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ABSTRACT

Backdoor attacks pose a critical threat by embedding hidden

triggers into inputs, causing models to misclassify them

into target labels. While extensive research has focused on

mitigating these attacks in object recognition models through

weight fine-tuning, much less attention has been given to de-

tecting backdoored samples directly. Given the vast datasets

used in training, manual inspection for backdoor triggers is

impractical, and even state-of-the-art defense mechanisms

fail to fully neutralize their impact. To address this gap, we

introduce a groundbreaking method to detect unseen back-

doored images during both training and inference. Lever-

aging the transformative success of prompt tuning in Vision

Language Models (VLMs), our approach trains learnable text

prompts to differentiate clean images from those with hidden

backdoor triggers. Experiments demonstrate the exceptional

efficacy of this method, achieving an impressive average

accuracy of 86% across two renowned datasets for detecting

unseen backdoor triggers, establishing a new standard in

backdoor defense.
Index Terms—Adversarial attacks, Backdoor, Vision-

Language Model, Prompt tuning

I. INTRODUCTION

Deep neural networks (DNNs) have revolutionized fields

ranging from object classification [1] and face recognition

[2] to reinforcement learning [3] and natural language pro-

cessing [4], setting new benchmarks in performance and

innovation. However, this remarkable success has made them

prime targets for sophisticated adversarial manipulations.

Among the most insidious threats are backdoor attacks,

which stealthily embed hidden patterns—known as trig-

gers—into models, causing them to misclassify inputs into

an adversary’s chosen target label. These backdoors can be

implanted through malicious techniques like data poison-

ing [5] or neuron hijacking [6], posing an immediate and

formidable challenge. In response, the research community

has developed numerous defense and detection strategies [7],

[8], [9], [10], [11]. Early approaches focused on purifying

compromised models using methods such as fine-tuning

[12], [13] or distillation [14]. More recently, cutting-edge

techniques have attempted to neutralize adversarial triggers

by leveraging limited training or in-distribution samples [9],

[15], [16]. Another method adopts an input-level perspec-

tive by scaling pixel intensities of an image and checking

consistency in the model’s predictions [17]. Furthermore,

researchers in [18] utilize a Vision Transformer (ViT) to

classify previously seen adversarial attack patterns targeting

traffic sign recognition systems in autonomous vehicles.

These advances mark significant strides in safeguarding

DNNs, but the persistence and evolution of adversarial

threats demand continued innovation to stay ahead in this

escalating arms race.

Contribution: Despite advancements in adversarial defense

and training algorithms, achieving 100% protection against

adversarial attacks remains elusive. These traditional meth-

ods are reactive, focusing on cleansing already-compromised

models of embedded backdoor triggers. Unlike the state-of-

the-art methods, such as BDetCLIP [19], which utilize

a poisoned model to uncover adversarial samples aimed

at compromising the target model, our approach uses

a clean and not poisoned CLIP model to detect unseen,

open-world adversarial samples without having any prior

knowledge about the attacks. This step is critical as

millions of training samples are collected from the

internet to train GenAI with little assurance that these

samples are free from adversarial attacks. This paper

introduces a revolutionary and complementary strategy: a

proactive algorithm designed to detect adversarial images

before they wreak havoc. Our approach serves two critical

purposes: i) Pre-Training Defense: Before training begins,

the algorithm meticulously scans the dataset to identify and

eliminate adversarial (backdoored) images that could poison

object recognition models. This ensures the integrity and

purity of the training data, safeguarding the foundation of

model learning. 2) Inference-Time Shielding: During infer-

ence, the algorithm acts as a vigilant gatekeeper, inspecting

incoming images to block adversarial content from reaching

the object recognition system. This prevents adversarial

images from manipulating the model to misclassify inputs

into the adversary’s target class. By proactively identifying

and neutralizing adversarial threats, this approach works in
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Fig. 1. The overall architecture of the proposed method on classifying unseen backdoor attack images.

tandem with traditional defense algorithms, creating a robust

and comprehensive safeguard against adversarial attacks.

It represents a significant leap forward in securing object

recognition systems.

II. PROPOSED METHOD

II-A. Preliminaries and Insignts

Let D = {(xi, yi)}
N
i=1 represent a benign training set

with N images, where xi ∈ X is the i-th image and

yi ∈ Y = {1, . . . ,K} is its corresponding label, with K
being the number of classes. If the goal of adversaries is to

poison object recognition systems, they generate a poisoned

dataset Dp to train the attacked model using either a standard

loss function or an adversary-specified one. Specifically, Dp

is composed of a modified subset of D, denoted as Dm, and a

benign subset Db, such that Dp = Dm∪Db, where Db ⊂ D.

The modified subset Dm is defined as Dm = {(x′, y′) | x′ =

GX(x), y′ = GY (y), (x, y) ∈ Ds}, where α = |Ds|
|D| is

the poisoning rate, Ds is the subset of D selected to be

modified, and GX , GY are the adversary-specified generators

for poisoned images and labels, respectively. For example,

in BadNets [20], GX(x) = (1 − β) ⊙ x + β ⊙ t, where

β ∈ {0, 1}C×W×H , where C,W and H are dimensions of

input, t is the trigger pattern, and ⊙ denotes the element-

wise product. If the goal of advesaries is to attack object

recognition systems during inference, given an ’unseen’

image x̂ with ground-truth label ŷ, the model will predict its

poisoned version GX(x̂) as GY (ŷ). It is important to note

that the goal of this paper is not to train any model or

defend against attacked models, but to detect backdoored

images GX(x) and GX(x̂).
VLM. To detect unseen backdoored images, we harness

the extraordinary capabilities of VLMs, which excel at

transforming input images into lower-dimensional, highly in-

formative feature spaces. Models like Contrastive Language-

Image Pre-training (CLIP) [21], trained on an immense

dataset of image-text pairs (i.e. 400 million samples), are

uniquely equipped to extract rich and versatile features

from input images, regardless of their intended application.

Their joint training with text data makes VLMs particularly

well-suited for advanced techniques like prompt tuning.

Prompt tuning has emerged as a groundbreaking method in

leveraging VLMs for diverse applications. In this process, a

learnable soft prompt is passed through the language encoder

of the VLM while keeping the weights of both the image

and language encoders frozen. This innovative approach

tailors VLMs—originally trained in an unsupervised manner

on broad image-text data—to excel in specific downstream

tasks. VLMs have a word embedding module E(·) that

converts the symbolic words to word embeddings, a text

encoder ft(·) that maps the word embeddings to the joint

space, and an image encoder fI(·) that maps input images

to the joint space.

II-B. Backdoor Image Detection Framework

The framework of our proposed method for detecting un-

seen backdoored images is illustrated in Figure 1, showcas-

ing a novel and powerful approach to tackling the complex

challenge of detecting unseen backdoored attacks images.

We leveraged prompt tuning of VLMs to transcend their

general-purpose design to become specialized tools for de-

tecting and classifying backdoored images with unparalleled

precision and adaptability [25], [26], [27]. Figure 1(a) high-

lights the diverse permutations of backdoor attack images

generated across the CIFAR-10 dataset, emphasizing the

robustness of our method in handling a wide range of

malicious image manipulations. Unlike traditional defenses

focused on protecting against backdoored models, our goal

is to directly detect backdoored images, combining training

and test images into a unified dataset for this purpose.

In the training phase, depicted in Figure 1(b), we leverage

the state-of-the-art architecture of CLIP, utilizing both a

text encoder and an image encoder to project prompts and

input images into a shared, semantically rich embedding

space. Learnable soft prompts [p1, p2, p3] are prepended

to the word embedding of the “class” label, which is ei-



Table I. Experimental Results of Unseen Attack Classification (Accuracy).
Dataset Method Trojan-WM Trojan-SQ l2-inv l0-inv Badnets-SQ Badnets-PX Average

CIFAR-10

Simple-CNN [22] 64.86 ± 7.14 75.10 ± 11.98 51.56 ± 0.41 49.93 ± 0.50 49.94 ± 0.42 50.10 ± 0.15 56.92 ± 3.43

Deep-CNN [23] 76.37 ± 6.20 58.69 ± 6.72 55.77 ± 5.77 50.18 ± 0.34 50.14 ± 0.40 50.04 ± 0.06 56.87 ± 3.25

ResNet-18 [24] 84.52 ± 5.22 75.40 ± 7.22 53.42 ± 1.28 51.17 ± 1.38 50.00 ± 0.00 54.29 ± 5.73 61.47 ± 3.47

Proposed Method 96.10 ± 0.38 96.44 ± 0.45 93.85 ± 0.69 96.45 ± 0.44 75.45 ± 2.03 58.89 ± 1.31 86.20 ± 0.88

GTSRB

Simple-CNN [22] 82.86 ± 12.15 60.80 ± 10.35 53.58 ± 0.14 50.84 ± 0.30 50.00 ± 0.00 50.03 ± 0.03 58.02 ± 3.83

Deep-CNN [23] 83.93 ± 14.91 61.61 ± 13.95 53.17 ± 0.20 51.45 ± 0.47 50.01 ± 0.20 50.04 ± 0.10 58.36 ± 4.97

ResNet-18 [24] 74.40 ± 5.93 87.52 ± 6.81 52.75 ± 1.39 69.29 ± 14.85 50.01 ± 0.01 50.02 ± 0.05 64.00 ± 4.84

Proposed Method 94.89 ± 0.78 95.72 ± 0.69 94.41 ± 0.65 86.99 ± 0.62 85.03 ± 0.62 60.42 ± 1.19 86.24 ± 0.76

Note: The values represent mean ± standard deviation over three random seeds. Bold indicates the best accuracy results for the unseen attack.

ther clean for normal images or backdoored for malicious

ones. To speed up the convergence time, we initialize

[p1, p2, p3] with the word embeddings of “a photo of”,

where pi ∈ R
d and d is the dimension of the output of

CLIP’s word embedding E(·), and is equal to 512. This

sequence, combining the learnable soft prompts and the word

embedding of the “class,” is passed through the text encoder

of CLIP and normalized, producing embedding vectors T1 =
ft([p1, p2, p3, E(‘clean’)])/∥ft([p1, p2, p3, E(‘clean’)])∥ for

clean images and T2 = ft([p1,p2,p3,E(‘backdoored’)])
∥ft([p1,p2,p3,E(‘backdoored’)])∥ for back-

doored images. These embeddings capture the contextual

nuances of the respective image classes.

Simultaneously, the image encoder processes all clean

and backdoored images to generate high-dimensional em-

beddings (I1, I2, . . . , In), where Ii =
fI(xi)

∥fI(xi)∥
. To optimize

the model, similarity scores (Ij ×T1, Ij ×T2) are computed

between the jth image embedding and text embeddings T1

and T2, and a cross-entropy loss function is employed to fine-

tune the system. This comprehensive framework not only

ensures precise detection of seen backdoored images but also

paves the way for identifying unseen backdoor attacks with

exceptional accuracy and adaptability.

During inference, as shown in Fig. 1(c), the learned

prefix embeddings [p1, p2, p3] are appended to the word

embeddings of ”clean” and ”backdoored” and passed

through the text encoder to generate the frozen text em-

beddings: T1 = ft([p1, p2, p3, E(‘clean’)]), and T2 =
ft([p1, p2, p3, E(‘backdoored’)]). It is important to highlight

that, although this process resembles the training phase, the

prefix embeddings p1, p2, and p3 are frozen during infer-

ence and remain unaltered. Meanwhile, the image encoder

processes the input image xj to compute its corresponding

embedding Ij . Finally, the similarity scores between Ij
and T1, as well as Ij and T2, are calculated and com-

pared: Similarity(Ij , T1), Similarity(Ij , T2). These simi-

larity scores determine whether xj is classified as clean

or backdoored. This architecture provides robust detection

of unseen backdoored images by aligning embeddings of

clean and adversarial images with their corresponding text

embeddings in a shared multimodal space.

Training. During training, the model optimizes the align-

ment between the fixed visual embeddings, Ij , and the learn-

able text embeddings, Tk, k ∈ {1, 2} , to enable recognition

of adversarial images. For each image xj , the similarity

scores for each class c ∈ {“clean”, “backdoored”} are

calculated using the scaled dot product sj,k = α× (Ij · Tk),
where α is a scaling factor that amplifies the logits, and (·)
denotes the dot product operation. The scaling factor ensures

that the logits are in a range suitable for the cross-entropy

loss function.

The similarity scores sj,k are passed to the cross-

entropy loss function, which encourages the model to

assign higher similarity scores to the correct class.

The cross-entropy loss function is defined as L =

− 1
N

∑N

j=1 log
(

exp(sj,k)
exp(sj,1)+exp(sj,2)

)

, where N is the batch

size, k is the true class label for the j-th sample, and sj,k
represents similarity scores for all classes k for sample j.

The learnable prefix embeddings in the text encoder are

optimized using the Adam optimizer [28].

Inference. During inference, for each input image xj , we

compute the similarity scores sj,k for each class k. However,

instead of computing class probabilities using the softmax

function, we select the class with the highest similarity

score, resulting in the predicted class label k̂ given by

k̂ = argmaxk sj,k. Notably, the model is tested on unseen

attack images, leveraging the information learned from seen

attacks during training to generalize to novel unseen images.

III. EXPERIMENTS

Attack Models. We have selected six renowned backdoor

attacks to evaluate our proposed architecture: Badnets Square

(Badnets-SQ) [20], Badnets Pixels (Badnets-PX) [20], Tro-

jan Square (Trojan-SQ) [6], Trojan Watermark (Trojan-WM)

[6], l2-inv [29], and l0-inv [29]. These attacks cover a

wide range of backdoor conditions, including universality,

label specificity, and variations in backdoor shape, size, and

location.

Datasets. We conduct experiments using two datasets:

CIFAR-10 [30] and GTSRB [23]. CIFAR-10 includes 50,000

training images and 10,000 test images across 10 classes.

GTSRB consists of 39,209 training images and 12,630 test

images of traffic signals, spanning 43 classes.

Experiment Settings. It is important to note that unlike

adversarial attacks and defense literature that work on the

model, we are working on images solely to detect back-

doored images. Therefore, we do not train any model (e.g.

ResNet-18) for our evaluation. We use CLIP’s ViT-B/32,

the smallest architecture in the CLIP family, chosen for



Table II. Cross-Generalization Results (Accuracy).
Unseen Attack CIFAR-10 → GTSRB GTSRB → CIFAR-10

Trojan-WM 76.54 ± 0.97 80.24 ± 0.83

Trojan-SQ 78.54 ± 1.09 81.78 ± 0.68

l2-inv 78.81 ± 1.59 74.95 ± 2.32

l0-inv 73.68 ± 1.02 76.20 ± 1.95

Badnets-SQ 70.85 ± 0.28 75.69 ± 0.14

Badnets-PX 62.75 ± 0.51 62.84 ± 0.26

Note: The values represent mean ± standard deviation over three random

seeds. Train → Test.

its efficiency in balancing performance and computational

demands. We leverage the predefined training and testing

splits from the previously mentioned datasets. Clean images

are taken directly from the train and test split without

modification, while backdoored images are generated by

applying the predefined attack types to all clean images.

To evaluate the performance of our proposed method in

detecting unseen attacks, only five of six attack types are

selected for training. To maintain balance, we randomly

select an equal number of images from each attack type to

match the total number of clean images. At inference, the

model is tested on all clean test images and their backdoored

version by the unseen attack, which is the attack type

excluded during training. Furthermore, we set the scaling

factor α = 100 and the Adam optimizer’s learning rate for the

learnable prefix embeddings to 10−5. Training is conducted

over 10 epochs with a batch size of 128.

III-A. Experimental Results

To compare the performance of our methods in detecting

unseen backdoored images, we train three widely used CNN

architectures: Simple-CNN [22] consists of three convolu-

tional layers and a fully connected, Deep-CNN [23] consists

of six convolutional layers with a dropout layer and fully

connected layer for classification, and ResNet-18 [24].

Table I presents the evaluation results, showcasing the

exceptional performance of our proposed method in clas-

sifying unseen backdoor attack images. For example, on

the CIFAR-10 dataset, our method achieves detection ac-

curacies exceeding 95% for Trojan-WM, Trojan-SQ, and

l0-inv triggers, alongside an impressive 93.85% accuracy

for l2-inv triggers. Furthermore, the results highlight a 25%

increase for detecting Badnets-SQ triggers and over 4.5%

on Badnets-PX. To further validate the robustness of our

approach, we extend our experiments to the GTSRB dataset.

While prior CNN-based methods show promise in detecting

Trojan triggers, our proposed method exhibits a remarkable

performance increase, achieving an accuracy improvement

of approximately 11% and 8% on Trojan-WM and Trojan-

SQ, respectively. Additionally, our method significantly en-

hances detection accuracy by 35% for unseen Badnets-SQ

triggers on the GTSRB dataset. While our method performs

well across most unseen attack types, the lower accuracy

on Badnets-PX attacks highlights a limitation in detecting

subtle, pixel-level triggers. The minimal changes may not

Fig. 2. t-SNE Visualization of test embeddings of Trojan-

WM and Badnets-PX attacks on the CIFAR-10 dataset.

significantly alter the global image features captured by

the frozen visual encoder, making them more challenging

to detect. Overall, these results validate the value of our

approach in detecting unseen backdoor attacks across both

datasets.

III-B. Cross-Generalization Experiment

Ensuring robust generalization across datasets is crucial

for backdoored image detection, particularly when facing

unseen triggers. To evaluate the strength of our proposed

approach regardless of the dataset used during the training,

we conduct experiments to train on one dataset (e.g. CIFAR-

10) and test on the other (e.g. GTSRB), while ensuring that

the model is still trained on seen triggers and tested on

unseen triggers. Table II illustrates the impressive results of

these experiments. For instance, in the initial tests (CIFAR-

10 → GTSRB), our model achieves an average accuracy of

77.54% on unseen Trojan triggers. The model retains robust

performance across unseen l2-inv and l0-inv and triggers,

achieving accuracies of 78.81% and 73.68%, respectively.

When reversing the train and test sets (GTSRB → CIFAR-

10), Trojan triggers achieve a higher average accuracy of

81.01%. In this scenario, the model once again performs

well in identifying unseen l2-inv and l0-inv and triggers. In-

terestingly, the model detects 62.84% of unseen Badnets-PX

triggers, which outperforms the performance when training

directly on CIFAR-10. This improvement likely occurs due

to the greater diversity and visual complexity of the GTSRB

dataset (i.e. 43 classes) compared to less diverse CIFAR-10

dataset (i.e. 10 classes). This diversity appears to enable the

model to learn more generalized representations, improving

its ability to detect subtle pixel-level triggers like Badnets-

PX.

III-C. Visual Analysis

To demonstrate the separation between clean and adver-

sarial embeddings, we present t-SNE visualizations [31] of

the test image and text embeddings within the embedding

space for unseen backdoor triggers Trojan-WM and Badnets-

PX, shown in Figure 2. These attacks were selected for

illustration due to their contrasting detection performances:



Table III. Learnable vs. Static Prefix (Accuracy).

Unseen Attack
CIFAR-10 GTSRB

[p1][p2][p3] “a photo of” [p1][p2][p3] “a photo of”

Trojan-WM 96.10 (+42.87) 53.23 94.89 (+22.28) 72.61

Trojan-SQ 96.44 (+43.14) 53.30 95.72 (+28.46) 67.26

l2-inv 93.85 (+39.84) 54.01 94.41 (+20.30) 74.11

l0-inv 96.45 (+44.06) 52.39 86.99 (+22.41) 64.58

Badnets-SQ 75.45 (+24.14) 51.31 85.03 (+29.90) 55.13

Badnets-PX 58.89 (+8.99) 49.90 60.42 (+8.83) 51.59

Note: Differences in parentheses represent the accuracy improvement of the learned prefix

over the static prefix. Values are shown in blue.

Trojan-WM achieves over 96% accuracy, while Badnets-

PX achieves around 59%. For Trojan-WM, the correct text

embeddings are closely aligned with their corresponding

image embedding clusters, helping in create a distinct sep-

aration between clean and backdoor images. In contrast,

the embedding space for Badnets-PX reveals a less distinct

clustering pattern. While some separation occurs between

the text embeddings, there is a significant overlap in image

embeddings. This misalignment makes it more challenging

to distinguish the unseen Backdoor-PX images from clean

images during inference.

III-D. Ablation on Fixed Prefix

While our approach is built on leveraging a learnable

prefix to adapt the textual representation in detecting unseen

backdoored images, it is important to examine the effect

on the model if the prefix remains static. We compare

the results when using a fixed prompt – “a photo of” –

with the performance using our learned prefix, shown in

Table III. When the prompt remains static, the model relies

heavily on the understanding of the fixed prefix, providing

no additional semantic context that highlights backdoored

features. Furthermore, the base model is applying only pre-

trained knowledge without any fine-tuning, leading to a

lack of generalization to previously unseen images of back-

doored images. However, the learnable prefix helps guide

the model’s attention by enabling the prompt to dynamically

adapt to associated backdoor patterns. This helps align

visual and textual embeddings in the multimodal embedding

space, making it more effective at detecting unseen backdoor

triggers.

IV. CONCLUSION

Defending object recognition systems against adversarial

attacks has traditionally centered on reactive strategies like

cleansing backdoored models or adversarially training them.

In this groundbreaking work, we introduced a paradigm shift:

a proactive method for detecting unseen backdoored (poi-

soned) images before they can infiltrate object recognition

systems. Our approach serves dual purposes—vetting train-

ing datasets to ensure integrity and safeguarding inference by

blocking adversarial images before they reach the model. We

achieved this by harnessing the unparalleled generalization

capabilities of vision-language models like CLIP, leveraging

prompt tuning to exploit their training on vast and diverse

datasets. Extensive experiments across six distinct types of

unseen attacks demonstrate the robustness and effectiveness

of our approach, setting a new benchmark for proactive

defense mechanisms. While this pioneering work represents

the first step toward detecting backdoored images, future

research must delve deeper into improving detection of pixel-

based attacks, where subtle, localized triggers present a

formidable challenge. This study paves the way for a new

era in securing object recognition systems against adversarial

threats.
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