk,+

γ(µ+ L)
∥∇f(W̄k)∥2 + α2F 2

maxσ
2

where the last inequality holds if α is sufficiently small.

Plugging inequality (119) and (121) above into (110) yields

Eξk [∥Pk+1 − P ∗(Wk)∥2] (122)

≤
(
1− αγµLCk,+

2(µ+ L)

)
∥Pk − P ∗(Wk)∥2 +

α(µ+ L)Fmaxσ
2

γµLCk,+

∥∥∥∥∥ G(Pk)√
F (Pk)

∥∥∥∥∥
2

∞

+ α2F 2
maxσ

2.

By definition of Ck,+, when the saturation degree of Pk is properly limited, we have Ck,+ ≥ 1
2 .

Therefore, we have

Eξk [∥Pk+1 − P ∗(Wk)∥2] (123)

≤
(
1− αγµL

4(µ+ L)

)
∥Pk − P ∗(Wk)∥2 +

2α(µ+ L)Fmaxσ
2

γµL

∥∥∥∥∥ G(Pk)√
F (Pk)

∥∥∥∥∥
2

∞

+ α2F 2
maxσ

2

which completes the proof.

I.5 Proof of Corollary 1: Exact convergence of Residual Learning

Corollary 1 (Exact convergence of Residual Learning). Under Assumption 5 and the conditions
in Theorem 3, if γ ≥ Ω(R

−1/5
min ), it holds that ERL

K ≤ O
(√

σ2L/K
)

.

Proof of Corollary 1. From Theorem 3, we have

∥∇f(W̄k)∥2 ≤ O(ERL
K ) ≤ O

(
F 2
max

√
(f(W0)− f∗)σ2L

K

)
+ 24Fmaxσ

2SRL
K . (124)

Under the zero-shift assumption (Assumption 5) and the Lipschitz continuity of the response functions,
it holds directly that∥∥∥∥∥ G(Pk)√

F (Pk)

∥∥∥∥∥
2

∞

≤

∥∥∥∥∥ G(Pk)√
F (Pk)

∥∥∥∥∥
2

=

∥∥∥∥∥ G(Pk)√
F (Pk)

− G(0)√
F (0)

∥∥∥∥∥
2

≤ L2
S∥Pk∥2 (125)

where LS ≥ 0 is a constant. Using ∥U + V ∥2 ≤ 2∥U∥2 + 2∥V ∥2 for any U, V ∈ RD, we have

∥Pk∥2 ≤ 2∥Pk − P ∗(Wk)∥2 + 2∥P ∗(Wk)∥2 = 2∥Pk − P ∗(Wk)∥2 +
2

γ2
∥Wk −W ∗∥2 (126)

where the last inequality comes from the definition of P ∗(Wk), as well as the definition of P ∗(W ).
Recall that convergence metric ERL

K defined in (85) is in the order of

ERL
K ≥ Ω

(
γ3∥Wk −W ∗∥2R(Wk)

+ γ2 ∥Pk − P ∗(Wk)∥2
)

(127)

40



≥ Ω
(
min{R(Wk)}γ3∥Wk −W ∗∥2 + γ2 ∥Pk − P ∗(Wk)∥2

)
≥ Ω

(
1

γ2
∥Wk −W ∗∥2 + γ2 ∥Pk − P ∗(Wk)∥2

)
.

Therefore, we have

SRL
K =

1

K

K∑
k=0

∥∥∥∥∥ G(Pk)√
F (Pk)

∥∥∥∥∥
2

∞

≤ 1

K

K∑
k=0

(
2∥Pk − P ∗(Wk)∥2 +

2

γ2
∥Wk −W ∗∥2

)
≤ O(ERL

K )

(128)

where the last inequality holds if γ is sufficiently large. Considering that, ERL
K − SRL

K ≥ Ω(ERL
K ) ≥ 0

and the conclusion is reached directly from Theorem 3.

J Proof of Theorem 6: Convergence of Analog GD

In Section 3.2, we showed that Analog SGD converges to a critical point inexactly with asymptotic
error proportional to the noise variance σ2. Intuitively, without the effect of noise, Analog GD
converges to the critical point. Define the convergence metric by

EAGD
K :=

1

K

K−1∑
k=0

(
∥∇f(Wk)⊙ F (Wk)− |∇f(Wk)| ⊙G(Wk)∥2 + ∥∇f(Wk)∥2R(Wk)

)
. (129)

The convergence is guaranteed by the following theorem.
Theorem 6 (Convergence of Analog GD). Under Assumption 1–2, it holds that

EAGD
K ≤ 8L(f(W0)− f∗)F 2

max

K
. (130)

Further, if RASGD
min := mink∈[K] min{Q+(Wk)Q−(Wk)} > 0, it holds that

1

K

K−1∑
k=0

∥∇f(Wk)∥2 ≤ 2L(f(W0)− f∗)F 2
max

KRASGD
min

. (131)

Proof of Theorem 6. The L-smooth assumption (Assumption 1) implies that

f(Wk+1) ≤ f(Wk) + ⟨∇f(Wk),Wk+1 −Wk⟩+
L

2
∥Wk+1 −Wk∥2 (132)

= f(Wk)−
α

2
∥∇f(Wk)⊙

√
F (Wk)∥2 −

1

Fmax

(
1

2α
− LFmax

2

)
∥Wk+1 −Wk∥2

+
1

2α

∥∥∥∥∥Wk+1 −Wk√
F (Wk)

+ α∇f(Wk)⊙
√
F (Wk)

∥∥∥∥∥
2

where the second inequality comes from

⟨∇f(Wk),Wk+1 −Wk⟩ = α

〈
∇f(Wk)⊙

√
F (Wk),

Wk+1 −Wk

α
√

F (Wk)

〉
(133)

= − α

2
∥∇f(Wk)⊙

√
F (Wk)∥2 −

1

2α

∥∥∥∥∥Wk+1 −Wk√
F (Wk)

∥∥∥∥∥
2

+
1

2α

∥∥∥∥∥Wk+1 −Wk√
F (Wk)

+ α∇f(Wk)⊙
√
F (Wk)

∥∥∥∥∥
2

as well as the inequality ∥∥∥∥∥Wk+1 −Wk√
F (Wk)

∥∥∥∥∥
2

≥ 1

Fmax
∥Wk+1 −Wk∥2. (134)
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The third term in the RHS of (132) can be bounded by

1

2α

∥∥∥∥∥Wk+1 −Wk√
F (Wk)

+ α∇f(Wk)⊙
√
F (Wk)

∥∥∥∥∥
2

=
α

2

∥∥∥∥∥|∇f(Wk)| ⊙
G(Wk)√
F (Wk)

∥∥∥∥∥
2

. (135)

Define the saturation vector R(Wk) ∈ RD by

R(Wk) := F (Wk)
⊙2 −G(Wk)

⊙2 = (F (Wk) +G(Wk))⊙ (F (Wk)−G(Wk)) (136)
= q+(Wk)⊙ q−(Wk).

Notice the following inequality is valid

− α

2
∥∇f(Wk)⊙

√
F (Wk)∥2 +

α

2

∥∥∥∥∥|∇f(Wk)| ⊙
G(Wk)√
F (Wk)

∥∥∥∥∥
2

(137)

= − α

2
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(
[∇f(Wk)]

2
d

(
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2
d
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(
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2
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(
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2
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(
[∇f(Wk)]

2
d

(
[F (Wk)]

2
d −G(Wk)]

2
d

))
= − α

2Fmax
∥∇f(Wk)∥2Sk

≤ 0.

Substituting (135) and (137) back into (132) yields

1

Fmax

(
1

2α
− LFmax

2

)
∥Wk+1 −Wk∥2 ≤ f(Wk)− f(Wk+1). (138)

Noticing that ∥Wk+1 −Wk∥2 = α2∥∇f(Wk) ⊙ F (Wk) − |∇f(Wk)| ⊙ G(Wk)∥2 and averaging
for k from 0 to K − 1, we have

EAGD
K =

1

K

K−1∑
k=0

(
∥∇f(Wk)⊙ F (Wk)− |∇f(Wk)| ⊙G(Wk)∥2 + ∥∇f(Wk)∥2R(Wk)

)
(139)

≤ 2(f(W0)− f(WK+1))Fmax

α(1− αLFmax)K
≤ 8L(f(W0)− f∗)F 2

max

K

where the last inequality choose α = 1
2LFmax

.

Further, if the degree of saturation is bounded, (132)–(137) implies that

αRAGD
min

2
∥∇f(Wk)∥2 ≤ α

2
∥∇f(Wk)∥2R(Wk)

≤ f(Wk)− f(Wk+1). (140)

Averaging (140) for k from 0 to K deduce that

1

K

K−1∑
k=0

∥∇f(Wk)∥2 ≤ 2(f(W0)− f(WK+1))Fmax

αKRAGD
min

≤ 2L(f(W0)− f∗)F 2
max

KRAGD
min

(141)

where the second inequality holds because the learning rate is selected as α = 1
LFmax

.

K Simulation Details and Additional Results

This section provides details about the experiments in Section 6. All simulation is performed
under the PYTORCH framework https://github.com/pytorch/pytorch. The analog training
algorithms, including Analog SGD and Tiki-Taka, are provided by the open-source simulation
toolkit AIHWKIT [44], which has MIT license; see github.com/IBM/aihwkit.
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Optimizer. The baseline Digital SGD optimizer is implemented by FloatingPointRPUConfig
in AIHWKIT, which is equivalent to the SGD implemented in PYTORCH. The Analog SGD is
implemented by selecting SingleRPUConfig as configuration, and Tiki-Taka optimizers are
implemented by UnitCellRPUConfig with TransferCompound devices in AIHWKIT.

As suggested by [22], in the implementation of Residual Learning, only a few columns of Pk are
transferred per time to Wk in the recursion (11) to balance the communication and computation. In
our simulations, we transfer 1 column every time.

RPU Configuration. AIHWKIT offers fine-grained simulations of the hardware imperfections, such
as the IO noise, analog-digital conversion, and so on. They are specified by the resistive processing
unit (RPU) configurations. Without other specifications, we use the configuration list in Table 4. The
experimental setup uses a specific I/O configuration, as detailed in the relevant table. The system’s
input and output signal bounds are explicitly defined. Regarding signal quality, the setup employs
no input noise but introduces additive Gaussian noise to the output signal, the statistical properties
of which are precisely specified. Finally, the resolution of the digital conversion processes is set by
distinct bit values for both the input (DAC) and output (ADC).

In addition, noise, bound, and update management techniques are used in [71]. A learnable scaling
factor is applied after each analog layer and updated using SGD. For each gradient update step, if
more than BL = 32 pulses are desired, only BL pulses are fired.

Table 4: Hardware imperfection setting
configuration value
input bound 1.0
input noise None
input resolution (DAC) 7 bits
output bound 12.0
output noise additive Gaussian noise N (0, 0.062)
output resolution (ADC) 9 bits

Update granularity ∆wmin 1× 10−3

Bit length BL 32

Simulation hardware. We conduct our experiments on one NVIDIA RTX 3090 GPU, which has
24GB of memory and a maximum power of 350W. The simulations take from 30 minutes to 5 hours,
depending on model sizes and datasets.

Statistical Significance. The simulation data reported in all tables is repeated three times. The
randomness originates from the data shuffling, random initialization, and random noise in the analog
hardware. The mean and standard deviation are calculated using statistics library.

K.1 Power and Exponential Response Functions

We consider two types of response functions in our simulations: power and exponential response
functions with dynamic ranges [−τ, τ ], The power response is a power function, given by

q+(w) =
(
1− w

τ

)γres

, q−(w) =
(
1 +

w

τ

)γres

(142)

which can be changed by adjusting the dynamic radius τ and shape parameter γres. We also consider
the exponential response, whose response is an exponential function, defined by

q+(w) =
exp (γres(1− w/τ))− 1

exp (γres)− 1
, q−(w) =

exp (γres(1 + w/τ))− 1

exp (γres)− 1
. (143)

It could be checked that the boundary of their dynamic ranges are τmax = τ and τmin = −τ , while
the symmetric point is 0, as required by Corollary 1. Figure 6 illustrates how the response functions
change with different γres.
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Figure 6: Examples of response functions. The dependence of the response function on the weight w
can grow at various rates, including but not limited to power (Left) or exponential rate (Right). τ
is the radius of the dynamic range, and γres is a parameter that needs to be determined by physical
measurements.

K.2 Least squares problem

In Figure 2 (see Section 1.1), we consider the least squares problem on a synthetic dataset and a
ground truth W ∗ ∈ RD. The problem can be formulated by

min
W∈RD

f(W ) :=
1

2
∥AW − b∥2 =

1

2
∥A(W −W ∗)∥2. (144)

The elements of W ∗ are sampled from a Gaussian distribution with mean 0 and variance σ2
W∗ .

Consider a matrix A ∈ RDout×D of size D = 50 and Dout = 100 whose elements are sampled from a
Gaussian distribution with variance σ2

A. The label b ∈ RDout is generated by b = AW ∗ where W ∗

are sampled from a standard Gaussian distribution with σ2
W∗ . The response granularity ∆wmin=1e-4

while τ = 3.5. The maximum bit length is 8. The variance are set as σ2
A = 1.002, σ2

W∗ = 0.52.

K.3 Classification problem

We conduct training simulations of image classification tasks on a series of real datasets.

3-FC @ MNIST. Following the setting in [16], we train a model with 3 fully connected layers. The
hidden sizes are 256 and 128. The activation functions are Sigmoid. The learning rates are α = 0.1
for Digital SGD, α = 0.05, β = 0.01 for Analog SGD and Tiki-Taka. The batch size is 10 for all
algorithms. In Figure 4, the power response functions with γres = 0.5 are used, and various τ are
used as indicated in the legend.

CNN @ MNIST. We train a convolutional neural network, which contains 2 convolutional layers,
2 max-pooling layers, and 2 fully connected layers. The activation functions are Tanh. The first
two convolutional layers use 5×5 kernels with 16 and 32 kernels, respectively. Each convolutional
layer is followed by a subsampling layer implemented by the max pooling function over non-
overlapping pooling windows of size 2 × 2. The output of the second pooling layer, consisting of 512
neuron activations, feeds into a fully connected layer consisting of 128 tanh neurons, which is then
connected to a 10-way softmax output layer. The learning rates are set as α = 0.1 for Digital SGD,
α = 0.05, β = 0.01 for Analog SGD are Residual Learning/Tiki-Taka. The batch size is 8 for
all algorithms. In Figure 4, the power response functions with γres = 0.5 are used, and various τ are
used as indicated in the legend.

ResNet/MobileNet @ CIFAR10/CIFAR100. We train different models from the ResNet family,
including ResNet18, 34, and 50. The base model is pre-trained on the ImageNet dataset. The last
fully connected layer is replaced by an analog layer. The learning rates are set as α = 0.075
for Digital SGD, α = 0.075, β = 0.01 for Analog SGD, Residual Learning/Tiki-Taka,
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Tiki-Taka v2, and Residual Learning v2. Tiki-Taka adopts γ = 0.4 unless stated otherwise.
The batch size is 128 for all algorithms.

K.4 Additional performance on real datasets

We train different models from the MobileNet family, including MobileNet2, MobileNetV3L,
MobileNetV3S. The base model is pre-trained on ImageNet dataset. The last fully connected
layer is replaced by an analog layer. The learning rates are set as α = 0.075 for Digital SGD,
α = 0.075, β = 0.01 for Analog SGD or Tiki-Taka. Tiki-Taka adopts γ = 0.4 unless stated
otherwise. The batch size is 128 for all algorithms. Power response function with γres = 4.0 and
τ = 0.05 is used in the simulations.

ResNet @ CIFAR10/CIFAR100. We fine-tune three models from the ResNet family with different
scales on CIFAR10/CIFAR100 datasets. The power response functions with γres = 3.0 and τ = 0.1,
and the exponential response functions with γres = 4.0 and τ = 0.1 are used, whose results are shown
in Table 1 and 5, respectively. The results show that the Tiki-Taka outperforms Analog SGD by
about 1.0% in most of the cases in ResNet34/50, and the gap even reaches about 10.0% for ResNet18
training on the CIFAR100 dataset.

CIFAR10
DSGD ASGD TT/RL TTv2 RLv2

ResNet18 95.43±0.13 84.47±3.40 94.81±0.09 95.31±0.05 95.12±0.14
ResNet34 96.48±0.02 95.43±0.12 96.29±0.12 96.60±0.05 96.42±0.13
ResNet50 96.57±0.10 94.36±1.16 96.34±0.04 96.63±0.09 96.56±0.08

CIFAR100
DSGD ASGD TT/RL TTv2 RLv2

ResNet18 81.12±0.25 68.98±1.01 76.17±0.23 78.56±0.29 79.83±0.13
ResNet34 83.86±0.12 78.98±0.55 80.58±0.11 81.81±0.15 82.85±0.19
ResNet50 83.98±0.11 79.88±1.26 80.80±0.22 82.82±0.33 83.90±0.20

Table 5: Fine-tuning ResNet models with the exponential response on CIFAR10/100 datasets.
Test accuracy is reported. DSGD, ASGD, and TT represent Digital SGD, Analog SGD, Tiki-Taka,
respectively.

MobileNet @ CIFAR10/CIFAR100. We fine-tune three MobileNet models with different scales on
CIFAR10/CIFAR100 datasets. The response function is set as the power response with the parameter
γres = 4.0 and τ = 0.05, whose results are shown in Table 6. In the simulations, the accuracy of
Analog SGD drops significantly by about 10% in most cases, while Tiki-Taka remains comparable
to the Digital SGD with only a slight drop.

CIFAR10

DSGD ASGD TT/RL TTv2 RLv2

MobileNetV2 95.28±0.20 94.34±0.27 95.05±0.11 95.20±0.14 95.26±0.03
MobileNetV3S 94.45±0.10 80.66±6.18 93.65±0.24 93.54±0.06 93.79±0.00
MobileNetV3L 95.95±0.08 80.79±2.97 95.39±0.27 95.27±0.09 95.33±0.08

CIFAR100

DSGD ASGD TT/RL TTv2 RLv2

MobileNetV2 80.60±0.18 63.41±1.20 73.33±0.94 78.41±0.15 79.60±0.10
MobileNetV3S 78.94±0.05 51.79±1.05 71.14±0.93 74.51±0.37 75.39±0.00
MobileNetV3L 82.16±0.26 66.80±1.40 78.81±0.52 79.56±0.10 80.18±0.07

Table 6: Fine-tuning MobileNet models with power response on CIFAR10/100 datasets. Test accuracy
is reported. DSGD, ASGD, and TT represent Digital SGD, Analog SGD, Tiki-Taka, respectively.
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K.5 Ablation study on cycle variation

To verify the conclusion of Theorem 4 that the error introduced by cycle variation is a higher-order
term, we conduct a numerical simulation training on an image classification task on the MNIST
dataset using Fully-connected network (FCN) or convolution neural network (CNN) network. In the
pulse update (25), the parameter σc is varied from 10% to 120%, where the noise signal is already
larger than the response function signal itself. The results are shown in Table 7. The results show
that the test accuracy of both Analog SGD and Tiki-Taka is not significantly affected by the cycle
variation, which complies with the theoretical analysis.

FCN CNN

DSGD ASGD TT DSGD ASGD TT

σc = 10%

98.17±0.05

97.22±0.21 97.66±0.04

99.09±0.04

92.68±0.45 98.74±0.07
σc = 30% 96.97±0.12 97.07±0.12 93.36±0.55 98.89±0.05
σc = 60% 96.33±0.21 97.70±0.09 93.07±0.53 98.68±0.09
σc = 90% 95.99±0.15 97.44±0.15 91.87±0.48 98.92±0.02
σc = 120% 96.19±0.20 96.97±0.20 91.57±0.58 98.85±0.04

Table 7: Test accuracy comparison under different cycle variation levels σc on MNIST dataset. DSGD,
ASGD, and TT represent Digital SGD, Analog SGD, Tiki-Taka, respectively

K.6 Ablation study on various response functions

We also train a FCN model on the MNIST dataset under various response functions. As shown in
the figure, larger γres leads to a steeper response function. The results are shown in Table 8. The
accuracy < 15.00 in the table implies that Analog SGD fails completely at all trials, which is close to
random guess. The results show that Analog SGD works well only when the asymmetric is mild, i.e.
γres is small and τ is large, while Tiki-Taka outperforms Analog SGD and achieves comparable
accuracy with Digital SGD.

DSGD Power response Exponential response

ASGD TT/RL ASGD TT/RL

γres = 0.5
τ = 0.6

98.17±0.05

96.01±0.26 96.92±0.19 <15.00 97.27±0.07
τ = 0.7 97.40±0.15 97.05±0.05 <15.00 97.39±0.15
τ = 0.8 97.38±0.10 96.82±0.17 94.00±0.63 97.16±0.16

γres = 1.0
τ = 0.6 <15.00 97.39±0.05 <15.00 97.46±0.08
τ = 0.7 <15.00 97.33±0.05 <15.00 97.49±0.04
τ = 0.8 <15.00 97.34±0.09 <15.00 97.25±0.16

γres = 2.0
τ = 0.6 <15.00 96.93±0.15 <15.00 97.19±0.16
τ = 0.7 <15.00 97.27±0.02 <15.00 97.72±0.07
τ = 0.8 <15.00 97.18±0.04 <15.00 97.06±0.10

Table 8: Test accuracy comparison under different response function parameters τ and γres for
FCN training on MNIST dataset with power or exponential response functions. DSGD, ASGD, and TT
represent Digital SGD, Analog SGD, Tiki-Taka, respectively.

L Broader Impact

This paper focuses on developing a theoretical analysis for gradient-based training algorithms on a
class of generic AIMC hardware, which can be leveraged to boost both energy and computational
efficiency of training. While such efficiency gains could, in principle, enable broader and potentially
unintended uses of machine learning models, we do not identify any specific societal risks that need
to be highlighted in this context.
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• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: All of the data used in this paper is public accessible and we include the link.
The full details of algorithms have been provided in the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 6 and Section K.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See Section 6 and Section K.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Section K.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper strictly follows the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Section L.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We have not included any generation tasks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: See Section 6 and Section K.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We did not provide any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method we developed is original and completely without LLM.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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